Merge tag '4.19-rc-smb3' of git://git.samba.org/sfrench/cifs-2.6
[platform/kernel/linux-rpi.git] / mm / ksm.c
1 /*
2  * Memory merging support.
3  *
4  * This code enables dynamic sharing of identical pages found in different
5  * memory areas, even if they are not shared by fork()
6  *
7  * Copyright (C) 2008-2009 Red Hat, Inc.
8  * Authors:
9  *      Izik Eidus
10  *      Andrea Arcangeli
11  *      Chris Wright
12  *      Hugh Dickins
13  *
14  * This work is licensed under the terms of the GNU GPL, version 2.
15  */
16
17 #include <linux/errno.h>
18 #include <linux/mm.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/jhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42
43 #include <asm/tlbflush.h>
44 #include "internal.h"
45
46 #ifdef CONFIG_NUMA
47 #define NUMA(x)         (x)
48 #define DO_NUMA(x)      do { (x); } while (0)
49 #else
50 #define NUMA(x)         (0)
51 #define DO_NUMA(x)      do { } while (0)
52 #endif
53
54 /**
55  * DOC: Overview
56  *
57  * A few notes about the KSM scanning process,
58  * to make it easier to understand the data structures below:
59  *
60  * In order to reduce excessive scanning, KSM sorts the memory pages by their
61  * contents into a data structure that holds pointers to the pages' locations.
62  *
63  * Since the contents of the pages may change at any moment, KSM cannot just
64  * insert the pages into a normal sorted tree and expect it to find anything.
65  * Therefore KSM uses two data structures - the stable and the unstable tree.
66  *
67  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
68  * by their contents.  Because each such page is write-protected, searching on
69  * this tree is fully assured to be working (except when pages are unmapped),
70  * and therefore this tree is called the stable tree.
71  *
72  * The stable tree node includes information required for reverse
73  * mapping from a KSM page to virtual addresses that map this page.
74  *
75  * In order to avoid large latencies of the rmap walks on KSM pages,
76  * KSM maintains two types of nodes in the stable tree:
77  *
78  * * the regular nodes that keep the reverse mapping structures in a
79  *   linked list
80  * * the "chains" that link nodes ("dups") that represent the same
81  *   write protected memory content, but each "dup" corresponds to a
82  *   different KSM page copy of that content
83  *
84  * Internally, the regular nodes, "dups" and "chains" are represented
85  * using the same :c:type:`struct stable_node` structure.
86  *
87  * In addition to the stable tree, KSM uses a second data structure called the
88  * unstable tree: this tree holds pointers to pages which have been found to
89  * be "unchanged for a period of time".  The unstable tree sorts these pages
90  * by their contents, but since they are not write-protected, KSM cannot rely
91  * upon the unstable tree to work correctly - the unstable tree is liable to
92  * be corrupted as its contents are modified, and so it is called unstable.
93  *
94  * KSM solves this problem by several techniques:
95  *
96  * 1) The unstable tree is flushed every time KSM completes scanning all
97  *    memory areas, and then the tree is rebuilt again from the beginning.
98  * 2) KSM will only insert into the unstable tree, pages whose hash value
99  *    has not changed since the previous scan of all memory areas.
100  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
101  *    colors of the nodes and not on their contents, assuring that even when
102  *    the tree gets "corrupted" it won't get out of balance, so scanning time
103  *    remains the same (also, searching and inserting nodes in an rbtree uses
104  *    the same algorithm, so we have no overhead when we flush and rebuild).
105  * 4) KSM never flushes the stable tree, which means that even if it were to
106  *    take 10 attempts to find a page in the unstable tree, once it is found,
107  *    it is secured in the stable tree.  (When we scan a new page, we first
108  *    compare it against the stable tree, and then against the unstable tree.)
109  *
110  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
111  * stable trees and multiple unstable trees: one of each for each NUMA node.
112  */
113
114 /**
115  * struct mm_slot - ksm information per mm that is being scanned
116  * @link: link to the mm_slots hash list
117  * @mm_list: link into the mm_slots list, rooted in ksm_mm_head
118  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
119  * @mm: the mm that this information is valid for
120  */
121 struct mm_slot {
122         struct hlist_node link;
123         struct list_head mm_list;
124         struct rmap_item *rmap_list;
125         struct mm_struct *mm;
126 };
127
128 /**
129  * struct ksm_scan - cursor for scanning
130  * @mm_slot: the current mm_slot we are scanning
131  * @address: the next address inside that to be scanned
132  * @rmap_list: link to the next rmap to be scanned in the rmap_list
133  * @seqnr: count of completed full scans (needed when removing unstable node)
134  *
135  * There is only the one ksm_scan instance of this cursor structure.
136  */
137 struct ksm_scan {
138         struct mm_slot *mm_slot;
139         unsigned long address;
140         struct rmap_item **rmap_list;
141         unsigned long seqnr;
142 };
143
144 /**
145  * struct stable_node - node of the stable rbtree
146  * @node: rb node of this ksm page in the stable tree
147  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
148  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
149  * @list: linked into migrate_nodes, pending placement in the proper node tree
150  * @hlist: hlist head of rmap_items using this ksm page
151  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
152  * @chain_prune_time: time of the last full garbage collection
153  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
154  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
155  */
156 struct stable_node {
157         union {
158                 struct rb_node node;    /* when node of stable tree */
159                 struct {                /* when listed for migration */
160                         struct list_head *head;
161                         struct {
162                                 struct hlist_node hlist_dup;
163                                 struct list_head list;
164                         };
165                 };
166         };
167         struct hlist_head hlist;
168         union {
169                 unsigned long kpfn;
170                 unsigned long chain_prune_time;
171         };
172         /*
173          * STABLE_NODE_CHAIN can be any negative number in
174          * rmap_hlist_len negative range, but better not -1 to be able
175          * to reliably detect underflows.
176          */
177 #define STABLE_NODE_CHAIN -1024
178         int rmap_hlist_len;
179 #ifdef CONFIG_NUMA
180         int nid;
181 #endif
182 };
183
184 /**
185  * struct rmap_item - reverse mapping item for virtual addresses
186  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
187  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
188  * @nid: NUMA node id of unstable tree in which linked (may not match page)
189  * @mm: the memory structure this rmap_item is pointing into
190  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
191  * @oldchecksum: previous checksum of the page at that virtual address
192  * @node: rb node of this rmap_item in the unstable tree
193  * @head: pointer to stable_node heading this list in the stable tree
194  * @hlist: link into hlist of rmap_items hanging off that stable_node
195  */
196 struct rmap_item {
197         struct rmap_item *rmap_list;
198         union {
199                 struct anon_vma *anon_vma;      /* when stable */
200 #ifdef CONFIG_NUMA
201                 int nid;                /* when node of unstable tree */
202 #endif
203         };
204         struct mm_struct *mm;
205         unsigned long address;          /* + low bits used for flags below */
206         unsigned int oldchecksum;       /* when unstable */
207         union {
208                 struct rb_node node;    /* when node of unstable tree */
209                 struct {                /* when listed from stable tree */
210                         struct stable_node *head;
211                         struct hlist_node hlist;
212                 };
213         };
214 };
215
216 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
217 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
218 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
219 #define KSM_FLAG_MASK   (SEQNR_MASK|UNSTABLE_FLAG|STABLE_FLAG)
220                                 /* to mask all the flags */
221
222 /* The stable and unstable tree heads */
223 static struct rb_root one_stable_tree[1] = { RB_ROOT };
224 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
225 static struct rb_root *root_stable_tree = one_stable_tree;
226 static struct rb_root *root_unstable_tree = one_unstable_tree;
227
228 /* Recently migrated nodes of stable tree, pending proper placement */
229 static LIST_HEAD(migrate_nodes);
230 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
231
232 #define MM_SLOTS_HASH_BITS 10
233 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
234
235 static struct mm_slot ksm_mm_head = {
236         .mm_list = LIST_HEAD_INIT(ksm_mm_head.mm_list),
237 };
238 static struct ksm_scan ksm_scan = {
239         .mm_slot = &ksm_mm_head,
240 };
241
242 static struct kmem_cache *rmap_item_cache;
243 static struct kmem_cache *stable_node_cache;
244 static struct kmem_cache *mm_slot_cache;
245
246 /* The number of nodes in the stable tree */
247 static unsigned long ksm_pages_shared;
248
249 /* The number of page slots additionally sharing those nodes */
250 static unsigned long ksm_pages_sharing;
251
252 /* The number of nodes in the unstable tree */
253 static unsigned long ksm_pages_unshared;
254
255 /* The number of rmap_items in use: to calculate pages_volatile */
256 static unsigned long ksm_rmap_items;
257
258 /* The number of stable_node chains */
259 static unsigned long ksm_stable_node_chains;
260
261 /* The number of stable_node dups linked to the stable_node chains */
262 static unsigned long ksm_stable_node_dups;
263
264 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
265 static int ksm_stable_node_chains_prune_millisecs = 2000;
266
267 /* Maximum number of page slots sharing a stable node */
268 static int ksm_max_page_sharing = 256;
269
270 /* Number of pages ksmd should scan in one batch */
271 static unsigned int ksm_thread_pages_to_scan = 100;
272
273 /* Milliseconds ksmd should sleep between batches */
274 static unsigned int ksm_thread_sleep_millisecs = 20;
275
276 /* Checksum of an empty (zeroed) page */
277 static unsigned int zero_checksum __read_mostly;
278
279 /* Whether to merge empty (zeroed) pages with actual zero pages */
280 static bool ksm_use_zero_pages __read_mostly;
281
282 #ifdef CONFIG_NUMA
283 /* Zeroed when merging across nodes is not allowed */
284 static unsigned int ksm_merge_across_nodes = 1;
285 static int ksm_nr_node_ids = 1;
286 #else
287 #define ksm_merge_across_nodes  1U
288 #define ksm_nr_node_ids         1
289 #endif
290
291 #define KSM_RUN_STOP    0
292 #define KSM_RUN_MERGE   1
293 #define KSM_RUN_UNMERGE 2
294 #define KSM_RUN_OFFLINE 4
295 static unsigned long ksm_run = KSM_RUN_STOP;
296 static void wait_while_offlining(void);
297
298 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
299 static DEFINE_MUTEX(ksm_thread_mutex);
300 static DEFINE_SPINLOCK(ksm_mmlist_lock);
301
302 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create("ksm_"#__struct,\
303                 sizeof(struct __struct), __alignof__(struct __struct),\
304                 (__flags), NULL)
305
306 static int __init ksm_slab_init(void)
307 {
308         rmap_item_cache = KSM_KMEM_CACHE(rmap_item, 0);
309         if (!rmap_item_cache)
310                 goto out;
311
312         stable_node_cache = KSM_KMEM_CACHE(stable_node, 0);
313         if (!stable_node_cache)
314                 goto out_free1;
315
316         mm_slot_cache = KSM_KMEM_CACHE(mm_slot, 0);
317         if (!mm_slot_cache)
318                 goto out_free2;
319
320         return 0;
321
322 out_free2:
323         kmem_cache_destroy(stable_node_cache);
324 out_free1:
325         kmem_cache_destroy(rmap_item_cache);
326 out:
327         return -ENOMEM;
328 }
329
330 static void __init ksm_slab_free(void)
331 {
332         kmem_cache_destroy(mm_slot_cache);
333         kmem_cache_destroy(stable_node_cache);
334         kmem_cache_destroy(rmap_item_cache);
335         mm_slot_cache = NULL;
336 }
337
338 static __always_inline bool is_stable_node_chain(struct stable_node *chain)
339 {
340         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
341 }
342
343 static __always_inline bool is_stable_node_dup(struct stable_node *dup)
344 {
345         return dup->head == STABLE_NODE_DUP_HEAD;
346 }
347
348 static inline void stable_node_chain_add_dup(struct stable_node *dup,
349                                              struct stable_node *chain)
350 {
351         VM_BUG_ON(is_stable_node_dup(dup));
352         dup->head = STABLE_NODE_DUP_HEAD;
353         VM_BUG_ON(!is_stable_node_chain(chain));
354         hlist_add_head(&dup->hlist_dup, &chain->hlist);
355         ksm_stable_node_dups++;
356 }
357
358 static inline void __stable_node_dup_del(struct stable_node *dup)
359 {
360         VM_BUG_ON(!is_stable_node_dup(dup));
361         hlist_del(&dup->hlist_dup);
362         ksm_stable_node_dups--;
363 }
364
365 static inline void stable_node_dup_del(struct stable_node *dup)
366 {
367         VM_BUG_ON(is_stable_node_chain(dup));
368         if (is_stable_node_dup(dup))
369                 __stable_node_dup_del(dup);
370         else
371                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
372 #ifdef CONFIG_DEBUG_VM
373         dup->head = NULL;
374 #endif
375 }
376
377 static inline struct rmap_item *alloc_rmap_item(void)
378 {
379         struct rmap_item *rmap_item;
380
381         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
382                                                 __GFP_NORETRY | __GFP_NOWARN);
383         if (rmap_item)
384                 ksm_rmap_items++;
385         return rmap_item;
386 }
387
388 static inline void free_rmap_item(struct rmap_item *rmap_item)
389 {
390         ksm_rmap_items--;
391         rmap_item->mm = NULL;   /* debug safety */
392         kmem_cache_free(rmap_item_cache, rmap_item);
393 }
394
395 static inline struct stable_node *alloc_stable_node(void)
396 {
397         /*
398          * The allocation can take too long with GFP_KERNEL when memory is under
399          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
400          * grants access to memory reserves, helping to avoid this problem.
401          */
402         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
403 }
404
405 static inline void free_stable_node(struct stable_node *stable_node)
406 {
407         VM_BUG_ON(stable_node->rmap_hlist_len &&
408                   !is_stable_node_chain(stable_node));
409         kmem_cache_free(stable_node_cache, stable_node);
410 }
411
412 static inline struct mm_slot *alloc_mm_slot(void)
413 {
414         if (!mm_slot_cache)     /* initialization failed */
415                 return NULL;
416         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
417 }
418
419 static inline void free_mm_slot(struct mm_slot *mm_slot)
420 {
421         kmem_cache_free(mm_slot_cache, mm_slot);
422 }
423
424 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
425 {
426         struct mm_slot *slot;
427
428         hash_for_each_possible(mm_slots_hash, slot, link, (unsigned long)mm)
429                 if (slot->mm == mm)
430                         return slot;
431
432         return NULL;
433 }
434
435 static void insert_to_mm_slots_hash(struct mm_struct *mm,
436                                     struct mm_slot *mm_slot)
437 {
438         mm_slot->mm = mm;
439         hash_add(mm_slots_hash, &mm_slot->link, (unsigned long)mm);
440 }
441
442 /*
443  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
444  * page tables after it has passed through ksm_exit() - which, if necessary,
445  * takes mmap_sem briefly to serialize against them.  ksm_exit() does not set
446  * a special flag: they can just back out as soon as mm_users goes to zero.
447  * ksm_test_exit() is used throughout to make this test for exit: in some
448  * places for correctness, in some places just to avoid unnecessary work.
449  */
450 static inline bool ksm_test_exit(struct mm_struct *mm)
451 {
452         return atomic_read(&mm->mm_users) == 0;
453 }
454
455 /*
456  * We use break_ksm to break COW on a ksm page: it's a stripped down
457  *
458  *      if (get_user_pages(addr, 1, 1, 1, &page, NULL) == 1)
459  *              put_page(page);
460  *
461  * but taking great care only to touch a ksm page, in a VM_MERGEABLE vma,
462  * in case the application has unmapped and remapped mm,addr meanwhile.
463  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
464  * mmap of /dev/mem or /dev/kmem, where we would not want to touch it.
465  *
466  * FAULT_FLAG/FOLL_REMOTE are because we do this outside the context
467  * of the process that owns 'vma'.  We also do not want to enforce
468  * protection keys here anyway.
469  */
470 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
471 {
472         struct page *page;
473         vm_fault_t ret = 0;
474
475         do {
476                 cond_resched();
477                 page = follow_page(vma, addr,
478                                 FOLL_GET | FOLL_MIGRATION | FOLL_REMOTE);
479                 if (IS_ERR_OR_NULL(page))
480                         break;
481                 if (PageKsm(page))
482                         ret = handle_mm_fault(vma, addr,
483                                         FAULT_FLAG_WRITE | FAULT_FLAG_REMOTE);
484                 else
485                         ret = VM_FAULT_WRITE;
486                 put_page(page);
487         } while (!(ret & (VM_FAULT_WRITE | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
488         /*
489          * We must loop because handle_mm_fault() may back out if there's
490          * any difficulty e.g. if pte accessed bit gets updated concurrently.
491          *
492          * VM_FAULT_WRITE is what we have been hoping for: it indicates that
493          * COW has been broken, even if the vma does not permit VM_WRITE;
494          * but note that a concurrent fault might break PageKsm for us.
495          *
496          * VM_FAULT_SIGBUS could occur if we race with truncation of the
497          * backing file, which also invalidates anonymous pages: that's
498          * okay, that truncation will have unmapped the PageKsm for us.
499          *
500          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
501          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
502          * current task has TIF_MEMDIE set, and will be OOM killed on return
503          * to user; and ksmd, having no mm, would never be chosen for that.
504          *
505          * But if the mm is in a limited mem_cgroup, then the fault may fail
506          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
507          * even ksmd can fail in this way - though it's usually breaking ksm
508          * just to undo a merge it made a moment before, so unlikely to oom.
509          *
510          * That's a pity: we might therefore have more kernel pages allocated
511          * than we're counting as nodes in the stable tree; but ksm_do_scan
512          * will retry to break_cow on each pass, so should recover the page
513          * in due course.  The important thing is to not let VM_MERGEABLE
514          * be cleared while any such pages might remain in the area.
515          */
516         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
517 }
518
519 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
520                 unsigned long addr)
521 {
522         struct vm_area_struct *vma;
523         if (ksm_test_exit(mm))
524                 return NULL;
525         vma = find_vma(mm, addr);
526         if (!vma || vma->vm_start > addr)
527                 return NULL;
528         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
529                 return NULL;
530         return vma;
531 }
532
533 static void break_cow(struct rmap_item *rmap_item)
534 {
535         struct mm_struct *mm = rmap_item->mm;
536         unsigned long addr = rmap_item->address;
537         struct vm_area_struct *vma;
538
539         /*
540          * It is not an accident that whenever we want to break COW
541          * to undo, we also need to drop a reference to the anon_vma.
542          */
543         put_anon_vma(rmap_item->anon_vma);
544
545         down_read(&mm->mmap_sem);
546         vma = find_mergeable_vma(mm, addr);
547         if (vma)
548                 break_ksm(vma, addr);
549         up_read(&mm->mmap_sem);
550 }
551
552 static struct page *get_mergeable_page(struct rmap_item *rmap_item)
553 {
554         struct mm_struct *mm = rmap_item->mm;
555         unsigned long addr = rmap_item->address;
556         struct vm_area_struct *vma;
557         struct page *page;
558
559         down_read(&mm->mmap_sem);
560         vma = find_mergeable_vma(mm, addr);
561         if (!vma)
562                 goto out;
563
564         page = follow_page(vma, addr, FOLL_GET);
565         if (IS_ERR_OR_NULL(page))
566                 goto out;
567         if (PageAnon(page)) {
568                 flush_anon_page(vma, page, addr);
569                 flush_dcache_page(page);
570         } else {
571                 put_page(page);
572 out:
573                 page = NULL;
574         }
575         up_read(&mm->mmap_sem);
576         return page;
577 }
578
579 /*
580  * This helper is used for getting right index into array of tree roots.
581  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
582  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
583  * every node has its own stable and unstable tree.
584  */
585 static inline int get_kpfn_nid(unsigned long kpfn)
586 {
587         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
588 }
589
590 static struct stable_node *alloc_stable_node_chain(struct stable_node *dup,
591                                                    struct rb_root *root)
592 {
593         struct stable_node *chain = alloc_stable_node();
594         VM_BUG_ON(is_stable_node_chain(dup));
595         if (likely(chain)) {
596                 INIT_HLIST_HEAD(&chain->hlist);
597                 chain->chain_prune_time = jiffies;
598                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
599 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
600                 chain->nid = -1; /* debug */
601 #endif
602                 ksm_stable_node_chains++;
603
604                 /*
605                  * Put the stable node chain in the first dimension of
606                  * the stable tree and at the same time remove the old
607                  * stable node.
608                  */
609                 rb_replace_node(&dup->node, &chain->node, root);
610
611                 /*
612                  * Move the old stable node to the second dimension
613                  * queued in the hlist_dup. The invariant is that all
614                  * dup stable_nodes in the chain->hlist point to pages
615                  * that are wrprotected and have the exact same
616                  * content.
617                  */
618                 stable_node_chain_add_dup(dup, chain);
619         }
620         return chain;
621 }
622
623 static inline void free_stable_node_chain(struct stable_node *chain,
624                                           struct rb_root *root)
625 {
626         rb_erase(&chain->node, root);
627         free_stable_node(chain);
628         ksm_stable_node_chains--;
629 }
630
631 static void remove_node_from_stable_tree(struct stable_node *stable_node)
632 {
633         struct rmap_item *rmap_item;
634
635         /* check it's not STABLE_NODE_CHAIN or negative */
636         BUG_ON(stable_node->rmap_hlist_len < 0);
637
638         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
639                 if (rmap_item->hlist.next)
640                         ksm_pages_sharing--;
641                 else
642                         ksm_pages_shared--;
643                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644                 stable_node->rmap_hlist_len--;
645                 put_anon_vma(rmap_item->anon_vma);
646                 rmap_item->address &= PAGE_MASK;
647                 cond_resched();
648         }
649
650         /*
651          * We need the second aligned pointer of the migrate_nodes
652          * list_head to stay clear from the rb_parent_color union
653          * (aligned and different than any node) and also different
654          * from &migrate_nodes. This will verify that future list.h changes
655          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
656          */
657 #if defined(GCC_VERSION) && GCC_VERSION >= 40903
658         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
659         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
660 #endif
661
662         if (stable_node->head == &migrate_nodes)
663                 list_del(&stable_node->list);
664         else
665                 stable_node_dup_del(stable_node);
666         free_stable_node(stable_node);
667 }
668
669 /*
670  * get_ksm_page: checks if the page indicated by the stable node
671  * is still its ksm page, despite having held no reference to it.
672  * In which case we can trust the content of the page, and it
673  * returns the gotten page; but if the page has now been zapped,
674  * remove the stale node from the stable tree and return NULL.
675  * But beware, the stable node's page might be being migrated.
676  *
677  * You would expect the stable_node to hold a reference to the ksm page.
678  * But if it increments the page's count, swapping out has to wait for
679  * ksmd to come around again before it can free the page, which may take
680  * seconds or even minutes: much too unresponsive.  So instead we use a
681  * "keyhole reference": access to the ksm page from the stable node peeps
682  * out through its keyhole to see if that page still holds the right key,
683  * pointing back to this stable node.  This relies on freeing a PageAnon
684  * page to reset its page->mapping to NULL, and relies on no other use of
685  * a page to put something that might look like our key in page->mapping.
686  * is on its way to being freed; but it is an anomaly to bear in mind.
687  */
688 static struct page *get_ksm_page(struct stable_node *stable_node, bool lock_it)
689 {
690         struct page *page;
691         void *expected_mapping;
692         unsigned long kpfn;
693
694         expected_mapping = (void *)((unsigned long)stable_node |
695                                         PAGE_MAPPING_KSM);
696 again:
697         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
698         page = pfn_to_page(kpfn);
699         if (READ_ONCE(page->mapping) != expected_mapping)
700                 goto stale;
701
702         /*
703          * We cannot do anything with the page while its refcount is 0.
704          * Usually 0 means free, or tail of a higher-order page: in which
705          * case this node is no longer referenced, and should be freed;
706          * however, it might mean that the page is under page_ref_freeze().
707          * The __remove_mapping() case is easy, again the node is now stale;
708          * but if page is swapcache in migrate_page_move_mapping(), it might
709          * still be our page, in which case it's essential to keep the node.
710          */
711         while (!get_page_unless_zero(page)) {
712                 /*
713                  * Another check for page->mapping != expected_mapping would
714                  * work here too.  We have chosen the !PageSwapCache test to
715                  * optimize the common case, when the page is or is about to
716                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
717                  * in the ref_freeze section of __remove_mapping(); but Anon
718                  * page->mapping reset to NULL later, in free_pages_prepare().
719                  */
720                 if (!PageSwapCache(page))
721                         goto stale;
722                 cpu_relax();
723         }
724
725         if (READ_ONCE(page->mapping) != expected_mapping) {
726                 put_page(page);
727                 goto stale;
728         }
729
730         if (lock_it) {
731                 lock_page(page);
732                 if (READ_ONCE(page->mapping) != expected_mapping) {
733                         unlock_page(page);
734                         put_page(page);
735                         goto stale;
736                 }
737         }
738         return page;
739
740 stale:
741         /*
742          * We come here from above when page->mapping or !PageSwapCache
743          * suggests that the node is stale; but it might be under migration.
744          * We need smp_rmb(), matching the smp_wmb() in ksm_migrate_page(),
745          * before checking whether node->kpfn has been changed.
746          */
747         smp_rmb();
748         if (READ_ONCE(stable_node->kpfn) != kpfn)
749                 goto again;
750         remove_node_from_stable_tree(stable_node);
751         return NULL;
752 }
753
754 /*
755  * Removing rmap_item from stable or unstable tree.
756  * This function will clean the information from the stable/unstable tree.
757  */
758 static void remove_rmap_item_from_tree(struct rmap_item *rmap_item)
759 {
760         if (rmap_item->address & STABLE_FLAG) {
761                 struct stable_node *stable_node;
762                 struct page *page;
763
764                 stable_node = rmap_item->head;
765                 page = get_ksm_page(stable_node, true);
766                 if (!page)
767                         goto out;
768
769                 hlist_del(&rmap_item->hlist);
770                 unlock_page(page);
771                 put_page(page);
772
773                 if (!hlist_empty(&stable_node->hlist))
774                         ksm_pages_sharing--;
775                 else
776                         ksm_pages_shared--;
777                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
778                 stable_node->rmap_hlist_len--;
779
780                 put_anon_vma(rmap_item->anon_vma);
781                 rmap_item->address &= PAGE_MASK;
782
783         } else if (rmap_item->address & UNSTABLE_FLAG) {
784                 unsigned char age;
785                 /*
786                  * Usually ksmd can and must skip the rb_erase, because
787                  * root_unstable_tree was already reset to RB_ROOT.
788                  * But be careful when an mm is exiting: do the rb_erase
789                  * if this rmap_item was inserted by this scan, rather
790                  * than left over from before.
791                  */
792                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
793                 BUG_ON(age > 1);
794                 if (!age)
795                         rb_erase(&rmap_item->node,
796                                  root_unstable_tree + NUMA(rmap_item->nid));
797                 ksm_pages_unshared--;
798                 rmap_item->address &= PAGE_MASK;
799         }
800 out:
801         cond_resched();         /* we're called from many long loops */
802 }
803
804 static void remove_trailing_rmap_items(struct mm_slot *mm_slot,
805                                        struct rmap_item **rmap_list)
806 {
807         while (*rmap_list) {
808                 struct rmap_item *rmap_item = *rmap_list;
809                 *rmap_list = rmap_item->rmap_list;
810                 remove_rmap_item_from_tree(rmap_item);
811                 free_rmap_item(rmap_item);
812         }
813 }
814
815 /*
816  * Though it's very tempting to unmerge rmap_items from stable tree rather
817  * than check every pte of a given vma, the locking doesn't quite work for
818  * that - an rmap_item is assigned to the stable tree after inserting ksm
819  * page and upping mmap_sem.  Nor does it fit with the way we skip dup'ing
820  * rmap_items from parent to child at fork time (so as not to waste time
821  * if exit comes before the next scan reaches it).
822  *
823  * Similarly, although we'd like to remove rmap_items (so updating counts
824  * and freeing memory) when unmerging an area, it's easier to leave that
825  * to the next pass of ksmd - consider, for example, how ksmd might be
826  * in cmp_and_merge_page on one of the rmap_items we would be removing.
827  */
828 static int unmerge_ksm_pages(struct vm_area_struct *vma,
829                              unsigned long start, unsigned long end)
830 {
831         unsigned long addr;
832         int err = 0;
833
834         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
835                 if (ksm_test_exit(vma->vm_mm))
836                         break;
837                 if (signal_pending(current))
838                         err = -ERESTARTSYS;
839                 else
840                         err = break_ksm(vma, addr);
841         }
842         return err;
843 }
844
845 static inline struct stable_node *page_stable_node(struct page *page)
846 {
847         return PageKsm(page) ? page_rmapping(page) : NULL;
848 }
849
850 static inline void set_page_stable_node(struct page *page,
851                                         struct stable_node *stable_node)
852 {
853         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
854 }
855
856 #ifdef CONFIG_SYSFS
857 /*
858  * Only called through the sysfs control interface:
859  */
860 static int remove_stable_node(struct stable_node *stable_node)
861 {
862         struct page *page;
863         int err;
864
865         page = get_ksm_page(stable_node, true);
866         if (!page) {
867                 /*
868                  * get_ksm_page did remove_node_from_stable_tree itself.
869                  */
870                 return 0;
871         }
872
873         if (WARN_ON_ONCE(page_mapped(page))) {
874                 /*
875                  * This should not happen: but if it does, just refuse to let
876                  * merge_across_nodes be switched - there is no need to panic.
877                  */
878                 err = -EBUSY;
879         } else {
880                 /*
881                  * The stable node did not yet appear stale to get_ksm_page(),
882                  * since that allows for an unmapped ksm page to be recognized
883                  * right up until it is freed; but the node is safe to remove.
884                  * This page might be in a pagevec waiting to be freed,
885                  * or it might be PageSwapCache (perhaps under writeback),
886                  * or it might have been removed from swapcache a moment ago.
887                  */
888                 set_page_stable_node(page, NULL);
889                 remove_node_from_stable_tree(stable_node);
890                 err = 0;
891         }
892
893         unlock_page(page);
894         put_page(page);
895         return err;
896 }
897
898 static int remove_stable_node_chain(struct stable_node *stable_node,
899                                     struct rb_root *root)
900 {
901         struct stable_node *dup;
902         struct hlist_node *hlist_safe;
903
904         if (!is_stable_node_chain(stable_node)) {
905                 VM_BUG_ON(is_stable_node_dup(stable_node));
906                 if (remove_stable_node(stable_node))
907                         return true;
908                 else
909                         return false;
910         }
911
912         hlist_for_each_entry_safe(dup, hlist_safe,
913                                   &stable_node->hlist, hlist_dup) {
914                 VM_BUG_ON(!is_stable_node_dup(dup));
915                 if (remove_stable_node(dup))
916                         return true;
917         }
918         BUG_ON(!hlist_empty(&stable_node->hlist));
919         free_stable_node_chain(stable_node, root);
920         return false;
921 }
922
923 static int remove_all_stable_nodes(void)
924 {
925         struct stable_node *stable_node, *next;
926         int nid;
927         int err = 0;
928
929         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
930                 while (root_stable_tree[nid].rb_node) {
931                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
932                                                 struct stable_node, node);
933                         if (remove_stable_node_chain(stable_node,
934                                                      root_stable_tree + nid)) {
935                                 err = -EBUSY;
936                                 break;  /* proceed to next nid */
937                         }
938                         cond_resched();
939                 }
940         }
941         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
942                 if (remove_stable_node(stable_node))
943                         err = -EBUSY;
944                 cond_resched();
945         }
946         return err;
947 }
948
949 static int unmerge_and_remove_all_rmap_items(void)
950 {
951         struct mm_slot *mm_slot;
952         struct mm_struct *mm;
953         struct vm_area_struct *vma;
954         int err = 0;
955
956         spin_lock(&ksm_mmlist_lock);
957         ksm_scan.mm_slot = list_entry(ksm_mm_head.mm_list.next,
958                                                 struct mm_slot, mm_list);
959         spin_unlock(&ksm_mmlist_lock);
960
961         for (mm_slot = ksm_scan.mm_slot;
962                         mm_slot != &ksm_mm_head; mm_slot = ksm_scan.mm_slot) {
963                 mm = mm_slot->mm;
964                 down_read(&mm->mmap_sem);
965                 for (vma = mm->mmap; vma; vma = vma->vm_next) {
966                         if (ksm_test_exit(mm))
967                                 break;
968                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
969                                 continue;
970                         err = unmerge_ksm_pages(vma,
971                                                 vma->vm_start, vma->vm_end);
972                         if (err)
973                                 goto error;
974                 }
975
976                 remove_trailing_rmap_items(mm_slot, &mm_slot->rmap_list);
977                 up_read(&mm->mmap_sem);
978
979                 spin_lock(&ksm_mmlist_lock);
980                 ksm_scan.mm_slot = list_entry(mm_slot->mm_list.next,
981                                                 struct mm_slot, mm_list);
982                 if (ksm_test_exit(mm)) {
983                         hash_del(&mm_slot->link);
984                         list_del(&mm_slot->mm_list);
985                         spin_unlock(&ksm_mmlist_lock);
986
987                         free_mm_slot(mm_slot);
988                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
989                         mmdrop(mm);
990                 } else
991                         spin_unlock(&ksm_mmlist_lock);
992         }
993
994         /* Clean up stable nodes, but don't worry if some are still busy */
995         remove_all_stable_nodes();
996         ksm_scan.seqnr = 0;
997         return 0;
998
999 error:
1000         up_read(&mm->mmap_sem);
1001         spin_lock(&ksm_mmlist_lock);
1002         ksm_scan.mm_slot = &ksm_mm_head;
1003         spin_unlock(&ksm_mmlist_lock);
1004         return err;
1005 }
1006 #endif /* CONFIG_SYSFS */
1007
1008 static u32 calc_checksum(struct page *page)
1009 {
1010         u32 checksum;
1011         void *addr = kmap_atomic(page);
1012         checksum = jhash2(addr, PAGE_SIZE / 4, 17);
1013         kunmap_atomic(addr);
1014         return checksum;
1015 }
1016
1017 static int memcmp_pages(struct page *page1, struct page *page2)
1018 {
1019         char *addr1, *addr2;
1020         int ret;
1021
1022         addr1 = kmap_atomic(page1);
1023         addr2 = kmap_atomic(page2);
1024         ret = memcmp(addr1, addr2, PAGE_SIZE);
1025         kunmap_atomic(addr2);
1026         kunmap_atomic(addr1);
1027         return ret;
1028 }
1029
1030 static inline int pages_identical(struct page *page1, struct page *page2)
1031 {
1032         return !memcmp_pages(page1, page2);
1033 }
1034
1035 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1036                               pte_t *orig_pte)
1037 {
1038         struct mm_struct *mm = vma->vm_mm;
1039         struct page_vma_mapped_walk pvmw = {
1040                 .page = page,
1041                 .vma = vma,
1042         };
1043         int swapped;
1044         int err = -EFAULT;
1045         unsigned long mmun_start;       /* For mmu_notifiers */
1046         unsigned long mmun_end;         /* For mmu_notifiers */
1047
1048         pvmw.address = page_address_in_vma(page, vma);
1049         if (pvmw.address == -EFAULT)
1050                 goto out;
1051
1052         BUG_ON(PageTransCompound(page));
1053
1054         mmun_start = pvmw.address;
1055         mmun_end   = pvmw.address + PAGE_SIZE;
1056         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1057
1058         if (!page_vma_mapped_walk(&pvmw))
1059                 goto out_mn;
1060         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1061                 goto out_unlock;
1062
1063         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1064             (pte_protnone(*pvmw.pte) && pte_savedwrite(*pvmw.pte)) ||
1065                                                 mm_tlb_flush_pending(mm)) {
1066                 pte_t entry;
1067
1068                 swapped = PageSwapCache(page);
1069                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1070                 /*
1071                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1072                  * take any lock, therefore the check that we are going to make
1073                  * with the pagecount against the mapcount is racey and
1074                  * O_DIRECT can happen right after the check.
1075                  * So we clear the pte and flush the tlb before the check
1076                  * this assure us that no O_DIRECT can happen after the check
1077                  * or in the middle of the check.
1078                  *
1079                  * No need to notify as we are downgrading page table to read
1080                  * only not changing it to point to a new page.
1081                  *
1082                  * See Documentation/vm/mmu_notifier.rst
1083                  */
1084                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1085                 /*
1086                  * Check that no O_DIRECT or similar I/O is in progress on the
1087                  * page
1088                  */
1089                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1090                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1091                         goto out_unlock;
1092                 }
1093                 if (pte_dirty(entry))
1094                         set_page_dirty(page);
1095
1096                 if (pte_protnone(entry))
1097                         entry = pte_mkclean(pte_clear_savedwrite(entry));
1098                 else
1099                         entry = pte_mkclean(pte_wrprotect(entry));
1100                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1101         }
1102         *orig_pte = *pvmw.pte;
1103         err = 0;
1104
1105 out_unlock:
1106         page_vma_mapped_walk_done(&pvmw);
1107 out_mn:
1108         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1109 out:
1110         return err;
1111 }
1112
1113 /**
1114  * replace_page - replace page in vma by new ksm page
1115  * @vma:      vma that holds the pte pointing to page
1116  * @page:     the page we are replacing by kpage
1117  * @kpage:    the ksm page we replace page by
1118  * @orig_pte: the original value of the pte
1119  *
1120  * Returns 0 on success, -EFAULT on failure.
1121  */
1122 static int replace_page(struct vm_area_struct *vma, struct page *page,
1123                         struct page *kpage, pte_t orig_pte)
1124 {
1125         struct mm_struct *mm = vma->vm_mm;
1126         pmd_t *pmd;
1127         pte_t *ptep;
1128         pte_t newpte;
1129         spinlock_t *ptl;
1130         unsigned long addr;
1131         int err = -EFAULT;
1132         unsigned long mmun_start;       /* For mmu_notifiers */
1133         unsigned long mmun_end;         /* For mmu_notifiers */
1134
1135         addr = page_address_in_vma(page, vma);
1136         if (addr == -EFAULT)
1137                 goto out;
1138
1139         pmd = mm_find_pmd(mm, addr);
1140         if (!pmd)
1141                 goto out;
1142
1143         mmun_start = addr;
1144         mmun_end   = addr + PAGE_SIZE;
1145         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1146
1147         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1148         if (!pte_same(*ptep, orig_pte)) {
1149                 pte_unmap_unlock(ptep, ptl);
1150                 goto out_mn;
1151         }
1152
1153         /*
1154          * No need to check ksm_use_zero_pages here: we can only have a
1155          * zero_page here if ksm_use_zero_pages was enabled alreaady.
1156          */
1157         if (!is_zero_pfn(page_to_pfn(kpage))) {
1158                 get_page(kpage);
1159                 page_add_anon_rmap(kpage, vma, addr, false);
1160                 newpte = mk_pte(kpage, vma->vm_page_prot);
1161         } else {
1162                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1163                                                vma->vm_page_prot));
1164                 /*
1165                  * We're replacing an anonymous page with a zero page, which is
1166                  * not anonymous. We need to do proper accounting otherwise we
1167                  * will get wrong values in /proc, and a BUG message in dmesg
1168                  * when tearing down the mm.
1169                  */
1170                 dec_mm_counter(mm, MM_ANONPAGES);
1171         }
1172
1173         flush_cache_page(vma, addr, pte_pfn(*ptep));
1174         /*
1175          * No need to notify as we are replacing a read only page with another
1176          * read only page with the same content.
1177          *
1178          * See Documentation/vm/mmu_notifier.rst
1179          */
1180         ptep_clear_flush(vma, addr, ptep);
1181         set_pte_at_notify(mm, addr, ptep, newpte);
1182
1183         page_remove_rmap(page, false);
1184         if (!page_mapped(page))
1185                 try_to_free_swap(page);
1186         put_page(page);
1187
1188         pte_unmap_unlock(ptep, ptl);
1189         err = 0;
1190 out_mn:
1191         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1192 out:
1193         return err;
1194 }
1195
1196 /*
1197  * try_to_merge_one_page - take two pages and merge them into one
1198  * @vma: the vma that holds the pte pointing to page
1199  * @page: the PageAnon page that we want to replace with kpage
1200  * @kpage: the PageKsm page that we want to map instead of page,
1201  *         or NULL the first time when we want to use page as kpage.
1202  *
1203  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1204  */
1205 static int try_to_merge_one_page(struct vm_area_struct *vma,
1206                                  struct page *page, struct page *kpage)
1207 {
1208         pte_t orig_pte = __pte(0);
1209         int err = -EFAULT;
1210
1211         if (page == kpage)                      /* ksm page forked */
1212                 return 0;
1213
1214         if (!PageAnon(page))
1215                 goto out;
1216
1217         /*
1218          * We need the page lock to read a stable PageSwapCache in
1219          * write_protect_page().  We use trylock_page() instead of
1220          * lock_page() because we don't want to wait here - we
1221          * prefer to continue scanning and merging different pages,
1222          * then come back to this page when it is unlocked.
1223          */
1224         if (!trylock_page(page))
1225                 goto out;
1226
1227         if (PageTransCompound(page)) {
1228                 if (split_huge_page(page))
1229                         goto out_unlock;
1230         }
1231
1232         /*
1233          * If this anonymous page is mapped only here, its pte may need
1234          * to be write-protected.  If it's mapped elsewhere, all of its
1235          * ptes are necessarily already write-protected.  But in either
1236          * case, we need to lock and check page_count is not raised.
1237          */
1238         if (write_protect_page(vma, page, &orig_pte) == 0) {
1239                 if (!kpage) {
1240                         /*
1241                          * While we hold page lock, upgrade page from
1242                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1243                          * stable_tree_insert() will update stable_node.
1244                          */
1245                         set_page_stable_node(page, NULL);
1246                         mark_page_accessed(page);
1247                         /*
1248                          * Page reclaim just frees a clean page with no dirty
1249                          * ptes: make sure that the ksm page would be swapped.
1250                          */
1251                         if (!PageDirty(page))
1252                                 SetPageDirty(page);
1253                         err = 0;
1254                 } else if (pages_identical(page, kpage))
1255                         err = replace_page(vma, page, kpage, orig_pte);
1256         }
1257
1258         if ((vma->vm_flags & VM_LOCKED) && kpage && !err) {
1259                 munlock_vma_page(page);
1260                 if (!PageMlocked(kpage)) {
1261                         unlock_page(page);
1262                         lock_page(kpage);
1263                         mlock_vma_page(kpage);
1264                         page = kpage;           /* for final unlock */
1265                 }
1266         }
1267
1268 out_unlock:
1269         unlock_page(page);
1270 out:
1271         return err;
1272 }
1273
1274 /*
1275  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1276  * but no new kernel page is allocated: kpage must already be a ksm page.
1277  *
1278  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1279  */
1280 static int try_to_merge_with_ksm_page(struct rmap_item *rmap_item,
1281                                       struct page *page, struct page *kpage)
1282 {
1283         struct mm_struct *mm = rmap_item->mm;
1284         struct vm_area_struct *vma;
1285         int err = -EFAULT;
1286
1287         down_read(&mm->mmap_sem);
1288         vma = find_mergeable_vma(mm, rmap_item->address);
1289         if (!vma)
1290                 goto out;
1291
1292         err = try_to_merge_one_page(vma, page, kpage);
1293         if (err)
1294                 goto out;
1295
1296         /* Unstable nid is in union with stable anon_vma: remove first */
1297         remove_rmap_item_from_tree(rmap_item);
1298
1299         /* Must get reference to anon_vma while still holding mmap_sem */
1300         rmap_item->anon_vma = vma->anon_vma;
1301         get_anon_vma(vma->anon_vma);
1302 out:
1303         up_read(&mm->mmap_sem);
1304         return err;
1305 }
1306
1307 /*
1308  * try_to_merge_two_pages - take two identical pages and prepare them
1309  * to be merged into one page.
1310  *
1311  * This function returns the kpage if we successfully merged two identical
1312  * pages into one ksm page, NULL otherwise.
1313  *
1314  * Note that this function upgrades page to ksm page: if one of the pages
1315  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1316  */
1317 static struct page *try_to_merge_two_pages(struct rmap_item *rmap_item,
1318                                            struct page *page,
1319                                            struct rmap_item *tree_rmap_item,
1320                                            struct page *tree_page)
1321 {
1322         int err;
1323
1324         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1325         if (!err) {
1326                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1327                                                         tree_page, page);
1328                 /*
1329                  * If that fails, we have a ksm page with only one pte
1330                  * pointing to it: so break it.
1331                  */
1332                 if (err)
1333                         break_cow(rmap_item);
1334         }
1335         return err ? NULL : page;
1336 }
1337
1338 static __always_inline
1339 bool __is_page_sharing_candidate(struct stable_node *stable_node, int offset)
1340 {
1341         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1342         /*
1343          * Check that at least one mapping still exists, otherwise
1344          * there's no much point to merge and share with this
1345          * stable_node, as the underlying tree_page of the other
1346          * sharer is going to be freed soon.
1347          */
1348         return stable_node->rmap_hlist_len &&
1349                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1350 }
1351
1352 static __always_inline
1353 bool is_page_sharing_candidate(struct stable_node *stable_node)
1354 {
1355         return __is_page_sharing_candidate(stable_node, 0);
1356 }
1357
1358 static struct page *stable_node_dup(struct stable_node **_stable_node_dup,
1359                                     struct stable_node **_stable_node,
1360                                     struct rb_root *root,
1361                                     bool prune_stale_stable_nodes)
1362 {
1363         struct stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1364         struct hlist_node *hlist_safe;
1365         struct page *_tree_page, *tree_page = NULL;
1366         int nr = 0;
1367         int found_rmap_hlist_len;
1368
1369         if (!prune_stale_stable_nodes ||
1370             time_before(jiffies, stable_node->chain_prune_time +
1371                         msecs_to_jiffies(
1372                                 ksm_stable_node_chains_prune_millisecs)))
1373                 prune_stale_stable_nodes = false;
1374         else
1375                 stable_node->chain_prune_time = jiffies;
1376
1377         hlist_for_each_entry_safe(dup, hlist_safe,
1378                                   &stable_node->hlist, hlist_dup) {
1379                 cond_resched();
1380                 /*
1381                  * We must walk all stable_node_dup to prune the stale
1382                  * stable nodes during lookup.
1383                  *
1384                  * get_ksm_page can drop the nodes from the
1385                  * stable_node->hlist if they point to freed pages
1386                  * (that's why we do a _safe walk). The "dup"
1387                  * stable_node parameter itself will be freed from
1388                  * under us if it returns NULL.
1389                  */
1390                 _tree_page = get_ksm_page(dup, false);
1391                 if (!_tree_page)
1392                         continue;
1393                 nr += 1;
1394                 if (is_page_sharing_candidate(dup)) {
1395                         if (!found ||
1396                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1397                                 if (found)
1398                                         put_page(tree_page);
1399                                 found = dup;
1400                                 found_rmap_hlist_len = found->rmap_hlist_len;
1401                                 tree_page = _tree_page;
1402
1403                                 /* skip put_page for found dup */
1404                                 if (!prune_stale_stable_nodes)
1405                                         break;
1406                                 continue;
1407                         }
1408                 }
1409                 put_page(_tree_page);
1410         }
1411
1412         if (found) {
1413                 /*
1414                  * nr is counting all dups in the chain only if
1415                  * prune_stale_stable_nodes is true, otherwise we may
1416                  * break the loop at nr == 1 even if there are
1417                  * multiple entries.
1418                  */
1419                 if (prune_stale_stable_nodes && nr == 1) {
1420                         /*
1421                          * If there's not just one entry it would
1422                          * corrupt memory, better BUG_ON. In KSM
1423                          * context with no lock held it's not even
1424                          * fatal.
1425                          */
1426                         BUG_ON(stable_node->hlist.first->next);
1427
1428                         /*
1429                          * There's just one entry and it is below the
1430                          * deduplication limit so drop the chain.
1431                          */
1432                         rb_replace_node(&stable_node->node, &found->node,
1433                                         root);
1434                         free_stable_node(stable_node);
1435                         ksm_stable_node_chains--;
1436                         ksm_stable_node_dups--;
1437                         /*
1438                          * NOTE: the caller depends on the stable_node
1439                          * to be equal to stable_node_dup if the chain
1440                          * was collapsed.
1441                          */
1442                         *_stable_node = found;
1443                         /*
1444                          * Just for robustneess as stable_node is
1445                          * otherwise left as a stable pointer, the
1446                          * compiler shall optimize it away at build
1447                          * time.
1448                          */
1449                         stable_node = NULL;
1450                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1451                            __is_page_sharing_candidate(found, 1)) {
1452                         /*
1453                          * If the found stable_node dup can accept one
1454                          * more future merge (in addition to the one
1455                          * that is underway) and is not at the head of
1456                          * the chain, put it there so next search will
1457                          * be quicker in the !prune_stale_stable_nodes
1458                          * case.
1459                          *
1460                          * NOTE: it would be inaccurate to use nr > 1
1461                          * instead of checking the hlist.first pointer
1462                          * directly, because in the
1463                          * prune_stale_stable_nodes case "nr" isn't
1464                          * the position of the found dup in the chain,
1465                          * but the total number of dups in the chain.
1466                          */
1467                         hlist_del(&found->hlist_dup);
1468                         hlist_add_head(&found->hlist_dup,
1469                                        &stable_node->hlist);
1470                 }
1471         }
1472
1473         *_stable_node_dup = found;
1474         return tree_page;
1475 }
1476
1477 static struct stable_node *stable_node_dup_any(struct stable_node *stable_node,
1478                                                struct rb_root *root)
1479 {
1480         if (!is_stable_node_chain(stable_node))
1481                 return stable_node;
1482         if (hlist_empty(&stable_node->hlist)) {
1483                 free_stable_node_chain(stable_node, root);
1484                 return NULL;
1485         }
1486         return hlist_entry(stable_node->hlist.first,
1487                            typeof(*stable_node), hlist_dup);
1488 }
1489
1490 /*
1491  * Like for get_ksm_page, this function can free the *_stable_node and
1492  * *_stable_node_dup if the returned tree_page is NULL.
1493  *
1494  * It can also free and overwrite *_stable_node with the found
1495  * stable_node_dup if the chain is collapsed (in which case
1496  * *_stable_node will be equal to *_stable_node_dup like if the chain
1497  * never existed). It's up to the caller to verify tree_page is not
1498  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1499  *
1500  * *_stable_node_dup is really a second output parameter of this
1501  * function and will be overwritten in all cases, the caller doesn't
1502  * need to initialize it.
1503  */
1504 static struct page *__stable_node_chain(struct stable_node **_stable_node_dup,
1505                                         struct stable_node **_stable_node,
1506                                         struct rb_root *root,
1507                                         bool prune_stale_stable_nodes)
1508 {
1509         struct stable_node *stable_node = *_stable_node;
1510         if (!is_stable_node_chain(stable_node)) {
1511                 if (is_page_sharing_candidate(stable_node)) {
1512                         *_stable_node_dup = stable_node;
1513                         return get_ksm_page(stable_node, false);
1514                 }
1515                 /*
1516                  * _stable_node_dup set to NULL means the stable_node
1517                  * reached the ksm_max_page_sharing limit.
1518                  */
1519                 *_stable_node_dup = NULL;
1520                 return NULL;
1521         }
1522         return stable_node_dup(_stable_node_dup, _stable_node, root,
1523                                prune_stale_stable_nodes);
1524 }
1525
1526 static __always_inline struct page *chain_prune(struct stable_node **s_n_d,
1527                                                 struct stable_node **s_n,
1528                                                 struct rb_root *root)
1529 {
1530         return __stable_node_chain(s_n_d, s_n, root, true);
1531 }
1532
1533 static __always_inline struct page *chain(struct stable_node **s_n_d,
1534                                           struct stable_node *s_n,
1535                                           struct rb_root *root)
1536 {
1537         struct stable_node *old_stable_node = s_n;
1538         struct page *tree_page;
1539
1540         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1541         /* not pruning dups so s_n cannot have changed */
1542         VM_BUG_ON(s_n != old_stable_node);
1543         return tree_page;
1544 }
1545
1546 /*
1547  * stable_tree_search - search for page inside the stable tree
1548  *
1549  * This function checks if there is a page inside the stable tree
1550  * with identical content to the page that we are scanning right now.
1551  *
1552  * This function returns the stable tree node of identical content if found,
1553  * NULL otherwise.
1554  */
1555 static struct page *stable_tree_search(struct page *page)
1556 {
1557         int nid;
1558         struct rb_root *root;
1559         struct rb_node **new;
1560         struct rb_node *parent;
1561         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1562         struct stable_node *page_node;
1563
1564         page_node = page_stable_node(page);
1565         if (page_node && page_node->head != &migrate_nodes) {
1566                 /* ksm page forked */
1567                 get_page(page);
1568                 return page;
1569         }
1570
1571         nid = get_kpfn_nid(page_to_pfn(page));
1572         root = root_stable_tree + nid;
1573 again:
1574         new = &root->rb_node;
1575         parent = NULL;
1576
1577         while (*new) {
1578                 struct page *tree_page;
1579                 int ret;
1580
1581                 cond_resched();
1582                 stable_node = rb_entry(*new, struct stable_node, node);
1583                 stable_node_any = NULL;
1584                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1585                 /*
1586                  * NOTE: stable_node may have been freed by
1587                  * chain_prune() if the returned stable_node_dup is
1588                  * not NULL. stable_node_dup may have been inserted in
1589                  * the rbtree instead as a regular stable_node (in
1590                  * order to collapse the stable_node chain if a single
1591                  * stable_node dup was found in it). In such case the
1592                  * stable_node is overwritten by the calleee to point
1593                  * to the stable_node_dup that was collapsed in the
1594                  * stable rbtree and stable_node will be equal to
1595                  * stable_node_dup like if the chain never existed.
1596                  */
1597                 if (!stable_node_dup) {
1598                         /*
1599                          * Either all stable_node dups were full in
1600                          * this stable_node chain, or this chain was
1601                          * empty and should be rb_erased.
1602                          */
1603                         stable_node_any = stable_node_dup_any(stable_node,
1604                                                               root);
1605                         if (!stable_node_any) {
1606                                 /* rb_erase just run */
1607                                 goto again;
1608                         }
1609                         /*
1610                          * Take any of the stable_node dups page of
1611                          * this stable_node chain to let the tree walk
1612                          * continue. All KSM pages belonging to the
1613                          * stable_node dups in a stable_node chain
1614                          * have the same content and they're
1615                          * wrprotected at all times. Any will work
1616                          * fine to continue the walk.
1617                          */
1618                         tree_page = get_ksm_page(stable_node_any, false);
1619                 }
1620                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1621                 if (!tree_page) {
1622                         /*
1623                          * If we walked over a stale stable_node,
1624                          * get_ksm_page() will call rb_erase() and it
1625                          * may rebalance the tree from under us. So
1626                          * restart the search from scratch. Returning
1627                          * NULL would be safe too, but we'd generate
1628                          * false negative insertions just because some
1629                          * stable_node was stale.
1630                          */
1631                         goto again;
1632                 }
1633
1634                 ret = memcmp_pages(page, tree_page);
1635                 put_page(tree_page);
1636
1637                 parent = *new;
1638                 if (ret < 0)
1639                         new = &parent->rb_left;
1640                 else if (ret > 0)
1641                         new = &parent->rb_right;
1642                 else {
1643                         if (page_node) {
1644                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1645                                 /*
1646                                  * Test if the migrated page should be merged
1647                                  * into a stable node dup. If the mapcount is
1648                                  * 1 we can migrate it with another KSM page
1649                                  * without adding it to the chain.
1650                                  */
1651                                 if (page_mapcount(page) > 1)
1652                                         goto chain_append;
1653                         }
1654
1655                         if (!stable_node_dup) {
1656                                 /*
1657                                  * If the stable_node is a chain and
1658                                  * we got a payload match in memcmp
1659                                  * but we cannot merge the scanned
1660                                  * page in any of the existing
1661                                  * stable_node dups because they're
1662                                  * all full, we need to wait the
1663                                  * scanned page to find itself a match
1664                                  * in the unstable tree to create a
1665                                  * brand new KSM page to add later to
1666                                  * the dups of this stable_node.
1667                                  */
1668                                 return NULL;
1669                         }
1670
1671                         /*
1672                          * Lock and unlock the stable_node's page (which
1673                          * might already have been migrated) so that page
1674                          * migration is sure to notice its raised count.
1675                          * It would be more elegant to return stable_node
1676                          * than kpage, but that involves more changes.
1677                          */
1678                         tree_page = get_ksm_page(stable_node_dup, true);
1679                         if (unlikely(!tree_page))
1680                                 /*
1681                                  * The tree may have been rebalanced,
1682                                  * so re-evaluate parent and new.
1683                                  */
1684                                 goto again;
1685                         unlock_page(tree_page);
1686
1687                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1688                             NUMA(stable_node_dup->nid)) {
1689                                 put_page(tree_page);
1690                                 goto replace;
1691                         }
1692                         return tree_page;
1693                 }
1694         }
1695
1696         if (!page_node)
1697                 return NULL;
1698
1699         list_del(&page_node->list);
1700         DO_NUMA(page_node->nid = nid);
1701         rb_link_node(&page_node->node, parent, new);
1702         rb_insert_color(&page_node->node, root);
1703 out:
1704         if (is_page_sharing_candidate(page_node)) {
1705                 get_page(page);
1706                 return page;
1707         } else
1708                 return NULL;
1709
1710 replace:
1711         /*
1712          * If stable_node was a chain and chain_prune collapsed it,
1713          * stable_node has been updated to be the new regular
1714          * stable_node. A collapse of the chain is indistinguishable
1715          * from the case there was no chain in the stable
1716          * rbtree. Otherwise stable_node is the chain and
1717          * stable_node_dup is the dup to replace.
1718          */
1719         if (stable_node_dup == stable_node) {
1720                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1721                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1722                 /* there is no chain */
1723                 if (page_node) {
1724                         VM_BUG_ON(page_node->head != &migrate_nodes);
1725                         list_del(&page_node->list);
1726                         DO_NUMA(page_node->nid = nid);
1727                         rb_replace_node(&stable_node_dup->node,
1728                                         &page_node->node,
1729                                         root);
1730                         if (is_page_sharing_candidate(page_node))
1731                                 get_page(page);
1732                         else
1733                                 page = NULL;
1734                 } else {
1735                         rb_erase(&stable_node_dup->node, root);
1736                         page = NULL;
1737                 }
1738         } else {
1739                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1740                 __stable_node_dup_del(stable_node_dup);
1741                 if (page_node) {
1742                         VM_BUG_ON(page_node->head != &migrate_nodes);
1743                         list_del(&page_node->list);
1744                         DO_NUMA(page_node->nid = nid);
1745                         stable_node_chain_add_dup(page_node, stable_node);
1746                         if (is_page_sharing_candidate(page_node))
1747                                 get_page(page);
1748                         else
1749                                 page = NULL;
1750                 } else {
1751                         page = NULL;
1752                 }
1753         }
1754         stable_node_dup->head = &migrate_nodes;
1755         list_add(&stable_node_dup->list, stable_node_dup->head);
1756         return page;
1757
1758 chain_append:
1759         /* stable_node_dup could be null if it reached the limit */
1760         if (!stable_node_dup)
1761                 stable_node_dup = stable_node_any;
1762         /*
1763          * If stable_node was a chain and chain_prune collapsed it,
1764          * stable_node has been updated to be the new regular
1765          * stable_node. A collapse of the chain is indistinguishable
1766          * from the case there was no chain in the stable
1767          * rbtree. Otherwise stable_node is the chain and
1768          * stable_node_dup is the dup to replace.
1769          */
1770         if (stable_node_dup == stable_node) {
1771                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1772                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1773                 /* chain is missing so create it */
1774                 stable_node = alloc_stable_node_chain(stable_node_dup,
1775                                                       root);
1776                 if (!stable_node)
1777                         return NULL;
1778         }
1779         /*
1780          * Add this stable_node dup that was
1781          * migrated to the stable_node chain
1782          * of the current nid for this page
1783          * content.
1784          */
1785         VM_BUG_ON(!is_stable_node_chain(stable_node));
1786         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1787         VM_BUG_ON(page_node->head != &migrate_nodes);
1788         list_del(&page_node->list);
1789         DO_NUMA(page_node->nid = nid);
1790         stable_node_chain_add_dup(page_node, stable_node);
1791         goto out;
1792 }
1793
1794 /*
1795  * stable_tree_insert - insert stable tree node pointing to new ksm page
1796  * into the stable tree.
1797  *
1798  * This function returns the stable tree node just allocated on success,
1799  * NULL otherwise.
1800  */
1801 static struct stable_node *stable_tree_insert(struct page *kpage)
1802 {
1803         int nid;
1804         unsigned long kpfn;
1805         struct rb_root *root;
1806         struct rb_node **new;
1807         struct rb_node *parent;
1808         struct stable_node *stable_node, *stable_node_dup, *stable_node_any;
1809         bool need_chain = false;
1810
1811         kpfn = page_to_pfn(kpage);
1812         nid = get_kpfn_nid(kpfn);
1813         root = root_stable_tree + nid;
1814 again:
1815         parent = NULL;
1816         new = &root->rb_node;
1817
1818         while (*new) {
1819                 struct page *tree_page;
1820                 int ret;
1821
1822                 cond_resched();
1823                 stable_node = rb_entry(*new, struct stable_node, node);
1824                 stable_node_any = NULL;
1825                 tree_page = chain(&stable_node_dup, stable_node, root);
1826                 if (!stable_node_dup) {
1827                         /*
1828                          * Either all stable_node dups were full in
1829                          * this stable_node chain, or this chain was
1830                          * empty and should be rb_erased.
1831                          */
1832                         stable_node_any = stable_node_dup_any(stable_node,
1833                                                               root);
1834                         if (!stable_node_any) {
1835                                 /* rb_erase just run */
1836                                 goto again;
1837                         }
1838                         /*
1839                          * Take any of the stable_node dups page of
1840                          * this stable_node chain to let the tree walk
1841                          * continue. All KSM pages belonging to the
1842                          * stable_node dups in a stable_node chain
1843                          * have the same content and they're
1844                          * wrprotected at all times. Any will work
1845                          * fine to continue the walk.
1846                          */
1847                         tree_page = get_ksm_page(stable_node_any, false);
1848                 }
1849                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1850                 if (!tree_page) {
1851                         /*
1852                          * If we walked over a stale stable_node,
1853                          * get_ksm_page() will call rb_erase() and it
1854                          * may rebalance the tree from under us. So
1855                          * restart the search from scratch. Returning
1856                          * NULL would be safe too, but we'd generate
1857                          * false negative insertions just because some
1858                          * stable_node was stale.
1859                          */
1860                         goto again;
1861                 }
1862
1863                 ret = memcmp_pages(kpage, tree_page);
1864                 put_page(tree_page);
1865
1866                 parent = *new;
1867                 if (ret < 0)
1868                         new = &parent->rb_left;
1869                 else if (ret > 0)
1870                         new = &parent->rb_right;
1871                 else {
1872                         need_chain = true;
1873                         break;
1874                 }
1875         }
1876
1877         stable_node_dup = alloc_stable_node();
1878         if (!stable_node_dup)
1879                 return NULL;
1880
1881         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1882         stable_node_dup->kpfn = kpfn;
1883         set_page_stable_node(kpage, stable_node_dup);
1884         stable_node_dup->rmap_hlist_len = 0;
1885         DO_NUMA(stable_node_dup->nid = nid);
1886         if (!need_chain) {
1887                 rb_link_node(&stable_node_dup->node, parent, new);
1888                 rb_insert_color(&stable_node_dup->node, root);
1889         } else {
1890                 if (!is_stable_node_chain(stable_node)) {
1891                         struct stable_node *orig = stable_node;
1892                         /* chain is missing so create it */
1893                         stable_node = alloc_stable_node_chain(orig, root);
1894                         if (!stable_node) {
1895                                 free_stable_node(stable_node_dup);
1896                                 return NULL;
1897                         }
1898                 }
1899                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1900         }
1901
1902         return stable_node_dup;
1903 }
1904
1905 /*
1906  * unstable_tree_search_insert - search for identical page,
1907  * else insert rmap_item into the unstable tree.
1908  *
1909  * This function searches for a page in the unstable tree identical to the
1910  * page currently being scanned; and if no identical page is found in the
1911  * tree, we insert rmap_item as a new object into the unstable tree.
1912  *
1913  * This function returns pointer to rmap_item found to be identical
1914  * to the currently scanned page, NULL otherwise.
1915  *
1916  * This function does both searching and inserting, because they share
1917  * the same walking algorithm in an rbtree.
1918  */
1919 static
1920 struct rmap_item *unstable_tree_search_insert(struct rmap_item *rmap_item,
1921                                               struct page *page,
1922                                               struct page **tree_pagep)
1923 {
1924         struct rb_node **new;
1925         struct rb_root *root;
1926         struct rb_node *parent = NULL;
1927         int nid;
1928
1929         nid = get_kpfn_nid(page_to_pfn(page));
1930         root = root_unstable_tree + nid;
1931         new = &root->rb_node;
1932
1933         while (*new) {
1934                 struct rmap_item *tree_rmap_item;
1935                 struct page *tree_page;
1936                 int ret;
1937
1938                 cond_resched();
1939                 tree_rmap_item = rb_entry(*new, struct rmap_item, node);
1940                 tree_page = get_mergeable_page(tree_rmap_item);
1941                 if (!tree_page)
1942                         return NULL;
1943
1944                 /*
1945                  * Don't substitute a ksm page for a forked page.
1946                  */
1947                 if (page == tree_page) {
1948                         put_page(tree_page);
1949                         return NULL;
1950                 }
1951
1952                 ret = memcmp_pages(page, tree_page);
1953
1954                 parent = *new;
1955                 if (ret < 0) {
1956                         put_page(tree_page);
1957                         new = &parent->rb_left;
1958                 } else if (ret > 0) {
1959                         put_page(tree_page);
1960                         new = &parent->rb_right;
1961                 } else if (!ksm_merge_across_nodes &&
1962                            page_to_nid(tree_page) != nid) {
1963                         /*
1964                          * If tree_page has been migrated to another NUMA node,
1965                          * it will be flushed out and put in the right unstable
1966                          * tree next time: only merge with it when across_nodes.
1967                          */
1968                         put_page(tree_page);
1969                         return NULL;
1970                 } else {
1971                         *tree_pagep = tree_page;
1972                         return tree_rmap_item;
1973                 }
1974         }
1975
1976         rmap_item->address |= UNSTABLE_FLAG;
1977         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
1978         DO_NUMA(rmap_item->nid = nid);
1979         rb_link_node(&rmap_item->node, parent, new);
1980         rb_insert_color(&rmap_item->node, root);
1981
1982         ksm_pages_unshared++;
1983         return NULL;
1984 }
1985
1986 /*
1987  * stable_tree_append - add another rmap_item to the linked list of
1988  * rmap_items hanging off a given node of the stable tree, all sharing
1989  * the same ksm page.
1990  */
1991 static void stable_tree_append(struct rmap_item *rmap_item,
1992                                struct stable_node *stable_node,
1993                                bool max_page_sharing_bypass)
1994 {
1995         /*
1996          * rmap won't find this mapping if we don't insert the
1997          * rmap_item in the right stable_node
1998          * duplicate. page_migration could break later if rmap breaks,
1999          * so we can as well crash here. We really need to check for
2000          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2001          * for other negative values as an undeflow if detected here
2002          * for the first time (and not when decreasing rmap_hlist_len)
2003          * would be sign of memory corruption in the stable_node.
2004          */
2005         BUG_ON(stable_node->rmap_hlist_len < 0);
2006
2007         stable_node->rmap_hlist_len++;
2008         if (!max_page_sharing_bypass)
2009                 /* possibly non fatal but unexpected overflow, only warn */
2010                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2011                              ksm_max_page_sharing);
2012
2013         rmap_item->head = stable_node;
2014         rmap_item->address |= STABLE_FLAG;
2015         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2016
2017         if (rmap_item->hlist.next)
2018                 ksm_pages_sharing++;
2019         else
2020                 ksm_pages_shared++;
2021 }
2022
2023 /*
2024  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2025  * if not, compare checksum to previous and if it's the same, see if page can
2026  * be inserted into the unstable tree, or merged with a page already there and
2027  * both transferred to the stable tree.
2028  *
2029  * @page: the page that we are searching identical page to.
2030  * @rmap_item: the reverse mapping into the virtual address of this page
2031  */
2032 static void cmp_and_merge_page(struct page *page, struct rmap_item *rmap_item)
2033 {
2034         struct mm_struct *mm = rmap_item->mm;
2035         struct rmap_item *tree_rmap_item;
2036         struct page *tree_page = NULL;
2037         struct stable_node *stable_node;
2038         struct page *kpage;
2039         unsigned int checksum;
2040         int err;
2041         bool max_page_sharing_bypass = false;
2042
2043         stable_node = page_stable_node(page);
2044         if (stable_node) {
2045                 if (stable_node->head != &migrate_nodes &&
2046                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2047                     NUMA(stable_node->nid)) {
2048                         stable_node_dup_del(stable_node);
2049                         stable_node->head = &migrate_nodes;
2050                         list_add(&stable_node->list, stable_node->head);
2051                 }
2052                 if (stable_node->head != &migrate_nodes &&
2053                     rmap_item->head == stable_node)
2054                         return;
2055                 /*
2056                  * If it's a KSM fork, allow it to go over the sharing limit
2057                  * without warnings.
2058                  */
2059                 if (!is_page_sharing_candidate(stable_node))
2060                         max_page_sharing_bypass = true;
2061         }
2062
2063         /* We first start with searching the page inside the stable tree */
2064         kpage = stable_tree_search(page);
2065         if (kpage == page && rmap_item->head == stable_node) {
2066                 put_page(kpage);
2067                 return;
2068         }
2069
2070         remove_rmap_item_from_tree(rmap_item);
2071
2072         if (kpage) {
2073                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2074                 if (!err) {
2075                         /*
2076                          * The page was successfully merged:
2077                          * add its rmap_item to the stable tree.
2078                          */
2079                         lock_page(kpage);
2080                         stable_tree_append(rmap_item, page_stable_node(kpage),
2081                                            max_page_sharing_bypass);
2082                         unlock_page(kpage);
2083                 }
2084                 put_page(kpage);
2085                 return;
2086         }
2087
2088         /*
2089          * If the hash value of the page has changed from the last time
2090          * we calculated it, this page is changing frequently: therefore we
2091          * don't want to insert it in the unstable tree, and we don't want
2092          * to waste our time searching for something identical to it there.
2093          */
2094         checksum = calc_checksum(page);
2095         if (rmap_item->oldchecksum != checksum) {
2096                 rmap_item->oldchecksum = checksum;
2097                 return;
2098         }
2099
2100         /*
2101          * Same checksum as an empty page. We attempt to merge it with the
2102          * appropriate zero page if the user enabled this via sysfs.
2103          */
2104         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2105                 struct vm_area_struct *vma;
2106
2107                 down_read(&mm->mmap_sem);
2108                 vma = find_mergeable_vma(mm, rmap_item->address);
2109                 err = try_to_merge_one_page(vma, page,
2110                                             ZERO_PAGE(rmap_item->address));
2111                 up_read(&mm->mmap_sem);
2112                 /*
2113                  * In case of failure, the page was not really empty, so we
2114                  * need to continue. Otherwise we're done.
2115                  */
2116                 if (!err)
2117                         return;
2118         }
2119         tree_rmap_item =
2120                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2121         if (tree_rmap_item) {
2122                 bool split;
2123
2124                 kpage = try_to_merge_two_pages(rmap_item, page,
2125                                                 tree_rmap_item, tree_page);
2126                 /*
2127                  * If both pages we tried to merge belong to the same compound
2128                  * page, then we actually ended up increasing the reference
2129                  * count of the same compound page twice, and split_huge_page
2130                  * failed.
2131                  * Here we set a flag if that happened, and we use it later to
2132                  * try split_huge_page again. Since we call put_page right
2133                  * afterwards, the reference count will be correct and
2134                  * split_huge_page should succeed.
2135                  */
2136                 split = PageTransCompound(page)
2137                         && compound_head(page) == compound_head(tree_page);
2138                 put_page(tree_page);
2139                 if (kpage) {
2140                         /*
2141                          * The pages were successfully merged: insert new
2142                          * node in the stable tree and add both rmap_items.
2143                          */
2144                         lock_page(kpage);
2145                         stable_node = stable_tree_insert(kpage);
2146                         if (stable_node) {
2147                                 stable_tree_append(tree_rmap_item, stable_node,
2148                                                    false);
2149                                 stable_tree_append(rmap_item, stable_node,
2150                                                    false);
2151                         }
2152                         unlock_page(kpage);
2153
2154                         /*
2155                          * If we fail to insert the page into the stable tree,
2156                          * we will have 2 virtual addresses that are pointing
2157                          * to a ksm page left outside the stable tree,
2158                          * in which case we need to break_cow on both.
2159                          */
2160                         if (!stable_node) {
2161                                 break_cow(tree_rmap_item);
2162                                 break_cow(rmap_item);
2163                         }
2164                 } else if (split) {
2165                         /*
2166                          * We are here if we tried to merge two pages and
2167                          * failed because they both belonged to the same
2168                          * compound page. We will split the page now, but no
2169                          * merging will take place.
2170                          * We do not want to add the cost of a full lock; if
2171                          * the page is locked, it is better to skip it and
2172                          * perhaps try again later.
2173                          */
2174                         if (!trylock_page(page))
2175                                 return;
2176                         split_huge_page(page);
2177                         unlock_page(page);
2178                 }
2179         }
2180 }
2181
2182 static struct rmap_item *get_next_rmap_item(struct mm_slot *mm_slot,
2183                                             struct rmap_item **rmap_list,
2184                                             unsigned long addr)
2185 {
2186         struct rmap_item *rmap_item;
2187
2188         while (*rmap_list) {
2189                 rmap_item = *rmap_list;
2190                 if ((rmap_item->address & PAGE_MASK) == addr)
2191                         return rmap_item;
2192                 if (rmap_item->address > addr)
2193                         break;
2194                 *rmap_list = rmap_item->rmap_list;
2195                 remove_rmap_item_from_tree(rmap_item);
2196                 free_rmap_item(rmap_item);
2197         }
2198
2199         rmap_item = alloc_rmap_item();
2200         if (rmap_item) {
2201                 /* It has already been zeroed */
2202                 rmap_item->mm = mm_slot->mm;
2203                 rmap_item->address = addr;
2204                 rmap_item->rmap_list = *rmap_list;
2205                 *rmap_list = rmap_item;
2206         }
2207         return rmap_item;
2208 }
2209
2210 static struct rmap_item *scan_get_next_rmap_item(struct page **page)
2211 {
2212         struct mm_struct *mm;
2213         struct mm_slot *slot;
2214         struct vm_area_struct *vma;
2215         struct rmap_item *rmap_item;
2216         int nid;
2217
2218         if (list_empty(&ksm_mm_head.mm_list))
2219                 return NULL;
2220
2221         slot = ksm_scan.mm_slot;
2222         if (slot == &ksm_mm_head) {
2223                 /*
2224                  * A number of pages can hang around indefinitely on per-cpu
2225                  * pagevecs, raised page count preventing write_protect_page
2226                  * from merging them.  Though it doesn't really matter much,
2227                  * it is puzzling to see some stuck in pages_volatile until
2228                  * other activity jostles them out, and they also prevented
2229                  * LTP's KSM test from succeeding deterministically; so drain
2230                  * them here (here rather than on entry to ksm_do_scan(),
2231                  * so we don't IPI too often when pages_to_scan is set low).
2232                  */
2233                 lru_add_drain_all();
2234
2235                 /*
2236                  * Whereas stale stable_nodes on the stable_tree itself
2237                  * get pruned in the regular course of stable_tree_search(),
2238                  * those moved out to the migrate_nodes list can accumulate:
2239                  * so prune them once before each full scan.
2240                  */
2241                 if (!ksm_merge_across_nodes) {
2242                         struct stable_node *stable_node, *next;
2243                         struct page *page;
2244
2245                         list_for_each_entry_safe(stable_node, next,
2246                                                  &migrate_nodes, list) {
2247                                 page = get_ksm_page(stable_node, false);
2248                                 if (page)
2249                                         put_page(page);
2250                                 cond_resched();
2251                         }
2252                 }
2253
2254                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2255                         root_unstable_tree[nid] = RB_ROOT;
2256
2257                 spin_lock(&ksm_mmlist_lock);
2258                 slot = list_entry(slot->mm_list.next, struct mm_slot, mm_list);
2259                 ksm_scan.mm_slot = slot;
2260                 spin_unlock(&ksm_mmlist_lock);
2261                 /*
2262                  * Although we tested list_empty() above, a racing __ksm_exit
2263                  * of the last mm on the list may have removed it since then.
2264                  */
2265                 if (slot == &ksm_mm_head)
2266                         return NULL;
2267 next_mm:
2268                 ksm_scan.address = 0;
2269                 ksm_scan.rmap_list = &slot->rmap_list;
2270         }
2271
2272         mm = slot->mm;
2273         down_read(&mm->mmap_sem);
2274         if (ksm_test_exit(mm))
2275                 vma = NULL;
2276         else
2277                 vma = find_vma(mm, ksm_scan.address);
2278
2279         for (; vma; vma = vma->vm_next) {
2280                 if (!(vma->vm_flags & VM_MERGEABLE))
2281                         continue;
2282                 if (ksm_scan.address < vma->vm_start)
2283                         ksm_scan.address = vma->vm_start;
2284                 if (!vma->anon_vma)
2285                         ksm_scan.address = vma->vm_end;
2286
2287                 while (ksm_scan.address < vma->vm_end) {
2288                         if (ksm_test_exit(mm))
2289                                 break;
2290                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2291                         if (IS_ERR_OR_NULL(*page)) {
2292                                 ksm_scan.address += PAGE_SIZE;
2293                                 cond_resched();
2294                                 continue;
2295                         }
2296                         if (PageAnon(*page)) {
2297                                 flush_anon_page(vma, *page, ksm_scan.address);
2298                                 flush_dcache_page(*page);
2299                                 rmap_item = get_next_rmap_item(slot,
2300                                         ksm_scan.rmap_list, ksm_scan.address);
2301                                 if (rmap_item) {
2302                                         ksm_scan.rmap_list =
2303                                                         &rmap_item->rmap_list;
2304                                         ksm_scan.address += PAGE_SIZE;
2305                                 } else
2306                                         put_page(*page);
2307                                 up_read(&mm->mmap_sem);
2308                                 return rmap_item;
2309                         }
2310                         put_page(*page);
2311                         ksm_scan.address += PAGE_SIZE;
2312                         cond_resched();
2313                 }
2314         }
2315
2316         if (ksm_test_exit(mm)) {
2317                 ksm_scan.address = 0;
2318                 ksm_scan.rmap_list = &slot->rmap_list;
2319         }
2320         /*
2321          * Nuke all the rmap_items that are above this current rmap:
2322          * because there were no VM_MERGEABLE vmas with such addresses.
2323          */
2324         remove_trailing_rmap_items(slot, ksm_scan.rmap_list);
2325
2326         spin_lock(&ksm_mmlist_lock);
2327         ksm_scan.mm_slot = list_entry(slot->mm_list.next,
2328                                                 struct mm_slot, mm_list);
2329         if (ksm_scan.address == 0) {
2330                 /*
2331                  * We've completed a full scan of all vmas, holding mmap_sem
2332                  * throughout, and found no VM_MERGEABLE: so do the same as
2333                  * __ksm_exit does to remove this mm from all our lists now.
2334                  * This applies either when cleaning up after __ksm_exit
2335                  * (but beware: we can reach here even before __ksm_exit),
2336                  * or when all VM_MERGEABLE areas have been unmapped (and
2337                  * mmap_sem then protects against race with MADV_MERGEABLE).
2338                  */
2339                 hash_del(&slot->link);
2340                 list_del(&slot->mm_list);
2341                 spin_unlock(&ksm_mmlist_lock);
2342
2343                 free_mm_slot(slot);
2344                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2345                 up_read(&mm->mmap_sem);
2346                 mmdrop(mm);
2347         } else {
2348                 up_read(&mm->mmap_sem);
2349                 /*
2350                  * up_read(&mm->mmap_sem) first because after
2351                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2352                  * already have been freed under us by __ksm_exit()
2353                  * because the "mm_slot" is still hashed and
2354                  * ksm_scan.mm_slot doesn't point to it anymore.
2355                  */
2356                 spin_unlock(&ksm_mmlist_lock);
2357         }
2358
2359         /* Repeat until we've completed scanning the whole list */
2360         slot = ksm_scan.mm_slot;
2361         if (slot != &ksm_mm_head)
2362                 goto next_mm;
2363
2364         ksm_scan.seqnr++;
2365         return NULL;
2366 }
2367
2368 /**
2369  * ksm_do_scan  - the ksm scanner main worker function.
2370  * @scan_npages:  number of pages we want to scan before we return.
2371  */
2372 static void ksm_do_scan(unsigned int scan_npages)
2373 {
2374         struct rmap_item *rmap_item;
2375         struct page *uninitialized_var(page);
2376
2377         while (scan_npages-- && likely(!freezing(current))) {
2378                 cond_resched();
2379                 rmap_item = scan_get_next_rmap_item(&page);
2380                 if (!rmap_item)
2381                         return;
2382                 cmp_and_merge_page(page, rmap_item);
2383                 put_page(page);
2384         }
2385 }
2386
2387 static int ksmd_should_run(void)
2388 {
2389         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.mm_list);
2390 }
2391
2392 static int ksm_scan_thread(void *nothing)
2393 {
2394         set_freezable();
2395         set_user_nice(current, 5);
2396
2397         while (!kthread_should_stop()) {
2398                 mutex_lock(&ksm_thread_mutex);
2399                 wait_while_offlining();
2400                 if (ksmd_should_run())
2401                         ksm_do_scan(ksm_thread_pages_to_scan);
2402                 mutex_unlock(&ksm_thread_mutex);
2403
2404                 try_to_freeze();
2405
2406                 if (ksmd_should_run()) {
2407                         schedule_timeout_interruptible(
2408                                 msecs_to_jiffies(ksm_thread_sleep_millisecs));
2409                 } else {
2410                         wait_event_freezable(ksm_thread_wait,
2411                                 ksmd_should_run() || kthread_should_stop());
2412                 }
2413         }
2414         return 0;
2415 }
2416
2417 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2418                 unsigned long end, int advice, unsigned long *vm_flags)
2419 {
2420         struct mm_struct *mm = vma->vm_mm;
2421         int err;
2422
2423         switch (advice) {
2424         case MADV_MERGEABLE:
2425                 /*
2426                  * Be somewhat over-protective for now!
2427                  */
2428                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2429                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2430                                  VM_HUGETLB | VM_MIXEDMAP))
2431                         return 0;               /* just ignore the advice */
2432
2433                 if (vma_is_dax(vma))
2434                         return 0;
2435
2436 #ifdef VM_SAO
2437                 if (*vm_flags & VM_SAO)
2438                         return 0;
2439 #endif
2440 #ifdef VM_SPARC_ADI
2441                 if (*vm_flags & VM_SPARC_ADI)
2442                         return 0;
2443 #endif
2444
2445                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2446                         err = __ksm_enter(mm);
2447                         if (err)
2448                                 return err;
2449                 }
2450
2451                 *vm_flags |= VM_MERGEABLE;
2452                 break;
2453
2454         case MADV_UNMERGEABLE:
2455                 if (!(*vm_flags & VM_MERGEABLE))
2456                         return 0;               /* just ignore the advice */
2457
2458                 if (vma->anon_vma) {
2459                         err = unmerge_ksm_pages(vma, start, end);
2460                         if (err)
2461                                 return err;
2462                 }
2463
2464                 *vm_flags &= ~VM_MERGEABLE;
2465                 break;
2466         }
2467
2468         return 0;
2469 }
2470
2471 int __ksm_enter(struct mm_struct *mm)
2472 {
2473         struct mm_slot *mm_slot;
2474         int needs_wakeup;
2475
2476         mm_slot = alloc_mm_slot();
2477         if (!mm_slot)
2478                 return -ENOMEM;
2479
2480         /* Check ksm_run too?  Would need tighter locking */
2481         needs_wakeup = list_empty(&ksm_mm_head.mm_list);
2482
2483         spin_lock(&ksm_mmlist_lock);
2484         insert_to_mm_slots_hash(mm, mm_slot);
2485         /*
2486          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2487          * insert just behind the scanning cursor, to let the area settle
2488          * down a little; when fork is followed by immediate exec, we don't
2489          * want ksmd to waste time setting up and tearing down an rmap_list.
2490          *
2491          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2492          * scanning cursor, otherwise KSM pages in newly forked mms will be
2493          * missed: then we might as well insert at the end of the list.
2494          */
2495         if (ksm_run & KSM_RUN_UNMERGE)
2496                 list_add_tail(&mm_slot->mm_list, &ksm_mm_head.mm_list);
2497         else
2498                 list_add_tail(&mm_slot->mm_list, &ksm_scan.mm_slot->mm_list);
2499         spin_unlock(&ksm_mmlist_lock);
2500
2501         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2502         mmgrab(mm);
2503
2504         if (needs_wakeup)
2505                 wake_up_interruptible(&ksm_thread_wait);
2506
2507         return 0;
2508 }
2509
2510 void __ksm_exit(struct mm_struct *mm)
2511 {
2512         struct mm_slot *mm_slot;
2513         int easy_to_free = 0;
2514
2515         /*
2516          * This process is exiting: if it's straightforward (as is the
2517          * case when ksmd was never running), free mm_slot immediately.
2518          * But if it's at the cursor or has rmap_items linked to it, use
2519          * mmap_sem to synchronize with any break_cows before pagetables
2520          * are freed, and leave the mm_slot on the list for ksmd to free.
2521          * Beware: ksm may already have noticed it exiting and freed the slot.
2522          */
2523
2524         spin_lock(&ksm_mmlist_lock);
2525         mm_slot = get_mm_slot(mm);
2526         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2527                 if (!mm_slot->rmap_list) {
2528                         hash_del(&mm_slot->link);
2529                         list_del(&mm_slot->mm_list);
2530                         easy_to_free = 1;
2531                 } else {
2532                         list_move(&mm_slot->mm_list,
2533                                   &ksm_scan.mm_slot->mm_list);
2534                 }
2535         }
2536         spin_unlock(&ksm_mmlist_lock);
2537
2538         if (easy_to_free) {
2539                 free_mm_slot(mm_slot);
2540                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2541                 mmdrop(mm);
2542         } else if (mm_slot) {
2543                 down_write(&mm->mmap_sem);
2544                 up_write(&mm->mmap_sem);
2545         }
2546 }
2547
2548 struct page *ksm_might_need_to_copy(struct page *page,
2549                         struct vm_area_struct *vma, unsigned long address)
2550 {
2551         struct anon_vma *anon_vma = page_anon_vma(page);
2552         struct page *new_page;
2553
2554         if (PageKsm(page)) {
2555                 if (page_stable_node(page) &&
2556                     !(ksm_run & KSM_RUN_UNMERGE))
2557                         return page;    /* no need to copy it */
2558         } else if (!anon_vma) {
2559                 return page;            /* no need to copy it */
2560         } else if (anon_vma->root == vma->anon_vma->root &&
2561                  page->index == linear_page_index(vma, address)) {
2562                 return page;            /* still no need to copy it */
2563         }
2564         if (!PageUptodate(page))
2565                 return page;            /* let do_swap_page report the error */
2566
2567         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2568         if (new_page) {
2569                 copy_user_highpage(new_page, page, address, vma);
2570
2571                 SetPageDirty(new_page);
2572                 __SetPageUptodate(new_page);
2573                 __SetPageLocked(new_page);
2574         }
2575
2576         return new_page;
2577 }
2578
2579 void rmap_walk_ksm(struct page *page, struct rmap_walk_control *rwc)
2580 {
2581         struct stable_node *stable_node;
2582         struct rmap_item *rmap_item;
2583         int search_new_forks = 0;
2584
2585         VM_BUG_ON_PAGE(!PageKsm(page), page);
2586
2587         /*
2588          * Rely on the page lock to protect against concurrent modifications
2589          * to that page's node of the stable tree.
2590          */
2591         VM_BUG_ON_PAGE(!PageLocked(page), page);
2592
2593         stable_node = page_stable_node(page);
2594         if (!stable_node)
2595                 return;
2596 again:
2597         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2598                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2599                 struct anon_vma_chain *vmac;
2600                 struct vm_area_struct *vma;
2601
2602                 cond_resched();
2603                 anon_vma_lock_read(anon_vma);
2604                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2605                                                0, ULONG_MAX) {
2606                         unsigned long addr;
2607
2608                         cond_resched();
2609                         vma = vmac->vma;
2610
2611                         /* Ignore the stable/unstable/sqnr flags */
2612                         addr = rmap_item->address & ~KSM_FLAG_MASK;
2613
2614                         if (addr < vma->vm_start || addr >= vma->vm_end)
2615                                 continue;
2616                         /*
2617                          * Initially we examine only the vma which covers this
2618                          * rmap_item; but later, if there is still work to do,
2619                          * we examine covering vmas in other mms: in case they
2620                          * were forked from the original since ksmd passed.
2621                          */
2622                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2623                                 continue;
2624
2625                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2626                                 continue;
2627
2628                         if (!rwc->rmap_one(page, vma, addr, rwc->arg)) {
2629                                 anon_vma_unlock_read(anon_vma);
2630                                 return;
2631                         }
2632                         if (rwc->done && rwc->done(page)) {
2633                                 anon_vma_unlock_read(anon_vma);
2634                                 return;
2635                         }
2636                 }
2637                 anon_vma_unlock_read(anon_vma);
2638         }
2639         if (!search_new_forks++)
2640                 goto again;
2641 }
2642
2643 #ifdef CONFIG_MIGRATION
2644 void ksm_migrate_page(struct page *newpage, struct page *oldpage)
2645 {
2646         struct stable_node *stable_node;
2647
2648         VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
2649         VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
2650         VM_BUG_ON_PAGE(newpage->mapping != oldpage->mapping, newpage);
2651
2652         stable_node = page_stable_node(newpage);
2653         if (stable_node) {
2654                 VM_BUG_ON_PAGE(stable_node->kpfn != page_to_pfn(oldpage), oldpage);
2655                 stable_node->kpfn = page_to_pfn(newpage);
2656                 /*
2657                  * newpage->mapping was set in advance; now we need smp_wmb()
2658                  * to make sure that the new stable_node->kpfn is visible
2659                  * to get_ksm_page() before it can see that oldpage->mapping
2660                  * has gone stale (or that PageSwapCache has been cleared).
2661                  */
2662                 smp_wmb();
2663                 set_page_stable_node(oldpage, NULL);
2664         }
2665 }
2666 #endif /* CONFIG_MIGRATION */
2667
2668 #ifdef CONFIG_MEMORY_HOTREMOVE
2669 static void wait_while_offlining(void)
2670 {
2671         while (ksm_run & KSM_RUN_OFFLINE) {
2672                 mutex_unlock(&ksm_thread_mutex);
2673                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2674                             TASK_UNINTERRUPTIBLE);
2675                 mutex_lock(&ksm_thread_mutex);
2676         }
2677 }
2678
2679 static bool stable_node_dup_remove_range(struct stable_node *stable_node,
2680                                          unsigned long start_pfn,
2681                                          unsigned long end_pfn)
2682 {
2683         if (stable_node->kpfn >= start_pfn &&
2684             stable_node->kpfn < end_pfn) {
2685                 /*
2686                  * Don't get_ksm_page, page has already gone:
2687                  * which is why we keep kpfn instead of page*
2688                  */
2689                 remove_node_from_stable_tree(stable_node);
2690                 return true;
2691         }
2692         return false;
2693 }
2694
2695 static bool stable_node_chain_remove_range(struct stable_node *stable_node,
2696                                            unsigned long start_pfn,
2697                                            unsigned long end_pfn,
2698                                            struct rb_root *root)
2699 {
2700         struct stable_node *dup;
2701         struct hlist_node *hlist_safe;
2702
2703         if (!is_stable_node_chain(stable_node)) {
2704                 VM_BUG_ON(is_stable_node_dup(stable_node));
2705                 return stable_node_dup_remove_range(stable_node, start_pfn,
2706                                                     end_pfn);
2707         }
2708
2709         hlist_for_each_entry_safe(dup, hlist_safe,
2710                                   &stable_node->hlist, hlist_dup) {
2711                 VM_BUG_ON(!is_stable_node_dup(dup));
2712                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2713         }
2714         if (hlist_empty(&stable_node->hlist)) {
2715                 free_stable_node_chain(stable_node, root);
2716                 return true; /* notify caller that tree was rebalanced */
2717         } else
2718                 return false;
2719 }
2720
2721 static void ksm_check_stable_tree(unsigned long start_pfn,
2722                                   unsigned long end_pfn)
2723 {
2724         struct stable_node *stable_node, *next;
2725         struct rb_node *node;
2726         int nid;
2727
2728         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2729                 node = rb_first(root_stable_tree + nid);
2730                 while (node) {
2731                         stable_node = rb_entry(node, struct stable_node, node);
2732                         if (stable_node_chain_remove_range(stable_node,
2733                                                            start_pfn, end_pfn,
2734                                                            root_stable_tree +
2735                                                            nid))
2736                                 node = rb_first(root_stable_tree + nid);
2737                         else
2738                                 node = rb_next(node);
2739                         cond_resched();
2740                 }
2741         }
2742         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2743                 if (stable_node->kpfn >= start_pfn &&
2744                     stable_node->kpfn < end_pfn)
2745                         remove_node_from_stable_tree(stable_node);
2746                 cond_resched();
2747         }
2748 }
2749
2750 static int ksm_memory_callback(struct notifier_block *self,
2751                                unsigned long action, void *arg)
2752 {
2753         struct memory_notify *mn = arg;
2754
2755         switch (action) {
2756         case MEM_GOING_OFFLINE:
2757                 /*
2758                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2759                  * and remove_all_stable_nodes() while memory is going offline:
2760                  * it is unsafe for them to touch the stable tree at this time.
2761                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2762                  * which do not need the ksm_thread_mutex are all safe.
2763                  */
2764                 mutex_lock(&ksm_thread_mutex);
2765                 ksm_run |= KSM_RUN_OFFLINE;
2766                 mutex_unlock(&ksm_thread_mutex);
2767                 break;
2768
2769         case MEM_OFFLINE:
2770                 /*
2771                  * Most of the work is done by page migration; but there might
2772                  * be a few stable_nodes left over, still pointing to struct
2773                  * pages which have been offlined: prune those from the tree,
2774                  * otherwise get_ksm_page() might later try to access a
2775                  * non-existent struct page.
2776                  */
2777                 ksm_check_stable_tree(mn->start_pfn,
2778                                       mn->start_pfn + mn->nr_pages);
2779                 /* fallthrough */
2780
2781         case MEM_CANCEL_OFFLINE:
2782                 mutex_lock(&ksm_thread_mutex);
2783                 ksm_run &= ~KSM_RUN_OFFLINE;
2784                 mutex_unlock(&ksm_thread_mutex);
2785
2786                 smp_mb();       /* wake_up_bit advises this */
2787                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2788                 break;
2789         }
2790         return NOTIFY_OK;
2791 }
2792 #else
2793 static void wait_while_offlining(void)
2794 {
2795 }
2796 #endif /* CONFIG_MEMORY_HOTREMOVE */
2797
2798 #ifdef CONFIG_SYSFS
2799 /*
2800  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2801  */
2802
2803 #define KSM_ATTR_RO(_name) \
2804         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2805 #define KSM_ATTR(_name) \
2806         static struct kobj_attribute _name##_attr = \
2807                 __ATTR(_name, 0644, _name##_show, _name##_store)
2808
2809 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2810                                     struct kobj_attribute *attr, char *buf)
2811 {
2812         return sprintf(buf, "%u\n", ksm_thread_sleep_millisecs);
2813 }
2814
2815 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2816                                      struct kobj_attribute *attr,
2817                                      const char *buf, size_t count)
2818 {
2819         unsigned long msecs;
2820         int err;
2821
2822         err = kstrtoul(buf, 10, &msecs);
2823         if (err || msecs > UINT_MAX)
2824                 return -EINVAL;
2825
2826         ksm_thread_sleep_millisecs = msecs;
2827
2828         return count;
2829 }
2830 KSM_ATTR(sleep_millisecs);
2831
2832 static ssize_t pages_to_scan_show(struct kobject *kobj,
2833                                   struct kobj_attribute *attr, char *buf)
2834 {
2835         return sprintf(buf, "%u\n", ksm_thread_pages_to_scan);
2836 }
2837
2838 static ssize_t pages_to_scan_store(struct kobject *kobj,
2839                                    struct kobj_attribute *attr,
2840                                    const char *buf, size_t count)
2841 {
2842         int err;
2843         unsigned long nr_pages;
2844
2845         err = kstrtoul(buf, 10, &nr_pages);
2846         if (err || nr_pages > UINT_MAX)
2847                 return -EINVAL;
2848
2849         ksm_thread_pages_to_scan = nr_pages;
2850
2851         return count;
2852 }
2853 KSM_ATTR(pages_to_scan);
2854
2855 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2856                         char *buf)
2857 {
2858         return sprintf(buf, "%lu\n", ksm_run);
2859 }
2860
2861 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2862                          const char *buf, size_t count)
2863 {
2864         int err;
2865         unsigned long flags;
2866
2867         err = kstrtoul(buf, 10, &flags);
2868         if (err || flags > UINT_MAX)
2869                 return -EINVAL;
2870         if (flags > KSM_RUN_UNMERGE)
2871                 return -EINVAL;
2872
2873         /*
2874          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2875          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2876          * breaking COW to free the pages_shared (but leaves mm_slots
2877          * on the list for when ksmd may be set running again).
2878          */
2879
2880         mutex_lock(&ksm_thread_mutex);
2881         wait_while_offlining();
2882         if (ksm_run != flags) {
2883                 ksm_run = flags;
2884                 if (flags & KSM_RUN_UNMERGE) {
2885                         set_current_oom_origin();
2886                         err = unmerge_and_remove_all_rmap_items();
2887                         clear_current_oom_origin();
2888                         if (err) {
2889                                 ksm_run = KSM_RUN_STOP;
2890                                 count = err;
2891                         }
2892                 }
2893         }
2894         mutex_unlock(&ksm_thread_mutex);
2895
2896         if (flags & KSM_RUN_MERGE)
2897                 wake_up_interruptible(&ksm_thread_wait);
2898
2899         return count;
2900 }
2901 KSM_ATTR(run);
2902
2903 #ifdef CONFIG_NUMA
2904 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2905                                 struct kobj_attribute *attr, char *buf)
2906 {
2907         return sprintf(buf, "%u\n", ksm_merge_across_nodes);
2908 }
2909
2910 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2911                                    struct kobj_attribute *attr,
2912                                    const char *buf, size_t count)
2913 {
2914         int err;
2915         unsigned long knob;
2916
2917         err = kstrtoul(buf, 10, &knob);
2918         if (err)
2919                 return err;
2920         if (knob > 1)
2921                 return -EINVAL;
2922
2923         mutex_lock(&ksm_thread_mutex);
2924         wait_while_offlining();
2925         if (ksm_merge_across_nodes != knob) {
2926                 if (ksm_pages_shared || remove_all_stable_nodes())
2927                         err = -EBUSY;
2928                 else if (root_stable_tree == one_stable_tree) {
2929                         struct rb_root *buf;
2930                         /*
2931                          * This is the first time that we switch away from the
2932                          * default of merging across nodes: must now allocate
2933                          * a buffer to hold as many roots as may be needed.
2934                          * Allocate stable and unstable together:
2935                          * MAXSMP NODES_SHIFT 10 will use 16kB.
2936                          */
2937                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
2938                                       GFP_KERNEL);
2939                         /* Let us assume that RB_ROOT is NULL is zero */
2940                         if (!buf)
2941                                 err = -ENOMEM;
2942                         else {
2943                                 root_stable_tree = buf;
2944                                 root_unstable_tree = buf + nr_node_ids;
2945                                 /* Stable tree is empty but not the unstable */
2946                                 root_unstable_tree[0] = one_unstable_tree[0];
2947                         }
2948                 }
2949                 if (!err) {
2950                         ksm_merge_across_nodes = knob;
2951                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
2952                 }
2953         }
2954         mutex_unlock(&ksm_thread_mutex);
2955
2956         return err ? err : count;
2957 }
2958 KSM_ATTR(merge_across_nodes);
2959 #endif
2960
2961 static ssize_t use_zero_pages_show(struct kobject *kobj,
2962                                 struct kobj_attribute *attr, char *buf)
2963 {
2964         return sprintf(buf, "%u\n", ksm_use_zero_pages);
2965 }
2966 static ssize_t use_zero_pages_store(struct kobject *kobj,
2967                                    struct kobj_attribute *attr,
2968                                    const char *buf, size_t count)
2969 {
2970         int err;
2971         bool value;
2972
2973         err = kstrtobool(buf, &value);
2974         if (err)
2975                 return -EINVAL;
2976
2977         ksm_use_zero_pages = value;
2978
2979         return count;
2980 }
2981 KSM_ATTR(use_zero_pages);
2982
2983 static ssize_t max_page_sharing_show(struct kobject *kobj,
2984                                      struct kobj_attribute *attr, char *buf)
2985 {
2986         return sprintf(buf, "%u\n", ksm_max_page_sharing);
2987 }
2988
2989 static ssize_t max_page_sharing_store(struct kobject *kobj,
2990                                       struct kobj_attribute *attr,
2991                                       const char *buf, size_t count)
2992 {
2993         int err;
2994         int knob;
2995
2996         err = kstrtoint(buf, 10, &knob);
2997         if (err)
2998                 return err;
2999         /*
3000          * When a KSM page is created it is shared by 2 mappings. This
3001          * being a signed comparison, it implicitly verifies it's not
3002          * negative.
3003          */
3004         if (knob < 2)
3005                 return -EINVAL;
3006
3007         if (READ_ONCE(ksm_max_page_sharing) == knob)
3008                 return count;
3009
3010         mutex_lock(&ksm_thread_mutex);
3011         wait_while_offlining();
3012         if (ksm_max_page_sharing != knob) {
3013                 if (ksm_pages_shared || remove_all_stable_nodes())
3014                         err = -EBUSY;
3015                 else
3016                         ksm_max_page_sharing = knob;
3017         }
3018         mutex_unlock(&ksm_thread_mutex);
3019
3020         return err ? err : count;
3021 }
3022 KSM_ATTR(max_page_sharing);
3023
3024 static ssize_t pages_shared_show(struct kobject *kobj,
3025                                  struct kobj_attribute *attr, char *buf)
3026 {
3027         return sprintf(buf, "%lu\n", ksm_pages_shared);
3028 }
3029 KSM_ATTR_RO(pages_shared);
3030
3031 static ssize_t pages_sharing_show(struct kobject *kobj,
3032                                   struct kobj_attribute *attr, char *buf)
3033 {
3034         return sprintf(buf, "%lu\n", ksm_pages_sharing);
3035 }
3036 KSM_ATTR_RO(pages_sharing);
3037
3038 static ssize_t pages_unshared_show(struct kobject *kobj,
3039                                    struct kobj_attribute *attr, char *buf)
3040 {
3041         return sprintf(buf, "%lu\n", ksm_pages_unshared);
3042 }
3043 KSM_ATTR_RO(pages_unshared);
3044
3045 static ssize_t pages_volatile_show(struct kobject *kobj,
3046                                    struct kobj_attribute *attr, char *buf)
3047 {
3048         long ksm_pages_volatile;
3049
3050         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3051                                 - ksm_pages_sharing - ksm_pages_unshared;
3052         /*
3053          * It was not worth any locking to calculate that statistic,
3054          * but it might therefore sometimes be negative: conceal that.
3055          */
3056         if (ksm_pages_volatile < 0)
3057                 ksm_pages_volatile = 0;
3058         return sprintf(buf, "%ld\n", ksm_pages_volatile);
3059 }
3060 KSM_ATTR_RO(pages_volatile);
3061
3062 static ssize_t stable_node_dups_show(struct kobject *kobj,
3063                                      struct kobj_attribute *attr, char *buf)
3064 {
3065         return sprintf(buf, "%lu\n", ksm_stable_node_dups);
3066 }
3067 KSM_ATTR_RO(stable_node_dups);
3068
3069 static ssize_t stable_node_chains_show(struct kobject *kobj,
3070                                        struct kobj_attribute *attr, char *buf)
3071 {
3072         return sprintf(buf, "%lu\n", ksm_stable_node_chains);
3073 }
3074 KSM_ATTR_RO(stable_node_chains);
3075
3076 static ssize_t
3077 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3078                                         struct kobj_attribute *attr,
3079                                         char *buf)
3080 {
3081         return sprintf(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3082 }
3083
3084 static ssize_t
3085 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3086                                          struct kobj_attribute *attr,
3087                                          const char *buf, size_t count)
3088 {
3089         unsigned long msecs;
3090         int err;
3091
3092         err = kstrtoul(buf, 10, &msecs);
3093         if (err || msecs > UINT_MAX)
3094                 return -EINVAL;
3095
3096         ksm_stable_node_chains_prune_millisecs = msecs;
3097
3098         return count;
3099 }
3100 KSM_ATTR(stable_node_chains_prune_millisecs);
3101
3102 static ssize_t full_scans_show(struct kobject *kobj,
3103                                struct kobj_attribute *attr, char *buf)
3104 {
3105         return sprintf(buf, "%lu\n", ksm_scan.seqnr);
3106 }
3107 KSM_ATTR_RO(full_scans);
3108
3109 static struct attribute *ksm_attrs[] = {
3110         &sleep_millisecs_attr.attr,
3111         &pages_to_scan_attr.attr,
3112         &run_attr.attr,
3113         &pages_shared_attr.attr,
3114         &pages_sharing_attr.attr,
3115         &pages_unshared_attr.attr,
3116         &pages_volatile_attr.attr,
3117         &full_scans_attr.attr,
3118 #ifdef CONFIG_NUMA
3119         &merge_across_nodes_attr.attr,
3120 #endif
3121         &max_page_sharing_attr.attr,
3122         &stable_node_chains_attr.attr,
3123         &stable_node_dups_attr.attr,
3124         &stable_node_chains_prune_millisecs_attr.attr,
3125         &use_zero_pages_attr.attr,
3126         NULL,
3127 };
3128
3129 static const struct attribute_group ksm_attr_group = {
3130         .attrs = ksm_attrs,
3131         .name = "ksm",
3132 };
3133 #endif /* CONFIG_SYSFS */
3134
3135 static int __init ksm_init(void)
3136 {
3137         struct task_struct *ksm_thread;
3138         int err;
3139
3140         /* The correct value depends on page size and endianness */
3141         zero_checksum = calc_checksum(ZERO_PAGE(0));
3142         /* Default to false for backwards compatibility */
3143         ksm_use_zero_pages = false;
3144
3145         err = ksm_slab_init();
3146         if (err)
3147                 goto out;
3148
3149         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3150         if (IS_ERR(ksm_thread)) {
3151                 pr_err("ksm: creating kthread failed\n");
3152                 err = PTR_ERR(ksm_thread);
3153                 goto out_free;
3154         }
3155
3156 #ifdef CONFIG_SYSFS
3157         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3158         if (err) {
3159                 pr_err("ksm: register sysfs failed\n");
3160                 kthread_stop(ksm_thread);
3161                 goto out_free;
3162         }
3163 #else
3164         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3165
3166 #endif /* CONFIG_SYSFS */
3167
3168 #ifdef CONFIG_MEMORY_HOTREMOVE
3169         /* There is no significance to this priority 100 */
3170         hotplug_memory_notifier(ksm_memory_callback, 100);
3171 #endif
3172         return 0;
3173
3174 out_free:
3175         ksm_slab_free();
3176 out:
3177         return err;
3178 }
3179 subsys_initcall(ksm_init);