x86: add tizen_qemu_x86_defconfig & tizen_qemu_x86_64_defconfig
[platform/kernel/linux-rpi.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15 #ifndef CONFIG_LKSM
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same struct stable_node structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node link;
123         struct list_head mm_list;
124         struct rmap_item *rmap_list;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138         struct mm_slot *mm_slot;
139         unsigned long address;
140         struct rmap_item **rmap_list;
141         unsigned long seqnr;
142 };
143
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157         union {
158                 struct rb_node node;    /* when node of stable tree */
159                 struct {                /* when listed for migration */
160                         struct list_head *head;
161                         struct {
162                                 struct hlist_node hlist_dup;
163                                 struct list_head list;
164                         };
165                 };
166         };
167         struct hlist_head hlist;
168         union {
169                 unsigned long kpfn;
170                 unsigned long chain_prune_time;
171         };
172         /*
173          * STABLE_NODE_CHAIN can be any negative number in
174          * rmap_hlist_len negative range, but better not -1 to be able
175          * to reliably detect underflows.
176          */
177 #define STABLE_NODE_CHAIN -1024
178         int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180         int nid;
181 #endif
182 };
183
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197         struct rmap_item *rmap_list;
198         union {
199                 struct anon_vma *anon_vma;      /* when stable */
200 #ifdef CONFIG_NUMA
201                 int nid;                /* when node of unstable tree */
202 #endif
203         };
204         struct mm_struct *mm;
205         unsigned long address;          /* + low bits used for flags below */
206         unsigned int oldchecksum;       /* when unstable */
207         union {
208                 struct rb_node node;    /* when node of unstable tree */
209                 struct {                /* when listed from stable tree */
210                         struct stable_node *head;
211                         struct hlist_node hlist;
212                 };
213         };
214 };
215
216 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
218 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
219
220 /* The stable and unstable tree heads */
221 static struct rb_root one_stable_tree[1] = { RB_ROOT };
222 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223 static struct rb_root *root_stable_tree = one_stable_tree;
224 static struct rb_root *root_unstable_tree = one_unstable_tree;
225
226 /* Recently migrated nodes of stable tree, pending proper placement */
227 static LIST_HEAD(migrate_nodes);
228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
229
230 #define MM_SLOTS_HASH_BITS 10
231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
232
233 static struct mm_slot ksm_mm_head = {
234         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
235 };
236 static struct ksm_scan ksm_scan = {
237         .mm_slot = &ksm_mm_head,
238 };
239
240 static struct kmem_cache *rmap_item_cache;
241 static struct kmem_cache *stable_node_cache;
242 static struct kmem_cache *mm_slot_cache;
243
244 /* The number of nodes in the stable tree */
245 static unsigned long ksm_pages_shared;
246
247 /* The number of page slots additionally sharing those nodes */
248 static unsigned long ksm_pages_sharing;
249
250 /* The number of nodes in the unstable tree */
251 static unsigned long ksm_pages_unshared;
252
253 /* The number of rmap_items in use: to calculate pages_volatile */
254 static unsigned long ksm_rmap_items;
255
256 /* The number of stable_node chains */
257 static unsigned long ksm_stable_node_chains;
258
259 /* The number of stable_node dups linked to the stable_node chains */
260 static unsigned long ksm_stable_node_dups;
261
262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
264
265 /* Maximum number of page slots sharing a stable node */
266 static int ksm_max_page_sharing = 256;
267
268 /* Number of pages ksmd should scan in one batch */
269 static unsigned int ksm_thread_pages_to_scan = 100;
270
271 /* Milliseconds ksmd should sleep between batches */
272 static unsigned int ksm_thread_sleep_millisecs = 20;
273
274 /* Checksum of an empty (zeroed) page */
275 static unsigned int zero_checksum __read_mostly;
276
277 /* Whether to merge empty (zeroed) pages with actual zero pages */
278 static bool ksm_use_zero_pages __read_mostly;
279
280 #ifdef CONFIG_NUMA
281 /* Zeroed when merging across nodes is not allowed */
282 static unsigned int ksm_merge_across_nodes = 1;
283 static int ksm_nr_node_ids = 1;
284 #else
285 #define ksm_merge_across_nodes  1U
286 #define ksm_nr_node_ids         1
287 #endif
288
289 #define KSM_RUN_STOP    0
290 #define KSM_RUN_MERGE   1
291 #define KSM_RUN_UNMERGE 2
292 #define KSM_RUN_OFFLINE 4
293 static unsigned long ksm_run = KSM_RUN_STOP;
294 static void wait_while_offlining(void);
295
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
298 static DEFINE_MUTEX(ksm_thread_mutex);
299 static DEFINE_SPINLOCK(ksm_mmlist_lock);
300
301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302                 sizeof(struct __struct), __alignof__(struct __struct),\
303                 (__flags), NULL)
304
305 static int __init ksm_slab_init(void)
306 {
307         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308         if (!rmap_item_cache)
309                 goto out;
310
311         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312         if (!stable_node_cache)
313                 goto out_free1;
314
315         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
316         if (!mm_slot_cache)
317                 goto out_free2;
318
319         return 0;
320
321 out_free2:
322         kmem_cache_destroy(stable_node_cache);
323 out_free1:
324         kmem_cache_destroy(rmap_item_cache);
325 out:
326         return -ENOMEM;
327 }
328
329 static void __init ksm_slab_free(void)
330 {
331         kmem_cache_destroy(mm_slot_cache);
332         kmem_cache_destroy(stable_node_cache);
333         kmem_cache_destroy(rmap_item_cache);
334         mm_slot_cache = NULL;
335 }
336
337 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
338 {
339         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
340 }
341
342 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
343 {
344         return dup->head == STABLE_NODE_DUP_HEAD;
345 }
346
347 static inline void stable_node_chain_add_dup(struct stable_node *dup,
348                                              struct stable_node *chain)
349 {
350         VM_BUG_ON(is_stable_node_dup(dup));
351         dup->head = STABLE_NODE_DUP_HEAD;
352         VM_BUG_ON(!is_stable_node_chain(chain));
353         hlist_add_head(&dup->hlist_dup, &chain->hlist);
354         ksm_stable_node_dups++;
355 }
356
357 static inline void __stable_node_dup_del(struct stable_node *dup)
358 {
359         VM_BUG_ON(!is_stable_node_dup(dup));
360         hlist_del(&dup->hlist_dup);
361         ksm_stable_node_dups--;
362 }
363
364 static inline void stable_node_dup_del(struct stable_node *dup)
365 {
366         VM_BUG_ON(is_stable_node_chain(dup));
367         if (is_stable_node_dup(dup))
368                 __stable_node_dup_del(dup);
369         else
370                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371 #ifdef CONFIG_DEBUG_VM
372         dup->head = NULL;
373 #endif
374 }
375
376 static inline struct rmap_item *alloc_rmap_item(void)
377 {
378         struct rmap_item *rmap_item;
379
380         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381                                                 __GFP_NORETRY | __GFP_NOWARN);
382         if (rmap_item)
383                 ksm_rmap_items++;
384         return rmap_item;
385 }
386
387 static inline void free_rmap_item(struct rmap_item *rmap_item)
388 {
389         ksm_rmap_items--;
390         rmap_item->mm = NULL;   /* debug safety */
391         kmem_cache_free(rmap_item_cache, rmap_item);
392 }
393
394 static inline struct stable_node *alloc_stable_node(void)
395 {
396         /*
397          * The allocation can take too long with GFP_KERNEL when memory is under
398          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
399          * grants access to memory reserves, helping to avoid this problem.
400          */
401         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
402 }
403
404 static inline void free_stable_node(struct stable_node *stable_node)
405 {
406         VM_BUG_ON(stable_node->rmap_hlist_len &&
407                   !is_stable_node_chain(stable_node));
408         kmem_cache_free(stable_node_cache, stable_node);
409 }
410
411 static inline struct mm_slot *alloc_mm_slot(void)
412 {
413         if (!mm_slot_cache)     /* initialization failed */
414                 return NULL;
415         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
416 }
417
418 static inline void free_mm_slot(struct mm_slot *mm_slot)
419 {
420         kmem_cache_free(mm_slot_cache, mm_slot);
421 }
422
423 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
424 {
425         struct mm_slot *slot;
426
427         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
428                 if (slot->mm == mm)
429                         return slot;
430
431         return NULL;
432 }
433
434 static void insert_to_mm_slots_hash(struct mm_struct *mm,
435                                     struct mm_slot *mm_slot)
436 {
437         mm_slot->mm = mm;
438         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
439 }
440
441 /*
442  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443  * page tables after it has passed through ksm_exit() - which, if necessary,
444  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
445  * a special flag: they can just back out as soon as mm_users goes to zero.
446  * ksm_test_exit() is used throughout to make this test for exit: in some
447  * places for correctness, in some places just to avoid unnecessary work.
448  */
449 static inline bool ksm_test_exit(struct mm_struct *mm)
450 {
451         return atomic_read(&mm->mm_users) == 0;
452 }
453
454 /*
455  * We use break_ksm to break COW on a ksm page: it's a stripped down
456  *
457  *      if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
458  *              put_page(page);
459  *
460  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461  * in case the application has unmapped and remapped mm,addr meanwhile.
462  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
463  * mmap of /dev/mem, where we would not want to touch it.
464  *
465  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466  * of the process that owns 'vma'.  We also do not want to enforce
467  * protection keys here anyway.
468  */
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
470 {
471         struct page *page;
472         vm_fault_t ret = 0;
473
474         do {
475                 cond_resched();
476                 page = follow_page(vma, addr,
477                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
478                 if (IS_ERR_OR_NULL(page))
479                         break;
480                 if (PageKsm(page))
481                         ret = handle_mm_fault(vma, addr,
482                                               FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
483                                               NULL);
484                 else
485                         ret = VM_FAULT_WRITE;
486                 put_page(page);
487         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488         /*
489          * We must loop because handle_mm_fault() may back out if there's
490          * any difficulty e.g. if pte accessed bit gets updated concurrently.
491          *
492          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493          * COW has been broken, even if the vma does not permit VM_WRITE;
494          * but note that a concurrent fault might break PageKsm for us.
495          *
496          * VM_FAULT_SIGBUS could occur if we race with truncation of the
497          * backing file, which also invalidates anonymous pages: that's
498          * okay, that truncation will have unmapped the PageKsm for us.
499          *
500          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502          * current task has TIF_MEMDIE set, and will be OOM killed on return
503          * to user; and ksmd, having no mm, would never be chosen for that.
504          *
505          * But if the mm is in a limited mem_cgroup, then the fault may fail
506          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507          * even ksmd can fail in this way - though it's usually breaking ksm
508          * just to undo a merge it made a moment before, so unlikely to oom.
509          *
510          * That's a pity: we might therefore have more kernel pages allocated
511          * than we're counting as nodes in the stable tree; but ksm_do_scan
512          * will retry to break_cow on each pass, so should recover the page
513          * in due course.  The important thing is to not let VM_MERGEABLE
514          * be cleared while any such pages might remain in the area.
515          */
516         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520                 unsigned long addr)
521 {
522         struct vm_area_struct *vma;
523         if (ksm_test_exit(mm))
524                 return NULL;
525         vma = vma_lookup(mm, addr);
526         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
527                 return NULL;
528         return vma;
529 }
530
531 static void break_cow(struct rmap_item *rmap_item)
532 {
533         struct mm_struct *mm = rmap_item->mm;
534         unsigned long addr = rmap_item->address;
535         struct vm_area_struct *vma;
536
537         /*
538          * It is not an accident that whenever we want to break COW
539          * to undo, we also need to drop a reference to the anon_vma.
540          */
541         put_anon_vma(rmap_item->anon_vma);
542
543         mmap_read_lock(mm);
544         vma = find_mergeable_vma(mm, addr);
545         if (vma)
546                 break_ksm(vma, addr);
547         mmap_read_unlock(mm);
548 }
549
550 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
551 {
552         struct mm_struct *mm = rmap_item->mm;
553         unsigned long addr = rmap_item->address;
554         struct vm_area_struct *vma;
555         struct page *page;
556
557         mmap_read_lock(mm);
558         vma = find_mergeable_vma(mm, addr);
559         if (!vma)
560                 goto out;
561
562         page = follow_page(vma, addr, FOLL_GET);
563         if (IS_ERR_OR_NULL(page))
564                 goto out;
565         if (PageAnon(page)) {
566                 flush_anon_page(vma, page, addr);
567                 flush_dcache_page(page);
568         } else {
569                 put_page(page);
570 out:
571                 page = NULL;
572         }
573         mmap_read_unlock(mm);
574         return page;
575 }
576
577 /*
578  * This helper is used for getting right index into array of tree roots.
579  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581  * every node has its own stable and unstable tree.
582  */
583 static inline int get_kpfn_nid(unsigned long kpfn)
584 {
585         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
586 }
587
588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589                                                    struct rb_root *root)
590 {
591         struct stable_node *chain = alloc_stable_node();
592         VM_BUG_ON(is_stable_node_chain(dup));
593         if (likely(chain)) {
594                 INIT_HLIST_HEAD(&chain->hlist);
595                 chain->chain_prune_time = jiffies;
596                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598                 chain->nid = NUMA_NO_NODE; /* debug */
599 #endif
600                 ksm_stable_node_chains++;
601
602                 /*
603                  * Put the stable node chain in the first dimension of
604                  * the stable tree and at the same time remove the old
605                  * stable node.
606                  */
607                 rb_replace_node(&dup->node, &chain->node, root);
608
609                 /*
610                  * Move the old stable node to the second dimension
611                  * queued in the hlist_dup. The invariant is that all
612                  * dup stable_nodes in the chain->hlist point to pages
613                  * that are write protected and have the exact same
614                  * content.
615                  */
616                 stable_node_chain_add_dup(dup, chain);
617         }
618         return chain;
619 }
620
621 static inline void free_stable_node_chain(struct stable_node *chain,
622                                           struct rb_root *root)
623 {
624         rb_erase(&chain->node, root);
625         free_stable_node(chain);
626         ksm_stable_node_chains--;
627 }
628
629 static void remove_node_from_stable_tree(struct stable_node *stable_node)
630 {
631         struct rmap_item *rmap_item;
632
633         /* check it's not STABLE_NODE_CHAIN or negative */
634         BUG_ON(stable_node->rmap_hlist_len < 0);
635
636         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
637                 if (rmap_item->hlist.next)
638                         ksm_pages_sharing--;
639                 else
640                         ksm_pages_shared--;
641                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
642                 stable_node->rmap_hlist_len--;
643                 put_anon_vma(rmap_item->anon_vma);
644                 rmap_item->address &= PAGE_MASK;
645                 cond_resched();
646         }
647
648         /*
649          * We need the second aligned pointer of the migrate_nodes
650          * list_head to stay clear from the rb_parent_color union
651          * (aligned and different than any node) and also different
652          * from &migrate_nodes. This will verify that future list.h changes
653          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
654          */
655         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
656         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
657
658         if (stable_node->head == &migrate_nodes)
659                 list_del(&stable_node->list);
660         else
661                 stable_node_dup_del(stable_node);
662         free_stable_node(stable_node);
663 }
664
665 enum get_ksm_page_flags {
666         GET_KSM_PAGE_NOLOCK,
667         GET_KSM_PAGE_LOCK,
668         GET_KSM_PAGE_TRYLOCK
669 };
670
671 /*
672  * get_ksm_page: checks if the page indicated by the stable node
673  * is still its ksm page, despite having held no reference to it.
674  * In which case we can trust the content of the page, and it
675  * returns the gotten page; but if the page has now been zapped,
676  * remove the stale node from the stable tree and return NULL.
677  * But beware, the stable node's page might be being migrated.
678  *
679  * You would expect the stable_node to hold a reference to the ksm page.
680  * But if it increments the page's count, swapping out has to wait for
681  * ksmd to come around again before it can free the page, which may take
682  * seconds or even minutes: much too unresponsive.  So instead we use a
683  * "keyhole reference": access to the ksm page from the stable node peeps
684  * out through its keyhole to see if that page still holds the right key,
685  * pointing back to this stable node.  This relies on freeing a PageAnon
686  * page to reset its page->mapping to NULL, and relies on no other use of
687  * a page to put something that might look like our key in page->mapping.
688  * is on its way to being freed; but it is an anomaly to bear in mind.
689  */
690 static struct page *get_ksm_page(struct stable_node *stable_node,
691                                  enum get_ksm_page_flags flags)
692 {
693         struct page *page;
694         void *expected_mapping;
695         unsigned long kpfn;
696
697         expected_mapping = (void *)((unsigned long)stable_node |
698                                         PAGE_MAPPING_KSM);
699 again:
700         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
701         page = pfn_to_page(kpfn);
702         if (READ_ONCE(page->mapping) != expected_mapping)
703                 goto stale;
704
705         /*
706          * We cannot do anything with the page while its refcount is 0.
707          * Usually 0 means free, or tail of a higher-order page: in which
708          * case this node is no longer referenced, and should be freed;
709          * however, it might mean that the page is under page_ref_freeze().
710          * The __remove_mapping() case is easy, again the node is now stale;
711          * the same is in reuse_ksm_page() case; but if page is swapcache
712          * in migrate_page_move_mapping(), it might still be our page,
713          * in which case it's essential to keep the node.
714          */
715         while (!get_page_unless_zero(page)) {
716                 /*
717                  * Another check for page->mapping != expected_mapping would
718                  * work here too.  We have chosen the !PageSwapCache test to
719                  * optimize the common case, when the page is or is about to
720                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
721                  * in the ref_freeze section of __remove_mapping(); but Anon
722                  * page->mapping reset to NULL later, in free_pages_prepare().
723                  */
724                 if (!PageSwapCache(page))
725                         goto stale;
726                 cpu_relax();
727         }
728
729         if (READ_ONCE(page->mapping) != expected_mapping) {
730                 put_page(page);
731                 goto stale;
732         }
733
734         if (flags == GET_KSM_PAGE_TRYLOCK) {
735                 if (!trylock_page(page)) {
736                         put_page(page);
737                         return ERR_PTR(-EBUSY);
738                 }
739         } else if (flags == GET_KSM_PAGE_LOCK)
740                 lock_page(page);
741
742         if (flags != GET_KSM_PAGE_NOLOCK) {
743                 if (READ_ONCE(page->mapping) != expected_mapping) {
744                         unlock_page(page);
745                         put_page(page);
746                         goto stale;
747                 }
748         }
749         return page;
750
751 stale:
752         /*
753          * We come here from above when page->mapping or !PageSwapCache
754          * suggests that the node is stale; but it might be under migration.
755          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
756          * before checking whether node->kpfn has been changed.
757          */
758         smp_rmb();
759         if (READ_ONCE(stable_node->kpfn) != kpfn)
760                 goto again;
761         remove_node_from_stable_tree(stable_node);
762         return NULL;
763 }
764
765 /*
766  * Removing rmap_item from stable or unstable tree.
767  * This function will clean the information from the stable/unstable tree.
768  */
769 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
770 {
771         if (rmap_item->address & STABLE_FLAG) {
772                 struct stable_node *stable_node;
773                 struct page *page;
774
775                 stable_node = rmap_item->head;
776                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
777                 if (!page)
778                         goto out;
779
780                 hlist_del(&rmap_item->hlist);
781                 unlock_page(page);
782                 put_page(page);
783
784                 if (!hlist_empty(&stable_node->hlist))
785                         ksm_pages_sharing--;
786                 else
787                         ksm_pages_shared--;
788                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
789                 stable_node->rmap_hlist_len--;
790
791                 put_anon_vma(rmap_item->anon_vma);
792                 rmap_item->head = NULL;
793                 rmap_item->address &= PAGE_MASK;
794
795         } else if (rmap_item->address & UNSTABLE_FLAG) {
796                 unsigned char age;
797                 /*
798                  * Usually ksmd can and must skip the rb_erase, because
799                  * root_unstable_tree was already reset to RB_ROOT.
800                  * But be careful when an mm is exiting: do the rb_erase
801                  * if this rmap_item was inserted by this scan, rather
802                  * than left over from before.
803                  */
804                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
805                 BUG_ON(age > 1);
806                 if (!age)
807                         rb_erase(&rmap_item->node,
808                                  root_unstable_tree + NUMA(rmap_item->nid));
809                 ksm_pages_unshared--;
810                 rmap_item->address &= PAGE_MASK;
811         }
812 out:
813         cond_resched();         /* we're called from many long loops */
814 }
815
816 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
817 {
818         while (*rmap_list) {
819                 struct rmap_item *rmap_item = *rmap_list;
820                 *rmap_list = rmap_item->rmap_list;
821                 remove_rmap_item_from_tree(rmap_item);
822                 free_rmap_item(rmap_item);
823         }
824 }
825
826 /*
827  * Though it's very tempting to unmerge rmap_items from stable tree rather
828  * than check every pte of a given vma, the locking doesn't quite work for
829  * that - an rmap_item is assigned to the stable tree after inserting ksm
830  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
831  * rmap_items from parent to child at fork time (so as not to waste time
832  * if exit comes before the next scan reaches it).
833  *
834  * Similarly, although we'd like to remove rmap_items (so updating counts
835  * and freeing memory) when unmerging an area, it's easier to leave that
836  * to the next pass of ksmd - consider, for example, how ksmd might be
837  * in cmp_and_merge_page on one of the rmap_items we would be removing.
838  */
839 static int unmerge_ksm_pages(struct vm_area_struct *vma,
840                              unsigned long start, unsigned long end)
841 {
842         unsigned long addr;
843         int err = 0;
844
845         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
846                 if (ksm_test_exit(vma->vm_mm))
847                         break;
848                 if (signal_pending(current))
849                         err = -ERESTARTSYS;
850                 else
851                         err = break_ksm(vma, addr);
852         }
853         return err;
854 }
855
856 static inline struct stable_node *page_stable_node(struct page *page)
857 {
858         return PageKsm(page) ? page_rmapping(page) : NULL;
859 }
860
861 static inline void set_page_stable_node(struct page *page,
862                                         struct stable_node *stable_node)
863 {
864         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
865 }
866
867 #ifdef CONFIG_SYSFS
868 /*
869  * Only called through the sysfs control interface:
870  */
871 static int remove_stable_node(struct stable_node *stable_node)
872 {
873         struct page *page;
874         int err;
875
876         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
877         if (!page) {
878                 /*
879                  * get_ksm_page did remove_node_from_stable_tree itself.
880                  */
881                 return 0;
882         }
883
884         /*
885          * Page could be still mapped if this races with __mmput() running in
886          * between ksm_exit() and exit_mmap(). Just refuse to let
887          * merge_across_nodes/max_page_sharing be switched.
888          */
889         err = -EBUSY;
890         if (!page_mapped(page)) {
891                 /*
892                  * The stable node did not yet appear stale to get_ksm_page(),
893                  * since that allows for an unmapped ksm page to be recognized
894                  * right up until it is freed; but the node is safe to remove.
895                  * This page might be in a pagevec waiting to be freed,
896                  * or it might be PageSwapCache (perhaps under writeback),
897                  * or it might have been removed from swapcache a moment ago.
898                  */
899                 set_page_stable_node(page, NULL);
900                 remove_node_from_stable_tree(stable_node);
901                 err = 0;
902         }
903
904         unlock_page(page);
905         put_page(page);
906         return err;
907 }
908
909 static int remove_stable_node_chain(struct stable_node *stable_node,
910                                     struct rb_root *root)
911 {
912         struct stable_node *dup;
913         struct hlist_node *hlist_safe;
914
915         if (!is_stable_node_chain(stable_node)) {
916                 VM_BUG_ON(is_stable_node_dup(stable_node));
917                 if (remove_stable_node(stable_node))
918                         return true;
919                 else
920                         return false;
921         }
922
923         hlist_for_each_entry_safe(dup, hlist_safe,
924                                   &stable_node->hlist, hlist_dup) {
925                 VM_BUG_ON(!is_stable_node_dup(dup));
926                 if (remove_stable_node(dup))
927                         return true;
928         }
929         BUG_ON(!hlist_empty(&stable_node->hlist));
930         free_stable_node_chain(stable_node, root);
931         return false;
932 }
933
934 static int remove_all_stable_nodes(void)
935 {
936         struct stable_node *stable_node, *next;
937         int nid;
938         int err = 0;
939
940         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
941                 while (root_stable_tree[nid].rb_node) {
942                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
943                                                 struct stable_node, node);
944                         if (remove_stable_node_chain(stable_node,
945                                                      root_stable_tree + nid)) {
946                                 err = -EBUSY;
947                                 break;  /* proceed to next nid */
948                         }
949                         cond_resched();
950                 }
951         }
952         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
953                 if (remove_stable_node(stable_node))
954                         err = -EBUSY;
955                 cond_resched();
956         }
957         return err;
958 }
959
960 static int unmerge_and_remove_all_rmap_items(void)
961 {
962         struct mm_slot *mm_slot;
963         struct mm_struct *mm;
964         struct vm_area_struct *vma;
965         int err = 0;
966
967         spin_lock(&ksm_mmlist_lock);
968         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
969                                                 struct mm_slot, mm_list);
970         spin_unlock(&ksm_mmlist_lock);
971
972         for (mm_slot = ksm_scan.mm_slot;
973                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
974                 mm = mm_slot->mm;
975                 mmap_read_lock(mm);
976                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
977                         if (ksm_test_exit(mm))
978                                 break;
979                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
980                                 continue;
981                         err = unmerge_ksm_pages(vma,
982                                                 vma->vm_start, vma->vm_end);
983                         if (err)
984                                 goto error;
985                 }
986
987                 remove_trailing_rmap_items(&mm_slot->rmap_list);
988                 mmap_read_unlock(mm);
989
990                 spin_lock(&ksm_mmlist_lock);
991                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
992                                                 struct mm_slot, mm_list);
993                 if (ksm_test_exit(mm)) {
994                         hash_del(&mm_slot->link);
995                         list_del(&mm_slot->mm_list);
996                         spin_unlock(&ksm_mmlist_lock);
997
998                         free_mm_slot(mm_slot);
999                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1000                         mmdrop(mm);
1001                 } else
1002                         spin_unlock(&ksm_mmlist_lock);
1003         }
1004
1005         /* Clean up stable nodes, but don't worry if some are still busy */
1006         remove_all_stable_nodes();
1007         ksm_scan.seqnr = 0;
1008         return 0;
1009
1010 error:
1011         mmap_read_unlock(mm);
1012         spin_lock(&ksm_mmlist_lock);
1013         ksm_scan.mm_slot = &ksm_mm_head;
1014         spin_unlock(&ksm_mmlist_lock);
1015         return err;
1016 }
1017 #endif /* CONFIG_SYSFS */
1018
1019 static u32 calc_checksum(struct page *page)
1020 {
1021         u32 checksum;
1022         void *addr = kmap_atomic(page);
1023         checksum = xxhash(addr, PAGE_SIZE, 0);
1024         kunmap_atomic(addr);
1025         return checksum;
1026 }
1027
1028 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1029                               pte_t *orig_pte)
1030 {
1031         struct mm_struct *mm = vma->vm_mm;
1032         struct page_vma_mapped_walk pvmw = {
1033                 .page = page,
1034                 .vma = vma,
1035         };
1036         int swapped;
1037         int err = -EFAULT;
1038         struct mmu_notifier_range range;
1039
1040         pvmw.address = page_address_in_vma(page, vma);
1041         if (pvmw.address == -EFAULT)
1042                 goto out;
1043
1044         BUG_ON(PageTransCompound(page));
1045
1046         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1047                                 pvmw.address,
1048                                 pvmw.address + PAGE_SIZE);
1049         mmu_notifier_invalidate_range_start(&range);
1050
1051         if (!page_vma_mapped_walk(&pvmw))
1052                 goto out_mn;
1053         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1054                 goto out_unlock;
1055
1056         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1057             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1058                                                 mm_tlb_flush_pending(mm)) {
1059                 pte_t entry;
1060
1061                 swapped = PageSwapCache(page);
1062                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1063                 /*
1064                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1065                  * take any lock, therefore the check that we are going to make
1066                  * with the pagecount against the mapcount is racy and
1067                  * O_DIRECT can happen right after the check.
1068                  * So we clear the pte and flush the tlb before the check
1069                  * this assure us that no O_DIRECT can happen after the check
1070                  * or in the middle of the check.
1071                  *
1072                  * No need to notify as we are downgrading page table to read
1073                  * only not changing it to point to a new page.
1074                  *
1075                  * See Documentation/vm/mmu_notifier.rst
1076                  */
1077                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1078                 /*
1079                  * Check that no O_DIRECT or similar I/O is in progress on the
1080                  * page
1081                  */
1082                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1083                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1084                         goto out_unlock;
1085                 }
1086                 if (pte_dirty(entry))
1087                         set_page_dirty(page);
1088
1089                 if (pte_protnone(entry))
1090                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1091                 else
1092                         entry = pte_mkclean(pte_wrprotect(entry));
1093                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1094         }
1095         *orig_pte = *pvmw.pte;
1096         err = 0;
1097
1098 out_unlock:
1099         page_vma_mapped_walk_done(&pvmw);
1100 out_mn:
1101         mmu_notifier_invalidate_range_end(&range);
1102 out:
1103         return err;
1104 }
1105
1106 /**
1107  * replace_page - replace page in vma by new ksm page
1108  * @vma:      vma that holds the pte pointing to page
1109  * @page:     the page we are replacing by kpage
1110  * @kpage:    the ksm page we replace page by
1111  * @orig_pte: the original value of the pte
1112  *
1113  * Returns 0 on success, -EFAULT on failure.
1114  */
1115 static int replace_page(struct vm_area_struct *vma, struct page *page,
1116                         struct page *kpage, pte_t orig_pte)
1117 {
1118         struct mm_struct *mm = vma->vm_mm;
1119         pmd_t *pmd;
1120         pte_t *ptep;
1121         pte_t newpte;
1122         spinlock_t *ptl;
1123         unsigned long addr;
1124         int err = -EFAULT;
1125         struct mmu_notifier_range range;
1126
1127         addr = page_address_in_vma(page, vma);
1128         if (addr == -EFAULT)
1129                 goto out;
1130
1131         pmd = mm_find_pmd(mm, addr);
1132         if (!pmd)
1133                 goto out;
1134
1135         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1136                                 addr + PAGE_SIZE);
1137         mmu_notifier_invalidate_range_start(&range);
1138
1139         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1140         if (!pte_same(*ptep, orig_pte)) {
1141                 pte_unmap_unlock(ptep, ptl);
1142                 goto out_mn;
1143         }
1144
1145         /*
1146          * No need to check ksm_use_zero_pages here: we can only have a
1147          * zero_page here if ksm_use_zero_pages was enabled already.
1148          */
1149         if (!is_zero_pfn(page_to_pfn(kpage))) {
1150                 get_page(kpage);
1151                 page_add_anon_rmap(kpage, vma, addr, false);
1152                 newpte = mk_pte(kpage, vma->vm_page_prot);
1153         } else {
1154                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1155                                                vma->vm_page_prot));
1156                 /*
1157                  * We're replacing an anonymous page with a zero page, which is
1158                  * not anonymous. We need to do proper accounting otherwise we
1159                  * will get wrong values in /proc, and a BUG message in dmesg
1160                  * when tearing down the mm.
1161                  */
1162                 dec_mm_counter(mm, MM_ANONPAGES);
1163         }
1164
1165         flush_cache_page(vma, addr, pte_pfn(*ptep));
1166         /*
1167          * No need to notify as we are replacing a read only page with another
1168          * read only page with the same content.
1169          *
1170          * See Documentation/vm/mmu_notifier.rst
1171          */
1172         ptep_clear_flush(vma, addr, ptep);
1173         set_pte_at_notify(mm, addr, ptep, newpte);
1174
1175         page_remove_rmap(page, false);
1176         if (!page_mapped(page))
1177                 try_to_free_swap(page);
1178         put_page(page);
1179
1180         pte_unmap_unlock(ptep, ptl);
1181         err = 0;
1182 out_mn:
1183         mmu_notifier_invalidate_range_end(&range);
1184 out:
1185         return err;
1186 }
1187
1188 /*
1189  * try_to_merge_one_page - take two pages and merge them into one
1190  * @vma: the vma that holds the pte pointing to page
1191  * @page: the PageAnon page that we want to replace with kpage
1192  * @kpage: the PageKsm page that we want to map instead of page,
1193  *         or NULL the first time when we want to use page as kpage.
1194  *
1195  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1196  */
1197 static int try_to_merge_one_page(struct vm_area_struct *vma,
1198                                  struct page *page, struct page *kpage)
1199 {
1200         pte_t orig_pte = __pte(0);
1201         int err = -EFAULT;
1202
1203         if (page == kpage)                      /* ksm page forked */
1204                 return 0;
1205
1206         if (!PageAnon(page))
1207                 goto out;
1208
1209         /*
1210          * We need the page lock to read a stable PageSwapCache in
1211          * write_protect_page().  We use trylock_page() instead of
1212          * lock_page() because we don't want to wait here - we
1213          * prefer to continue scanning and merging different pages,
1214          * then come back to this page when it is unlocked.
1215          */
1216         if (!trylock_page(page))
1217                 goto out;
1218
1219         if (PageTransCompound(page)) {
1220                 if (split_huge_page(page))
1221                         goto out_unlock;
1222         }
1223
1224         /*
1225          * If this anonymous page is mapped only here, its pte may need
1226          * to be write-protected.  If it's mapped elsewhere, all of its
1227          * ptes are necessarily already write-protected.  But in either
1228          * case, we need to lock and check page_count is not raised.
1229          */
1230         if (write_protect_page(vma, page, &orig_pte) == 0) {
1231                 if (!kpage) {
1232                         /*
1233                          * While we hold page lock, upgrade page from
1234                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1235                          * stable_tree_insert() will update stable_node.
1236                          */
1237                         set_page_stable_node(page, NULL);
1238                         mark_page_accessed(page);
1239                         /*
1240                          * Page reclaim just frees a clean page with no dirty
1241                          * ptes: make sure that the ksm page would be swapped.
1242                          */
1243                         if (!PageDirty(page))
1244                                 SetPageDirty(page);
1245                         err = 0;
1246                 } else if (pages_identical(page, kpage))
1247                         err = replace_page(vma, page, kpage, orig_pte);
1248         }
1249
1250         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1251                 munlock_vma_page(page);
1252                 if (!PageMlocked(kpage)) {
1253                         unlock_page(page);
1254                         lock_page(kpage);
1255                         mlock_vma_page(kpage);
1256                         page = kpage;           /* for final unlock */
1257                 }
1258         }
1259
1260 out_unlock:
1261         unlock_page(page);
1262 out:
1263         return err;
1264 }
1265
1266 /*
1267  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1268  * but no new kernel page is allocated: kpage must already be a ksm page.
1269  *
1270  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1271  */
1272 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1273                                       struct page *page, struct page *kpage)
1274 {
1275         struct mm_struct *mm = rmap_item->mm;
1276         struct vm_area_struct *vma;
1277         int err = -EFAULT;
1278
1279         mmap_read_lock(mm);
1280         vma = find_mergeable_vma(mm, rmap_item->address);
1281         if (!vma)
1282                 goto out;
1283
1284         err = try_to_merge_one_page(vma, page, kpage);
1285         if (err)
1286                 goto out;
1287
1288         /* Unstable nid is in union with stable anon_vma: remove first */
1289         remove_rmap_item_from_tree(rmap_item);
1290
1291         /* Must get reference to anon_vma while still holding mmap_lock */
1292         rmap_item->anon_vma = vma->anon_vma;
1293         get_anon_vma(vma->anon_vma);
1294 out:
1295         mmap_read_unlock(mm);
1296         return err;
1297 }
1298
1299 /*
1300  * try_to_merge_two_pages - take two identical pages and prepare them
1301  * to be merged into one page.
1302  *
1303  * This function returns the kpage if we successfully merged two identical
1304  * pages into one ksm page, NULL otherwise.
1305  *
1306  * Note that this function upgrades page to ksm page: if one of the pages
1307  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1308  */
1309 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1310                                            struct page *page,
1311                                            struct rmap_item *tree_rmap_item,
1312                                            struct page *tree_page)
1313 {
1314         int err;
1315
1316         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1317         if (!err) {
1318                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1319                                                         tree_page, page);
1320                 /*
1321                  * If that fails, we have a ksm page with only one pte
1322                  * pointing to it: so break it.
1323                  */
1324                 if (err)
1325                         break_cow(rmap_item);
1326         }
1327         return err ? NULL : page;
1328 }
1329
1330 static __always_inline
1331 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1332 {
1333         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1334         /*
1335          * Check that at least one mapping still exists, otherwise
1336          * there's no much point to merge and share with this
1337          * stable_node, as the underlying tree_page of the other
1338          * sharer is going to be freed soon.
1339          */
1340         return stable_node->rmap_hlist_len &&
1341                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1342 }
1343
1344 static __always_inline
1345 bool is_page_sharing_candidate(struct stable_node *stable_node)
1346 {
1347         return __is_page_sharing_candidate(stable_node, 0);
1348 }
1349
1350 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1351                                     struct stable_node **_stable_node,
1352                                     struct rb_root *root,
1353                                     bool prune_stale_stable_nodes)
1354 {
1355         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1356         struct hlist_node *hlist_safe;
1357         struct page *_tree_page, *tree_page = NULL;
1358         int nr = 0;
1359         int found_rmap_hlist_len;
1360
1361         if (!prune_stale_stable_nodes ||
1362             time_before(jiffies, stable_node->chain_prune_time +
1363                         msecs_to_jiffies(
1364                                 ksm_stable_node_chains_prune_millisecs)))
1365                 prune_stale_stable_nodes = false;
1366         else
1367                 stable_node->chain_prune_time = jiffies;
1368
1369         hlist_for_each_entry_safe(dup, hlist_safe,
1370                                   &stable_node->hlist, hlist_dup) {
1371                 cond_resched();
1372                 /*
1373                  * We must walk all stable_node_dup to prune the stale
1374                  * stable nodes during lookup.
1375                  *
1376                  * get_ksm_page can drop the nodes from the
1377                  * stable_node->hlist if they point to freed pages
1378                  * (that's why we do a _safe walk). The "dup"
1379                  * stable_node parameter itself will be freed from
1380                  * under us if it returns NULL.
1381                  */
1382                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1383                 if (!_tree_page)
1384                         continue;
1385                 nr += 1;
1386                 if (is_page_sharing_candidate(dup)) {
1387                         if (!found ||
1388                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1389                                 if (found)
1390                                         put_page(tree_page);
1391                                 found = dup;
1392                                 found_rmap_hlist_len = found->rmap_hlist_len;
1393                                 tree_page = _tree_page;
1394
1395                                 /* skip put_page for found dup */
1396                                 if (!prune_stale_stable_nodes)
1397                                         break;
1398                                 continue;
1399                         }
1400                 }
1401                 put_page(_tree_page);
1402         }
1403
1404         if (found) {
1405                 /*
1406                  * nr is counting all dups in the chain only if
1407                  * prune_stale_stable_nodes is true, otherwise we may
1408                  * break the loop at nr == 1 even if there are
1409                  * multiple entries.
1410                  */
1411                 if (prune_stale_stable_nodes && nr == 1) {
1412                         /*
1413                          * If there's not just one entry it would
1414                          * corrupt memory, better BUG_ON. In KSM
1415                          * context with no lock held it's not even
1416                          * fatal.
1417                          */
1418                         BUG_ON(stable_node->hlist.first->next);
1419
1420                         /*
1421                          * There's just one entry and it is below the
1422                          * deduplication limit so drop the chain.
1423                          */
1424                         rb_replace_node(&stable_node->node, &found->node,
1425                                         root);
1426                         free_stable_node(stable_node);
1427                         ksm_stable_node_chains--;
1428                         ksm_stable_node_dups--;
1429                         /*
1430                          * NOTE: the caller depends on the stable_node
1431                          * to be equal to stable_node_dup if the chain
1432                          * was collapsed.
1433                          */
1434                         *_stable_node = found;
1435                         /*
1436                          * Just for robustness, as stable_node is
1437                          * otherwise left as a stable pointer, the
1438                          * compiler shall optimize it away at build
1439                          * time.
1440                          */
1441                         stable_node = NULL;
1442                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1443                            __is_page_sharing_candidate(found, 1)) {
1444                         /*
1445                          * If the found stable_node dup can accept one
1446                          * more future merge (in addition to the one
1447                          * that is underway) and is not at the head of
1448                          * the chain, put it there so next search will
1449                          * be quicker in the !prune_stale_stable_nodes
1450                          * case.
1451                          *
1452                          * NOTE: it would be inaccurate to use nr > 1
1453                          * instead of checking the hlist.first pointer
1454                          * directly, because in the
1455                          * prune_stale_stable_nodes case "nr" isn't
1456                          * the position of the found dup in the chain,
1457                          * but the total number of dups in the chain.
1458                          */
1459                         hlist_del(&found->hlist_dup);
1460                         hlist_add_head(&found->hlist_dup,
1461                                        &stable_node->hlist);
1462                 }
1463         }
1464
1465         *_stable_node_dup = found;
1466         return tree_page;
1467 }
1468
1469 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1470                                                struct rb_root *root)
1471 {
1472         if (!is_stable_node_chain(stable_node))
1473                 return stable_node;
1474         if (hlist_empty(&stable_node->hlist)) {
1475                 free_stable_node_chain(stable_node, root);
1476                 return NULL;
1477         }
1478         return hlist_entry(stable_node->hlist.first,
1479                            typeof(*stable_node), hlist_dup);
1480 }
1481
1482 /*
1483  * Like for get_ksm_page, this function can free the *_stable_node and
1484  * *_stable_node_dup if the returned tree_page is NULL.
1485  *
1486  * It can also free and overwrite *_stable_node with the found
1487  * stable_node_dup if the chain is collapsed (in which case
1488  * *_stable_node will be equal to *_stable_node_dup like if the chain
1489  * never existed). It's up to the caller to verify tree_page is not
1490  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1491  *
1492  * *_stable_node_dup is really a second output parameter of this
1493  * function and will be overwritten in all cases, the caller doesn't
1494  * need to initialize it.
1495  */
1496 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1497                                         struct stable_node **_stable_node,
1498                                         struct rb_root *root,
1499                                         bool prune_stale_stable_nodes)
1500 {
1501         struct stable_node *stable_node = *_stable_node;
1502         if (!is_stable_node_chain(stable_node)) {
1503                 if (is_page_sharing_candidate(stable_node)) {
1504                         *_stable_node_dup = stable_node;
1505                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1506                 }
1507                 /*
1508                  * _stable_node_dup set to NULL means the stable_node
1509                  * reached the ksm_max_page_sharing limit.
1510                  */
1511                 *_stable_node_dup = NULL;
1512                 return NULL;
1513         }
1514         return stable_node_dup(_stable_node_dup, _stable_node, root,
1515                                prune_stale_stable_nodes);
1516 }
1517
1518 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1519                                                 struct stable_node **s_n,
1520                                                 struct rb_root *root)
1521 {
1522         return __stable_node_chain(s_n_d, s_n, root, true);
1523 }
1524
1525 static __always_inline struct page *chain(struct stable_node **s_n_d,
1526                                           struct stable_node *s_n,
1527                                           struct rb_root *root)
1528 {
1529         struct stable_node *old_stable_node = s_n;
1530         struct page *tree_page;
1531
1532         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1533         /* not pruning dups so s_n cannot have changed */
1534         VM_BUG_ON(s_n != old_stable_node);
1535         return tree_page;
1536 }
1537
1538 /*
1539  * stable_tree_search - search for page inside the stable tree
1540  *
1541  * This function checks if there is a page inside the stable tree
1542  * with identical content to the page that we are scanning right now.
1543  *
1544  * This function returns the stable tree node of identical content if found,
1545  * NULL otherwise.
1546  */
1547 static struct page *stable_tree_search(struct page *page)
1548 {
1549         int nid;
1550         struct rb_root *root;
1551         struct rb_node **new;
1552         struct rb_node *parent;
1553         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1554         struct stable_node *page_node;
1555
1556         page_node = page_stable_node(page);
1557         if (page_node && page_node->head != &migrate_nodes) {
1558                 /* ksm page forked */
1559                 get_page(page);
1560                 return page;
1561         }
1562
1563         nid = get_kpfn_nid(page_to_pfn(page));
1564         root = root_stable_tree + nid;
1565 again:
1566         new = &root->rb_node;
1567         parent = NULL;
1568
1569         while (*new) {
1570                 struct page *tree_page;
1571                 int ret;
1572
1573                 cond_resched();
1574                 stable_node = rb_entry(*new, struct stable_node, node);
1575                 stable_node_any = NULL;
1576                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1577                 /*
1578                  * NOTE: stable_node may have been freed by
1579                  * chain_prune() if the returned stable_node_dup is
1580                  * not NULL. stable_node_dup may have been inserted in
1581                  * the rbtree instead as a regular stable_node (in
1582                  * order to collapse the stable_node chain if a single
1583                  * stable_node dup was found in it). In such case the
1584                  * stable_node is overwritten by the calleee to point
1585                  * to the stable_node_dup that was collapsed in the
1586                  * stable rbtree and stable_node will be equal to
1587                  * stable_node_dup like if the chain never existed.
1588                  */
1589                 if (!stable_node_dup) {
1590                         /*
1591                          * Either all stable_node dups were full in
1592                          * this stable_node chain, or this chain was
1593                          * empty and should be rb_erased.
1594                          */
1595                         stable_node_any = stable_node_dup_any(stable_node,
1596                                                               root);
1597                         if (!stable_node_any) {
1598                                 /* rb_erase just run */
1599                                 goto again;
1600                         }
1601                         /*
1602                          * Take any of the stable_node dups page of
1603                          * this stable_node chain to let the tree walk
1604                          * continue. All KSM pages belonging to the
1605                          * stable_node dups in a stable_node chain
1606                          * have the same content and they're
1607                          * write protected at all times. Any will work
1608                          * fine to continue the walk.
1609                          */
1610                         tree_page = get_ksm_page(stable_node_any,
1611                                                  GET_KSM_PAGE_NOLOCK);
1612                 }
1613                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1614                 if (!tree_page) {
1615                         /*
1616                          * If we walked over a stale stable_node,
1617                          * get_ksm_page() will call rb_erase() and it
1618                          * may rebalance the tree from under us. So
1619                          * restart the search from scratch. Returning
1620                          * NULL would be safe too, but we'd generate
1621                          * false negative insertions just because some
1622                          * stable_node was stale.
1623                          */
1624                         goto again;
1625                 }
1626
1627                 ret = memcmp_pages(page, tree_page);
1628                 put_page(tree_page);
1629
1630                 parent = *new;
1631                 if (ret < 0)
1632                         new = &parent->rb_left;
1633                 else if (ret > 0)
1634                         new = &parent->rb_right;
1635                 else {
1636                         if (page_node) {
1637                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1638                                 /*
1639                                  * Test if the migrated page should be merged
1640                                  * into a stable node dup. If the mapcount is
1641                                  * 1 we can migrate it with another KSM page
1642                                  * without adding it to the chain.
1643                                  */
1644                                 if (page_mapcount(page) > 1)
1645                                         goto chain_append;
1646                         }
1647
1648                         if (!stable_node_dup) {
1649                                 /*
1650                                  * If the stable_node is a chain and
1651                                  * we got a payload match in memcmp
1652                                  * but we cannot merge the scanned
1653                                  * page in any of the existing
1654                                  * stable_node dups because they're
1655                                  * all full, we need to wait the
1656                                  * scanned page to find itself a match
1657                                  * in the unstable tree to create a
1658                                  * brand new KSM page to add later to
1659                                  * the dups of this stable_node.
1660                                  */
1661                                 return NULL;
1662                         }
1663
1664                         /*
1665                          * Lock and unlock the stable_node's page (which
1666                          * might already have been migrated) so that page
1667                          * migration is sure to notice its raised count.
1668                          * It would be more elegant to return stable_node
1669                          * than kpage, but that involves more changes.
1670                          */
1671                         tree_page = get_ksm_page(stable_node_dup,
1672                                                  GET_KSM_PAGE_TRYLOCK);
1673
1674                         if (PTR_ERR(tree_page) == -EBUSY)
1675                                 return ERR_PTR(-EBUSY);
1676
1677                         if (unlikely(!tree_page))
1678                                 /*
1679                                  * The tree may have been rebalanced,
1680                                  * so re-evaluate parent and new.
1681                                  */
1682                                 goto again;
1683                         unlock_page(tree_page);
1684
1685                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1686                             NUMA(stable_node_dup->nid)) {
1687                                 put_page(tree_page);
1688                                 goto replace;
1689                         }
1690                         return tree_page;
1691                 }
1692         }
1693
1694         if (!page_node)
1695                 return NULL;
1696
1697         list_del(&page_node->list);
1698         DO_NUMA(page_node->nid = nid);
1699         rb_link_node(&page_node->node, parent, new);
1700         rb_insert_color(&page_node->node, root);
1701 out:
1702         if (is_page_sharing_candidate(page_node)) {
1703                 get_page(page);
1704                 return page;
1705         } else
1706                 return NULL;
1707
1708 replace:
1709         /*
1710          * If stable_node was a chain and chain_prune collapsed it,
1711          * stable_node has been updated to be the new regular
1712          * stable_node. A collapse of the chain is indistinguishable
1713          * from the case there was no chain in the stable
1714          * rbtree. Otherwise stable_node is the chain and
1715          * stable_node_dup is the dup to replace.
1716          */
1717         if (stable_node_dup == stable_node) {
1718                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1719                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1720                 /* there is no chain */
1721                 if (page_node) {
1722                         VM_BUG_ON(page_node->head != &migrate_nodes);
1723                         list_del(&page_node->list);
1724                         DO_NUMA(page_node->nid = nid);
1725                         rb_replace_node(&stable_node_dup->node,
1726                                         &page_node->node,
1727                                         root);
1728                         if (is_page_sharing_candidate(page_node))
1729                                 get_page(page);
1730                         else
1731                                 page = NULL;
1732                 } else {
1733                         rb_erase(&stable_node_dup->node, root);
1734                         page = NULL;
1735                 }
1736         } else {
1737                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1738                 __stable_node_dup_del(stable_node_dup);
1739                 if (page_node) {
1740                         VM_BUG_ON(page_node->head != &migrate_nodes);
1741                         list_del(&page_node->list);
1742                         DO_NUMA(page_node->nid = nid);
1743                         stable_node_chain_add_dup(page_node, stable_node);
1744                         if (is_page_sharing_candidate(page_node))
1745                                 get_page(page);
1746                         else
1747                                 page = NULL;
1748                 } else {
1749                         page = NULL;
1750                 }
1751         }
1752         stable_node_dup->head = &migrate_nodes;
1753         list_add(&stable_node_dup->list, stable_node_dup->head);
1754         return page;
1755
1756 chain_append:
1757         /* stable_node_dup could be null if it reached the limit */
1758         if (!stable_node_dup)
1759                 stable_node_dup = stable_node_any;
1760         /*
1761          * If stable_node was a chain and chain_prune collapsed it,
1762          * stable_node has been updated to be the new regular
1763          * stable_node. A collapse of the chain is indistinguishable
1764          * from the case there was no chain in the stable
1765          * rbtree. Otherwise stable_node is the chain and
1766          * stable_node_dup is the dup to replace.
1767          */
1768         if (stable_node_dup == stable_node) {
1769                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1770                 /* chain is missing so create it */
1771                 stable_node = alloc_stable_node_chain(stable_node_dup,
1772                                                       root);
1773                 if (!stable_node)
1774                         return NULL;
1775         }
1776         /*
1777          * Add this stable_node dup that was
1778          * migrated to the stable_node chain
1779          * of the current nid for this page
1780          * content.
1781          */
1782         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1783         VM_BUG_ON(page_node->head != &migrate_nodes);
1784         list_del(&page_node->list);
1785         DO_NUMA(page_node->nid = nid);
1786         stable_node_chain_add_dup(page_node, stable_node);
1787         goto out;
1788 }
1789
1790 /*
1791  * stable_tree_insert - insert stable tree node pointing to new ksm page
1792  * into the stable tree.
1793  *
1794  * This function returns the stable tree node just allocated on success,
1795  * NULL otherwise.
1796  */
1797 static struct stable_node *stable_tree_insert(struct page *kpage)
1798 {
1799         int nid;
1800         unsigned long kpfn;
1801         struct rb_root *root;
1802         struct rb_node **new;
1803         struct rb_node *parent;
1804         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1805         bool need_chain = false;
1806
1807         kpfn = page_to_pfn(kpage);
1808         nid = get_kpfn_nid(kpfn);
1809         root = root_stable_tree + nid;
1810 again:
1811         parent = NULL;
1812         new = &root->rb_node;
1813
1814         while (*new) {
1815                 struct page *tree_page;
1816                 int ret;
1817
1818                 cond_resched();
1819                 stable_node = rb_entry(*new, struct stable_node, node);
1820                 stable_node_any = NULL;
1821                 tree_page = chain(&stable_node_dup, stable_node, root);
1822                 if (!stable_node_dup) {
1823                         /*
1824                          * Either all stable_node dups were full in
1825                          * this stable_node chain, or this chain was
1826                          * empty and should be rb_erased.
1827                          */
1828                         stable_node_any = stable_node_dup_any(stable_node,
1829                                                               root);
1830                         if (!stable_node_any) {
1831                                 /* rb_erase just run */
1832                                 goto again;
1833                         }
1834                         /*
1835                          * Take any of the stable_node dups page of
1836                          * this stable_node chain to let the tree walk
1837                          * continue. All KSM pages belonging to the
1838                          * stable_node dups in a stable_node chain
1839                          * have the same content and they're
1840                          * write protected at all times. Any will work
1841                          * fine to continue the walk.
1842                          */
1843                         tree_page = get_ksm_page(stable_node_any,
1844                                                  GET_KSM_PAGE_NOLOCK);
1845                 }
1846                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1847                 if (!tree_page) {
1848                         /*
1849                          * If we walked over a stale stable_node,
1850                          * get_ksm_page() will call rb_erase() and it
1851                          * may rebalance the tree from under us. So
1852                          * restart the search from scratch. Returning
1853                          * NULL would be safe too, but we'd generate
1854                          * false negative insertions just because some
1855                          * stable_node was stale.
1856                          */
1857                         goto again;
1858                 }
1859
1860                 ret = memcmp_pages(kpage, tree_page);
1861                 put_page(tree_page);
1862
1863                 parent = *new;
1864                 if (ret < 0)
1865                         new = &parent->rb_left;
1866                 else if (ret > 0)
1867                         new = &parent->rb_right;
1868                 else {
1869                         need_chain = true;
1870                         break;
1871                 }
1872         }
1873
1874         stable_node_dup = alloc_stable_node();
1875         if (!stable_node_dup)
1876                 return NULL;
1877
1878         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1879         stable_node_dup->kpfn = kpfn;
1880         set_page_stable_node(kpage, stable_node_dup);
1881         stable_node_dup->rmap_hlist_len = 0;
1882         DO_NUMA(stable_node_dup->nid = nid);
1883         if (!need_chain) {
1884                 rb_link_node(&stable_node_dup->node, parent, new);
1885                 rb_insert_color(&stable_node_dup->node, root);
1886         } else {
1887                 if (!is_stable_node_chain(stable_node)) {
1888                         struct stable_node *orig = stable_node;
1889                         /* chain is missing so create it */
1890                         stable_node = alloc_stable_node_chain(orig, root);
1891                         if (!stable_node) {
1892                                 free_stable_node(stable_node_dup);
1893                                 return NULL;
1894                         }
1895                 }
1896                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1897         }
1898
1899         return stable_node_dup;
1900 }
1901
1902 /*
1903  * unstable_tree_search_insert - search for identical page,
1904  * else insert rmap_item into the unstable tree.
1905  *
1906  * This function searches for a page in the unstable tree identical to the
1907  * page currently being scanned; and if no identical page is found in the
1908  * tree, we insert rmap_item as a new object into the unstable tree.
1909  *
1910  * This function returns pointer to rmap_item found to be identical
1911  * to the currently scanned page, NULL otherwise.
1912  *
1913  * This function does both searching and inserting, because they share
1914  * the same walking algorithm in an rbtree.
1915  */
1916 static
1917 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1918                                               struct page *page,
1919                                               struct page **tree_pagep)
1920 {
1921         struct rb_node **new;
1922         struct rb_root *root;
1923         struct rb_node *parent = NULL;
1924         int nid;
1925
1926         nid = get_kpfn_nid(page_to_pfn(page));
1927         root = root_unstable_tree + nid;
1928         new = &root->rb_node;
1929
1930         while (*new) {
1931                 struct rmap_item *tree_rmap_item;
1932                 struct page *tree_page;
1933                 int ret;
1934
1935                 cond_resched();
1936                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1937                 tree_page = get_mergeable_page(tree_rmap_item);
1938                 if (!tree_page)
1939                         return NULL;
1940
1941                 /*
1942                  * Don't substitute a ksm page for a forked page.
1943                  */
1944                 if (page == tree_page) {
1945                         put_page(tree_page);
1946                         return NULL;
1947                 }
1948
1949                 ret = memcmp_pages(page, tree_page);
1950
1951                 parent = *new;
1952                 if (ret < 0) {
1953                         put_page(tree_page);
1954                         new = &parent->rb_left;
1955                 } else if (ret > 0) {
1956                         put_page(tree_page);
1957                         new = &parent->rb_right;
1958                 } else if (!ksm_merge_across_nodes &&
1959                            page_to_nid(tree_page) != nid) {
1960                         /*
1961                          * If tree_page has been migrated to another NUMA node,
1962                          * it will be flushed out and put in the right unstable
1963                          * tree next time: only merge with it when across_nodes.
1964                          */
1965                         put_page(tree_page);
1966                         return NULL;
1967                 } else {
1968                         *tree_pagep = tree_page;
1969                         return tree_rmap_item;
1970                 }
1971         }
1972
1973         rmap_item->address |= UNSTABLE_FLAG;
1974         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1975         DO_NUMA(rmap_item->nid = nid);
1976         rb_link_node(&rmap_item->node, parent, new);
1977         rb_insert_color(&rmap_item->node, root);
1978
1979         ksm_pages_unshared++;
1980         return NULL;
1981 }
1982
1983 /*
1984  * stable_tree_append - add another rmap_item to the linked list of
1985  * rmap_items hanging off a given node of the stable tree, all sharing
1986  * the same ksm page.
1987  */
1988 static void stable_tree_append(struct rmap_item *rmap_item,
1989                                struct stable_node *stable_node,
1990                                bool max_page_sharing_bypass)
1991 {
1992         /*
1993          * rmap won't find this mapping if we don't insert the
1994          * rmap_item in the right stable_node
1995          * duplicate. page_migration could break later if rmap breaks,
1996          * so we can as well crash here. We really need to check for
1997          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1998          * for other negative values as an underflow if detected here
1999          * for the first time (and not when decreasing rmap_hlist_len)
2000          * would be sign of memory corruption in the stable_node.
2001          */
2002         BUG_ON(stable_node->rmap_hlist_len < 0);
2003
2004         stable_node->rmap_hlist_len++;
2005         if (!max_page_sharing_bypass)
2006                 /* possibly non fatal but unexpected overflow, only warn */
2007                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2008                              ksm_max_page_sharing);
2009
2010         rmap_item->head = stable_node;
2011         rmap_item->address |= STABLE_FLAG;
2012         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2013
2014         if (rmap_item->hlist.next)
2015                 ksm_pages_sharing++;
2016         else
2017                 ksm_pages_shared++;
2018 }
2019
2020 /*
2021  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2022  * if not, compare checksum to previous and if it's the same, see if page can
2023  * be inserted into the unstable tree, or merged with a page already there and
2024  * both transferred to the stable tree.
2025  *
2026  * @page: the page that we are searching identical page to.
2027  * @rmap_item: the reverse mapping into the virtual address of this page
2028  */
2029 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2030 {
2031         struct mm_struct *mm = rmap_item->mm;
2032         struct rmap_item *tree_rmap_item;
2033         struct page *tree_page = NULL;
2034         struct stable_node *stable_node;
2035         struct page *kpage;
2036         unsigned int checksum;
2037         int err;
2038         bool max_page_sharing_bypass = false;
2039
2040         stable_node = page_stable_node(page);
2041         if (stable_node) {
2042                 if (stable_node->head != &migrate_nodes &&
2043                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2044                     NUMA(stable_node->nid)) {
2045                         stable_node_dup_del(stable_node);
2046                         stable_node->head = &migrate_nodes;
2047                         list_add(&stable_node->list, stable_node->head);
2048                 }
2049                 if (stable_node->head != &migrate_nodes &&
2050                     rmap_item->head == stable_node)
2051                         return;
2052                 /*
2053                  * If it's a KSM fork, allow it to go over the sharing limit
2054                  * without warnings.
2055                  */
2056                 if (!is_page_sharing_candidate(stable_node))
2057                         max_page_sharing_bypass = true;
2058         }
2059
2060         /* We first start with searching the page inside the stable tree */
2061         kpage = stable_tree_search(page);
2062         if (kpage == page && rmap_item->head == stable_node) {
2063                 put_page(kpage);
2064                 return;
2065         }
2066
2067         remove_rmap_item_from_tree(rmap_item);
2068
2069         if (kpage) {
2070                 if (PTR_ERR(kpage) == -EBUSY)
2071                         return;
2072
2073                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2074                 if (!err) {
2075                         /*
2076                          * The page was successfully merged:
2077                          * add its rmap_item to the stable tree.
2078                          */
2079                         lock_page(kpage);
2080                         stable_tree_append(rmap_item, page_stable_node(kpage),
2081                                            max_page_sharing_bypass);
2082                         unlock_page(kpage);
2083                 }
2084                 put_page(kpage);
2085                 return;
2086         }
2087
2088         /*
2089          * If the hash value of the page has changed from the last time
2090          * we calculated it, this page is changing frequently: therefore we
2091          * don't want to insert it in the unstable tree, and we don't want
2092          * to waste our time searching for something identical to it there.
2093          */
2094         checksum = calc_checksum(page);
2095         if (rmap_item->oldchecksum != checksum) {
2096                 rmap_item->oldchecksum = checksum;
2097                 return;
2098         }
2099
2100         /*
2101          * Same checksum as an empty page. We attempt to merge it with the
2102          * appropriate zero page if the user enabled this via sysfs.
2103          */
2104         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2105                 struct vm_area_struct *vma;
2106
2107                 mmap_read_lock(mm);
2108                 vma = find_mergeable_vma(mm, rmap_item->address);
2109                 if (vma) {
2110                         err = try_to_merge_one_page(vma, page,
2111                                         ZERO_PAGE(rmap_item->address));
2112                 } else {
2113                         /*
2114                          * If the vma is out of date, we do not need to
2115                          * continue.
2116                          */
2117                         err = 0;
2118                 }
2119                 mmap_read_unlock(mm);
2120                 /*
2121                  * In case of failure, the page was not really empty, so we
2122                  * need to continue. Otherwise we're done.
2123                  */
2124                 if (!err)
2125                         return;
2126         }
2127         tree_rmap_item =
2128                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2129         if (tree_rmap_item) {
2130                 bool split;
2131
2132                 kpage = try_to_merge_two_pages(rmap_item, page,
2133                                                 tree_rmap_item, tree_page);
2134                 /*
2135                  * If both pages we tried to merge belong to the same compound
2136                  * page, then we actually ended up increasing the reference
2137                  * count of the same compound page twice, and split_huge_page
2138                  * failed.
2139                  * Here we set a flag if that happened, and we use it later to
2140                  * try split_huge_page again. Since we call put_page right
2141                  * afterwards, the reference count will be correct and
2142                  * split_huge_page should succeed.
2143                  */
2144                 split = PageTransCompound(page)
2145                         && compound_head(page) == compound_head(tree_page);
2146                 put_page(tree_page);
2147                 if (kpage) {
2148                         /*
2149                          * The pages were successfully merged: insert new
2150                          * node in the stable tree and add both rmap_items.
2151                          */
2152                         lock_page(kpage);
2153                         stable_node = stable_tree_insert(kpage);
2154                         if (stable_node) {
2155                                 stable_tree_append(tree_rmap_item, stable_node,
2156                                                    false);
2157                                 stable_tree_append(rmap_item, stable_node,
2158                                                    false);
2159                         }
2160                         unlock_page(kpage);
2161
2162                         /*
2163                          * If we fail to insert the page into the stable tree,
2164                          * we will have 2 virtual addresses that are pointing
2165                          * to a ksm page left outside the stable tree,
2166                          * in which case we need to break_cow on both.
2167                          */
2168                         if (!stable_node) {
2169                                 break_cow(tree_rmap_item);
2170                                 break_cow(rmap_item);
2171                         }
2172                 } else if (split) {
2173                         /*
2174                          * We are here if we tried to merge two pages and
2175                          * failed because they both belonged to the same
2176                          * compound page. We will split the page now, but no
2177                          * merging will take place.
2178                          * We do not want to add the cost of a full lock; if
2179                          * the page is locked, it is better to skip it and
2180                          * perhaps try again later.
2181                          */
2182                         if (!trylock_page(page))
2183                                 return;
2184                         split_huge_page(page);
2185                         unlock_page(page);
2186                 }
2187         }
2188 }
2189
2190 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2191                                             struct rmap_item **rmap_list,
2192                                             unsigned long addr)
2193 {
2194         struct rmap_item *rmap_item;
2195
2196         while (*rmap_list) {
2197                 rmap_item = *rmap_list;
2198                 if ((rmap_item->address & PAGE_MASK) == addr)
2199                         return rmap_item;
2200                 if (rmap_item->address > addr)
2201                         break;
2202                 *rmap_list = rmap_item->rmap_list;
2203                 remove_rmap_item_from_tree(rmap_item);
2204                 free_rmap_item(rmap_item);
2205         }
2206
2207         rmap_item = alloc_rmap_item();
2208         if (rmap_item) {
2209                 /* It has already been zeroed */
2210                 rmap_item->mm = mm_slot->mm;
2211                 rmap_item->address = addr;
2212                 rmap_item->rmap_list = *rmap_list;
2213                 *rmap_list = rmap_item;
2214         }
2215         return rmap_item;
2216 }
2217
2218 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2219 {
2220         struct mm_struct *mm;
2221         struct mm_slot *slot;
2222         struct vm_area_struct *vma;
2223         struct rmap_item *rmap_item;
2224         int nid;
2225
2226         if (list_empty(&ksm_mm_head.mm_list))
2227                 return NULL;
2228
2229         slot = ksm_scan.mm_slot;
2230         if (slot == &ksm_mm_head) {
2231                 /*
2232                  * A number of pages can hang around indefinitely on per-cpu
2233                  * pagevecs, raised page count preventing write_protect_page
2234                  * from merging them.  Though it doesn't really matter much,
2235                  * it is puzzling to see some stuck in pages_volatile until
2236                  * other activity jostles them out, and they also prevented
2237                  * LTP's KSM test from succeeding deterministically; so drain
2238                  * them here (here rather than on entry to ksm_do_scan(),
2239                  * so we don't IPI too often when pages_to_scan is set low).
2240                  */
2241                 lru_add_drain_all();
2242
2243                 /*
2244                  * Whereas stale stable_nodes on the stable_tree itself
2245                  * get pruned in the regular course of stable_tree_search(),
2246                  * those moved out to the migrate_nodes list can accumulate:
2247                  * so prune them once before each full scan.
2248                  */
2249                 if (!ksm_merge_across_nodes) {
2250                         struct stable_node *stable_node, *next;
2251                         struct page *page;
2252
2253                         list_for_each_entry_safe(stable_node, next,
2254                                                  &migrate_nodes, list) {
2255                                 page = get_ksm_page(stable_node,
2256                                                     GET_KSM_PAGE_NOLOCK);
2257                                 if (page)
2258                                         put_page(page);
2259                                 cond_resched();
2260                         }
2261                 }
2262
2263                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2264                         root_unstable_tree[nid] = RB_ROOT;
2265
2266                 spin_lock(&ksm_mmlist_lock);
2267                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2268                 ksm_scan.mm_slot = slot;
2269                 spin_unlock(&ksm_mmlist_lock);
2270                 /*
2271                  * Although we tested list_empty() above, a racing __ksm_exit
2272                  * of the last mm on the list may have removed it since then.
2273                  */
2274                 if (slot == &ksm_mm_head)
2275                         return NULL;
2276 next_mm:
2277                 ksm_scan.address = 0;
2278                 ksm_scan.rmap_list = &slot->rmap_list;
2279         }
2280
2281         mm = slot->mm;
2282         mmap_read_lock(mm);
2283         if (ksm_test_exit(mm))
2284                 vma = NULL;
2285         else
2286                 vma = find_vma(mm, ksm_scan.address);
2287
2288         for (; vma; vma = vma->vm_next) {
2289                 if (!(vma->vm_flags & VM_MERGEABLE))
2290                         continue;
2291                 if (ksm_scan.address < vma->vm_start)
2292                         ksm_scan.address = vma->vm_start;
2293                 if (!vma->anon_vma)
2294                         ksm_scan.address = vma->vm_end;
2295
2296                 while (ksm_scan.address < vma->vm_end) {
2297                         if (ksm_test_exit(mm))
2298                                 break;
2299                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2300                         if (IS_ERR_OR_NULL(*page)) {
2301                                 ksm_scan.address += PAGE_SIZE;
2302                                 cond_resched();
2303                                 continue;
2304                         }
2305                         if (PageAnon(*page)) {
2306                                 flush_anon_page(vma, *page, ksm_scan.address);
2307                                 flush_dcache_page(*page);
2308                                 rmap_item = get_next_rmap_item(slot,
2309                                         ksm_scan.rmap_list, ksm_scan.address);
2310                                 if (rmap_item) {
2311                                         ksm_scan.rmap_list =
2312                                                         &rmap_item->rmap_list;
2313                                         ksm_scan.address += PAGE_SIZE;
2314                                 } else
2315                                         put_page(*page);
2316                                 mmap_read_unlock(mm);
2317                                 return rmap_item;
2318                         }
2319                         put_page(*page);
2320                         ksm_scan.address += PAGE_SIZE;
2321                         cond_resched();
2322                 }
2323         }
2324
2325         if (ksm_test_exit(mm)) {
2326                 ksm_scan.address = 0;
2327                 ksm_scan.rmap_list = &slot->rmap_list;
2328         }
2329         /*
2330          * Nuke all the rmap_items that are above this current rmap:
2331          * because there were no VM_MERGEABLE vmas with such addresses.
2332          */
2333         remove_trailing_rmap_items(ksm_scan.rmap_list);
2334
2335         spin_lock(&ksm_mmlist_lock);
2336         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2337                                                 struct mm_slot, mm_list);
2338         if (ksm_scan.address == 0) {
2339                 /*
2340                  * We've completed a full scan of all vmas, holding mmap_lock
2341                  * throughout, and found no VM_MERGEABLE: so do the same as
2342                  * __ksm_exit does to remove this mm from all our lists now.
2343                  * This applies either when cleaning up after __ksm_exit
2344                  * (but beware: we can reach here even before __ksm_exit),
2345                  * or when all VM_MERGEABLE areas have been unmapped (and
2346                  * mmap_lock then protects against race with MADV_MERGEABLE).
2347                  */
2348                 hash_del(&slot->link);
2349                 list_del(&slot->mm_list);
2350                 spin_unlock(&ksm_mmlist_lock);
2351
2352                 free_mm_slot(slot);
2353                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2354                 mmap_read_unlock(mm);
2355                 mmdrop(mm);
2356         } else {
2357                 mmap_read_unlock(mm);
2358                 /*
2359                  * mmap_read_unlock(mm) first because after
2360                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2361                  * already have been freed under us by __ksm_exit()
2362                  * because the "mm_slot" is still hashed and
2363                  * ksm_scan.mm_slot doesn't point to it anymore.
2364                  */
2365                 spin_unlock(&ksm_mmlist_lock);
2366         }
2367
2368         /* Repeat until we've completed scanning the whole list */
2369         slot = ksm_scan.mm_slot;
2370         if (slot != &ksm_mm_head)
2371                 goto next_mm;
2372
2373         ksm_scan.seqnr++;
2374         return NULL;
2375 }
2376
2377 /**
2378  * ksm_do_scan  - the ksm scanner main worker function.
2379  * @scan_npages:  number of pages we want to scan before we return.
2380  */
2381 static void ksm_do_scan(unsigned int scan_npages)
2382 {
2383         struct rmap_item *rmap_item;
2384         struct page *page;
2385
2386         while (scan_npages-- && likely(!freezing(current))) {
2387                 cond_resched();
2388                 rmap_item = scan_get_next_rmap_item(&page);
2389                 if (!rmap_item)
2390                         return;
2391                 cmp_and_merge_page(page, rmap_item);
2392                 put_page(page);
2393         }
2394 }
2395
2396 static int ksmd_should_run(void)
2397 {
2398         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2399 }
2400
2401 static int ksm_scan_thread(void *nothing)
2402 {
2403         unsigned int sleep_ms;
2404
2405         set_freezable();
2406         set_user_nice(current, 5);
2407
2408         while (!kthread_should_stop()) {
2409                 mutex_lock(&ksm_thread_mutex);
2410                 wait_while_offlining();
2411                 if (ksmd_should_run())
2412                         ksm_do_scan(ksm_thread_pages_to_scan);
2413                 mutex_unlock(&ksm_thread_mutex);
2414
2415                 try_to_freeze();
2416
2417                 if (ksmd_should_run()) {
2418                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2419                         wait_event_interruptible_timeout(ksm_iter_wait,
2420                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2421                                 msecs_to_jiffies(sleep_ms));
2422                 } else {
2423                         wait_event_freezable(ksm_thread_wait,
2424                                 ksmd_should_run() || kthread_should_stop());
2425                 }
2426         }
2427         return 0;
2428 }
2429
2430 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2431                 unsigned long end, int advice, unsigned long *vm_flags)
2432 {
2433         struct mm_struct *mm = vma->vm_mm;
2434         int err;
2435
2436         switch (advice) {
2437         case MADV_MERGEABLE:
2438                 /*
2439                  * Be somewhat over-protective for now!
2440                  */
2441                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2442                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2443                                  VM_HUGETLB | VM_MIXEDMAP))
2444                         return 0;               /* just ignore the advice */
2445
2446                 if (vma_is_dax(vma))
2447                         return 0;
2448
2449 #ifdef VM_SAO
2450                 if (*vm_flags & VM_SAO)
2451                         return 0;
2452 #endif
2453 #ifdef VM_SPARC_ADI
2454                 if (*vm_flags & VM_SPARC_ADI)
2455                         return 0;
2456 #endif
2457
2458                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2459                         err = __ksm_enter(mm);
2460                         if (err)
2461                                 return err;
2462                 }
2463
2464                 *vm_flags |= VM_MERGEABLE;
2465                 break;
2466
2467         case MADV_UNMERGEABLE:
2468                 if (!(*vm_flags & VM_MERGEABLE))
2469                         return 0;               /* just ignore the advice */
2470
2471                 if (vma->anon_vma) {
2472                         err = unmerge_ksm_pages(vma, start, end);
2473                         if (err)
2474                                 return err;
2475                 }
2476
2477                 *vm_flags &= ~VM_MERGEABLE;
2478                 break;
2479         }
2480
2481         return 0;
2482 }
2483 EXPORT_SYMBOL_GPL(ksm_madvise);
2484
2485 int __ksm_enter(struct mm_struct *mm)
2486 {
2487         struct mm_slot *mm_slot;
2488         int needs_wakeup;
2489
2490         mm_slot = alloc_mm_slot();
2491         if (!mm_slot)
2492                 return -ENOMEM;
2493
2494         /* Check ksm_run too?  Would need tighter locking */
2495         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2496
2497         spin_lock(&ksm_mmlist_lock);
2498         insert_to_mm_slots_hash(mm, mm_slot);
2499         /*
2500          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2501          * insert just behind the scanning cursor, to let the area settle
2502          * down a little; when fork is followed by immediate exec, we don't
2503          * want ksmd to waste time setting up and tearing down an rmap_list.
2504          *
2505          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2506          * scanning cursor, otherwise KSM pages in newly forked mms will be
2507          * missed: then we might as well insert at the end of the list.
2508          */
2509         if (ksm_run & KSM_RUN_UNMERGE)
2510                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2511         else
2512                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2513         spin_unlock(&ksm_mmlist_lock);
2514
2515         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2516         mmgrab(mm);
2517
2518         if (needs_wakeup)
2519                 wake_up_interruptible(&ksm_thread_wait);
2520
2521         return 0;
2522 }
2523
2524 void __ksm_exit(struct mm_struct *mm)
2525 {
2526         struct mm_slot *mm_slot;
2527         int easy_to_free = 0;
2528
2529         /*
2530          * This process is exiting: if it's straightforward (as is the
2531          * case when ksmd was never running), free mm_slot immediately.
2532          * But if it's at the cursor or has rmap_items linked to it, use
2533          * mmap_lock to synchronize with any break_cows before pagetables
2534          * are freed, and leave the mm_slot on the list for ksmd to free.
2535          * Beware: ksm may already have noticed it exiting and freed the slot.
2536          */
2537
2538         spin_lock(&ksm_mmlist_lock);
2539         mm_slot = get_mm_slot(mm);
2540         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2541                 if (!mm_slot->rmap_list) {
2542                         hash_del(&mm_slot->link);
2543                         list_del(&mm_slot->mm_list);
2544                         easy_to_free = 1;
2545                 } else {
2546                         list_move(&mm_slot->mm_list,
2547                                   &ksm_scan.mm_slot->mm_list);
2548                 }
2549         }
2550         spin_unlock(&ksm_mmlist_lock);
2551
2552         if (easy_to_free) {
2553                 free_mm_slot(mm_slot);
2554                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2555                 mmdrop(mm);
2556         } else if (mm_slot) {
2557                 mmap_write_lock(mm);
2558                 mmap_write_unlock(mm);
2559         }
2560 }
2561
2562 struct page *ksm_might_need_to_copy(struct page *page,
2563                         struct vm_area_struct *vma, unsigned long address)
2564 {
2565         struct anon_vma *anon_vma = page_anon_vma(page);
2566         struct page *new_page;
2567
2568         if (PageKsm(page)) {
2569                 if (page_stable_node(page) &&
2570                     !(ksm_run & KSM_RUN_UNMERGE))
2571                         return page;    /* no need to copy it */
2572         } else if (!anon_vma) {
2573                 return page;            /* no need to copy it */
2574         } else if (anon_vma->root == vma->anon_vma->root &&
2575                  page->index == linear_page_index(vma, address)) {
2576                 return page;            /* still no need to copy it */
2577         }
2578         if (!PageUptodate(page))
2579                 return page;            /* let do_swap_page report the error */
2580
2581         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2582         if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2583                 put_page(new_page);
2584                 new_page = NULL;
2585         }
2586         if (new_page) {
2587                 copy_user_highpage(new_page, page, address, vma);
2588
2589                 SetPageDirty(new_page);
2590                 __SetPageUptodate(new_page);
2591                 __SetPageLocked(new_page);
2592         }
2593
2594         return new_page;
2595 }
2596
2597 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2598 {
2599         struct stable_node *stable_node;
2600         struct rmap_item *rmap_item;
2601         int search_new_forks = 0;
2602
2603         VM_BUG_ON_PAGE(!PageKsm(page), page);
2604
2605         /*
2606          * Rely on the page lock to protect against concurrent modifications
2607          * to that page's node of the stable tree.
2608          */
2609         VM_BUG_ON_PAGE(!PageLocked(page), page);
2610
2611         stable_node = page_stable_node(page);
2612         if (!stable_node)
2613                 return;
2614 again:
2615         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2616                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2617                 struct anon_vma_chain *vmac;
2618                 struct vm_area_struct *vma;
2619
2620                 cond_resched();
2621                 anon_vma_lock_read(anon_vma);
2622                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2623                                                0, ULONG_MAX) {
2624                         unsigned long addr;
2625
2626                         cond_resched();
2627                         vma = vmac->vma;
2628
2629                         /* Ignore the stable/unstable/sqnr flags */
2630                         addr = rmap_item->address & PAGE_MASK;
2631
2632                         if (addr < vma->vm_start || addr >= vma->vm_end)
2633                                 continue;
2634                         /*
2635                          * Initially we examine only the vma which covers this
2636                          * rmap_item; but later, if there is still work to do,
2637                          * we examine covering vmas in other mms: in case they
2638                          * were forked from the original since ksmd passed.
2639                          */
2640                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2641                                 continue;
2642
2643                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2644                                 continue;
2645
2646                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2647                                 anon_vma_unlock_read(anon_vma);
2648                                 return;
2649                         }
2650                         if (rwc->done && rwc->done(page)) {
2651                                 anon_vma_unlock_read(anon_vma);
2652                                 return;
2653                         }
2654                 }
2655                 anon_vma_unlock_read(anon_vma);
2656         }
2657         if (!search_new_forks++)
2658                 goto again;
2659 }
2660
2661 #ifdef CONFIG_MIGRATION
2662 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2663 {
2664         struct stable_node *stable_node;
2665
2666         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2667         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2668         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2669
2670         stable_node = page_stable_node(newpage);
2671         if (stable_node) {
2672                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2673                 stable_node->kpfn = page_to_pfn(newpage);
2674                 /*
2675                  * newpage->mapping was set in advance; now we need smp_wmb()
2676                  * to make sure that the new stable_node->kpfn is visible
2677                  * to get_ksm_page() before it can see that oldpage->mapping
2678                  * has gone stale (or that PageSwapCache has been cleared).
2679                  */
2680                 smp_wmb();
2681                 set_page_stable_node(oldpage, NULL);
2682         }
2683 }
2684 #endif /* CONFIG_MIGRATION */
2685
2686 #ifdef CONFIG_MEMORY_HOTREMOVE
2687 static void wait_while_offlining(void)
2688 {
2689         while (ksm_run & KSM_RUN_OFFLINE) {
2690                 mutex_unlock(&ksm_thread_mutex);
2691                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2692                             TASK_UNINTERRUPTIBLE);
2693                 mutex_lock(&ksm_thread_mutex);
2694         }
2695 }
2696
2697 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2698                                          unsigned long start_pfn,
2699                                          unsigned long end_pfn)
2700 {
2701         if (stable_node->kpfn >= start_pfn &&
2702             stable_node->kpfn < end_pfn) {
2703                 /*
2704                  * Don't get_ksm_page, page has already gone:
2705                  * which is why we keep kpfn instead of page*
2706                  */
2707                 remove_node_from_stable_tree(stable_node);
2708                 return true;
2709         }
2710         return false;
2711 }
2712
2713 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2714                                            unsigned long start_pfn,
2715                                            unsigned long end_pfn,
2716                                            struct rb_root *root)
2717 {
2718         struct stable_node *dup;
2719         struct hlist_node *hlist_safe;
2720
2721         if (!is_stable_node_chain(stable_node)) {
2722                 VM_BUG_ON(is_stable_node_dup(stable_node));
2723                 return stable_node_dup_remove_range(stable_node, start_pfn,
2724                                                     end_pfn);
2725         }
2726
2727         hlist_for_each_entry_safe(dup, hlist_safe,
2728                                   &stable_node->hlist, hlist_dup) {
2729                 VM_BUG_ON(!is_stable_node_dup(dup));
2730                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2731         }
2732         if (hlist_empty(&stable_node->hlist)) {
2733                 free_stable_node_chain(stable_node, root);
2734                 return true; /* notify caller that tree was rebalanced */
2735         } else
2736                 return false;
2737 }
2738
2739 static void ksm_check_stable_tree(unsigned long start_pfn,
2740                                   unsigned long end_pfn)
2741 {
2742         struct stable_node *stable_node, *next;
2743         struct rb_node *node;
2744         int nid;
2745
2746         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2747                 node = rb_first(root_stable_tree + nid);
2748                 while (node) {
2749                         stable_node = rb_entry(node, struct stable_node, node);
2750                         if (stable_node_chain_remove_range(stable_node,
2751                                                            start_pfn, end_pfn,
2752                                                            root_stable_tree +
2753                                                            nid))
2754                                 node = rb_first(root_stable_tree + nid);
2755                         else
2756                                 node = rb_next(node);
2757                         cond_resched();
2758                 }
2759         }
2760         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2761                 if (stable_node->kpfn >= start_pfn &&
2762                     stable_node->kpfn < end_pfn)
2763                         remove_node_from_stable_tree(stable_node);
2764                 cond_resched();
2765         }
2766 }
2767
2768 static int ksm_memory_callback(struct notifier_block *self,
2769                                unsigned long action, void *arg)
2770 {
2771         struct memory_notify *mn = arg;
2772
2773         switch (action) {
2774         case MEM_GOING_OFFLINE:
2775                 /*
2776                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2777                  * and remove_all_stable_nodes() while memory is going offline:
2778                  * it is unsafe for them to touch the stable tree at this time.
2779                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2780                  * which do not need the ksm_thread_mutex are all safe.
2781                  */
2782                 mutex_lock(&ksm_thread_mutex);
2783                 ksm_run |= KSM_RUN_OFFLINE;
2784                 mutex_unlock(&ksm_thread_mutex);
2785                 break;
2786
2787         case MEM_OFFLINE:
2788                 /*
2789                  * Most of the work is done by page migration; but there might
2790                  * be a few stable_nodes left over, still pointing to struct
2791                  * pages which have been offlined: prune those from the tree,
2792                  * otherwise get_ksm_page() might later try to access a
2793                  * non-existent struct page.
2794                  */
2795                 ksm_check_stable_tree(mn->start_pfn,
2796                                       mn->start_pfn + mn->nr_pages);
2797                 fallthrough;
2798         case MEM_CANCEL_OFFLINE:
2799                 mutex_lock(&ksm_thread_mutex);
2800                 ksm_run &= ~KSM_RUN_OFFLINE;
2801                 mutex_unlock(&ksm_thread_mutex);
2802
2803                 smp_mb();       /* wake_up_bit advises this */
2804                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2805                 break;
2806         }
2807         return NOTIFY_OK;
2808 }
2809 #else
2810 static void wait_while_offlining(void)
2811 {
2812 }
2813 #endif /* CONFIG_MEMORY_HOTREMOVE */
2814
2815 #ifdef CONFIG_SYSFS
2816 /*
2817  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2818  */
2819
2820 #define KSM_ATTR_RO(_name) \
2821         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2822 #define KSM_ATTR(_name) \
2823         static struct kobj_attribute _name##_attr = \
2824                 __ATTR(_name, 0644, _name##_show, _name##_store)
2825
2826 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2827                                     struct kobj_attribute *attr, char *buf)
2828 {
2829         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2830 }
2831
2832 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2833                                      struct kobj_attribute *attr,
2834                                      const char *buf, size_t count)
2835 {
2836         unsigned int msecs;
2837         int err;
2838
2839         err = kstrtouint(buf, 10, &msecs);
2840         if (err)
2841                 return -EINVAL;
2842
2843         ksm_thread_sleep_millisecs = msecs;
2844         wake_up_interruptible(&ksm_iter_wait);
2845
2846         return count;
2847 }
2848 KSM_ATTR(sleep_millisecs);
2849
2850 static ssize_t pages_to_scan_show(struct kobject *kobj,
2851                                   struct kobj_attribute *attr, char *buf)
2852 {
2853         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2854 }
2855
2856 static ssize_t pages_to_scan_store(struct kobject *kobj,
2857                                    struct kobj_attribute *attr,
2858                                    const char *buf, size_t count)
2859 {
2860         unsigned int nr_pages;
2861         int err;
2862
2863         err = kstrtouint(buf, 10, &nr_pages);
2864         if (err)
2865                 return -EINVAL;
2866
2867         ksm_thread_pages_to_scan = nr_pages;
2868
2869         return count;
2870 }
2871 KSM_ATTR(pages_to_scan);
2872
2873 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2874                         char *buf)
2875 {
2876         return sysfs_emit(buf, "%lu\n", ksm_run);
2877 }
2878
2879 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2880                          const char *buf, size_t count)
2881 {
2882         unsigned int flags;
2883         int err;
2884
2885         err = kstrtouint(buf, 10, &flags);
2886         if (err)
2887                 return -EINVAL;
2888         if (flags > KSM_RUN_UNMERGE)
2889                 return -EINVAL;
2890
2891         /*
2892          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2893          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2894          * breaking COW to free the pages_shared (but leaves mm_slots
2895          * on the list for when ksmd may be set running again).
2896          */
2897
2898         mutex_lock(&ksm_thread_mutex);
2899         wait_while_offlining();
2900         if (ksm_run != flags) {
2901                 ksm_run = flags;
2902                 if (flags & KSM_RUN_UNMERGE) {
2903                         set_current_oom_origin();
2904                         err = unmerge_and_remove_all_rmap_items();
2905                         clear_current_oom_origin();
2906                         if (err) {
2907                                 ksm_run = KSM_RUN_STOP;
2908                                 count = err;
2909                         }
2910                 }
2911         }
2912         mutex_unlock(&ksm_thread_mutex);
2913
2914         if (flags & KSM_RUN_MERGE)
2915                 wake_up_interruptible(&ksm_thread_wait);
2916
2917         return count;
2918 }
2919 KSM_ATTR(run);
2920
2921 #ifdef CONFIG_NUMA
2922 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2923                                        struct kobj_attribute *attr, char *buf)
2924 {
2925         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2926 }
2927
2928 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2929                                    struct kobj_attribute *attr,
2930                                    const char *buf, size_t count)
2931 {
2932         int err;
2933         unsigned long knob;
2934
2935         err = kstrtoul(buf, 10, &knob);
2936         if (err)
2937                 return err;
2938         if (knob > 1)
2939                 return -EINVAL;
2940
2941         mutex_lock(&ksm_thread_mutex);
2942         wait_while_offlining();
2943         if (ksm_merge_across_nodes != knob) {
2944                 if (ksm_pages_shared || remove_all_stable_nodes())
2945                         err = -EBUSY;
2946                 else if (root_stable_tree == one_stable_tree) {
2947                         struct rb_root *buf;
2948                         /*
2949                          * This is the first time that we switch away from the
2950                          * default of merging across nodes: must now allocate
2951                          * a buffer to hold as many roots as may be needed.
2952                          * Allocate stable and unstable together:
2953                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2954                          */
2955                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2956                                       GFP_KERNEL);
2957                         /* Let us assume that RB_ROOT is NULL is zero */
2958                         if (!buf)
2959                                 err = -ENOMEM;
2960                         else {
2961                                 root_stable_tree = buf;
2962                                 root_unstable_tree = buf + nr_node_ids;
2963                                 /* Stable tree is empty but not the unstable */
2964                                 root_unstable_tree[0] = one_unstable_tree[0];
2965                         }
2966                 }
2967                 if (!err) {
2968                         ksm_merge_across_nodes = knob;
2969                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2970                 }
2971         }
2972         mutex_unlock(&ksm_thread_mutex);
2973
2974         return err ? err : count;
2975 }
2976 KSM_ATTR(merge_across_nodes);
2977 #endif
2978
2979 static ssize_t use_zero_pages_show(struct kobject *kobj,
2980                                    struct kobj_attribute *attr, char *buf)
2981 {
2982         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2983 }
2984 static ssize_t use_zero_pages_store(struct kobject *kobj,
2985                                    struct kobj_attribute *attr,
2986                                    const char *buf, size_t count)
2987 {
2988         int err;
2989         bool value;
2990
2991         err = kstrtobool(buf, &value);
2992         if (err)
2993                 return -EINVAL;
2994
2995         ksm_use_zero_pages = value;
2996
2997         return count;
2998 }
2999 KSM_ATTR(use_zero_pages);
3000
3001 static ssize_t max_page_sharing_show(struct kobject *kobj,
3002                                      struct kobj_attribute *attr, char *buf)
3003 {
3004         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3005 }
3006
3007 static ssize_t max_page_sharing_store(struct kobject *kobj,
3008                                       struct kobj_attribute *attr,
3009                                       const char *buf, size_t count)
3010 {
3011         int err;
3012         int knob;
3013
3014         err = kstrtoint(buf, 10, &knob);
3015         if (err)
3016                 return err;
3017         /*
3018          * When a KSM page is created it is shared by 2 mappings. This
3019          * being a signed comparison, it implicitly verifies it's not
3020          * negative.
3021          */
3022         if (knob < 2)
3023                 return -EINVAL;
3024
3025         if (READ_ONCE(ksm_max_page_sharing) == knob)
3026                 return count;
3027
3028         mutex_lock(&ksm_thread_mutex);
3029         wait_while_offlining();
3030         if (ksm_max_page_sharing != knob) {
3031                 if (ksm_pages_shared || remove_all_stable_nodes())
3032                         err = -EBUSY;
3033                 else
3034                         ksm_max_page_sharing = knob;
3035         }
3036         mutex_unlock(&ksm_thread_mutex);
3037
3038         return err ? err : count;
3039 }
3040 KSM_ATTR(max_page_sharing);
3041
3042 static ssize_t pages_shared_show(struct kobject *kobj,
3043                                  struct kobj_attribute *attr, char *buf)
3044 {
3045         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3046 }
3047 KSM_ATTR_RO(pages_shared);
3048
3049 static ssize_t pages_sharing_show(struct kobject *kobj,
3050                                   struct kobj_attribute *attr, char *buf)
3051 {
3052         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3053 }
3054 KSM_ATTR_RO(pages_sharing);
3055
3056 static ssize_t pages_unshared_show(struct kobject *kobj,
3057                                    struct kobj_attribute *attr, char *buf)
3058 {
3059         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3060 }
3061 KSM_ATTR_RO(pages_unshared);
3062
3063 static ssize_t pages_volatile_show(struct kobject *kobj,
3064                                    struct kobj_attribute *attr, char *buf)
3065 {
3066         long ksm_pages_volatile;
3067
3068         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3069                                 - ksm_pages_sharing - ksm_pages_unshared;
3070         /*
3071          * It was not worth any locking to calculate that statistic,
3072          * but it might therefore sometimes be negative: conceal that.
3073          */
3074         if (ksm_pages_volatile < 0)
3075                 ksm_pages_volatile = 0;
3076         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3077 }
3078 KSM_ATTR_RO(pages_volatile);
3079
3080 static ssize_t stable_node_dups_show(struct kobject *kobj,
3081                                      struct kobj_attribute *attr, char *buf)
3082 {
3083         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3084 }
3085 KSM_ATTR_RO(stable_node_dups);
3086
3087 static ssize_t stable_node_chains_show(struct kobject *kobj,
3088                                        struct kobj_attribute *attr, char *buf)
3089 {
3090         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3091 }
3092 KSM_ATTR_RO(stable_node_chains);
3093
3094 static ssize_t
3095 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3096                                         struct kobj_attribute *attr,
3097                                         char *buf)
3098 {
3099         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3100 }
3101
3102 static ssize_t
3103 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3104                                          struct kobj_attribute *attr,
3105                                          const char *buf, size_t count)
3106 {
3107         unsigned int msecs;
3108         int err;
3109
3110         err = kstrtouint(buf, 10, &msecs);
3111         if (err)
3112                 return -EINVAL;
3113
3114         ksm_stable_node_chains_prune_millisecs = msecs;
3115
3116         return count;
3117 }
3118 KSM_ATTR(stable_node_chains_prune_millisecs);
3119
3120 static ssize_t full_scans_show(struct kobject *kobj,
3121                                struct kobj_attribute *attr, char *buf)
3122 {
3123         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3124 }
3125 KSM_ATTR_RO(full_scans);
3126
3127 static struct attribute *ksm_attrs[] = {
3128         &sleep_millisecs_attr.attr,
3129         &pages_to_scan_attr.attr,
3130         &run_attr.attr,
3131         &pages_shared_attr.attr,
3132         &pages_sharing_attr.attr,
3133         &pages_unshared_attr.attr,
3134         &pages_volatile_attr.attr,
3135         &full_scans_attr.attr,
3136 #ifdef CONFIG_NUMA
3137         &merge_across_nodes_attr.attr,
3138 #endif
3139         &max_page_sharing_attr.attr,
3140         &stable_node_chains_attr.attr,
3141         &stable_node_dups_attr.attr,
3142         &stable_node_chains_prune_millisecs_attr.attr,
3143         &use_zero_pages_attr.attr,
3144         NULL,
3145 };
3146
3147 static const struct attribute_group ksm_attr_group = {
3148         .attrs = ksm_attrs,
3149         .name = "ksm",
3150 };
3151 #endif /* CONFIG_SYSFS */
3152
3153 static int __init ksm_init(void)
3154 {
3155         struct task_struct *ksm_thread;
3156         int err;
3157
3158         /* The correct value depends on page size and endianness */
3159         zero_checksum = calc_checksum(ZERO_PAGE(0));
3160         /* Default to false for backwards compatibility */
3161         ksm_use_zero_pages = false;
3162
3163         err = ksm_slab_init();
3164         if (err)
3165                 goto out;
3166
3167         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3168         if (IS_ERR(ksm_thread)) {
3169                 pr_err("ksm: creating kthread failed\n");
3170                 err = PTR_ERR(ksm_thread);
3171                 goto out_free;
3172         }
3173
3174 #ifdef CONFIG_SYSFS
3175         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3176         if (err) {
3177                 pr_err("ksm: register sysfs failed\n");
3178                 kthread_stop(ksm_thread);
3179                 goto out_free;
3180         }
3181 #else
3182         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3183
3184 #endif /* CONFIG_SYSFS */
3185
3186 #ifdef CONFIG_MEMORY_HOTREMOVE
3187         /* There is no significance to this priority 100 */
3188         hotplug_memory_notifier(ksm_memory_callback, 100);
3189 #endif
3190         return 0;
3191
3192 out_free:
3193         ksm_slab_free();
3194 out:
3195         return err;
3196 }
3197 subsys_initcall(ksm_init);
3198
3199 #endif /* CONFIG_LKSM */