Merge branch 'resizex' (patches from Maciej)
[platform/kernel/linux-starfive.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/fs.h>
19 #include <linux/mman.h>
20 #include <linux/sched.h>
21 #include <linux/sched/mm.h>
22 #include <linux/sched/coredump.h>
23 #include <linux/rwsem.h>
24 #include <linux/pagemap.h>
25 #include <linux/rmap.h>
26 #include <linux/spinlock.h>
27 #include <linux/xxhash.h>
28 #include <linux/delay.h>
29 #include <linux/kthread.h>
30 #include <linux/wait.h>
31 #include <linux/slab.h>
32 #include <linux/rbtree.h>
33 #include <linux/memory.h>
34 #include <linux/mmu_notifier.h>
35 #include <linux/swap.h>
36 #include <linux/ksm.h>
37 #include <linux/hashtable.h>
38 #include <linux/freezer.h>
39 #include <linux/oom.h>
40 #include <linux/numa.h>
41
42 #include <asm/tlbflush.h>
43 #include "internal.h"
44
45 #ifdef CONFIG_NUMA
46 #define NUMA(x)         (x)
47 #define DO_NUMA(x)      do { (x); } while (0)
48 #else
49 #define NUMA(x)         (0)
50 #define DO_NUMA(x)      do { } while (0)
51 #endif
52
53 /**
54  * DOC: Overview
55  *
56  * A few notes about the KSM scanning process,
57  * to make it easier to understand the data structures below:
58  *
59  * In order to reduce excessive scanning, KSM sorts the memory pages by their
60  * contents into a data structure that holds pointers to the pages' locations.
61  *
62  * Since the contents of the pages may change at any moment, KSM cannot just
63  * insert the pages into a normal sorted tree and expect it to find anything.
64  * Therefore KSM uses two data structures - the stable and the unstable tree.
65  *
66  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
67  * by their contents.  Because each such page is write-protected, searching on
68  * this tree is fully assured to be working (except when pages are unmapped),
69  * and therefore this tree is called the stable tree.
70  *
71  * The stable tree node includes information required for reverse
72  * mapping from a KSM page to virtual addresses that map this page.
73  *
74  * In order to avoid large latencies of the rmap walks on KSM pages,
75  * KSM maintains two types of nodes in the stable tree:
76  *
77  * * the regular nodes that keep the reverse mapping structures in a
78  *   linked list
79  * * the "chains" that link nodes ("dups") that represent the same
80  *   write protected memory content, but each "dup" corresponds to a
81  *   different KSM page copy of that content
82  *
83  * Internally, the regular nodes, "dups" and "chains" are represented
84  * using the same struct stable_node structure.
85  *
86  * In addition to the stable tree, KSM uses a second data structure called the
87  * unstable tree: this tree holds pointers to pages which have been found to
88  * be "unchanged for a period of time".  The unstable tree sorts these pages
89  * by their contents, but since they are not write-protected, KSM cannot rely
90  * upon the unstable tree to work correctly - the unstable tree is liable to
91  * be corrupted as its contents are modified, and so it is called unstable.
92  *
93  * KSM solves this problem by several techniques:
94  *
95  * 1) The unstable tree is flushed every time KSM completes scanning all
96  *    memory areas, and then the tree is rebuilt again from the beginning.
97  * 2) KSM will only insert into the unstable tree, pages whose hash value
98  *    has not changed since the previous scan of all memory areas.
99  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
100  *    colors of the nodes and not on their contents, assuring that even when
101  *    the tree gets "corrupted" it won't get out of balance, so scanning time
102  *    remains the same (also, searching and inserting nodes in an rbtree uses
103  *    the same algorithm, so we have no overhead when we flush and rebuild).
104  * 4) KSM never flushes the stable tree, which means that even if it were to
105  *    take 10 attempts to find a page in the unstable tree, once it is found,
106  *    it is secured in the stable tree.  (When we scan a new page, we first
107  *    compare it against the stable tree, and then against the unstable tree.)
108  *
109  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
110  * stable trees and multiple unstable trees: one of each for each NUMA node.
111  */
112
113 /**
114  * struct mm_slot - ksm information per mm that is being scanned
115  * @link: link to the mm_slots hash list
116  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
117  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
118  * @mm: the mm that this information is valid for
119  */
120 struct mm_slot {
121         struct hlist_node link;
122         struct list_head mm_list;
123         struct rmap_item *rmap_list;
124         struct mm_struct *mm;
125 };
126
127 /**
128  * struct ksm_scan - cursor for scanning
129  * @mm_slot: the current mm_slot we are scanning
130  * @address: the next address inside that to be scanned
131  * @rmap_list: link to the next rmap to be scanned in the rmap_list
132  * @seqnr: count of completed full scans (needed when removing unstable node)
133  *
134  * There is only the one ksm_scan instance of this cursor structure.
135  */
136 struct ksm_scan {
137         struct mm_slot *mm_slot;
138         unsigned long address;
139         struct rmap_item **rmap_list;
140         unsigned long seqnr;
141 };
142
143 /**
144  * struct stable_node - node of the stable rbtree
145  * @node: rb node of this ksm page in the stable tree
146  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
147  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
148  * @list: linked into migrate_nodes, pending placement in the proper node tree
149  * @hlist: hlist head of rmap_items using this ksm page
150  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
151  * @chain_prune_time: time of the last full garbage collection
152  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
153  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
154  */
155 struct stable_node {
156         union {
157                 struct rb_node node;    /* when node of stable tree */
158                 struct {                /* when listed for migration */
159                         struct list_head *head;
160                         struct {
161                                 struct hlist_node hlist_dup;
162                                 struct list_head list;
163                         };
164                 };
165         };
166         struct hlist_head hlist;
167         union {
168                 unsigned long kpfn;
169                 unsigned long chain_prune_time;
170         };
171         /*
172          * STABLE_NODE_CHAIN can be any negative number in
173          * rmap_hlist_len negative range, but better not -1 to be able
174          * to reliably detect underflows.
175          */
176 #define STABLE_NODE_CHAIN -1024
177         int rmap_hlist_len;
178 #ifdef CONFIG_NUMA
179         int nid;
180 #endif
181 };
182
183 /**
184  * struct rmap_item - reverse mapping item for virtual addresses
185  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
186  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
187  * @nid: NUMA node id of unstable tree in which linked (may not match page)
188  * @mm: the memory structure this rmap_item is pointing into
189  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
190  * @oldchecksum: previous checksum of the page at that virtual address
191  * @node: rb node of this rmap_item in the unstable tree
192  * @head: pointer to stable_node heading this list in the stable tree
193  * @hlist: link into hlist of rmap_items hanging off that stable_node
194  */
195 struct rmap_item {
196         struct rmap_item *rmap_list;
197         union {
198                 struct anon_vma *anon_vma;      /* when stable */
199 #ifdef CONFIG_NUMA
200                 int nid;                /* when node of unstable tree */
201 #endif
202         };
203         struct mm_struct *mm;
204         unsigned long address;          /* + low bits used for flags below */
205         unsigned int oldchecksum;       /* when unstable */
206         union {
207                 struct rb_node node;    /* when node of unstable tree */
208                 struct {                /* when listed from stable tree */
209                         struct stable_node *head;
210                         struct hlist_node hlist;
211                 };
212         };
213 };
214
215 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
216 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
217 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
218
219 /* The stable and unstable tree heads */
220 static struct rb_root one_stable_tree[1] = { RB_ROOT };
221 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
222 static struct rb_root *root_stable_tree = one_stable_tree;
223 static struct rb_root *root_unstable_tree = one_unstable_tree;
224
225 /* Recently migrated nodes of stable tree, pending proper placement */
226 static LIST_HEAD(migrate_nodes);
227 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
228
229 #define MM_SLOTS_HASH_BITS 10
230 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
231
232 static struct mm_slot ksm_mm_head = {
233         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
234 };
235 static struct ksm_scan ksm_scan = {
236         .mm_slot = &ksm_mm_head,
237 };
238
239 static struct kmem_cache *rmap_item_cache;
240 static struct kmem_cache *stable_node_cache;
241 static struct kmem_cache *mm_slot_cache;
242
243 /* The number of nodes in the stable tree */
244 static unsigned long ksm_pages_shared;
245
246 /* The number of page slots additionally sharing those nodes */
247 static unsigned long ksm_pages_sharing;
248
249 /* The number of nodes in the unstable tree */
250 static unsigned long ksm_pages_unshared;
251
252 /* The number of rmap_items in use: to calculate pages_volatile */
253 static unsigned long ksm_rmap_items;
254
255 /* The number of stable_node chains */
256 static unsigned long ksm_stable_node_chains;
257
258 /* The number of stable_node dups linked to the stable_node chains */
259 static unsigned long ksm_stable_node_dups;
260
261 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
262 static int ksm_stable_node_chains_prune_millisecs = 2000;
263
264 /* Maximum number of page slots sharing a stable node */
265 static int ksm_max_page_sharing = 256;
266
267 /* Number of pages ksmd should scan in one batch */
268 static unsigned int ksm_thread_pages_to_scan = 100;
269
270 /* Milliseconds ksmd should sleep between batches */
271 static unsigned int ksm_thread_sleep_millisecs = 20;
272
273 /* Checksum of an empty (zeroed) page */
274 static unsigned int zero_checksum __read_mostly;
275
276 /* Whether to merge empty (zeroed) pages with actual zero pages */
277 static bool ksm_use_zero_pages __read_mostly;
278
279 #ifdef CONFIG_NUMA
280 /* Zeroed when merging across nodes is not allowed */
281 static unsigned int ksm_merge_across_nodes = 1;
282 static int ksm_nr_node_ids = 1;
283 #else
284 #define ksm_merge_across_nodes  1U
285 #define ksm_nr_node_ids         1
286 #endif
287
288 #define KSM_RUN_STOP    0
289 #define KSM_RUN_MERGE   1
290 #define KSM_RUN_UNMERGE 2
291 #define KSM_RUN_OFFLINE 4
292 static unsigned long ksm_run = KSM_RUN_STOP;
293 static void wait_while_offlining(void);
294
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
297 static DEFINE_MUTEX(ksm_thread_mutex);
298 static DEFINE_SPINLOCK(ksm_mmlist_lock);
299
300 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
301                 sizeof(struct __struct), __alignof__(struct __struct),\
302                 (__flags), NULL)
303
304 static int __init ksm_slab_init(void)
305 {
306         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
307         if (!rmap_item_cache)
308                 goto out;
309
310         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
311         if (!stable_node_cache)
312                 goto out_free1;
313
314         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
315         if (!mm_slot_cache)
316                 goto out_free2;
317
318         return 0;
319
320 out_free2:
321         kmem_cache_destroy(stable_node_cache);
322 out_free1:
323         kmem_cache_destroy(rmap_item_cache);
324 out:
325         return -ENOMEM;
326 }
327
328 static void __init ksm_slab_free(void)
329 {
330         kmem_cache_destroy(mm_slot_cache);
331         kmem_cache_destroy(stable_node_cache);
332         kmem_cache_destroy(rmap_item_cache);
333         mm_slot_cache = NULL;
334 }
335
336 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
337 {
338         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
339 }
340
341 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
342 {
343         return dup->head == STABLE_NODE_DUP_HEAD;
344 }
345
346 static inline void stable_node_chain_add_dup(struct stable_node *dup,
347                                              struct stable_node *chain)
348 {
349         VM_BUG_ON(is_stable_node_dup(dup));
350         dup->head = STABLE_NODE_DUP_HEAD;
351         VM_BUG_ON(!is_stable_node_chain(chain));
352         hlist_add_head(&dup->hlist_dup, &chain->hlist);
353         ksm_stable_node_dups++;
354 }
355
356 static inline void __stable_node_dup_del(struct stable_node *dup)
357 {
358         VM_BUG_ON(!is_stable_node_dup(dup));
359         hlist_del(&dup->hlist_dup);
360         ksm_stable_node_dups--;
361 }
362
363 static inline void stable_node_dup_del(struct stable_node *dup)
364 {
365         VM_BUG_ON(is_stable_node_chain(dup));
366         if (is_stable_node_dup(dup))
367                 __stable_node_dup_del(dup);
368         else
369                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
370 #ifdef CONFIG_DEBUG_VM
371         dup->head = NULL;
372 #endif
373 }
374
375 static inline struct rmap_item *alloc_rmap_item(void)
376 {
377         struct rmap_item *rmap_item;
378
379         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
380                                                 __GFP_NORETRY | __GFP_NOWARN);
381         if (rmap_item)
382                 ksm_rmap_items++;
383         return rmap_item;
384 }
385
386 static inline void free_rmap_item(struct rmap_item *rmap_item)
387 {
388         ksm_rmap_items--;
389         rmap_item->mm = NULL;   /* debug safety */
390         kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392
393 static inline struct stable_node *alloc_stable_node(void)
394 {
395         /*
396          * The allocation can take too long with GFP_KERNEL when memory is under
397          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398          * grants access to memory reserves, helping to avoid this problem.
399          */
400         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402
403 static inline void free_stable_node(struct stable_node *stable_node)
404 {
405         VM_BUG_ON(stable_node->rmap_hlist_len &&
406                   !is_stable_node_chain(stable_node));
407         kmem_cache_free(stable_node_cache, stable_node);
408 }
409
410 static inline struct mm_slot *alloc_mm_slot(void)
411 {
412         if (!mm_slot_cache)     /* initialization failed */
413                 return NULL;
414         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
415 }
416
417 static inline void free_mm_slot(struct mm_slot *mm_slot)
418 {
419         kmem_cache_free(mm_slot_cache, mm_slot);
420 }
421
422 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
423 {
424         struct mm_slot *slot;
425
426         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
427                 if (slot->mm == mm)
428                         return slot;
429
430         return NULL;
431 }
432
433 static void insert_to_mm_slots_hash(struct mm_struct *mm,
434                                     struct mm_slot *mm_slot)
435 {
436         mm_slot->mm = mm;
437         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
438 }
439
440 /*
441  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
442  * page tables after it has passed through ksm_exit() - which, if necessary,
443  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
444  * a special flag: they can just back out as soon as mm_users goes to zero.
445  * ksm_test_exit() is used throughout to make this test for exit: in some
446  * places for correctness, in some places just to avoid unnecessary work.
447  */
448 static inline bool ksm_test_exit(struct mm_struct *mm)
449 {
450         return atomic_read(&mm->mm_users) == 0;
451 }
452
453 /*
454  * We use break_ksm to break COW on a ksm page: it's a stripped down
455  *
456  *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
457  *              put_page(page);
458  *
459  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
460  * in case the application has unmapped and remapped mm,addr meanwhile.
461  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
462  * mmap of /dev/mem, where we would not want to touch it.
463  *
464  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
465  * of the process that owns 'vma'.  We also do not want to enforce
466  * protection keys here anyway.
467  */
468 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
469 {
470         struct page *page;
471         vm_fault_t ret = 0;
472
473         do {
474                 cond_resched();
475                 page = follow_page(vma, addr,
476                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
477                 if (IS_ERR_OR_NULL(page))
478                         break;
479                 if (PageKsm(page))
480                         ret = handle_mm_fault(vma, addr,
481                                               FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
482                                               NULL);
483                 else
484                         ret = VM_FAULT_WRITE;
485                 put_page(page);
486         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487         /*
488          * We must loop because handle_mm_fault() may back out if there's
489          * any difficulty e.g. if pte accessed bit gets updated concurrently.
490          *
491          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
492          * COW has been broken, even if the vma does not permit VM_WRITE;
493          * but note that a concurrent fault might break PageKsm for us.
494          *
495          * VM_FAULT_SIGBUS could occur if we race with truncation of the
496          * backing file, which also invalidates anonymous pages: that's
497          * okay, that truncation will have unmapped the PageKsm for us.
498          *
499          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
500          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
501          * current task has TIF_MEMDIE set, and will be OOM killed on return
502          * to user; and ksmd, having no mm, would never be chosen for that.
503          *
504          * But if the mm is in a limited mem_cgroup, then the fault may fail
505          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
506          * even ksmd can fail in this way - though it's usually breaking ksm
507          * just to undo a merge it made a moment before, so unlikely to oom.
508          *
509          * That's a pity: we might therefore have more kernel pages allocated
510          * than we're counting as nodes in the stable tree; but ksm_do_scan
511          * will retry to break_cow on each pass, so should recover the page
512          * in due course.  The important thing is to not let VM_MERGEABLE
513          * be cleared while any such pages might remain in the area.
514          */
515         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
516 }
517
518 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
519                 unsigned long addr)
520 {
521         struct vm_area_struct *vma;
522         if (ksm_test_exit(mm))
523                 return NULL;
524         vma = find_vma(mm, addr);
525         if (!vma || vma->vm_start > addr)
526                 return NULL;
527         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
528                 return NULL;
529         return vma;
530 }
531
532 static void break_cow(struct rmap_item *rmap_item)
533 {
534         struct mm_struct *mm = rmap_item->mm;
535         unsigned long addr = rmap_item->address;
536         struct vm_area_struct *vma;
537
538         /*
539          * It is not an accident that whenever we want to break COW
540          * to undo, we also need to drop a reference to the anon_vma.
541          */
542         put_anon_vma(rmap_item->anon_vma);
543
544         mmap_read_lock(mm);
545         vma = find_mergeable_vma(mm, addr);
546         if (vma)
547                 break_ksm(vma, addr);
548         mmap_read_unlock(mm);
549 }
550
551 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
552 {
553         struct mm_struct *mm = rmap_item->mm;
554         unsigned long addr = rmap_item->address;
555         struct vm_area_struct *vma;
556         struct page *page;
557
558         mmap_read_lock(mm);
559         vma = find_mergeable_vma(mm, addr);
560         if (!vma)
561                 goto out;
562
563         page = follow_page(vma, addr, FOLL_GET);
564         if (IS_ERR_OR_NULL(page))
565                 goto out;
566         if (PageAnon(page)) {
567                 flush_anon_page(vma, page, addr);
568                 flush_dcache_page(page);
569         } else {
570                 put_page(page);
571 out:
572                 page = NULL;
573         }
574         mmap_read_unlock(mm);
575         return page;
576 }
577
578 /*
579  * This helper is used for getting right index into array of tree roots.
580  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
581  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
582  * every node has its own stable and unstable tree.
583  */
584 static inline int get_kpfn_nid(unsigned long kpfn)
585 {
586         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
587 }
588
589 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
590                                                    struct rb_root *root)
591 {
592         struct stable_node *chain = alloc_stable_node();
593         VM_BUG_ON(is_stable_node_chain(dup));
594         if (likely(chain)) {
595                 INIT_HLIST_HEAD(&chain->hlist);
596                 chain->chain_prune_time = jiffies;
597                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
598 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
599                 chain->nid = NUMA_NO_NODE; /* debug */
600 #endif
601                 ksm_stable_node_chains++;
602
603                 /*
604                  * Put the stable node chain in the first dimension of
605                  * the stable tree and at the same time remove the old
606                  * stable node.
607                  */
608                 rb_replace_node(&dup->node, &chain->node, root);
609
610                 /*
611                  * Move the old stable node to the second dimension
612                  * queued in the hlist_dup. The invariant is that all
613                  * dup stable_nodes in the chain->hlist point to pages
614                  * that are write protected and have the exact same
615                  * content.
616                  */
617                 stable_node_chain_add_dup(dup, chain);
618         }
619         return chain;
620 }
621
622 static inline void free_stable_node_chain(struct stable_node *chain,
623                                           struct rb_root *root)
624 {
625         rb_erase(&chain->node, root);
626         free_stable_node(chain);
627         ksm_stable_node_chains--;
628 }
629
630 static void remove_node_from_stable_tree(struct stable_node *stable_node)
631 {
632         struct rmap_item *rmap_item;
633
634         /* check it's not STABLE_NODE_CHAIN or negative */
635         BUG_ON(stable_node->rmap_hlist_len < 0);
636
637         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
638                 if (rmap_item->hlist.next)
639                         ksm_pages_sharing--;
640                 else
641                         ksm_pages_shared--;
642                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
643                 stable_node->rmap_hlist_len--;
644                 put_anon_vma(rmap_item->anon_vma);
645                 rmap_item->address &= PAGE_MASK;
646                 cond_resched();
647         }
648
649         /*
650          * We need the second aligned pointer of the migrate_nodes
651          * list_head to stay clear from the rb_parent_color union
652          * (aligned and different than any node) and also different
653          * from &migrate_nodes. This will verify that future list.h changes
654          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
655          */
656 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
657         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
659 #endif
660
661         if (stable_node->head == &migrate_nodes)
662                 list_del(&stable_node->list);
663         else
664                 stable_node_dup_del(stable_node);
665         free_stable_node(stable_node);
666 }
667
668 enum get_ksm_page_flags {
669         GET_KSM_PAGE_NOLOCK,
670         GET_KSM_PAGE_LOCK,
671         GET_KSM_PAGE_TRYLOCK
672 };
673
674 /*
675  * get_ksm_page: checks if the page indicated by the stable node
676  * is still its ksm page, despite having held no reference to it.
677  * In which case we can trust the content of the page, and it
678  * returns the gotten page; but if the page has now been zapped,
679  * remove the stale node from the stable tree and return NULL.
680  * But beware, the stable node's page might be being migrated.
681  *
682  * You would expect the stable_node to hold a reference to the ksm page.
683  * But if it increments the page's count, swapping out has to wait for
684  * ksmd to come around again before it can free the page, which may take
685  * seconds or even minutes: much too unresponsive.  So instead we use a
686  * "keyhole reference": access to the ksm page from the stable node peeps
687  * out through its keyhole to see if that page still holds the right key,
688  * pointing back to this stable node.  This relies on freeing a PageAnon
689  * page to reset its page->mapping to NULL, and relies on no other use of
690  * a page to put something that might look like our key in page->mapping.
691  * is on its way to being freed; but it is an anomaly to bear in mind.
692  */
693 static struct page *get_ksm_page(struct stable_node *stable_node,
694                                  enum get_ksm_page_flags flags)
695 {
696         struct page *page;
697         void *expected_mapping;
698         unsigned long kpfn;
699
700         expected_mapping = (void *)((unsigned long)stable_node |
701                                         PAGE_MAPPING_KSM);
702 again:
703         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
704         page = pfn_to_page(kpfn);
705         if (READ_ONCE(page->mapping) != expected_mapping)
706                 goto stale;
707
708         /*
709          * We cannot do anything with the page while its refcount is 0.
710          * Usually 0 means free, or tail of a higher-order page: in which
711          * case this node is no longer referenced, and should be freed;
712          * however, it might mean that the page is under page_ref_freeze().
713          * The __remove_mapping() case is easy, again the node is now stale;
714          * the same is in reuse_ksm_page() case; but if page is swapcache
715          * in migrate_page_move_mapping(), it might still be our page,
716          * in which case it's essential to keep the node.
717          */
718         while (!get_page_unless_zero(page)) {
719                 /*
720                  * Another check for page->mapping != expected_mapping would
721                  * work here too.  We have chosen the !PageSwapCache test to
722                  * optimize the common case, when the page is or is about to
723                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
724                  * in the ref_freeze section of __remove_mapping(); but Anon
725                  * page->mapping reset to NULL later, in free_pages_prepare().
726                  */
727                 if (!PageSwapCache(page))
728                         goto stale;
729                 cpu_relax();
730         }
731
732         if (READ_ONCE(page->mapping) != expected_mapping) {
733                 put_page(page);
734                 goto stale;
735         }
736
737         if (flags == GET_KSM_PAGE_TRYLOCK) {
738                 if (!trylock_page(page)) {
739                         put_page(page);
740                         return ERR_PTR(-EBUSY);
741                 }
742         } else if (flags == GET_KSM_PAGE_LOCK)
743                 lock_page(page);
744
745         if (flags != GET_KSM_PAGE_NOLOCK) {
746                 if (READ_ONCE(page->mapping) != expected_mapping) {
747                         unlock_page(page);
748                         put_page(page);
749                         goto stale;
750                 }
751         }
752         return page;
753
754 stale:
755         /*
756          * We come here from above when page->mapping or !PageSwapCache
757          * suggests that the node is stale; but it might be under migration.
758          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
759          * before checking whether node->kpfn has been changed.
760          */
761         smp_rmb();
762         if (READ_ONCE(stable_node->kpfn) != kpfn)
763                 goto again;
764         remove_node_from_stable_tree(stable_node);
765         return NULL;
766 }
767
768 /*
769  * Removing rmap_item from stable or unstable tree.
770  * This function will clean the information from the stable/unstable tree.
771  */
772 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
773 {
774         if (rmap_item->address & STABLE_FLAG) {
775                 struct stable_node *stable_node;
776                 struct page *page;
777
778                 stable_node = rmap_item->head;
779                 page = get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
780                 if (!page)
781                         goto out;
782
783                 hlist_del(&rmap_item->hlist);
784                 put_page(page);
785
786                 if (!hlist_empty(&stable_node->hlist))
787                         ksm_pages_sharing--;
788                 else
789                         ksm_pages_shared--;
790                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
791                 stable_node->rmap_hlist_len--;
792
793                 put_anon_vma(rmap_item->anon_vma);
794                 rmap_item->head = NULL;
795                 rmap_item->address &= PAGE_MASK;
796
797         } else if (rmap_item->address & UNSTABLE_FLAG) {
798                 unsigned char age;
799                 /*
800                  * Usually ksmd can and must skip the rb_erase, because
801                  * root_unstable_tree was already reset to RB_ROOT.
802                  * But be careful when an mm is exiting: do the rb_erase
803                  * if this rmap_item was inserted by this scan, rather
804                  * than left over from before.
805                  */
806                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
807                 BUG_ON(age > 1);
808                 if (!age)
809                         rb_erase(&rmap_item->node,
810                                  root_unstable_tree + NUMA(rmap_item->nid));
811                 ksm_pages_unshared--;
812                 rmap_item->address &= PAGE_MASK;
813         }
814 out:
815         cond_resched();         /* we're called from many long loops */
816 }
817
818 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
819 {
820         while (*rmap_list) {
821                 struct rmap_item *rmap_item = *rmap_list;
822                 *rmap_list = rmap_item->rmap_list;
823                 remove_rmap_item_from_tree(rmap_item);
824                 free_rmap_item(rmap_item);
825         }
826 }
827
828 /*
829  * Though it's very tempting to unmerge rmap_items from stable tree rather
830  * than check every pte of a given vma, the locking doesn't quite work for
831  * that - an rmap_item is assigned to the stable tree after inserting ksm
832  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
833  * rmap_items from parent to child at fork time (so as not to waste time
834  * if exit comes before the next scan reaches it).
835  *
836  * Similarly, although we'd like to remove rmap_items (so updating counts
837  * and freeing memory) when unmerging an area, it's easier to leave that
838  * to the next pass of ksmd - consider, for example, how ksmd might be
839  * in cmp_and_merge_page on one of the rmap_items we would be removing.
840  */
841 static int unmerge_ksm_pages(struct vm_area_struct *vma,
842                              unsigned long start, unsigned long end)
843 {
844         unsigned long addr;
845         int err = 0;
846
847         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
848                 if (ksm_test_exit(vma->vm_mm))
849                         break;
850                 if (signal_pending(current))
851                         err = -ERESTARTSYS;
852                 else
853                         err = break_ksm(vma, addr);
854         }
855         return err;
856 }
857
858 static inline struct stable_node *page_stable_node(struct page *page)
859 {
860         return PageKsm(page) ? page_rmapping(page) : NULL;
861 }
862
863 static inline void set_page_stable_node(struct page *page,
864                                         struct stable_node *stable_node)
865 {
866         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
867 }
868
869 #ifdef CONFIG_SYSFS
870 /*
871  * Only called through the sysfs control interface:
872  */
873 static int remove_stable_node(struct stable_node *stable_node)
874 {
875         struct page *page;
876         int err;
877
878         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
879         if (!page) {
880                 /*
881                  * get_ksm_page did remove_node_from_stable_tree itself.
882                  */
883                 return 0;
884         }
885
886         /*
887          * Page could be still mapped if this races with __mmput() running in
888          * between ksm_exit() and exit_mmap(). Just refuse to let
889          * merge_across_nodes/max_page_sharing be switched.
890          */
891         err = -EBUSY;
892         if (!page_mapped(page)) {
893                 /*
894                  * The stable node did not yet appear stale to get_ksm_page(),
895                  * since that allows for an unmapped ksm page to be recognized
896                  * right up until it is freed; but the node is safe to remove.
897                  * This page might be in a pagevec waiting to be freed,
898                  * or it might be PageSwapCache (perhaps under writeback),
899                  * or it might have been removed from swapcache a moment ago.
900                  */
901                 set_page_stable_node(page, NULL);
902                 remove_node_from_stable_tree(stable_node);
903                 err = 0;
904         }
905
906         unlock_page(page);
907         put_page(page);
908         return err;
909 }
910
911 static int remove_stable_node_chain(struct stable_node *stable_node,
912                                     struct rb_root *root)
913 {
914         struct stable_node *dup;
915         struct hlist_node *hlist_safe;
916
917         if (!is_stable_node_chain(stable_node)) {
918                 VM_BUG_ON(is_stable_node_dup(stable_node));
919                 if (remove_stable_node(stable_node))
920                         return true;
921                 else
922                         return false;
923         }
924
925         hlist_for_each_entry_safe(dup, hlist_safe,
926                                   &stable_node->hlist, hlist_dup) {
927                 VM_BUG_ON(!is_stable_node_dup(dup));
928                 if (remove_stable_node(dup))
929                         return true;
930         }
931         BUG_ON(!hlist_empty(&stable_node->hlist));
932         free_stable_node_chain(stable_node, root);
933         return false;
934 }
935
936 static int remove_all_stable_nodes(void)
937 {
938         struct stable_node *stable_node, *next;
939         int nid;
940         int err = 0;
941
942         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
943                 while (root_stable_tree[nid].rb_node) {
944                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
945                                                 struct stable_node, node);
946                         if (remove_stable_node_chain(stable_node,
947                                                      root_stable_tree + nid)) {
948                                 err = -EBUSY;
949                                 break;  /* proceed to next nid */
950                         }
951                         cond_resched();
952                 }
953         }
954         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
955                 if (remove_stable_node(stable_node))
956                         err = -EBUSY;
957                 cond_resched();
958         }
959         return err;
960 }
961
962 static int unmerge_and_remove_all_rmap_items(void)
963 {
964         struct mm_slot *mm_slot;
965         struct mm_struct *mm;
966         struct vm_area_struct *vma;
967         int err = 0;
968
969         spin_lock(&ksm_mmlist_lock);
970         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
971                                                 struct mm_slot, mm_list);
972         spin_unlock(&ksm_mmlist_lock);
973
974         for (mm_slot = ksm_scan.mm_slot;
975                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
976                 mm = mm_slot->mm;
977                 mmap_read_lock(mm);
978                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
979                         if (ksm_test_exit(mm))
980                                 break;
981                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
982                                 continue;
983                         err = unmerge_ksm_pages(vma,
984                                                 vma->vm_start, vma->vm_end);
985                         if (err)
986                                 goto error;
987                 }
988
989                 remove_trailing_rmap_items(&mm_slot->rmap_list);
990                 mmap_read_unlock(mm);
991
992                 spin_lock(&ksm_mmlist_lock);
993                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
994                                                 struct mm_slot, mm_list);
995                 if (ksm_test_exit(mm)) {
996                         hash_del(&mm_slot->link);
997                         list_del(&mm_slot->mm_list);
998                         spin_unlock(&ksm_mmlist_lock);
999
1000                         free_mm_slot(mm_slot);
1001                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1002                         mmdrop(mm);
1003                 } else
1004                         spin_unlock(&ksm_mmlist_lock);
1005         }
1006
1007         /* Clean up stable nodes, but don't worry if some are still busy */
1008         remove_all_stable_nodes();
1009         ksm_scan.seqnr = 0;
1010         return 0;
1011
1012 error:
1013         mmap_read_unlock(mm);
1014         spin_lock(&ksm_mmlist_lock);
1015         ksm_scan.mm_slot = &ksm_mm_head;
1016         spin_unlock(&ksm_mmlist_lock);
1017         return err;
1018 }
1019 #endif /* CONFIG_SYSFS */
1020
1021 static u32 calc_checksum(struct page *page)
1022 {
1023         u32 checksum;
1024         void *addr = kmap_atomic(page);
1025         checksum = xxhash(addr, PAGE_SIZE, 0);
1026         kunmap_atomic(addr);
1027         return checksum;
1028 }
1029
1030 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1031                               pte_t *orig_pte)
1032 {
1033         struct mm_struct *mm = vma->vm_mm;
1034         struct page_vma_mapped_walk pvmw = {
1035                 .page = page,
1036                 .vma = vma,
1037         };
1038         int swapped;
1039         int err = -EFAULT;
1040         struct mmu_notifier_range range;
1041
1042         pvmw.address = page_address_in_vma(page, vma);
1043         if (pvmw.address == -EFAULT)
1044                 goto out;
1045
1046         BUG_ON(PageTransCompound(page));
1047
1048         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1049                                 pvmw.address,
1050                                 pvmw.address + PAGE_SIZE);
1051         mmu_notifier_invalidate_range_start(&range);
1052
1053         if (!page_vma_mapped_walk(&pvmw))
1054                 goto out_mn;
1055         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1056                 goto out_unlock;
1057
1058         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1059             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1060                                                 mm_tlb_flush_pending(mm)) {
1061                 pte_t entry;
1062
1063                 swapped = PageSwapCache(page);
1064                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1065                 /*
1066                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1067                  * take any lock, therefore the check that we are going to make
1068                  * with the pagecount against the mapcount is racy and
1069                  * O_DIRECT can happen right after the check.
1070                  * So we clear the pte and flush the tlb before the check
1071                  * this assure us that no O_DIRECT can happen after the check
1072                  * or in the middle of the check.
1073                  *
1074                  * No need to notify as we are downgrading page table to read
1075                  * only not changing it to point to a new page.
1076                  *
1077                  * See Documentation/vm/mmu_notifier.rst
1078                  */
1079                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1080                 /*
1081                  * Check that no O_DIRECT or similar I/O is in progress on the
1082                  * page
1083                  */
1084                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1085                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1086                         goto out_unlock;
1087                 }
1088                 if (pte_dirty(entry))
1089                         set_page_dirty(page);
1090
1091                 if (pte_protnone(entry))
1092                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1093                 else
1094                         entry = pte_mkclean(pte_wrprotect(entry));
1095                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1096         }
1097         *orig_pte = *pvmw.pte;
1098         err = 0;
1099
1100 out_unlock:
1101         page_vma_mapped_walk_done(&pvmw);
1102 out_mn:
1103         mmu_notifier_invalidate_range_end(&range);
1104 out:
1105         return err;
1106 }
1107
1108 /**
1109  * replace_page - replace page in vma by new ksm page
1110  * @vma:      vma that holds the pte pointing to page
1111  * @page:     the page we are replacing by kpage
1112  * @kpage:    the ksm page we replace page by
1113  * @orig_pte: the original value of the pte
1114  *
1115  * Returns 0 on success, -EFAULT on failure.
1116  */
1117 static int replace_page(struct vm_area_struct *vma, struct page *page,
1118                         struct page *kpage, pte_t orig_pte)
1119 {
1120         struct mm_struct *mm = vma->vm_mm;
1121         pmd_t *pmd;
1122         pte_t *ptep;
1123         pte_t newpte;
1124         spinlock_t *ptl;
1125         unsigned long addr;
1126         int err = -EFAULT;
1127         struct mmu_notifier_range range;
1128
1129         addr = page_address_in_vma(page, vma);
1130         if (addr == -EFAULT)
1131                 goto out;
1132
1133         pmd = mm_find_pmd(mm, addr);
1134         if (!pmd)
1135                 goto out;
1136
1137         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1138                                 addr + PAGE_SIZE);
1139         mmu_notifier_invalidate_range_start(&range);
1140
1141         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1142         if (!pte_same(*ptep, orig_pte)) {
1143                 pte_unmap_unlock(ptep, ptl);
1144                 goto out_mn;
1145         }
1146
1147         /*
1148          * No need to check ksm_use_zero_pages here: we can only have a
1149          * zero_page here if ksm_use_zero_pages was enabled already.
1150          */
1151         if (!is_zero_pfn(page_to_pfn(kpage))) {
1152                 get_page(kpage);
1153                 page_add_anon_rmap(kpage, vma, addr, false);
1154                 newpte = mk_pte(kpage, vma->vm_page_prot);
1155         } else {
1156                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1157                                                vma->vm_page_prot));
1158                 /*
1159                  * We're replacing an anonymous page with a zero page, which is
1160                  * not anonymous. We need to do proper accounting otherwise we
1161                  * will get wrong values in /proc, and a BUG message in dmesg
1162                  * when tearing down the mm.
1163                  */
1164                 dec_mm_counter(mm, MM_ANONPAGES);
1165         }
1166
1167         flush_cache_page(vma, addr, pte_pfn(*ptep));
1168         /*
1169          * No need to notify as we are replacing a read only page with another
1170          * read only page with the same content.
1171          *
1172          * See Documentation/vm/mmu_notifier.rst
1173          */
1174         ptep_clear_flush(vma, addr, ptep);
1175         set_pte_at_notify(mm, addr, ptep, newpte);
1176
1177         page_remove_rmap(page, false);
1178         if (!page_mapped(page))
1179                 try_to_free_swap(page);
1180         put_page(page);
1181
1182         pte_unmap_unlock(ptep, ptl);
1183         err = 0;
1184 out_mn:
1185         mmu_notifier_invalidate_range_end(&range);
1186 out:
1187         return err;
1188 }
1189
1190 /*
1191  * try_to_merge_one_page - take two pages and merge them into one
1192  * @vma: the vma that holds the pte pointing to page
1193  * @page: the PageAnon page that we want to replace with kpage
1194  * @kpage: the PageKsm page that we want to map instead of page,
1195  *         or NULL the first time when we want to use page as kpage.
1196  *
1197  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1198  */
1199 static int try_to_merge_one_page(struct vm_area_struct *vma,
1200                                  struct page *page, struct page *kpage)
1201 {
1202         pte_t orig_pte = __pte(0);
1203         int err = -EFAULT;
1204
1205         if (page == kpage)                      /* ksm page forked */
1206                 return 0;
1207
1208         if (!PageAnon(page))
1209                 goto out;
1210
1211         /*
1212          * We need the page lock to read a stable PageSwapCache in
1213          * write_protect_page().  We use trylock_page() instead of
1214          * lock_page() because we don't want to wait here - we
1215          * prefer to continue scanning and merging different pages,
1216          * then come back to this page when it is unlocked.
1217          */
1218         if (!trylock_page(page))
1219                 goto out;
1220
1221         if (PageTransCompound(page)) {
1222                 if (split_huge_page(page))
1223                         goto out_unlock;
1224         }
1225
1226         /*
1227          * If this anonymous page is mapped only here, its pte may need
1228          * to be write-protected.  If it's mapped elsewhere, all of its
1229          * ptes are necessarily already write-protected.  But in either
1230          * case, we need to lock and check page_count is not raised.
1231          */
1232         if (write_protect_page(vma, page, &orig_pte) == 0) {
1233                 if (!kpage) {
1234                         /*
1235                          * While we hold page lock, upgrade page from
1236                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1237                          * stable_tree_insert() will update stable_node.
1238                          */
1239                         set_page_stable_node(page, NULL);
1240                         mark_page_accessed(page);
1241                         /*
1242                          * Page reclaim just frees a clean page with no dirty
1243                          * ptes: make sure that the ksm page would be swapped.
1244                          */
1245                         if (!PageDirty(page))
1246                                 SetPageDirty(page);
1247                         err = 0;
1248                 } else if (pages_identical(page, kpage))
1249                         err = replace_page(vma, page, kpage, orig_pte);
1250         }
1251
1252         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1253                 munlock_vma_page(page);
1254                 if (!PageMlocked(kpage)) {
1255                         unlock_page(page);
1256                         lock_page(kpage);
1257                         mlock_vma_page(kpage);
1258                         page = kpage;           /* for final unlock */
1259                 }
1260         }
1261
1262 out_unlock:
1263         unlock_page(page);
1264 out:
1265         return err;
1266 }
1267
1268 /*
1269  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1270  * but no new kernel page is allocated: kpage must already be a ksm page.
1271  *
1272  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1273  */
1274 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1275                                       struct page *page, struct page *kpage)
1276 {
1277         struct mm_struct *mm = rmap_item->mm;
1278         struct vm_area_struct *vma;
1279         int err = -EFAULT;
1280
1281         mmap_read_lock(mm);
1282         vma = find_mergeable_vma(mm, rmap_item->address);
1283         if (!vma)
1284                 goto out;
1285
1286         err = try_to_merge_one_page(vma, page, kpage);
1287         if (err)
1288                 goto out;
1289
1290         /* Unstable nid is in union with stable anon_vma: remove first */
1291         remove_rmap_item_from_tree(rmap_item);
1292
1293         /* Must get reference to anon_vma while still holding mmap_lock */
1294         rmap_item->anon_vma = vma->anon_vma;
1295         get_anon_vma(vma->anon_vma);
1296 out:
1297         mmap_read_unlock(mm);
1298         return err;
1299 }
1300
1301 /*
1302  * try_to_merge_two_pages - take two identical pages and prepare them
1303  * to be merged into one page.
1304  *
1305  * This function returns the kpage if we successfully merged two identical
1306  * pages into one ksm page, NULL otherwise.
1307  *
1308  * Note that this function upgrades page to ksm page: if one of the pages
1309  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1310  */
1311 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1312                                            struct page *page,
1313                                            struct rmap_item *tree_rmap_item,
1314                                            struct page *tree_page)
1315 {
1316         int err;
1317
1318         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1319         if (!err) {
1320                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1321                                                         tree_page, page);
1322                 /*
1323                  * If that fails, we have a ksm page with only one pte
1324                  * pointing to it: so break it.
1325                  */
1326                 if (err)
1327                         break_cow(rmap_item);
1328         }
1329         return err ? NULL : page;
1330 }
1331
1332 static __always_inline
1333 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1334 {
1335         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1336         /*
1337          * Check that at least one mapping still exists, otherwise
1338          * there's no much point to merge and share with this
1339          * stable_node, as the underlying tree_page of the other
1340          * sharer is going to be freed soon.
1341          */
1342         return stable_node->rmap_hlist_len &&
1343                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1344 }
1345
1346 static __always_inline
1347 bool is_page_sharing_candidate(struct stable_node *stable_node)
1348 {
1349         return __is_page_sharing_candidate(stable_node, 0);
1350 }
1351
1352 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1353                                     struct stable_node **_stable_node,
1354                                     struct rb_root *root,
1355                                     bool prune_stale_stable_nodes)
1356 {
1357         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1358         struct hlist_node *hlist_safe;
1359         struct page *_tree_page, *tree_page = NULL;
1360         int nr = 0;
1361         int found_rmap_hlist_len;
1362
1363         if (!prune_stale_stable_nodes ||
1364             time_before(jiffies, stable_node->chain_prune_time +
1365                         msecs_to_jiffies(
1366                                 ksm_stable_node_chains_prune_millisecs)))
1367                 prune_stale_stable_nodes = false;
1368         else
1369                 stable_node->chain_prune_time = jiffies;
1370
1371         hlist_for_each_entry_safe(dup, hlist_safe,
1372                                   &stable_node->hlist, hlist_dup) {
1373                 cond_resched();
1374                 /*
1375                  * We must walk all stable_node_dup to prune the stale
1376                  * stable nodes during lookup.
1377                  *
1378                  * get_ksm_page can drop the nodes from the
1379                  * stable_node->hlist if they point to freed pages
1380                  * (that's why we do a _safe walk). The "dup"
1381                  * stable_node parameter itself will be freed from
1382                  * under us if it returns NULL.
1383                  */
1384                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1385                 if (!_tree_page)
1386                         continue;
1387                 nr += 1;
1388                 if (is_page_sharing_candidate(dup)) {
1389                         if (!found ||
1390                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1391                                 if (found)
1392                                         put_page(tree_page);
1393                                 found = dup;
1394                                 found_rmap_hlist_len = found->rmap_hlist_len;
1395                                 tree_page = _tree_page;
1396
1397                                 /* skip put_page for found dup */
1398                                 if (!prune_stale_stable_nodes)
1399                                         break;
1400                                 continue;
1401                         }
1402                 }
1403                 put_page(_tree_page);
1404         }
1405
1406         if (found) {
1407                 /*
1408                  * nr is counting all dups in the chain only if
1409                  * prune_stale_stable_nodes is true, otherwise we may
1410                  * break the loop at nr == 1 even if there are
1411                  * multiple entries.
1412                  */
1413                 if (prune_stale_stable_nodes && nr == 1) {
1414                         /*
1415                          * If there's not just one entry it would
1416                          * corrupt memory, better BUG_ON. In KSM
1417                          * context with no lock held it's not even
1418                          * fatal.
1419                          */
1420                         BUG_ON(stable_node->hlist.first->next);
1421
1422                         /*
1423                          * There's just one entry and it is below the
1424                          * deduplication limit so drop the chain.
1425                          */
1426                         rb_replace_node(&stable_node->node, &found->node,
1427                                         root);
1428                         free_stable_node(stable_node);
1429                         ksm_stable_node_chains--;
1430                         ksm_stable_node_dups--;
1431                         /*
1432                          * NOTE: the caller depends on the stable_node
1433                          * to be equal to stable_node_dup if the chain
1434                          * was collapsed.
1435                          */
1436                         *_stable_node = found;
1437                         /*
1438                          * Just for robustness, as stable_node is
1439                          * otherwise left as a stable pointer, the
1440                          * compiler shall optimize it away at build
1441                          * time.
1442                          */
1443                         stable_node = NULL;
1444                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1445                            __is_page_sharing_candidate(found, 1)) {
1446                         /*
1447                          * If the found stable_node dup can accept one
1448                          * more future merge (in addition to the one
1449                          * that is underway) and is not at the head of
1450                          * the chain, put it there so next search will
1451                          * be quicker in the !prune_stale_stable_nodes
1452                          * case.
1453                          *
1454                          * NOTE: it would be inaccurate to use nr > 1
1455                          * instead of checking the hlist.first pointer
1456                          * directly, because in the
1457                          * prune_stale_stable_nodes case "nr" isn't
1458                          * the position of the found dup in the chain,
1459                          * but the total number of dups in the chain.
1460                          */
1461                         hlist_del(&found->hlist_dup);
1462                         hlist_add_head(&found->hlist_dup,
1463                                        &stable_node->hlist);
1464                 }
1465         }
1466
1467         *_stable_node_dup = found;
1468         return tree_page;
1469 }
1470
1471 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1472                                                struct rb_root *root)
1473 {
1474         if (!is_stable_node_chain(stable_node))
1475                 return stable_node;
1476         if (hlist_empty(&stable_node->hlist)) {
1477                 free_stable_node_chain(stable_node, root);
1478                 return NULL;
1479         }
1480         return hlist_entry(stable_node->hlist.first,
1481                            typeof(*stable_node), hlist_dup);
1482 }
1483
1484 /*
1485  * Like for get_ksm_page, this function can free the *_stable_node and
1486  * *_stable_node_dup if the returned tree_page is NULL.
1487  *
1488  * It can also free and overwrite *_stable_node with the found
1489  * stable_node_dup if the chain is collapsed (in which case
1490  * *_stable_node will be equal to *_stable_node_dup like if the chain
1491  * never existed). It's up to the caller to verify tree_page is not
1492  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1493  *
1494  * *_stable_node_dup is really a second output parameter of this
1495  * function and will be overwritten in all cases, the caller doesn't
1496  * need to initialize it.
1497  */
1498 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1499                                         struct stable_node **_stable_node,
1500                                         struct rb_root *root,
1501                                         bool prune_stale_stable_nodes)
1502 {
1503         struct stable_node *stable_node = *_stable_node;
1504         if (!is_stable_node_chain(stable_node)) {
1505                 if (is_page_sharing_candidate(stable_node)) {
1506                         *_stable_node_dup = stable_node;
1507                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1508                 }
1509                 /*
1510                  * _stable_node_dup set to NULL means the stable_node
1511                  * reached the ksm_max_page_sharing limit.
1512                  */
1513                 *_stable_node_dup = NULL;
1514                 return NULL;
1515         }
1516         return stable_node_dup(_stable_node_dup, _stable_node, root,
1517                                prune_stale_stable_nodes);
1518 }
1519
1520 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1521                                                 struct stable_node **s_n,
1522                                                 struct rb_root *root)
1523 {
1524         return __stable_node_chain(s_n_d, s_n, root, true);
1525 }
1526
1527 static __always_inline struct page *chain(struct stable_node **s_n_d,
1528                                           struct stable_node *s_n,
1529                                           struct rb_root *root)
1530 {
1531         struct stable_node *old_stable_node = s_n;
1532         struct page *tree_page;
1533
1534         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1535         /* not pruning dups so s_n cannot have changed */
1536         VM_BUG_ON(s_n != old_stable_node);
1537         return tree_page;
1538 }
1539
1540 /*
1541  * stable_tree_search - search for page inside the stable tree
1542  *
1543  * This function checks if there is a page inside the stable tree
1544  * with identical content to the page that we are scanning right now.
1545  *
1546  * This function returns the stable tree node of identical content if found,
1547  * NULL otherwise.
1548  */
1549 static struct page *stable_tree_search(struct page *page)
1550 {
1551         int nid;
1552         struct rb_root *root;
1553         struct rb_node **new;
1554         struct rb_node *parent;
1555         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1556         struct stable_node *page_node;
1557
1558         page_node = page_stable_node(page);
1559         if (page_node && page_node->head != &migrate_nodes) {
1560                 /* ksm page forked */
1561                 get_page(page);
1562                 return page;
1563         }
1564
1565         nid = get_kpfn_nid(page_to_pfn(page));
1566         root = root_stable_tree + nid;
1567 again:
1568         new = &root->rb_node;
1569         parent = NULL;
1570
1571         while (*new) {
1572                 struct page *tree_page;
1573                 int ret;
1574
1575                 cond_resched();
1576                 stable_node = rb_entry(*new, struct stable_node, node);
1577                 stable_node_any = NULL;
1578                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1579                 /*
1580                  * NOTE: stable_node may have been freed by
1581                  * chain_prune() if the returned stable_node_dup is
1582                  * not NULL. stable_node_dup may have been inserted in
1583                  * the rbtree instead as a regular stable_node (in
1584                  * order to collapse the stable_node chain if a single
1585                  * stable_node dup was found in it). In such case the
1586                  * stable_node is overwritten by the calleee to point
1587                  * to the stable_node_dup that was collapsed in the
1588                  * stable rbtree and stable_node will be equal to
1589                  * stable_node_dup like if the chain never existed.
1590                  */
1591                 if (!stable_node_dup) {
1592                         /*
1593                          * Either all stable_node dups were full in
1594                          * this stable_node chain, or this chain was
1595                          * empty and should be rb_erased.
1596                          */
1597                         stable_node_any = stable_node_dup_any(stable_node,
1598                                                               root);
1599                         if (!stable_node_any) {
1600                                 /* rb_erase just run */
1601                                 goto again;
1602                         }
1603                         /*
1604                          * Take any of the stable_node dups page of
1605                          * this stable_node chain to let the tree walk
1606                          * continue. All KSM pages belonging to the
1607                          * stable_node dups in a stable_node chain
1608                          * have the same content and they're
1609                          * write protected at all times. Any will work
1610                          * fine to continue the walk.
1611                          */
1612                         tree_page = get_ksm_page(stable_node_any,
1613                                                  GET_KSM_PAGE_NOLOCK);
1614                 }
1615                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1616                 if (!tree_page) {
1617                         /*
1618                          * If we walked over a stale stable_node,
1619                          * get_ksm_page() will call rb_erase() and it
1620                          * may rebalance the tree from under us. So
1621                          * restart the search from scratch. Returning
1622                          * NULL would be safe too, but we'd generate
1623                          * false negative insertions just because some
1624                          * stable_node was stale.
1625                          */
1626                         goto again;
1627                 }
1628
1629                 ret = memcmp_pages(page, tree_page);
1630                 put_page(tree_page);
1631
1632                 parent = *new;
1633                 if (ret < 0)
1634                         new = &parent->rb_left;
1635                 else if (ret > 0)
1636                         new = &parent->rb_right;
1637                 else {
1638                         if (page_node) {
1639                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1640                                 /*
1641                                  * Test if the migrated page should be merged
1642                                  * into a stable node dup. If the mapcount is
1643                                  * 1 we can migrate it with another KSM page
1644                                  * without adding it to the chain.
1645                                  */
1646                                 if (page_mapcount(page) > 1)
1647                                         goto chain_append;
1648                         }
1649
1650                         if (!stable_node_dup) {
1651                                 /*
1652                                  * If the stable_node is a chain and
1653                                  * we got a payload match in memcmp
1654                                  * but we cannot merge the scanned
1655                                  * page in any of the existing
1656                                  * stable_node dups because they're
1657                                  * all full, we need to wait the
1658                                  * scanned page to find itself a match
1659                                  * in the unstable tree to create a
1660                                  * brand new KSM page to add later to
1661                                  * the dups of this stable_node.
1662                                  */
1663                                 return NULL;
1664                         }
1665
1666                         /*
1667                          * Lock and unlock the stable_node's page (which
1668                          * might already have been migrated) so that page
1669                          * migration is sure to notice its raised count.
1670                          * It would be more elegant to return stable_node
1671                          * than kpage, but that involves more changes.
1672                          */
1673                         tree_page = get_ksm_page(stable_node_dup,
1674                                                  GET_KSM_PAGE_TRYLOCK);
1675
1676                         if (PTR_ERR(tree_page) == -EBUSY)
1677                                 return ERR_PTR(-EBUSY);
1678
1679                         if (unlikely(!tree_page))
1680                                 /*
1681                                  * The tree may have been rebalanced,
1682                                  * so re-evaluate parent and new.
1683                                  */
1684                                 goto again;
1685                         unlock_page(tree_page);
1686
1687                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1688                             NUMA(stable_node_dup->nid)) {
1689                                 put_page(tree_page);
1690                                 goto replace;
1691                         }
1692                         return tree_page;
1693                 }
1694         }
1695
1696         if (!page_node)
1697                 return NULL;
1698
1699         list_del(&page_node->list);
1700         DO_NUMA(page_node->nid = nid);
1701         rb_link_node(&page_node->node, parent, new);
1702         rb_insert_color(&page_node->node, root);
1703 out:
1704         if (is_page_sharing_candidate(page_node)) {
1705                 get_page(page);
1706                 return page;
1707         } else
1708                 return NULL;
1709
1710 replace:
1711         /*
1712          * If stable_node was a chain and chain_prune collapsed it,
1713          * stable_node has been updated to be the new regular
1714          * stable_node. A collapse of the chain is indistinguishable
1715          * from the case there was no chain in the stable
1716          * rbtree. Otherwise stable_node is the chain and
1717          * stable_node_dup is the dup to replace.
1718          */
1719         if (stable_node_dup == stable_node) {
1720                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1721                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1722                 /* there is no chain */
1723                 if (page_node) {
1724                         VM_BUG_ON(page_node->head != &migrate_nodes);
1725                         list_del(&page_node->list);
1726                         DO_NUMA(page_node->nid = nid);
1727                         rb_replace_node(&stable_node_dup->node,
1728                                         &page_node->node,
1729                                         root);
1730                         if (is_page_sharing_candidate(page_node))
1731                                 get_page(page);
1732                         else
1733                                 page = NULL;
1734                 } else {
1735                         rb_erase(&stable_node_dup->node, root);
1736                         page = NULL;
1737                 }
1738         } else {
1739                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1740                 __stable_node_dup_del(stable_node_dup);
1741                 if (page_node) {
1742                         VM_BUG_ON(page_node->head != &migrate_nodes);
1743                         list_del(&page_node->list);
1744                         DO_NUMA(page_node->nid = nid);
1745                         stable_node_chain_add_dup(page_node, stable_node);
1746                         if (is_page_sharing_candidate(page_node))
1747                                 get_page(page);
1748                         else
1749                                 page = NULL;
1750                 } else {
1751                         page = NULL;
1752                 }
1753         }
1754         stable_node_dup->head = &migrate_nodes;
1755         list_add(&stable_node_dup->list, stable_node_dup->head);
1756         return page;
1757
1758 chain_append:
1759         /* stable_node_dup could be null if it reached the limit */
1760         if (!stable_node_dup)
1761                 stable_node_dup = stable_node_any;
1762         /*
1763          * If stable_node was a chain and chain_prune collapsed it,
1764          * stable_node has been updated to be the new regular
1765          * stable_node. A collapse of the chain is indistinguishable
1766          * from the case there was no chain in the stable
1767          * rbtree. Otherwise stable_node is the chain and
1768          * stable_node_dup is the dup to replace.
1769          */
1770         if (stable_node_dup == stable_node) {
1771                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1772                 /* chain is missing so create it */
1773                 stable_node = alloc_stable_node_chain(stable_node_dup,
1774                                                       root);
1775                 if (!stable_node)
1776                         return NULL;
1777         }
1778         /*
1779          * Add this stable_node dup that was
1780          * migrated to the stable_node chain
1781          * of the current nid for this page
1782          * content.
1783          */
1784         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1785         VM_BUG_ON(page_node->head != &migrate_nodes);
1786         list_del(&page_node->list);
1787         DO_NUMA(page_node->nid = nid);
1788         stable_node_chain_add_dup(page_node, stable_node);
1789         goto out;
1790 }
1791
1792 /*
1793  * stable_tree_insert - insert stable tree node pointing to new ksm page
1794  * into the stable tree.
1795  *
1796  * This function returns the stable tree node just allocated on success,
1797  * NULL otherwise.
1798  */
1799 static struct stable_node *stable_tree_insert(struct page *kpage)
1800 {
1801         int nid;
1802         unsigned long kpfn;
1803         struct rb_root *root;
1804         struct rb_node **new;
1805         struct rb_node *parent;
1806         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1807         bool need_chain = false;
1808
1809         kpfn = page_to_pfn(kpage);
1810         nid = get_kpfn_nid(kpfn);
1811         root = root_stable_tree + nid;
1812 again:
1813         parent = NULL;
1814         new = &root->rb_node;
1815
1816         while (*new) {
1817                 struct page *tree_page;
1818                 int ret;
1819
1820                 cond_resched();
1821                 stable_node = rb_entry(*new, struct stable_node, node);
1822                 stable_node_any = NULL;
1823                 tree_page = chain(&stable_node_dup, stable_node, root);
1824                 if (!stable_node_dup) {
1825                         /*
1826                          * Either all stable_node dups were full in
1827                          * this stable_node chain, or this chain was
1828                          * empty and should be rb_erased.
1829                          */
1830                         stable_node_any = stable_node_dup_any(stable_node,
1831                                                               root);
1832                         if (!stable_node_any) {
1833                                 /* rb_erase just run */
1834                                 goto again;
1835                         }
1836                         /*
1837                          * Take any of the stable_node dups page of
1838                          * this stable_node chain to let the tree walk
1839                          * continue. All KSM pages belonging to the
1840                          * stable_node dups in a stable_node chain
1841                          * have the same content and they're
1842                          * write protected at all times. Any will work
1843                          * fine to continue the walk.
1844                          */
1845                         tree_page = get_ksm_page(stable_node_any,
1846                                                  GET_KSM_PAGE_NOLOCK);
1847                 }
1848                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1849                 if (!tree_page) {
1850                         /*
1851                          * If we walked over a stale stable_node,
1852                          * get_ksm_page() will call rb_erase() and it
1853                          * may rebalance the tree from under us. So
1854                          * restart the search from scratch. Returning
1855                          * NULL would be safe too, but we'd generate
1856                          * false negative insertions just because some
1857                          * stable_node was stale.
1858                          */
1859                         goto again;
1860                 }
1861
1862                 ret = memcmp_pages(kpage, tree_page);
1863                 put_page(tree_page);
1864
1865                 parent = *new;
1866                 if (ret < 0)
1867                         new = &parent->rb_left;
1868                 else if (ret > 0)
1869                         new = &parent->rb_right;
1870                 else {
1871                         need_chain = true;
1872                         break;
1873                 }
1874         }
1875
1876         stable_node_dup = alloc_stable_node();
1877         if (!stable_node_dup)
1878                 return NULL;
1879
1880         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1881         stable_node_dup->kpfn = kpfn;
1882         set_page_stable_node(kpage, stable_node_dup);
1883         stable_node_dup->rmap_hlist_len = 0;
1884         DO_NUMA(stable_node_dup->nid = nid);
1885         if (!need_chain) {
1886                 rb_link_node(&stable_node_dup->node, parent, new);
1887                 rb_insert_color(&stable_node_dup->node, root);
1888         } else {
1889                 if (!is_stable_node_chain(stable_node)) {
1890                         struct stable_node *orig = stable_node;
1891                         /* chain is missing so create it */
1892                         stable_node = alloc_stable_node_chain(orig, root);
1893                         if (!stable_node) {
1894                                 free_stable_node(stable_node_dup);
1895                                 return NULL;
1896                         }
1897                 }
1898                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1899         }
1900
1901         return stable_node_dup;
1902 }
1903
1904 /*
1905  * unstable_tree_search_insert - search for identical page,
1906  * else insert rmap_item into the unstable tree.
1907  *
1908  * This function searches for a page in the unstable tree identical to the
1909  * page currently being scanned; and if no identical page is found in the
1910  * tree, we insert rmap_item as a new object into the unstable tree.
1911  *
1912  * This function returns pointer to rmap_item found to be identical
1913  * to the currently scanned page, NULL otherwise.
1914  *
1915  * This function does both searching and inserting, because they share
1916  * the same walking algorithm in an rbtree.
1917  */
1918 static
1919 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1920                                               struct page *page,
1921                                               struct page **tree_pagep)
1922 {
1923         struct rb_node **new;
1924         struct rb_root *root;
1925         struct rb_node *parent = NULL;
1926         int nid;
1927
1928         nid = get_kpfn_nid(page_to_pfn(page));
1929         root = root_unstable_tree + nid;
1930         new = &root->rb_node;
1931
1932         while (*new) {
1933                 struct rmap_item *tree_rmap_item;
1934                 struct page *tree_page;
1935                 int ret;
1936
1937                 cond_resched();
1938                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1939                 tree_page = get_mergeable_page(tree_rmap_item);
1940                 if (!tree_page)
1941                         return NULL;
1942
1943                 /*
1944                  * Don't substitute a ksm page for a forked page.
1945                  */
1946                 if (page == tree_page) {
1947                         put_page(tree_page);
1948                         return NULL;
1949                 }
1950
1951                 ret = memcmp_pages(page, tree_page);
1952
1953                 parent = *new;
1954                 if (ret < 0) {
1955                         put_page(tree_page);
1956                         new = &parent->rb_left;
1957                 } else if (ret > 0) {
1958                         put_page(tree_page);
1959                         new = &parent->rb_right;
1960                 } else if (!ksm_merge_across_nodes &&
1961                            page_to_nid(tree_page) != nid) {
1962                         /*
1963                          * If tree_page has been migrated to another NUMA node,
1964                          * it will be flushed out and put in the right unstable
1965                          * tree next time: only merge with it when across_nodes.
1966                          */
1967                         put_page(tree_page);
1968                         return NULL;
1969                 } else {
1970                         *tree_pagep = tree_page;
1971                         return tree_rmap_item;
1972                 }
1973         }
1974
1975         rmap_item->address |= UNSTABLE_FLAG;
1976         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1977         DO_NUMA(rmap_item->nid = nid);
1978         rb_link_node(&rmap_item->node, parent, new);
1979         rb_insert_color(&rmap_item->node, root);
1980
1981         ksm_pages_unshared++;
1982         return NULL;
1983 }
1984
1985 /*
1986  * stable_tree_append - add another rmap_item to the linked list of
1987  * rmap_items hanging off a given node of the stable tree, all sharing
1988  * the same ksm page.
1989  */
1990 static void stable_tree_append(struct rmap_item *rmap_item,
1991                                struct stable_node *stable_node,
1992                                bool max_page_sharing_bypass)
1993 {
1994         /*
1995          * rmap won't find this mapping if we don't insert the
1996          * rmap_item in the right stable_node
1997          * duplicate. page_migration could break later if rmap breaks,
1998          * so we can as well crash here. We really need to check for
1999          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2000          * for other negative values as an underflow if detected here
2001          * for the first time (and not when decreasing rmap_hlist_len)
2002          * would be sign of memory corruption in the stable_node.
2003          */
2004         BUG_ON(stable_node->rmap_hlist_len < 0);
2005
2006         stable_node->rmap_hlist_len++;
2007         if (!max_page_sharing_bypass)
2008                 /* possibly non fatal but unexpected overflow, only warn */
2009                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2010                              ksm_max_page_sharing);
2011
2012         rmap_item->head = stable_node;
2013         rmap_item->address |= STABLE_FLAG;
2014         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2015
2016         if (rmap_item->hlist.next)
2017                 ksm_pages_sharing++;
2018         else
2019                 ksm_pages_shared++;
2020 }
2021
2022 /*
2023  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2024  * if not, compare checksum to previous and if it's the same, see if page can
2025  * be inserted into the unstable tree, or merged with a page already there and
2026  * both transferred to the stable tree.
2027  *
2028  * @page: the page that we are searching identical page to.
2029  * @rmap_item: the reverse mapping into the virtual address of this page
2030  */
2031 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2032 {
2033         struct mm_struct *mm = rmap_item->mm;
2034         struct rmap_item *tree_rmap_item;
2035         struct page *tree_page = NULL;
2036         struct stable_node *stable_node;
2037         struct page *kpage;
2038         unsigned int checksum;
2039         int err;
2040         bool max_page_sharing_bypass = false;
2041
2042         stable_node = page_stable_node(page);
2043         if (stable_node) {
2044                 if (stable_node->head != &migrate_nodes &&
2045                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2046                     NUMA(stable_node->nid)) {
2047                         stable_node_dup_del(stable_node);
2048                         stable_node->head = &migrate_nodes;
2049                         list_add(&stable_node->list, stable_node->head);
2050                 }
2051                 if (stable_node->head != &migrate_nodes &&
2052                     rmap_item->head == stable_node)
2053                         return;
2054                 /*
2055                  * If it's a KSM fork, allow it to go over the sharing limit
2056                  * without warnings.
2057                  */
2058                 if (!is_page_sharing_candidate(stable_node))
2059                         max_page_sharing_bypass = true;
2060         }
2061
2062         /* We first start with searching the page inside the stable tree */
2063         kpage = stable_tree_search(page);
2064         if (kpage == page && rmap_item->head == stable_node) {
2065                 put_page(kpage);
2066                 return;
2067         }
2068
2069         remove_rmap_item_from_tree(rmap_item);
2070
2071         if (kpage) {
2072                 if (PTR_ERR(kpage) == -EBUSY)
2073                         return;
2074
2075                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2076                 if (!err) {
2077                         /*
2078                          * The page was successfully merged:
2079                          * add its rmap_item to the stable tree.
2080                          */
2081                         lock_page(kpage);
2082                         stable_tree_append(rmap_item, page_stable_node(kpage),
2083                                            max_page_sharing_bypass);
2084                         unlock_page(kpage);
2085                 }
2086                 put_page(kpage);
2087                 return;
2088         }
2089
2090         /*
2091          * If the hash value of the page has changed from the last time
2092          * we calculated it, this page is changing frequently: therefore we
2093          * don't want to insert it in the unstable tree, and we don't want
2094          * to waste our time searching for something identical to it there.
2095          */
2096         checksum = calc_checksum(page);
2097         if (rmap_item->oldchecksum != checksum) {
2098                 rmap_item->oldchecksum = checksum;
2099                 return;
2100         }
2101
2102         /*
2103          * Same checksum as an empty page. We attempt to merge it with the
2104          * appropriate zero page if the user enabled this via sysfs.
2105          */
2106         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2107                 struct vm_area_struct *vma;
2108
2109                 mmap_read_lock(mm);
2110                 vma = find_mergeable_vma(mm, rmap_item->address);
2111                 if (vma) {
2112                         err = try_to_merge_one_page(vma, page,
2113                                         ZERO_PAGE(rmap_item->address));
2114                 } else {
2115                         /*
2116                          * If the vma is out of date, we do not need to
2117                          * continue.
2118                          */
2119                         err = 0;
2120                 }
2121                 mmap_read_unlock(mm);
2122                 /*
2123                  * In case of failure, the page was not really empty, so we
2124                  * need to continue. Otherwise we're done.
2125                  */
2126                 if (!err)
2127                         return;
2128         }
2129         tree_rmap_item =
2130                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2131         if (tree_rmap_item) {
2132                 bool split;
2133
2134                 kpage = try_to_merge_two_pages(rmap_item, page,
2135                                                 tree_rmap_item, tree_page);
2136                 /*
2137                  * If both pages we tried to merge belong to the same compound
2138                  * page, then we actually ended up increasing the reference
2139                  * count of the same compound page twice, and split_huge_page
2140                  * failed.
2141                  * Here we set a flag if that happened, and we use it later to
2142                  * try split_huge_page again. Since we call put_page right
2143                  * afterwards, the reference count will be correct and
2144                  * split_huge_page should succeed.
2145                  */
2146                 split = PageTransCompound(page)
2147                         && compound_head(page) == compound_head(tree_page);
2148                 put_page(tree_page);
2149                 if (kpage) {
2150                         /*
2151                          * The pages were successfully merged: insert new
2152                          * node in the stable tree and add both rmap_items.
2153                          */
2154                         lock_page(kpage);
2155                         stable_node = stable_tree_insert(kpage);
2156                         if (stable_node) {
2157                                 stable_tree_append(tree_rmap_item, stable_node,
2158                                                    false);
2159                                 stable_tree_append(rmap_item, stable_node,
2160                                                    false);
2161                         }
2162                         unlock_page(kpage);
2163
2164                         /*
2165                          * If we fail to insert the page into the stable tree,
2166                          * we will have 2 virtual addresses that are pointing
2167                          * to a ksm page left outside the stable tree,
2168                          * in which case we need to break_cow on both.
2169                          */
2170                         if (!stable_node) {
2171                                 break_cow(tree_rmap_item);
2172                                 break_cow(rmap_item);
2173                         }
2174                 } else if (split) {
2175                         /*
2176                          * We are here if we tried to merge two pages and
2177                          * failed because they both belonged to the same
2178                          * compound page. We will split the page now, but no
2179                          * merging will take place.
2180                          * We do not want to add the cost of a full lock; if
2181                          * the page is locked, it is better to skip it and
2182                          * perhaps try again later.
2183                          */
2184                         if (!trylock_page(page))
2185                                 return;
2186                         split_huge_page(page);
2187                         unlock_page(page);
2188                 }
2189         }
2190 }
2191
2192 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2193                                             struct rmap_item **rmap_list,
2194                                             unsigned long addr)
2195 {
2196         struct rmap_item *rmap_item;
2197
2198         while (*rmap_list) {
2199                 rmap_item = *rmap_list;
2200                 if ((rmap_item->address & PAGE_MASK) == addr)
2201                         return rmap_item;
2202                 if (rmap_item->address > addr)
2203                         break;
2204                 *rmap_list = rmap_item->rmap_list;
2205                 remove_rmap_item_from_tree(rmap_item);
2206                 free_rmap_item(rmap_item);
2207         }
2208
2209         rmap_item = alloc_rmap_item();
2210         if (rmap_item) {
2211                 /* It has already been zeroed */
2212                 rmap_item->mm = mm_slot->mm;
2213                 rmap_item->address = addr;
2214                 rmap_item->rmap_list = *rmap_list;
2215                 *rmap_list = rmap_item;
2216         }
2217         return rmap_item;
2218 }
2219
2220 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2221 {
2222         struct mm_struct *mm;
2223         struct mm_slot *slot;
2224         struct vm_area_struct *vma;
2225         struct rmap_item *rmap_item;
2226         int nid;
2227
2228         if (list_empty(&ksm_mm_head.mm_list))
2229                 return NULL;
2230
2231         slot = ksm_scan.mm_slot;
2232         if (slot == &ksm_mm_head) {
2233                 /*
2234                  * A number of pages can hang around indefinitely on per-cpu
2235                  * pagevecs, raised page count preventing write_protect_page
2236                  * from merging them.  Though it doesn't really matter much,
2237                  * it is puzzling to see some stuck in pages_volatile until
2238                  * other activity jostles them out, and they also prevented
2239                  * LTP's KSM test from succeeding deterministically; so drain
2240                  * them here (here rather than on entry to ksm_do_scan(),
2241                  * so we don't IPI too often when pages_to_scan is set low).
2242                  */
2243                 lru_add_drain_all();
2244
2245                 /*
2246                  * Whereas stale stable_nodes on the stable_tree itself
2247                  * get pruned in the regular course of stable_tree_search(),
2248                  * those moved out to the migrate_nodes list can accumulate:
2249                  * so prune them once before each full scan.
2250                  */
2251                 if (!ksm_merge_across_nodes) {
2252                         struct stable_node *stable_node, *next;
2253                         struct page *page;
2254
2255                         list_for_each_entry_safe(stable_node, next,
2256                                                  &migrate_nodes, list) {
2257                                 page = get_ksm_page(stable_node,
2258                                                     GET_KSM_PAGE_NOLOCK);
2259                                 if (page)
2260                                         put_page(page);
2261                                 cond_resched();
2262                         }
2263                 }
2264
2265                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2266                         root_unstable_tree[nid] = RB_ROOT;
2267
2268                 spin_lock(&ksm_mmlist_lock);
2269                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2270                 ksm_scan.mm_slot = slot;
2271                 spin_unlock(&ksm_mmlist_lock);
2272                 /*
2273                  * Although we tested list_empty() above, a racing __ksm_exit
2274                  * of the last mm on the list may have removed it since then.
2275                  */
2276                 if (slot == &ksm_mm_head)
2277                         return NULL;
2278 next_mm:
2279                 ksm_scan.address = 0;
2280                 ksm_scan.rmap_list = &slot->rmap_list;
2281         }
2282
2283         mm = slot->mm;
2284         mmap_read_lock(mm);
2285         if (ksm_test_exit(mm))
2286                 vma = NULL;
2287         else
2288                 vma = find_vma(mm, ksm_scan.address);
2289
2290         for (; vma; vma = vma->vm_next) {
2291                 if (!(vma->vm_flags & VM_MERGEABLE))
2292                         continue;
2293                 if (ksm_scan.address < vma->vm_start)
2294                         ksm_scan.address = vma->vm_start;
2295                 if (!vma->anon_vma)
2296                         ksm_scan.address = vma->vm_end;
2297
2298                 while (ksm_scan.address < vma->vm_end) {
2299                         if (ksm_test_exit(mm))
2300                                 break;
2301                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2302                         if (IS_ERR_OR_NULL(*page)) {
2303                                 ksm_scan.address += PAGE_SIZE;
2304                                 cond_resched();
2305                                 continue;
2306                         }
2307                         if (PageAnon(*page)) {
2308                                 flush_anon_page(vma, *page, ksm_scan.address);
2309                                 flush_dcache_page(*page);
2310                                 rmap_item = get_next_rmap_item(slot,
2311                                         ksm_scan.rmap_list, ksm_scan.address);
2312                                 if (rmap_item) {
2313                                         ksm_scan.rmap_list =
2314                                                         &rmap_item->rmap_list;
2315                                         ksm_scan.address += PAGE_SIZE;
2316                                 } else
2317                                         put_page(*page);
2318                                 mmap_read_unlock(mm);
2319                                 return rmap_item;
2320                         }
2321                         put_page(*page);
2322                         ksm_scan.address += PAGE_SIZE;
2323                         cond_resched();
2324                 }
2325         }
2326
2327         if (ksm_test_exit(mm)) {
2328                 ksm_scan.address = 0;
2329                 ksm_scan.rmap_list = &slot->rmap_list;
2330         }
2331         /*
2332          * Nuke all the rmap_items that are above this current rmap:
2333          * because there were no VM_MERGEABLE vmas with such addresses.
2334          */
2335         remove_trailing_rmap_items(ksm_scan.rmap_list);
2336
2337         spin_lock(&ksm_mmlist_lock);
2338         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2339                                                 struct mm_slot, mm_list);
2340         if (ksm_scan.address == 0) {
2341                 /*
2342                  * We've completed a full scan of all vmas, holding mmap_lock
2343                  * throughout, and found no VM_MERGEABLE: so do the same as
2344                  * __ksm_exit does to remove this mm from all our lists now.
2345                  * This applies either when cleaning up after __ksm_exit
2346                  * (but beware: we can reach here even before __ksm_exit),
2347                  * or when all VM_MERGEABLE areas have been unmapped (and
2348                  * mmap_lock then protects against race with MADV_MERGEABLE).
2349                  */
2350                 hash_del(&slot->link);
2351                 list_del(&slot->mm_list);
2352                 spin_unlock(&ksm_mmlist_lock);
2353
2354                 free_mm_slot(slot);
2355                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2356                 mmap_read_unlock(mm);
2357                 mmdrop(mm);
2358         } else {
2359                 mmap_read_unlock(mm);
2360                 /*
2361                  * mmap_read_unlock(mm) first because after
2362                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2363                  * already have been freed under us by __ksm_exit()
2364                  * because the "mm_slot" is still hashed and
2365                  * ksm_scan.mm_slot doesn't point to it anymore.
2366                  */
2367                 spin_unlock(&ksm_mmlist_lock);
2368         }
2369
2370         /* Repeat until we've completed scanning the whole list */
2371         slot = ksm_scan.mm_slot;
2372         if (slot != &ksm_mm_head)
2373                 goto next_mm;
2374
2375         ksm_scan.seqnr++;
2376         return NULL;
2377 }
2378
2379 /**
2380  * ksm_do_scan  - the ksm scanner main worker function.
2381  * @scan_npages:  number of pages we want to scan before we return.
2382  */
2383 static void ksm_do_scan(unsigned int scan_npages)
2384 {
2385         struct rmap_item *rmap_item;
2386         struct page *page;
2387
2388         while (scan_npages-- && likely(!freezing(current))) {
2389                 cond_resched();
2390                 rmap_item = scan_get_next_rmap_item(&page);
2391                 if (!rmap_item)
2392                         return;
2393                 cmp_and_merge_page(page, rmap_item);
2394                 put_page(page);
2395         }
2396 }
2397
2398 static int ksmd_should_run(void)
2399 {
2400         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2401 }
2402
2403 static int ksm_scan_thread(void *nothing)
2404 {
2405         unsigned int sleep_ms;
2406
2407         set_freezable();
2408         set_user_nice(current, 5);
2409
2410         while (!kthread_should_stop()) {
2411                 mutex_lock(&ksm_thread_mutex);
2412                 wait_while_offlining();
2413                 if (ksmd_should_run())
2414                         ksm_do_scan(ksm_thread_pages_to_scan);
2415                 mutex_unlock(&ksm_thread_mutex);
2416
2417                 try_to_freeze();
2418
2419                 if (ksmd_should_run()) {
2420                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2421                         wait_event_interruptible_timeout(ksm_iter_wait,
2422                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2423                                 msecs_to_jiffies(sleep_ms));
2424                 } else {
2425                         wait_event_freezable(ksm_thread_wait,
2426                                 ksmd_should_run() || kthread_should_stop());
2427                 }
2428         }
2429         return 0;
2430 }
2431
2432 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2433                 unsigned long end, int advice, unsigned long *vm_flags)
2434 {
2435         struct mm_struct *mm = vma->vm_mm;
2436         int err;
2437
2438         switch (advice) {
2439         case MADV_MERGEABLE:
2440                 /*
2441                  * Be somewhat over-protective for now!
2442                  */
2443                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2444                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2445                                  VM_HUGETLB | VM_MIXEDMAP))
2446                         return 0;               /* just ignore the advice */
2447
2448                 if (vma_is_dax(vma))
2449                         return 0;
2450
2451 #ifdef VM_SAO
2452                 if (*vm_flags & VM_SAO)
2453                         return 0;
2454 #endif
2455 #ifdef VM_SPARC_ADI
2456                 if (*vm_flags & VM_SPARC_ADI)
2457                         return 0;
2458 #endif
2459
2460                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2461                         err = __ksm_enter(mm);
2462                         if (err)
2463                                 return err;
2464                 }
2465
2466                 *vm_flags |= VM_MERGEABLE;
2467                 break;
2468
2469         case MADV_UNMERGEABLE:
2470                 if (!(*vm_flags & VM_MERGEABLE))
2471                         return 0;               /* just ignore the advice */
2472
2473                 if (vma->anon_vma) {
2474                         err = unmerge_ksm_pages(vma, start, end);
2475                         if (err)
2476                                 return err;
2477                 }
2478
2479                 *vm_flags &= ~VM_MERGEABLE;
2480                 break;
2481         }
2482
2483         return 0;
2484 }
2485 EXPORT_SYMBOL_GPL(ksm_madvise);
2486
2487 int __ksm_enter(struct mm_struct *mm)
2488 {
2489         struct mm_slot *mm_slot;
2490         int needs_wakeup;
2491
2492         mm_slot = alloc_mm_slot();
2493         if (!mm_slot)
2494                 return -ENOMEM;
2495
2496         /* Check ksm_run too?  Would need tighter locking */
2497         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2498
2499         spin_lock(&ksm_mmlist_lock);
2500         insert_to_mm_slots_hash(mm, mm_slot);
2501         /*
2502          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2503          * insert just behind the scanning cursor, to let the area settle
2504          * down a little; when fork is followed by immediate exec, we don't
2505          * want ksmd to waste time setting up and tearing down an rmap_list.
2506          *
2507          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2508          * scanning cursor, otherwise KSM pages in newly forked mms will be
2509          * missed: then we might as well insert at the end of the list.
2510          */
2511         if (ksm_run & KSM_RUN_UNMERGE)
2512                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2513         else
2514                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2515         spin_unlock(&ksm_mmlist_lock);
2516
2517         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2518         mmgrab(mm);
2519
2520         if (needs_wakeup)
2521                 wake_up_interruptible(&ksm_thread_wait);
2522
2523         return 0;
2524 }
2525
2526 void __ksm_exit(struct mm_struct *mm)
2527 {
2528         struct mm_slot *mm_slot;
2529         int easy_to_free = 0;
2530
2531         /*
2532          * This process is exiting: if it's straightforward (as is the
2533          * case when ksmd was never running), free mm_slot immediately.
2534          * But if it's at the cursor or has rmap_items linked to it, use
2535          * mmap_lock to synchronize with any break_cows before pagetables
2536          * are freed, and leave the mm_slot on the list for ksmd to free.
2537          * Beware: ksm may already have noticed it exiting and freed the slot.
2538          */
2539
2540         spin_lock(&ksm_mmlist_lock);
2541         mm_slot = get_mm_slot(mm);
2542         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2543                 if (!mm_slot->rmap_list) {
2544                         hash_del(&mm_slot->link);
2545                         list_del(&mm_slot->mm_list);
2546                         easy_to_free = 1;
2547                 } else {
2548                         list_move(&mm_slot->mm_list,
2549                                   &ksm_scan.mm_slot->mm_list);
2550                 }
2551         }
2552         spin_unlock(&ksm_mmlist_lock);
2553
2554         if (easy_to_free) {
2555                 free_mm_slot(mm_slot);
2556                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2557                 mmdrop(mm);
2558         } else if (mm_slot) {
2559                 mmap_write_lock(mm);
2560                 mmap_write_unlock(mm);
2561         }
2562 }
2563
2564 struct page *ksm_might_need_to_copy(struct page *page,
2565                         struct vm_area_struct *vma, unsigned long address)
2566 {
2567         struct anon_vma *anon_vma = page_anon_vma(page);
2568         struct page *new_page;
2569
2570         if (PageKsm(page)) {
2571                 if (page_stable_node(page) &&
2572                     !(ksm_run & KSM_RUN_UNMERGE))
2573                         return page;    /* no need to copy it */
2574         } else if (!anon_vma) {
2575                 return page;            /* no need to copy it */
2576         } else if (anon_vma->root == vma->anon_vma->root &&
2577                  page->index == linear_page_index(vma, address)) {
2578                 return page;            /* still no need to copy it */
2579         }
2580         if (!PageUptodate(page))
2581                 return page;            /* let do_swap_page report the error */
2582
2583         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2584         if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2585                 put_page(new_page);
2586                 new_page = NULL;
2587         }
2588         if (new_page) {
2589                 copy_user_highpage(new_page, page, address, vma);
2590
2591                 SetPageDirty(new_page);
2592                 __SetPageUptodate(new_page);
2593                 __SetPageLocked(new_page);
2594         }
2595
2596         return new_page;
2597 }
2598
2599 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2600 {
2601         struct stable_node *stable_node;
2602         struct rmap_item *rmap_item;
2603         int search_new_forks = 0;
2604
2605         VM_BUG_ON_PAGE(!PageKsm(page), page);
2606
2607         /*
2608          * Rely on the page lock to protect against concurrent modifications
2609          * to that page's node of the stable tree.
2610          */
2611         VM_BUG_ON_PAGE(!PageLocked(page), page);
2612
2613         stable_node = page_stable_node(page);
2614         if (!stable_node)
2615                 return;
2616 again:
2617         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2618                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2619                 struct anon_vma_chain *vmac;
2620                 struct vm_area_struct *vma;
2621
2622                 cond_resched();
2623                 anon_vma_lock_read(anon_vma);
2624                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2625                                                0, ULONG_MAX) {
2626                         unsigned long addr;
2627
2628                         cond_resched();
2629                         vma = vmac->vma;
2630
2631                         /* Ignore the stable/unstable/sqnr flags */
2632                         addr = rmap_item->address & PAGE_MASK;
2633
2634                         if (addr < vma->vm_start || addr >= vma->vm_end)
2635                                 continue;
2636                         /*
2637                          * Initially we examine only the vma which covers this
2638                          * rmap_item; but later, if there is still work to do,
2639                          * we examine covering vmas in other mms: in case they
2640                          * were forked from the original since ksmd passed.
2641                          */
2642                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2643                                 continue;
2644
2645                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2646                                 continue;
2647
2648                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2649                                 anon_vma_unlock_read(anon_vma);
2650                                 return;
2651                         }
2652                         if (rwc->done && rwc->done(page)) {
2653                                 anon_vma_unlock_read(anon_vma);
2654                                 return;
2655                         }
2656                 }
2657                 anon_vma_unlock_read(anon_vma);
2658         }
2659         if (!search_new_forks++)
2660                 goto again;
2661 }
2662
2663 #ifdef CONFIG_MIGRATION
2664 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2665 {
2666         struct stable_node *stable_node;
2667
2668         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2669         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2670         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2671
2672         stable_node = page_stable_node(newpage);
2673         if (stable_node) {
2674                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2675                 stable_node->kpfn = page_to_pfn(newpage);
2676                 /*
2677                  * newpage->mapping was set in advance; now we need smp_wmb()
2678                  * to make sure that the new stable_node->kpfn is visible
2679                  * to get_ksm_page() before it can see that oldpage->mapping
2680                  * has gone stale (or that PageSwapCache has been cleared).
2681                  */
2682                 smp_wmb();
2683                 set_page_stable_node(oldpage, NULL);
2684         }
2685 }
2686 #endif /* CONFIG_MIGRATION */
2687
2688 #ifdef CONFIG_MEMORY_HOTREMOVE
2689 static void wait_while_offlining(void)
2690 {
2691         while (ksm_run & KSM_RUN_OFFLINE) {
2692                 mutex_unlock(&ksm_thread_mutex);
2693                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2694                             TASK_UNINTERRUPTIBLE);
2695                 mutex_lock(&ksm_thread_mutex);
2696         }
2697 }
2698
2699 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2700                                          unsigned long start_pfn,
2701                                          unsigned long end_pfn)
2702 {
2703         if (stable_node->kpfn >= start_pfn &&
2704             stable_node->kpfn < end_pfn) {
2705                 /*
2706                  * Don't get_ksm_page, page has already gone:
2707                  * which is why we keep kpfn instead of page*
2708                  */
2709                 remove_node_from_stable_tree(stable_node);
2710                 return true;
2711         }
2712         return false;
2713 }
2714
2715 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2716                                            unsigned long start_pfn,
2717                                            unsigned long end_pfn,
2718                                            struct rb_root *root)
2719 {
2720         struct stable_node *dup;
2721         struct hlist_node *hlist_safe;
2722
2723         if (!is_stable_node_chain(stable_node)) {
2724                 VM_BUG_ON(is_stable_node_dup(stable_node));
2725                 return stable_node_dup_remove_range(stable_node, start_pfn,
2726                                                     end_pfn);
2727         }
2728
2729         hlist_for_each_entry_safe(dup, hlist_safe,
2730                                   &stable_node->hlist, hlist_dup) {
2731                 VM_BUG_ON(!is_stable_node_dup(dup));
2732                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2733         }
2734         if (hlist_empty(&stable_node->hlist)) {
2735                 free_stable_node_chain(stable_node, root);
2736                 return true; /* notify caller that tree was rebalanced */
2737         } else
2738                 return false;
2739 }
2740
2741 static void ksm_check_stable_tree(unsigned long start_pfn,
2742                                   unsigned long end_pfn)
2743 {
2744         struct stable_node *stable_node, *next;
2745         struct rb_node *node;
2746         int nid;
2747
2748         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2749                 node = rb_first(root_stable_tree + nid);
2750                 while (node) {
2751                         stable_node = rb_entry(node, struct stable_node, node);
2752                         if (stable_node_chain_remove_range(stable_node,
2753                                                            start_pfn, end_pfn,
2754                                                            root_stable_tree +
2755                                                            nid))
2756                                 node = rb_first(root_stable_tree + nid);
2757                         else
2758                                 node = rb_next(node);
2759                         cond_resched();
2760                 }
2761         }
2762         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2763                 if (stable_node->kpfn >= start_pfn &&
2764                     stable_node->kpfn < end_pfn)
2765                         remove_node_from_stable_tree(stable_node);
2766                 cond_resched();
2767         }
2768 }
2769
2770 static int ksm_memory_callback(struct notifier_block *self,
2771                                unsigned long action, void *arg)
2772 {
2773         struct memory_notify *mn = arg;
2774
2775         switch (action) {
2776         case MEM_GOING_OFFLINE:
2777                 /*
2778                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2779                  * and remove_all_stable_nodes() while memory is going offline:
2780                  * it is unsafe for them to touch the stable tree at this time.
2781                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2782                  * which do not need the ksm_thread_mutex are all safe.
2783                  */
2784                 mutex_lock(&ksm_thread_mutex);
2785                 ksm_run |= KSM_RUN_OFFLINE;
2786                 mutex_unlock(&ksm_thread_mutex);
2787                 break;
2788
2789         case MEM_OFFLINE:
2790                 /*
2791                  * Most of the work is done by page migration; but there might
2792                  * be a few stable_nodes left over, still pointing to struct
2793                  * pages which have been offlined: prune those from the tree,
2794                  * otherwise get_ksm_page() might later try to access a
2795                  * non-existent struct page.
2796                  */
2797                 ksm_check_stable_tree(mn->start_pfn,
2798                                       mn->start_pfn + mn->nr_pages);
2799                 fallthrough;
2800         case MEM_CANCEL_OFFLINE:
2801                 mutex_lock(&ksm_thread_mutex);
2802                 ksm_run &= ~KSM_RUN_OFFLINE;
2803                 mutex_unlock(&ksm_thread_mutex);
2804
2805                 smp_mb();       /* wake_up_bit advises this */
2806                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2807                 break;
2808         }
2809         return NOTIFY_OK;
2810 }
2811 #else
2812 static void wait_while_offlining(void)
2813 {
2814 }
2815 #endif /* CONFIG_MEMORY_HOTREMOVE */
2816
2817 #ifdef CONFIG_SYSFS
2818 /*
2819  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2820  */
2821
2822 #define KSM_ATTR_RO(_name) \
2823         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2824 #define KSM_ATTR(_name) \
2825         static struct kobj_attribute _name##_attr = \
2826                 __ATTR(_name, 0644, _name##_show, _name##_store)
2827
2828 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2829                                     struct kobj_attribute *attr, char *buf)
2830 {
2831         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2832 }
2833
2834 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2835                                      struct kobj_attribute *attr,
2836                                      const char *buf, size_t count)
2837 {
2838         unsigned int msecs;
2839         int err;
2840
2841         err = kstrtouint(buf, 10, &msecs);
2842         if (err)
2843                 return -EINVAL;
2844
2845         ksm_thread_sleep_millisecs = msecs;
2846         wake_up_interruptible(&ksm_iter_wait);
2847
2848         return count;
2849 }
2850 KSM_ATTR(sleep_millisecs);
2851
2852 static ssize_t pages_to_scan_show(struct kobject *kobj,
2853                                   struct kobj_attribute *attr, char *buf)
2854 {
2855         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2856 }
2857
2858 static ssize_t pages_to_scan_store(struct kobject *kobj,
2859                                    struct kobj_attribute *attr,
2860                                    const char *buf, size_t count)
2861 {
2862         unsigned int nr_pages;
2863         int err;
2864
2865         err = kstrtouint(buf, 10, &nr_pages);
2866         if (err)
2867                 return -EINVAL;
2868
2869         ksm_thread_pages_to_scan = nr_pages;
2870
2871         return count;
2872 }
2873 KSM_ATTR(pages_to_scan);
2874
2875 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2876                         char *buf)
2877 {
2878         return sysfs_emit(buf, "%lu\n", ksm_run);
2879 }
2880
2881 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2882                          const char *buf, size_t count)
2883 {
2884         unsigned int flags;
2885         int err;
2886
2887         err = kstrtouint(buf, 10, &flags);
2888         if (err)
2889                 return -EINVAL;
2890         if (flags > KSM_RUN_UNMERGE)
2891                 return -EINVAL;
2892
2893         /*
2894          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2895          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2896          * breaking COW to free the pages_shared (but leaves mm_slots
2897          * on the list for when ksmd may be set running again).
2898          */
2899
2900         mutex_lock(&ksm_thread_mutex);
2901         wait_while_offlining();
2902         if (ksm_run != flags) {
2903                 ksm_run = flags;
2904                 if (flags & KSM_RUN_UNMERGE) {
2905                         set_current_oom_origin();
2906                         err = unmerge_and_remove_all_rmap_items();
2907                         clear_current_oom_origin();
2908                         if (err) {
2909                                 ksm_run = KSM_RUN_STOP;
2910                                 count = err;
2911                         }
2912                 }
2913         }
2914         mutex_unlock(&ksm_thread_mutex);
2915
2916         if (flags & KSM_RUN_MERGE)
2917                 wake_up_interruptible(&ksm_thread_wait);
2918
2919         return count;
2920 }
2921 KSM_ATTR(run);
2922
2923 #ifdef CONFIG_NUMA
2924 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2925                                        struct kobj_attribute *attr, char *buf)
2926 {
2927         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2928 }
2929
2930 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2931                                    struct kobj_attribute *attr,
2932                                    const char *buf, size_t count)
2933 {
2934         int err;
2935         unsigned long knob;
2936
2937         err = kstrtoul(buf, 10, &knob);
2938         if (err)
2939                 return err;
2940         if (knob > 1)
2941                 return -EINVAL;
2942
2943         mutex_lock(&ksm_thread_mutex);
2944         wait_while_offlining();
2945         if (ksm_merge_across_nodes != knob) {
2946                 if (ksm_pages_shared || remove_all_stable_nodes())
2947                         err = -EBUSY;
2948                 else if (root_stable_tree == one_stable_tree) {
2949                         struct rb_root *buf;
2950                         /*
2951                          * This is the first time that we switch away from the
2952                          * default of merging across nodes: must now allocate
2953                          * a buffer to hold as many roots as may be needed.
2954                          * Allocate stable and unstable together:
2955                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2956                          */
2957                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2958                                       GFP_KERNEL);
2959                         /* Let us assume that RB_ROOT is NULL is zero */
2960                         if (!buf)
2961                                 err = -ENOMEM;
2962                         else {
2963                                 root_stable_tree = buf;
2964                                 root_unstable_tree = buf + nr_node_ids;
2965                                 /* Stable tree is empty but not the unstable */
2966                                 root_unstable_tree[0] = one_unstable_tree[0];
2967                         }
2968                 }
2969                 if (!err) {
2970                         ksm_merge_across_nodes = knob;
2971                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2972                 }
2973         }
2974         mutex_unlock(&ksm_thread_mutex);
2975
2976         return err ? err : count;
2977 }
2978 KSM_ATTR(merge_across_nodes);
2979 #endif
2980
2981 static ssize_t use_zero_pages_show(struct kobject *kobj,
2982                                    struct kobj_attribute *attr, char *buf)
2983 {
2984         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2985 }
2986 static ssize_t use_zero_pages_store(struct kobject *kobj,
2987                                    struct kobj_attribute *attr,
2988                                    const char *buf, size_t count)
2989 {
2990         int err;
2991         bool value;
2992
2993         err = kstrtobool(buf, &value);
2994         if (err)
2995                 return -EINVAL;
2996
2997         ksm_use_zero_pages = value;
2998
2999         return count;
3000 }
3001 KSM_ATTR(use_zero_pages);
3002
3003 static ssize_t max_page_sharing_show(struct kobject *kobj,
3004                                      struct kobj_attribute *attr, char *buf)
3005 {
3006         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3007 }
3008
3009 static ssize_t max_page_sharing_store(struct kobject *kobj,
3010                                       struct kobj_attribute *attr,
3011                                       const char *buf, size_t count)
3012 {
3013         int err;
3014         int knob;
3015
3016         err = kstrtoint(buf, 10, &knob);
3017         if (err)
3018                 return err;
3019         /*
3020          * When a KSM page is created it is shared by 2 mappings. This
3021          * being a signed comparison, it implicitly verifies it's not
3022          * negative.
3023          */
3024         if (knob < 2)
3025                 return -EINVAL;
3026
3027         if (READ_ONCE(ksm_max_page_sharing) == knob)
3028                 return count;
3029
3030         mutex_lock(&ksm_thread_mutex);
3031         wait_while_offlining();
3032         if (ksm_max_page_sharing != knob) {
3033                 if (ksm_pages_shared || remove_all_stable_nodes())
3034                         err = -EBUSY;
3035                 else
3036                         ksm_max_page_sharing = knob;
3037         }
3038         mutex_unlock(&ksm_thread_mutex);
3039
3040         return err ? err : count;
3041 }
3042 KSM_ATTR(max_page_sharing);
3043
3044 static ssize_t pages_shared_show(struct kobject *kobj,
3045                                  struct kobj_attribute *attr, char *buf)
3046 {
3047         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3048 }
3049 KSM_ATTR_RO(pages_shared);
3050
3051 static ssize_t pages_sharing_show(struct kobject *kobj,
3052                                   struct kobj_attribute *attr, char *buf)
3053 {
3054         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3055 }
3056 KSM_ATTR_RO(pages_sharing);
3057
3058 static ssize_t pages_unshared_show(struct kobject *kobj,
3059                                    struct kobj_attribute *attr, char *buf)
3060 {
3061         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3062 }
3063 KSM_ATTR_RO(pages_unshared);
3064
3065 static ssize_t pages_volatile_show(struct kobject *kobj,
3066                                    struct kobj_attribute *attr, char *buf)
3067 {
3068         long ksm_pages_volatile;
3069
3070         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3071                                 - ksm_pages_sharing - ksm_pages_unshared;
3072         /*
3073          * It was not worth any locking to calculate that statistic,
3074          * but it might therefore sometimes be negative: conceal that.
3075          */
3076         if (ksm_pages_volatile < 0)
3077                 ksm_pages_volatile = 0;
3078         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3079 }
3080 KSM_ATTR_RO(pages_volatile);
3081
3082 static ssize_t stable_node_dups_show(struct kobject *kobj,
3083                                      struct kobj_attribute *attr, char *buf)
3084 {
3085         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3086 }
3087 KSM_ATTR_RO(stable_node_dups);
3088
3089 static ssize_t stable_node_chains_show(struct kobject *kobj,
3090                                        struct kobj_attribute *attr, char *buf)
3091 {
3092         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3093 }
3094 KSM_ATTR_RO(stable_node_chains);
3095
3096 static ssize_t
3097 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3098                                         struct kobj_attribute *attr,
3099                                         char *buf)
3100 {
3101         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3102 }
3103
3104 static ssize_t
3105 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3106                                          struct kobj_attribute *attr,
3107                                          const char *buf, size_t count)
3108 {
3109         unsigned long msecs;
3110         int err;
3111
3112         err = kstrtoul(buf, 10, &msecs);
3113         if (err || msecs > UINT_MAX)
3114                 return -EINVAL;
3115
3116         ksm_stable_node_chains_prune_millisecs = msecs;
3117
3118         return count;
3119 }
3120 KSM_ATTR(stable_node_chains_prune_millisecs);
3121
3122 static ssize_t full_scans_show(struct kobject *kobj,
3123                                struct kobj_attribute *attr, char *buf)
3124 {
3125         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3126 }
3127 KSM_ATTR_RO(full_scans);
3128
3129 static struct attribute *ksm_attrs[] = {
3130         &sleep_millisecs_attr.attr,
3131         &pages_to_scan_attr.attr,
3132         &run_attr.attr,
3133         &pages_shared_attr.attr,
3134         &pages_sharing_attr.attr,
3135         &pages_unshared_attr.attr,
3136         &pages_volatile_attr.attr,
3137         &full_scans_attr.attr,
3138 #ifdef CONFIG_NUMA
3139         &merge_across_nodes_attr.attr,
3140 #endif
3141         &max_page_sharing_attr.attr,
3142         &stable_node_chains_attr.attr,
3143         &stable_node_dups_attr.attr,
3144         &stable_node_chains_prune_millisecs_attr.attr,
3145         &use_zero_pages_attr.attr,
3146         NULL,
3147 };
3148
3149 static const struct attribute_group ksm_attr_group = {
3150         .attrs = ksm_attrs,
3151         .name = "ksm",
3152 };
3153 #endif /* CONFIG_SYSFS */
3154
3155 static int __init ksm_init(void)
3156 {
3157         struct task_struct *ksm_thread;
3158         int err;
3159
3160         /* The correct value depends on page size and endianness */
3161         zero_checksum = calc_checksum(ZERO_PAGE(0));
3162         /* Default to false for backwards compatibility */
3163         ksm_use_zero_pages = false;
3164
3165         err = ksm_slab_init();
3166         if (err)
3167                 goto out;
3168
3169         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3170         if (IS_ERR(ksm_thread)) {
3171                 pr_err("ksm: creating kthread failed\n");
3172                 err = PTR_ERR(ksm_thread);
3173                 goto out_free;
3174         }
3175
3176 #ifdef CONFIG_SYSFS
3177         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3178         if (err) {
3179                 pr_err("ksm: register sysfs failed\n");
3180                 kthread_stop(ksm_thread);
3181                 goto out_free;
3182         }
3183 #else
3184         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3185
3186 #endif /* CONFIG_SYSFS */
3187
3188 #ifdef CONFIG_MEMORY_HOTREMOVE
3189         /* There is no significance to this priority 100 */
3190         hotplug_memory_notifier(ksm_memory_callback, 100);
3191 #endif
3192         return 0;
3193
3194 out_free:
3195         ksm_slab_free();
3196 out:
3197         return err;
3198 }
3199 subsys_initcall(ksm_init);