mm/page_ext: move functions around for minor cleanups to page_ext
[platform/kernel/linux-starfive.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #define CREATE_TRACE_POINTS
49 #include <trace/events/ksm.h>
50
51 #ifdef CONFIG_NUMA
52 #define NUMA(x)         (x)
53 #define DO_NUMA(x)      do { (x); } while (0)
54 #else
55 #define NUMA(x)         (0)
56 #define DO_NUMA(x)      do { } while (0)
57 #endif
58
59 /**
60  * DOC: Overview
61  *
62  * A few notes about the KSM scanning process,
63  * to make it easier to understand the data structures below:
64  *
65  * In order to reduce excessive scanning, KSM sorts the memory pages by their
66  * contents into a data structure that holds pointers to the pages' locations.
67  *
68  * Since the contents of the pages may change at any moment, KSM cannot just
69  * insert the pages into a normal sorted tree and expect it to find anything.
70  * Therefore KSM uses two data structures - the stable and the unstable tree.
71  *
72  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
73  * by their contents.  Because each such page is write-protected, searching on
74  * this tree is fully assured to be working (except when pages are unmapped),
75  * and therefore this tree is called the stable tree.
76  *
77  * The stable tree node includes information required for reverse
78  * mapping from a KSM page to virtual addresses that map this page.
79  *
80  * In order to avoid large latencies of the rmap walks on KSM pages,
81  * KSM maintains two types of nodes in the stable tree:
82  *
83  * * the regular nodes that keep the reverse mapping structures in a
84  *   linked list
85  * * the "chains" that link nodes ("dups") that represent the same
86  *   write protected memory content, but each "dup" corresponds to a
87  *   different KSM page copy of that content
88  *
89  * Internally, the regular nodes, "dups" and "chains" are represented
90  * using the same struct ksm_stable_node structure.
91  *
92  * In addition to the stable tree, KSM uses a second data structure called the
93  * unstable tree: this tree holds pointers to pages which have been found to
94  * be "unchanged for a period of time".  The unstable tree sorts these pages
95  * by their contents, but since they are not write-protected, KSM cannot rely
96  * upon the unstable tree to work correctly - the unstable tree is liable to
97  * be corrupted as its contents are modified, and so it is called unstable.
98  *
99  * KSM solves this problem by several techniques:
100  *
101  * 1) The unstable tree is flushed every time KSM completes scanning all
102  *    memory areas, and then the tree is rebuilt again from the beginning.
103  * 2) KSM will only insert into the unstable tree, pages whose hash value
104  *    has not changed since the previous scan of all memory areas.
105  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
106  *    colors of the nodes and not on their contents, assuring that even when
107  *    the tree gets "corrupted" it won't get out of balance, so scanning time
108  *    remains the same (also, searching and inserting nodes in an rbtree uses
109  *    the same algorithm, so we have no overhead when we flush and rebuild).
110  * 4) KSM never flushes the stable tree, which means that even if it were to
111  *    take 10 attempts to find a page in the unstable tree, once it is found,
112  *    it is secured in the stable tree.  (When we scan a new page, we first
113  *    compare it against the stable tree, and then against the unstable tree.)
114  *
115  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
116  * stable trees and multiple unstable trees: one of each for each NUMA node.
117  */
118
119 /**
120  * struct ksm_mm_slot - ksm information per mm that is being scanned
121  * @slot: hash lookup from mm to mm_slot
122  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
123  */
124 struct ksm_mm_slot {
125         struct mm_slot slot;
126         struct ksm_rmap_item *rmap_list;
127 };
128
129 /**
130  * struct ksm_scan - cursor for scanning
131  * @mm_slot: the current mm_slot we are scanning
132  * @address: the next address inside that to be scanned
133  * @rmap_list: link to the next rmap to be scanned in the rmap_list
134  * @seqnr: count of completed full scans (needed when removing unstable node)
135  *
136  * There is only the one ksm_scan instance of this cursor structure.
137  */
138 struct ksm_scan {
139         struct ksm_mm_slot *mm_slot;
140         unsigned long address;
141         struct ksm_rmap_item **rmap_list;
142         unsigned long seqnr;
143 };
144
145 /**
146  * struct ksm_stable_node - node of the stable rbtree
147  * @node: rb node of this ksm page in the stable tree
148  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
149  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
150  * @list: linked into migrate_nodes, pending placement in the proper node tree
151  * @hlist: hlist head of rmap_items using this ksm page
152  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
153  * @chain_prune_time: time of the last full garbage collection
154  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
155  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
156  */
157 struct ksm_stable_node {
158         union {
159                 struct rb_node node;    /* when node of stable tree */
160                 struct {                /* when listed for migration */
161                         struct list_head *head;
162                         struct {
163                                 struct hlist_node hlist_dup;
164                                 struct list_head list;
165                         };
166                 };
167         };
168         struct hlist_head hlist;
169         union {
170                 unsigned long kpfn;
171                 unsigned long chain_prune_time;
172         };
173         /*
174          * STABLE_NODE_CHAIN can be any negative number in
175          * rmap_hlist_len negative range, but better not -1 to be able
176          * to reliably detect underflows.
177          */
178 #define STABLE_NODE_CHAIN -1024
179         int rmap_hlist_len;
180 #ifdef CONFIG_NUMA
181         int nid;
182 #endif
183 };
184
185 /**
186  * struct ksm_rmap_item - reverse mapping item for virtual addresses
187  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
188  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
189  * @nid: NUMA node id of unstable tree in which linked (may not match page)
190  * @mm: the memory structure this rmap_item is pointing into
191  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
192  * @oldchecksum: previous checksum of the page at that virtual address
193  * @node: rb node of this rmap_item in the unstable tree
194  * @head: pointer to stable_node heading this list in the stable tree
195  * @hlist: link into hlist of rmap_items hanging off that stable_node
196  */
197 struct ksm_rmap_item {
198         struct ksm_rmap_item *rmap_list;
199         union {
200                 struct anon_vma *anon_vma;      /* when stable */
201 #ifdef CONFIG_NUMA
202                 int nid;                /* when node of unstable tree */
203 #endif
204         };
205         struct mm_struct *mm;
206         unsigned long address;          /* + low bits used for flags below */
207         unsigned int oldchecksum;       /* when unstable */
208         union {
209                 struct rb_node node;    /* when node of unstable tree */
210                 struct {                /* when listed from stable tree */
211                         struct ksm_stable_node *head;
212                         struct hlist_node hlist;
213                 };
214         };
215 };
216
217 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
218 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
219 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
220
221 /* The stable and unstable tree heads */
222 static struct rb_root one_stable_tree[1] = { RB_ROOT };
223 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
224 static struct rb_root *root_stable_tree = one_stable_tree;
225 static struct rb_root *root_unstable_tree = one_unstable_tree;
226
227 /* Recently migrated nodes of stable tree, pending proper placement */
228 static LIST_HEAD(migrate_nodes);
229 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230
231 #define MM_SLOTS_HASH_BITS 10
232 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233
234 static struct ksm_mm_slot ksm_mm_head = {
235         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
236 };
237 static struct ksm_scan ksm_scan = {
238         .mm_slot = &ksm_mm_head,
239 };
240
241 static struct kmem_cache *rmap_item_cache;
242 static struct kmem_cache *stable_node_cache;
243 static struct kmem_cache *mm_slot_cache;
244
245 /* The number of nodes in the stable tree */
246 static unsigned long ksm_pages_shared;
247
248 /* The number of page slots additionally sharing those nodes */
249 static unsigned long ksm_pages_sharing;
250
251 /* The number of nodes in the unstable tree */
252 static unsigned long ksm_pages_unshared;
253
254 /* The number of rmap_items in use: to calculate pages_volatile */
255 static unsigned long ksm_rmap_items;
256
257 /* The number of stable_node chains */
258 static unsigned long ksm_stable_node_chains;
259
260 /* The number of stable_node dups linked to the stable_node chains */
261 static unsigned long ksm_stable_node_dups;
262
263 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
264 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265
266 /* Maximum number of page slots sharing a stable node */
267 static int ksm_max_page_sharing = 256;
268
269 /* Number of pages ksmd should scan in one batch */
270 static unsigned int ksm_thread_pages_to_scan = 100;
271
272 /* Milliseconds ksmd should sleep between batches */
273 static unsigned int ksm_thread_sleep_millisecs = 20;
274
275 /* Checksum of an empty (zeroed) page */
276 static unsigned int zero_checksum __read_mostly;
277
278 /* Whether to merge empty (zeroed) pages with actual zero pages */
279 static bool ksm_use_zero_pages __read_mostly;
280
281 /* The number of zero pages which is placed by KSM */
282 unsigned long ksm_zero_pages;
283
284 #ifdef CONFIG_NUMA
285 /* Zeroed when merging across nodes is not allowed */
286 static unsigned int ksm_merge_across_nodes = 1;
287 static int ksm_nr_node_ids = 1;
288 #else
289 #define ksm_merge_across_nodes  1U
290 #define ksm_nr_node_ids         1
291 #endif
292
293 #define KSM_RUN_STOP    0
294 #define KSM_RUN_MERGE   1
295 #define KSM_RUN_UNMERGE 2
296 #define KSM_RUN_OFFLINE 4
297 static unsigned long ksm_run = KSM_RUN_STOP;
298 static void wait_while_offlining(void);
299
300 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
301 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
302 static DEFINE_MUTEX(ksm_thread_mutex);
303 static DEFINE_SPINLOCK(ksm_mmlist_lock);
304
305 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
306                 sizeof(struct __struct), __alignof__(struct __struct),\
307                 (__flags), NULL)
308
309 static int __init ksm_slab_init(void)
310 {
311         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
312         if (!rmap_item_cache)
313                 goto out;
314
315         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
316         if (!stable_node_cache)
317                 goto out_free1;
318
319         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
320         if (!mm_slot_cache)
321                 goto out_free2;
322
323         return 0;
324
325 out_free2:
326         kmem_cache_destroy(stable_node_cache);
327 out_free1:
328         kmem_cache_destroy(rmap_item_cache);
329 out:
330         return -ENOMEM;
331 }
332
333 static void __init ksm_slab_free(void)
334 {
335         kmem_cache_destroy(mm_slot_cache);
336         kmem_cache_destroy(stable_node_cache);
337         kmem_cache_destroy(rmap_item_cache);
338         mm_slot_cache = NULL;
339 }
340
341 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
342 {
343         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
344 }
345
346 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
347 {
348         return dup->head == STABLE_NODE_DUP_HEAD;
349 }
350
351 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
352                                              struct ksm_stable_node *chain)
353 {
354         VM_BUG_ON(is_stable_node_dup(dup));
355         dup->head = STABLE_NODE_DUP_HEAD;
356         VM_BUG_ON(!is_stable_node_chain(chain));
357         hlist_add_head(&dup->hlist_dup, &chain->hlist);
358         ksm_stable_node_dups++;
359 }
360
361 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
362 {
363         VM_BUG_ON(!is_stable_node_dup(dup));
364         hlist_del(&dup->hlist_dup);
365         ksm_stable_node_dups--;
366 }
367
368 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
369 {
370         VM_BUG_ON(is_stable_node_chain(dup));
371         if (is_stable_node_dup(dup))
372                 __stable_node_dup_del(dup);
373         else
374                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
375 #ifdef CONFIG_DEBUG_VM
376         dup->head = NULL;
377 #endif
378 }
379
380 static inline struct ksm_rmap_item *alloc_rmap_item(void)
381 {
382         struct ksm_rmap_item *rmap_item;
383
384         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
385                                                 __GFP_NORETRY | __GFP_NOWARN);
386         if (rmap_item)
387                 ksm_rmap_items++;
388         return rmap_item;
389 }
390
391 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
392 {
393         ksm_rmap_items--;
394         rmap_item->mm->ksm_rmap_items--;
395         rmap_item->mm = NULL;   /* debug safety */
396         kmem_cache_free(rmap_item_cache, rmap_item);
397 }
398
399 static inline struct ksm_stable_node *alloc_stable_node(void)
400 {
401         /*
402          * The allocation can take too long with GFP_KERNEL when memory is under
403          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
404          * grants access to memory reserves, helping to avoid this problem.
405          */
406         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
407 }
408
409 static inline void free_stable_node(struct ksm_stable_node *stable_node)
410 {
411         VM_BUG_ON(stable_node->rmap_hlist_len &&
412                   !is_stable_node_chain(stable_node));
413         kmem_cache_free(stable_node_cache, stable_node);
414 }
415
416 /*
417  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
418  * page tables after it has passed through ksm_exit() - which, if necessary,
419  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
420  * a special flag: they can just back out as soon as mm_users goes to zero.
421  * ksm_test_exit() is used throughout to make this test for exit: in some
422  * places for correctness, in some places just to avoid unnecessary work.
423  */
424 static inline bool ksm_test_exit(struct mm_struct *mm)
425 {
426         return atomic_read(&mm->mm_users) == 0;
427 }
428
429 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
430                         struct mm_walk *walk)
431 {
432         struct page *page = NULL;
433         spinlock_t *ptl;
434         pte_t *pte;
435         pte_t ptent;
436         int ret;
437
438         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
439         if (!pte)
440                 return 0;
441         ptent = ptep_get(pte);
442         if (pte_present(ptent)) {
443                 page = vm_normal_page(walk->vma, addr, ptent);
444         } else if (!pte_none(ptent)) {
445                 swp_entry_t entry = pte_to_swp_entry(ptent);
446
447                 /*
448                  * As KSM pages remain KSM pages until freed, no need to wait
449                  * here for migration to end.
450                  */
451                 if (is_migration_entry(entry))
452                         page = pfn_swap_entry_to_page(entry);
453         }
454         /* return 1 if the page is an normal ksm page or KSM-placed zero page */
455         ret = (page && PageKsm(page)) || is_ksm_zero_pte(*pte);
456         pte_unmap_unlock(pte, ptl);
457         return ret;
458 }
459
460 static const struct mm_walk_ops break_ksm_ops = {
461         .pmd_entry = break_ksm_pmd_entry,
462 };
463
464 /*
465  * We use break_ksm to break COW on a ksm page by triggering unsharing,
466  * such that the ksm page will get replaced by an exclusive anonymous page.
467  *
468  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
469  * in case the application has unmapped and remapped mm,addr meanwhile.
470  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
471  * mmap of /dev/mem, where we would not want to touch it.
472  *
473  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
474  * of the process that owns 'vma'.  We also do not want to enforce
475  * protection keys here anyway.
476  */
477 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
478 {
479         vm_fault_t ret = 0;
480
481         do {
482                 int ksm_page;
483
484                 cond_resched();
485                 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
486                                                &break_ksm_ops, NULL);
487                 if (WARN_ON_ONCE(ksm_page < 0))
488                         return ksm_page;
489                 if (!ksm_page)
490                         return 0;
491                 ret = handle_mm_fault(vma, addr,
492                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
493                                       NULL);
494         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
495         /*
496          * We must loop until we no longer find a KSM page because
497          * handle_mm_fault() may back out if there's any difficulty e.g. if
498          * pte accessed bit gets updated concurrently.
499          *
500          * VM_FAULT_SIGBUS could occur if we race with truncation of the
501          * backing file, which also invalidates anonymous pages: that's
502          * okay, that truncation will have unmapped the PageKsm for us.
503          *
504          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
505          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
506          * current task has TIF_MEMDIE set, and will be OOM killed on return
507          * to user; and ksmd, having no mm, would never be chosen for that.
508          *
509          * But if the mm is in a limited mem_cgroup, then the fault may fail
510          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
511          * even ksmd can fail in this way - though it's usually breaking ksm
512          * just to undo a merge it made a moment before, so unlikely to oom.
513          *
514          * That's a pity: we might therefore have more kernel pages allocated
515          * than we're counting as nodes in the stable tree; but ksm_do_scan
516          * will retry to break_cow on each pass, so should recover the page
517          * in due course.  The important thing is to not let VM_MERGEABLE
518          * be cleared while any such pages might remain in the area.
519          */
520         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
521 }
522
523 static bool vma_ksm_compatible(struct vm_area_struct *vma)
524 {
525         if (vma->vm_flags & (VM_SHARED  | VM_MAYSHARE   | VM_PFNMAP  |
526                              VM_IO      | VM_DONTEXPAND | VM_HUGETLB |
527                              VM_MIXEDMAP))
528                 return false;           /* just ignore the advice */
529
530         if (vma_is_dax(vma))
531                 return false;
532
533 #ifdef VM_SAO
534         if (vma->vm_flags & VM_SAO)
535                 return false;
536 #endif
537 #ifdef VM_SPARC_ADI
538         if (vma->vm_flags & VM_SPARC_ADI)
539                 return false;
540 #endif
541
542         return true;
543 }
544
545 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
546                 unsigned long addr)
547 {
548         struct vm_area_struct *vma;
549         if (ksm_test_exit(mm))
550                 return NULL;
551         vma = vma_lookup(mm, addr);
552         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
553                 return NULL;
554         return vma;
555 }
556
557 static void break_cow(struct ksm_rmap_item *rmap_item)
558 {
559         struct mm_struct *mm = rmap_item->mm;
560         unsigned long addr = rmap_item->address;
561         struct vm_area_struct *vma;
562
563         /*
564          * It is not an accident that whenever we want to break COW
565          * to undo, we also need to drop a reference to the anon_vma.
566          */
567         put_anon_vma(rmap_item->anon_vma);
568
569         mmap_read_lock(mm);
570         vma = find_mergeable_vma(mm, addr);
571         if (vma)
572                 break_ksm(vma, addr);
573         mmap_read_unlock(mm);
574 }
575
576 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
577 {
578         struct mm_struct *mm = rmap_item->mm;
579         unsigned long addr = rmap_item->address;
580         struct vm_area_struct *vma;
581         struct page *page;
582
583         mmap_read_lock(mm);
584         vma = find_mergeable_vma(mm, addr);
585         if (!vma)
586                 goto out;
587
588         page = follow_page(vma, addr, FOLL_GET);
589         if (IS_ERR_OR_NULL(page))
590                 goto out;
591         if (is_zone_device_page(page))
592                 goto out_putpage;
593         if (PageAnon(page)) {
594                 flush_anon_page(vma, page, addr);
595                 flush_dcache_page(page);
596         } else {
597 out_putpage:
598                 put_page(page);
599 out:
600                 page = NULL;
601         }
602         mmap_read_unlock(mm);
603         return page;
604 }
605
606 /*
607  * This helper is used for getting right index into array of tree roots.
608  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
609  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
610  * every node has its own stable and unstable tree.
611  */
612 static inline int get_kpfn_nid(unsigned long kpfn)
613 {
614         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
615 }
616
617 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
618                                                    struct rb_root *root)
619 {
620         struct ksm_stable_node *chain = alloc_stable_node();
621         VM_BUG_ON(is_stable_node_chain(dup));
622         if (likely(chain)) {
623                 INIT_HLIST_HEAD(&chain->hlist);
624                 chain->chain_prune_time = jiffies;
625                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
626 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
627                 chain->nid = NUMA_NO_NODE; /* debug */
628 #endif
629                 ksm_stable_node_chains++;
630
631                 /*
632                  * Put the stable node chain in the first dimension of
633                  * the stable tree and at the same time remove the old
634                  * stable node.
635                  */
636                 rb_replace_node(&dup->node, &chain->node, root);
637
638                 /*
639                  * Move the old stable node to the second dimension
640                  * queued in the hlist_dup. The invariant is that all
641                  * dup stable_nodes in the chain->hlist point to pages
642                  * that are write protected and have the exact same
643                  * content.
644                  */
645                 stable_node_chain_add_dup(dup, chain);
646         }
647         return chain;
648 }
649
650 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
651                                           struct rb_root *root)
652 {
653         rb_erase(&chain->node, root);
654         free_stable_node(chain);
655         ksm_stable_node_chains--;
656 }
657
658 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
659 {
660         struct ksm_rmap_item *rmap_item;
661
662         /* check it's not STABLE_NODE_CHAIN or negative */
663         BUG_ON(stable_node->rmap_hlist_len < 0);
664
665         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
666                 if (rmap_item->hlist.next) {
667                         ksm_pages_sharing--;
668                         trace_ksm_remove_rmap_item(stable_node->kpfn, rmap_item, rmap_item->mm);
669                 } else {
670                         ksm_pages_shared--;
671                 }
672
673                 rmap_item->mm->ksm_merging_pages--;
674
675                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
676                 stable_node->rmap_hlist_len--;
677                 put_anon_vma(rmap_item->anon_vma);
678                 rmap_item->address &= PAGE_MASK;
679                 cond_resched();
680         }
681
682         /*
683          * We need the second aligned pointer of the migrate_nodes
684          * list_head to stay clear from the rb_parent_color union
685          * (aligned and different than any node) and also different
686          * from &migrate_nodes. This will verify that future list.h changes
687          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
688          */
689         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
690         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
691
692         trace_ksm_remove_ksm_page(stable_node->kpfn);
693         if (stable_node->head == &migrate_nodes)
694                 list_del(&stable_node->list);
695         else
696                 stable_node_dup_del(stable_node);
697         free_stable_node(stable_node);
698 }
699
700 enum get_ksm_page_flags {
701         GET_KSM_PAGE_NOLOCK,
702         GET_KSM_PAGE_LOCK,
703         GET_KSM_PAGE_TRYLOCK
704 };
705
706 /*
707  * get_ksm_page: checks if the page indicated by the stable node
708  * is still its ksm page, despite having held no reference to it.
709  * In which case we can trust the content of the page, and it
710  * returns the gotten page; but if the page has now been zapped,
711  * remove the stale node from the stable tree and return NULL.
712  * But beware, the stable node's page might be being migrated.
713  *
714  * You would expect the stable_node to hold a reference to the ksm page.
715  * But if it increments the page's count, swapping out has to wait for
716  * ksmd to come around again before it can free the page, which may take
717  * seconds or even minutes: much too unresponsive.  So instead we use a
718  * "keyhole reference": access to the ksm page from the stable node peeps
719  * out through its keyhole to see if that page still holds the right key,
720  * pointing back to this stable node.  This relies on freeing a PageAnon
721  * page to reset its page->mapping to NULL, and relies on no other use of
722  * a page to put something that might look like our key in page->mapping.
723  * is on its way to being freed; but it is an anomaly to bear in mind.
724  */
725 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
726                                  enum get_ksm_page_flags flags)
727 {
728         struct page *page;
729         void *expected_mapping;
730         unsigned long kpfn;
731
732         expected_mapping = (void *)((unsigned long)stable_node |
733                                         PAGE_MAPPING_KSM);
734 again:
735         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
736         page = pfn_to_page(kpfn);
737         if (READ_ONCE(page->mapping) != expected_mapping)
738                 goto stale;
739
740         /*
741          * We cannot do anything with the page while its refcount is 0.
742          * Usually 0 means free, or tail of a higher-order page: in which
743          * case this node is no longer referenced, and should be freed;
744          * however, it might mean that the page is under page_ref_freeze().
745          * The __remove_mapping() case is easy, again the node is now stale;
746          * the same is in reuse_ksm_page() case; but if page is swapcache
747          * in folio_migrate_mapping(), it might still be our page,
748          * in which case it's essential to keep the node.
749          */
750         while (!get_page_unless_zero(page)) {
751                 /*
752                  * Another check for page->mapping != expected_mapping would
753                  * work here too.  We have chosen the !PageSwapCache test to
754                  * optimize the common case, when the page is or is about to
755                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
756                  * in the ref_freeze section of __remove_mapping(); but Anon
757                  * page->mapping reset to NULL later, in free_pages_prepare().
758                  */
759                 if (!PageSwapCache(page))
760                         goto stale;
761                 cpu_relax();
762         }
763
764         if (READ_ONCE(page->mapping) != expected_mapping) {
765                 put_page(page);
766                 goto stale;
767         }
768
769         if (flags == GET_KSM_PAGE_TRYLOCK) {
770                 if (!trylock_page(page)) {
771                         put_page(page);
772                         return ERR_PTR(-EBUSY);
773                 }
774         } else if (flags == GET_KSM_PAGE_LOCK)
775                 lock_page(page);
776
777         if (flags != GET_KSM_PAGE_NOLOCK) {
778                 if (READ_ONCE(page->mapping) != expected_mapping) {
779                         unlock_page(page);
780                         put_page(page);
781                         goto stale;
782                 }
783         }
784         return page;
785
786 stale:
787         /*
788          * We come here from above when page->mapping or !PageSwapCache
789          * suggests that the node is stale; but it might be under migration.
790          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
791          * before checking whether node->kpfn has been changed.
792          */
793         smp_rmb();
794         if (READ_ONCE(stable_node->kpfn) != kpfn)
795                 goto again;
796         remove_node_from_stable_tree(stable_node);
797         return NULL;
798 }
799
800 /*
801  * Removing rmap_item from stable or unstable tree.
802  * This function will clean the information from the stable/unstable tree.
803  */
804 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
805 {
806         if (rmap_item->address & STABLE_FLAG) {
807                 struct ksm_stable_node *stable_node;
808                 struct page *page;
809
810                 stable_node = rmap_item->head;
811                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
812                 if (!page)
813                         goto out;
814
815                 hlist_del(&rmap_item->hlist);
816                 unlock_page(page);
817                 put_page(page);
818
819                 if (!hlist_empty(&stable_node->hlist))
820                         ksm_pages_sharing--;
821                 else
822                         ksm_pages_shared--;
823
824                 rmap_item->mm->ksm_merging_pages--;
825
826                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
827                 stable_node->rmap_hlist_len--;
828
829                 put_anon_vma(rmap_item->anon_vma);
830                 rmap_item->head = NULL;
831                 rmap_item->address &= PAGE_MASK;
832
833         } else if (rmap_item->address & UNSTABLE_FLAG) {
834                 unsigned char age;
835                 /*
836                  * Usually ksmd can and must skip the rb_erase, because
837                  * root_unstable_tree was already reset to RB_ROOT.
838                  * But be careful when an mm is exiting: do the rb_erase
839                  * if this rmap_item was inserted by this scan, rather
840                  * than left over from before.
841                  */
842                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
843                 BUG_ON(age > 1);
844                 if (!age)
845                         rb_erase(&rmap_item->node,
846                                  root_unstable_tree + NUMA(rmap_item->nid));
847                 ksm_pages_unshared--;
848                 rmap_item->address &= PAGE_MASK;
849         }
850 out:
851         cond_resched();         /* we're called from many long loops */
852 }
853
854 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
855 {
856         while (*rmap_list) {
857                 struct ksm_rmap_item *rmap_item = *rmap_list;
858                 *rmap_list = rmap_item->rmap_list;
859                 remove_rmap_item_from_tree(rmap_item);
860                 free_rmap_item(rmap_item);
861         }
862 }
863
864 /*
865  * Though it's very tempting to unmerge rmap_items from stable tree rather
866  * than check every pte of a given vma, the locking doesn't quite work for
867  * that - an rmap_item is assigned to the stable tree after inserting ksm
868  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
869  * rmap_items from parent to child at fork time (so as not to waste time
870  * if exit comes before the next scan reaches it).
871  *
872  * Similarly, although we'd like to remove rmap_items (so updating counts
873  * and freeing memory) when unmerging an area, it's easier to leave that
874  * to the next pass of ksmd - consider, for example, how ksmd might be
875  * in cmp_and_merge_page on one of the rmap_items we would be removing.
876  */
877 static int unmerge_ksm_pages(struct vm_area_struct *vma,
878                              unsigned long start, unsigned long end)
879 {
880         unsigned long addr;
881         int err = 0;
882
883         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
884                 if (ksm_test_exit(vma->vm_mm))
885                         break;
886                 if (signal_pending(current))
887                         err = -ERESTARTSYS;
888                 else
889                         err = break_ksm(vma, addr);
890         }
891         return err;
892 }
893
894 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
895 {
896         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
897 }
898
899 static inline struct ksm_stable_node *page_stable_node(struct page *page)
900 {
901         return folio_stable_node(page_folio(page));
902 }
903
904 static inline void set_page_stable_node(struct page *page,
905                                         struct ksm_stable_node *stable_node)
906 {
907         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
908         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
909 }
910
911 #ifdef CONFIG_SYSFS
912 /*
913  * Only called through the sysfs control interface:
914  */
915 static int remove_stable_node(struct ksm_stable_node *stable_node)
916 {
917         struct page *page;
918         int err;
919
920         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
921         if (!page) {
922                 /*
923                  * get_ksm_page did remove_node_from_stable_tree itself.
924                  */
925                 return 0;
926         }
927
928         /*
929          * Page could be still mapped if this races with __mmput() running in
930          * between ksm_exit() and exit_mmap(). Just refuse to let
931          * merge_across_nodes/max_page_sharing be switched.
932          */
933         err = -EBUSY;
934         if (!page_mapped(page)) {
935                 /*
936                  * The stable node did not yet appear stale to get_ksm_page(),
937                  * since that allows for an unmapped ksm page to be recognized
938                  * right up until it is freed; but the node is safe to remove.
939                  * This page might be in an LRU cache waiting to be freed,
940                  * or it might be PageSwapCache (perhaps under writeback),
941                  * or it might have been removed from swapcache a moment ago.
942                  */
943                 set_page_stable_node(page, NULL);
944                 remove_node_from_stable_tree(stable_node);
945                 err = 0;
946         }
947
948         unlock_page(page);
949         put_page(page);
950         return err;
951 }
952
953 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
954                                     struct rb_root *root)
955 {
956         struct ksm_stable_node *dup;
957         struct hlist_node *hlist_safe;
958
959         if (!is_stable_node_chain(stable_node)) {
960                 VM_BUG_ON(is_stable_node_dup(stable_node));
961                 if (remove_stable_node(stable_node))
962                         return true;
963                 else
964                         return false;
965         }
966
967         hlist_for_each_entry_safe(dup, hlist_safe,
968                                   &stable_node->hlist, hlist_dup) {
969                 VM_BUG_ON(!is_stable_node_dup(dup));
970                 if (remove_stable_node(dup))
971                         return true;
972         }
973         BUG_ON(!hlist_empty(&stable_node->hlist));
974         free_stable_node_chain(stable_node, root);
975         return false;
976 }
977
978 static int remove_all_stable_nodes(void)
979 {
980         struct ksm_stable_node *stable_node, *next;
981         int nid;
982         int err = 0;
983
984         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
985                 while (root_stable_tree[nid].rb_node) {
986                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
987                                                 struct ksm_stable_node, node);
988                         if (remove_stable_node_chain(stable_node,
989                                                      root_stable_tree + nid)) {
990                                 err = -EBUSY;
991                                 break;  /* proceed to next nid */
992                         }
993                         cond_resched();
994                 }
995         }
996         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
997                 if (remove_stable_node(stable_node))
998                         err = -EBUSY;
999                 cond_resched();
1000         }
1001         return err;
1002 }
1003
1004 static int unmerge_and_remove_all_rmap_items(void)
1005 {
1006         struct ksm_mm_slot *mm_slot;
1007         struct mm_slot *slot;
1008         struct mm_struct *mm;
1009         struct vm_area_struct *vma;
1010         int err = 0;
1011
1012         spin_lock(&ksm_mmlist_lock);
1013         slot = list_entry(ksm_mm_head.slot.mm_node.next,
1014                           struct mm_slot, mm_node);
1015         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1016         spin_unlock(&ksm_mmlist_lock);
1017
1018         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
1019              mm_slot = ksm_scan.mm_slot) {
1020                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
1021
1022                 mm = mm_slot->slot.mm;
1023                 mmap_read_lock(mm);
1024
1025                 /*
1026                  * Exit right away if mm is exiting to avoid lockdep issue in
1027                  * the maple tree
1028                  */
1029                 if (ksm_test_exit(mm))
1030                         goto mm_exiting;
1031
1032                 for_each_vma(vmi, vma) {
1033                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1034                                 continue;
1035                         err = unmerge_ksm_pages(vma,
1036                                                 vma->vm_start, vma->vm_end);
1037                         if (err)
1038                                 goto error;
1039                 }
1040
1041 mm_exiting:
1042                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1043                 mmap_read_unlock(mm);
1044
1045                 spin_lock(&ksm_mmlist_lock);
1046                 slot = list_entry(mm_slot->slot.mm_node.next,
1047                                   struct mm_slot, mm_node);
1048                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1049                 if (ksm_test_exit(mm)) {
1050                         hash_del(&mm_slot->slot.hash);
1051                         list_del(&mm_slot->slot.mm_node);
1052                         spin_unlock(&ksm_mmlist_lock);
1053
1054                         mm_slot_free(mm_slot_cache, mm_slot);
1055                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1056                         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
1057                         mmdrop(mm);
1058                 } else
1059                         spin_unlock(&ksm_mmlist_lock);
1060         }
1061
1062         /* Clean up stable nodes, but don't worry if some are still busy */
1063         remove_all_stable_nodes();
1064         ksm_scan.seqnr = 0;
1065         return 0;
1066
1067 error:
1068         mmap_read_unlock(mm);
1069         spin_lock(&ksm_mmlist_lock);
1070         ksm_scan.mm_slot = &ksm_mm_head;
1071         spin_unlock(&ksm_mmlist_lock);
1072         return err;
1073 }
1074 #endif /* CONFIG_SYSFS */
1075
1076 static u32 calc_checksum(struct page *page)
1077 {
1078         u32 checksum;
1079         void *addr = kmap_atomic(page);
1080         checksum = xxhash(addr, PAGE_SIZE, 0);
1081         kunmap_atomic(addr);
1082         return checksum;
1083 }
1084
1085 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1086                               pte_t *orig_pte)
1087 {
1088         struct mm_struct *mm = vma->vm_mm;
1089         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1090         int swapped;
1091         int err = -EFAULT;
1092         struct mmu_notifier_range range;
1093         bool anon_exclusive;
1094         pte_t entry;
1095
1096         pvmw.address = page_address_in_vma(page, vma);
1097         if (pvmw.address == -EFAULT)
1098                 goto out;
1099
1100         BUG_ON(PageTransCompound(page));
1101
1102         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1103                                 pvmw.address + PAGE_SIZE);
1104         mmu_notifier_invalidate_range_start(&range);
1105
1106         if (!page_vma_mapped_walk(&pvmw))
1107                 goto out_mn;
1108         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1109                 goto out_unlock;
1110
1111         anon_exclusive = PageAnonExclusive(page);
1112         entry = ptep_get(pvmw.pte);
1113         if (pte_write(entry) || pte_dirty(entry) ||
1114             anon_exclusive || mm_tlb_flush_pending(mm)) {
1115                 swapped = PageSwapCache(page);
1116                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1117                 /*
1118                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1119                  * take any lock, therefore the check that we are going to make
1120                  * with the pagecount against the mapcount is racy and
1121                  * O_DIRECT can happen right after the check.
1122                  * So we clear the pte and flush the tlb before the check
1123                  * this assure us that no O_DIRECT can happen after the check
1124                  * or in the middle of the check.
1125                  *
1126                  * No need to notify as we are downgrading page table to read
1127                  * only not changing it to point to a new page.
1128                  *
1129                  * See Documentation/mm/mmu_notifier.rst
1130                  */
1131                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1132                 /*
1133                  * Check that no O_DIRECT or similar I/O is in progress on the
1134                  * page
1135                  */
1136                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1137                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1138                         goto out_unlock;
1139                 }
1140
1141                 /* See page_try_share_anon_rmap(): clear PTE first. */
1142                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1143                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1144                         goto out_unlock;
1145                 }
1146
1147                 if (pte_dirty(entry))
1148                         set_page_dirty(page);
1149                 entry = pte_mkclean(entry);
1150
1151                 if (pte_write(entry))
1152                         entry = pte_wrprotect(entry);
1153
1154                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1155         }
1156         *orig_pte = entry;
1157         err = 0;
1158
1159 out_unlock:
1160         page_vma_mapped_walk_done(&pvmw);
1161 out_mn:
1162         mmu_notifier_invalidate_range_end(&range);
1163 out:
1164         return err;
1165 }
1166
1167 /**
1168  * replace_page - replace page in vma by new ksm page
1169  * @vma:      vma that holds the pte pointing to page
1170  * @page:     the page we are replacing by kpage
1171  * @kpage:    the ksm page we replace page by
1172  * @orig_pte: the original value of the pte
1173  *
1174  * Returns 0 on success, -EFAULT on failure.
1175  */
1176 static int replace_page(struct vm_area_struct *vma, struct page *page,
1177                         struct page *kpage, pte_t orig_pte)
1178 {
1179         struct mm_struct *mm = vma->vm_mm;
1180         struct folio *folio;
1181         pmd_t *pmd;
1182         pmd_t pmde;
1183         pte_t *ptep;
1184         pte_t newpte;
1185         spinlock_t *ptl;
1186         unsigned long addr;
1187         int err = -EFAULT;
1188         struct mmu_notifier_range range;
1189
1190         addr = page_address_in_vma(page, vma);
1191         if (addr == -EFAULT)
1192                 goto out;
1193
1194         pmd = mm_find_pmd(mm, addr);
1195         if (!pmd)
1196                 goto out;
1197         /*
1198          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1199          * without holding anon_vma lock for write.  So when looking for a
1200          * genuine pmde (in which to find pte), test present and !THP together.
1201          */
1202         pmde = pmdp_get_lockless(pmd);
1203         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1204                 goto out;
1205
1206         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1207                                 addr + PAGE_SIZE);
1208         mmu_notifier_invalidate_range_start(&range);
1209
1210         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1211         if (!ptep)
1212                 goto out_mn;
1213         if (!pte_same(ptep_get(ptep), orig_pte)) {
1214                 pte_unmap_unlock(ptep, ptl);
1215                 goto out_mn;
1216         }
1217         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1218         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1219
1220         /*
1221          * No need to check ksm_use_zero_pages here: we can only have a
1222          * zero_page here if ksm_use_zero_pages was enabled already.
1223          */
1224         if (!is_zero_pfn(page_to_pfn(kpage))) {
1225                 get_page(kpage);
1226                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1227                 newpte = mk_pte(kpage, vma->vm_page_prot);
1228         } else {
1229                 /*
1230                  * Use pte_mkdirty to mark the zero page mapped by KSM, and then
1231                  * we can easily track all KSM-placed zero pages by checking if
1232                  * the dirty bit in zero page's PTE is set.
1233                  */
1234                 newpte = pte_mkdirty(pte_mkspecial(pfn_pte(page_to_pfn(kpage), vma->vm_page_prot)));
1235                 ksm_zero_pages++;
1236                 mm->ksm_zero_pages++;
1237                 /*
1238                  * We're replacing an anonymous page with a zero page, which is
1239                  * not anonymous. We need to do proper accounting otherwise we
1240                  * will get wrong values in /proc, and a BUG message in dmesg
1241                  * when tearing down the mm.
1242                  */
1243                 dec_mm_counter(mm, MM_ANONPAGES);
1244         }
1245
1246         flush_cache_page(vma, addr, pte_pfn(ptep_get(ptep)));
1247         /*
1248          * No need to notify as we are replacing a read only page with another
1249          * read only page with the same content.
1250          *
1251          * See Documentation/mm/mmu_notifier.rst
1252          */
1253         ptep_clear_flush(vma, addr, ptep);
1254         set_pte_at_notify(mm, addr, ptep, newpte);
1255
1256         folio = page_folio(page);
1257         page_remove_rmap(page, vma, false);
1258         if (!folio_mapped(folio))
1259                 folio_free_swap(folio);
1260         folio_put(folio);
1261
1262         pte_unmap_unlock(ptep, ptl);
1263         err = 0;
1264 out_mn:
1265         mmu_notifier_invalidate_range_end(&range);
1266 out:
1267         return err;
1268 }
1269
1270 /*
1271  * try_to_merge_one_page - take two pages and merge them into one
1272  * @vma: the vma that holds the pte pointing to page
1273  * @page: the PageAnon page that we want to replace with kpage
1274  * @kpage: the PageKsm page that we want to map instead of page,
1275  *         or NULL the first time when we want to use page as kpage.
1276  *
1277  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1278  */
1279 static int try_to_merge_one_page(struct vm_area_struct *vma,
1280                                  struct page *page, struct page *kpage)
1281 {
1282         pte_t orig_pte = __pte(0);
1283         int err = -EFAULT;
1284
1285         if (page == kpage)                      /* ksm page forked */
1286                 return 0;
1287
1288         if (!PageAnon(page))
1289                 goto out;
1290
1291         /*
1292          * We need the page lock to read a stable PageSwapCache in
1293          * write_protect_page().  We use trylock_page() instead of
1294          * lock_page() because we don't want to wait here - we
1295          * prefer to continue scanning and merging different pages,
1296          * then come back to this page when it is unlocked.
1297          */
1298         if (!trylock_page(page))
1299                 goto out;
1300
1301         if (PageTransCompound(page)) {
1302                 if (split_huge_page(page))
1303                         goto out_unlock;
1304         }
1305
1306         /*
1307          * If this anonymous page is mapped only here, its pte may need
1308          * to be write-protected.  If it's mapped elsewhere, all of its
1309          * ptes are necessarily already write-protected.  But in either
1310          * case, we need to lock and check page_count is not raised.
1311          */
1312         if (write_protect_page(vma, page, &orig_pte) == 0) {
1313                 if (!kpage) {
1314                         /*
1315                          * While we hold page lock, upgrade page from
1316                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1317                          * stable_tree_insert() will update stable_node.
1318                          */
1319                         set_page_stable_node(page, NULL);
1320                         mark_page_accessed(page);
1321                         /*
1322                          * Page reclaim just frees a clean page with no dirty
1323                          * ptes: make sure that the ksm page would be swapped.
1324                          */
1325                         if (!PageDirty(page))
1326                                 SetPageDirty(page);
1327                         err = 0;
1328                 } else if (pages_identical(page, kpage))
1329                         err = replace_page(vma, page, kpage, orig_pte);
1330         }
1331
1332 out_unlock:
1333         unlock_page(page);
1334 out:
1335         return err;
1336 }
1337
1338 /*
1339  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1340  * but no new kernel page is allocated: kpage must already be a ksm page.
1341  *
1342  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1343  */
1344 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1345                                       struct page *page, struct page *kpage)
1346 {
1347         struct mm_struct *mm = rmap_item->mm;
1348         struct vm_area_struct *vma;
1349         int err = -EFAULT;
1350
1351         mmap_read_lock(mm);
1352         vma = find_mergeable_vma(mm, rmap_item->address);
1353         if (!vma)
1354                 goto out;
1355
1356         err = try_to_merge_one_page(vma, page, kpage);
1357         if (err)
1358                 goto out;
1359
1360         /* Unstable nid is in union with stable anon_vma: remove first */
1361         remove_rmap_item_from_tree(rmap_item);
1362
1363         /* Must get reference to anon_vma while still holding mmap_lock */
1364         rmap_item->anon_vma = vma->anon_vma;
1365         get_anon_vma(vma->anon_vma);
1366 out:
1367         mmap_read_unlock(mm);
1368         trace_ksm_merge_with_ksm_page(kpage, page_to_pfn(kpage ? kpage : page),
1369                                 rmap_item, mm, err);
1370         return err;
1371 }
1372
1373 /*
1374  * try_to_merge_two_pages - take two identical pages and prepare them
1375  * to be merged into one page.
1376  *
1377  * This function returns the kpage if we successfully merged two identical
1378  * pages into one ksm page, NULL otherwise.
1379  *
1380  * Note that this function upgrades page to ksm page: if one of the pages
1381  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1382  */
1383 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1384                                            struct page *page,
1385                                            struct ksm_rmap_item *tree_rmap_item,
1386                                            struct page *tree_page)
1387 {
1388         int err;
1389
1390         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1391         if (!err) {
1392                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1393                                                         tree_page, page);
1394                 /*
1395                  * If that fails, we have a ksm page with only one pte
1396                  * pointing to it: so break it.
1397                  */
1398                 if (err)
1399                         break_cow(rmap_item);
1400         }
1401         return err ? NULL : page;
1402 }
1403
1404 static __always_inline
1405 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1406 {
1407         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1408         /*
1409          * Check that at least one mapping still exists, otherwise
1410          * there's no much point to merge and share with this
1411          * stable_node, as the underlying tree_page of the other
1412          * sharer is going to be freed soon.
1413          */
1414         return stable_node->rmap_hlist_len &&
1415                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1416 }
1417
1418 static __always_inline
1419 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1420 {
1421         return __is_page_sharing_candidate(stable_node, 0);
1422 }
1423
1424 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1425                                     struct ksm_stable_node **_stable_node,
1426                                     struct rb_root *root,
1427                                     bool prune_stale_stable_nodes)
1428 {
1429         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1430         struct hlist_node *hlist_safe;
1431         struct page *_tree_page, *tree_page = NULL;
1432         int nr = 0;
1433         int found_rmap_hlist_len;
1434
1435         if (!prune_stale_stable_nodes ||
1436             time_before(jiffies, stable_node->chain_prune_time +
1437                         msecs_to_jiffies(
1438                                 ksm_stable_node_chains_prune_millisecs)))
1439                 prune_stale_stable_nodes = false;
1440         else
1441                 stable_node->chain_prune_time = jiffies;
1442
1443         hlist_for_each_entry_safe(dup, hlist_safe,
1444                                   &stable_node->hlist, hlist_dup) {
1445                 cond_resched();
1446                 /*
1447                  * We must walk all stable_node_dup to prune the stale
1448                  * stable nodes during lookup.
1449                  *
1450                  * get_ksm_page can drop the nodes from the
1451                  * stable_node->hlist if they point to freed pages
1452                  * (that's why we do a _safe walk). The "dup"
1453                  * stable_node parameter itself will be freed from
1454                  * under us if it returns NULL.
1455                  */
1456                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1457                 if (!_tree_page)
1458                         continue;
1459                 nr += 1;
1460                 if (is_page_sharing_candidate(dup)) {
1461                         if (!found ||
1462                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1463                                 if (found)
1464                                         put_page(tree_page);
1465                                 found = dup;
1466                                 found_rmap_hlist_len = found->rmap_hlist_len;
1467                                 tree_page = _tree_page;
1468
1469                                 /* skip put_page for found dup */
1470                                 if (!prune_stale_stable_nodes)
1471                                         break;
1472                                 continue;
1473                         }
1474                 }
1475                 put_page(_tree_page);
1476         }
1477
1478         if (found) {
1479                 /*
1480                  * nr is counting all dups in the chain only if
1481                  * prune_stale_stable_nodes is true, otherwise we may
1482                  * break the loop at nr == 1 even if there are
1483                  * multiple entries.
1484                  */
1485                 if (prune_stale_stable_nodes && nr == 1) {
1486                         /*
1487                          * If there's not just one entry it would
1488                          * corrupt memory, better BUG_ON. In KSM
1489                          * context with no lock held it's not even
1490                          * fatal.
1491                          */
1492                         BUG_ON(stable_node->hlist.first->next);
1493
1494                         /*
1495                          * There's just one entry and it is below the
1496                          * deduplication limit so drop the chain.
1497                          */
1498                         rb_replace_node(&stable_node->node, &found->node,
1499                                         root);
1500                         free_stable_node(stable_node);
1501                         ksm_stable_node_chains--;
1502                         ksm_stable_node_dups--;
1503                         /*
1504                          * NOTE: the caller depends on the stable_node
1505                          * to be equal to stable_node_dup if the chain
1506                          * was collapsed.
1507                          */
1508                         *_stable_node = found;
1509                         /*
1510                          * Just for robustness, as stable_node is
1511                          * otherwise left as a stable pointer, the
1512                          * compiler shall optimize it away at build
1513                          * time.
1514                          */
1515                         stable_node = NULL;
1516                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1517                            __is_page_sharing_candidate(found, 1)) {
1518                         /*
1519                          * If the found stable_node dup can accept one
1520                          * more future merge (in addition to the one
1521                          * that is underway) and is not at the head of
1522                          * the chain, put it there so next search will
1523                          * be quicker in the !prune_stale_stable_nodes
1524                          * case.
1525                          *
1526                          * NOTE: it would be inaccurate to use nr > 1
1527                          * instead of checking the hlist.first pointer
1528                          * directly, because in the
1529                          * prune_stale_stable_nodes case "nr" isn't
1530                          * the position of the found dup in the chain,
1531                          * but the total number of dups in the chain.
1532                          */
1533                         hlist_del(&found->hlist_dup);
1534                         hlist_add_head(&found->hlist_dup,
1535                                        &stable_node->hlist);
1536                 }
1537         }
1538
1539         *_stable_node_dup = found;
1540         return tree_page;
1541 }
1542
1543 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1544                                                struct rb_root *root)
1545 {
1546         if (!is_stable_node_chain(stable_node))
1547                 return stable_node;
1548         if (hlist_empty(&stable_node->hlist)) {
1549                 free_stable_node_chain(stable_node, root);
1550                 return NULL;
1551         }
1552         return hlist_entry(stable_node->hlist.first,
1553                            typeof(*stable_node), hlist_dup);
1554 }
1555
1556 /*
1557  * Like for get_ksm_page, this function can free the *_stable_node and
1558  * *_stable_node_dup if the returned tree_page is NULL.
1559  *
1560  * It can also free and overwrite *_stable_node with the found
1561  * stable_node_dup if the chain is collapsed (in which case
1562  * *_stable_node will be equal to *_stable_node_dup like if the chain
1563  * never existed). It's up to the caller to verify tree_page is not
1564  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1565  *
1566  * *_stable_node_dup is really a second output parameter of this
1567  * function and will be overwritten in all cases, the caller doesn't
1568  * need to initialize it.
1569  */
1570 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1571                                         struct ksm_stable_node **_stable_node,
1572                                         struct rb_root *root,
1573                                         bool prune_stale_stable_nodes)
1574 {
1575         struct ksm_stable_node *stable_node = *_stable_node;
1576         if (!is_stable_node_chain(stable_node)) {
1577                 if (is_page_sharing_candidate(stable_node)) {
1578                         *_stable_node_dup = stable_node;
1579                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1580                 }
1581                 /*
1582                  * _stable_node_dup set to NULL means the stable_node
1583                  * reached the ksm_max_page_sharing limit.
1584                  */
1585                 *_stable_node_dup = NULL;
1586                 return NULL;
1587         }
1588         return stable_node_dup(_stable_node_dup, _stable_node, root,
1589                                prune_stale_stable_nodes);
1590 }
1591
1592 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1593                                                 struct ksm_stable_node **s_n,
1594                                                 struct rb_root *root)
1595 {
1596         return __stable_node_chain(s_n_d, s_n, root, true);
1597 }
1598
1599 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1600                                           struct ksm_stable_node *s_n,
1601                                           struct rb_root *root)
1602 {
1603         struct ksm_stable_node *old_stable_node = s_n;
1604         struct page *tree_page;
1605
1606         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1607         /* not pruning dups so s_n cannot have changed */
1608         VM_BUG_ON(s_n != old_stable_node);
1609         return tree_page;
1610 }
1611
1612 /*
1613  * stable_tree_search - search for page inside the stable tree
1614  *
1615  * This function checks if there is a page inside the stable tree
1616  * with identical content to the page that we are scanning right now.
1617  *
1618  * This function returns the stable tree node of identical content if found,
1619  * NULL otherwise.
1620  */
1621 static struct page *stable_tree_search(struct page *page)
1622 {
1623         int nid;
1624         struct rb_root *root;
1625         struct rb_node **new;
1626         struct rb_node *parent;
1627         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1628         struct ksm_stable_node *page_node;
1629
1630         page_node = page_stable_node(page);
1631         if (page_node && page_node->head != &migrate_nodes) {
1632                 /* ksm page forked */
1633                 get_page(page);
1634                 return page;
1635         }
1636
1637         nid = get_kpfn_nid(page_to_pfn(page));
1638         root = root_stable_tree + nid;
1639 again:
1640         new = &root->rb_node;
1641         parent = NULL;
1642
1643         while (*new) {
1644                 struct page *tree_page;
1645                 int ret;
1646
1647                 cond_resched();
1648                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1649                 stable_node_any = NULL;
1650                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1651                 /*
1652                  * NOTE: stable_node may have been freed by
1653                  * chain_prune() if the returned stable_node_dup is
1654                  * not NULL. stable_node_dup may have been inserted in
1655                  * the rbtree instead as a regular stable_node (in
1656                  * order to collapse the stable_node chain if a single
1657                  * stable_node dup was found in it). In such case the
1658                  * stable_node is overwritten by the callee to point
1659                  * to the stable_node_dup that was collapsed in the
1660                  * stable rbtree and stable_node will be equal to
1661                  * stable_node_dup like if the chain never existed.
1662                  */
1663                 if (!stable_node_dup) {
1664                         /*
1665                          * Either all stable_node dups were full in
1666                          * this stable_node chain, or this chain was
1667                          * empty and should be rb_erased.
1668                          */
1669                         stable_node_any = stable_node_dup_any(stable_node,
1670                                                               root);
1671                         if (!stable_node_any) {
1672                                 /* rb_erase just run */
1673                                 goto again;
1674                         }
1675                         /*
1676                          * Take any of the stable_node dups page of
1677                          * this stable_node chain to let the tree walk
1678                          * continue. All KSM pages belonging to the
1679                          * stable_node dups in a stable_node chain
1680                          * have the same content and they're
1681                          * write protected at all times. Any will work
1682                          * fine to continue the walk.
1683                          */
1684                         tree_page = get_ksm_page(stable_node_any,
1685                                                  GET_KSM_PAGE_NOLOCK);
1686                 }
1687                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1688                 if (!tree_page) {
1689                         /*
1690                          * If we walked over a stale stable_node,
1691                          * get_ksm_page() will call rb_erase() and it
1692                          * may rebalance the tree from under us. So
1693                          * restart the search from scratch. Returning
1694                          * NULL would be safe too, but we'd generate
1695                          * false negative insertions just because some
1696                          * stable_node was stale.
1697                          */
1698                         goto again;
1699                 }
1700
1701                 ret = memcmp_pages(page, tree_page);
1702                 put_page(tree_page);
1703
1704                 parent = *new;
1705                 if (ret < 0)
1706                         new = &parent->rb_left;
1707                 else if (ret > 0)
1708                         new = &parent->rb_right;
1709                 else {
1710                         if (page_node) {
1711                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1712                                 /*
1713                                  * Test if the migrated page should be merged
1714                                  * into a stable node dup. If the mapcount is
1715                                  * 1 we can migrate it with another KSM page
1716                                  * without adding it to the chain.
1717                                  */
1718                                 if (page_mapcount(page) > 1)
1719                                         goto chain_append;
1720                         }
1721
1722                         if (!stable_node_dup) {
1723                                 /*
1724                                  * If the stable_node is a chain and
1725                                  * we got a payload match in memcmp
1726                                  * but we cannot merge the scanned
1727                                  * page in any of the existing
1728                                  * stable_node dups because they're
1729                                  * all full, we need to wait the
1730                                  * scanned page to find itself a match
1731                                  * in the unstable tree to create a
1732                                  * brand new KSM page to add later to
1733                                  * the dups of this stable_node.
1734                                  */
1735                                 return NULL;
1736                         }
1737
1738                         /*
1739                          * Lock and unlock the stable_node's page (which
1740                          * might already have been migrated) so that page
1741                          * migration is sure to notice its raised count.
1742                          * It would be more elegant to return stable_node
1743                          * than kpage, but that involves more changes.
1744                          */
1745                         tree_page = get_ksm_page(stable_node_dup,
1746                                                  GET_KSM_PAGE_TRYLOCK);
1747
1748                         if (PTR_ERR(tree_page) == -EBUSY)
1749                                 return ERR_PTR(-EBUSY);
1750
1751                         if (unlikely(!tree_page))
1752                                 /*
1753                                  * The tree may have been rebalanced,
1754                                  * so re-evaluate parent and new.
1755                                  */
1756                                 goto again;
1757                         unlock_page(tree_page);
1758
1759                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1760                             NUMA(stable_node_dup->nid)) {
1761                                 put_page(tree_page);
1762                                 goto replace;
1763                         }
1764                         return tree_page;
1765                 }
1766         }
1767
1768         if (!page_node)
1769                 return NULL;
1770
1771         list_del(&page_node->list);
1772         DO_NUMA(page_node->nid = nid);
1773         rb_link_node(&page_node->node, parent, new);
1774         rb_insert_color(&page_node->node, root);
1775 out:
1776         if (is_page_sharing_candidate(page_node)) {
1777                 get_page(page);
1778                 return page;
1779         } else
1780                 return NULL;
1781
1782 replace:
1783         /*
1784          * If stable_node was a chain and chain_prune collapsed it,
1785          * stable_node has been updated to be the new regular
1786          * stable_node. A collapse of the chain is indistinguishable
1787          * from the case there was no chain in the stable
1788          * rbtree. Otherwise stable_node is the chain and
1789          * stable_node_dup is the dup to replace.
1790          */
1791         if (stable_node_dup == stable_node) {
1792                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1793                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1794                 /* there is no chain */
1795                 if (page_node) {
1796                         VM_BUG_ON(page_node->head != &migrate_nodes);
1797                         list_del(&page_node->list);
1798                         DO_NUMA(page_node->nid = nid);
1799                         rb_replace_node(&stable_node_dup->node,
1800                                         &page_node->node,
1801                                         root);
1802                         if (is_page_sharing_candidate(page_node))
1803                                 get_page(page);
1804                         else
1805                                 page = NULL;
1806                 } else {
1807                         rb_erase(&stable_node_dup->node, root);
1808                         page = NULL;
1809                 }
1810         } else {
1811                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1812                 __stable_node_dup_del(stable_node_dup);
1813                 if (page_node) {
1814                         VM_BUG_ON(page_node->head != &migrate_nodes);
1815                         list_del(&page_node->list);
1816                         DO_NUMA(page_node->nid = nid);
1817                         stable_node_chain_add_dup(page_node, stable_node);
1818                         if (is_page_sharing_candidate(page_node))
1819                                 get_page(page);
1820                         else
1821                                 page = NULL;
1822                 } else {
1823                         page = NULL;
1824                 }
1825         }
1826         stable_node_dup->head = &migrate_nodes;
1827         list_add(&stable_node_dup->list, stable_node_dup->head);
1828         return page;
1829
1830 chain_append:
1831         /* stable_node_dup could be null if it reached the limit */
1832         if (!stable_node_dup)
1833                 stable_node_dup = stable_node_any;
1834         /*
1835          * If stable_node was a chain and chain_prune collapsed it,
1836          * stable_node has been updated to be the new regular
1837          * stable_node. A collapse of the chain is indistinguishable
1838          * from the case there was no chain in the stable
1839          * rbtree. Otherwise stable_node is the chain and
1840          * stable_node_dup is the dup to replace.
1841          */
1842         if (stable_node_dup == stable_node) {
1843                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1844                 /* chain is missing so create it */
1845                 stable_node = alloc_stable_node_chain(stable_node_dup,
1846                                                       root);
1847                 if (!stable_node)
1848                         return NULL;
1849         }
1850         /*
1851          * Add this stable_node dup that was
1852          * migrated to the stable_node chain
1853          * of the current nid for this page
1854          * content.
1855          */
1856         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1857         VM_BUG_ON(page_node->head != &migrate_nodes);
1858         list_del(&page_node->list);
1859         DO_NUMA(page_node->nid = nid);
1860         stable_node_chain_add_dup(page_node, stable_node);
1861         goto out;
1862 }
1863
1864 /*
1865  * stable_tree_insert - insert stable tree node pointing to new ksm page
1866  * into the stable tree.
1867  *
1868  * This function returns the stable tree node just allocated on success,
1869  * NULL otherwise.
1870  */
1871 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1872 {
1873         int nid;
1874         unsigned long kpfn;
1875         struct rb_root *root;
1876         struct rb_node **new;
1877         struct rb_node *parent;
1878         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1879         bool need_chain = false;
1880
1881         kpfn = page_to_pfn(kpage);
1882         nid = get_kpfn_nid(kpfn);
1883         root = root_stable_tree + nid;
1884 again:
1885         parent = NULL;
1886         new = &root->rb_node;
1887
1888         while (*new) {
1889                 struct page *tree_page;
1890                 int ret;
1891
1892                 cond_resched();
1893                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1894                 stable_node_any = NULL;
1895                 tree_page = chain(&stable_node_dup, stable_node, root);
1896                 if (!stable_node_dup) {
1897                         /*
1898                          * Either all stable_node dups were full in
1899                          * this stable_node chain, or this chain was
1900                          * empty and should be rb_erased.
1901                          */
1902                         stable_node_any = stable_node_dup_any(stable_node,
1903                                                               root);
1904                         if (!stable_node_any) {
1905                                 /* rb_erase just run */
1906                                 goto again;
1907                         }
1908                         /*
1909                          * Take any of the stable_node dups page of
1910                          * this stable_node chain to let the tree walk
1911                          * continue. All KSM pages belonging to the
1912                          * stable_node dups in a stable_node chain
1913                          * have the same content and they're
1914                          * write protected at all times. Any will work
1915                          * fine to continue the walk.
1916                          */
1917                         tree_page = get_ksm_page(stable_node_any,
1918                                                  GET_KSM_PAGE_NOLOCK);
1919                 }
1920                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1921                 if (!tree_page) {
1922                         /*
1923                          * If we walked over a stale stable_node,
1924                          * get_ksm_page() will call rb_erase() and it
1925                          * may rebalance the tree from under us. So
1926                          * restart the search from scratch. Returning
1927                          * NULL would be safe too, but we'd generate
1928                          * false negative insertions just because some
1929                          * stable_node was stale.
1930                          */
1931                         goto again;
1932                 }
1933
1934                 ret = memcmp_pages(kpage, tree_page);
1935                 put_page(tree_page);
1936
1937                 parent = *new;
1938                 if (ret < 0)
1939                         new = &parent->rb_left;
1940                 else if (ret > 0)
1941                         new = &parent->rb_right;
1942                 else {
1943                         need_chain = true;
1944                         break;
1945                 }
1946         }
1947
1948         stable_node_dup = alloc_stable_node();
1949         if (!stable_node_dup)
1950                 return NULL;
1951
1952         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1953         stable_node_dup->kpfn = kpfn;
1954         set_page_stable_node(kpage, stable_node_dup);
1955         stable_node_dup->rmap_hlist_len = 0;
1956         DO_NUMA(stable_node_dup->nid = nid);
1957         if (!need_chain) {
1958                 rb_link_node(&stable_node_dup->node, parent, new);
1959                 rb_insert_color(&stable_node_dup->node, root);
1960         } else {
1961                 if (!is_stable_node_chain(stable_node)) {
1962                         struct ksm_stable_node *orig = stable_node;
1963                         /* chain is missing so create it */
1964                         stable_node = alloc_stable_node_chain(orig, root);
1965                         if (!stable_node) {
1966                                 free_stable_node(stable_node_dup);
1967                                 return NULL;
1968                         }
1969                 }
1970                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1971         }
1972
1973         return stable_node_dup;
1974 }
1975
1976 /*
1977  * unstable_tree_search_insert - search for identical page,
1978  * else insert rmap_item into the unstable tree.
1979  *
1980  * This function searches for a page in the unstable tree identical to the
1981  * page currently being scanned; and if no identical page is found in the
1982  * tree, we insert rmap_item as a new object into the unstable tree.
1983  *
1984  * This function returns pointer to rmap_item found to be identical
1985  * to the currently scanned page, NULL otherwise.
1986  *
1987  * This function does both searching and inserting, because they share
1988  * the same walking algorithm in an rbtree.
1989  */
1990 static
1991 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1992                                               struct page *page,
1993                                               struct page **tree_pagep)
1994 {
1995         struct rb_node **new;
1996         struct rb_root *root;
1997         struct rb_node *parent = NULL;
1998         int nid;
1999
2000         nid = get_kpfn_nid(page_to_pfn(page));
2001         root = root_unstable_tree + nid;
2002         new = &root->rb_node;
2003
2004         while (*new) {
2005                 struct ksm_rmap_item *tree_rmap_item;
2006                 struct page *tree_page;
2007                 int ret;
2008
2009                 cond_resched();
2010                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
2011                 tree_page = get_mergeable_page(tree_rmap_item);
2012                 if (!tree_page)
2013                         return NULL;
2014
2015                 /*
2016                  * Don't substitute a ksm page for a forked page.
2017                  */
2018                 if (page == tree_page) {
2019                         put_page(tree_page);
2020                         return NULL;
2021                 }
2022
2023                 ret = memcmp_pages(page, tree_page);
2024
2025                 parent = *new;
2026                 if (ret < 0) {
2027                         put_page(tree_page);
2028                         new = &parent->rb_left;
2029                 } else if (ret > 0) {
2030                         put_page(tree_page);
2031                         new = &parent->rb_right;
2032                 } else if (!ksm_merge_across_nodes &&
2033                            page_to_nid(tree_page) != nid) {
2034                         /*
2035                          * If tree_page has been migrated to another NUMA node,
2036                          * it will be flushed out and put in the right unstable
2037                          * tree next time: only merge with it when across_nodes.
2038                          */
2039                         put_page(tree_page);
2040                         return NULL;
2041                 } else {
2042                         *tree_pagep = tree_page;
2043                         return tree_rmap_item;
2044                 }
2045         }
2046
2047         rmap_item->address |= UNSTABLE_FLAG;
2048         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2049         DO_NUMA(rmap_item->nid = nid);
2050         rb_link_node(&rmap_item->node, parent, new);
2051         rb_insert_color(&rmap_item->node, root);
2052
2053         ksm_pages_unshared++;
2054         return NULL;
2055 }
2056
2057 /*
2058  * stable_tree_append - add another rmap_item to the linked list of
2059  * rmap_items hanging off a given node of the stable tree, all sharing
2060  * the same ksm page.
2061  */
2062 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2063                                struct ksm_stable_node *stable_node,
2064                                bool max_page_sharing_bypass)
2065 {
2066         /*
2067          * rmap won't find this mapping if we don't insert the
2068          * rmap_item in the right stable_node
2069          * duplicate. page_migration could break later if rmap breaks,
2070          * so we can as well crash here. We really need to check for
2071          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2072          * for other negative values as an underflow if detected here
2073          * for the first time (and not when decreasing rmap_hlist_len)
2074          * would be sign of memory corruption in the stable_node.
2075          */
2076         BUG_ON(stable_node->rmap_hlist_len < 0);
2077
2078         stable_node->rmap_hlist_len++;
2079         if (!max_page_sharing_bypass)
2080                 /* possibly non fatal but unexpected overflow, only warn */
2081                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2082                              ksm_max_page_sharing);
2083
2084         rmap_item->head = stable_node;
2085         rmap_item->address |= STABLE_FLAG;
2086         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2087
2088         if (rmap_item->hlist.next)
2089                 ksm_pages_sharing++;
2090         else
2091                 ksm_pages_shared++;
2092
2093         rmap_item->mm->ksm_merging_pages++;
2094 }
2095
2096 /*
2097  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2098  * if not, compare checksum to previous and if it's the same, see if page can
2099  * be inserted into the unstable tree, or merged with a page already there and
2100  * both transferred to the stable tree.
2101  *
2102  * @page: the page that we are searching identical page to.
2103  * @rmap_item: the reverse mapping into the virtual address of this page
2104  */
2105 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2106 {
2107         struct mm_struct *mm = rmap_item->mm;
2108         struct ksm_rmap_item *tree_rmap_item;
2109         struct page *tree_page = NULL;
2110         struct ksm_stable_node *stable_node;
2111         struct page *kpage;
2112         unsigned int checksum;
2113         int err;
2114         bool max_page_sharing_bypass = false;
2115
2116         stable_node = page_stable_node(page);
2117         if (stable_node) {
2118                 if (stable_node->head != &migrate_nodes &&
2119                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2120                     NUMA(stable_node->nid)) {
2121                         stable_node_dup_del(stable_node);
2122                         stable_node->head = &migrate_nodes;
2123                         list_add(&stable_node->list, stable_node->head);
2124                 }
2125                 if (stable_node->head != &migrate_nodes &&
2126                     rmap_item->head == stable_node)
2127                         return;
2128                 /*
2129                  * If it's a KSM fork, allow it to go over the sharing limit
2130                  * without warnings.
2131                  */
2132                 if (!is_page_sharing_candidate(stable_node))
2133                         max_page_sharing_bypass = true;
2134         }
2135
2136         /* We first start with searching the page inside the stable tree */
2137         kpage = stable_tree_search(page);
2138         if (kpage == page && rmap_item->head == stable_node) {
2139                 put_page(kpage);
2140                 return;
2141         }
2142
2143         remove_rmap_item_from_tree(rmap_item);
2144
2145         if (kpage) {
2146                 if (PTR_ERR(kpage) == -EBUSY)
2147                         return;
2148
2149                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2150                 if (!err) {
2151                         /*
2152                          * The page was successfully merged:
2153                          * add its rmap_item to the stable tree.
2154                          */
2155                         lock_page(kpage);
2156                         stable_tree_append(rmap_item, page_stable_node(kpage),
2157                                            max_page_sharing_bypass);
2158                         unlock_page(kpage);
2159                 }
2160                 put_page(kpage);
2161                 return;
2162         }
2163
2164         /*
2165          * If the hash value of the page has changed from the last time
2166          * we calculated it, this page is changing frequently: therefore we
2167          * don't want to insert it in the unstable tree, and we don't want
2168          * to waste our time searching for something identical to it there.
2169          */
2170         checksum = calc_checksum(page);
2171         if (rmap_item->oldchecksum != checksum) {
2172                 rmap_item->oldchecksum = checksum;
2173                 return;
2174         }
2175
2176         /*
2177          * Same checksum as an empty page. We attempt to merge it with the
2178          * appropriate zero page if the user enabled this via sysfs.
2179          */
2180         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2181                 struct vm_area_struct *vma;
2182
2183                 mmap_read_lock(mm);
2184                 vma = find_mergeable_vma(mm, rmap_item->address);
2185                 if (vma) {
2186                         err = try_to_merge_one_page(vma, page,
2187                                         ZERO_PAGE(rmap_item->address));
2188                         trace_ksm_merge_one_page(
2189                                 page_to_pfn(ZERO_PAGE(rmap_item->address)),
2190                                 rmap_item, mm, err);
2191                 } else {
2192                         /*
2193                          * If the vma is out of date, we do not need to
2194                          * continue.
2195                          */
2196                         err = 0;
2197                 }
2198                 mmap_read_unlock(mm);
2199                 /*
2200                  * In case of failure, the page was not really empty, so we
2201                  * need to continue. Otherwise we're done.
2202                  */
2203                 if (!err)
2204                         return;
2205         }
2206         tree_rmap_item =
2207                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2208         if (tree_rmap_item) {
2209                 bool split;
2210
2211                 kpage = try_to_merge_two_pages(rmap_item, page,
2212                                                 tree_rmap_item, tree_page);
2213                 /*
2214                  * If both pages we tried to merge belong to the same compound
2215                  * page, then we actually ended up increasing the reference
2216                  * count of the same compound page twice, and split_huge_page
2217                  * failed.
2218                  * Here we set a flag if that happened, and we use it later to
2219                  * try split_huge_page again. Since we call put_page right
2220                  * afterwards, the reference count will be correct and
2221                  * split_huge_page should succeed.
2222                  */
2223                 split = PageTransCompound(page)
2224                         && compound_head(page) == compound_head(tree_page);
2225                 put_page(tree_page);
2226                 if (kpage) {
2227                         /*
2228                          * The pages were successfully merged: insert new
2229                          * node in the stable tree and add both rmap_items.
2230                          */
2231                         lock_page(kpage);
2232                         stable_node = stable_tree_insert(kpage);
2233                         if (stable_node) {
2234                                 stable_tree_append(tree_rmap_item, stable_node,
2235                                                    false);
2236                                 stable_tree_append(rmap_item, stable_node,
2237                                                    false);
2238                         }
2239                         unlock_page(kpage);
2240
2241                         /*
2242                          * If we fail to insert the page into the stable tree,
2243                          * we will have 2 virtual addresses that are pointing
2244                          * to a ksm page left outside the stable tree,
2245                          * in which case we need to break_cow on both.
2246                          */
2247                         if (!stable_node) {
2248                                 break_cow(tree_rmap_item);
2249                                 break_cow(rmap_item);
2250                         }
2251                 } else if (split) {
2252                         /*
2253                          * We are here if we tried to merge two pages and
2254                          * failed because they both belonged to the same
2255                          * compound page. We will split the page now, but no
2256                          * merging will take place.
2257                          * We do not want to add the cost of a full lock; if
2258                          * the page is locked, it is better to skip it and
2259                          * perhaps try again later.
2260                          */
2261                         if (!trylock_page(page))
2262                                 return;
2263                         split_huge_page(page);
2264                         unlock_page(page);
2265                 }
2266         }
2267 }
2268
2269 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2270                                             struct ksm_rmap_item **rmap_list,
2271                                             unsigned long addr)
2272 {
2273         struct ksm_rmap_item *rmap_item;
2274
2275         while (*rmap_list) {
2276                 rmap_item = *rmap_list;
2277                 if ((rmap_item->address & PAGE_MASK) == addr)
2278                         return rmap_item;
2279                 if (rmap_item->address > addr)
2280                         break;
2281                 *rmap_list = rmap_item->rmap_list;
2282                 remove_rmap_item_from_tree(rmap_item);
2283                 free_rmap_item(rmap_item);
2284         }
2285
2286         rmap_item = alloc_rmap_item();
2287         if (rmap_item) {
2288                 /* It has already been zeroed */
2289                 rmap_item->mm = mm_slot->slot.mm;
2290                 rmap_item->mm->ksm_rmap_items++;
2291                 rmap_item->address = addr;
2292                 rmap_item->rmap_list = *rmap_list;
2293                 *rmap_list = rmap_item;
2294         }
2295         return rmap_item;
2296 }
2297
2298 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2299 {
2300         struct mm_struct *mm;
2301         struct ksm_mm_slot *mm_slot;
2302         struct mm_slot *slot;
2303         struct vm_area_struct *vma;
2304         struct ksm_rmap_item *rmap_item;
2305         struct vma_iterator vmi;
2306         int nid;
2307
2308         if (list_empty(&ksm_mm_head.slot.mm_node))
2309                 return NULL;
2310
2311         mm_slot = ksm_scan.mm_slot;
2312         if (mm_slot == &ksm_mm_head) {
2313                 trace_ksm_start_scan(ksm_scan.seqnr, ksm_rmap_items);
2314
2315                 /*
2316                  * A number of pages can hang around indefinitely in per-cpu
2317                  * LRU cache, raised page count preventing write_protect_page
2318                  * from merging them.  Though it doesn't really matter much,
2319                  * it is puzzling to see some stuck in pages_volatile until
2320                  * other activity jostles them out, and they also prevented
2321                  * LTP's KSM test from succeeding deterministically; so drain
2322                  * them here (here rather than on entry to ksm_do_scan(),
2323                  * so we don't IPI too often when pages_to_scan is set low).
2324                  */
2325                 lru_add_drain_all();
2326
2327                 /*
2328                  * Whereas stale stable_nodes on the stable_tree itself
2329                  * get pruned in the regular course of stable_tree_search(),
2330                  * those moved out to the migrate_nodes list can accumulate:
2331                  * so prune them once before each full scan.
2332                  */
2333                 if (!ksm_merge_across_nodes) {
2334                         struct ksm_stable_node *stable_node, *next;
2335                         struct page *page;
2336
2337                         list_for_each_entry_safe(stable_node, next,
2338                                                  &migrate_nodes, list) {
2339                                 page = get_ksm_page(stable_node,
2340                                                     GET_KSM_PAGE_NOLOCK);
2341                                 if (page)
2342                                         put_page(page);
2343                                 cond_resched();
2344                         }
2345                 }
2346
2347                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2348                         root_unstable_tree[nid] = RB_ROOT;
2349
2350                 spin_lock(&ksm_mmlist_lock);
2351                 slot = list_entry(mm_slot->slot.mm_node.next,
2352                                   struct mm_slot, mm_node);
2353                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2354                 ksm_scan.mm_slot = mm_slot;
2355                 spin_unlock(&ksm_mmlist_lock);
2356                 /*
2357                  * Although we tested list_empty() above, a racing __ksm_exit
2358                  * of the last mm on the list may have removed it since then.
2359                  */
2360                 if (mm_slot == &ksm_mm_head)
2361                         return NULL;
2362 next_mm:
2363                 ksm_scan.address = 0;
2364                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2365         }
2366
2367         slot = &mm_slot->slot;
2368         mm = slot->mm;
2369         vma_iter_init(&vmi, mm, ksm_scan.address);
2370
2371         mmap_read_lock(mm);
2372         if (ksm_test_exit(mm))
2373                 goto no_vmas;
2374
2375         for_each_vma(vmi, vma) {
2376                 if (!(vma->vm_flags & VM_MERGEABLE))
2377                         continue;
2378                 if (ksm_scan.address < vma->vm_start)
2379                         ksm_scan.address = vma->vm_start;
2380                 if (!vma->anon_vma)
2381                         ksm_scan.address = vma->vm_end;
2382
2383                 while (ksm_scan.address < vma->vm_end) {
2384                         if (ksm_test_exit(mm))
2385                                 break;
2386                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2387                         if (IS_ERR_OR_NULL(*page)) {
2388                                 ksm_scan.address += PAGE_SIZE;
2389                                 cond_resched();
2390                                 continue;
2391                         }
2392                         if (is_zone_device_page(*page))
2393                                 goto next_page;
2394                         if (PageAnon(*page)) {
2395                                 flush_anon_page(vma, *page, ksm_scan.address);
2396                                 flush_dcache_page(*page);
2397                                 rmap_item = get_next_rmap_item(mm_slot,
2398                                         ksm_scan.rmap_list, ksm_scan.address);
2399                                 if (rmap_item) {
2400                                         ksm_scan.rmap_list =
2401                                                         &rmap_item->rmap_list;
2402                                         ksm_scan.address += PAGE_SIZE;
2403                                 } else
2404                                         put_page(*page);
2405                                 mmap_read_unlock(mm);
2406                                 return rmap_item;
2407                         }
2408 next_page:
2409                         put_page(*page);
2410                         ksm_scan.address += PAGE_SIZE;
2411                         cond_resched();
2412                 }
2413         }
2414
2415         if (ksm_test_exit(mm)) {
2416 no_vmas:
2417                 ksm_scan.address = 0;
2418                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2419         }
2420         /*
2421          * Nuke all the rmap_items that are above this current rmap:
2422          * because there were no VM_MERGEABLE vmas with such addresses.
2423          */
2424         remove_trailing_rmap_items(ksm_scan.rmap_list);
2425
2426         spin_lock(&ksm_mmlist_lock);
2427         slot = list_entry(mm_slot->slot.mm_node.next,
2428                           struct mm_slot, mm_node);
2429         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2430         if (ksm_scan.address == 0) {
2431                 /*
2432                  * We've completed a full scan of all vmas, holding mmap_lock
2433                  * throughout, and found no VM_MERGEABLE: so do the same as
2434                  * __ksm_exit does to remove this mm from all our lists now.
2435                  * This applies either when cleaning up after __ksm_exit
2436                  * (but beware: we can reach here even before __ksm_exit),
2437                  * or when all VM_MERGEABLE areas have been unmapped (and
2438                  * mmap_lock then protects against race with MADV_MERGEABLE).
2439                  */
2440                 hash_del(&mm_slot->slot.hash);
2441                 list_del(&mm_slot->slot.mm_node);
2442                 spin_unlock(&ksm_mmlist_lock);
2443
2444                 mm_slot_free(mm_slot_cache, mm_slot);
2445                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2446                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2447                 mmap_read_unlock(mm);
2448                 mmdrop(mm);
2449         } else {
2450                 mmap_read_unlock(mm);
2451                 /*
2452                  * mmap_read_unlock(mm) first because after
2453                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2454                  * already have been freed under us by __ksm_exit()
2455                  * because the "mm_slot" is still hashed and
2456                  * ksm_scan.mm_slot doesn't point to it anymore.
2457                  */
2458                 spin_unlock(&ksm_mmlist_lock);
2459         }
2460
2461         /* Repeat until we've completed scanning the whole list */
2462         mm_slot = ksm_scan.mm_slot;
2463         if (mm_slot != &ksm_mm_head)
2464                 goto next_mm;
2465
2466         trace_ksm_stop_scan(ksm_scan.seqnr, ksm_rmap_items);
2467         ksm_scan.seqnr++;
2468         return NULL;
2469 }
2470
2471 /**
2472  * ksm_do_scan  - the ksm scanner main worker function.
2473  * @scan_npages:  number of pages we want to scan before we return.
2474  */
2475 static void ksm_do_scan(unsigned int scan_npages)
2476 {
2477         struct ksm_rmap_item *rmap_item;
2478         struct page *page;
2479
2480         while (scan_npages-- && likely(!freezing(current))) {
2481                 cond_resched();
2482                 rmap_item = scan_get_next_rmap_item(&page);
2483                 if (!rmap_item)
2484                         return;
2485                 cmp_and_merge_page(page, rmap_item);
2486                 put_page(page);
2487         }
2488 }
2489
2490 static int ksmd_should_run(void)
2491 {
2492         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2493 }
2494
2495 static int ksm_scan_thread(void *nothing)
2496 {
2497         unsigned int sleep_ms;
2498
2499         set_freezable();
2500         set_user_nice(current, 5);
2501
2502         while (!kthread_should_stop()) {
2503                 mutex_lock(&ksm_thread_mutex);
2504                 wait_while_offlining();
2505                 if (ksmd_should_run())
2506                         ksm_do_scan(ksm_thread_pages_to_scan);
2507                 mutex_unlock(&ksm_thread_mutex);
2508
2509                 try_to_freeze();
2510
2511                 if (ksmd_should_run()) {
2512                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2513                         wait_event_interruptible_timeout(ksm_iter_wait,
2514                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2515                                 msecs_to_jiffies(sleep_ms));
2516                 } else {
2517                         wait_event_freezable(ksm_thread_wait,
2518                                 ksmd_should_run() || kthread_should_stop());
2519                 }
2520         }
2521         return 0;
2522 }
2523
2524 static void __ksm_add_vma(struct vm_area_struct *vma)
2525 {
2526         unsigned long vm_flags = vma->vm_flags;
2527
2528         if (vm_flags & VM_MERGEABLE)
2529                 return;
2530
2531         if (vma_ksm_compatible(vma))
2532                 vm_flags_set(vma, VM_MERGEABLE);
2533 }
2534
2535 static int __ksm_del_vma(struct vm_area_struct *vma)
2536 {
2537         int err;
2538
2539         if (!(vma->vm_flags & VM_MERGEABLE))
2540                 return 0;
2541
2542         if (vma->anon_vma) {
2543                 err = unmerge_ksm_pages(vma, vma->vm_start, vma->vm_end);
2544                 if (err)
2545                         return err;
2546         }
2547
2548         vm_flags_clear(vma, VM_MERGEABLE);
2549         return 0;
2550 }
2551 /**
2552  * ksm_add_vma - Mark vma as mergeable if compatible
2553  *
2554  * @vma:  Pointer to vma
2555  */
2556 void ksm_add_vma(struct vm_area_struct *vma)
2557 {
2558         struct mm_struct *mm = vma->vm_mm;
2559
2560         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2561                 __ksm_add_vma(vma);
2562 }
2563
2564 static void ksm_add_vmas(struct mm_struct *mm)
2565 {
2566         struct vm_area_struct *vma;
2567
2568         VMA_ITERATOR(vmi, mm, 0);
2569         for_each_vma(vmi, vma)
2570                 __ksm_add_vma(vma);
2571 }
2572
2573 static int ksm_del_vmas(struct mm_struct *mm)
2574 {
2575         struct vm_area_struct *vma;
2576         int err;
2577
2578         VMA_ITERATOR(vmi, mm, 0);
2579         for_each_vma(vmi, vma) {
2580                 err = __ksm_del_vma(vma);
2581                 if (err)
2582                         return err;
2583         }
2584         return 0;
2585 }
2586
2587 /**
2588  * ksm_enable_merge_any - Add mm to mm ksm list and enable merging on all
2589  *                        compatible VMA's
2590  *
2591  * @mm:  Pointer to mm
2592  *
2593  * Returns 0 on success, otherwise error code
2594  */
2595 int ksm_enable_merge_any(struct mm_struct *mm)
2596 {
2597         int err;
2598
2599         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2600                 return 0;
2601
2602         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2603                 err = __ksm_enter(mm);
2604                 if (err)
2605                         return err;
2606         }
2607
2608         set_bit(MMF_VM_MERGE_ANY, &mm->flags);
2609         ksm_add_vmas(mm);
2610
2611         return 0;
2612 }
2613
2614 /**
2615  * ksm_disable_merge_any - Disable merging on all compatible VMA's of the mm,
2616  *                         previously enabled via ksm_enable_merge_any().
2617  *
2618  * Disabling merging implies unmerging any merged pages, like setting
2619  * MADV_UNMERGEABLE would. If unmerging fails, the whole operation fails and
2620  * merging on all compatible VMA's remains enabled.
2621  *
2622  * @mm: Pointer to mm
2623  *
2624  * Returns 0 on success, otherwise error code
2625  */
2626 int ksm_disable_merge_any(struct mm_struct *mm)
2627 {
2628         int err;
2629
2630         if (!test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2631                 return 0;
2632
2633         err = ksm_del_vmas(mm);
2634         if (err) {
2635                 ksm_add_vmas(mm);
2636                 return err;
2637         }
2638
2639         clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2640         return 0;
2641 }
2642
2643 int ksm_disable(struct mm_struct *mm)
2644 {
2645         mmap_assert_write_locked(mm);
2646
2647         if (!test_bit(MMF_VM_MERGEABLE, &mm->flags))
2648                 return 0;
2649         if (test_bit(MMF_VM_MERGE_ANY, &mm->flags))
2650                 return ksm_disable_merge_any(mm);
2651         return ksm_del_vmas(mm);
2652 }
2653
2654 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2655                 unsigned long end, int advice, unsigned long *vm_flags)
2656 {
2657         struct mm_struct *mm = vma->vm_mm;
2658         int err;
2659
2660         switch (advice) {
2661         case MADV_MERGEABLE:
2662                 if (vma->vm_flags & VM_MERGEABLE)
2663                         return 0;
2664                 if (!vma_ksm_compatible(vma))
2665                         return 0;
2666
2667                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2668                         err = __ksm_enter(mm);
2669                         if (err)
2670                                 return err;
2671                 }
2672
2673                 *vm_flags |= VM_MERGEABLE;
2674                 break;
2675
2676         case MADV_UNMERGEABLE:
2677                 if (!(*vm_flags & VM_MERGEABLE))
2678                         return 0;               /* just ignore the advice */
2679
2680                 if (vma->anon_vma) {
2681                         err = unmerge_ksm_pages(vma, start, end);
2682                         if (err)
2683                                 return err;
2684                 }
2685
2686                 *vm_flags &= ~VM_MERGEABLE;
2687                 break;
2688         }
2689
2690         return 0;
2691 }
2692 EXPORT_SYMBOL_GPL(ksm_madvise);
2693
2694 int __ksm_enter(struct mm_struct *mm)
2695 {
2696         struct ksm_mm_slot *mm_slot;
2697         struct mm_slot *slot;
2698         int needs_wakeup;
2699
2700         mm_slot = mm_slot_alloc(mm_slot_cache);
2701         if (!mm_slot)
2702                 return -ENOMEM;
2703
2704         slot = &mm_slot->slot;
2705
2706         /* Check ksm_run too?  Would need tighter locking */
2707         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2708
2709         spin_lock(&ksm_mmlist_lock);
2710         mm_slot_insert(mm_slots_hash, mm, slot);
2711         /*
2712          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2713          * insert just behind the scanning cursor, to let the area settle
2714          * down a little; when fork is followed by immediate exec, we don't
2715          * want ksmd to waste time setting up and tearing down an rmap_list.
2716          *
2717          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2718          * scanning cursor, otherwise KSM pages in newly forked mms will be
2719          * missed: then we might as well insert at the end of the list.
2720          */
2721         if (ksm_run & KSM_RUN_UNMERGE)
2722                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2723         else
2724                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2725         spin_unlock(&ksm_mmlist_lock);
2726
2727         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2728         mmgrab(mm);
2729
2730         if (needs_wakeup)
2731                 wake_up_interruptible(&ksm_thread_wait);
2732
2733         trace_ksm_enter(mm);
2734         return 0;
2735 }
2736
2737 void __ksm_exit(struct mm_struct *mm)
2738 {
2739         struct ksm_mm_slot *mm_slot;
2740         struct mm_slot *slot;
2741         int easy_to_free = 0;
2742
2743         /*
2744          * This process is exiting: if it's straightforward (as is the
2745          * case when ksmd was never running), free mm_slot immediately.
2746          * But if it's at the cursor or has rmap_items linked to it, use
2747          * mmap_lock to synchronize with any break_cows before pagetables
2748          * are freed, and leave the mm_slot on the list for ksmd to free.
2749          * Beware: ksm may already have noticed it exiting and freed the slot.
2750          */
2751
2752         spin_lock(&ksm_mmlist_lock);
2753         slot = mm_slot_lookup(mm_slots_hash, mm);
2754         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2755         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2756                 if (!mm_slot->rmap_list) {
2757                         hash_del(&slot->hash);
2758                         list_del(&slot->mm_node);
2759                         easy_to_free = 1;
2760                 } else {
2761                         list_move(&slot->mm_node,
2762                                   &ksm_scan.mm_slot->slot.mm_node);
2763                 }
2764         }
2765         spin_unlock(&ksm_mmlist_lock);
2766
2767         if (easy_to_free) {
2768                 mm_slot_free(mm_slot_cache, mm_slot);
2769                 clear_bit(MMF_VM_MERGE_ANY, &mm->flags);
2770                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2771                 mmdrop(mm);
2772         } else if (mm_slot) {
2773                 mmap_write_lock(mm);
2774                 mmap_write_unlock(mm);
2775         }
2776
2777         trace_ksm_exit(mm);
2778 }
2779
2780 struct page *ksm_might_need_to_copy(struct page *page,
2781                         struct vm_area_struct *vma, unsigned long address)
2782 {
2783         struct folio *folio = page_folio(page);
2784         struct anon_vma *anon_vma = folio_anon_vma(folio);
2785         struct page *new_page;
2786
2787         if (PageKsm(page)) {
2788                 if (page_stable_node(page) &&
2789                     !(ksm_run & KSM_RUN_UNMERGE))
2790                         return page;    /* no need to copy it */
2791         } else if (!anon_vma) {
2792                 return page;            /* no need to copy it */
2793         } else if (page->index == linear_page_index(vma, address) &&
2794                         anon_vma->root == vma->anon_vma->root) {
2795                 return page;            /* still no need to copy it */
2796         }
2797         if (!PageUptodate(page))
2798                 return page;            /* let do_swap_page report the error */
2799
2800         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2801         if (new_page &&
2802             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2803                 put_page(new_page);
2804                 new_page = NULL;
2805         }
2806         if (new_page) {
2807                 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2808                         put_page(new_page);
2809                         memory_failure_queue(page_to_pfn(page), 0);
2810                         return ERR_PTR(-EHWPOISON);
2811                 }
2812                 SetPageDirty(new_page);
2813                 __SetPageUptodate(new_page);
2814                 __SetPageLocked(new_page);
2815 #ifdef CONFIG_SWAP
2816                 count_vm_event(KSM_SWPIN_COPY);
2817 #endif
2818         }
2819
2820         return new_page;
2821 }
2822
2823 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2824 {
2825         struct ksm_stable_node *stable_node;
2826         struct ksm_rmap_item *rmap_item;
2827         int search_new_forks = 0;
2828
2829         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2830
2831         /*
2832          * Rely on the page lock to protect against concurrent modifications
2833          * to that page's node of the stable tree.
2834          */
2835         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2836
2837         stable_node = folio_stable_node(folio);
2838         if (!stable_node)
2839                 return;
2840 again:
2841         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2842                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2843                 struct anon_vma_chain *vmac;
2844                 struct vm_area_struct *vma;
2845
2846                 cond_resched();
2847                 if (!anon_vma_trylock_read(anon_vma)) {
2848                         if (rwc->try_lock) {
2849                                 rwc->contended = true;
2850                                 return;
2851                         }
2852                         anon_vma_lock_read(anon_vma);
2853                 }
2854                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2855                                                0, ULONG_MAX) {
2856                         unsigned long addr;
2857
2858                         cond_resched();
2859                         vma = vmac->vma;
2860
2861                         /* Ignore the stable/unstable/sqnr flags */
2862                         addr = rmap_item->address & PAGE_MASK;
2863
2864                         if (addr < vma->vm_start || addr >= vma->vm_end)
2865                                 continue;
2866                         /*
2867                          * Initially we examine only the vma which covers this
2868                          * rmap_item; but later, if there is still work to do,
2869                          * we examine covering vmas in other mms: in case they
2870                          * were forked from the original since ksmd passed.
2871                          */
2872                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2873                                 continue;
2874
2875                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2876                                 continue;
2877
2878                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2879                                 anon_vma_unlock_read(anon_vma);
2880                                 return;
2881                         }
2882                         if (rwc->done && rwc->done(folio)) {
2883                                 anon_vma_unlock_read(anon_vma);
2884                                 return;
2885                         }
2886                 }
2887                 anon_vma_unlock_read(anon_vma);
2888         }
2889         if (!search_new_forks++)
2890                 goto again;
2891 }
2892
2893 #ifdef CONFIG_MEMORY_FAILURE
2894 /*
2895  * Collect processes when the error hit an ksm page.
2896  */
2897 void collect_procs_ksm(struct page *page, struct list_head *to_kill,
2898                        int force_early)
2899 {
2900         struct ksm_stable_node *stable_node;
2901         struct ksm_rmap_item *rmap_item;
2902         struct folio *folio = page_folio(page);
2903         struct vm_area_struct *vma;
2904         struct task_struct *tsk;
2905
2906         stable_node = folio_stable_node(folio);
2907         if (!stable_node)
2908                 return;
2909         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2910                 struct anon_vma *av = rmap_item->anon_vma;
2911
2912                 anon_vma_lock_read(av);
2913                 read_lock(&tasklist_lock);
2914                 for_each_process(tsk) {
2915                         struct anon_vma_chain *vmac;
2916                         unsigned long addr;
2917                         struct task_struct *t =
2918                                 task_early_kill(tsk, force_early);
2919                         if (!t)
2920                                 continue;
2921                         anon_vma_interval_tree_foreach(vmac, &av->rb_root, 0,
2922                                                        ULONG_MAX)
2923                         {
2924                                 vma = vmac->vma;
2925                                 if (vma->vm_mm == t->mm) {
2926                                         addr = rmap_item->address & PAGE_MASK;
2927                                         add_to_kill_ksm(t, page, vma, to_kill,
2928                                                         addr);
2929                                 }
2930                         }
2931                 }
2932                 read_unlock(&tasklist_lock);
2933                 anon_vma_unlock_read(av);
2934         }
2935 }
2936 #endif
2937
2938 #ifdef CONFIG_MIGRATION
2939 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2940 {
2941         struct ksm_stable_node *stable_node;
2942
2943         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2944         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2945         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2946
2947         stable_node = folio_stable_node(folio);
2948         if (stable_node) {
2949                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2950                 stable_node->kpfn = folio_pfn(newfolio);
2951                 /*
2952                  * newfolio->mapping was set in advance; now we need smp_wmb()
2953                  * to make sure that the new stable_node->kpfn is visible
2954                  * to get_ksm_page() before it can see that folio->mapping
2955                  * has gone stale (or that folio_test_swapcache has been cleared).
2956                  */
2957                 smp_wmb();
2958                 set_page_stable_node(&folio->page, NULL);
2959         }
2960 }
2961 #endif /* CONFIG_MIGRATION */
2962
2963 #ifdef CONFIG_MEMORY_HOTREMOVE
2964 static void wait_while_offlining(void)
2965 {
2966         while (ksm_run & KSM_RUN_OFFLINE) {
2967                 mutex_unlock(&ksm_thread_mutex);
2968                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2969                             TASK_UNINTERRUPTIBLE);
2970                 mutex_lock(&ksm_thread_mutex);
2971         }
2972 }
2973
2974 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2975                                          unsigned long start_pfn,
2976                                          unsigned long end_pfn)
2977 {
2978         if (stable_node->kpfn >= start_pfn &&
2979             stable_node->kpfn < end_pfn) {
2980                 /*
2981                  * Don't get_ksm_page, page has already gone:
2982                  * which is why we keep kpfn instead of page*
2983                  */
2984                 remove_node_from_stable_tree(stable_node);
2985                 return true;
2986         }
2987         return false;
2988 }
2989
2990 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2991                                            unsigned long start_pfn,
2992                                            unsigned long end_pfn,
2993                                            struct rb_root *root)
2994 {
2995         struct ksm_stable_node *dup;
2996         struct hlist_node *hlist_safe;
2997
2998         if (!is_stable_node_chain(stable_node)) {
2999                 VM_BUG_ON(is_stable_node_dup(stable_node));
3000                 return stable_node_dup_remove_range(stable_node, start_pfn,
3001                                                     end_pfn);
3002         }
3003
3004         hlist_for_each_entry_safe(dup, hlist_safe,
3005                                   &stable_node->hlist, hlist_dup) {
3006                 VM_BUG_ON(!is_stable_node_dup(dup));
3007                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
3008         }
3009         if (hlist_empty(&stable_node->hlist)) {
3010                 free_stable_node_chain(stable_node, root);
3011                 return true; /* notify caller that tree was rebalanced */
3012         } else
3013                 return false;
3014 }
3015
3016 static void ksm_check_stable_tree(unsigned long start_pfn,
3017                                   unsigned long end_pfn)
3018 {
3019         struct ksm_stable_node *stable_node, *next;
3020         struct rb_node *node;
3021         int nid;
3022
3023         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
3024                 node = rb_first(root_stable_tree + nid);
3025                 while (node) {
3026                         stable_node = rb_entry(node, struct ksm_stable_node, node);
3027                         if (stable_node_chain_remove_range(stable_node,
3028                                                            start_pfn, end_pfn,
3029                                                            root_stable_tree +
3030                                                            nid))
3031                                 node = rb_first(root_stable_tree + nid);
3032                         else
3033                                 node = rb_next(node);
3034                         cond_resched();
3035                 }
3036         }
3037         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
3038                 if (stable_node->kpfn >= start_pfn &&
3039                     stable_node->kpfn < end_pfn)
3040                         remove_node_from_stable_tree(stable_node);
3041                 cond_resched();
3042         }
3043 }
3044
3045 static int ksm_memory_callback(struct notifier_block *self,
3046                                unsigned long action, void *arg)
3047 {
3048         struct memory_notify *mn = arg;
3049
3050         switch (action) {
3051         case MEM_GOING_OFFLINE:
3052                 /*
3053                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
3054                  * and remove_all_stable_nodes() while memory is going offline:
3055                  * it is unsafe for them to touch the stable tree at this time.
3056                  * But unmerge_ksm_pages(), rmap lookups and other entry points
3057                  * which do not need the ksm_thread_mutex are all safe.
3058                  */
3059                 mutex_lock(&ksm_thread_mutex);
3060                 ksm_run |= KSM_RUN_OFFLINE;
3061                 mutex_unlock(&ksm_thread_mutex);
3062                 break;
3063
3064         case MEM_OFFLINE:
3065                 /*
3066                  * Most of the work is done by page migration; but there might
3067                  * be a few stable_nodes left over, still pointing to struct
3068                  * pages which have been offlined: prune those from the tree,
3069                  * otherwise get_ksm_page() might later try to access a
3070                  * non-existent struct page.
3071                  */
3072                 ksm_check_stable_tree(mn->start_pfn,
3073                                       mn->start_pfn + mn->nr_pages);
3074                 fallthrough;
3075         case MEM_CANCEL_OFFLINE:
3076                 mutex_lock(&ksm_thread_mutex);
3077                 ksm_run &= ~KSM_RUN_OFFLINE;
3078                 mutex_unlock(&ksm_thread_mutex);
3079
3080                 smp_mb();       /* wake_up_bit advises this */
3081                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
3082                 break;
3083         }
3084         return NOTIFY_OK;
3085 }
3086 #else
3087 static void wait_while_offlining(void)
3088 {
3089 }
3090 #endif /* CONFIG_MEMORY_HOTREMOVE */
3091
3092 #ifdef CONFIG_PROC_FS
3093 long ksm_process_profit(struct mm_struct *mm)
3094 {
3095         return (long)(mm->ksm_merging_pages + mm->ksm_zero_pages) * PAGE_SIZE -
3096                 mm->ksm_rmap_items * sizeof(struct ksm_rmap_item);
3097 }
3098 #endif /* CONFIG_PROC_FS */
3099
3100 #ifdef CONFIG_SYSFS
3101 /*
3102  * This all compiles without CONFIG_SYSFS, but is a waste of space.
3103  */
3104
3105 #define KSM_ATTR_RO(_name) \
3106         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3107 #define KSM_ATTR(_name) \
3108         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3109
3110 static ssize_t sleep_millisecs_show(struct kobject *kobj,
3111                                     struct kobj_attribute *attr, char *buf)
3112 {
3113         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
3114 }
3115
3116 static ssize_t sleep_millisecs_store(struct kobject *kobj,
3117                                      struct kobj_attribute *attr,
3118                                      const char *buf, size_t count)
3119 {
3120         unsigned int msecs;
3121         int err;
3122
3123         err = kstrtouint(buf, 10, &msecs);
3124         if (err)
3125                 return -EINVAL;
3126
3127         ksm_thread_sleep_millisecs = msecs;
3128         wake_up_interruptible(&ksm_iter_wait);
3129
3130         return count;
3131 }
3132 KSM_ATTR(sleep_millisecs);
3133
3134 static ssize_t pages_to_scan_show(struct kobject *kobj,
3135                                   struct kobj_attribute *attr, char *buf)
3136 {
3137         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
3138 }
3139
3140 static ssize_t pages_to_scan_store(struct kobject *kobj,
3141                                    struct kobj_attribute *attr,
3142                                    const char *buf, size_t count)
3143 {
3144         unsigned int nr_pages;
3145         int err;
3146
3147         err = kstrtouint(buf, 10, &nr_pages);
3148         if (err)
3149                 return -EINVAL;
3150
3151         ksm_thread_pages_to_scan = nr_pages;
3152
3153         return count;
3154 }
3155 KSM_ATTR(pages_to_scan);
3156
3157 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
3158                         char *buf)
3159 {
3160         return sysfs_emit(buf, "%lu\n", ksm_run);
3161 }
3162
3163 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
3164                          const char *buf, size_t count)
3165 {
3166         unsigned int flags;
3167         int err;
3168
3169         err = kstrtouint(buf, 10, &flags);
3170         if (err)
3171                 return -EINVAL;
3172         if (flags > KSM_RUN_UNMERGE)
3173                 return -EINVAL;
3174
3175         /*
3176          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
3177          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
3178          * breaking COW to free the pages_shared (but leaves mm_slots
3179          * on the list for when ksmd may be set running again).
3180          */
3181
3182         mutex_lock(&ksm_thread_mutex);
3183         wait_while_offlining();
3184         if (ksm_run != flags) {
3185                 ksm_run = flags;
3186                 if (flags & KSM_RUN_UNMERGE) {
3187                         set_current_oom_origin();
3188                         err = unmerge_and_remove_all_rmap_items();
3189                         clear_current_oom_origin();
3190                         if (err) {
3191                                 ksm_run = KSM_RUN_STOP;
3192                                 count = err;
3193                         }
3194                 }
3195         }
3196         mutex_unlock(&ksm_thread_mutex);
3197
3198         if (flags & KSM_RUN_MERGE)
3199                 wake_up_interruptible(&ksm_thread_wait);
3200
3201         return count;
3202 }
3203 KSM_ATTR(run);
3204
3205 #ifdef CONFIG_NUMA
3206 static ssize_t merge_across_nodes_show(struct kobject *kobj,
3207                                        struct kobj_attribute *attr, char *buf)
3208 {
3209         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
3210 }
3211
3212 static ssize_t merge_across_nodes_store(struct kobject *kobj,
3213                                    struct kobj_attribute *attr,
3214                                    const char *buf, size_t count)
3215 {
3216         int err;
3217         unsigned long knob;
3218
3219         err = kstrtoul(buf, 10, &knob);
3220         if (err)
3221                 return err;
3222         if (knob > 1)
3223                 return -EINVAL;
3224
3225         mutex_lock(&ksm_thread_mutex);
3226         wait_while_offlining();
3227         if (ksm_merge_across_nodes != knob) {
3228                 if (ksm_pages_shared || remove_all_stable_nodes())
3229                         err = -EBUSY;
3230                 else if (root_stable_tree == one_stable_tree) {
3231                         struct rb_root *buf;
3232                         /*
3233                          * This is the first time that we switch away from the
3234                          * default of merging across nodes: must now allocate
3235                          * a buffer to hold as many roots as may be needed.
3236                          * Allocate stable and unstable together:
3237                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3238                          */
3239                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3240                                       GFP_KERNEL);
3241                         /* Let us assume that RB_ROOT is NULL is zero */
3242                         if (!buf)
3243                                 err = -ENOMEM;
3244                         else {
3245                                 root_stable_tree = buf;
3246                                 root_unstable_tree = buf + nr_node_ids;
3247                                 /* Stable tree is empty but not the unstable */
3248                                 root_unstable_tree[0] = one_unstable_tree[0];
3249                         }
3250                 }
3251                 if (!err) {
3252                         ksm_merge_across_nodes = knob;
3253                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3254                 }
3255         }
3256         mutex_unlock(&ksm_thread_mutex);
3257
3258         return err ? err : count;
3259 }
3260 KSM_ATTR(merge_across_nodes);
3261 #endif
3262
3263 static ssize_t use_zero_pages_show(struct kobject *kobj,
3264                                    struct kobj_attribute *attr, char *buf)
3265 {
3266         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3267 }
3268 static ssize_t use_zero_pages_store(struct kobject *kobj,
3269                                    struct kobj_attribute *attr,
3270                                    const char *buf, size_t count)
3271 {
3272         int err;
3273         bool value;
3274
3275         err = kstrtobool(buf, &value);
3276         if (err)
3277                 return -EINVAL;
3278
3279         ksm_use_zero_pages = value;
3280
3281         return count;
3282 }
3283 KSM_ATTR(use_zero_pages);
3284
3285 static ssize_t max_page_sharing_show(struct kobject *kobj,
3286                                      struct kobj_attribute *attr, char *buf)
3287 {
3288         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3289 }
3290
3291 static ssize_t max_page_sharing_store(struct kobject *kobj,
3292                                       struct kobj_attribute *attr,
3293                                       const char *buf, size_t count)
3294 {
3295         int err;
3296         int knob;
3297
3298         err = kstrtoint(buf, 10, &knob);
3299         if (err)
3300                 return err;
3301         /*
3302          * When a KSM page is created it is shared by 2 mappings. This
3303          * being a signed comparison, it implicitly verifies it's not
3304          * negative.
3305          */
3306         if (knob < 2)
3307                 return -EINVAL;
3308
3309         if (READ_ONCE(ksm_max_page_sharing) == knob)
3310                 return count;
3311
3312         mutex_lock(&ksm_thread_mutex);
3313         wait_while_offlining();
3314         if (ksm_max_page_sharing != knob) {
3315                 if (ksm_pages_shared || remove_all_stable_nodes())
3316                         err = -EBUSY;
3317                 else
3318                         ksm_max_page_sharing = knob;
3319         }
3320         mutex_unlock(&ksm_thread_mutex);
3321
3322         return err ? err : count;
3323 }
3324 KSM_ATTR(max_page_sharing);
3325
3326 static ssize_t pages_shared_show(struct kobject *kobj,
3327                                  struct kobj_attribute *attr, char *buf)
3328 {
3329         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3330 }
3331 KSM_ATTR_RO(pages_shared);
3332
3333 static ssize_t pages_sharing_show(struct kobject *kobj,
3334                                   struct kobj_attribute *attr, char *buf)
3335 {
3336         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3337 }
3338 KSM_ATTR_RO(pages_sharing);
3339
3340 static ssize_t pages_unshared_show(struct kobject *kobj,
3341                                    struct kobj_attribute *attr, char *buf)
3342 {
3343         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3344 }
3345 KSM_ATTR_RO(pages_unshared);
3346
3347 static ssize_t pages_volatile_show(struct kobject *kobj,
3348                                    struct kobj_attribute *attr, char *buf)
3349 {
3350         long ksm_pages_volatile;
3351
3352         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3353                                 - ksm_pages_sharing - ksm_pages_unshared;
3354         /*
3355          * It was not worth any locking to calculate that statistic,
3356          * but it might therefore sometimes be negative: conceal that.
3357          */
3358         if (ksm_pages_volatile < 0)
3359                 ksm_pages_volatile = 0;
3360         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3361 }
3362 KSM_ATTR_RO(pages_volatile);
3363
3364 static ssize_t ksm_zero_pages_show(struct kobject *kobj,
3365                                 struct kobj_attribute *attr, char *buf)
3366 {
3367         return sysfs_emit(buf, "%ld\n", ksm_zero_pages);
3368 }
3369 KSM_ATTR_RO(ksm_zero_pages);
3370
3371 static ssize_t general_profit_show(struct kobject *kobj,
3372                                    struct kobj_attribute *attr, char *buf)
3373 {
3374         long general_profit;
3375
3376         general_profit = (ksm_pages_sharing + ksm_zero_pages) * PAGE_SIZE -
3377                                 ksm_rmap_items * sizeof(struct ksm_rmap_item);
3378
3379         return sysfs_emit(buf, "%ld\n", general_profit);
3380 }
3381 KSM_ATTR_RO(general_profit);
3382
3383 static ssize_t stable_node_dups_show(struct kobject *kobj,
3384                                      struct kobj_attribute *attr, char *buf)
3385 {
3386         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3387 }
3388 KSM_ATTR_RO(stable_node_dups);
3389
3390 static ssize_t stable_node_chains_show(struct kobject *kobj,
3391                                        struct kobj_attribute *attr, char *buf)
3392 {
3393         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3394 }
3395 KSM_ATTR_RO(stable_node_chains);
3396
3397 static ssize_t
3398 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3399                                         struct kobj_attribute *attr,
3400                                         char *buf)
3401 {
3402         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3403 }
3404
3405 static ssize_t
3406 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3407                                          struct kobj_attribute *attr,
3408                                          const char *buf, size_t count)
3409 {
3410         unsigned int msecs;
3411         int err;
3412
3413         err = kstrtouint(buf, 10, &msecs);
3414         if (err)
3415                 return -EINVAL;
3416
3417         ksm_stable_node_chains_prune_millisecs = msecs;
3418
3419         return count;
3420 }
3421 KSM_ATTR(stable_node_chains_prune_millisecs);
3422
3423 static ssize_t full_scans_show(struct kobject *kobj,
3424                                struct kobj_attribute *attr, char *buf)
3425 {
3426         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3427 }
3428 KSM_ATTR_RO(full_scans);
3429
3430 static struct attribute *ksm_attrs[] = {
3431         &sleep_millisecs_attr.attr,
3432         &pages_to_scan_attr.attr,
3433         &run_attr.attr,
3434         &pages_shared_attr.attr,
3435         &pages_sharing_attr.attr,
3436         &pages_unshared_attr.attr,
3437         &pages_volatile_attr.attr,
3438         &ksm_zero_pages_attr.attr,
3439         &full_scans_attr.attr,
3440 #ifdef CONFIG_NUMA
3441         &merge_across_nodes_attr.attr,
3442 #endif
3443         &max_page_sharing_attr.attr,
3444         &stable_node_chains_attr.attr,
3445         &stable_node_dups_attr.attr,
3446         &stable_node_chains_prune_millisecs_attr.attr,
3447         &use_zero_pages_attr.attr,
3448         &general_profit_attr.attr,
3449         NULL,
3450 };
3451
3452 static const struct attribute_group ksm_attr_group = {
3453         .attrs = ksm_attrs,
3454         .name = "ksm",
3455 };
3456 #endif /* CONFIG_SYSFS */
3457
3458 static int __init ksm_init(void)
3459 {
3460         struct task_struct *ksm_thread;
3461         int err;
3462
3463         /* The correct value depends on page size and endianness */
3464         zero_checksum = calc_checksum(ZERO_PAGE(0));
3465         /* Default to false for backwards compatibility */
3466         ksm_use_zero_pages = false;
3467
3468         err = ksm_slab_init();
3469         if (err)
3470                 goto out;
3471
3472         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3473         if (IS_ERR(ksm_thread)) {
3474                 pr_err("ksm: creating kthread failed\n");
3475                 err = PTR_ERR(ksm_thread);
3476                 goto out_free;
3477         }
3478
3479 #ifdef CONFIG_SYSFS
3480         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3481         if (err) {
3482                 pr_err("ksm: register sysfs failed\n");
3483                 kthread_stop(ksm_thread);
3484                 goto out_free;
3485         }
3486 #else
3487         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3488
3489 #endif /* CONFIG_SYSFS */
3490
3491 #ifdef CONFIG_MEMORY_HOTREMOVE
3492         /* There is no significance to this priority 100 */
3493         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3494 #endif
3495         return 0;
3496
3497 out_free:
3498         ksm_slab_free();
3499 out:
3500         return err;
3501 }
3502 subsys_initcall(ksm_init);