ksm: make !merge_across_nodes migration safe
[profile/ivi/kernel-x86-ivi.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/rwsem.h>
23 #include <linux/pagemap.h>
24 #include <linux/rmap.h>
25 #include <linux/spinlock.h>
26 #include <linux/jhash.h>
27 #include <linux/delay.h>
28 #include <linux/kthread.h>
29 #include <linux/wait.h>
30 #include <linux/slab.h>
31 #include <linux/rbtree.h>
32 #include <linux/memory.h>
33 #include <linux/mmu_notifier.h>
34 #include <linux/swap.h>
35 #include <linux/ksm.h>
36 #include <linux/hashtable.h>
37 #include <linux/freezer.h>
38 #include <linux/oom.h>
39 #include <linux/numa.h>
40
41 #include <asm/tlbflush.h>
42 #include "internal.h"
43
44 #ifdef CONFIG_NUMA
45 #define NUMA(x)         (x)
46 #define DO_NUMA(x)      do { (x); } while (0)
47 #else
48 #define NUMA(x)         (0)
49 #define DO_NUMA(x)      do { } while (0)
50 #endif
51
52 /*
53  * A few notes about the KSM scanning process,
54  * to make it easier to understand the data structures below:
55  *
56  * In order to reduce excessive scanning, KSM sorts the memory pages by their
57  * contents into a data structure that holds pointers to the pages' locations.
58  *
59  * Since the contents of the pages may change at any moment, KSM cannot just
60  * insert the pages into a normal sorted tree and expect it to find anything.
61  * Therefore KSM uses two data structures - the stable and the unstable tree.
62  *
63  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
64  * by their contents.  Because each such page is write-protected, searching on
65  * this tree is fully assured to be working (except when pages are unmapped),
66  * and therefore this tree is called the stable tree.
67  *
68  * In addition to the stable tree, KSM uses a second data structure called the
69  * unstable tree: this tree holds pointers to pages which have been found to
70  * be "unchanged for a period of time".  The unstable tree sorts these pages
71  * by their contents, but since they are not write-protected, KSM cannot rely
72  * upon the unstable tree to work correctly - the unstable tree is liable to
73  * be corrupted as its contents are modified, and so it is called unstable.
74  *
75  * KSM solves this problem by several techniques:
76  *
77  * 1) The unstable tree is flushed every time KSM completes scanning all
78  *    memory areas, and then the tree is rebuilt again from the beginning.
79  * 2) KSM will only insert into the unstable tree, pages whose hash value
80  *    has not changed since the previous scan of all memory areas.
81  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
82  *    colors of the nodes and not on their contents, assuring that even when
83  *    the tree gets "corrupted" it won't get out of balance, so scanning time
84  *    remains the same (also, searching and inserting nodes in an rbtree uses
85  *    the same algorithm, so we have no overhead when we flush and rebuild).
86  * 4) KSM never flushes the stable tree, which means that even if it were to
87  *    take 10 attempts to find a page in the unstable tree, once it is found,
88  *    it is secured in the stable tree.  (When we scan a new page, we first
89  *    compare it against the stable tree, and then against the unstable tree.)
90  */
91
92 /**
93  * struct mm_slot - ksm information per mm that is being scanned
94  * @link: link to the mm_slots hash list
95  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
96  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
97  * @mm: the mm that this information is valid for
98  */
99 struct mm_slot {
100         struct hlist_node link;
101         struct list_head mm_list;
102         struct rmap_item *rmap_list;
103         struct mm_struct *mm;
104 };
105
106 /**
107  * struct ksm_scan - cursor for scanning
108  * @mm_slot: the current mm_slot we are scanning
109  * @address: the next address inside that to be scanned
110  * @rmap_list: link to the next rmap to be scanned in the rmap_list
111  * @seqnr: count of completed full scans (needed when removing unstable node)
112  *
113  * There is only the one ksm_scan instance of this cursor structure.
114  */
115 struct ksm_scan {
116         struct mm_slot *mm_slot;
117         unsigned long address;
118         struct rmap_item **rmap_list;
119         unsigned long seqnr;
120 };
121
122 /**
123  * struct stable_node - node of the stable rbtree
124  * @node: rb node of this ksm page in the stable tree
125  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
126  * @list: linked into migrate_nodes, pending placement in the proper node tree
127  * @hlist: hlist head of rmap_items using this ksm page
128  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
129  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
130  */
131 struct stable_node {
132         union {
133                 struct rb_node node;    /* when node of stable tree */
134                 struct {                /* when listed for migration */
135                         struct list_head *head;
136                         struct list_head list;
137                 };
138         };
139         struct hlist_head hlist;
140         unsigned long kpfn;
141 #ifdef CONFIG_NUMA
142         int nid;
143 #endif
144 };
145
146 /**
147  * struct rmap_item - reverse mapping item for virtual addresses
148  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
149  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
150  * @mm: the memory structure this rmap_item is pointing into
151  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
152  * @oldchecksum: previous checksum of the page at that virtual address
153  * @nid: NUMA node id of unstable tree in which linked (may not match page)
154  * @node: rb node of this rmap_item in the unstable tree
155  * @head: pointer to stable_node heading this list in the stable tree
156  * @hlist: link into hlist of rmap_items hanging off that stable_node
157  */
158 struct rmap_item {
159         struct rmap_item *rmap_list;
160         struct anon_vma *anon_vma;      /* when stable */
161         struct mm_struct *mm;
162         unsigned long address;          /* + low bits used for flags below */
163         unsigned int oldchecksum;       /* when unstable */
164 #ifdef CONFIG_NUMA
165         int nid;
166 #endif
167         union {
168                 struct rb_node node;    /* when node of unstable tree */
169                 struct {                /* when listed from stable tree */
170                         struct stable_node *head;
171                         struct hlist_node hlist;
172                 };
173         };
174 };
175
176 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
177 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
178 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
179
180 /* The stable and unstable tree heads */
181 static struct rb_root root_unstable_tree[MAX_NUMNODES];
182 static struct rb_root root_stable_tree[MAX_NUMNODES];
183
184 /* Recently migrated nodes of stable tree, pending proper placement */
185 static LIST_HEAD(migrate_nodes);
186
187 #define MM_SLOTS_HASH_BITS 10
188 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
189
190 static struct mm_slot ksm_mm_head = {
191         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
192 };
193 static struct ksm_scan ksm_scan = {
194         .mm_slot = &ksm_mm_head,
195 };
196
197 static struct kmem_cache *rmap_item_cache;
198 static struct kmem_cache *stable_node_cache;
199 static struct kmem_cache *mm_slot_cache;
200
201 /* The number of nodes in the stable tree */
202 static unsigned long ksm_pages_shared;
203
204 /* The number of page slots additionally sharing those nodes */
205 static unsigned long ksm_pages_sharing;
206
207 /* The number of nodes in the unstable tree */
208 static unsigned long ksm_pages_unshared;
209
210 /* The number of rmap_items in use: to calculate pages_volatile */
211 static unsigned long ksm_rmap_items;
212
213 /* Number of pages ksmd should scan in one batch */
214 static unsigned int ksm_thread_pages_to_scan = 100;
215
216 /* Milliseconds ksmd should sleep between batches */
217 static unsigned int ksm_thread_sleep_millisecs = 20;
218
219 #ifdef CONFIG_NUMA
220 /* Zeroed when merging across nodes is not allowed */
221 static unsigned int ksm_merge_across_nodes = 1;
222 #else
223 #define ksm_merge_across_nodes  1U
224 #endif
225
226 #define KSM_RUN_STOP    0
227 #define KSM_RUN_MERGE   1
228 #define KSM_RUN_UNMERGE 2
229 static unsigned int ksm_run = KSM_RUN_STOP;
230
231 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
232 static DEFINE_MUTEX(ksm_thread_mutex);
233 static DEFINE_SPINLOCK(ksm_mmlist_lock);
234
235 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
236                 sizeof(struct __struct), __alignof__(struct __struct),\
237                 (__flags), NULL)
238
239 static int __init ksm_slab_init(void)
240 {
241         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
242         if (!rmap_item_cache)
243                 goto out;
244
245         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
246         if (!stable_node_cache)
247                 goto out_free1;
248
249         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
250         if (!mm_slot_cache)
251                 goto out_free2;
252
253         return 0;
254
255 out_free2:
256         kmem_cache_destroy(stable_node_cache);
257 out_free1:
258         kmem_cache_destroy(rmap_item_cache);
259 out:
260         return -ENOMEM;
261 }
262
263 static void __init ksm_slab_free(void)
264 {
265         kmem_cache_destroy(mm_slot_cache);
266         kmem_cache_destroy(stable_node_cache);
267         kmem_cache_destroy(rmap_item_cache);
268         mm_slot_cache = NULL;
269 }
270
271 static inline struct rmap_item *alloc_rmap_item(void)
272 {
273         struct rmap_item *rmap_item;
274
275         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL);
276         if (rmap_item)
277                 ksm_rmap_items++;
278         return rmap_item;
279 }
280
281 static inline void free_rmap_item(struct rmap_item *rmap_item)
282 {
283         ksm_rmap_items--;
284         rmap_item->mm = NULL;   /* debug safety */
285         kmem_cache_free(rmap_item_cache, rmap_item);
286 }
287
288 static inline struct stable_node *alloc_stable_node(void)
289 {
290         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL);
291 }
292
293 static inline void free_stable_node(struct stable_node *stable_node)
294 {
295         kmem_cache_free(stable_node_cache, stable_node);
296 }
297
298 static inline struct mm_slot *alloc_mm_slot(void)
299 {
300         if (!mm_slot_cache)     /* initialization failed */
301                 return NULL;
302         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
303 }
304
305 static inline void free_mm_slot(struct mm_slot *mm_slot)
306 {
307         kmem_cache_free(mm_slot_cache, mm_slot);
308 }
309
310 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
311 {
312         struct hlist_node *node;
313         struct mm_slot *slot;
314
315         hash_for_each_possible(mm_slots_hash, slot, node, link, (unsigned long)mm)
316                 if (slot->mm == mm)
317                         return slot;
318
319         return NULL;
320 }
321
322 static void insert_to_mm_slots_hash(struct mm_struct *mm,
323                                     struct mm_slot *mm_slot)
324 {
325         mm_slot->mm = mm;
326         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
327 }
328
329 /*
330  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
331  * page tables after it has passed through ksm_exit() - which, if necessary,
332  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
333  * a special flag: they can just back out as soon as mm_users goes to zero.
334  * ksm_test_exit() is used throughout to make this test for exit: in some
335  * places for correctness, in some places just to avoid unnecessary work.
336  */
337 static inline bool ksm_test_exit(struct mm_struct *mm)
338 {
339         return atomic_read(&mm->mm_users) == 0;
340 }
341
342 /*
343  * We use break_ksm to break COW on a ksm page: it's a stripped down
344  *
345  *      if (get_user_pages(current, mm, addr, 1, 1, 1, &page, NULL) == 1)
346  *              put_page(page);
347  *
348  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
349  * in case the application has unmapped and remapped mm,addr meanwhile.
350  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
351  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
352  */
353 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
354 {
355         struct page *page;
356         int ret = 0;
357
358         do {
359                 cond_resched();
360                 page = follow_page(vma, addr, FOLL_GET);
361                 if (IS_ERR_OR_NULL(page))
362                         break;
363                 if (PageKsm(page))
364                         ret = handle_mm_fault(vma->vm_mm, vma, addr,
365                                                         FAULT_FLAG_WRITE);
366                 else
367                         ret = VM_FAULT_WRITE;
368                 put_page(page);
369         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_OOM)));
370         /*
371          * We must loop because handle_mm_fault() may back out if there's
372          * any difficulty e.g. if pte accessed bit gets updated concurrently.
373          *
374          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
375          * COW has been broken, even if the vma does not permit VM_WRITE;
376          * but note that a concurrent fault might break PageKsm for us.
377          *
378          * VM_FAULT_SIGBUS could occur if we race with truncation of the
379          * backing file, which also invalidates anonymous pages: that's
380          * okay, that truncation will have unmapped the PageKsm for us.
381          *
382          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
383          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
384          * current task has TIF_MEMDIE set, and will be OOM killed on return
385          * to user; and ksmd, having no mm, would never be chosen for that.
386          *
387          * But if the mm is in a limited mem_cgroup, then the fault may fail
388          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
389          * even ksmd can fail in this way - though it's usually breaking ksm
390          * just to undo a merge it made a moment before, so unlikely to oom.
391          *
392          * That's a pity: we might therefore have more kernel pages allocated
393          * than we're counting as nodes in the stable tree; but ksm_do_scan
394          * will retry to break_cow on each pass, so should recover the page
395          * in due course.  The important thing is to not let VM_MERGEABLE
396          * be cleared while any such pages might remain in the area.
397          */
398         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
399 }
400
401 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
402                 unsigned long addr)
403 {
404         struct vm_area_struct *vma;
405         if (ksm_test_exit(mm))
406                 return NULL;
407         vma = find_vma(mm, addr);
408         if (!vma || vma->vm_start > addr)
409                 return NULL;
410         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
411                 return NULL;
412         return vma;
413 }
414
415 static void break_cow(struct rmap_item *rmap_item)
416 {
417         struct mm_struct *mm = rmap_item->mm;
418         unsigned long addr = rmap_item->address;
419         struct vm_area_struct *vma;
420
421         /*
422          * It is not an accident that whenever we want to break COW
423          * to undo, we also need to drop a reference to the anon_vma.
424          */
425         put_anon_vma(rmap_item->anon_vma);
426
427         down_read(&mm->mmap_sem);
428         vma = find_mergeable_vma(mm, addr);
429         if (vma)
430                 break_ksm(vma, addr);
431         up_read(&mm->mmap_sem);
432 }
433
434 static struct page *page_trans_compound_anon(struct page *page)
435 {
436         if (PageTransCompound(page)) {
437                 struct page *head = compound_trans_head(page);
438                 /*
439                  * head may actually be splitted and freed from under
440                  * us but it's ok here.
441                  */
442                 if (PageAnon(head))
443                         return head;
444         }
445         return NULL;
446 }
447
448 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
449 {
450         struct mm_struct *mm = rmap_item->mm;
451         unsigned long addr = rmap_item->address;
452         struct vm_area_struct *vma;
453         struct page *page;
454
455         down_read(&mm->mmap_sem);
456         vma = find_mergeable_vma(mm, addr);
457         if (!vma)
458                 goto out;
459
460         page = follow_page(vma, addr, FOLL_GET);
461         if (IS_ERR_OR_NULL(page))
462                 goto out;
463         if (PageAnon(page) || page_trans_compound_anon(page)) {
464                 flush_anon_page(vma, page, addr);
465                 flush_dcache_page(page);
466         } else {
467                 put_page(page);
468 out:            page = NULL;
469         }
470         up_read(&mm->mmap_sem);
471         return page;
472 }
473
474 /*
475  * This helper is used for getting right index into array of tree roots.
476  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
477  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
478  * every node has its own stable and unstable tree.
479  */
480 static inline int get_kpfn_nid(unsigned long kpfn)
481 {
482         return ksm_merge_across_nodes ? 0 : pfn_to_nid(kpfn);
483 }
484
485 static void remove_node_from_stable_tree(struct stable_node *stable_node)
486 {
487         struct rmap_item *rmap_item;
488         struct hlist_node *hlist;
489
490         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
491                 if (rmap_item->hlist.next)
492                         ksm_pages_sharing--;
493                 else
494                         ksm_pages_shared--;
495                 put_anon_vma(rmap_item->anon_vma);
496                 rmap_item->address &= PAGE_MASK;
497                 cond_resched();
498         }
499
500         if (stable_node->head == &migrate_nodes)
501                 list_del(&stable_node->list);
502         else
503                 rb_erase(&stable_node->node,
504                          &root_stable_tree[NUMA(stable_node->nid)]);
505         free_stable_node(stable_node);
506 }
507
508 /*
509  * get_ksm_page: checks if the page indicated by the stable node
510  * is still its ksm page, despite having held no reference to it.
511  * In which case we can trust the content of the page, and it
512  * returns the gotten page; but if the page has now been zapped,
513  * remove the stale node from the stable tree and return NULL.
514  * But beware, the stable node's page might be being migrated.
515  *
516  * You would expect the stable_node to hold a reference to the ksm page.
517  * But if it increments the page's count, swapping out has to wait for
518  * ksmd to come around again before it can free the page, which may take
519  * seconds or even minutes: much too unresponsive.  So instead we use a
520  * "keyhole reference": access to the ksm page from the stable node peeps
521  * out through its keyhole to see if that page still holds the right key,
522  * pointing back to this stable node.  This relies on freeing a PageAnon
523  * page to reset its page->mapping to NULL, and relies on no other use of
524  * a page to put something that might look like our key in page->mapping.
525  * is on its way to being freed; but it is an anomaly to bear in mind.
526  */
527 static struct page *get_ksm_page(struct stable_node *stable_node, bool locked)
528 {
529         struct page *page;
530         void *expected_mapping;
531         unsigned long kpfn;
532
533         expected_mapping = (void *)stable_node +
534                                 (PAGE_MAPPING_ANON | PAGE_MAPPING_KSM);
535 again:
536         kpfn = ACCESS_ONCE(stable_node->kpfn);
537         page = pfn_to_page(kpfn);
538
539         /*
540          * page is computed from kpfn, so on most architectures reading
541          * page->mapping is naturally ordered after reading node->kpfn,
542          * but on Alpha we need to be more careful.
543          */
544         smp_read_barrier_depends();
545         if (ACCESS_ONCE(page->mapping) != expected_mapping)
546                 goto stale;
547
548         /*
549          * We cannot do anything with the page while its refcount is 0.
550          * Usually 0 means free, or tail of a higher-order page: in which
551          * case this node is no longer referenced, and should be freed;
552          * however, it might mean that the page is under page_freeze_refs().
553          * The __remove_mapping() case is easy, again the node is now stale;
554          * but if page is swapcache in migrate_page_move_mapping(), it might
555          * still be our page, in which case it's essential to keep the node.
556          */
557         while (!get_page_unless_zero(page)) {
558                 /*
559                  * Another check for page->mapping != expected_mapping would
560                  * work here too.  We have chosen the !PageSwapCache test to
561                  * optimize the common case, when the page is or is about to
562                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
563                  * in the freeze_refs section of __remove_mapping(); but Anon
564                  * page->mapping reset to NULL later, in free_pages_prepare().
565                  */
566                 if (!PageSwapCache(page))
567                         goto stale;
568                 cpu_relax();
569         }
570
571         if (ACCESS_ONCE(page->mapping) != expected_mapping) {
572                 put_page(page);
573                 goto stale;
574         }
575
576         if (locked) {
577                 lock_page(page);
578                 if (ACCESS_ONCE(page->mapping) != expected_mapping) {
579                         unlock_page(page);
580                         put_page(page);
581                         goto stale;
582                 }
583         }
584         return page;
585
586 stale:
587         /*
588          * We come here from above when page->mapping or !PageSwapCache
589          * suggests that the node is stale; but it might be under migration.
590          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
591          * before checking whether node->kpfn has been changed.
592          */
593         smp_rmb();
594         if (ACCESS_ONCE(stable_node->kpfn) != kpfn)
595                 goto again;
596         remove_node_from_stable_tree(stable_node);
597         return NULL;
598 }
599
600 /*
601  * Removing rmap_item from stable or unstable tree.
602  * This function will clean the information from the stable/unstable tree.
603  */
604 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
605 {
606         if (rmap_item->address & STABLE_FLAG) {
607                 struct stable_node *stable_node;
608                 struct page *page;
609
610                 stable_node = rmap_item->head;
611                 page = get_ksm_page(stable_node, true);
612                 if (!page)
613                         goto out;
614
615                 hlist_del(&rmap_item->hlist);
616                 unlock_page(page);
617                 put_page(page);
618
619                 if (stable_node->hlist.first)
620                         ksm_pages_sharing--;
621                 else
622                         ksm_pages_shared--;
623
624                 put_anon_vma(rmap_item->anon_vma);
625                 rmap_item->address &= PAGE_MASK;
626
627         } else if (rmap_item->address & UNSTABLE_FLAG) {
628                 unsigned char age;
629                 /*
630                  * Usually ksmd can and must skip the rb_erase, because
631                  * root_unstable_tree was already reset to RB_ROOT.
632                  * But be careful when an mm is exiting: do the rb_erase
633                  * if this rmap_item was inserted by this scan, rather
634                  * than left over from before.
635                  */
636                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
637                 BUG_ON(age > 1);
638                 if (!age)
639                         rb_erase(&rmap_item->node,
640                                  &root_unstable_tree[NUMA(rmap_item->nid)]);
641                 ksm_pages_unshared--;
642                 rmap_item->address &= PAGE_MASK;
643         }
644 out:
645         cond_resched();         /* we're called from many long loops */
646 }
647
648 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
649                                        struct rmap_item **rmap_list)
650 {
651         while (*rmap_list) {
652                 struct rmap_item *rmap_item = *rmap_list;
653                 *rmap_list = rmap_item->rmap_list;
654                 remove_rmap_item_from_tree(rmap_item);
655                 free_rmap_item(rmap_item);
656         }
657 }
658
659 /*
660  * Though it's very tempting to unmerge rmap_items from stable tree rather
661  * than check every pte of a given vma, the locking doesn't quite work for
662  * that - an rmap_item is assigned to the stable tree after inserting ksm
663  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
664  * rmap_items from parent to child at fork time (so as not to waste time
665  * if exit comes before the next scan reaches it).
666  *
667  * Similarly, although we'd like to remove rmap_items (so updating counts
668  * and freeing memory) when unmerging an area, it's easier to leave that
669  * to the next pass of ksmd - consider, for example, how ksmd might be
670  * in cmp_and_merge_page on one of the rmap_items we would be removing.
671  */
672 static int unmerge_ksm_pages(struct vm_area_struct *vma,
673                              unsigned long start, unsigned long end)
674 {
675         unsigned long addr;
676         int err = 0;
677
678         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
679                 if (ksm_test_exit(vma->vm_mm))
680                         break;
681                 if (signal_pending(current))
682                         err = -ERESTARTSYS;
683                 else
684                         err = break_ksm(vma, addr);
685         }
686         return err;
687 }
688
689 #ifdef CONFIG_SYSFS
690 /*
691  * Only called through the sysfs control interface:
692  */
693 static int remove_stable_node(struct stable_node *stable_node)
694 {
695         struct page *page;
696         int err;
697
698         page = get_ksm_page(stable_node, true);
699         if (!page) {
700                 /*
701                  * get_ksm_page did remove_node_from_stable_tree itself.
702                  */
703                 return 0;
704         }
705
706         if (WARN_ON_ONCE(page_mapped(page)))
707                 err = -EBUSY;
708         else {
709                 /*
710                  * This page might be in a pagevec waiting to be freed,
711                  * or it might be PageSwapCache (perhaps under writeback),
712                  * or it might have been removed from swapcache a moment ago.
713                  */
714                 set_page_stable_node(page, NULL);
715                 remove_node_from_stable_tree(stable_node);
716                 err = 0;
717         }
718
719         unlock_page(page);
720         put_page(page);
721         return err;
722 }
723
724 static int remove_all_stable_nodes(void)
725 {
726         struct stable_node *stable_node;
727         struct list_head *this, *next;
728         int nid;
729         int err = 0;
730
731         for (nid = 0; nid < nr_node_ids; nid++) {
732                 while (root_stable_tree[nid].rb_node) {
733                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
734                                                 struct stable_node, node);
735                         if (remove_stable_node(stable_node)) {
736                                 err = -EBUSY;
737                                 break;  /* proceed to next nid */
738                         }
739                         cond_resched();
740                 }
741         }
742         list_for_each_safe(this, next, &migrate_nodes) {
743                 stable_node = list_entry(this, struct stable_node, list);
744                 if (remove_stable_node(stable_node))
745                         err = -EBUSY;
746                 cond_resched();
747         }
748         return err;
749 }
750
751 static int unmerge_and_remove_all_rmap_items(void)
752 {
753         struct mm_slot *mm_slot;
754         struct mm_struct *mm;
755         struct vm_area_struct *vma;
756         int err = 0;
757
758         spin_lock(&ksm_mmlist_lock);
759         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
760                                                 struct mm_slot, mm_list);
761         spin_unlock(&ksm_mmlist_lock);
762
763         for (mm_slot = ksm_scan.mm_slot;
764                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
765                 mm = mm_slot->mm;
766                 down_read(&mm->mmap_sem);
767                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
768                         if (ksm_test_exit(mm))
769                                 break;
770                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
771                                 continue;
772                         err = unmerge_ksm_pages(vma,
773                                                 vma->vm_start, vma->vm_end);
774                         if (err)
775                                 goto error;
776                 }
777
778                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
779
780                 spin_lock(&ksm_mmlist_lock);
781                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
782                                                 struct mm_slot, mm_list);
783                 if (ksm_test_exit(mm)) {
784                         hash_del(&mm_slot->link);
785                         list_del(&mm_slot->mm_list);
786                         spin_unlock(&ksm_mmlist_lock);
787
788                         free_mm_slot(mm_slot);
789                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
790                         up_read(&mm->mmap_sem);
791                         mmdrop(mm);
792                 } else {
793                         spin_unlock(&ksm_mmlist_lock);
794                         up_read(&mm->mmap_sem);
795                 }
796         }
797
798         /* Clean up stable nodes, but don't worry if some are still busy */
799         remove_all_stable_nodes();
800         ksm_scan.seqnr = 0;
801         return 0;
802
803 error:
804         up_read(&mm->mmap_sem);
805         spin_lock(&ksm_mmlist_lock);
806         ksm_scan.mm_slot = &ksm_mm_head;
807         spin_unlock(&ksm_mmlist_lock);
808         return err;
809 }
810 #endif /* CONFIG_SYSFS */
811
812 static u32 calc_checksum(struct page *page)
813 {
814         u32 checksum;
815         void *addr = kmap_atomic(page);
816         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
817         kunmap_atomic(addr);
818         return checksum;
819 }
820
821 static int memcmp_pages(struct page *page1, struct page *page2)
822 {
823         char *addr1, *addr2;
824         int ret;
825
826         addr1 = kmap_atomic(page1);
827         addr2 = kmap_atomic(page2);
828         ret = memcmp(addr1, addr2, PAGE_SIZE);
829         kunmap_atomic(addr2);
830         kunmap_atomic(addr1);
831         return ret;
832 }
833
834 static inline int pages_identical(struct page *page1, struct page *page2)
835 {
836         return !memcmp_pages(page1, page2);
837 }
838
839 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
840                               pte_t *orig_pte)
841 {
842         struct mm_struct *mm = vma->vm_mm;
843         unsigned long addr;
844         pte_t *ptep;
845         spinlock_t *ptl;
846         int swapped;
847         int err = -EFAULT;
848         unsigned long mmun_start;       /* For mmu_notifiers */
849         unsigned long mmun_end;         /* For mmu_notifiers */
850
851         addr = page_address_in_vma(page, vma);
852         if (addr == -EFAULT)
853                 goto out;
854
855         BUG_ON(PageTransCompound(page));
856
857         mmun_start = addr;
858         mmun_end   = addr + PAGE_SIZE;
859         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
860
861         ptep = page_check_address(page, mm, addr, &ptl, 0);
862         if (!ptep)
863                 goto out_mn;
864
865         if (pte_write(*ptep) || pte_dirty(*ptep)) {
866                 pte_t entry;
867
868                 swapped = PageSwapCache(page);
869                 flush_cache_page(vma, addr, page_to_pfn(page));
870                 /*
871                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
872                  * take any lock, therefore the check that we are going to make
873                  * with the pagecount against the mapcount is racey and
874                  * O_DIRECT can happen right after the check.
875                  * So we clear the pte and flush the tlb before the check
876                  * this assure us that no O_DIRECT can happen after the check
877                  * or in the middle of the check.
878                  */
879                 entry = ptep_clear_flush(vma, addr, ptep);
880                 /*
881                  * Check that no O_DIRECT or similar I/O is in progress on the
882                  * page
883                  */
884                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
885                         set_pte_at(mm, addr, ptep, entry);
886                         goto out_unlock;
887                 }
888                 if (pte_dirty(entry))
889                         set_page_dirty(page);
890                 entry = pte_mkclean(pte_wrprotect(entry));
891                 set_pte_at_notify(mm, addr, ptep, entry);
892         }
893         *orig_pte = *ptep;
894         err = 0;
895
896 out_unlock:
897         pte_unmap_unlock(ptep, ptl);
898 out_mn:
899         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
900 out:
901         return err;
902 }
903
904 /**
905  * replace_page - replace page in vma by new ksm page
906  * @vma:      vma that holds the pte pointing to page
907  * @page:     the page we are replacing by kpage
908  * @kpage:    the ksm page we replace page by
909  * @orig_pte: the original value of the pte
910  *
911  * Returns 0 on success, -EFAULT on failure.
912  */
913 static int replace_page(struct vm_area_struct *vma, struct page *page,
914                         struct page *kpage, pte_t orig_pte)
915 {
916         struct mm_struct *mm = vma->vm_mm;
917         pmd_t *pmd;
918         pte_t *ptep;
919         spinlock_t *ptl;
920         unsigned long addr;
921         int err = -EFAULT;
922         unsigned long mmun_start;       /* For mmu_notifiers */
923         unsigned long mmun_end;         /* For mmu_notifiers */
924
925         addr = page_address_in_vma(page, vma);
926         if (addr == -EFAULT)
927                 goto out;
928
929         pmd = mm_find_pmd(mm, addr);
930         if (!pmd)
931                 goto out;
932         BUG_ON(pmd_trans_huge(*pmd));
933
934         mmun_start = addr;
935         mmun_end   = addr + PAGE_SIZE;
936         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
937
938         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
939         if (!pte_same(*ptep, orig_pte)) {
940                 pte_unmap_unlock(ptep, ptl);
941                 goto out_mn;
942         }
943
944         get_page(kpage);
945         page_add_anon_rmap(kpage, vma, addr);
946
947         flush_cache_page(vma, addr, pte_pfn(*ptep));
948         ptep_clear_flush(vma, addr, ptep);
949         set_pte_at_notify(mm, addr, ptep, mk_pte(kpage, vma->vm_page_prot));
950
951         page_remove_rmap(page);
952         if (!page_mapped(page))
953                 try_to_free_swap(page);
954         put_page(page);
955
956         pte_unmap_unlock(ptep, ptl);
957         err = 0;
958 out_mn:
959         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
960 out:
961         return err;
962 }
963
964 static int page_trans_compound_anon_split(struct page *page)
965 {
966         int ret = 0;
967         struct page *transhuge_head = page_trans_compound_anon(page);
968         if (transhuge_head) {
969                 /* Get the reference on the head to split it. */
970                 if (get_page_unless_zero(transhuge_head)) {
971                         /*
972                          * Recheck we got the reference while the head
973                          * was still anonymous.
974                          */
975                         if (PageAnon(transhuge_head))
976                                 ret = split_huge_page(transhuge_head);
977                         else
978                                 /*
979                                  * Retry later if split_huge_page run
980                                  * from under us.
981                                  */
982                                 ret = 1;
983                         put_page(transhuge_head);
984                 } else
985                         /* Retry later if split_huge_page run from under us. */
986                         ret = 1;
987         }
988         return ret;
989 }
990
991 /*
992  * try_to_merge_one_page - take two pages and merge them into one
993  * @vma: the vma that holds the pte pointing to page
994  * @page: the PageAnon page that we want to replace with kpage
995  * @kpage: the PageKsm page that we want to map instead of page,
996  *         or NULL the first time when we want to use page as kpage.
997  *
998  * This function returns 0 if the pages were merged, -EFAULT otherwise.
999  */
1000 static int try_to_merge_one_page(struct vm_area_struct *vma,
1001                                  struct page *page, struct page *kpage)
1002 {
1003         pte_t orig_pte = __pte(0);
1004         int err = -EFAULT;
1005
1006         if (page == kpage)                      /* ksm page forked */
1007                 return 0;
1008
1009         if (!(vma->vm_flags & VM_MERGEABLE))
1010                 goto out;
1011         if (PageTransCompound(page) && page_trans_compound_anon_split(page))
1012                 goto out;
1013         BUG_ON(PageTransCompound(page));
1014         if (!PageAnon(page))
1015                 goto out;
1016
1017         /*
1018          * We need the page lock to read a stable PageSwapCache in
1019          * write_protect_page().  We use trylock_page() instead of
1020          * lock_page() because we don't want to wait here - we
1021          * prefer to continue scanning and merging different pages,
1022          * then come back to this page when it is unlocked.
1023          */
1024         if (!trylock_page(page))
1025                 goto out;
1026         /*
1027          * If this anonymous page is mapped only here, its pte may need
1028          * to be write-protected.  If it's mapped elsewhere, all of its
1029          * ptes are necessarily already write-protected.  But in either
1030          * case, we need to lock and check page_count is not raised.
1031          */
1032         if (write_protect_page(vma, page, &orig_pte) == 0) {
1033                 if (!kpage) {
1034                         /*
1035                          * While we hold page lock, upgrade page from
1036                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1037                          * stable_tree_insert() will update stable_node.
1038                          */
1039                         set_page_stable_node(page, NULL);
1040                         mark_page_accessed(page);
1041                         err = 0;
1042                 } else if (pages_identical(page, kpage))
1043                         err = replace_page(vma, page, kpage, orig_pte);
1044         }
1045
1046         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1047                 munlock_vma_page(page);
1048                 if (!PageMlocked(kpage)) {
1049                         unlock_page(page);
1050                         lock_page(kpage);
1051                         mlock_vma_page(kpage);
1052                         page = kpage;           /* for final unlock */
1053                 }
1054         }
1055
1056         unlock_page(page);
1057 out:
1058         return err;
1059 }
1060
1061 /*
1062  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1063  * but no new kernel page is allocated: kpage must already be a ksm page.
1064  *
1065  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1066  */
1067 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1068                                       struct page *page, struct page *kpage)
1069 {
1070         struct mm_struct *mm = rmap_item->mm;
1071         struct vm_area_struct *vma;
1072         int err = -EFAULT;
1073
1074         down_read(&mm->mmap_sem);
1075         if (ksm_test_exit(mm))
1076                 goto out;
1077         vma = find_vma(mm, rmap_item->address);
1078         if (!vma || vma->vm_start > rmap_item->address)
1079                 goto out;
1080
1081         err = try_to_merge_one_page(vma, page, kpage);
1082         if (err)
1083                 goto out;
1084
1085         /* Must get reference to anon_vma while still holding mmap_sem */
1086         rmap_item->anon_vma = vma->anon_vma;
1087         get_anon_vma(vma->anon_vma);
1088 out:
1089         up_read(&mm->mmap_sem);
1090         return err;
1091 }
1092
1093 /*
1094  * try_to_merge_two_pages - take two identical pages and prepare them
1095  * to be merged into one page.
1096  *
1097  * This function returns the kpage if we successfully merged two identical
1098  * pages into one ksm page, NULL otherwise.
1099  *
1100  * Note that this function upgrades page to ksm page: if one of the pages
1101  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1102  */
1103 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1104                                            struct page *page,
1105                                            struct rmap_item *tree_rmap_item,
1106                                            struct page *tree_page)
1107 {
1108         int err;
1109
1110         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1111         if (!err) {
1112                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1113                                                         tree_page, page);
1114                 /*
1115                  * If that fails, we have a ksm page with only one pte
1116                  * pointing to it: so break it.
1117                  */
1118                 if (err)
1119                         break_cow(rmap_item);
1120         }
1121         return err ? NULL : page;
1122 }
1123
1124 /*
1125  * stable_tree_search - search for page inside the stable tree
1126  *
1127  * This function checks if there is a page inside the stable tree
1128  * with identical content to the page that we are scanning right now.
1129  *
1130  * This function returns the stable tree node of identical content if found,
1131  * NULL otherwise.
1132  */
1133 static struct page *stable_tree_search(struct page *page)
1134 {
1135         int nid;
1136         struct rb_node **new;
1137         struct rb_node *parent;
1138         struct stable_node *stable_node;
1139         struct stable_node *page_node;
1140
1141         page_node = page_stable_node(page);
1142         if (page_node && page_node->head != &migrate_nodes) {
1143                 /* ksm page forked */
1144                 get_page(page);
1145                 return page;
1146         }
1147
1148         nid = get_kpfn_nid(page_to_pfn(page));
1149 again:
1150         new = &root_stable_tree[nid].rb_node;
1151         parent = NULL;
1152
1153         while (*new) {
1154                 struct page *tree_page;
1155                 int ret;
1156
1157                 cond_resched();
1158                 stable_node = rb_entry(*new, struct stable_node, node);
1159                 tree_page = get_ksm_page(stable_node, false);
1160                 if (!tree_page)
1161                         return NULL;
1162
1163                 ret = memcmp_pages(page, tree_page);
1164                 put_page(tree_page);
1165
1166                 parent = *new;
1167                 if (ret < 0)
1168                         new = &parent->rb_left;
1169                 else if (ret > 0)
1170                         new = &parent->rb_right;
1171                 else {
1172                         /*
1173                          * Lock and unlock the stable_node's page (which
1174                          * might already have been migrated) so that page
1175                          * migration is sure to notice its raised count.
1176                          * It would be more elegant to return stable_node
1177                          * than kpage, but that involves more changes.
1178                          */
1179                         tree_page = get_ksm_page(stable_node, true);
1180                         if (tree_page) {
1181                                 unlock_page(tree_page);
1182                                 if (get_kpfn_nid(stable_node->kpfn) !=
1183                                                 NUMA(stable_node->nid)) {
1184                                         put_page(tree_page);
1185                                         goto replace;
1186                                 }
1187                                 return tree_page;
1188                         }
1189                         /*
1190                          * There is now a place for page_node, but the tree may
1191                          * have been rebalanced, so re-evaluate parent and new.
1192                          */
1193                         if (page_node)
1194                                 goto again;
1195                         return NULL;
1196                 }
1197         }
1198
1199         if (!page_node)
1200                 return NULL;
1201
1202         list_del(&page_node->list);
1203         DO_NUMA(page_node->nid = nid);
1204         rb_link_node(&page_node->node, parent, new);
1205         rb_insert_color(&page_node->node, &root_stable_tree[nid]);
1206         get_page(page);
1207         return page;
1208
1209 replace:
1210         if (page_node) {
1211                 list_del(&page_node->list);
1212                 DO_NUMA(page_node->nid = nid);
1213                 rb_replace_node(&stable_node->node,
1214                                 &page_node->node, &root_stable_tree[nid]);
1215                 get_page(page);
1216         } else {
1217                 rb_erase(&stable_node->node, &root_stable_tree[nid]);
1218                 page = NULL;
1219         }
1220         stable_node->head = &migrate_nodes;
1221         list_add(&stable_node->list, stable_node->head);
1222         return page;
1223 }
1224
1225 /*
1226  * stable_tree_insert - insert stable tree node pointing to new ksm page
1227  * into the stable tree.
1228  *
1229  * This function returns the stable tree node just allocated on success,
1230  * NULL otherwise.
1231  */
1232 static struct stable_node *stable_tree_insert(struct page *kpage)
1233 {
1234         int nid;
1235         unsigned long kpfn;
1236         struct rb_node **new;
1237         struct rb_node *parent = NULL;
1238         struct stable_node *stable_node;
1239
1240         kpfn = page_to_pfn(kpage);
1241         nid = get_kpfn_nid(kpfn);
1242         new = &root_stable_tree[nid].rb_node;
1243
1244         while (*new) {
1245                 struct page *tree_page;
1246                 int ret;
1247
1248                 cond_resched();
1249                 stable_node = rb_entry(*new, struct stable_node, node);
1250                 tree_page = get_ksm_page(stable_node, false);
1251                 if (!tree_page)
1252                         return NULL;
1253
1254                 ret = memcmp_pages(kpage, tree_page);
1255                 put_page(tree_page);
1256
1257                 parent = *new;
1258                 if (ret < 0)
1259                         new = &parent->rb_left;
1260                 else if (ret > 0)
1261                         new = &parent->rb_right;
1262                 else {
1263                         /*
1264                          * It is not a bug that stable_tree_search() didn't
1265                          * find this node: because at that time our page was
1266                          * not yet write-protected, so may have changed since.
1267                          */
1268                         return NULL;
1269                 }
1270         }
1271
1272         stable_node = alloc_stable_node();
1273         if (!stable_node)
1274                 return NULL;
1275
1276         INIT_HLIST_HEAD(&stable_node->hlist);
1277         stable_node->kpfn = kpfn;
1278         set_page_stable_node(kpage, stable_node);
1279         DO_NUMA(stable_node->nid = nid);
1280         rb_link_node(&stable_node->node, parent, new);
1281         rb_insert_color(&stable_node->node, &root_stable_tree[nid]);
1282
1283         return stable_node;
1284 }
1285
1286 /*
1287  * unstable_tree_search_insert - search for identical page,
1288  * else insert rmap_item into the unstable tree.
1289  *
1290  * This function searches for a page in the unstable tree identical to the
1291  * page currently being scanned; and if no identical page is found in the
1292  * tree, we insert rmap_item as a new object into the unstable tree.
1293  *
1294  * This function returns pointer to rmap_item found to be identical
1295  * to the currently scanned page, NULL otherwise.
1296  *
1297  * This function does both searching and inserting, because they share
1298  * the same walking algorithm in an rbtree.
1299  */
1300 static
1301 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1302                                               struct page *page,
1303                                               struct page **tree_pagep)
1304 {
1305         struct rb_node **new;
1306         struct rb_root *root;
1307         struct rb_node *parent = NULL;
1308         int nid;
1309
1310         nid = get_kpfn_nid(page_to_pfn(page));
1311         root = &root_unstable_tree[nid];
1312         new = &root->rb_node;
1313
1314         while (*new) {
1315                 struct rmap_item *tree_rmap_item;
1316                 struct page *tree_page;
1317                 int ret;
1318
1319                 cond_resched();
1320                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1321                 tree_page = get_mergeable_page(tree_rmap_item);
1322                 if (IS_ERR_OR_NULL(tree_page))
1323                         return NULL;
1324
1325                 /*
1326                  * Don't substitute a ksm page for a forked page.
1327                  */
1328                 if (page == tree_page) {
1329                         put_page(tree_page);
1330                         return NULL;
1331                 }
1332
1333                 /*
1334                  * If tree_page has been migrated to another NUMA node, it
1335                  * will be flushed out and put into the right unstable tree
1336                  * next time: only merge with it if merge_across_nodes.
1337                  */
1338                 if (!ksm_merge_across_nodes && page_to_nid(tree_page) != nid) {
1339                         put_page(tree_page);
1340                         return NULL;
1341                 }
1342
1343                 ret = memcmp_pages(page, tree_page);
1344
1345                 parent = *new;
1346                 if (ret < 0) {
1347                         put_page(tree_page);
1348                         new = &parent->rb_left;
1349                 } else if (ret > 0) {
1350                         put_page(tree_page);
1351                         new = &parent->rb_right;
1352                 } else {
1353                         *tree_pagep = tree_page;
1354                         return tree_rmap_item;
1355                 }
1356         }
1357
1358         rmap_item->address |= UNSTABLE_FLAG;
1359         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1360         DO_NUMA(rmap_item->nid = nid);
1361         rb_link_node(&rmap_item->node, parent, new);
1362         rb_insert_color(&rmap_item->node, root);
1363
1364         ksm_pages_unshared++;
1365         return NULL;
1366 }
1367
1368 /*
1369  * stable_tree_append - add another rmap_item to the linked list of
1370  * rmap_items hanging off a given node of the stable tree, all sharing
1371  * the same ksm page.
1372  */
1373 static void stable_tree_append(struct rmap_item *rmap_item,
1374                                struct stable_node *stable_node)
1375 {
1376         rmap_item->head = stable_node;
1377         rmap_item->address |= STABLE_FLAG;
1378         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
1379
1380         if (rmap_item->hlist.next)
1381                 ksm_pages_sharing++;
1382         else
1383                 ksm_pages_shared++;
1384 }
1385
1386 /*
1387  * cmp_and_merge_page - first see if page can be merged into the stable tree;
1388  * if not, compare checksum to previous and if it's the same, see if page can
1389  * be inserted into the unstable tree, or merged with a page already there and
1390  * both transferred to the stable tree.
1391  *
1392  * @page: the page that we are searching identical page to.
1393  * @rmap_item: the reverse mapping into the virtual address of this page
1394  */
1395 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
1396 {
1397         struct rmap_item *tree_rmap_item;
1398         struct page *tree_page = NULL;
1399         struct stable_node *stable_node;
1400         struct page *kpage;
1401         unsigned int checksum;
1402         int err;
1403
1404         stable_node = page_stable_node(page);
1405         if (stable_node) {
1406                 if (stable_node->head != &migrate_nodes &&
1407                     get_kpfn_nid(stable_node->kpfn) != NUMA(stable_node->nid)) {
1408                         rb_erase(&stable_node->node,
1409                                  &root_stable_tree[NUMA(stable_node->nid)]);
1410                         stable_node->head = &migrate_nodes;
1411                         list_add(&stable_node->list, stable_node->head);
1412                 }
1413                 if (stable_node->head != &migrate_nodes &&
1414                     rmap_item->head == stable_node)
1415                         return;
1416         }
1417
1418         /* We first start with searching the page inside the stable tree */
1419         kpage = stable_tree_search(page);
1420         if (kpage == page && rmap_item->head == stable_node) {
1421                 put_page(kpage);
1422                 return;
1423         }
1424
1425         remove_rmap_item_from_tree(rmap_item);
1426
1427         if (kpage) {
1428                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
1429                 if (!err) {
1430                         /*
1431                          * The page was successfully merged:
1432                          * add its rmap_item to the stable tree.
1433                          */
1434                         lock_page(kpage);
1435                         stable_tree_append(rmap_item, page_stable_node(kpage));
1436                         unlock_page(kpage);
1437                 }
1438                 put_page(kpage);
1439                 return;
1440         }
1441
1442         /*
1443          * If the hash value of the page has changed from the last time
1444          * we calculated it, this page is changing frequently: therefore we
1445          * don't want to insert it in the unstable tree, and we don't want
1446          * to waste our time searching for something identical to it there.
1447          */
1448         checksum = calc_checksum(page);
1449         if (rmap_item->oldchecksum != checksum) {
1450                 rmap_item->oldchecksum = checksum;
1451                 return;
1452         }
1453
1454         tree_rmap_item =
1455                 unstable_tree_search_insert(rmap_item, page, &tree_page);
1456         if (tree_rmap_item) {
1457                 kpage = try_to_merge_two_pages(rmap_item, page,
1458                                                 tree_rmap_item, tree_page);
1459                 put_page(tree_page);
1460                 /*
1461                  * As soon as we merge this page, we want to remove the
1462                  * rmap_item of the page we have merged with from the unstable
1463                  * tree, and insert it instead as new node in the stable tree.
1464                  */
1465                 if (kpage) {
1466                         remove_rmap_item_from_tree(tree_rmap_item);
1467
1468                         lock_page(kpage);
1469                         stable_node = stable_tree_insert(kpage);
1470                         if (stable_node) {
1471                                 stable_tree_append(tree_rmap_item, stable_node);
1472                                 stable_tree_append(rmap_item, stable_node);
1473                         }
1474                         unlock_page(kpage);
1475
1476                         /*
1477                          * If we fail to insert the page into the stable tree,
1478                          * we will have 2 virtual addresses that are pointing
1479                          * to a ksm page left outside the stable tree,
1480                          * in which case we need to break_cow on both.
1481                          */
1482                         if (!stable_node) {
1483                                 break_cow(tree_rmap_item);
1484                                 break_cow(rmap_item);
1485                         }
1486                 }
1487         }
1488 }
1489
1490 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
1491                                             struct rmap_item **rmap_list,
1492                                             unsigned long addr)
1493 {
1494         struct rmap_item *rmap_item;
1495
1496         while (*rmap_list) {
1497                 rmap_item = *rmap_list;
1498                 if ((rmap_item->address & PAGE_MASK) == addr)
1499                         return rmap_item;
1500                 if (rmap_item->address > addr)
1501                         break;
1502                 *rmap_list = rmap_item->rmap_list;
1503                 remove_rmap_item_from_tree(rmap_item);
1504                 free_rmap_item(rmap_item);
1505         }
1506
1507         rmap_item = alloc_rmap_item();
1508         if (rmap_item) {
1509                 /* It has already been zeroed */
1510                 rmap_item->mm = mm_slot->mm;
1511                 rmap_item->address = addr;
1512                 rmap_item->rmap_list = *rmap_list;
1513                 *rmap_list = rmap_item;
1514         }
1515         return rmap_item;
1516 }
1517
1518 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
1519 {
1520         struct mm_struct *mm;
1521         struct mm_slot *slot;
1522         struct vm_area_struct *vma;
1523         struct rmap_item *rmap_item;
1524         int nid;
1525
1526         if (list_empty(&ksm_mm_head.mm_list))
1527                 return NULL;
1528
1529         slot = ksm_scan.mm_slot;
1530         if (slot == &ksm_mm_head) {
1531                 /*
1532                  * A number of pages can hang around indefinitely on per-cpu
1533                  * pagevecs, raised page count preventing write_protect_page
1534                  * from merging them.  Though it doesn't really matter much,
1535                  * it is puzzling to see some stuck in pages_volatile until
1536                  * other activity jostles them out, and they also prevented
1537                  * LTP's KSM test from succeeding deterministically; so drain
1538                  * them here (here rather than on entry to ksm_do_scan(),
1539                  * so we don't IPI too often when pages_to_scan is set low).
1540                  */
1541                 lru_add_drain_all();
1542
1543                 /*
1544                  * Whereas stale stable_nodes on the stable_tree itself
1545                  * get pruned in the regular course of stable_tree_search(),
1546                  * those moved out to the migrate_nodes list can accumulate:
1547                  * so prune them once before each full scan.
1548                  */
1549                 if (!ksm_merge_across_nodes) {
1550                         struct stable_node *stable_node;
1551                         struct list_head *this, *next;
1552                         struct page *page;
1553
1554                         list_for_each_safe(this, next, &migrate_nodes) {
1555                                 stable_node = list_entry(this,
1556                                                 struct stable_node, list);
1557                                 page = get_ksm_page(stable_node, false);
1558                                 if (page)
1559                                         put_page(page);
1560                                 cond_resched();
1561                         }
1562                 }
1563
1564                 for (nid = 0; nid < nr_node_ids; nid++)
1565                         root_unstable_tree[nid] = RB_ROOT;
1566
1567                 spin_lock(&ksm_mmlist_lock);
1568                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
1569                 ksm_scan.mm_slot = slot;
1570                 spin_unlock(&ksm_mmlist_lock);
1571                 /*
1572                  * Although we tested list_empty() above, a racing __ksm_exit
1573                  * of the last mm on the list may have removed it since then.
1574                  */
1575                 if (slot == &ksm_mm_head)
1576                         return NULL;
1577 next_mm:
1578                 ksm_scan.address = 0;
1579                 ksm_scan.rmap_list = &slot->rmap_list;
1580         }
1581
1582         mm = slot->mm;
1583         down_read(&mm->mmap_sem);
1584         if (ksm_test_exit(mm))
1585                 vma = NULL;
1586         else
1587                 vma = find_vma(mm, ksm_scan.address);
1588
1589         for (; vma; vma = vma->vm_next) {
1590                 if (!(vma->vm_flags & VM_MERGEABLE))
1591                         continue;
1592                 if (ksm_scan.address < vma->vm_start)
1593                         ksm_scan.address = vma->vm_start;
1594                 if (!vma->anon_vma)
1595                         ksm_scan.address = vma->vm_end;
1596
1597                 while (ksm_scan.address < vma->vm_end) {
1598                         if (ksm_test_exit(mm))
1599                                 break;
1600                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
1601                         if (IS_ERR_OR_NULL(*page)) {
1602                                 ksm_scan.address += PAGE_SIZE;
1603                                 cond_resched();
1604                                 continue;
1605                         }
1606                         if (PageAnon(*page) ||
1607                             page_trans_compound_anon(*page)) {
1608                                 flush_anon_page(vma, *page, ksm_scan.address);
1609                                 flush_dcache_page(*page);
1610                                 rmap_item = get_next_rmap_item(slot,
1611                                         ksm_scan.rmap_list, ksm_scan.address);
1612                                 if (rmap_item) {
1613                                         ksm_scan.rmap_list =
1614                                                         &rmap_item->rmap_list;
1615                                         ksm_scan.address += PAGE_SIZE;
1616                                 } else
1617                                         put_page(*page);
1618                                 up_read(&mm->mmap_sem);
1619                                 return rmap_item;
1620                         }
1621                         put_page(*page);
1622                         ksm_scan.address += PAGE_SIZE;
1623                         cond_resched();
1624                 }
1625         }
1626
1627         if (ksm_test_exit(mm)) {
1628                 ksm_scan.address = 0;
1629                 ksm_scan.rmap_list = &slot->rmap_list;
1630         }
1631         /*
1632          * Nuke all the rmap_items that are above this current rmap:
1633          * because there were no VM_MERGEABLE vmas with such addresses.
1634          */
1635         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
1636
1637         spin_lock(&ksm_mmlist_lock);
1638         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
1639                                                 struct mm_slot, mm_list);
1640         if (ksm_scan.address == 0) {
1641                 /*
1642                  * We've completed a full scan of all vmas, holding mmap_sem
1643                  * throughout, and found no VM_MERGEABLE: so do the same as
1644                  * __ksm_exit does to remove this mm from all our lists now.
1645                  * This applies either when cleaning up after __ksm_exit
1646                  * (but beware: we can reach here even before __ksm_exit),
1647                  * or when all VM_MERGEABLE areas have been unmapped (and
1648                  * mmap_sem then protects against race with MADV_MERGEABLE).
1649                  */
1650                 hash_del(&slot->link);
1651                 list_del(&slot->mm_list);
1652                 spin_unlock(&ksm_mmlist_lock);
1653
1654                 free_mm_slot(slot);
1655                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1656                 up_read(&mm->mmap_sem);
1657                 mmdrop(mm);
1658         } else {
1659                 spin_unlock(&ksm_mmlist_lock);
1660                 up_read(&mm->mmap_sem);
1661         }
1662
1663         /* Repeat until we've completed scanning the whole list */
1664         slot = ksm_scan.mm_slot;
1665         if (slot != &ksm_mm_head)
1666                 goto next_mm;
1667
1668         ksm_scan.seqnr++;
1669         return NULL;
1670 }
1671
1672 /**
1673  * ksm_do_scan  - the ksm scanner main worker function.
1674  * @scan_npages - number of pages we want to scan before we return.
1675  */
1676 static void ksm_do_scan(unsigned int scan_npages)
1677 {
1678         struct rmap_item *rmap_item;
1679         struct page *uninitialized_var(page);
1680
1681         while (scan_npages-- && likely(!freezing(current))) {
1682                 cond_resched();
1683                 rmap_item = scan_get_next_rmap_item(&page);
1684                 if (!rmap_item)
1685                         return;
1686                 cmp_and_merge_page(page, rmap_item);
1687                 put_page(page);
1688         }
1689 }
1690
1691 static int ksmd_should_run(void)
1692 {
1693         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
1694 }
1695
1696 static int ksm_scan_thread(void *nothing)
1697 {
1698         set_freezable();
1699         set_user_nice(current, 5);
1700
1701         while (!kthread_should_stop()) {
1702                 mutex_lock(&ksm_thread_mutex);
1703                 if (ksmd_should_run())
1704                         ksm_do_scan(ksm_thread_pages_to_scan);
1705                 mutex_unlock(&ksm_thread_mutex);
1706
1707                 try_to_freeze();
1708
1709                 if (ksmd_should_run()) {
1710                         schedule_timeout_interruptible(
1711                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
1712                 } else {
1713                         wait_event_freezable(ksm_thread_wait,
1714                                 ksmd_should_run() || kthread_should_stop());
1715                 }
1716         }
1717         return 0;
1718 }
1719
1720 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
1721                 unsigned long end, int advice, unsigned long *vm_flags)
1722 {
1723         struct mm_struct *mm = vma->vm_mm;
1724         int err;
1725
1726         switch (advice) {
1727         case MADV_MERGEABLE:
1728                 /*
1729                  * Be somewhat over-protective for now!
1730                  */
1731                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
1732                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
1733                                  VM_HUGETLB | VM_NONLINEAR | VM_MIXEDMAP))
1734                         return 0;               /* just ignore the advice */
1735
1736 #ifdef VM_SAO
1737                 if (*vm_flags & VM_SAO)
1738                         return 0;
1739 #endif
1740
1741                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
1742                         err = __ksm_enter(mm);
1743                         if (err)
1744                                 return err;
1745                 }
1746
1747                 *vm_flags |= VM_MERGEABLE;
1748                 break;
1749
1750         case MADV_UNMERGEABLE:
1751                 if (!(*vm_flags & VM_MERGEABLE))
1752                         return 0;               /* just ignore the advice */
1753
1754                 if (vma->anon_vma) {
1755                         err = unmerge_ksm_pages(vma, start, end);
1756                         if (err)
1757                                 return err;
1758                 }
1759
1760                 *vm_flags &= ~VM_MERGEABLE;
1761                 break;
1762         }
1763
1764         return 0;
1765 }
1766
1767 int __ksm_enter(struct mm_struct *mm)
1768 {
1769         struct mm_slot *mm_slot;
1770         int needs_wakeup;
1771
1772         mm_slot = alloc_mm_slot();
1773         if (!mm_slot)
1774                 return -ENOMEM;
1775
1776         /* Check ksm_run too?  Would need tighter locking */
1777         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
1778
1779         spin_lock(&ksm_mmlist_lock);
1780         insert_to_mm_slots_hash(mm, mm_slot);
1781         /*
1782          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
1783          * insert just behind the scanning cursor, to let the area settle
1784          * down a little; when fork is followed by immediate exec, we don't
1785          * want ksmd to waste time setting up and tearing down an rmap_list.
1786          *
1787          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
1788          * scanning cursor, otherwise KSM pages in newly forked mms will be
1789          * missed: then we might as well insert at the end of the list.
1790          */
1791         if (ksm_run & KSM_RUN_UNMERGE)
1792                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
1793         else
1794                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
1795         spin_unlock(&ksm_mmlist_lock);
1796
1797         set_bit(MMF_VM_MERGEABLE, &mm->flags);
1798         atomic_inc(&mm->mm_count);
1799
1800         if (needs_wakeup)
1801                 wake_up_interruptible(&ksm_thread_wait);
1802
1803         return 0;
1804 }
1805
1806 void __ksm_exit(struct mm_struct *mm)
1807 {
1808         struct mm_slot *mm_slot;
1809         int easy_to_free = 0;
1810
1811         /*
1812          * This process is exiting: if it's straightforward (as is the
1813          * case when ksmd was never running), free mm_slot immediately.
1814          * But if it's at the cursor or has rmap_items linked to it, use
1815          * mmap_sem to synchronize with any break_cows before pagetables
1816          * are freed, and leave the mm_slot on the list for ksmd to free.
1817          * Beware: ksm may already have noticed it exiting and freed the slot.
1818          */
1819
1820         spin_lock(&ksm_mmlist_lock);
1821         mm_slot = get_mm_slot(mm);
1822         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
1823                 if (!mm_slot->rmap_list) {
1824                         hash_del(&mm_slot->link);
1825                         list_del(&mm_slot->mm_list);
1826                         easy_to_free = 1;
1827                 } else {
1828                         list_move(&mm_slot->mm_list,
1829                                   &ksm_scan.mm_slot->mm_list);
1830                 }
1831         }
1832         spin_unlock(&ksm_mmlist_lock);
1833
1834         if (easy_to_free) {
1835                 free_mm_slot(mm_slot);
1836                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1837                 mmdrop(mm);
1838         } else if (mm_slot) {
1839                 down_write(&mm->mmap_sem);
1840                 up_write(&mm->mmap_sem);
1841         }
1842 }
1843
1844 struct page *ksm_might_need_to_copy(struct page *page,
1845                         struct vm_area_struct *vma, unsigned long address)
1846 {
1847         struct anon_vma *anon_vma = page_anon_vma(page);
1848         struct page *new_page;
1849
1850         if (PageKsm(page)) {
1851                 if (page_stable_node(page) &&
1852                     !(ksm_run & KSM_RUN_UNMERGE))
1853                         return page;    /* no need to copy it */
1854         } else if (!anon_vma) {
1855                 return page;            /* no need to copy it */
1856         } else if (anon_vma->root == vma->anon_vma->root &&
1857                  page->index == linear_page_index(vma, address)) {
1858                 return page;            /* still no need to copy it */
1859         }
1860         if (!PageUptodate(page))
1861                 return page;            /* let do_swap_page report the error */
1862
1863         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1864         if (new_page) {
1865                 copy_user_highpage(new_page, page, address, vma);
1866
1867                 SetPageDirty(new_page);
1868                 __SetPageUptodate(new_page);
1869                 __set_page_locked(new_page);
1870         }
1871
1872         return new_page;
1873 }
1874
1875 int page_referenced_ksm(struct page *page, struct mem_cgroup *memcg,
1876                         unsigned long *vm_flags)
1877 {
1878         struct stable_node *stable_node;
1879         struct rmap_item *rmap_item;
1880         struct hlist_node *hlist;
1881         unsigned int mapcount = page_mapcount(page);
1882         int referenced = 0;
1883         int search_new_forks = 0;
1884
1885         VM_BUG_ON(!PageKsm(page));
1886         VM_BUG_ON(!PageLocked(page));
1887
1888         stable_node = page_stable_node(page);
1889         if (!stable_node)
1890                 return 0;
1891 again:
1892         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1893                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1894                 struct anon_vma_chain *vmac;
1895                 struct vm_area_struct *vma;
1896
1897                 anon_vma_lock_read(anon_vma);
1898                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1899                                                0, ULONG_MAX) {
1900                         vma = vmac->vma;
1901                         if (rmap_item->address < vma->vm_start ||
1902                             rmap_item->address >= vma->vm_end)
1903                                 continue;
1904                         /*
1905                          * Initially we examine only the vma which covers this
1906                          * rmap_item; but later, if there is still work to do,
1907                          * we examine covering vmas in other mms: in case they
1908                          * were forked from the original since ksmd passed.
1909                          */
1910                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1911                                 continue;
1912
1913                         if (memcg && !mm_match_cgroup(vma->vm_mm, memcg))
1914                                 continue;
1915
1916                         referenced += page_referenced_one(page, vma,
1917                                 rmap_item->address, &mapcount, vm_flags);
1918                         if (!search_new_forks || !mapcount)
1919                                 break;
1920                 }
1921                 anon_vma_unlock_read(anon_vma);
1922                 if (!mapcount)
1923                         goto out;
1924         }
1925         if (!search_new_forks++)
1926                 goto again;
1927 out:
1928         return referenced;
1929 }
1930
1931 int try_to_unmap_ksm(struct page *page, enum ttu_flags flags)
1932 {
1933         struct stable_node *stable_node;
1934         struct hlist_node *hlist;
1935         struct rmap_item *rmap_item;
1936         int ret = SWAP_AGAIN;
1937         int search_new_forks = 0;
1938
1939         VM_BUG_ON(!PageKsm(page));
1940         VM_BUG_ON(!PageLocked(page));
1941
1942         stable_node = page_stable_node(page);
1943         if (!stable_node)
1944                 return SWAP_FAIL;
1945 again:
1946         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
1947                 struct anon_vma *anon_vma = rmap_item->anon_vma;
1948                 struct anon_vma_chain *vmac;
1949                 struct vm_area_struct *vma;
1950
1951                 anon_vma_lock_read(anon_vma);
1952                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
1953                                                0, ULONG_MAX) {
1954                         vma = vmac->vma;
1955                         if (rmap_item->address < vma->vm_start ||
1956                             rmap_item->address >= vma->vm_end)
1957                                 continue;
1958                         /*
1959                          * Initially we examine only the vma which covers this
1960                          * rmap_item; but later, if there is still work to do,
1961                          * we examine covering vmas in other mms: in case they
1962                          * were forked from the original since ksmd passed.
1963                          */
1964                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
1965                                 continue;
1966
1967                         ret = try_to_unmap_one(page, vma,
1968                                         rmap_item->address, flags);
1969                         if (ret != SWAP_AGAIN || !page_mapped(page)) {
1970                                 anon_vma_unlock_read(anon_vma);
1971                                 goto out;
1972                         }
1973                 }
1974                 anon_vma_unlock_read(anon_vma);
1975         }
1976         if (!search_new_forks++)
1977                 goto again;
1978 out:
1979         return ret;
1980 }
1981
1982 #ifdef CONFIG_MIGRATION
1983 int rmap_walk_ksm(struct page *page, int (*rmap_one)(struct page *,
1984                   struct vm_area_struct *, unsigned long, void *), void *arg)
1985 {
1986         struct stable_node *stable_node;
1987         struct hlist_node *hlist;
1988         struct rmap_item *rmap_item;
1989         int ret = SWAP_AGAIN;
1990         int search_new_forks = 0;
1991
1992         VM_BUG_ON(!PageKsm(page));
1993         VM_BUG_ON(!PageLocked(page));
1994
1995         stable_node = page_stable_node(page);
1996         if (!stable_node)
1997                 return ret;
1998 again:
1999         hlist_for_each_entry(rmap_item, hlist, &stable_node->hlist, hlist) {
2000                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2001                 struct anon_vma_chain *vmac;
2002                 struct vm_area_struct *vma;
2003
2004                 anon_vma_lock_read(anon_vma);
2005                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2006                                                0, ULONG_MAX) {
2007                         vma = vmac->vma;
2008                         if (rmap_item->address < vma->vm_start ||
2009                             rmap_item->address >= vma->vm_end)
2010                                 continue;
2011                         /*
2012                          * Initially we examine only the vma which covers this
2013                          * rmap_item; but later, if there is still work to do,
2014                          * we examine covering vmas in other mms: in case they
2015                          * were forked from the original since ksmd passed.
2016                          */
2017                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2018                                 continue;
2019
2020                         ret = rmap_one(page, vma, rmap_item->address, arg);
2021                         if (ret != SWAP_AGAIN) {
2022                                 anon_vma_unlock_read(anon_vma);
2023                                 goto out;
2024                         }
2025                 }
2026                 anon_vma_unlock_read(anon_vma);
2027         }
2028         if (!search_new_forks++)
2029                 goto again;
2030 out:
2031         return ret;
2032 }
2033
2034 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2035 {
2036         struct stable_node *stable_node;
2037
2038         VM_BUG_ON(!PageLocked(oldpage));
2039         VM_BUG_ON(!PageLocked(newpage));
2040         VM_BUG_ON(newpage->mapping != oldpage->mapping);
2041
2042         stable_node = page_stable_node(newpage);
2043         if (stable_node) {
2044                 VM_BUG_ON(stable_node->kpfn != page_to_pfn(oldpage));
2045                 stable_node->kpfn = page_to_pfn(newpage);
2046                 /*
2047                  * newpage->mapping was set in advance; now we need smp_wmb()
2048                  * to make sure that the new stable_node->kpfn is visible
2049                  * to get_ksm_page() before it can see that oldpage->mapping
2050                  * has gone stale (or that PageSwapCache has been cleared).
2051                  */
2052                 smp_wmb();
2053                 set_page_stable_node(oldpage, NULL);
2054         }
2055 }
2056 #endif /* CONFIG_MIGRATION */
2057
2058 #ifdef CONFIG_MEMORY_HOTREMOVE
2059 static void ksm_check_stable_tree(unsigned long start_pfn,
2060                                   unsigned long end_pfn)
2061 {
2062         struct stable_node *stable_node;
2063         struct list_head *this, *next;
2064         struct rb_node *node;
2065         int nid;
2066
2067         for (nid = 0; nid < nr_node_ids; nid++) {
2068                 node = rb_first(&root_stable_tree[nid]);
2069                 while (node) {
2070                         stable_node = rb_entry(node, struct stable_node, node);
2071                         if (stable_node->kpfn >= start_pfn &&
2072                             stable_node->kpfn < end_pfn) {
2073                                 /*
2074                                  * Don't get_ksm_page, page has already gone:
2075                                  * which is why we keep kpfn instead of page*
2076                                  */
2077                                 remove_node_from_stable_tree(stable_node);
2078                                 node = rb_first(&root_stable_tree[nid]);
2079                         } else
2080                                 node = rb_next(node);
2081                         cond_resched();
2082                 }
2083         }
2084         list_for_each_safe(this, next, &migrate_nodes) {
2085                 stable_node = list_entry(this, struct stable_node, list);
2086                 if (stable_node->kpfn >= start_pfn &&
2087                     stable_node->kpfn < end_pfn)
2088                         remove_node_from_stable_tree(stable_node);
2089                 cond_resched();
2090         }
2091 }
2092
2093 static int ksm_memory_callback(struct notifier_block *self,
2094                                unsigned long action, void *arg)
2095 {
2096         struct memory_notify *mn = arg;
2097
2098         switch (action) {
2099         case MEM_GOING_OFFLINE:
2100                 /*
2101                  * Keep it very simple for now: just lock out ksmd and
2102                  * MADV_UNMERGEABLE while any memory is going offline.
2103                  * mutex_lock_nested() is necessary because lockdep was alarmed
2104                  * that here we take ksm_thread_mutex inside notifier chain
2105                  * mutex, and later take notifier chain mutex inside
2106                  * ksm_thread_mutex to unlock it.   But that's safe because both
2107                  * are inside mem_hotplug_mutex.
2108                  */
2109                 mutex_lock_nested(&ksm_thread_mutex, SINGLE_DEPTH_NESTING);
2110                 break;
2111
2112         case MEM_OFFLINE:
2113                 /*
2114                  * Most of the work is done by page migration; but there might
2115                  * be a few stable_nodes left over, still pointing to struct
2116                  * pages which have been offlined: prune those from the tree,
2117                  * otherwise get_ksm_page() might later try to access a
2118                  * non-existent struct page.
2119                  */
2120                 ksm_check_stable_tree(mn->start_pfn,
2121                                       mn->start_pfn + mn->nr_pages);
2122                 /* fallthrough */
2123
2124         case MEM_CANCEL_OFFLINE:
2125                 mutex_unlock(&ksm_thread_mutex);
2126                 break;
2127         }
2128         return NOTIFY_OK;
2129 }
2130 #endif /* CONFIG_MEMORY_HOTREMOVE */
2131
2132 #ifdef CONFIG_SYSFS
2133 /*
2134  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2135  */
2136
2137 #define KSM_ATTR_RO(_name) \
2138         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2139 #define KSM_ATTR(_name) \
2140         static struct kobj_attribute _name##_attr = \
2141                 __ATTR(_name, 0644, _name##_show, _name##_store)
2142
2143 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2144                                     struct kobj_attribute *attr, char *buf)
2145 {
2146         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2147 }
2148
2149 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2150                                      struct kobj_attribute *attr,
2151                                      const char *buf, size_t count)
2152 {
2153         unsigned long msecs;
2154         int err;
2155
2156         err = strict_strtoul(buf, 10, &msecs);
2157         if (err || msecs > UINT_MAX)
2158                 return -EINVAL;
2159
2160         ksm_thread_sleep_millisecs = msecs;
2161
2162         return count;
2163 }
2164 KSM_ATTR(sleep_millisecs);
2165
2166 static ssize_t pages_to_scan_show(struct kobject *kobj,
2167                                   struct kobj_attribute *attr, char *buf)
2168 {
2169         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2170 }
2171
2172 static ssize_t pages_to_scan_store(struct kobject *kobj,
2173                                    struct kobj_attribute *attr,
2174                                    const char *buf, size_t count)
2175 {
2176         int err;
2177         unsigned long nr_pages;
2178
2179         err = strict_strtoul(buf, 10, &nr_pages);
2180         if (err || nr_pages > UINT_MAX)
2181                 return -EINVAL;
2182
2183         ksm_thread_pages_to_scan = nr_pages;
2184
2185         return count;
2186 }
2187 KSM_ATTR(pages_to_scan);
2188
2189 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2190                         char *buf)
2191 {
2192         return sprintf(buf, "%u\n", ksm_run);
2193 }
2194
2195 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2196                          const char *buf, size_t count)
2197 {
2198         int err;
2199         unsigned long flags;
2200
2201         err = strict_strtoul(buf, 10, &flags);
2202         if (err || flags > UINT_MAX)
2203                 return -EINVAL;
2204         if (flags > KSM_RUN_UNMERGE)
2205                 return -EINVAL;
2206
2207         /*
2208          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2209          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2210          * breaking COW to free the pages_shared (but leaves mm_slots
2211          * on the list for when ksmd may be set running again).
2212          */
2213
2214         mutex_lock(&ksm_thread_mutex);
2215         if (ksm_run != flags) {
2216                 ksm_run = flags;
2217                 if (flags & KSM_RUN_UNMERGE) {
2218                         set_current_oom_origin();
2219                         err = unmerge_and_remove_all_rmap_items();
2220                         clear_current_oom_origin();
2221                         if (err) {
2222                                 ksm_run = KSM_RUN_STOP;
2223                                 count = err;
2224                         }
2225                 }
2226         }
2227         mutex_unlock(&ksm_thread_mutex);
2228
2229         if (flags & KSM_RUN_MERGE)
2230                 wake_up_interruptible(&ksm_thread_wait);
2231
2232         return count;
2233 }
2234 KSM_ATTR(run);
2235
2236 #ifdef CONFIG_NUMA
2237 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2238                                 struct kobj_attribute *attr, char *buf)
2239 {
2240         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2241 }
2242
2243 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2244                                    struct kobj_attribute *attr,
2245                                    const char *buf, size_t count)
2246 {
2247         int err;
2248         unsigned long knob;
2249
2250         err = kstrtoul(buf, 10, &knob);
2251         if (err)
2252                 return err;
2253         if (knob > 1)
2254                 return -EINVAL;
2255
2256         mutex_lock(&ksm_thread_mutex);
2257         if (ksm_merge_across_nodes != knob) {
2258                 if (ksm_pages_shared || remove_all_stable_nodes())
2259                         err = -EBUSY;
2260                 else
2261                         ksm_merge_across_nodes = knob;
2262         }
2263         mutex_unlock(&ksm_thread_mutex);
2264
2265         return err ? err : count;
2266 }
2267 KSM_ATTR(merge_across_nodes);
2268 #endif
2269
2270 static ssize_t pages_shared_show(struct kobject *kobj,
2271                                  struct kobj_attribute *attr, char *buf)
2272 {
2273         return sprintf(buf, "%lu\n", ksm_pages_shared);
2274 }
2275 KSM_ATTR_RO(pages_shared);
2276
2277 static ssize_t pages_sharing_show(struct kobject *kobj,
2278                                   struct kobj_attribute *attr, char *buf)
2279 {
2280         return sprintf(buf, "%lu\n", ksm_pages_sharing);
2281 }
2282 KSM_ATTR_RO(pages_sharing);
2283
2284 static ssize_t pages_unshared_show(struct kobject *kobj,
2285                                    struct kobj_attribute *attr, char *buf)
2286 {
2287         return sprintf(buf, "%lu\n", ksm_pages_unshared);
2288 }
2289 KSM_ATTR_RO(pages_unshared);
2290
2291 static ssize_t pages_volatile_show(struct kobject *kobj,
2292                                    struct kobj_attribute *attr, char *buf)
2293 {
2294         long ksm_pages_volatile;
2295
2296         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
2297                                 - ksm_pages_sharing - ksm_pages_unshared;
2298         /*
2299          * It was not worth any locking to calculate that statistic,
2300          * but it might therefore sometimes be negative: conceal that.
2301          */
2302         if (ksm_pages_volatile < 0)
2303                 ksm_pages_volatile = 0;
2304         return sprintf(buf, "%ld\n", ksm_pages_volatile);
2305 }
2306 KSM_ATTR_RO(pages_volatile);
2307
2308 static ssize_t full_scans_show(struct kobject *kobj,
2309                                struct kobj_attribute *attr, char *buf)
2310 {
2311         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
2312 }
2313 KSM_ATTR_RO(full_scans);
2314
2315 static struct attribute *ksm_attrs[] = {
2316         &sleep_millisecs_attr.attr,
2317         &pages_to_scan_attr.attr,
2318         &run_attr.attr,
2319         &pages_shared_attr.attr,
2320         &pages_sharing_attr.attr,
2321         &pages_unshared_attr.attr,
2322         &pages_volatile_attr.attr,
2323         &full_scans_attr.attr,
2324 #ifdef CONFIG_NUMA
2325         &merge_across_nodes_attr.attr,
2326 #endif
2327         NULL,
2328 };
2329
2330 static struct attribute_group ksm_attr_group = {
2331         .attrs = ksm_attrs,
2332         .name = "ksm",
2333 };
2334 #endif /* CONFIG_SYSFS */
2335
2336 static int __init ksm_init(void)
2337 {
2338         struct task_struct *ksm_thread;
2339         int err;
2340         int nid;
2341
2342         err = ksm_slab_init();
2343         if (err)
2344                 goto out;
2345
2346         for (nid = 0; nid < nr_node_ids; nid++)
2347                 root_stable_tree[nid] = RB_ROOT;
2348
2349         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
2350         if (IS_ERR(ksm_thread)) {
2351                 printk(KERN_ERR "ksm: creating kthread failed\n");
2352                 err = PTR_ERR(ksm_thread);
2353                 goto out_free;
2354         }
2355
2356 #ifdef CONFIG_SYSFS
2357         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
2358         if (err) {
2359                 printk(KERN_ERR "ksm: register sysfs failed\n");
2360                 kthread_stop(ksm_thread);
2361                 goto out_free;
2362         }
2363 #else
2364         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
2365
2366 #endif /* CONFIG_SYSFS */
2367
2368 #ifdef CONFIG_MEMORY_HOTREMOVE
2369         /*
2370          * Choose a high priority since the callback takes ksm_thread_mutex:
2371          * later callbacks could only be taking locks which nest within that.
2372          */
2373         hotplug_memory_notifier(ksm_memory_callback, 100);
2374 #endif
2375         return 0;
2376
2377 out_free:
2378         ksm_slab_free();
2379 out:
2380         return err;
2381 }
2382 module_init(ksm_init)