1 // SPDX-License-Identifier: GPL-2.0-only
3 * Memory merging support.
5 * This code enables dynamic sharing of identical pages found in different
6 * memory areas, even if they are not shared by fork()
8 * Copyright (C) 2008-2009 Red Hat, Inc.
17 #include <linux/errno.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
43 #include <asm/tlbflush.h>
48 #define DO_NUMA(x) do { (x); } while (0)
51 #define DO_NUMA(x) do { } while (0)
57 * A few notes about the KSM scanning process,
58 * to make it easier to understand the data structures below:
60 * In order to reduce excessive scanning, KSM sorts the memory pages by their
61 * contents into a data structure that holds pointers to the pages' locations.
63 * Since the contents of the pages may change at any moment, KSM cannot just
64 * insert the pages into a normal sorted tree and expect it to find anything.
65 * Therefore KSM uses two data structures - the stable and the unstable tree.
67 * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68 * by their contents. Because each such page is write-protected, searching on
69 * this tree is fully assured to be working (except when pages are unmapped),
70 * and therefore this tree is called the stable tree.
72 * The stable tree node includes information required for reverse
73 * mapping from a KSM page to virtual addresses that map this page.
75 * In order to avoid large latencies of the rmap walks on KSM pages,
76 * KSM maintains two types of nodes in the stable tree:
78 * * the regular nodes that keep the reverse mapping structures in a
80 * * the "chains" that link nodes ("dups") that represent the same
81 * write protected memory content, but each "dup" corresponds to a
82 * different KSM page copy of that content
84 * Internally, the regular nodes, "dups" and "chains" are represented
85 * using the same struct stable_node structure.
87 * In addition to the stable tree, KSM uses a second data structure called the
88 * unstable tree: this tree holds pointers to pages which have been found to
89 * be "unchanged for a period of time". The unstable tree sorts these pages
90 * by their contents, but since they are not write-protected, KSM cannot rely
91 * upon the unstable tree to work correctly - the unstable tree is liable to
92 * be corrupted as its contents are modified, and so it is called unstable.
94 * KSM solves this problem by several techniques:
96 * 1) The unstable tree is flushed every time KSM completes scanning all
97 * memory areas, and then the tree is rebuilt again from the beginning.
98 * 2) KSM will only insert into the unstable tree, pages whose hash value
99 * has not changed since the previous scan of all memory areas.
100 * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101 * colors of the nodes and not on their contents, assuring that even when
102 * the tree gets "corrupted" it won't get out of balance, so scanning time
103 * remains the same (also, searching and inserting nodes in an rbtree uses
104 * the same algorithm, so we have no overhead when we flush and rebuild).
105 * 4) KSM never flushes the stable tree, which means that even if it were to
106 * take 10 attempts to find a page in the unstable tree, once it is found,
107 * it is secured in the stable tree. (When we scan a new page, we first
108 * compare it against the stable tree, and then against the unstable tree.)
110 * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111 * stable trees and multiple unstable trees: one of each for each NUMA node.
115 * struct mm_slot - ksm information per mm that is being scanned
116 * @link: link to the mm_slots hash list
117 * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118 * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119 * @mm: the mm that this information is valid for
122 struct hlist_node link;
123 struct list_head mm_list;
124 struct rmap_item *rmap_list;
125 struct mm_struct *mm;
129 * struct ksm_scan - cursor for scanning
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 * @rmap_list: link to the next rmap to be scanned in the rmap_list
133 * @seqnr: count of completed full scans (needed when removing unstable node)
135 * There is only the one ksm_scan instance of this cursor structure.
138 struct mm_slot *mm_slot;
139 unsigned long address;
140 struct rmap_item **rmap_list;
145 * struct stable_node - node of the stable rbtree
146 * @node: rb node of this ksm page in the stable tree
147 * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148 * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149 * @list: linked into migrate_nodes, pending placement in the proper node tree
150 * @hlist: hlist head of rmap_items using this ksm page
151 * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152 * @chain_prune_time: time of the last full garbage collection
153 * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154 * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
158 struct rb_node node; /* when node of stable tree */
159 struct { /* when listed for migration */
160 struct list_head *head;
162 struct hlist_node hlist_dup;
163 struct list_head list;
167 struct hlist_head hlist;
170 unsigned long chain_prune_time;
173 * STABLE_NODE_CHAIN can be any negative number in
174 * rmap_hlist_len negative range, but better not -1 to be able
175 * to reliably detect underflows.
177 #define STABLE_NODE_CHAIN -1024
185 * struct rmap_item - reverse mapping item for virtual addresses
186 * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187 * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188 * @nid: NUMA node id of unstable tree in which linked (may not match page)
189 * @mm: the memory structure this rmap_item is pointing into
190 * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191 * @oldchecksum: previous checksum of the page at that virtual address
192 * @node: rb node of this rmap_item in the unstable tree
193 * @head: pointer to stable_node heading this list in the stable tree
194 * @hlist: link into hlist of rmap_items hanging off that stable_node
197 struct rmap_item *rmap_list;
199 struct anon_vma *anon_vma; /* when stable */
201 int nid; /* when node of unstable tree */
204 struct mm_struct *mm;
205 unsigned long address; /* + low bits used for flags below */
206 unsigned int oldchecksum; /* when unstable */
208 struct rb_node node; /* when node of unstable tree */
209 struct { /* when listed from stable tree */
210 struct stable_node *head;
211 struct hlist_node hlist;
216 #define SEQNR_MASK 0x0ff /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG 0x100 /* is a node of the unstable tree */
218 #define STABLE_FLAG 0x200 /* is listed from the stable tree */
220 /* The stable and unstable tree heads */
221 static struct rb_root one_stable_tree[1] = { RB_ROOT };
222 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
223 static struct rb_root *root_stable_tree = one_stable_tree;
224 static struct rb_root *root_unstable_tree = one_unstable_tree;
226 /* Recently migrated nodes of stable tree, pending proper placement */
227 static LIST_HEAD(migrate_nodes);
228 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
230 #define MM_SLOTS_HASH_BITS 10
231 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
233 static struct mm_slot ksm_mm_head = {
234 .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
236 static struct ksm_scan ksm_scan = {
237 .mm_slot = &ksm_mm_head,
240 static struct kmem_cache *rmap_item_cache;
241 static struct kmem_cache *stable_node_cache;
242 static struct kmem_cache *mm_slot_cache;
244 /* The number of nodes in the stable tree */
245 static unsigned long ksm_pages_shared;
247 /* The number of page slots additionally sharing those nodes */
248 static unsigned long ksm_pages_sharing;
250 /* The number of nodes in the unstable tree */
251 static unsigned long ksm_pages_unshared;
253 /* The number of rmap_items in use: to calculate pages_volatile */
254 static unsigned long ksm_rmap_items;
256 /* The number of stable_node chains */
257 static unsigned long ksm_stable_node_chains;
259 /* The number of stable_node dups linked to the stable_node chains */
260 static unsigned long ksm_stable_node_dups;
262 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
263 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
265 /* Maximum number of page slots sharing a stable node */
266 static int ksm_max_page_sharing = 256;
268 /* Number of pages ksmd should scan in one batch */
269 static unsigned int ksm_thread_pages_to_scan = 100;
271 /* Milliseconds ksmd should sleep between batches */
272 static unsigned int ksm_thread_sleep_millisecs = 20;
274 /* Checksum of an empty (zeroed) page */
275 static unsigned int zero_checksum __read_mostly;
277 /* Whether to merge empty (zeroed) pages with actual zero pages */
278 static bool ksm_use_zero_pages __read_mostly;
281 /* Zeroed when merging across nodes is not allowed */
282 static unsigned int ksm_merge_across_nodes = 1;
283 static int ksm_nr_node_ids = 1;
285 #define ksm_merge_across_nodes 1U
286 #define ksm_nr_node_ids 1
289 #define KSM_RUN_STOP 0
290 #define KSM_RUN_MERGE 1
291 #define KSM_RUN_UNMERGE 2
292 #define KSM_RUN_OFFLINE 4
293 static unsigned long ksm_run = KSM_RUN_STOP;
294 static void wait_while_offlining(void);
296 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
297 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
298 static DEFINE_MUTEX(ksm_thread_mutex);
299 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
302 sizeof(struct __struct), __alignof__(struct __struct),\
305 static int __init ksm_slab_init(void)
307 rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
308 if (!rmap_item_cache)
311 stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
312 if (!stable_node_cache)
315 mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
322 kmem_cache_destroy(stable_node_cache);
324 kmem_cache_destroy(rmap_item_cache);
329 static void __init ksm_slab_free(void)
331 kmem_cache_destroy(mm_slot_cache);
332 kmem_cache_destroy(stable_node_cache);
333 kmem_cache_destroy(rmap_item_cache);
334 mm_slot_cache = NULL;
337 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
339 return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
342 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
344 return dup->head == STABLE_NODE_DUP_HEAD;
347 static inline void stable_node_chain_add_dup(struct stable_node *dup,
348 struct stable_node *chain)
350 VM_BUG_ON(is_stable_node_dup(dup));
351 dup->head = STABLE_NODE_DUP_HEAD;
352 VM_BUG_ON(!is_stable_node_chain(chain));
353 hlist_add_head(&dup->hlist_dup, &chain->hlist);
354 ksm_stable_node_dups++;
357 static inline void __stable_node_dup_del(struct stable_node *dup)
359 VM_BUG_ON(!is_stable_node_dup(dup));
360 hlist_del(&dup->hlist_dup);
361 ksm_stable_node_dups--;
364 static inline void stable_node_dup_del(struct stable_node *dup)
366 VM_BUG_ON(is_stable_node_chain(dup));
367 if (is_stable_node_dup(dup))
368 __stable_node_dup_del(dup);
370 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
371 #ifdef CONFIG_DEBUG_VM
376 static inline struct rmap_item *alloc_rmap_item(void)
378 struct rmap_item *rmap_item;
380 rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
381 __GFP_NORETRY | __GFP_NOWARN);
387 static inline void free_rmap_item(struct rmap_item *rmap_item)
390 rmap_item->mm = NULL; /* debug safety */
391 kmem_cache_free(rmap_item_cache, rmap_item);
394 static inline struct stable_node *alloc_stable_node(void)
397 * The allocation can take too long with GFP_KERNEL when memory is under
398 * pressure, which may lead to hung task warnings. Adding __GFP_HIGH
399 * grants access to memory reserves, helping to avoid this problem.
401 return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
404 static inline void free_stable_node(struct stable_node *stable_node)
406 VM_BUG_ON(stable_node->rmap_hlist_len &&
407 !is_stable_node_chain(stable_node));
408 kmem_cache_free(stable_node_cache, stable_node);
411 static inline struct mm_slot *alloc_mm_slot(void)
413 if (!mm_slot_cache) /* initialization failed */
415 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
418 static inline void free_mm_slot(struct mm_slot *mm_slot)
420 kmem_cache_free(mm_slot_cache, mm_slot);
423 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
425 struct mm_slot *slot;
427 hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
434 static void insert_to_mm_slots_hash(struct mm_struct *mm,
435 struct mm_slot *mm_slot)
438 hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
442 * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
443 * page tables after it has passed through ksm_exit() - which, if necessary,
444 * takes mmap_lock briefly to serialize against them. ksm_exit() does not set
445 * a special flag: they can just back out as soon as mm_users goes to zero.
446 * ksm_test_exit() is used throughout to make this test for exit: in some
447 * places for correctness, in some places just to avoid unnecessary work.
449 static inline bool ksm_test_exit(struct mm_struct *mm)
451 return atomic_read(&mm->mm_users) == 0;
455 * We use break_ksm to break COW on a ksm page: it's a stripped down
457 * if (get_user_pages(addr, 1, FOLL_WRITE, &page, NULL) == 1)
460 * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
461 * in case the application has unmapped and remapped mm,addr meanwhile.
462 * Could a ksm page appear anywhere else? Actually yes, in a VM_PFNMAP
463 * mmap of /dev/mem, where we would not want to touch it.
465 * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
466 * of the process that owns 'vma'. We also do not want to enforce
467 * protection keys here anyway.
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
476 page = follow_page(vma, addr,
477 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
478 if (IS_ERR_OR_NULL(page))
481 ret = handle_mm_fault(vma, addr,
482 FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE,
485 ret = VM_FAULT_WRITE;
487 } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
489 * We must loop because handle_mm_fault() may back out if there's
490 * any difficulty e.g. if pte accessed bit gets updated concurrently.
492 * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493 * COW has been broken, even if the vma does not permit VM_WRITE;
494 * but note that a concurrent fault might break PageKsm for us.
496 * VM_FAULT_SIGBUS could occur if we race with truncation of the
497 * backing file, which also invalidates anonymous pages: that's
498 * okay, that truncation will have unmapped the PageKsm for us.
500 * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501 * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502 * current task has TIF_MEMDIE set, and will be OOM killed on return
503 * to user; and ksmd, having no mm, would never be chosen for that.
505 * But if the mm is in a limited mem_cgroup, then the fault may fail
506 * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507 * even ksmd can fail in this way - though it's usually breaking ksm
508 * just to undo a merge it made a moment before, so unlikely to oom.
510 * That's a pity: we might therefore have more kernel pages allocated
511 * than we're counting as nodes in the stable tree; but ksm_do_scan
512 * will retry to break_cow on each pass, so should recover the page
513 * in due course. The important thing is to not let VM_MERGEABLE
514 * be cleared while any such pages might remain in the area.
516 return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
522 struct vm_area_struct *vma;
523 if (ksm_test_exit(mm))
525 vma = vma_lookup(mm, addr);
526 if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
531 static void break_cow(struct rmap_item *rmap_item)
533 struct mm_struct *mm = rmap_item->mm;
534 unsigned long addr = rmap_item->address;
535 struct vm_area_struct *vma;
538 * It is not an accident that whenever we want to break COW
539 * to undo, we also need to drop a reference to the anon_vma.
541 put_anon_vma(rmap_item->anon_vma);
544 vma = find_mergeable_vma(mm, addr);
546 break_ksm(vma, addr);
547 mmap_read_unlock(mm);
550 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
552 struct mm_struct *mm = rmap_item->mm;
553 unsigned long addr = rmap_item->address;
554 struct vm_area_struct *vma;
558 vma = find_mergeable_vma(mm, addr);
562 page = follow_page(vma, addr, FOLL_GET);
563 if (IS_ERR_OR_NULL(page))
565 if (PageAnon(page)) {
566 flush_anon_page(vma, page, addr);
567 flush_dcache_page(page);
573 mmap_read_unlock(mm);
578 * This helper is used for getting right index into array of tree roots.
579 * When merge_across_nodes knob is set to 1, there are only two rb-trees for
580 * stable and unstable pages from all nodes with roots in index 0. Otherwise,
581 * every node has its own stable and unstable tree.
583 static inline int get_kpfn_nid(unsigned long kpfn)
585 return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
588 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
589 struct rb_root *root)
591 struct stable_node *chain = alloc_stable_node();
592 VM_BUG_ON(is_stable_node_chain(dup));
594 INIT_HLIST_HEAD(&chain->hlist);
595 chain->chain_prune_time = jiffies;
596 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
597 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
598 chain->nid = NUMA_NO_NODE; /* debug */
600 ksm_stable_node_chains++;
603 * Put the stable node chain in the first dimension of
604 * the stable tree and at the same time remove the old
607 rb_replace_node(&dup->node, &chain->node, root);
610 * Move the old stable node to the second dimension
611 * queued in the hlist_dup. The invariant is that all
612 * dup stable_nodes in the chain->hlist point to pages
613 * that are write protected and have the exact same
616 stable_node_chain_add_dup(dup, chain);
621 static inline void free_stable_node_chain(struct stable_node *chain,
622 struct rb_root *root)
624 rb_erase(&chain->node, root);
625 free_stable_node(chain);
626 ksm_stable_node_chains--;
629 static void remove_node_from_stable_tree(struct stable_node *stable_node)
631 struct rmap_item *rmap_item;
633 /* check it's not STABLE_NODE_CHAIN or negative */
634 BUG_ON(stable_node->rmap_hlist_len < 0);
636 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
637 if (rmap_item->hlist.next)
641 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
642 stable_node->rmap_hlist_len--;
643 put_anon_vma(rmap_item->anon_vma);
644 rmap_item->address &= PAGE_MASK;
649 * We need the second aligned pointer of the migrate_nodes
650 * list_head to stay clear from the rb_parent_color union
651 * (aligned and different than any node) and also different
652 * from &migrate_nodes. This will verify that future list.h changes
653 * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
655 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
656 BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
658 if (stable_node->head == &migrate_nodes)
659 list_del(&stable_node->list);
661 stable_node_dup_del(stable_node);
662 free_stable_node(stable_node);
665 enum get_ksm_page_flags {
672 * get_ksm_page: checks if the page indicated by the stable node
673 * is still its ksm page, despite having held no reference to it.
674 * In which case we can trust the content of the page, and it
675 * returns the gotten page; but if the page has now been zapped,
676 * remove the stale node from the stable tree and return NULL.
677 * But beware, the stable node's page might be being migrated.
679 * You would expect the stable_node to hold a reference to the ksm page.
680 * But if it increments the page's count, swapping out has to wait for
681 * ksmd to come around again before it can free the page, which may take
682 * seconds or even minutes: much too unresponsive. So instead we use a
683 * "keyhole reference": access to the ksm page from the stable node peeps
684 * out through its keyhole to see if that page still holds the right key,
685 * pointing back to this stable node. This relies on freeing a PageAnon
686 * page to reset its page->mapping to NULL, and relies on no other use of
687 * a page to put something that might look like our key in page->mapping.
688 * is on its way to being freed; but it is an anomaly to bear in mind.
690 static struct page *get_ksm_page(struct stable_node *stable_node,
691 enum get_ksm_page_flags flags)
694 void *expected_mapping;
697 expected_mapping = (void *)((unsigned long)stable_node |
700 kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
701 page = pfn_to_page(kpfn);
702 if (READ_ONCE(page->mapping) != expected_mapping)
706 * We cannot do anything with the page while its refcount is 0.
707 * Usually 0 means free, or tail of a higher-order page: in which
708 * case this node is no longer referenced, and should be freed;
709 * however, it might mean that the page is under page_ref_freeze().
710 * The __remove_mapping() case is easy, again the node is now stale;
711 * the same is in reuse_ksm_page() case; but if page is swapcache
712 * in migrate_page_move_mapping(), it might still be our page,
713 * in which case it's essential to keep the node.
715 while (!get_page_unless_zero(page)) {
717 * Another check for page->mapping != expected_mapping would
718 * work here too. We have chosen the !PageSwapCache test to
719 * optimize the common case, when the page is or is about to
720 * be freed: PageSwapCache is cleared (under spin_lock_irq)
721 * in the ref_freeze section of __remove_mapping(); but Anon
722 * page->mapping reset to NULL later, in free_pages_prepare().
724 if (!PageSwapCache(page))
729 if (READ_ONCE(page->mapping) != expected_mapping) {
734 if (flags == GET_KSM_PAGE_TRYLOCK) {
735 if (!trylock_page(page)) {
737 return ERR_PTR(-EBUSY);
739 } else if (flags == GET_KSM_PAGE_LOCK)
742 if (flags != GET_KSM_PAGE_NOLOCK) {
743 if (READ_ONCE(page->mapping) != expected_mapping) {
753 * We come here from above when page->mapping or !PageSwapCache
754 * suggests that the node is stale; but it might be under migration.
755 * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
756 * before checking whether node->kpfn has been changed.
759 if (READ_ONCE(stable_node->kpfn) != kpfn)
761 remove_node_from_stable_tree(stable_node);
766 * Removing rmap_item from stable or unstable tree.
767 * This function will clean the information from the stable/unstable tree.
769 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
771 if (rmap_item->address & STABLE_FLAG) {
772 struct stable_node *stable_node;
775 stable_node = rmap_item->head;
776 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
780 hlist_del(&rmap_item->hlist);
784 if (!hlist_empty(&stable_node->hlist))
788 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
789 stable_node->rmap_hlist_len--;
791 put_anon_vma(rmap_item->anon_vma);
792 rmap_item->head = NULL;
793 rmap_item->address &= PAGE_MASK;
795 } else if (rmap_item->address & UNSTABLE_FLAG) {
798 * Usually ksmd can and must skip the rb_erase, because
799 * root_unstable_tree was already reset to RB_ROOT.
800 * But be careful when an mm is exiting: do the rb_erase
801 * if this rmap_item was inserted by this scan, rather
802 * than left over from before.
804 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
807 rb_erase(&rmap_item->node,
808 root_unstable_tree + NUMA(rmap_item->nid));
809 ksm_pages_unshared--;
810 rmap_item->address &= PAGE_MASK;
813 cond_resched(); /* we're called from many long loops */
816 static void remove_trailing_rmap_items(struct rmap_item **rmap_list)
819 struct rmap_item *rmap_item = *rmap_list;
820 *rmap_list = rmap_item->rmap_list;
821 remove_rmap_item_from_tree(rmap_item);
822 free_rmap_item(rmap_item);
827 * Though it's very tempting to unmerge rmap_items from stable tree rather
828 * than check every pte of a given vma, the locking doesn't quite work for
829 * that - an rmap_item is assigned to the stable tree after inserting ksm
830 * page and upping mmap_lock. Nor does it fit with the way we skip dup'ing
831 * rmap_items from parent to child at fork time (so as not to waste time
832 * if exit comes before the next scan reaches it).
834 * Similarly, although we'd like to remove rmap_items (so updating counts
835 * and freeing memory) when unmerging an area, it's easier to leave that
836 * to the next pass of ksmd - consider, for example, how ksmd might be
837 * in cmp_and_merge_page on one of the rmap_items we would be removing.
839 static int unmerge_ksm_pages(struct vm_area_struct *vma,
840 unsigned long start, unsigned long end)
845 for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
846 if (ksm_test_exit(vma->vm_mm))
848 if (signal_pending(current))
851 err = break_ksm(vma, addr);
856 static inline struct stable_node *page_stable_node(struct page *page)
858 return PageKsm(page) ? page_rmapping(page) : NULL;
861 static inline void set_page_stable_node(struct page *page,
862 struct stable_node *stable_node)
864 page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
869 * Only called through the sysfs control interface:
871 static int remove_stable_node(struct stable_node *stable_node)
876 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
879 * get_ksm_page did remove_node_from_stable_tree itself.
885 * Page could be still mapped if this races with __mmput() running in
886 * between ksm_exit() and exit_mmap(). Just refuse to let
887 * merge_across_nodes/max_page_sharing be switched.
890 if (!page_mapped(page)) {
892 * The stable node did not yet appear stale to get_ksm_page(),
893 * since that allows for an unmapped ksm page to be recognized
894 * right up until it is freed; but the node is safe to remove.
895 * This page might be in a pagevec waiting to be freed,
896 * or it might be PageSwapCache (perhaps under writeback),
897 * or it might have been removed from swapcache a moment ago.
899 set_page_stable_node(page, NULL);
900 remove_node_from_stable_tree(stable_node);
909 static int remove_stable_node_chain(struct stable_node *stable_node,
910 struct rb_root *root)
912 struct stable_node *dup;
913 struct hlist_node *hlist_safe;
915 if (!is_stable_node_chain(stable_node)) {
916 VM_BUG_ON(is_stable_node_dup(stable_node));
917 if (remove_stable_node(stable_node))
923 hlist_for_each_entry_safe(dup, hlist_safe,
924 &stable_node->hlist, hlist_dup) {
925 VM_BUG_ON(!is_stable_node_dup(dup));
926 if (remove_stable_node(dup))
929 BUG_ON(!hlist_empty(&stable_node->hlist));
930 free_stable_node_chain(stable_node, root);
934 static int remove_all_stable_nodes(void)
936 struct stable_node *stable_node, *next;
940 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
941 while (root_stable_tree[nid].rb_node) {
942 stable_node = rb_entry(root_stable_tree[nid].rb_node,
943 struct stable_node, node);
944 if (remove_stable_node_chain(stable_node,
945 root_stable_tree + nid)) {
947 break; /* proceed to next nid */
952 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
953 if (remove_stable_node(stable_node))
960 static int unmerge_and_remove_all_rmap_items(void)
962 struct mm_slot *mm_slot;
963 struct mm_struct *mm;
964 struct vm_area_struct *vma;
967 spin_lock(&ksm_mmlist_lock);
968 ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
969 struct mm_slot, mm_list);
970 spin_unlock(&ksm_mmlist_lock);
972 for (mm_slot = ksm_scan.mm_slot;
973 mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
976 for (vma = mm->mmap; vma; vma = vma->vm_next) {
977 if (ksm_test_exit(mm))
979 if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
981 err = unmerge_ksm_pages(vma,
982 vma->vm_start, vma->vm_end);
987 remove_trailing_rmap_items(&mm_slot->rmap_list);
988 mmap_read_unlock(mm);
990 spin_lock(&ksm_mmlist_lock);
991 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
992 struct mm_slot, mm_list);
993 if (ksm_test_exit(mm)) {
994 hash_del(&mm_slot->link);
995 list_del(&mm_slot->mm_list);
996 spin_unlock(&ksm_mmlist_lock);
998 free_mm_slot(mm_slot);
999 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1002 spin_unlock(&ksm_mmlist_lock);
1005 /* Clean up stable nodes, but don't worry if some are still busy */
1006 remove_all_stable_nodes();
1011 mmap_read_unlock(mm);
1012 spin_lock(&ksm_mmlist_lock);
1013 ksm_scan.mm_slot = &ksm_mm_head;
1014 spin_unlock(&ksm_mmlist_lock);
1017 #endif /* CONFIG_SYSFS */
1019 static u32 calc_checksum(struct page *page)
1022 void *addr = kmap_atomic(page);
1023 checksum = xxhash(addr, PAGE_SIZE, 0);
1024 kunmap_atomic(addr);
1028 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1031 struct mm_struct *mm = vma->vm_mm;
1032 struct page_vma_mapped_walk pvmw = {
1038 struct mmu_notifier_range range;
1040 pvmw.address = page_address_in_vma(page, vma);
1041 if (pvmw.address == -EFAULT)
1044 BUG_ON(PageTransCompound(page));
1046 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
1048 pvmw.address + PAGE_SIZE);
1049 mmu_notifier_invalidate_range_start(&range);
1051 if (!page_vma_mapped_walk(&pvmw))
1053 if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1056 if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1057 (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1058 mm_tlb_flush_pending(mm)) {
1061 swapped = PageSwapCache(page);
1062 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1064 * Ok this is tricky, when get_user_pages_fast() run it doesn't
1065 * take any lock, therefore the check that we are going to make
1066 * with the pagecount against the mapcount is racy and
1067 * O_DIRECT can happen right after the check.
1068 * So we clear the pte and flush the tlb before the check
1069 * this assure us that no O_DIRECT can happen after the check
1070 * or in the middle of the check.
1072 * No need to notify as we are downgrading page table to read
1073 * only not changing it to point to a new page.
1075 * See Documentation/vm/mmu_notifier.rst
1077 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1079 * Check that no O_DIRECT or similar I/O is in progress on the
1082 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1083 set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1086 if (pte_dirty(entry))
1087 set_page_dirty(page);
1089 if (pte_protnone(entry))
1090 entry = pte_mkclean(pte_clear_savedwrite(entry));
1092 entry = pte_mkclean(pte_wrprotect(entry));
1093 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1095 *orig_pte = *pvmw.pte;
1099 page_vma_mapped_walk_done(&pvmw);
1101 mmu_notifier_invalidate_range_end(&range);
1107 * replace_page - replace page in vma by new ksm page
1108 * @vma: vma that holds the pte pointing to page
1109 * @page: the page we are replacing by kpage
1110 * @kpage: the ksm page we replace page by
1111 * @orig_pte: the original value of the pte
1113 * Returns 0 on success, -EFAULT on failure.
1115 static int replace_page(struct vm_area_struct *vma, struct page *page,
1116 struct page *kpage, pte_t orig_pte)
1118 struct mm_struct *mm = vma->vm_mm;
1125 struct mmu_notifier_range range;
1127 addr = page_address_in_vma(page, vma);
1128 if (addr == -EFAULT)
1131 pmd = mm_find_pmd(mm, addr);
1135 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, addr,
1137 mmu_notifier_invalidate_range_start(&range);
1139 ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1140 if (!pte_same(*ptep, orig_pte)) {
1141 pte_unmap_unlock(ptep, ptl);
1146 * No need to check ksm_use_zero_pages here: we can only have a
1147 * zero_page here if ksm_use_zero_pages was enabled already.
1149 if (!is_zero_pfn(page_to_pfn(kpage))) {
1151 page_add_anon_rmap(kpage, vma, addr, false);
1152 newpte = mk_pte(kpage, vma->vm_page_prot);
1154 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1155 vma->vm_page_prot));
1157 * We're replacing an anonymous page with a zero page, which is
1158 * not anonymous. We need to do proper accounting otherwise we
1159 * will get wrong values in /proc, and a BUG message in dmesg
1160 * when tearing down the mm.
1162 dec_mm_counter(mm, MM_ANONPAGES);
1165 flush_cache_page(vma, addr, pte_pfn(*ptep));
1167 * No need to notify as we are replacing a read only page with another
1168 * read only page with the same content.
1170 * See Documentation/vm/mmu_notifier.rst
1172 ptep_clear_flush(vma, addr, ptep);
1173 set_pte_at_notify(mm, addr, ptep, newpte);
1175 page_remove_rmap(page, false);
1176 if (!page_mapped(page))
1177 try_to_free_swap(page);
1180 pte_unmap_unlock(ptep, ptl);
1183 mmu_notifier_invalidate_range_end(&range);
1189 * try_to_merge_one_page - take two pages and merge them into one
1190 * @vma: the vma that holds the pte pointing to page
1191 * @page: the PageAnon page that we want to replace with kpage
1192 * @kpage: the PageKsm page that we want to map instead of page,
1193 * or NULL the first time when we want to use page as kpage.
1195 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1197 static int try_to_merge_one_page(struct vm_area_struct *vma,
1198 struct page *page, struct page *kpage)
1200 pte_t orig_pte = __pte(0);
1203 if (page == kpage) /* ksm page forked */
1206 if (!PageAnon(page))
1210 * We need the page lock to read a stable PageSwapCache in
1211 * write_protect_page(). We use trylock_page() instead of
1212 * lock_page() because we don't want to wait here - we
1213 * prefer to continue scanning and merging different pages,
1214 * then come back to this page when it is unlocked.
1216 if (!trylock_page(page))
1219 if (PageTransCompound(page)) {
1220 if (split_huge_page(page))
1225 * If this anonymous page is mapped only here, its pte may need
1226 * to be write-protected. If it's mapped elsewhere, all of its
1227 * ptes are necessarily already write-protected. But in either
1228 * case, we need to lock and check page_count is not raised.
1230 if (write_protect_page(vma, page, &orig_pte) == 0) {
1233 * While we hold page lock, upgrade page from
1234 * PageAnon+anon_vma to PageKsm+NULL stable_node:
1235 * stable_tree_insert() will update stable_node.
1237 set_page_stable_node(page, NULL);
1238 mark_page_accessed(page);
1240 * Page reclaim just frees a clean page with no dirty
1241 * ptes: make sure that the ksm page would be swapped.
1243 if (!PageDirty(page))
1246 } else if (pages_identical(page, kpage))
1247 err = replace_page(vma, page, kpage, orig_pte);
1250 if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1251 munlock_vma_page(page);
1252 if (!PageMlocked(kpage)) {
1255 mlock_vma_page(kpage);
1256 page = kpage; /* for final unlock */
1267 * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1268 * but no new kernel page is allocated: kpage must already be a ksm page.
1270 * This function returns 0 if the pages were merged, -EFAULT otherwise.
1272 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1273 struct page *page, struct page *kpage)
1275 struct mm_struct *mm = rmap_item->mm;
1276 struct vm_area_struct *vma;
1280 vma = find_mergeable_vma(mm, rmap_item->address);
1284 err = try_to_merge_one_page(vma, page, kpage);
1288 /* Unstable nid is in union with stable anon_vma: remove first */
1289 remove_rmap_item_from_tree(rmap_item);
1291 /* Must get reference to anon_vma while still holding mmap_lock */
1292 rmap_item->anon_vma = vma->anon_vma;
1293 get_anon_vma(vma->anon_vma);
1295 mmap_read_unlock(mm);
1300 * try_to_merge_two_pages - take two identical pages and prepare them
1301 * to be merged into one page.
1303 * This function returns the kpage if we successfully merged two identical
1304 * pages into one ksm page, NULL otherwise.
1306 * Note that this function upgrades page to ksm page: if one of the pages
1307 * is already a ksm page, try_to_merge_with_ksm_page should be used.
1309 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1311 struct rmap_item *tree_rmap_item,
1312 struct page *tree_page)
1316 err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1318 err = try_to_merge_with_ksm_page(tree_rmap_item,
1321 * If that fails, we have a ksm page with only one pte
1322 * pointing to it: so break it.
1325 break_cow(rmap_item);
1327 return err ? NULL : page;
1330 static __always_inline
1331 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1333 VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1335 * Check that at least one mapping still exists, otherwise
1336 * there's no much point to merge and share with this
1337 * stable_node, as the underlying tree_page of the other
1338 * sharer is going to be freed soon.
1340 return stable_node->rmap_hlist_len &&
1341 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1344 static __always_inline
1345 bool is_page_sharing_candidate(struct stable_node *stable_node)
1347 return __is_page_sharing_candidate(stable_node, 0);
1350 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1351 struct stable_node **_stable_node,
1352 struct rb_root *root,
1353 bool prune_stale_stable_nodes)
1355 struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1356 struct hlist_node *hlist_safe;
1357 struct page *_tree_page, *tree_page = NULL;
1359 int found_rmap_hlist_len;
1361 if (!prune_stale_stable_nodes ||
1362 time_before(jiffies, stable_node->chain_prune_time +
1364 ksm_stable_node_chains_prune_millisecs)))
1365 prune_stale_stable_nodes = false;
1367 stable_node->chain_prune_time = jiffies;
1369 hlist_for_each_entry_safe(dup, hlist_safe,
1370 &stable_node->hlist, hlist_dup) {
1373 * We must walk all stable_node_dup to prune the stale
1374 * stable nodes during lookup.
1376 * get_ksm_page can drop the nodes from the
1377 * stable_node->hlist if they point to freed pages
1378 * (that's why we do a _safe walk). The "dup"
1379 * stable_node parameter itself will be freed from
1380 * under us if it returns NULL.
1382 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1386 if (is_page_sharing_candidate(dup)) {
1388 dup->rmap_hlist_len > found_rmap_hlist_len) {
1390 put_page(tree_page);
1392 found_rmap_hlist_len = found->rmap_hlist_len;
1393 tree_page = _tree_page;
1395 /* skip put_page for found dup */
1396 if (!prune_stale_stable_nodes)
1401 put_page(_tree_page);
1406 * nr is counting all dups in the chain only if
1407 * prune_stale_stable_nodes is true, otherwise we may
1408 * break the loop at nr == 1 even if there are
1411 if (prune_stale_stable_nodes && nr == 1) {
1413 * If there's not just one entry it would
1414 * corrupt memory, better BUG_ON. In KSM
1415 * context with no lock held it's not even
1418 BUG_ON(stable_node->hlist.first->next);
1421 * There's just one entry and it is below the
1422 * deduplication limit so drop the chain.
1424 rb_replace_node(&stable_node->node, &found->node,
1426 free_stable_node(stable_node);
1427 ksm_stable_node_chains--;
1428 ksm_stable_node_dups--;
1430 * NOTE: the caller depends on the stable_node
1431 * to be equal to stable_node_dup if the chain
1434 *_stable_node = found;
1436 * Just for robustness, as stable_node is
1437 * otherwise left as a stable pointer, the
1438 * compiler shall optimize it away at build
1442 } else if (stable_node->hlist.first != &found->hlist_dup &&
1443 __is_page_sharing_candidate(found, 1)) {
1445 * If the found stable_node dup can accept one
1446 * more future merge (in addition to the one
1447 * that is underway) and is not at the head of
1448 * the chain, put it there so next search will
1449 * be quicker in the !prune_stale_stable_nodes
1452 * NOTE: it would be inaccurate to use nr > 1
1453 * instead of checking the hlist.first pointer
1454 * directly, because in the
1455 * prune_stale_stable_nodes case "nr" isn't
1456 * the position of the found dup in the chain,
1457 * but the total number of dups in the chain.
1459 hlist_del(&found->hlist_dup);
1460 hlist_add_head(&found->hlist_dup,
1461 &stable_node->hlist);
1465 *_stable_node_dup = found;
1469 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1470 struct rb_root *root)
1472 if (!is_stable_node_chain(stable_node))
1474 if (hlist_empty(&stable_node->hlist)) {
1475 free_stable_node_chain(stable_node, root);
1478 return hlist_entry(stable_node->hlist.first,
1479 typeof(*stable_node), hlist_dup);
1483 * Like for get_ksm_page, this function can free the *_stable_node and
1484 * *_stable_node_dup if the returned tree_page is NULL.
1486 * It can also free and overwrite *_stable_node with the found
1487 * stable_node_dup if the chain is collapsed (in which case
1488 * *_stable_node will be equal to *_stable_node_dup like if the chain
1489 * never existed). It's up to the caller to verify tree_page is not
1490 * NULL before dereferencing *_stable_node or *_stable_node_dup.
1492 * *_stable_node_dup is really a second output parameter of this
1493 * function and will be overwritten in all cases, the caller doesn't
1494 * need to initialize it.
1496 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1497 struct stable_node **_stable_node,
1498 struct rb_root *root,
1499 bool prune_stale_stable_nodes)
1501 struct stable_node *stable_node = *_stable_node;
1502 if (!is_stable_node_chain(stable_node)) {
1503 if (is_page_sharing_candidate(stable_node)) {
1504 *_stable_node_dup = stable_node;
1505 return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1508 * _stable_node_dup set to NULL means the stable_node
1509 * reached the ksm_max_page_sharing limit.
1511 *_stable_node_dup = NULL;
1514 return stable_node_dup(_stable_node_dup, _stable_node, root,
1515 prune_stale_stable_nodes);
1518 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1519 struct stable_node **s_n,
1520 struct rb_root *root)
1522 return __stable_node_chain(s_n_d, s_n, root, true);
1525 static __always_inline struct page *chain(struct stable_node **s_n_d,
1526 struct stable_node *s_n,
1527 struct rb_root *root)
1529 struct stable_node *old_stable_node = s_n;
1530 struct page *tree_page;
1532 tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1533 /* not pruning dups so s_n cannot have changed */
1534 VM_BUG_ON(s_n != old_stable_node);
1539 * stable_tree_search - search for page inside the stable tree
1541 * This function checks if there is a page inside the stable tree
1542 * with identical content to the page that we are scanning right now.
1544 * This function returns the stable tree node of identical content if found,
1547 static struct page *stable_tree_search(struct page *page)
1550 struct rb_root *root;
1551 struct rb_node **new;
1552 struct rb_node *parent;
1553 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1554 struct stable_node *page_node;
1556 page_node = page_stable_node(page);
1557 if (page_node && page_node->head != &migrate_nodes) {
1558 /* ksm page forked */
1563 nid = get_kpfn_nid(page_to_pfn(page));
1564 root = root_stable_tree + nid;
1566 new = &root->rb_node;
1570 struct page *tree_page;
1574 stable_node = rb_entry(*new, struct stable_node, node);
1575 stable_node_any = NULL;
1576 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1578 * NOTE: stable_node may have been freed by
1579 * chain_prune() if the returned stable_node_dup is
1580 * not NULL. stable_node_dup may have been inserted in
1581 * the rbtree instead as a regular stable_node (in
1582 * order to collapse the stable_node chain if a single
1583 * stable_node dup was found in it). In such case the
1584 * stable_node is overwritten by the calleee to point
1585 * to the stable_node_dup that was collapsed in the
1586 * stable rbtree and stable_node will be equal to
1587 * stable_node_dup like if the chain never existed.
1589 if (!stable_node_dup) {
1591 * Either all stable_node dups were full in
1592 * this stable_node chain, or this chain was
1593 * empty and should be rb_erased.
1595 stable_node_any = stable_node_dup_any(stable_node,
1597 if (!stable_node_any) {
1598 /* rb_erase just run */
1602 * Take any of the stable_node dups page of
1603 * this stable_node chain to let the tree walk
1604 * continue. All KSM pages belonging to the
1605 * stable_node dups in a stable_node chain
1606 * have the same content and they're
1607 * write protected at all times. Any will work
1608 * fine to continue the walk.
1610 tree_page = get_ksm_page(stable_node_any,
1611 GET_KSM_PAGE_NOLOCK);
1613 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1616 * If we walked over a stale stable_node,
1617 * get_ksm_page() will call rb_erase() and it
1618 * may rebalance the tree from under us. So
1619 * restart the search from scratch. Returning
1620 * NULL would be safe too, but we'd generate
1621 * false negative insertions just because some
1622 * stable_node was stale.
1627 ret = memcmp_pages(page, tree_page);
1628 put_page(tree_page);
1632 new = &parent->rb_left;
1634 new = &parent->rb_right;
1637 VM_BUG_ON(page_node->head != &migrate_nodes);
1639 * Test if the migrated page should be merged
1640 * into a stable node dup. If the mapcount is
1641 * 1 we can migrate it with another KSM page
1642 * without adding it to the chain.
1644 if (page_mapcount(page) > 1)
1648 if (!stable_node_dup) {
1650 * If the stable_node is a chain and
1651 * we got a payload match in memcmp
1652 * but we cannot merge the scanned
1653 * page in any of the existing
1654 * stable_node dups because they're
1655 * all full, we need to wait the
1656 * scanned page to find itself a match
1657 * in the unstable tree to create a
1658 * brand new KSM page to add later to
1659 * the dups of this stable_node.
1665 * Lock and unlock the stable_node's page (which
1666 * might already have been migrated) so that page
1667 * migration is sure to notice its raised count.
1668 * It would be more elegant to return stable_node
1669 * than kpage, but that involves more changes.
1671 tree_page = get_ksm_page(stable_node_dup,
1672 GET_KSM_PAGE_TRYLOCK);
1674 if (PTR_ERR(tree_page) == -EBUSY)
1675 return ERR_PTR(-EBUSY);
1677 if (unlikely(!tree_page))
1679 * The tree may have been rebalanced,
1680 * so re-evaluate parent and new.
1683 unlock_page(tree_page);
1685 if (get_kpfn_nid(stable_node_dup->kpfn) !=
1686 NUMA(stable_node_dup->nid)) {
1687 put_page(tree_page);
1697 list_del(&page_node->list);
1698 DO_NUMA(page_node->nid = nid);
1699 rb_link_node(&page_node->node, parent, new);
1700 rb_insert_color(&page_node->node, root);
1702 if (is_page_sharing_candidate(page_node)) {
1710 * If stable_node was a chain and chain_prune collapsed it,
1711 * stable_node has been updated to be the new regular
1712 * stable_node. A collapse of the chain is indistinguishable
1713 * from the case there was no chain in the stable
1714 * rbtree. Otherwise stable_node is the chain and
1715 * stable_node_dup is the dup to replace.
1717 if (stable_node_dup == stable_node) {
1718 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1719 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1720 /* there is no chain */
1722 VM_BUG_ON(page_node->head != &migrate_nodes);
1723 list_del(&page_node->list);
1724 DO_NUMA(page_node->nid = nid);
1725 rb_replace_node(&stable_node_dup->node,
1728 if (is_page_sharing_candidate(page_node))
1733 rb_erase(&stable_node_dup->node, root);
1737 VM_BUG_ON(!is_stable_node_chain(stable_node));
1738 __stable_node_dup_del(stable_node_dup);
1740 VM_BUG_ON(page_node->head != &migrate_nodes);
1741 list_del(&page_node->list);
1742 DO_NUMA(page_node->nid = nid);
1743 stable_node_chain_add_dup(page_node, stable_node);
1744 if (is_page_sharing_candidate(page_node))
1752 stable_node_dup->head = &migrate_nodes;
1753 list_add(&stable_node_dup->list, stable_node_dup->head);
1757 /* stable_node_dup could be null if it reached the limit */
1758 if (!stable_node_dup)
1759 stable_node_dup = stable_node_any;
1761 * If stable_node was a chain and chain_prune collapsed it,
1762 * stable_node has been updated to be the new regular
1763 * stable_node. A collapse of the chain is indistinguishable
1764 * from the case there was no chain in the stable
1765 * rbtree. Otherwise stable_node is the chain and
1766 * stable_node_dup is the dup to replace.
1768 if (stable_node_dup == stable_node) {
1769 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1770 /* chain is missing so create it */
1771 stable_node = alloc_stable_node_chain(stable_node_dup,
1777 * Add this stable_node dup that was
1778 * migrated to the stable_node chain
1779 * of the current nid for this page
1782 VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1783 VM_BUG_ON(page_node->head != &migrate_nodes);
1784 list_del(&page_node->list);
1785 DO_NUMA(page_node->nid = nid);
1786 stable_node_chain_add_dup(page_node, stable_node);
1791 * stable_tree_insert - insert stable tree node pointing to new ksm page
1792 * into the stable tree.
1794 * This function returns the stable tree node just allocated on success,
1797 static struct stable_node *stable_tree_insert(struct page *kpage)
1801 struct rb_root *root;
1802 struct rb_node **new;
1803 struct rb_node *parent;
1804 struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1805 bool need_chain = false;
1807 kpfn = page_to_pfn(kpage);
1808 nid = get_kpfn_nid(kpfn);
1809 root = root_stable_tree + nid;
1812 new = &root->rb_node;
1815 struct page *tree_page;
1819 stable_node = rb_entry(*new, struct stable_node, node);
1820 stable_node_any = NULL;
1821 tree_page = chain(&stable_node_dup, stable_node, root);
1822 if (!stable_node_dup) {
1824 * Either all stable_node dups were full in
1825 * this stable_node chain, or this chain was
1826 * empty and should be rb_erased.
1828 stable_node_any = stable_node_dup_any(stable_node,
1830 if (!stable_node_any) {
1831 /* rb_erase just run */
1835 * Take any of the stable_node dups page of
1836 * this stable_node chain to let the tree walk
1837 * continue. All KSM pages belonging to the
1838 * stable_node dups in a stable_node chain
1839 * have the same content and they're
1840 * write protected at all times. Any will work
1841 * fine to continue the walk.
1843 tree_page = get_ksm_page(stable_node_any,
1844 GET_KSM_PAGE_NOLOCK);
1846 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1849 * If we walked over a stale stable_node,
1850 * get_ksm_page() will call rb_erase() and it
1851 * may rebalance the tree from under us. So
1852 * restart the search from scratch. Returning
1853 * NULL would be safe too, but we'd generate
1854 * false negative insertions just because some
1855 * stable_node was stale.
1860 ret = memcmp_pages(kpage, tree_page);
1861 put_page(tree_page);
1865 new = &parent->rb_left;
1867 new = &parent->rb_right;
1874 stable_node_dup = alloc_stable_node();
1875 if (!stable_node_dup)
1878 INIT_HLIST_HEAD(&stable_node_dup->hlist);
1879 stable_node_dup->kpfn = kpfn;
1880 set_page_stable_node(kpage, stable_node_dup);
1881 stable_node_dup->rmap_hlist_len = 0;
1882 DO_NUMA(stable_node_dup->nid = nid);
1884 rb_link_node(&stable_node_dup->node, parent, new);
1885 rb_insert_color(&stable_node_dup->node, root);
1887 if (!is_stable_node_chain(stable_node)) {
1888 struct stable_node *orig = stable_node;
1889 /* chain is missing so create it */
1890 stable_node = alloc_stable_node_chain(orig, root);
1892 free_stable_node(stable_node_dup);
1896 stable_node_chain_add_dup(stable_node_dup, stable_node);
1899 return stable_node_dup;
1903 * unstable_tree_search_insert - search for identical page,
1904 * else insert rmap_item into the unstable tree.
1906 * This function searches for a page in the unstable tree identical to the
1907 * page currently being scanned; and if no identical page is found in the
1908 * tree, we insert rmap_item as a new object into the unstable tree.
1910 * This function returns pointer to rmap_item found to be identical
1911 * to the currently scanned page, NULL otherwise.
1913 * This function does both searching and inserting, because they share
1914 * the same walking algorithm in an rbtree.
1917 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1919 struct page **tree_pagep)
1921 struct rb_node **new;
1922 struct rb_root *root;
1923 struct rb_node *parent = NULL;
1926 nid = get_kpfn_nid(page_to_pfn(page));
1927 root = root_unstable_tree + nid;
1928 new = &root->rb_node;
1931 struct rmap_item *tree_rmap_item;
1932 struct page *tree_page;
1936 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1937 tree_page = get_mergeable_page(tree_rmap_item);
1942 * Don't substitute a ksm page for a forked page.
1944 if (page == tree_page) {
1945 put_page(tree_page);
1949 ret = memcmp_pages(page, tree_page);
1953 put_page(tree_page);
1954 new = &parent->rb_left;
1955 } else if (ret > 0) {
1956 put_page(tree_page);
1957 new = &parent->rb_right;
1958 } else if (!ksm_merge_across_nodes &&
1959 page_to_nid(tree_page) != nid) {
1961 * If tree_page has been migrated to another NUMA node,
1962 * it will be flushed out and put in the right unstable
1963 * tree next time: only merge with it when across_nodes.
1965 put_page(tree_page);
1968 *tree_pagep = tree_page;
1969 return tree_rmap_item;
1973 rmap_item->address |= UNSTABLE_FLAG;
1974 rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1975 DO_NUMA(rmap_item->nid = nid);
1976 rb_link_node(&rmap_item->node, parent, new);
1977 rb_insert_color(&rmap_item->node, root);
1979 ksm_pages_unshared++;
1984 * stable_tree_append - add another rmap_item to the linked list of
1985 * rmap_items hanging off a given node of the stable tree, all sharing
1986 * the same ksm page.
1988 static void stable_tree_append(struct rmap_item *rmap_item,
1989 struct stable_node *stable_node,
1990 bool max_page_sharing_bypass)
1993 * rmap won't find this mapping if we don't insert the
1994 * rmap_item in the right stable_node
1995 * duplicate. page_migration could break later if rmap breaks,
1996 * so we can as well crash here. We really need to check for
1997 * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
1998 * for other negative values as an underflow if detected here
1999 * for the first time (and not when decreasing rmap_hlist_len)
2000 * would be sign of memory corruption in the stable_node.
2002 BUG_ON(stable_node->rmap_hlist_len < 0);
2004 stable_node->rmap_hlist_len++;
2005 if (!max_page_sharing_bypass)
2006 /* possibly non fatal but unexpected overflow, only warn */
2007 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2008 ksm_max_page_sharing);
2010 rmap_item->head = stable_node;
2011 rmap_item->address |= STABLE_FLAG;
2012 hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2014 if (rmap_item->hlist.next)
2015 ksm_pages_sharing++;
2021 * cmp_and_merge_page - first see if page can be merged into the stable tree;
2022 * if not, compare checksum to previous and if it's the same, see if page can
2023 * be inserted into the unstable tree, or merged with a page already there and
2024 * both transferred to the stable tree.
2026 * @page: the page that we are searching identical page to.
2027 * @rmap_item: the reverse mapping into the virtual address of this page
2029 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2031 struct mm_struct *mm = rmap_item->mm;
2032 struct rmap_item *tree_rmap_item;
2033 struct page *tree_page = NULL;
2034 struct stable_node *stable_node;
2036 unsigned int checksum;
2038 bool max_page_sharing_bypass = false;
2040 stable_node = page_stable_node(page);
2042 if (stable_node->head != &migrate_nodes &&
2043 get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2044 NUMA(stable_node->nid)) {
2045 stable_node_dup_del(stable_node);
2046 stable_node->head = &migrate_nodes;
2047 list_add(&stable_node->list, stable_node->head);
2049 if (stable_node->head != &migrate_nodes &&
2050 rmap_item->head == stable_node)
2053 * If it's a KSM fork, allow it to go over the sharing limit
2056 if (!is_page_sharing_candidate(stable_node))
2057 max_page_sharing_bypass = true;
2060 /* We first start with searching the page inside the stable tree */
2061 kpage = stable_tree_search(page);
2062 if (kpage == page && rmap_item->head == stable_node) {
2067 remove_rmap_item_from_tree(rmap_item);
2070 if (PTR_ERR(kpage) == -EBUSY)
2073 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2076 * The page was successfully merged:
2077 * add its rmap_item to the stable tree.
2080 stable_tree_append(rmap_item, page_stable_node(kpage),
2081 max_page_sharing_bypass);
2089 * If the hash value of the page has changed from the last time
2090 * we calculated it, this page is changing frequently: therefore we
2091 * don't want to insert it in the unstable tree, and we don't want
2092 * to waste our time searching for something identical to it there.
2094 checksum = calc_checksum(page);
2095 if (rmap_item->oldchecksum != checksum) {
2096 rmap_item->oldchecksum = checksum;
2101 * Same checksum as an empty page. We attempt to merge it with the
2102 * appropriate zero page if the user enabled this via sysfs.
2104 if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2105 struct vm_area_struct *vma;
2108 vma = find_mergeable_vma(mm, rmap_item->address);
2110 err = try_to_merge_one_page(vma, page,
2111 ZERO_PAGE(rmap_item->address));
2114 * If the vma is out of date, we do not need to
2119 mmap_read_unlock(mm);
2121 * In case of failure, the page was not really empty, so we
2122 * need to continue. Otherwise we're done.
2128 unstable_tree_search_insert(rmap_item, page, &tree_page);
2129 if (tree_rmap_item) {
2132 kpage = try_to_merge_two_pages(rmap_item, page,
2133 tree_rmap_item, tree_page);
2135 * If both pages we tried to merge belong to the same compound
2136 * page, then we actually ended up increasing the reference
2137 * count of the same compound page twice, and split_huge_page
2139 * Here we set a flag if that happened, and we use it later to
2140 * try split_huge_page again. Since we call put_page right
2141 * afterwards, the reference count will be correct and
2142 * split_huge_page should succeed.
2144 split = PageTransCompound(page)
2145 && compound_head(page) == compound_head(tree_page);
2146 put_page(tree_page);
2149 * The pages were successfully merged: insert new
2150 * node in the stable tree and add both rmap_items.
2153 stable_node = stable_tree_insert(kpage);
2155 stable_tree_append(tree_rmap_item, stable_node,
2157 stable_tree_append(rmap_item, stable_node,
2163 * If we fail to insert the page into the stable tree,
2164 * we will have 2 virtual addresses that are pointing
2165 * to a ksm page left outside the stable tree,
2166 * in which case we need to break_cow on both.
2169 break_cow(tree_rmap_item);
2170 break_cow(rmap_item);
2174 * We are here if we tried to merge two pages and
2175 * failed because they both belonged to the same
2176 * compound page. We will split the page now, but no
2177 * merging will take place.
2178 * We do not want to add the cost of a full lock; if
2179 * the page is locked, it is better to skip it and
2180 * perhaps try again later.
2182 if (!trylock_page(page))
2184 split_huge_page(page);
2190 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2191 struct rmap_item **rmap_list,
2194 struct rmap_item *rmap_item;
2196 while (*rmap_list) {
2197 rmap_item = *rmap_list;
2198 if ((rmap_item->address & PAGE_MASK) == addr)
2200 if (rmap_item->address > addr)
2202 *rmap_list = rmap_item->rmap_list;
2203 remove_rmap_item_from_tree(rmap_item);
2204 free_rmap_item(rmap_item);
2207 rmap_item = alloc_rmap_item();
2209 /* It has already been zeroed */
2210 rmap_item->mm = mm_slot->mm;
2211 rmap_item->address = addr;
2212 rmap_item->rmap_list = *rmap_list;
2213 *rmap_list = rmap_item;
2218 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2220 struct mm_struct *mm;
2221 struct mm_slot *slot;
2222 struct vm_area_struct *vma;
2223 struct rmap_item *rmap_item;
2226 if (list_empty(&ksm_mm_head.mm_list))
2229 slot = ksm_scan.mm_slot;
2230 if (slot == &ksm_mm_head) {
2232 * A number of pages can hang around indefinitely on per-cpu
2233 * pagevecs, raised page count preventing write_protect_page
2234 * from merging them. Though it doesn't really matter much,
2235 * it is puzzling to see some stuck in pages_volatile until
2236 * other activity jostles them out, and they also prevented
2237 * LTP's KSM test from succeeding deterministically; so drain
2238 * them here (here rather than on entry to ksm_do_scan(),
2239 * so we don't IPI too often when pages_to_scan is set low).
2241 lru_add_drain_all();
2244 * Whereas stale stable_nodes on the stable_tree itself
2245 * get pruned in the regular course of stable_tree_search(),
2246 * those moved out to the migrate_nodes list can accumulate:
2247 * so prune them once before each full scan.
2249 if (!ksm_merge_across_nodes) {
2250 struct stable_node *stable_node, *next;
2253 list_for_each_entry_safe(stable_node, next,
2254 &migrate_nodes, list) {
2255 page = get_ksm_page(stable_node,
2256 GET_KSM_PAGE_NOLOCK);
2263 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2264 root_unstable_tree[nid] = RB_ROOT;
2266 spin_lock(&ksm_mmlist_lock);
2267 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2268 ksm_scan.mm_slot = slot;
2269 spin_unlock(&ksm_mmlist_lock);
2271 * Although we tested list_empty() above, a racing __ksm_exit
2272 * of the last mm on the list may have removed it since then.
2274 if (slot == &ksm_mm_head)
2277 ksm_scan.address = 0;
2278 ksm_scan.rmap_list = &slot->rmap_list;
2283 if (ksm_test_exit(mm))
2286 vma = find_vma(mm, ksm_scan.address);
2288 for (; vma; vma = vma->vm_next) {
2289 if (!(vma->vm_flags & VM_MERGEABLE))
2291 if (ksm_scan.address < vma->vm_start)
2292 ksm_scan.address = vma->vm_start;
2294 ksm_scan.address = vma->vm_end;
2296 while (ksm_scan.address < vma->vm_end) {
2297 if (ksm_test_exit(mm))
2299 *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2300 if (IS_ERR_OR_NULL(*page)) {
2301 ksm_scan.address += PAGE_SIZE;
2305 if (PageAnon(*page)) {
2306 flush_anon_page(vma, *page, ksm_scan.address);
2307 flush_dcache_page(*page);
2308 rmap_item = get_next_rmap_item(slot,
2309 ksm_scan.rmap_list, ksm_scan.address);
2311 ksm_scan.rmap_list =
2312 &rmap_item->rmap_list;
2313 ksm_scan.address += PAGE_SIZE;
2316 mmap_read_unlock(mm);
2320 ksm_scan.address += PAGE_SIZE;
2325 if (ksm_test_exit(mm)) {
2326 ksm_scan.address = 0;
2327 ksm_scan.rmap_list = &slot->rmap_list;
2330 * Nuke all the rmap_items that are above this current rmap:
2331 * because there were no VM_MERGEABLE vmas with such addresses.
2333 remove_trailing_rmap_items(ksm_scan.rmap_list);
2335 spin_lock(&ksm_mmlist_lock);
2336 ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2337 struct mm_slot, mm_list);
2338 if (ksm_scan.address == 0) {
2340 * We've completed a full scan of all vmas, holding mmap_lock
2341 * throughout, and found no VM_MERGEABLE: so do the same as
2342 * __ksm_exit does to remove this mm from all our lists now.
2343 * This applies either when cleaning up after __ksm_exit
2344 * (but beware: we can reach here even before __ksm_exit),
2345 * or when all VM_MERGEABLE areas have been unmapped (and
2346 * mmap_lock then protects against race with MADV_MERGEABLE).
2348 hash_del(&slot->link);
2349 list_del(&slot->mm_list);
2350 spin_unlock(&ksm_mmlist_lock);
2353 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2354 mmap_read_unlock(mm);
2357 mmap_read_unlock(mm);
2359 * mmap_read_unlock(mm) first because after
2360 * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2361 * already have been freed under us by __ksm_exit()
2362 * because the "mm_slot" is still hashed and
2363 * ksm_scan.mm_slot doesn't point to it anymore.
2365 spin_unlock(&ksm_mmlist_lock);
2368 /* Repeat until we've completed scanning the whole list */
2369 slot = ksm_scan.mm_slot;
2370 if (slot != &ksm_mm_head)
2378 * ksm_do_scan - the ksm scanner main worker function.
2379 * @scan_npages: number of pages we want to scan before we return.
2381 static void ksm_do_scan(unsigned int scan_npages)
2383 struct rmap_item *rmap_item;
2386 while (scan_npages-- && likely(!freezing(current))) {
2388 rmap_item = scan_get_next_rmap_item(&page);
2391 cmp_and_merge_page(page, rmap_item);
2396 static int ksmd_should_run(void)
2398 return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2401 static int ksm_scan_thread(void *nothing)
2403 unsigned int sleep_ms;
2406 set_user_nice(current, 5);
2408 while (!kthread_should_stop()) {
2409 mutex_lock(&ksm_thread_mutex);
2410 wait_while_offlining();
2411 if (ksmd_should_run())
2412 ksm_do_scan(ksm_thread_pages_to_scan);
2413 mutex_unlock(&ksm_thread_mutex);
2417 if (ksmd_should_run()) {
2418 sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2419 wait_event_interruptible_timeout(ksm_iter_wait,
2420 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2421 msecs_to_jiffies(sleep_ms));
2423 wait_event_freezable(ksm_thread_wait,
2424 ksmd_should_run() || kthread_should_stop());
2430 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2431 unsigned long end, int advice, unsigned long *vm_flags)
2433 struct mm_struct *mm = vma->vm_mm;
2437 case MADV_MERGEABLE:
2439 * Be somewhat over-protective for now!
2441 if (*vm_flags & (VM_MERGEABLE | VM_SHARED | VM_MAYSHARE |
2442 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
2443 VM_HUGETLB | VM_MIXEDMAP))
2444 return 0; /* just ignore the advice */
2446 if (vma_is_dax(vma))
2450 if (*vm_flags & VM_SAO)
2454 if (*vm_flags & VM_SPARC_ADI)
2458 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2459 err = __ksm_enter(mm);
2464 *vm_flags |= VM_MERGEABLE;
2467 case MADV_UNMERGEABLE:
2468 if (!(*vm_flags & VM_MERGEABLE))
2469 return 0; /* just ignore the advice */
2471 if (vma->anon_vma) {
2472 err = unmerge_ksm_pages(vma, start, end);
2477 *vm_flags &= ~VM_MERGEABLE;
2483 EXPORT_SYMBOL_GPL(ksm_madvise);
2485 int __ksm_enter(struct mm_struct *mm)
2487 struct mm_slot *mm_slot;
2490 mm_slot = alloc_mm_slot();
2494 /* Check ksm_run too? Would need tighter locking */
2495 needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2497 spin_lock(&ksm_mmlist_lock);
2498 insert_to_mm_slots_hash(mm, mm_slot);
2500 * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2501 * insert just behind the scanning cursor, to let the area settle
2502 * down a little; when fork is followed by immediate exec, we don't
2503 * want ksmd to waste time setting up and tearing down an rmap_list.
2505 * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2506 * scanning cursor, otherwise KSM pages in newly forked mms will be
2507 * missed: then we might as well insert at the end of the list.
2509 if (ksm_run & KSM_RUN_UNMERGE)
2510 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2512 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2513 spin_unlock(&ksm_mmlist_lock);
2515 set_bit(MMF_VM_MERGEABLE, &mm->flags);
2519 wake_up_interruptible(&ksm_thread_wait);
2524 void __ksm_exit(struct mm_struct *mm)
2526 struct mm_slot *mm_slot;
2527 int easy_to_free = 0;
2530 * This process is exiting: if it's straightforward (as is the
2531 * case when ksmd was never running), free mm_slot immediately.
2532 * But if it's at the cursor or has rmap_items linked to it, use
2533 * mmap_lock to synchronize with any break_cows before pagetables
2534 * are freed, and leave the mm_slot on the list for ksmd to free.
2535 * Beware: ksm may already have noticed it exiting and freed the slot.
2538 spin_lock(&ksm_mmlist_lock);
2539 mm_slot = get_mm_slot(mm);
2540 if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2541 if (!mm_slot->rmap_list) {
2542 hash_del(&mm_slot->link);
2543 list_del(&mm_slot->mm_list);
2546 list_move(&mm_slot->mm_list,
2547 &ksm_scan.mm_slot->mm_list);
2550 spin_unlock(&ksm_mmlist_lock);
2553 free_mm_slot(mm_slot);
2554 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2556 } else if (mm_slot) {
2557 mmap_write_lock(mm);
2558 mmap_write_unlock(mm);
2562 struct page *ksm_might_need_to_copy(struct page *page,
2563 struct vm_area_struct *vma, unsigned long address)
2565 struct anon_vma *anon_vma = page_anon_vma(page);
2566 struct page *new_page;
2568 if (PageKsm(page)) {
2569 if (page_stable_node(page) &&
2570 !(ksm_run & KSM_RUN_UNMERGE))
2571 return page; /* no need to copy it */
2572 } else if (!anon_vma) {
2573 return page; /* no need to copy it */
2574 } else if (anon_vma->root == vma->anon_vma->root &&
2575 page->index == linear_page_index(vma, address)) {
2576 return page; /* still no need to copy it */
2578 if (!PageUptodate(page))
2579 return page; /* let do_swap_page report the error */
2581 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2582 if (new_page && mem_cgroup_charge(new_page, vma->vm_mm, GFP_KERNEL)) {
2587 copy_user_highpage(new_page, page, address, vma);
2589 SetPageDirty(new_page);
2590 __SetPageUptodate(new_page);
2591 __SetPageLocked(new_page);
2597 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2599 struct stable_node *stable_node;
2600 struct rmap_item *rmap_item;
2601 int search_new_forks = 0;
2603 VM_BUG_ON_PAGE(!PageKsm(page), page);
2606 * Rely on the page lock to protect against concurrent modifications
2607 * to that page's node of the stable tree.
2609 VM_BUG_ON_PAGE(!PageLocked(page), page);
2611 stable_node = page_stable_node(page);
2615 hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2616 struct anon_vma *anon_vma = rmap_item->anon_vma;
2617 struct anon_vma_chain *vmac;
2618 struct vm_area_struct *vma;
2621 anon_vma_lock_read(anon_vma);
2622 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2629 /* Ignore the stable/unstable/sqnr flags */
2630 addr = rmap_item->address & PAGE_MASK;
2632 if (addr < vma->vm_start || addr >= vma->vm_end)
2635 * Initially we examine only the vma which covers this
2636 * rmap_item; but later, if there is still work to do,
2637 * we examine covering vmas in other mms: in case they
2638 * were forked from the original since ksmd passed.
2640 if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2643 if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2646 if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2647 anon_vma_unlock_read(anon_vma);
2650 if (rwc->done && rwc->done(page)) {
2651 anon_vma_unlock_read(anon_vma);
2655 anon_vma_unlock_read(anon_vma);
2657 if (!search_new_forks++)
2661 #ifdef CONFIG_MIGRATION
2662 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2664 struct stable_node *stable_node;
2666 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2667 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2668 VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2670 stable_node = page_stable_node(newpage);
2672 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2673 stable_node->kpfn = page_to_pfn(newpage);
2675 * newpage->mapping was set in advance; now we need smp_wmb()
2676 * to make sure that the new stable_node->kpfn is visible
2677 * to get_ksm_page() before it can see that oldpage->mapping
2678 * has gone stale (or that PageSwapCache has been cleared).
2681 set_page_stable_node(oldpage, NULL);
2684 #endif /* CONFIG_MIGRATION */
2686 #ifdef CONFIG_MEMORY_HOTREMOVE
2687 static void wait_while_offlining(void)
2689 while (ksm_run & KSM_RUN_OFFLINE) {
2690 mutex_unlock(&ksm_thread_mutex);
2691 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2692 TASK_UNINTERRUPTIBLE);
2693 mutex_lock(&ksm_thread_mutex);
2697 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2698 unsigned long start_pfn,
2699 unsigned long end_pfn)
2701 if (stable_node->kpfn >= start_pfn &&
2702 stable_node->kpfn < end_pfn) {
2704 * Don't get_ksm_page, page has already gone:
2705 * which is why we keep kpfn instead of page*
2707 remove_node_from_stable_tree(stable_node);
2713 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2714 unsigned long start_pfn,
2715 unsigned long end_pfn,
2716 struct rb_root *root)
2718 struct stable_node *dup;
2719 struct hlist_node *hlist_safe;
2721 if (!is_stable_node_chain(stable_node)) {
2722 VM_BUG_ON(is_stable_node_dup(stable_node));
2723 return stable_node_dup_remove_range(stable_node, start_pfn,
2727 hlist_for_each_entry_safe(dup, hlist_safe,
2728 &stable_node->hlist, hlist_dup) {
2729 VM_BUG_ON(!is_stable_node_dup(dup));
2730 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2732 if (hlist_empty(&stable_node->hlist)) {
2733 free_stable_node_chain(stable_node, root);
2734 return true; /* notify caller that tree was rebalanced */
2739 static void ksm_check_stable_tree(unsigned long start_pfn,
2740 unsigned long end_pfn)
2742 struct stable_node *stable_node, *next;
2743 struct rb_node *node;
2746 for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2747 node = rb_first(root_stable_tree + nid);
2749 stable_node = rb_entry(node, struct stable_node, node);
2750 if (stable_node_chain_remove_range(stable_node,
2754 node = rb_first(root_stable_tree + nid);
2756 node = rb_next(node);
2760 list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2761 if (stable_node->kpfn >= start_pfn &&
2762 stable_node->kpfn < end_pfn)
2763 remove_node_from_stable_tree(stable_node);
2768 static int ksm_memory_callback(struct notifier_block *self,
2769 unsigned long action, void *arg)
2771 struct memory_notify *mn = arg;
2774 case MEM_GOING_OFFLINE:
2776 * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2777 * and remove_all_stable_nodes() while memory is going offline:
2778 * it is unsafe for them to touch the stable tree at this time.
2779 * But unmerge_ksm_pages(), rmap lookups and other entry points
2780 * which do not need the ksm_thread_mutex are all safe.
2782 mutex_lock(&ksm_thread_mutex);
2783 ksm_run |= KSM_RUN_OFFLINE;
2784 mutex_unlock(&ksm_thread_mutex);
2789 * Most of the work is done by page migration; but there might
2790 * be a few stable_nodes left over, still pointing to struct
2791 * pages which have been offlined: prune those from the tree,
2792 * otherwise get_ksm_page() might later try to access a
2793 * non-existent struct page.
2795 ksm_check_stable_tree(mn->start_pfn,
2796 mn->start_pfn + mn->nr_pages);
2798 case MEM_CANCEL_OFFLINE:
2799 mutex_lock(&ksm_thread_mutex);
2800 ksm_run &= ~KSM_RUN_OFFLINE;
2801 mutex_unlock(&ksm_thread_mutex);
2803 smp_mb(); /* wake_up_bit advises this */
2804 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2810 static void wait_while_offlining(void)
2813 #endif /* CONFIG_MEMORY_HOTREMOVE */
2817 * This all compiles without CONFIG_SYSFS, but is a waste of space.
2820 #define KSM_ATTR_RO(_name) \
2821 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2822 #define KSM_ATTR(_name) \
2823 static struct kobj_attribute _name##_attr = \
2824 __ATTR(_name, 0644, _name##_show, _name##_store)
2826 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2827 struct kobj_attribute *attr, char *buf)
2829 return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2832 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2833 struct kobj_attribute *attr,
2834 const char *buf, size_t count)
2839 err = kstrtouint(buf, 10, &msecs);
2843 ksm_thread_sleep_millisecs = msecs;
2844 wake_up_interruptible(&ksm_iter_wait);
2848 KSM_ATTR(sleep_millisecs);
2850 static ssize_t pages_to_scan_show(struct kobject *kobj,
2851 struct kobj_attribute *attr, char *buf)
2853 return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2856 static ssize_t pages_to_scan_store(struct kobject *kobj,
2857 struct kobj_attribute *attr,
2858 const char *buf, size_t count)
2860 unsigned int nr_pages;
2863 err = kstrtouint(buf, 10, &nr_pages);
2867 ksm_thread_pages_to_scan = nr_pages;
2871 KSM_ATTR(pages_to_scan);
2873 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2876 return sysfs_emit(buf, "%lu\n", ksm_run);
2879 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2880 const char *buf, size_t count)
2885 err = kstrtouint(buf, 10, &flags);
2888 if (flags > KSM_RUN_UNMERGE)
2892 * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2893 * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2894 * breaking COW to free the pages_shared (but leaves mm_slots
2895 * on the list for when ksmd may be set running again).
2898 mutex_lock(&ksm_thread_mutex);
2899 wait_while_offlining();
2900 if (ksm_run != flags) {
2902 if (flags & KSM_RUN_UNMERGE) {
2903 set_current_oom_origin();
2904 err = unmerge_and_remove_all_rmap_items();
2905 clear_current_oom_origin();
2907 ksm_run = KSM_RUN_STOP;
2912 mutex_unlock(&ksm_thread_mutex);
2914 if (flags & KSM_RUN_MERGE)
2915 wake_up_interruptible(&ksm_thread_wait);
2922 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2923 struct kobj_attribute *attr, char *buf)
2925 return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2928 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2929 struct kobj_attribute *attr,
2930 const char *buf, size_t count)
2935 err = kstrtoul(buf, 10, &knob);
2941 mutex_lock(&ksm_thread_mutex);
2942 wait_while_offlining();
2943 if (ksm_merge_across_nodes != knob) {
2944 if (ksm_pages_shared || remove_all_stable_nodes())
2946 else if (root_stable_tree == one_stable_tree) {
2947 struct rb_root *buf;
2949 * This is the first time that we switch away from the
2950 * default of merging across nodes: must now allocate
2951 * a buffer to hold as many roots as may be needed.
2952 * Allocate stable and unstable together:
2953 * MAXSMP NODES_SHIFT 10 will use 16kB.
2955 buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2957 /* Let us assume that RB_ROOT is NULL is zero */
2961 root_stable_tree = buf;
2962 root_unstable_tree = buf + nr_node_ids;
2963 /* Stable tree is empty but not the unstable */
2964 root_unstable_tree[0] = one_unstable_tree[0];
2968 ksm_merge_across_nodes = knob;
2969 ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2972 mutex_unlock(&ksm_thread_mutex);
2974 return err ? err : count;
2976 KSM_ATTR(merge_across_nodes);
2979 static ssize_t use_zero_pages_show(struct kobject *kobj,
2980 struct kobj_attribute *attr, char *buf)
2982 return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
2984 static ssize_t use_zero_pages_store(struct kobject *kobj,
2985 struct kobj_attribute *attr,
2986 const char *buf, size_t count)
2991 err = kstrtobool(buf, &value);
2995 ksm_use_zero_pages = value;
2999 KSM_ATTR(use_zero_pages);
3001 static ssize_t max_page_sharing_show(struct kobject *kobj,
3002 struct kobj_attribute *attr, char *buf)
3004 return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3007 static ssize_t max_page_sharing_store(struct kobject *kobj,
3008 struct kobj_attribute *attr,
3009 const char *buf, size_t count)
3014 err = kstrtoint(buf, 10, &knob);
3018 * When a KSM page is created it is shared by 2 mappings. This
3019 * being a signed comparison, it implicitly verifies it's not
3025 if (READ_ONCE(ksm_max_page_sharing) == knob)
3028 mutex_lock(&ksm_thread_mutex);
3029 wait_while_offlining();
3030 if (ksm_max_page_sharing != knob) {
3031 if (ksm_pages_shared || remove_all_stable_nodes())
3034 ksm_max_page_sharing = knob;
3036 mutex_unlock(&ksm_thread_mutex);
3038 return err ? err : count;
3040 KSM_ATTR(max_page_sharing);
3042 static ssize_t pages_shared_show(struct kobject *kobj,
3043 struct kobj_attribute *attr, char *buf)
3045 return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3047 KSM_ATTR_RO(pages_shared);
3049 static ssize_t pages_sharing_show(struct kobject *kobj,
3050 struct kobj_attribute *attr, char *buf)
3052 return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3054 KSM_ATTR_RO(pages_sharing);
3056 static ssize_t pages_unshared_show(struct kobject *kobj,
3057 struct kobj_attribute *attr, char *buf)
3059 return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3061 KSM_ATTR_RO(pages_unshared);
3063 static ssize_t pages_volatile_show(struct kobject *kobj,
3064 struct kobj_attribute *attr, char *buf)
3066 long ksm_pages_volatile;
3068 ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3069 - ksm_pages_sharing - ksm_pages_unshared;
3071 * It was not worth any locking to calculate that statistic,
3072 * but it might therefore sometimes be negative: conceal that.
3074 if (ksm_pages_volatile < 0)
3075 ksm_pages_volatile = 0;
3076 return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3078 KSM_ATTR_RO(pages_volatile);
3080 static ssize_t stable_node_dups_show(struct kobject *kobj,
3081 struct kobj_attribute *attr, char *buf)
3083 return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3085 KSM_ATTR_RO(stable_node_dups);
3087 static ssize_t stable_node_chains_show(struct kobject *kobj,
3088 struct kobj_attribute *attr, char *buf)
3090 return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3092 KSM_ATTR_RO(stable_node_chains);
3095 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3096 struct kobj_attribute *attr,
3099 return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3103 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3104 struct kobj_attribute *attr,
3105 const char *buf, size_t count)
3110 err = kstrtouint(buf, 10, &msecs);
3114 ksm_stable_node_chains_prune_millisecs = msecs;
3118 KSM_ATTR(stable_node_chains_prune_millisecs);
3120 static ssize_t full_scans_show(struct kobject *kobj,
3121 struct kobj_attribute *attr, char *buf)
3123 return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3125 KSM_ATTR_RO(full_scans);
3127 static struct attribute *ksm_attrs[] = {
3128 &sleep_millisecs_attr.attr,
3129 &pages_to_scan_attr.attr,
3131 &pages_shared_attr.attr,
3132 &pages_sharing_attr.attr,
3133 &pages_unshared_attr.attr,
3134 &pages_volatile_attr.attr,
3135 &full_scans_attr.attr,
3137 &merge_across_nodes_attr.attr,
3139 &max_page_sharing_attr.attr,
3140 &stable_node_chains_attr.attr,
3141 &stable_node_dups_attr.attr,
3142 &stable_node_chains_prune_millisecs_attr.attr,
3143 &use_zero_pages_attr.attr,
3147 static const struct attribute_group ksm_attr_group = {
3151 #endif /* CONFIG_SYSFS */
3153 static int __init ksm_init(void)
3155 struct task_struct *ksm_thread;
3158 /* The correct value depends on page size and endianness */
3159 zero_checksum = calc_checksum(ZERO_PAGE(0));
3160 /* Default to false for backwards compatibility */
3161 ksm_use_zero_pages = false;
3163 err = ksm_slab_init();
3167 ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3168 if (IS_ERR(ksm_thread)) {
3169 pr_err("ksm: creating kthread failed\n");
3170 err = PTR_ERR(ksm_thread);
3175 err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3177 pr_err("ksm: register sysfs failed\n");
3178 kthread_stop(ksm_thread);
3182 ksm_run = KSM_RUN_MERGE; /* no way for user to start it */
3184 #endif /* CONFIG_SYSFS */
3186 #ifdef CONFIG_MEMORY_HOTREMOVE
3187 /* There is no significance to this priority 100 */
3188 hotplug_memory_notifier(ksm_memory_callback, 100);
3197 subsys_initcall(ksm_init);
3199 #endif /* CONFIG_LKSM */