Merge tag 'core_urgent_for_v6.3_rc4' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / mm / ksm.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Memory merging support.
4  *
5  * This code enables dynamic sharing of identical pages found in different
6  * memory areas, even if they are not shared by fork()
7  *
8  * Copyright (C) 2008-2009 Red Hat, Inc.
9  * Authors:
10  *      Izik Eidus
11  *      Andrea Arcangeli
12  *      Chris Wright
13  *      Hugh Dickins
14  */
15
16 #include <linux/errno.h>
17 #include <linux/mm.h>
18 #include <linux/mm_inline.h>
19 #include <linux/fs.h>
20 #include <linux/mman.h>
21 #include <linux/sched.h>
22 #include <linux/sched/mm.h>
23 #include <linux/sched/coredump.h>
24 #include <linux/rwsem.h>
25 #include <linux/pagemap.h>
26 #include <linux/rmap.h>
27 #include <linux/spinlock.h>
28 #include <linux/xxhash.h>
29 #include <linux/delay.h>
30 #include <linux/kthread.h>
31 #include <linux/wait.h>
32 #include <linux/slab.h>
33 #include <linux/rbtree.h>
34 #include <linux/memory.h>
35 #include <linux/mmu_notifier.h>
36 #include <linux/swap.h>
37 #include <linux/ksm.h>
38 #include <linux/hashtable.h>
39 #include <linux/freezer.h>
40 #include <linux/oom.h>
41 #include <linux/numa.h>
42 #include <linux/pagewalk.h>
43
44 #include <asm/tlbflush.h>
45 #include "internal.h"
46 #include "mm_slot.h"
47
48 #ifdef CONFIG_NUMA
49 #define NUMA(x)         (x)
50 #define DO_NUMA(x)      do { (x); } while (0)
51 #else
52 #define NUMA(x)         (0)
53 #define DO_NUMA(x)      do { } while (0)
54 #endif
55
56 /**
57  * DOC: Overview
58  *
59  * A few notes about the KSM scanning process,
60  * to make it easier to understand the data structures below:
61  *
62  * In order to reduce excessive scanning, KSM sorts the memory pages by their
63  * contents into a data structure that holds pointers to the pages' locations.
64  *
65  * Since the contents of the pages may change at any moment, KSM cannot just
66  * insert the pages into a normal sorted tree and expect it to find anything.
67  * Therefore KSM uses two data structures - the stable and the unstable tree.
68  *
69  * The stable tree holds pointers to all the merged pages (ksm pages), sorted
70  * by their contents.  Because each such page is write-protected, searching on
71  * this tree is fully assured to be working (except when pages are unmapped),
72  * and therefore this tree is called the stable tree.
73  *
74  * The stable tree node includes information required for reverse
75  * mapping from a KSM page to virtual addresses that map this page.
76  *
77  * In order to avoid large latencies of the rmap walks on KSM pages,
78  * KSM maintains two types of nodes in the stable tree:
79  *
80  * * the regular nodes that keep the reverse mapping structures in a
81  *   linked list
82  * * the "chains" that link nodes ("dups") that represent the same
83  *   write protected memory content, but each "dup" corresponds to a
84  *   different KSM page copy of that content
85  *
86  * Internally, the regular nodes, "dups" and "chains" are represented
87  * using the same struct ksm_stable_node structure.
88  *
89  * In addition to the stable tree, KSM uses a second data structure called the
90  * unstable tree: this tree holds pointers to pages which have been found to
91  * be "unchanged for a period of time".  The unstable tree sorts these pages
92  * by their contents, but since they are not write-protected, KSM cannot rely
93  * upon the unstable tree to work correctly - the unstable tree is liable to
94  * be corrupted as its contents are modified, and so it is called unstable.
95  *
96  * KSM solves this problem by several techniques:
97  *
98  * 1) The unstable tree is flushed every time KSM completes scanning all
99  *    memory areas, and then the tree is rebuilt again from the beginning.
100  * 2) KSM will only insert into the unstable tree, pages whose hash value
101  *    has not changed since the previous scan of all memory areas.
102  * 3) The unstable tree is a RedBlack Tree - so its balancing is based on the
103  *    colors of the nodes and not on their contents, assuring that even when
104  *    the tree gets "corrupted" it won't get out of balance, so scanning time
105  *    remains the same (also, searching and inserting nodes in an rbtree uses
106  *    the same algorithm, so we have no overhead when we flush and rebuild).
107  * 4) KSM never flushes the stable tree, which means that even if it were to
108  *    take 10 attempts to find a page in the unstable tree, once it is found,
109  *    it is secured in the stable tree.  (When we scan a new page, we first
110  *    compare it against the stable tree, and then against the unstable tree.)
111  *
112  * If the merge_across_nodes tunable is unset, then KSM maintains multiple
113  * stable trees and multiple unstable trees: one of each for each NUMA node.
114  */
115
116 /**
117  * struct ksm_mm_slot - ksm information per mm that is being scanned
118  * @slot: hash lookup from mm to mm_slot
119  * @rmap_list: head for this mm_slot's singly-linked list of rmap_items
120  */
121 struct ksm_mm_slot {
122         struct mm_slot slot;
123         struct ksm_rmap_item *rmap_list;
124 };
125
126 /**
127  * struct ksm_scan - cursor for scanning
128  * @mm_slot: the current mm_slot we are scanning
129  * @address: the next address inside that to be scanned
130  * @rmap_list: link to the next rmap to be scanned in the rmap_list
131  * @seqnr: count of completed full scans (needed when removing unstable node)
132  *
133  * There is only the one ksm_scan instance of this cursor structure.
134  */
135 struct ksm_scan {
136         struct ksm_mm_slot *mm_slot;
137         unsigned long address;
138         struct ksm_rmap_item **rmap_list;
139         unsigned long seqnr;
140 };
141
142 /**
143  * struct ksm_stable_node - node of the stable rbtree
144  * @node: rb node of this ksm page in the stable tree
145  * @head: (overlaying parent) &migrate_nodes indicates temporarily on that list
146  * @hlist_dup: linked into the stable_node->hlist with a stable_node chain
147  * @list: linked into migrate_nodes, pending placement in the proper node tree
148  * @hlist: hlist head of rmap_items using this ksm page
149  * @kpfn: page frame number of this ksm page (perhaps temporarily on wrong nid)
150  * @chain_prune_time: time of the last full garbage collection
151  * @rmap_hlist_len: number of rmap_item entries in hlist or STABLE_NODE_CHAIN
152  * @nid: NUMA node id of stable tree in which linked (may not match kpfn)
153  */
154 struct ksm_stable_node {
155         union {
156                 struct rb_node node;    /* when node of stable tree */
157                 struct {                /* when listed for migration */
158                         struct list_head *head;
159                         struct {
160                                 struct hlist_node hlist_dup;
161                                 struct list_head list;
162                         };
163                 };
164         };
165         struct hlist_head hlist;
166         union {
167                 unsigned long kpfn;
168                 unsigned long chain_prune_time;
169         };
170         /*
171          * STABLE_NODE_CHAIN can be any negative number in
172          * rmap_hlist_len negative range, but better not -1 to be able
173          * to reliably detect underflows.
174          */
175 #define STABLE_NODE_CHAIN -1024
176         int rmap_hlist_len;
177 #ifdef CONFIG_NUMA
178         int nid;
179 #endif
180 };
181
182 /**
183  * struct ksm_rmap_item - reverse mapping item for virtual addresses
184  * @rmap_list: next rmap_item in mm_slot's singly-linked rmap_list
185  * @anon_vma: pointer to anon_vma for this mm,address, when in stable tree
186  * @nid: NUMA node id of unstable tree in which linked (may not match page)
187  * @mm: the memory structure this rmap_item is pointing into
188  * @address: the virtual address this rmap_item tracks (+ flags in low bits)
189  * @oldchecksum: previous checksum of the page at that virtual address
190  * @node: rb node of this rmap_item in the unstable tree
191  * @head: pointer to stable_node heading this list in the stable tree
192  * @hlist: link into hlist of rmap_items hanging off that stable_node
193  */
194 struct ksm_rmap_item {
195         struct ksm_rmap_item *rmap_list;
196         union {
197                 struct anon_vma *anon_vma;      /* when stable */
198 #ifdef CONFIG_NUMA
199                 int nid;                /* when node of unstable tree */
200 #endif
201         };
202         struct mm_struct *mm;
203         unsigned long address;          /* + low bits used for flags below */
204         unsigned int oldchecksum;       /* when unstable */
205         union {
206                 struct rb_node node;    /* when node of unstable tree */
207                 struct {                /* when listed from stable tree */
208                         struct ksm_stable_node *head;
209                         struct hlist_node hlist;
210                 };
211         };
212 };
213
214 #define SEQNR_MASK      0x0ff   /* low bits of unstable tree seqnr */
215 #define UNSTABLE_FLAG   0x100   /* is a node of the unstable tree */
216 #define STABLE_FLAG     0x200   /* is listed from the stable tree */
217
218 /* The stable and unstable tree heads */
219 static struct rb_root one_stable_tree[1] = { RB_ROOT };
220 static struct rb_root one_unstable_tree[1] = { RB_ROOT };
221 static struct rb_root *root_stable_tree = one_stable_tree;
222 static struct rb_root *root_unstable_tree = one_unstable_tree;
223
224 /* Recently migrated nodes of stable tree, pending proper placement */
225 static LIST_HEAD(migrate_nodes);
226 #define STABLE_NODE_DUP_HEAD ((struct list_head *)&migrate_nodes.prev)
227
228 #define MM_SLOTS_HASH_BITS 10
229 static DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
230
231 static struct ksm_mm_slot ksm_mm_head = {
232         .slot.mm_node = LIST_HEAD_INIT(ksm_mm_head.slot.mm_node),
233 };
234 static struct ksm_scan ksm_scan = {
235         .mm_slot = &ksm_mm_head,
236 };
237
238 static struct kmem_cache *rmap_item_cache;
239 static struct kmem_cache *stable_node_cache;
240 static struct kmem_cache *mm_slot_cache;
241
242 /* The number of nodes in the stable tree */
243 static unsigned long ksm_pages_shared;
244
245 /* The number of page slots additionally sharing those nodes */
246 static unsigned long ksm_pages_sharing;
247
248 /* The number of nodes in the unstable tree */
249 static unsigned long ksm_pages_unshared;
250
251 /* The number of rmap_items in use: to calculate pages_volatile */
252 static unsigned long ksm_rmap_items;
253
254 /* The number of stable_node chains */
255 static unsigned long ksm_stable_node_chains;
256
257 /* The number of stable_node dups linked to the stable_node chains */
258 static unsigned long ksm_stable_node_dups;
259
260 /* Delay in pruning stale stable_node_dups in the stable_node_chains */
261 static unsigned int ksm_stable_node_chains_prune_millisecs = 2000;
262
263 /* Maximum number of page slots sharing a stable node */
264 static int ksm_max_page_sharing = 256;
265
266 /* Number of pages ksmd should scan in one batch */
267 static unsigned int ksm_thread_pages_to_scan = 100;
268
269 /* Milliseconds ksmd should sleep between batches */
270 static unsigned int ksm_thread_sleep_millisecs = 20;
271
272 /* Checksum of an empty (zeroed) page */
273 static unsigned int zero_checksum __read_mostly;
274
275 /* Whether to merge empty (zeroed) pages with actual zero pages */
276 static bool ksm_use_zero_pages __read_mostly;
277
278 #ifdef CONFIG_NUMA
279 /* Zeroed when merging across nodes is not allowed */
280 static unsigned int ksm_merge_across_nodes = 1;
281 static int ksm_nr_node_ids = 1;
282 #else
283 #define ksm_merge_across_nodes  1U
284 #define ksm_nr_node_ids         1
285 #endif
286
287 #define KSM_RUN_STOP    0
288 #define KSM_RUN_MERGE   1
289 #define KSM_RUN_UNMERGE 2
290 #define KSM_RUN_OFFLINE 4
291 static unsigned long ksm_run = KSM_RUN_STOP;
292 static void wait_while_offlining(void);
293
294 static DECLARE_WAIT_QUEUE_HEAD(ksm_thread_wait);
295 static DECLARE_WAIT_QUEUE_HEAD(ksm_iter_wait);
296 static DEFINE_MUTEX(ksm_thread_mutex);
297 static DEFINE_SPINLOCK(ksm_mmlist_lock);
298
299 #define KSM_KMEM_CACHE(__struct, __flags) kmem_cache_create(#__struct,\
300                 sizeof(struct __struct), __alignof__(struct __struct),\
301                 (__flags), NULL)
302
303 static int __init ksm_slab_init(void)
304 {
305         rmap_item_cache = KSM_KMEM_CACHE(ksm_rmap_item, 0);
306         if (!rmap_item_cache)
307                 goto out;
308
309         stable_node_cache = KSM_KMEM_CACHE(ksm_stable_node, 0);
310         if (!stable_node_cache)
311                 goto out_free1;
312
313         mm_slot_cache = KSM_KMEM_CACHE(ksm_mm_slot, 0);
314         if (!mm_slot_cache)
315                 goto out_free2;
316
317         return 0;
318
319 out_free2:
320         kmem_cache_destroy(stable_node_cache);
321 out_free1:
322         kmem_cache_destroy(rmap_item_cache);
323 out:
324         return -ENOMEM;
325 }
326
327 static void __init ksm_slab_free(void)
328 {
329         kmem_cache_destroy(mm_slot_cache);
330         kmem_cache_destroy(stable_node_cache);
331         kmem_cache_destroy(rmap_item_cache);
332         mm_slot_cache = NULL;
333 }
334
335 static __always_inline bool is_stable_node_chain(struct ksm_stable_node *chain)
336 {
337         return chain->rmap_hlist_len == STABLE_NODE_CHAIN;
338 }
339
340 static __always_inline bool is_stable_node_dup(struct ksm_stable_node *dup)
341 {
342         return dup->head == STABLE_NODE_DUP_HEAD;
343 }
344
345 static inline void stable_node_chain_add_dup(struct ksm_stable_node *dup,
346                                              struct ksm_stable_node *chain)
347 {
348         VM_BUG_ON(is_stable_node_dup(dup));
349         dup->head = STABLE_NODE_DUP_HEAD;
350         VM_BUG_ON(!is_stable_node_chain(chain));
351         hlist_add_head(&dup->hlist_dup, &chain->hlist);
352         ksm_stable_node_dups++;
353 }
354
355 static inline void __stable_node_dup_del(struct ksm_stable_node *dup)
356 {
357         VM_BUG_ON(!is_stable_node_dup(dup));
358         hlist_del(&dup->hlist_dup);
359         ksm_stable_node_dups--;
360 }
361
362 static inline void stable_node_dup_del(struct ksm_stable_node *dup)
363 {
364         VM_BUG_ON(is_stable_node_chain(dup));
365         if (is_stable_node_dup(dup))
366                 __stable_node_dup_del(dup);
367         else
368                 rb_erase(&dup->node, root_stable_tree + NUMA(dup->nid));
369 #ifdef CONFIG_DEBUG_VM
370         dup->head = NULL;
371 #endif
372 }
373
374 static inline struct ksm_rmap_item *alloc_rmap_item(void)
375 {
376         struct ksm_rmap_item *rmap_item;
377
378         rmap_item = kmem_cache_zalloc(rmap_item_cache, GFP_KERNEL |
379                                                 __GFP_NORETRY | __GFP_NOWARN);
380         if (rmap_item)
381                 ksm_rmap_items++;
382         return rmap_item;
383 }
384
385 static inline void free_rmap_item(struct ksm_rmap_item *rmap_item)
386 {
387         ksm_rmap_items--;
388         rmap_item->mm->ksm_rmap_items--;
389         rmap_item->mm = NULL;   /* debug safety */
390         kmem_cache_free(rmap_item_cache, rmap_item);
391 }
392
393 static inline struct ksm_stable_node *alloc_stable_node(void)
394 {
395         /*
396          * The allocation can take too long with GFP_KERNEL when memory is under
397          * pressure, which may lead to hung task warnings.  Adding __GFP_HIGH
398          * grants access to memory reserves, helping to avoid this problem.
399          */
400         return kmem_cache_alloc(stable_node_cache, GFP_KERNEL | __GFP_HIGH);
401 }
402
403 static inline void free_stable_node(struct ksm_stable_node *stable_node)
404 {
405         VM_BUG_ON(stable_node->rmap_hlist_len &&
406                   !is_stable_node_chain(stable_node));
407         kmem_cache_free(stable_node_cache, stable_node);
408 }
409
410 /*
411  * ksmd, and unmerge_and_remove_all_rmap_items(), must not touch an mm's
412  * page tables after it has passed through ksm_exit() - which, if necessary,
413  * takes mmap_lock briefly to serialize against them.  ksm_exit() does not set
414  * a special flag: they can just back out as soon as mm_users goes to zero.
415  * ksm_test_exit() is used throughout to make this test for exit: in some
416  * places for correctness, in some places just to avoid unnecessary work.
417  */
418 static inline bool ksm_test_exit(struct mm_struct *mm)
419 {
420         return atomic_read(&mm->mm_users) == 0;
421 }
422
423 static int break_ksm_pmd_entry(pmd_t *pmd, unsigned long addr, unsigned long next,
424                         struct mm_walk *walk)
425 {
426         struct page *page = NULL;
427         spinlock_t *ptl;
428         pte_t *pte;
429         int ret;
430
431         if (pmd_leaf(*pmd) || !pmd_present(*pmd))
432                 return 0;
433
434         pte = pte_offset_map_lock(walk->mm, pmd, addr, &ptl);
435         if (pte_present(*pte)) {
436                 page = vm_normal_page(walk->vma, addr, *pte);
437         } else if (!pte_none(*pte)) {
438                 swp_entry_t entry = pte_to_swp_entry(*pte);
439
440                 /*
441                  * As KSM pages remain KSM pages until freed, no need to wait
442                  * here for migration to end.
443                  */
444                 if (is_migration_entry(entry))
445                         page = pfn_swap_entry_to_page(entry);
446         }
447         ret = page && PageKsm(page);
448         pte_unmap_unlock(pte, ptl);
449         return ret;
450 }
451
452 static const struct mm_walk_ops break_ksm_ops = {
453         .pmd_entry = break_ksm_pmd_entry,
454 };
455
456 /*
457  * We use break_ksm to break COW on a ksm page by triggering unsharing,
458  * such that the ksm page will get replaced by an exclusive anonymous page.
459  *
460  * We take great care only to touch a ksm page, in a VM_MERGEABLE vma,
461  * in case the application has unmapped and remapped mm,addr meanwhile.
462  * Could a ksm page appear anywhere else?  Actually yes, in a VM_PFNMAP
463  * mmap of /dev/mem, where we would not want to touch it.
464  *
465  * FAULT_FLAG_REMOTE/FOLL_REMOTE are because we do this outside the context
466  * of the process that owns 'vma'.  We also do not want to enforce
467  * protection keys here anyway.
468  */
469 static int break_ksm(struct vm_area_struct *vma, unsigned long addr)
470 {
471         vm_fault_t ret = 0;
472
473         do {
474                 int ksm_page;
475
476                 cond_resched();
477                 ksm_page = walk_page_range_vma(vma, addr, addr + 1,
478                                                &break_ksm_ops, NULL);
479                 if (WARN_ON_ONCE(ksm_page < 0))
480                         return ksm_page;
481                 if (!ksm_page)
482                         return 0;
483                 ret = handle_mm_fault(vma, addr,
484                                       FAULT_FLAG_UNSHARE | FAULT_FLAG_REMOTE,
485                                       NULL);
486         } while (!(ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | VM_FAULT_OOM)));
487         /*
488          * We must loop until we no longer find a KSM page because
489          * handle_mm_fault() may back out if there's any difficulty e.g. if
490          * pte accessed bit gets updated concurrently.
491          *
492          * VM_FAULT_SIGBUS could occur if we race with truncation of the
493          * backing file, which also invalidates anonymous pages: that's
494          * okay, that truncation will have unmapped the PageKsm for us.
495          *
496          * VM_FAULT_OOM: at the time of writing (late July 2009), setting
497          * aside mem_cgroup limits, VM_FAULT_OOM would only be set if the
498          * current task has TIF_MEMDIE set, and will be OOM killed on return
499          * to user; and ksmd, having no mm, would never be chosen for that.
500          *
501          * But if the mm is in a limited mem_cgroup, then the fault may fail
502          * with VM_FAULT_OOM even if the current task is not TIF_MEMDIE; and
503          * even ksmd can fail in this way - though it's usually breaking ksm
504          * just to undo a merge it made a moment before, so unlikely to oom.
505          *
506          * That's a pity: we might therefore have more kernel pages allocated
507          * than we're counting as nodes in the stable tree; but ksm_do_scan
508          * will retry to break_cow on each pass, so should recover the page
509          * in due course.  The important thing is to not let VM_MERGEABLE
510          * be cleared while any such pages might remain in the area.
511          */
512         return (ret & VM_FAULT_OOM) ? -ENOMEM : 0;
513 }
514
515 static struct vm_area_struct *find_mergeable_vma(struct mm_struct *mm,
516                 unsigned long addr)
517 {
518         struct vm_area_struct *vma;
519         if (ksm_test_exit(mm))
520                 return NULL;
521         vma = vma_lookup(mm, addr);
522         if (!vma || !(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
523                 return NULL;
524         return vma;
525 }
526
527 static void break_cow(struct ksm_rmap_item *rmap_item)
528 {
529         struct mm_struct *mm = rmap_item->mm;
530         unsigned long addr = rmap_item->address;
531         struct vm_area_struct *vma;
532
533         /*
534          * It is not an accident that whenever we want to break COW
535          * to undo, we also need to drop a reference to the anon_vma.
536          */
537         put_anon_vma(rmap_item->anon_vma);
538
539         mmap_read_lock(mm);
540         vma = find_mergeable_vma(mm, addr);
541         if (vma)
542                 break_ksm(vma, addr);
543         mmap_read_unlock(mm);
544 }
545
546 static struct page *get_mergeable_page(struct ksm_rmap_item *rmap_item)
547 {
548         struct mm_struct *mm = rmap_item->mm;
549         unsigned long addr = rmap_item->address;
550         struct vm_area_struct *vma;
551         struct page *page;
552
553         mmap_read_lock(mm);
554         vma = find_mergeable_vma(mm, addr);
555         if (!vma)
556                 goto out;
557
558         page = follow_page(vma, addr, FOLL_GET);
559         if (IS_ERR_OR_NULL(page))
560                 goto out;
561         if (is_zone_device_page(page))
562                 goto out_putpage;
563         if (PageAnon(page)) {
564                 flush_anon_page(vma, page, addr);
565                 flush_dcache_page(page);
566         } else {
567 out_putpage:
568                 put_page(page);
569 out:
570                 page = NULL;
571         }
572         mmap_read_unlock(mm);
573         return page;
574 }
575
576 /*
577  * This helper is used for getting right index into array of tree roots.
578  * When merge_across_nodes knob is set to 1, there are only two rb-trees for
579  * stable and unstable pages from all nodes with roots in index 0. Otherwise,
580  * every node has its own stable and unstable tree.
581  */
582 static inline int get_kpfn_nid(unsigned long kpfn)
583 {
584         return ksm_merge_across_nodes ? 0 : NUMA(pfn_to_nid(kpfn));
585 }
586
587 static struct ksm_stable_node *alloc_stable_node_chain(struct ksm_stable_node *dup,
588                                                    struct rb_root *root)
589 {
590         struct ksm_stable_node *chain = alloc_stable_node();
591         VM_BUG_ON(is_stable_node_chain(dup));
592         if (likely(chain)) {
593                 INIT_HLIST_HEAD(&chain->hlist);
594                 chain->chain_prune_time = jiffies;
595                 chain->rmap_hlist_len = STABLE_NODE_CHAIN;
596 #if defined (CONFIG_DEBUG_VM) && defined(CONFIG_NUMA)
597                 chain->nid = NUMA_NO_NODE; /* debug */
598 #endif
599                 ksm_stable_node_chains++;
600
601                 /*
602                  * Put the stable node chain in the first dimension of
603                  * the stable tree and at the same time remove the old
604                  * stable node.
605                  */
606                 rb_replace_node(&dup->node, &chain->node, root);
607
608                 /*
609                  * Move the old stable node to the second dimension
610                  * queued in the hlist_dup. The invariant is that all
611                  * dup stable_nodes in the chain->hlist point to pages
612                  * that are write protected and have the exact same
613                  * content.
614                  */
615                 stable_node_chain_add_dup(dup, chain);
616         }
617         return chain;
618 }
619
620 static inline void free_stable_node_chain(struct ksm_stable_node *chain,
621                                           struct rb_root *root)
622 {
623         rb_erase(&chain->node, root);
624         free_stable_node(chain);
625         ksm_stable_node_chains--;
626 }
627
628 static void remove_node_from_stable_tree(struct ksm_stable_node *stable_node)
629 {
630         struct ksm_rmap_item *rmap_item;
631
632         /* check it's not STABLE_NODE_CHAIN or negative */
633         BUG_ON(stable_node->rmap_hlist_len < 0);
634
635         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
636                 if (rmap_item->hlist.next)
637                         ksm_pages_sharing--;
638                 else
639                         ksm_pages_shared--;
640
641                 rmap_item->mm->ksm_merging_pages--;
642
643                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
644                 stable_node->rmap_hlist_len--;
645                 put_anon_vma(rmap_item->anon_vma);
646                 rmap_item->address &= PAGE_MASK;
647                 cond_resched();
648         }
649
650         /*
651          * We need the second aligned pointer of the migrate_nodes
652          * list_head to stay clear from the rb_parent_color union
653          * (aligned and different than any node) and also different
654          * from &migrate_nodes. This will verify that future list.h changes
655          * don't break STABLE_NODE_DUP_HEAD. Only recent gcc can handle it.
656          */
657         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD <= &migrate_nodes);
658         BUILD_BUG_ON(STABLE_NODE_DUP_HEAD >= &migrate_nodes + 1);
659
660         if (stable_node->head == &migrate_nodes)
661                 list_del(&stable_node->list);
662         else
663                 stable_node_dup_del(stable_node);
664         free_stable_node(stable_node);
665 }
666
667 enum get_ksm_page_flags {
668         GET_KSM_PAGE_NOLOCK,
669         GET_KSM_PAGE_LOCK,
670         GET_KSM_PAGE_TRYLOCK
671 };
672
673 /*
674  * get_ksm_page: checks if the page indicated by the stable node
675  * is still its ksm page, despite having held no reference to it.
676  * In which case we can trust the content of the page, and it
677  * returns the gotten page; but if the page has now been zapped,
678  * remove the stale node from the stable tree and return NULL.
679  * But beware, the stable node's page might be being migrated.
680  *
681  * You would expect the stable_node to hold a reference to the ksm page.
682  * But if it increments the page's count, swapping out has to wait for
683  * ksmd to come around again before it can free the page, which may take
684  * seconds or even minutes: much too unresponsive.  So instead we use a
685  * "keyhole reference": access to the ksm page from the stable node peeps
686  * out through its keyhole to see if that page still holds the right key,
687  * pointing back to this stable node.  This relies on freeing a PageAnon
688  * page to reset its page->mapping to NULL, and relies on no other use of
689  * a page to put something that might look like our key in page->mapping.
690  * is on its way to being freed; but it is an anomaly to bear in mind.
691  */
692 static struct page *get_ksm_page(struct ksm_stable_node *stable_node,
693                                  enum get_ksm_page_flags flags)
694 {
695         struct page *page;
696         void *expected_mapping;
697         unsigned long kpfn;
698
699         expected_mapping = (void *)((unsigned long)stable_node |
700                                         PAGE_MAPPING_KSM);
701 again:
702         kpfn = READ_ONCE(stable_node->kpfn); /* Address dependency. */
703         page = pfn_to_page(kpfn);
704         if (READ_ONCE(page->mapping) != expected_mapping)
705                 goto stale;
706
707         /*
708          * We cannot do anything with the page while its refcount is 0.
709          * Usually 0 means free, or tail of a higher-order page: in which
710          * case this node is no longer referenced, and should be freed;
711          * however, it might mean that the page is under page_ref_freeze().
712          * The __remove_mapping() case is easy, again the node is now stale;
713          * the same is in reuse_ksm_page() case; but if page is swapcache
714          * in folio_migrate_mapping(), it might still be our page,
715          * in which case it's essential to keep the node.
716          */
717         while (!get_page_unless_zero(page)) {
718                 /*
719                  * Another check for page->mapping != expected_mapping would
720                  * work here too.  We have chosen the !PageSwapCache test to
721                  * optimize the common case, when the page is or is about to
722                  * be freed: PageSwapCache is cleared (under spin_lock_irq)
723                  * in the ref_freeze section of __remove_mapping(); but Anon
724                  * page->mapping reset to NULL later, in free_pages_prepare().
725                  */
726                 if (!PageSwapCache(page))
727                         goto stale;
728                 cpu_relax();
729         }
730
731         if (READ_ONCE(page->mapping) != expected_mapping) {
732                 put_page(page);
733                 goto stale;
734         }
735
736         if (flags == GET_KSM_PAGE_TRYLOCK) {
737                 if (!trylock_page(page)) {
738                         put_page(page);
739                         return ERR_PTR(-EBUSY);
740                 }
741         } else if (flags == GET_KSM_PAGE_LOCK)
742                 lock_page(page);
743
744         if (flags != GET_KSM_PAGE_NOLOCK) {
745                 if (READ_ONCE(page->mapping) != expected_mapping) {
746                         unlock_page(page);
747                         put_page(page);
748                         goto stale;
749                 }
750         }
751         return page;
752
753 stale:
754         /*
755          * We come here from above when page->mapping or !PageSwapCache
756          * suggests that the node is stale; but it might be under migration.
757          * We need smp_rmb(), matching the smp_wmb() in folio_migrate_ksm(),
758          * before checking whether node->kpfn has been changed.
759          */
760         smp_rmb();
761         if (READ_ONCE(stable_node->kpfn) != kpfn)
762                 goto again;
763         remove_node_from_stable_tree(stable_node);
764         return NULL;
765 }
766
767 /*
768  * Removing rmap_item from stable or unstable tree.
769  * This function will clean the information from the stable/unstable tree.
770  */
771 static void remove_rmap_item_from_tree(struct ksm_rmap_item *rmap_item)
772 {
773         if (rmap_item->address & STABLE_FLAG) {
774                 struct ksm_stable_node *stable_node;
775                 struct page *page;
776
777                 stable_node = rmap_item->head;
778                 page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
779                 if (!page)
780                         goto out;
781
782                 hlist_del(&rmap_item->hlist);
783                 unlock_page(page);
784                 put_page(page);
785
786                 if (!hlist_empty(&stable_node->hlist))
787                         ksm_pages_sharing--;
788                 else
789                         ksm_pages_shared--;
790
791                 rmap_item->mm->ksm_merging_pages--;
792
793                 VM_BUG_ON(stable_node->rmap_hlist_len <= 0);
794                 stable_node->rmap_hlist_len--;
795
796                 put_anon_vma(rmap_item->anon_vma);
797                 rmap_item->head = NULL;
798                 rmap_item->address &= PAGE_MASK;
799
800         } else if (rmap_item->address & UNSTABLE_FLAG) {
801                 unsigned char age;
802                 /*
803                  * Usually ksmd can and must skip the rb_erase, because
804                  * root_unstable_tree was already reset to RB_ROOT.
805                  * But be careful when an mm is exiting: do the rb_erase
806                  * if this rmap_item was inserted by this scan, rather
807                  * than left over from before.
808                  */
809                 age = (unsigned char)(ksm_scan.seqnr - rmap_item->address);
810                 BUG_ON(age > 1);
811                 if (!age)
812                         rb_erase(&rmap_item->node,
813                                  root_unstable_tree + NUMA(rmap_item->nid));
814                 ksm_pages_unshared--;
815                 rmap_item->address &= PAGE_MASK;
816         }
817 out:
818         cond_resched();         /* we're called from many long loops */
819 }
820
821 static void remove_trailing_rmap_items(struct ksm_rmap_item **rmap_list)
822 {
823         while (*rmap_list) {
824                 struct ksm_rmap_item *rmap_item = *rmap_list;
825                 *rmap_list = rmap_item->rmap_list;
826                 remove_rmap_item_from_tree(rmap_item);
827                 free_rmap_item(rmap_item);
828         }
829 }
830
831 /*
832  * Though it's very tempting to unmerge rmap_items from stable tree rather
833  * than check every pte of a given vma, the locking doesn't quite work for
834  * that - an rmap_item is assigned to the stable tree after inserting ksm
835  * page and upping mmap_lock.  Nor does it fit with the way we skip dup'ing
836  * rmap_items from parent to child at fork time (so as not to waste time
837  * if exit comes before the next scan reaches it).
838  *
839  * Similarly, although we'd like to remove rmap_items (so updating counts
840  * and freeing memory) when unmerging an area, it's easier to leave that
841  * to the next pass of ksmd - consider, for example, how ksmd might be
842  * in cmp_and_merge_page on one of the rmap_items we would be removing.
843  */
844 static int unmerge_ksm_pages(struct vm_area_struct *vma,
845                              unsigned long start, unsigned long end)
846 {
847         unsigned long addr;
848         int err = 0;
849
850         for (addr = start; addr < end && !err; addr += PAGE_SIZE) {
851                 if (ksm_test_exit(vma->vm_mm))
852                         break;
853                 if (signal_pending(current))
854                         err = -ERESTARTSYS;
855                 else
856                         err = break_ksm(vma, addr);
857         }
858         return err;
859 }
860
861 static inline struct ksm_stable_node *folio_stable_node(struct folio *folio)
862 {
863         return folio_test_ksm(folio) ? folio_raw_mapping(folio) : NULL;
864 }
865
866 static inline struct ksm_stable_node *page_stable_node(struct page *page)
867 {
868         return folio_stable_node(page_folio(page));
869 }
870
871 static inline void set_page_stable_node(struct page *page,
872                                         struct ksm_stable_node *stable_node)
873 {
874         VM_BUG_ON_PAGE(PageAnon(page) && PageAnonExclusive(page), page);
875         page->mapping = (void *)((unsigned long)stable_node | PAGE_MAPPING_KSM);
876 }
877
878 #ifdef CONFIG_SYSFS
879 /*
880  * Only called through the sysfs control interface:
881  */
882 static int remove_stable_node(struct ksm_stable_node *stable_node)
883 {
884         struct page *page;
885         int err;
886
887         page = get_ksm_page(stable_node, GET_KSM_PAGE_LOCK);
888         if (!page) {
889                 /*
890                  * get_ksm_page did remove_node_from_stable_tree itself.
891                  */
892                 return 0;
893         }
894
895         /*
896          * Page could be still mapped if this races with __mmput() running in
897          * between ksm_exit() and exit_mmap(). Just refuse to let
898          * merge_across_nodes/max_page_sharing be switched.
899          */
900         err = -EBUSY;
901         if (!page_mapped(page)) {
902                 /*
903                  * The stable node did not yet appear stale to get_ksm_page(),
904                  * since that allows for an unmapped ksm page to be recognized
905                  * right up until it is freed; but the node is safe to remove.
906                  * This page might be in a pagevec waiting to be freed,
907                  * or it might be PageSwapCache (perhaps under writeback),
908                  * or it might have been removed from swapcache a moment ago.
909                  */
910                 set_page_stable_node(page, NULL);
911                 remove_node_from_stable_tree(stable_node);
912                 err = 0;
913         }
914
915         unlock_page(page);
916         put_page(page);
917         return err;
918 }
919
920 static int remove_stable_node_chain(struct ksm_stable_node *stable_node,
921                                     struct rb_root *root)
922 {
923         struct ksm_stable_node *dup;
924         struct hlist_node *hlist_safe;
925
926         if (!is_stable_node_chain(stable_node)) {
927                 VM_BUG_ON(is_stable_node_dup(stable_node));
928                 if (remove_stable_node(stable_node))
929                         return true;
930                 else
931                         return false;
932         }
933
934         hlist_for_each_entry_safe(dup, hlist_safe,
935                                   &stable_node->hlist, hlist_dup) {
936                 VM_BUG_ON(!is_stable_node_dup(dup));
937                 if (remove_stable_node(dup))
938                         return true;
939         }
940         BUG_ON(!hlist_empty(&stable_node->hlist));
941         free_stable_node_chain(stable_node, root);
942         return false;
943 }
944
945 static int remove_all_stable_nodes(void)
946 {
947         struct ksm_stable_node *stable_node, *next;
948         int nid;
949         int err = 0;
950
951         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
952                 while (root_stable_tree[nid].rb_node) {
953                         stable_node = rb_entry(root_stable_tree[nid].rb_node,
954                                                 struct ksm_stable_node, node);
955                         if (remove_stable_node_chain(stable_node,
956                                                      root_stable_tree + nid)) {
957                                 err = -EBUSY;
958                                 break;  /* proceed to next nid */
959                         }
960                         cond_resched();
961                 }
962         }
963         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
964                 if (remove_stable_node(stable_node))
965                         err = -EBUSY;
966                 cond_resched();
967         }
968         return err;
969 }
970
971 static int unmerge_and_remove_all_rmap_items(void)
972 {
973         struct ksm_mm_slot *mm_slot;
974         struct mm_slot *slot;
975         struct mm_struct *mm;
976         struct vm_area_struct *vma;
977         int err = 0;
978
979         spin_lock(&ksm_mmlist_lock);
980         slot = list_entry(ksm_mm_head.slot.mm_node.next,
981                           struct mm_slot, mm_node);
982         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
983         spin_unlock(&ksm_mmlist_lock);
984
985         for (mm_slot = ksm_scan.mm_slot; mm_slot != &ksm_mm_head;
986              mm_slot = ksm_scan.mm_slot) {
987                 VMA_ITERATOR(vmi, mm_slot->slot.mm, 0);
988
989                 mm = mm_slot->slot.mm;
990                 mmap_read_lock(mm);
991
992                 /*
993                  * Exit right away if mm is exiting to avoid lockdep issue in
994                  * the maple tree
995                  */
996                 if (ksm_test_exit(mm))
997                         goto mm_exiting;
998
999                 for_each_vma(vmi, vma) {
1000                         if (!(vma->vm_flags & VM_MERGEABLE) || !vma->anon_vma)
1001                                 continue;
1002                         err = unmerge_ksm_pages(vma,
1003                                                 vma->vm_start, vma->vm_end);
1004                         if (err)
1005                                 goto error;
1006                 }
1007
1008 mm_exiting:
1009                 remove_trailing_rmap_items(&mm_slot->rmap_list);
1010                 mmap_read_unlock(mm);
1011
1012                 spin_lock(&ksm_mmlist_lock);
1013                 slot = list_entry(mm_slot->slot.mm_node.next,
1014                                   struct mm_slot, mm_node);
1015                 ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
1016                 if (ksm_test_exit(mm)) {
1017                         hash_del(&mm_slot->slot.hash);
1018                         list_del(&mm_slot->slot.mm_node);
1019                         spin_unlock(&ksm_mmlist_lock);
1020
1021                         mm_slot_free(mm_slot_cache, mm_slot);
1022                         clear_bit(MMF_VM_MERGEABLE, &mm->flags);
1023                         mmdrop(mm);
1024                 } else
1025                         spin_unlock(&ksm_mmlist_lock);
1026         }
1027
1028         /* Clean up stable nodes, but don't worry if some are still busy */
1029         remove_all_stable_nodes();
1030         ksm_scan.seqnr = 0;
1031         return 0;
1032
1033 error:
1034         mmap_read_unlock(mm);
1035         spin_lock(&ksm_mmlist_lock);
1036         ksm_scan.mm_slot = &ksm_mm_head;
1037         spin_unlock(&ksm_mmlist_lock);
1038         return err;
1039 }
1040 #endif /* CONFIG_SYSFS */
1041
1042 static u32 calc_checksum(struct page *page)
1043 {
1044         u32 checksum;
1045         void *addr = kmap_atomic(page);
1046         checksum = xxhash(addr, PAGE_SIZE, 0);
1047         kunmap_atomic(addr);
1048         return checksum;
1049 }
1050
1051 static int write_protect_page(struct vm_area_struct *vma, struct page *page,
1052                               pte_t *orig_pte)
1053 {
1054         struct mm_struct *mm = vma->vm_mm;
1055         DEFINE_PAGE_VMA_WALK(pvmw, page, vma, 0, 0);
1056         int swapped;
1057         int err = -EFAULT;
1058         struct mmu_notifier_range range;
1059         bool anon_exclusive;
1060
1061         pvmw.address = page_address_in_vma(page, vma);
1062         if (pvmw.address == -EFAULT)
1063                 goto out;
1064
1065         BUG_ON(PageTransCompound(page));
1066
1067         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, pvmw.address,
1068                                 pvmw.address + PAGE_SIZE);
1069         mmu_notifier_invalidate_range_start(&range);
1070
1071         if (!page_vma_mapped_walk(&pvmw))
1072                 goto out_mn;
1073         if (WARN_ONCE(!pvmw.pte, "Unexpected PMD mapping?"))
1074                 goto out_unlock;
1075
1076         anon_exclusive = PageAnonExclusive(page);
1077         if (pte_write(*pvmw.pte) || pte_dirty(*pvmw.pte) ||
1078             anon_exclusive || mm_tlb_flush_pending(mm)) {
1079                 pte_t entry;
1080
1081                 swapped = PageSwapCache(page);
1082                 flush_cache_page(vma, pvmw.address, page_to_pfn(page));
1083                 /*
1084                  * Ok this is tricky, when get_user_pages_fast() run it doesn't
1085                  * take any lock, therefore the check that we are going to make
1086                  * with the pagecount against the mapcount is racy and
1087                  * O_DIRECT can happen right after the check.
1088                  * So we clear the pte and flush the tlb before the check
1089                  * this assure us that no O_DIRECT can happen after the check
1090                  * or in the middle of the check.
1091                  *
1092                  * No need to notify as we are downgrading page table to read
1093                  * only not changing it to point to a new page.
1094                  *
1095                  * See Documentation/mm/mmu_notifier.rst
1096                  */
1097                 entry = ptep_clear_flush(vma, pvmw.address, pvmw.pte);
1098                 /*
1099                  * Check that no O_DIRECT or similar I/O is in progress on the
1100                  * page
1101                  */
1102                 if (page_mapcount(page) + 1 + swapped != page_count(page)) {
1103                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1104                         goto out_unlock;
1105                 }
1106
1107                 /* See page_try_share_anon_rmap(): clear PTE first. */
1108                 if (anon_exclusive && page_try_share_anon_rmap(page)) {
1109                         set_pte_at(mm, pvmw.address, pvmw.pte, entry);
1110                         goto out_unlock;
1111                 }
1112
1113                 if (pte_dirty(entry))
1114                         set_page_dirty(page);
1115                 entry = pte_mkclean(entry);
1116
1117                 if (pte_write(entry))
1118                         entry = pte_wrprotect(entry);
1119
1120                 set_pte_at_notify(mm, pvmw.address, pvmw.pte, entry);
1121         }
1122         *orig_pte = *pvmw.pte;
1123         err = 0;
1124
1125 out_unlock:
1126         page_vma_mapped_walk_done(&pvmw);
1127 out_mn:
1128         mmu_notifier_invalidate_range_end(&range);
1129 out:
1130         return err;
1131 }
1132
1133 /**
1134  * replace_page - replace page in vma by new ksm page
1135  * @vma:      vma that holds the pte pointing to page
1136  * @page:     the page we are replacing by kpage
1137  * @kpage:    the ksm page we replace page by
1138  * @orig_pte: the original value of the pte
1139  *
1140  * Returns 0 on success, -EFAULT on failure.
1141  */
1142 static int replace_page(struct vm_area_struct *vma, struct page *page,
1143                         struct page *kpage, pte_t orig_pte)
1144 {
1145         struct mm_struct *mm = vma->vm_mm;
1146         struct folio *folio;
1147         pmd_t *pmd;
1148         pmd_t pmde;
1149         pte_t *ptep;
1150         pte_t newpte;
1151         spinlock_t *ptl;
1152         unsigned long addr;
1153         int err = -EFAULT;
1154         struct mmu_notifier_range range;
1155
1156         addr = page_address_in_vma(page, vma);
1157         if (addr == -EFAULT)
1158                 goto out;
1159
1160         pmd = mm_find_pmd(mm, addr);
1161         if (!pmd)
1162                 goto out;
1163         /*
1164          * Some THP functions use the sequence pmdp_huge_clear_flush(), set_pmd_at()
1165          * without holding anon_vma lock for write.  So when looking for a
1166          * genuine pmde (in which to find pte), test present and !THP together.
1167          */
1168         pmde = *pmd;
1169         barrier();
1170         if (!pmd_present(pmde) || pmd_trans_huge(pmde))
1171                 goto out;
1172
1173         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, addr,
1174                                 addr + PAGE_SIZE);
1175         mmu_notifier_invalidate_range_start(&range);
1176
1177         ptep = pte_offset_map_lock(mm, pmd, addr, &ptl);
1178         if (!pte_same(*ptep, orig_pte)) {
1179                 pte_unmap_unlock(ptep, ptl);
1180                 goto out_mn;
1181         }
1182         VM_BUG_ON_PAGE(PageAnonExclusive(page), page);
1183         VM_BUG_ON_PAGE(PageAnon(kpage) && PageAnonExclusive(kpage), kpage);
1184
1185         /*
1186          * No need to check ksm_use_zero_pages here: we can only have a
1187          * zero_page here if ksm_use_zero_pages was enabled already.
1188          */
1189         if (!is_zero_pfn(page_to_pfn(kpage))) {
1190                 get_page(kpage);
1191                 page_add_anon_rmap(kpage, vma, addr, RMAP_NONE);
1192                 newpte = mk_pte(kpage, vma->vm_page_prot);
1193         } else {
1194                 newpte = pte_mkspecial(pfn_pte(page_to_pfn(kpage),
1195                                                vma->vm_page_prot));
1196                 /*
1197                  * We're replacing an anonymous page with a zero page, which is
1198                  * not anonymous. We need to do proper accounting otherwise we
1199                  * will get wrong values in /proc, and a BUG message in dmesg
1200                  * when tearing down the mm.
1201                  */
1202                 dec_mm_counter(mm, MM_ANONPAGES);
1203         }
1204
1205         flush_cache_page(vma, addr, pte_pfn(*ptep));
1206         /*
1207          * No need to notify as we are replacing a read only page with another
1208          * read only page with the same content.
1209          *
1210          * See Documentation/mm/mmu_notifier.rst
1211          */
1212         ptep_clear_flush(vma, addr, ptep);
1213         set_pte_at_notify(mm, addr, ptep, newpte);
1214
1215         folio = page_folio(page);
1216         page_remove_rmap(page, vma, false);
1217         if (!folio_mapped(folio))
1218                 folio_free_swap(folio);
1219         folio_put(folio);
1220
1221         pte_unmap_unlock(ptep, ptl);
1222         err = 0;
1223 out_mn:
1224         mmu_notifier_invalidate_range_end(&range);
1225 out:
1226         return err;
1227 }
1228
1229 /*
1230  * try_to_merge_one_page - take two pages and merge them into one
1231  * @vma: the vma that holds the pte pointing to page
1232  * @page: the PageAnon page that we want to replace with kpage
1233  * @kpage: the PageKsm page that we want to map instead of page,
1234  *         or NULL the first time when we want to use page as kpage.
1235  *
1236  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1237  */
1238 static int try_to_merge_one_page(struct vm_area_struct *vma,
1239                                  struct page *page, struct page *kpage)
1240 {
1241         pte_t orig_pte = __pte(0);
1242         int err = -EFAULT;
1243
1244         if (page == kpage)                      /* ksm page forked */
1245                 return 0;
1246
1247         if (!PageAnon(page))
1248                 goto out;
1249
1250         /*
1251          * We need the page lock to read a stable PageSwapCache in
1252          * write_protect_page().  We use trylock_page() instead of
1253          * lock_page() because we don't want to wait here - we
1254          * prefer to continue scanning and merging different pages,
1255          * then come back to this page when it is unlocked.
1256          */
1257         if (!trylock_page(page))
1258                 goto out;
1259
1260         if (PageTransCompound(page)) {
1261                 if (split_huge_page(page))
1262                         goto out_unlock;
1263         }
1264
1265         /*
1266          * If this anonymous page is mapped only here, its pte may need
1267          * to be write-protected.  If it's mapped elsewhere, all of its
1268          * ptes are necessarily already write-protected.  But in either
1269          * case, we need to lock and check page_count is not raised.
1270          */
1271         if (write_protect_page(vma, page, &orig_pte) == 0) {
1272                 if (!kpage) {
1273                         /*
1274                          * While we hold page lock, upgrade page from
1275                          * PageAnon+anon_vma to PageKsm+NULL stable_node:
1276                          * stable_tree_insert() will update stable_node.
1277                          */
1278                         set_page_stable_node(page, NULL);
1279                         mark_page_accessed(page);
1280                         /*
1281                          * Page reclaim just frees a clean page with no dirty
1282                          * ptes: make sure that the ksm page would be swapped.
1283                          */
1284                         if (!PageDirty(page))
1285                                 SetPageDirty(page);
1286                         err = 0;
1287                 } else if (pages_identical(page, kpage))
1288                         err = replace_page(vma, page, kpage, orig_pte);
1289         }
1290
1291 out_unlock:
1292         unlock_page(page);
1293 out:
1294         return err;
1295 }
1296
1297 /*
1298  * try_to_merge_with_ksm_page - like try_to_merge_two_pages,
1299  * but no new kernel page is allocated: kpage must already be a ksm page.
1300  *
1301  * This function returns 0 if the pages were merged, -EFAULT otherwise.
1302  */
1303 static int try_to_merge_with_ksm_page(struct ksm_rmap_item *rmap_item,
1304                                       struct page *page, struct page *kpage)
1305 {
1306         struct mm_struct *mm = rmap_item->mm;
1307         struct vm_area_struct *vma;
1308         int err = -EFAULT;
1309
1310         mmap_read_lock(mm);
1311         vma = find_mergeable_vma(mm, rmap_item->address);
1312         if (!vma)
1313                 goto out;
1314
1315         err = try_to_merge_one_page(vma, page, kpage);
1316         if (err)
1317                 goto out;
1318
1319         /* Unstable nid is in union with stable anon_vma: remove first */
1320         remove_rmap_item_from_tree(rmap_item);
1321
1322         /* Must get reference to anon_vma while still holding mmap_lock */
1323         rmap_item->anon_vma = vma->anon_vma;
1324         get_anon_vma(vma->anon_vma);
1325 out:
1326         mmap_read_unlock(mm);
1327         return err;
1328 }
1329
1330 /*
1331  * try_to_merge_two_pages - take two identical pages and prepare them
1332  * to be merged into one page.
1333  *
1334  * This function returns the kpage if we successfully merged two identical
1335  * pages into one ksm page, NULL otherwise.
1336  *
1337  * Note that this function upgrades page to ksm page: if one of the pages
1338  * is already a ksm page, try_to_merge_with_ksm_page should be used.
1339  */
1340 static struct page *try_to_merge_two_pages(struct ksm_rmap_item *rmap_item,
1341                                            struct page *page,
1342                                            struct ksm_rmap_item *tree_rmap_item,
1343                                            struct page *tree_page)
1344 {
1345         int err;
1346
1347         err = try_to_merge_with_ksm_page(rmap_item, page, NULL);
1348         if (!err) {
1349                 err = try_to_merge_with_ksm_page(tree_rmap_item,
1350                                                         tree_page, page);
1351                 /*
1352                  * If that fails, we have a ksm page with only one pte
1353                  * pointing to it: so break it.
1354                  */
1355                 if (err)
1356                         break_cow(rmap_item);
1357         }
1358         return err ? NULL : page;
1359 }
1360
1361 static __always_inline
1362 bool __is_page_sharing_candidate(struct ksm_stable_node *stable_node, int offset)
1363 {
1364         VM_BUG_ON(stable_node->rmap_hlist_len < 0);
1365         /*
1366          * Check that at least one mapping still exists, otherwise
1367          * there's no much point to merge and share with this
1368          * stable_node, as the underlying tree_page of the other
1369          * sharer is going to be freed soon.
1370          */
1371         return stable_node->rmap_hlist_len &&
1372                 stable_node->rmap_hlist_len + offset < ksm_max_page_sharing;
1373 }
1374
1375 static __always_inline
1376 bool is_page_sharing_candidate(struct ksm_stable_node *stable_node)
1377 {
1378         return __is_page_sharing_candidate(stable_node, 0);
1379 }
1380
1381 static struct page *stable_node_dup(struct ksm_stable_node **_stable_node_dup,
1382                                     struct ksm_stable_node **_stable_node,
1383                                     struct rb_root *root,
1384                                     bool prune_stale_stable_nodes)
1385 {
1386         struct ksm_stable_node *dup, *found = NULL, *stable_node = *_stable_node;
1387         struct hlist_node *hlist_safe;
1388         struct page *_tree_page, *tree_page = NULL;
1389         int nr = 0;
1390         int found_rmap_hlist_len;
1391
1392         if (!prune_stale_stable_nodes ||
1393             time_before(jiffies, stable_node->chain_prune_time +
1394                         msecs_to_jiffies(
1395                                 ksm_stable_node_chains_prune_millisecs)))
1396                 prune_stale_stable_nodes = false;
1397         else
1398                 stable_node->chain_prune_time = jiffies;
1399
1400         hlist_for_each_entry_safe(dup, hlist_safe,
1401                                   &stable_node->hlist, hlist_dup) {
1402                 cond_resched();
1403                 /*
1404                  * We must walk all stable_node_dup to prune the stale
1405                  * stable nodes during lookup.
1406                  *
1407                  * get_ksm_page can drop the nodes from the
1408                  * stable_node->hlist if they point to freed pages
1409                  * (that's why we do a _safe walk). The "dup"
1410                  * stable_node parameter itself will be freed from
1411                  * under us if it returns NULL.
1412                  */
1413                 _tree_page = get_ksm_page(dup, GET_KSM_PAGE_NOLOCK);
1414                 if (!_tree_page)
1415                         continue;
1416                 nr += 1;
1417                 if (is_page_sharing_candidate(dup)) {
1418                         if (!found ||
1419                             dup->rmap_hlist_len > found_rmap_hlist_len) {
1420                                 if (found)
1421                                         put_page(tree_page);
1422                                 found = dup;
1423                                 found_rmap_hlist_len = found->rmap_hlist_len;
1424                                 tree_page = _tree_page;
1425
1426                                 /* skip put_page for found dup */
1427                                 if (!prune_stale_stable_nodes)
1428                                         break;
1429                                 continue;
1430                         }
1431                 }
1432                 put_page(_tree_page);
1433         }
1434
1435         if (found) {
1436                 /*
1437                  * nr is counting all dups in the chain only if
1438                  * prune_stale_stable_nodes is true, otherwise we may
1439                  * break the loop at nr == 1 even if there are
1440                  * multiple entries.
1441                  */
1442                 if (prune_stale_stable_nodes && nr == 1) {
1443                         /*
1444                          * If there's not just one entry it would
1445                          * corrupt memory, better BUG_ON. In KSM
1446                          * context with no lock held it's not even
1447                          * fatal.
1448                          */
1449                         BUG_ON(stable_node->hlist.first->next);
1450
1451                         /*
1452                          * There's just one entry and it is below the
1453                          * deduplication limit so drop the chain.
1454                          */
1455                         rb_replace_node(&stable_node->node, &found->node,
1456                                         root);
1457                         free_stable_node(stable_node);
1458                         ksm_stable_node_chains--;
1459                         ksm_stable_node_dups--;
1460                         /*
1461                          * NOTE: the caller depends on the stable_node
1462                          * to be equal to stable_node_dup if the chain
1463                          * was collapsed.
1464                          */
1465                         *_stable_node = found;
1466                         /*
1467                          * Just for robustness, as stable_node is
1468                          * otherwise left as a stable pointer, the
1469                          * compiler shall optimize it away at build
1470                          * time.
1471                          */
1472                         stable_node = NULL;
1473                 } else if (stable_node->hlist.first != &found->hlist_dup &&
1474                            __is_page_sharing_candidate(found, 1)) {
1475                         /*
1476                          * If the found stable_node dup can accept one
1477                          * more future merge (in addition to the one
1478                          * that is underway) and is not at the head of
1479                          * the chain, put it there so next search will
1480                          * be quicker in the !prune_stale_stable_nodes
1481                          * case.
1482                          *
1483                          * NOTE: it would be inaccurate to use nr > 1
1484                          * instead of checking the hlist.first pointer
1485                          * directly, because in the
1486                          * prune_stale_stable_nodes case "nr" isn't
1487                          * the position of the found dup in the chain,
1488                          * but the total number of dups in the chain.
1489                          */
1490                         hlist_del(&found->hlist_dup);
1491                         hlist_add_head(&found->hlist_dup,
1492                                        &stable_node->hlist);
1493                 }
1494         }
1495
1496         *_stable_node_dup = found;
1497         return tree_page;
1498 }
1499
1500 static struct ksm_stable_node *stable_node_dup_any(struct ksm_stable_node *stable_node,
1501                                                struct rb_root *root)
1502 {
1503         if (!is_stable_node_chain(stable_node))
1504                 return stable_node;
1505         if (hlist_empty(&stable_node->hlist)) {
1506                 free_stable_node_chain(stable_node, root);
1507                 return NULL;
1508         }
1509         return hlist_entry(stable_node->hlist.first,
1510                            typeof(*stable_node), hlist_dup);
1511 }
1512
1513 /*
1514  * Like for get_ksm_page, this function can free the *_stable_node and
1515  * *_stable_node_dup if the returned tree_page is NULL.
1516  *
1517  * It can also free and overwrite *_stable_node with the found
1518  * stable_node_dup if the chain is collapsed (in which case
1519  * *_stable_node will be equal to *_stable_node_dup like if the chain
1520  * never existed). It's up to the caller to verify tree_page is not
1521  * NULL before dereferencing *_stable_node or *_stable_node_dup.
1522  *
1523  * *_stable_node_dup is really a second output parameter of this
1524  * function and will be overwritten in all cases, the caller doesn't
1525  * need to initialize it.
1526  */
1527 static struct page *__stable_node_chain(struct ksm_stable_node **_stable_node_dup,
1528                                         struct ksm_stable_node **_stable_node,
1529                                         struct rb_root *root,
1530                                         bool prune_stale_stable_nodes)
1531 {
1532         struct ksm_stable_node *stable_node = *_stable_node;
1533         if (!is_stable_node_chain(stable_node)) {
1534                 if (is_page_sharing_candidate(stable_node)) {
1535                         *_stable_node_dup = stable_node;
1536                         return get_ksm_page(stable_node, GET_KSM_PAGE_NOLOCK);
1537                 }
1538                 /*
1539                  * _stable_node_dup set to NULL means the stable_node
1540                  * reached the ksm_max_page_sharing limit.
1541                  */
1542                 *_stable_node_dup = NULL;
1543                 return NULL;
1544         }
1545         return stable_node_dup(_stable_node_dup, _stable_node, root,
1546                                prune_stale_stable_nodes);
1547 }
1548
1549 static __always_inline struct page *chain_prune(struct ksm_stable_node **s_n_d,
1550                                                 struct ksm_stable_node **s_n,
1551                                                 struct rb_root *root)
1552 {
1553         return __stable_node_chain(s_n_d, s_n, root, true);
1554 }
1555
1556 static __always_inline struct page *chain(struct ksm_stable_node **s_n_d,
1557                                           struct ksm_stable_node *s_n,
1558                                           struct rb_root *root)
1559 {
1560         struct ksm_stable_node *old_stable_node = s_n;
1561         struct page *tree_page;
1562
1563         tree_page = __stable_node_chain(s_n_d, &s_n, root, false);
1564         /* not pruning dups so s_n cannot have changed */
1565         VM_BUG_ON(s_n != old_stable_node);
1566         return tree_page;
1567 }
1568
1569 /*
1570  * stable_tree_search - search for page inside the stable tree
1571  *
1572  * This function checks if there is a page inside the stable tree
1573  * with identical content to the page that we are scanning right now.
1574  *
1575  * This function returns the stable tree node of identical content if found,
1576  * NULL otherwise.
1577  */
1578 static struct page *stable_tree_search(struct page *page)
1579 {
1580         int nid;
1581         struct rb_root *root;
1582         struct rb_node **new;
1583         struct rb_node *parent;
1584         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1585         struct ksm_stable_node *page_node;
1586
1587         page_node = page_stable_node(page);
1588         if (page_node && page_node->head != &migrate_nodes) {
1589                 /* ksm page forked */
1590                 get_page(page);
1591                 return page;
1592         }
1593
1594         nid = get_kpfn_nid(page_to_pfn(page));
1595         root = root_stable_tree + nid;
1596 again:
1597         new = &root->rb_node;
1598         parent = NULL;
1599
1600         while (*new) {
1601                 struct page *tree_page;
1602                 int ret;
1603
1604                 cond_resched();
1605                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1606                 stable_node_any = NULL;
1607                 tree_page = chain_prune(&stable_node_dup, &stable_node, root);
1608                 /*
1609                  * NOTE: stable_node may have been freed by
1610                  * chain_prune() if the returned stable_node_dup is
1611                  * not NULL. stable_node_dup may have been inserted in
1612                  * the rbtree instead as a regular stable_node (in
1613                  * order to collapse the stable_node chain if a single
1614                  * stable_node dup was found in it). In such case the
1615                  * stable_node is overwritten by the callee to point
1616                  * to the stable_node_dup that was collapsed in the
1617                  * stable rbtree and stable_node will be equal to
1618                  * stable_node_dup like if the chain never existed.
1619                  */
1620                 if (!stable_node_dup) {
1621                         /*
1622                          * Either all stable_node dups were full in
1623                          * this stable_node chain, or this chain was
1624                          * empty and should be rb_erased.
1625                          */
1626                         stable_node_any = stable_node_dup_any(stable_node,
1627                                                               root);
1628                         if (!stable_node_any) {
1629                                 /* rb_erase just run */
1630                                 goto again;
1631                         }
1632                         /*
1633                          * Take any of the stable_node dups page of
1634                          * this stable_node chain to let the tree walk
1635                          * continue. All KSM pages belonging to the
1636                          * stable_node dups in a stable_node chain
1637                          * have the same content and they're
1638                          * write protected at all times. Any will work
1639                          * fine to continue the walk.
1640                          */
1641                         tree_page = get_ksm_page(stable_node_any,
1642                                                  GET_KSM_PAGE_NOLOCK);
1643                 }
1644                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1645                 if (!tree_page) {
1646                         /*
1647                          * If we walked over a stale stable_node,
1648                          * get_ksm_page() will call rb_erase() and it
1649                          * may rebalance the tree from under us. So
1650                          * restart the search from scratch. Returning
1651                          * NULL would be safe too, but we'd generate
1652                          * false negative insertions just because some
1653                          * stable_node was stale.
1654                          */
1655                         goto again;
1656                 }
1657
1658                 ret = memcmp_pages(page, tree_page);
1659                 put_page(tree_page);
1660
1661                 parent = *new;
1662                 if (ret < 0)
1663                         new = &parent->rb_left;
1664                 else if (ret > 0)
1665                         new = &parent->rb_right;
1666                 else {
1667                         if (page_node) {
1668                                 VM_BUG_ON(page_node->head != &migrate_nodes);
1669                                 /*
1670                                  * Test if the migrated page should be merged
1671                                  * into a stable node dup. If the mapcount is
1672                                  * 1 we can migrate it with another KSM page
1673                                  * without adding it to the chain.
1674                                  */
1675                                 if (page_mapcount(page) > 1)
1676                                         goto chain_append;
1677                         }
1678
1679                         if (!stable_node_dup) {
1680                                 /*
1681                                  * If the stable_node is a chain and
1682                                  * we got a payload match in memcmp
1683                                  * but we cannot merge the scanned
1684                                  * page in any of the existing
1685                                  * stable_node dups because they're
1686                                  * all full, we need to wait the
1687                                  * scanned page to find itself a match
1688                                  * in the unstable tree to create a
1689                                  * brand new KSM page to add later to
1690                                  * the dups of this stable_node.
1691                                  */
1692                                 return NULL;
1693                         }
1694
1695                         /*
1696                          * Lock and unlock the stable_node's page (which
1697                          * might already have been migrated) so that page
1698                          * migration is sure to notice its raised count.
1699                          * It would be more elegant to return stable_node
1700                          * than kpage, but that involves more changes.
1701                          */
1702                         tree_page = get_ksm_page(stable_node_dup,
1703                                                  GET_KSM_PAGE_TRYLOCK);
1704
1705                         if (PTR_ERR(tree_page) == -EBUSY)
1706                                 return ERR_PTR(-EBUSY);
1707
1708                         if (unlikely(!tree_page))
1709                                 /*
1710                                  * The tree may have been rebalanced,
1711                                  * so re-evaluate parent and new.
1712                                  */
1713                                 goto again;
1714                         unlock_page(tree_page);
1715
1716                         if (get_kpfn_nid(stable_node_dup->kpfn) !=
1717                             NUMA(stable_node_dup->nid)) {
1718                                 put_page(tree_page);
1719                                 goto replace;
1720                         }
1721                         return tree_page;
1722                 }
1723         }
1724
1725         if (!page_node)
1726                 return NULL;
1727
1728         list_del(&page_node->list);
1729         DO_NUMA(page_node->nid = nid);
1730         rb_link_node(&page_node->node, parent, new);
1731         rb_insert_color(&page_node->node, root);
1732 out:
1733         if (is_page_sharing_candidate(page_node)) {
1734                 get_page(page);
1735                 return page;
1736         } else
1737                 return NULL;
1738
1739 replace:
1740         /*
1741          * If stable_node was a chain and chain_prune collapsed it,
1742          * stable_node has been updated to be the new regular
1743          * stable_node. A collapse of the chain is indistinguishable
1744          * from the case there was no chain in the stable
1745          * rbtree. Otherwise stable_node is the chain and
1746          * stable_node_dup is the dup to replace.
1747          */
1748         if (stable_node_dup == stable_node) {
1749                 VM_BUG_ON(is_stable_node_chain(stable_node_dup));
1750                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1751                 /* there is no chain */
1752                 if (page_node) {
1753                         VM_BUG_ON(page_node->head != &migrate_nodes);
1754                         list_del(&page_node->list);
1755                         DO_NUMA(page_node->nid = nid);
1756                         rb_replace_node(&stable_node_dup->node,
1757                                         &page_node->node,
1758                                         root);
1759                         if (is_page_sharing_candidate(page_node))
1760                                 get_page(page);
1761                         else
1762                                 page = NULL;
1763                 } else {
1764                         rb_erase(&stable_node_dup->node, root);
1765                         page = NULL;
1766                 }
1767         } else {
1768                 VM_BUG_ON(!is_stable_node_chain(stable_node));
1769                 __stable_node_dup_del(stable_node_dup);
1770                 if (page_node) {
1771                         VM_BUG_ON(page_node->head != &migrate_nodes);
1772                         list_del(&page_node->list);
1773                         DO_NUMA(page_node->nid = nid);
1774                         stable_node_chain_add_dup(page_node, stable_node);
1775                         if (is_page_sharing_candidate(page_node))
1776                                 get_page(page);
1777                         else
1778                                 page = NULL;
1779                 } else {
1780                         page = NULL;
1781                 }
1782         }
1783         stable_node_dup->head = &migrate_nodes;
1784         list_add(&stable_node_dup->list, stable_node_dup->head);
1785         return page;
1786
1787 chain_append:
1788         /* stable_node_dup could be null if it reached the limit */
1789         if (!stable_node_dup)
1790                 stable_node_dup = stable_node_any;
1791         /*
1792          * If stable_node was a chain and chain_prune collapsed it,
1793          * stable_node has been updated to be the new regular
1794          * stable_node. A collapse of the chain is indistinguishable
1795          * from the case there was no chain in the stable
1796          * rbtree. Otherwise stable_node is the chain and
1797          * stable_node_dup is the dup to replace.
1798          */
1799         if (stable_node_dup == stable_node) {
1800                 VM_BUG_ON(is_stable_node_dup(stable_node_dup));
1801                 /* chain is missing so create it */
1802                 stable_node = alloc_stable_node_chain(stable_node_dup,
1803                                                       root);
1804                 if (!stable_node)
1805                         return NULL;
1806         }
1807         /*
1808          * Add this stable_node dup that was
1809          * migrated to the stable_node chain
1810          * of the current nid for this page
1811          * content.
1812          */
1813         VM_BUG_ON(!is_stable_node_dup(stable_node_dup));
1814         VM_BUG_ON(page_node->head != &migrate_nodes);
1815         list_del(&page_node->list);
1816         DO_NUMA(page_node->nid = nid);
1817         stable_node_chain_add_dup(page_node, stable_node);
1818         goto out;
1819 }
1820
1821 /*
1822  * stable_tree_insert - insert stable tree node pointing to new ksm page
1823  * into the stable tree.
1824  *
1825  * This function returns the stable tree node just allocated on success,
1826  * NULL otherwise.
1827  */
1828 static struct ksm_stable_node *stable_tree_insert(struct page *kpage)
1829 {
1830         int nid;
1831         unsigned long kpfn;
1832         struct rb_root *root;
1833         struct rb_node **new;
1834         struct rb_node *parent;
1835         struct ksm_stable_node *stable_node, *stable_node_dup, *stable_node_any;
1836         bool need_chain = false;
1837
1838         kpfn = page_to_pfn(kpage);
1839         nid = get_kpfn_nid(kpfn);
1840         root = root_stable_tree + nid;
1841 again:
1842         parent = NULL;
1843         new = &root->rb_node;
1844
1845         while (*new) {
1846                 struct page *tree_page;
1847                 int ret;
1848
1849                 cond_resched();
1850                 stable_node = rb_entry(*new, struct ksm_stable_node, node);
1851                 stable_node_any = NULL;
1852                 tree_page = chain(&stable_node_dup, stable_node, root);
1853                 if (!stable_node_dup) {
1854                         /*
1855                          * Either all stable_node dups were full in
1856                          * this stable_node chain, or this chain was
1857                          * empty and should be rb_erased.
1858                          */
1859                         stable_node_any = stable_node_dup_any(stable_node,
1860                                                               root);
1861                         if (!stable_node_any) {
1862                                 /* rb_erase just run */
1863                                 goto again;
1864                         }
1865                         /*
1866                          * Take any of the stable_node dups page of
1867                          * this stable_node chain to let the tree walk
1868                          * continue. All KSM pages belonging to the
1869                          * stable_node dups in a stable_node chain
1870                          * have the same content and they're
1871                          * write protected at all times. Any will work
1872                          * fine to continue the walk.
1873                          */
1874                         tree_page = get_ksm_page(stable_node_any,
1875                                                  GET_KSM_PAGE_NOLOCK);
1876                 }
1877                 VM_BUG_ON(!stable_node_dup ^ !!stable_node_any);
1878                 if (!tree_page) {
1879                         /*
1880                          * If we walked over a stale stable_node,
1881                          * get_ksm_page() will call rb_erase() and it
1882                          * may rebalance the tree from under us. So
1883                          * restart the search from scratch. Returning
1884                          * NULL would be safe too, but we'd generate
1885                          * false negative insertions just because some
1886                          * stable_node was stale.
1887                          */
1888                         goto again;
1889                 }
1890
1891                 ret = memcmp_pages(kpage, tree_page);
1892                 put_page(tree_page);
1893
1894                 parent = *new;
1895                 if (ret < 0)
1896                         new = &parent->rb_left;
1897                 else if (ret > 0)
1898                         new = &parent->rb_right;
1899                 else {
1900                         need_chain = true;
1901                         break;
1902                 }
1903         }
1904
1905         stable_node_dup = alloc_stable_node();
1906         if (!stable_node_dup)
1907                 return NULL;
1908
1909         INIT_HLIST_HEAD(&stable_node_dup->hlist);
1910         stable_node_dup->kpfn = kpfn;
1911         set_page_stable_node(kpage, stable_node_dup);
1912         stable_node_dup->rmap_hlist_len = 0;
1913         DO_NUMA(stable_node_dup->nid = nid);
1914         if (!need_chain) {
1915                 rb_link_node(&stable_node_dup->node, parent, new);
1916                 rb_insert_color(&stable_node_dup->node, root);
1917         } else {
1918                 if (!is_stable_node_chain(stable_node)) {
1919                         struct ksm_stable_node *orig = stable_node;
1920                         /* chain is missing so create it */
1921                         stable_node = alloc_stable_node_chain(orig, root);
1922                         if (!stable_node) {
1923                                 free_stable_node(stable_node_dup);
1924                                 return NULL;
1925                         }
1926                 }
1927                 stable_node_chain_add_dup(stable_node_dup, stable_node);
1928         }
1929
1930         return stable_node_dup;
1931 }
1932
1933 /*
1934  * unstable_tree_search_insert - search for identical page,
1935  * else insert rmap_item into the unstable tree.
1936  *
1937  * This function searches for a page in the unstable tree identical to the
1938  * page currently being scanned; and if no identical page is found in the
1939  * tree, we insert rmap_item as a new object into the unstable tree.
1940  *
1941  * This function returns pointer to rmap_item found to be identical
1942  * to the currently scanned page, NULL otherwise.
1943  *
1944  * This function does both searching and inserting, because they share
1945  * the same walking algorithm in an rbtree.
1946  */
1947 static
1948 struct ksm_rmap_item *unstable_tree_search_insert(struct ksm_rmap_item *rmap_item,
1949                                               struct page *page,
1950                                               struct page **tree_pagep)
1951 {
1952         struct rb_node **new;
1953         struct rb_root *root;
1954         struct rb_node *parent = NULL;
1955         int nid;
1956
1957         nid = get_kpfn_nid(page_to_pfn(page));
1958         root = root_unstable_tree + nid;
1959         new = &root->rb_node;
1960
1961         while (*new) {
1962                 struct ksm_rmap_item *tree_rmap_item;
1963                 struct page *tree_page;
1964                 int ret;
1965
1966                 cond_resched();
1967                 tree_rmap_item = rb_entry(*new, struct ksm_rmap_item, node);
1968                 tree_page = get_mergeable_page(tree_rmap_item);
1969                 if (!tree_page)
1970                         return NULL;
1971
1972                 /*
1973                  * Don't substitute a ksm page for a forked page.
1974                  */
1975                 if (page == tree_page) {
1976                         put_page(tree_page);
1977                         return NULL;
1978                 }
1979
1980                 ret = memcmp_pages(page, tree_page);
1981
1982                 parent = *new;
1983                 if (ret < 0) {
1984                         put_page(tree_page);
1985                         new = &parent->rb_left;
1986                 } else if (ret > 0) {
1987                         put_page(tree_page);
1988                         new = &parent->rb_right;
1989                 } else if (!ksm_merge_across_nodes &&
1990                            page_to_nid(tree_page) != nid) {
1991                         /*
1992                          * If tree_page has been migrated to another NUMA node,
1993                          * it will be flushed out and put in the right unstable
1994                          * tree next time: only merge with it when across_nodes.
1995                          */
1996                         put_page(tree_page);
1997                         return NULL;
1998                 } else {
1999                         *tree_pagep = tree_page;
2000                         return tree_rmap_item;
2001                 }
2002         }
2003
2004         rmap_item->address |= UNSTABLE_FLAG;
2005         rmap_item->address |= (ksm_scan.seqnr & SEQNR_MASK);
2006         DO_NUMA(rmap_item->nid = nid);
2007         rb_link_node(&rmap_item->node, parent, new);
2008         rb_insert_color(&rmap_item->node, root);
2009
2010         ksm_pages_unshared++;
2011         return NULL;
2012 }
2013
2014 /*
2015  * stable_tree_append - add another rmap_item to the linked list of
2016  * rmap_items hanging off a given node of the stable tree, all sharing
2017  * the same ksm page.
2018  */
2019 static void stable_tree_append(struct ksm_rmap_item *rmap_item,
2020                                struct ksm_stable_node *stable_node,
2021                                bool max_page_sharing_bypass)
2022 {
2023         /*
2024          * rmap won't find this mapping if we don't insert the
2025          * rmap_item in the right stable_node
2026          * duplicate. page_migration could break later if rmap breaks,
2027          * so we can as well crash here. We really need to check for
2028          * rmap_hlist_len == STABLE_NODE_CHAIN, but we can as well check
2029          * for other negative values as an underflow if detected here
2030          * for the first time (and not when decreasing rmap_hlist_len)
2031          * would be sign of memory corruption in the stable_node.
2032          */
2033         BUG_ON(stable_node->rmap_hlist_len < 0);
2034
2035         stable_node->rmap_hlist_len++;
2036         if (!max_page_sharing_bypass)
2037                 /* possibly non fatal but unexpected overflow, only warn */
2038                 WARN_ON_ONCE(stable_node->rmap_hlist_len >
2039                              ksm_max_page_sharing);
2040
2041         rmap_item->head = stable_node;
2042         rmap_item->address |= STABLE_FLAG;
2043         hlist_add_head(&rmap_item->hlist, &stable_node->hlist);
2044
2045         if (rmap_item->hlist.next)
2046                 ksm_pages_sharing++;
2047         else
2048                 ksm_pages_shared++;
2049
2050         rmap_item->mm->ksm_merging_pages++;
2051 }
2052
2053 /*
2054  * cmp_and_merge_page - first see if page can be merged into the stable tree;
2055  * if not, compare checksum to previous and if it's the same, see if page can
2056  * be inserted into the unstable tree, or merged with a page already there and
2057  * both transferred to the stable tree.
2058  *
2059  * @page: the page that we are searching identical page to.
2060  * @rmap_item: the reverse mapping into the virtual address of this page
2061  */
2062 static void cmp_and_merge_page(struct page *page, struct ksm_rmap_item *rmap_item)
2063 {
2064         struct mm_struct *mm = rmap_item->mm;
2065         struct ksm_rmap_item *tree_rmap_item;
2066         struct page *tree_page = NULL;
2067         struct ksm_stable_node *stable_node;
2068         struct page *kpage;
2069         unsigned int checksum;
2070         int err;
2071         bool max_page_sharing_bypass = false;
2072
2073         stable_node = page_stable_node(page);
2074         if (stable_node) {
2075                 if (stable_node->head != &migrate_nodes &&
2076                     get_kpfn_nid(READ_ONCE(stable_node->kpfn)) !=
2077                     NUMA(stable_node->nid)) {
2078                         stable_node_dup_del(stable_node);
2079                         stable_node->head = &migrate_nodes;
2080                         list_add(&stable_node->list, stable_node->head);
2081                 }
2082                 if (stable_node->head != &migrate_nodes &&
2083                     rmap_item->head == stable_node)
2084                         return;
2085                 /*
2086                  * If it's a KSM fork, allow it to go over the sharing limit
2087                  * without warnings.
2088                  */
2089                 if (!is_page_sharing_candidate(stable_node))
2090                         max_page_sharing_bypass = true;
2091         }
2092
2093         /* We first start with searching the page inside the stable tree */
2094         kpage = stable_tree_search(page);
2095         if (kpage == page && rmap_item->head == stable_node) {
2096                 put_page(kpage);
2097                 return;
2098         }
2099
2100         remove_rmap_item_from_tree(rmap_item);
2101
2102         if (kpage) {
2103                 if (PTR_ERR(kpage) == -EBUSY)
2104                         return;
2105
2106                 err = try_to_merge_with_ksm_page(rmap_item, page, kpage);
2107                 if (!err) {
2108                         /*
2109                          * The page was successfully merged:
2110                          * add its rmap_item to the stable tree.
2111                          */
2112                         lock_page(kpage);
2113                         stable_tree_append(rmap_item, page_stable_node(kpage),
2114                                            max_page_sharing_bypass);
2115                         unlock_page(kpage);
2116                 }
2117                 put_page(kpage);
2118                 return;
2119         }
2120
2121         /*
2122          * If the hash value of the page has changed from the last time
2123          * we calculated it, this page is changing frequently: therefore we
2124          * don't want to insert it in the unstable tree, and we don't want
2125          * to waste our time searching for something identical to it there.
2126          */
2127         checksum = calc_checksum(page);
2128         if (rmap_item->oldchecksum != checksum) {
2129                 rmap_item->oldchecksum = checksum;
2130                 return;
2131         }
2132
2133         /*
2134          * Same checksum as an empty page. We attempt to merge it with the
2135          * appropriate zero page if the user enabled this via sysfs.
2136          */
2137         if (ksm_use_zero_pages && (checksum == zero_checksum)) {
2138                 struct vm_area_struct *vma;
2139
2140                 mmap_read_lock(mm);
2141                 vma = find_mergeable_vma(mm, rmap_item->address);
2142                 if (vma) {
2143                         err = try_to_merge_one_page(vma, page,
2144                                         ZERO_PAGE(rmap_item->address));
2145                 } else {
2146                         /*
2147                          * If the vma is out of date, we do not need to
2148                          * continue.
2149                          */
2150                         err = 0;
2151                 }
2152                 mmap_read_unlock(mm);
2153                 /*
2154                  * In case of failure, the page was not really empty, so we
2155                  * need to continue. Otherwise we're done.
2156                  */
2157                 if (!err)
2158                         return;
2159         }
2160         tree_rmap_item =
2161                 unstable_tree_search_insert(rmap_item, page, &tree_page);
2162         if (tree_rmap_item) {
2163                 bool split;
2164
2165                 kpage = try_to_merge_two_pages(rmap_item, page,
2166                                                 tree_rmap_item, tree_page);
2167                 /*
2168                  * If both pages we tried to merge belong to the same compound
2169                  * page, then we actually ended up increasing the reference
2170                  * count of the same compound page twice, and split_huge_page
2171                  * failed.
2172                  * Here we set a flag if that happened, and we use it later to
2173                  * try split_huge_page again. Since we call put_page right
2174                  * afterwards, the reference count will be correct and
2175                  * split_huge_page should succeed.
2176                  */
2177                 split = PageTransCompound(page)
2178                         && compound_head(page) == compound_head(tree_page);
2179                 put_page(tree_page);
2180                 if (kpage) {
2181                         /*
2182                          * The pages were successfully merged: insert new
2183                          * node in the stable tree and add both rmap_items.
2184                          */
2185                         lock_page(kpage);
2186                         stable_node = stable_tree_insert(kpage);
2187                         if (stable_node) {
2188                                 stable_tree_append(tree_rmap_item, stable_node,
2189                                                    false);
2190                                 stable_tree_append(rmap_item, stable_node,
2191                                                    false);
2192                         }
2193                         unlock_page(kpage);
2194
2195                         /*
2196                          * If we fail to insert the page into the stable tree,
2197                          * we will have 2 virtual addresses that are pointing
2198                          * to a ksm page left outside the stable tree,
2199                          * in which case we need to break_cow on both.
2200                          */
2201                         if (!stable_node) {
2202                                 break_cow(tree_rmap_item);
2203                                 break_cow(rmap_item);
2204                         }
2205                 } else if (split) {
2206                         /*
2207                          * We are here if we tried to merge two pages and
2208                          * failed because they both belonged to the same
2209                          * compound page. We will split the page now, but no
2210                          * merging will take place.
2211                          * We do not want to add the cost of a full lock; if
2212                          * the page is locked, it is better to skip it and
2213                          * perhaps try again later.
2214                          */
2215                         if (!trylock_page(page))
2216                                 return;
2217                         split_huge_page(page);
2218                         unlock_page(page);
2219                 }
2220         }
2221 }
2222
2223 static struct ksm_rmap_item *get_next_rmap_item(struct ksm_mm_slot *mm_slot,
2224                                             struct ksm_rmap_item **rmap_list,
2225                                             unsigned long addr)
2226 {
2227         struct ksm_rmap_item *rmap_item;
2228
2229         while (*rmap_list) {
2230                 rmap_item = *rmap_list;
2231                 if ((rmap_item->address & PAGE_MASK) == addr)
2232                         return rmap_item;
2233                 if (rmap_item->address > addr)
2234                         break;
2235                 *rmap_list = rmap_item->rmap_list;
2236                 remove_rmap_item_from_tree(rmap_item);
2237                 free_rmap_item(rmap_item);
2238         }
2239
2240         rmap_item = alloc_rmap_item();
2241         if (rmap_item) {
2242                 /* It has already been zeroed */
2243                 rmap_item->mm = mm_slot->slot.mm;
2244                 rmap_item->mm->ksm_rmap_items++;
2245                 rmap_item->address = addr;
2246                 rmap_item->rmap_list = *rmap_list;
2247                 *rmap_list = rmap_item;
2248         }
2249         return rmap_item;
2250 }
2251
2252 static struct ksm_rmap_item *scan_get_next_rmap_item(struct page **page)
2253 {
2254         struct mm_struct *mm;
2255         struct ksm_mm_slot *mm_slot;
2256         struct mm_slot *slot;
2257         struct vm_area_struct *vma;
2258         struct ksm_rmap_item *rmap_item;
2259         struct vma_iterator vmi;
2260         int nid;
2261
2262         if (list_empty(&ksm_mm_head.slot.mm_node))
2263                 return NULL;
2264
2265         mm_slot = ksm_scan.mm_slot;
2266         if (mm_slot == &ksm_mm_head) {
2267                 /*
2268                  * A number of pages can hang around indefinitely on per-cpu
2269                  * pagevecs, raised page count preventing write_protect_page
2270                  * from merging them.  Though it doesn't really matter much,
2271                  * it is puzzling to see some stuck in pages_volatile until
2272                  * other activity jostles them out, and they also prevented
2273                  * LTP's KSM test from succeeding deterministically; so drain
2274                  * them here (here rather than on entry to ksm_do_scan(),
2275                  * so we don't IPI too often when pages_to_scan is set low).
2276                  */
2277                 lru_add_drain_all();
2278
2279                 /*
2280                  * Whereas stale stable_nodes on the stable_tree itself
2281                  * get pruned in the regular course of stable_tree_search(),
2282                  * those moved out to the migrate_nodes list can accumulate:
2283                  * so prune them once before each full scan.
2284                  */
2285                 if (!ksm_merge_across_nodes) {
2286                         struct ksm_stable_node *stable_node, *next;
2287                         struct page *page;
2288
2289                         list_for_each_entry_safe(stable_node, next,
2290                                                  &migrate_nodes, list) {
2291                                 page = get_ksm_page(stable_node,
2292                                                     GET_KSM_PAGE_NOLOCK);
2293                                 if (page)
2294                                         put_page(page);
2295                                 cond_resched();
2296                         }
2297                 }
2298
2299                 for (nid = 0; nid < ksm_nr_node_ids; nid++)
2300                         root_unstable_tree[nid] = RB_ROOT;
2301
2302                 spin_lock(&ksm_mmlist_lock);
2303                 slot = list_entry(mm_slot->slot.mm_node.next,
2304                                   struct mm_slot, mm_node);
2305                 mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2306                 ksm_scan.mm_slot = mm_slot;
2307                 spin_unlock(&ksm_mmlist_lock);
2308                 /*
2309                  * Although we tested list_empty() above, a racing __ksm_exit
2310                  * of the last mm on the list may have removed it since then.
2311                  */
2312                 if (mm_slot == &ksm_mm_head)
2313                         return NULL;
2314 next_mm:
2315                 ksm_scan.address = 0;
2316                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2317         }
2318
2319         slot = &mm_slot->slot;
2320         mm = slot->mm;
2321         vma_iter_init(&vmi, mm, ksm_scan.address);
2322
2323         mmap_read_lock(mm);
2324         if (ksm_test_exit(mm))
2325                 goto no_vmas;
2326
2327         for_each_vma(vmi, vma) {
2328                 if (!(vma->vm_flags & VM_MERGEABLE))
2329                         continue;
2330                 if (ksm_scan.address < vma->vm_start)
2331                         ksm_scan.address = vma->vm_start;
2332                 if (!vma->anon_vma)
2333                         ksm_scan.address = vma->vm_end;
2334
2335                 while (ksm_scan.address < vma->vm_end) {
2336                         if (ksm_test_exit(mm))
2337                                 break;
2338                         *page = follow_page(vma, ksm_scan.address, FOLL_GET);
2339                         if (IS_ERR_OR_NULL(*page)) {
2340                                 ksm_scan.address += PAGE_SIZE;
2341                                 cond_resched();
2342                                 continue;
2343                         }
2344                         if (is_zone_device_page(*page))
2345                                 goto next_page;
2346                         if (PageAnon(*page)) {
2347                                 flush_anon_page(vma, *page, ksm_scan.address);
2348                                 flush_dcache_page(*page);
2349                                 rmap_item = get_next_rmap_item(mm_slot,
2350                                         ksm_scan.rmap_list, ksm_scan.address);
2351                                 if (rmap_item) {
2352                                         ksm_scan.rmap_list =
2353                                                         &rmap_item->rmap_list;
2354                                         ksm_scan.address += PAGE_SIZE;
2355                                 } else
2356                                         put_page(*page);
2357                                 mmap_read_unlock(mm);
2358                                 return rmap_item;
2359                         }
2360 next_page:
2361                         put_page(*page);
2362                         ksm_scan.address += PAGE_SIZE;
2363                         cond_resched();
2364                 }
2365         }
2366
2367         if (ksm_test_exit(mm)) {
2368 no_vmas:
2369                 ksm_scan.address = 0;
2370                 ksm_scan.rmap_list = &mm_slot->rmap_list;
2371         }
2372         /*
2373          * Nuke all the rmap_items that are above this current rmap:
2374          * because there were no VM_MERGEABLE vmas with such addresses.
2375          */
2376         remove_trailing_rmap_items(ksm_scan.rmap_list);
2377
2378         spin_lock(&ksm_mmlist_lock);
2379         slot = list_entry(mm_slot->slot.mm_node.next,
2380                           struct mm_slot, mm_node);
2381         ksm_scan.mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2382         if (ksm_scan.address == 0) {
2383                 /*
2384                  * We've completed a full scan of all vmas, holding mmap_lock
2385                  * throughout, and found no VM_MERGEABLE: so do the same as
2386                  * __ksm_exit does to remove this mm from all our lists now.
2387                  * This applies either when cleaning up after __ksm_exit
2388                  * (but beware: we can reach here even before __ksm_exit),
2389                  * or when all VM_MERGEABLE areas have been unmapped (and
2390                  * mmap_lock then protects against race with MADV_MERGEABLE).
2391                  */
2392                 hash_del(&mm_slot->slot.hash);
2393                 list_del(&mm_slot->slot.mm_node);
2394                 spin_unlock(&ksm_mmlist_lock);
2395
2396                 mm_slot_free(mm_slot_cache, mm_slot);
2397                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2398                 mmap_read_unlock(mm);
2399                 mmdrop(mm);
2400         } else {
2401                 mmap_read_unlock(mm);
2402                 /*
2403                  * mmap_read_unlock(mm) first because after
2404                  * spin_unlock(&ksm_mmlist_lock) run, the "mm" may
2405                  * already have been freed under us by __ksm_exit()
2406                  * because the "mm_slot" is still hashed and
2407                  * ksm_scan.mm_slot doesn't point to it anymore.
2408                  */
2409                 spin_unlock(&ksm_mmlist_lock);
2410         }
2411
2412         /* Repeat until we've completed scanning the whole list */
2413         mm_slot = ksm_scan.mm_slot;
2414         if (mm_slot != &ksm_mm_head)
2415                 goto next_mm;
2416
2417         ksm_scan.seqnr++;
2418         return NULL;
2419 }
2420
2421 /**
2422  * ksm_do_scan  - the ksm scanner main worker function.
2423  * @scan_npages:  number of pages we want to scan before we return.
2424  */
2425 static void ksm_do_scan(unsigned int scan_npages)
2426 {
2427         struct ksm_rmap_item *rmap_item;
2428         struct page *page;
2429
2430         while (scan_npages-- && likely(!freezing(current))) {
2431                 cond_resched();
2432                 rmap_item = scan_get_next_rmap_item(&page);
2433                 if (!rmap_item)
2434                         return;
2435                 cmp_and_merge_page(page, rmap_item);
2436                 put_page(page);
2437         }
2438 }
2439
2440 static int ksmd_should_run(void)
2441 {
2442         return (ksm_run & KSM_RUN_MERGE) && !list_empty(&ksm_mm_head.slot.mm_node);
2443 }
2444
2445 static int ksm_scan_thread(void *nothing)
2446 {
2447         unsigned int sleep_ms;
2448
2449         set_freezable();
2450         set_user_nice(current, 5);
2451
2452         while (!kthread_should_stop()) {
2453                 mutex_lock(&ksm_thread_mutex);
2454                 wait_while_offlining();
2455                 if (ksmd_should_run())
2456                         ksm_do_scan(ksm_thread_pages_to_scan);
2457                 mutex_unlock(&ksm_thread_mutex);
2458
2459                 try_to_freeze();
2460
2461                 if (ksmd_should_run()) {
2462                         sleep_ms = READ_ONCE(ksm_thread_sleep_millisecs);
2463                         wait_event_interruptible_timeout(ksm_iter_wait,
2464                                 sleep_ms != READ_ONCE(ksm_thread_sleep_millisecs),
2465                                 msecs_to_jiffies(sleep_ms));
2466                 } else {
2467                         wait_event_freezable(ksm_thread_wait,
2468                                 ksmd_should_run() || kthread_should_stop());
2469                 }
2470         }
2471         return 0;
2472 }
2473
2474 int ksm_madvise(struct vm_area_struct *vma, unsigned long start,
2475                 unsigned long end, int advice, unsigned long *vm_flags)
2476 {
2477         struct mm_struct *mm = vma->vm_mm;
2478         int err;
2479
2480         switch (advice) {
2481         case MADV_MERGEABLE:
2482                 /*
2483                  * Be somewhat over-protective for now!
2484                  */
2485                 if (*vm_flags & (VM_MERGEABLE | VM_SHARED  | VM_MAYSHARE   |
2486                                  VM_PFNMAP    | VM_IO      | VM_DONTEXPAND |
2487                                  VM_HUGETLB | VM_MIXEDMAP))
2488                         return 0;               /* just ignore the advice */
2489
2490                 if (vma_is_dax(vma))
2491                         return 0;
2492
2493 #ifdef VM_SAO
2494                 if (*vm_flags & VM_SAO)
2495                         return 0;
2496 #endif
2497 #ifdef VM_SPARC_ADI
2498                 if (*vm_flags & VM_SPARC_ADI)
2499                         return 0;
2500 #endif
2501
2502                 if (!test_bit(MMF_VM_MERGEABLE, &mm->flags)) {
2503                         err = __ksm_enter(mm);
2504                         if (err)
2505                                 return err;
2506                 }
2507
2508                 *vm_flags |= VM_MERGEABLE;
2509                 break;
2510
2511         case MADV_UNMERGEABLE:
2512                 if (!(*vm_flags & VM_MERGEABLE))
2513                         return 0;               /* just ignore the advice */
2514
2515                 if (vma->anon_vma) {
2516                         err = unmerge_ksm_pages(vma, start, end);
2517                         if (err)
2518                                 return err;
2519                 }
2520
2521                 *vm_flags &= ~VM_MERGEABLE;
2522                 break;
2523         }
2524
2525         return 0;
2526 }
2527 EXPORT_SYMBOL_GPL(ksm_madvise);
2528
2529 int __ksm_enter(struct mm_struct *mm)
2530 {
2531         struct ksm_mm_slot *mm_slot;
2532         struct mm_slot *slot;
2533         int needs_wakeup;
2534
2535         mm_slot = mm_slot_alloc(mm_slot_cache);
2536         if (!mm_slot)
2537                 return -ENOMEM;
2538
2539         slot = &mm_slot->slot;
2540
2541         /* Check ksm_run too?  Would need tighter locking */
2542         needs_wakeup = list_empty(&ksm_mm_head.slot.mm_node);
2543
2544         spin_lock(&ksm_mmlist_lock);
2545         mm_slot_insert(mm_slots_hash, mm, slot);
2546         /*
2547          * When KSM_RUN_MERGE (or KSM_RUN_STOP),
2548          * insert just behind the scanning cursor, to let the area settle
2549          * down a little; when fork is followed by immediate exec, we don't
2550          * want ksmd to waste time setting up and tearing down an rmap_list.
2551          *
2552          * But when KSM_RUN_UNMERGE, it's important to insert ahead of its
2553          * scanning cursor, otherwise KSM pages in newly forked mms will be
2554          * missed: then we might as well insert at the end of the list.
2555          */
2556         if (ksm_run & KSM_RUN_UNMERGE)
2557                 list_add_tail(&slot->mm_node, &ksm_mm_head.slot.mm_node);
2558         else
2559                 list_add_tail(&slot->mm_node, &ksm_scan.mm_slot->slot.mm_node);
2560         spin_unlock(&ksm_mmlist_lock);
2561
2562         set_bit(MMF_VM_MERGEABLE, &mm->flags);
2563         mmgrab(mm);
2564
2565         if (needs_wakeup)
2566                 wake_up_interruptible(&ksm_thread_wait);
2567
2568         return 0;
2569 }
2570
2571 void __ksm_exit(struct mm_struct *mm)
2572 {
2573         struct ksm_mm_slot *mm_slot;
2574         struct mm_slot *slot;
2575         int easy_to_free = 0;
2576
2577         /*
2578          * This process is exiting: if it's straightforward (as is the
2579          * case when ksmd was never running), free mm_slot immediately.
2580          * But if it's at the cursor or has rmap_items linked to it, use
2581          * mmap_lock to synchronize with any break_cows before pagetables
2582          * are freed, and leave the mm_slot on the list for ksmd to free.
2583          * Beware: ksm may already have noticed it exiting and freed the slot.
2584          */
2585
2586         spin_lock(&ksm_mmlist_lock);
2587         slot = mm_slot_lookup(mm_slots_hash, mm);
2588         mm_slot = mm_slot_entry(slot, struct ksm_mm_slot, slot);
2589         if (mm_slot && ksm_scan.mm_slot != mm_slot) {
2590                 if (!mm_slot->rmap_list) {
2591                         hash_del(&slot->hash);
2592                         list_del(&slot->mm_node);
2593                         easy_to_free = 1;
2594                 } else {
2595                         list_move(&slot->mm_node,
2596                                   &ksm_scan.mm_slot->slot.mm_node);
2597                 }
2598         }
2599         spin_unlock(&ksm_mmlist_lock);
2600
2601         if (easy_to_free) {
2602                 mm_slot_free(mm_slot_cache, mm_slot);
2603                 clear_bit(MMF_VM_MERGEABLE, &mm->flags);
2604                 mmdrop(mm);
2605         } else if (mm_slot) {
2606                 mmap_write_lock(mm);
2607                 mmap_write_unlock(mm);
2608         }
2609 }
2610
2611 struct page *ksm_might_need_to_copy(struct page *page,
2612                         struct vm_area_struct *vma, unsigned long address)
2613 {
2614         struct folio *folio = page_folio(page);
2615         struct anon_vma *anon_vma = folio_anon_vma(folio);
2616         struct page *new_page;
2617
2618         if (PageKsm(page)) {
2619                 if (page_stable_node(page) &&
2620                     !(ksm_run & KSM_RUN_UNMERGE))
2621                         return page;    /* no need to copy it */
2622         } else if (!anon_vma) {
2623                 return page;            /* no need to copy it */
2624         } else if (page->index == linear_page_index(vma, address) &&
2625                         anon_vma->root == vma->anon_vma->root) {
2626                 return page;            /* still no need to copy it */
2627         }
2628         if (!PageUptodate(page))
2629                 return page;            /* let do_swap_page report the error */
2630
2631         new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2632         if (new_page &&
2633             mem_cgroup_charge(page_folio(new_page), vma->vm_mm, GFP_KERNEL)) {
2634                 put_page(new_page);
2635                 new_page = NULL;
2636         }
2637         if (new_page) {
2638                 if (copy_mc_user_highpage(new_page, page, address, vma)) {
2639                         put_page(new_page);
2640                         memory_failure_queue(page_to_pfn(page), 0);
2641                         return ERR_PTR(-EHWPOISON);
2642                 }
2643                 SetPageDirty(new_page);
2644                 __SetPageUptodate(new_page);
2645                 __SetPageLocked(new_page);
2646 #ifdef CONFIG_SWAP
2647                 count_vm_event(KSM_SWPIN_COPY);
2648 #endif
2649         }
2650
2651         return new_page;
2652 }
2653
2654 void rmap_walk_ksm(struct folio *folio, struct rmap_walk_control *rwc)
2655 {
2656         struct ksm_stable_node *stable_node;
2657         struct ksm_rmap_item *rmap_item;
2658         int search_new_forks = 0;
2659
2660         VM_BUG_ON_FOLIO(!folio_test_ksm(folio), folio);
2661
2662         /*
2663          * Rely on the page lock to protect against concurrent modifications
2664          * to that page's node of the stable tree.
2665          */
2666         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2667
2668         stable_node = folio_stable_node(folio);
2669         if (!stable_node)
2670                 return;
2671 again:
2672         hlist_for_each_entry(rmap_item, &stable_node->hlist, hlist) {
2673                 struct anon_vma *anon_vma = rmap_item->anon_vma;
2674                 struct anon_vma_chain *vmac;
2675                 struct vm_area_struct *vma;
2676
2677                 cond_resched();
2678                 if (!anon_vma_trylock_read(anon_vma)) {
2679                         if (rwc->try_lock) {
2680                                 rwc->contended = true;
2681                                 return;
2682                         }
2683                         anon_vma_lock_read(anon_vma);
2684                 }
2685                 anon_vma_interval_tree_foreach(vmac, &anon_vma->rb_root,
2686                                                0, ULONG_MAX) {
2687                         unsigned long addr;
2688
2689                         cond_resched();
2690                         vma = vmac->vma;
2691
2692                         /* Ignore the stable/unstable/sqnr flags */
2693                         addr = rmap_item->address & PAGE_MASK;
2694
2695                         if (addr < vma->vm_start || addr >= vma->vm_end)
2696                                 continue;
2697                         /*
2698                          * Initially we examine only the vma which covers this
2699                          * rmap_item; but later, if there is still work to do,
2700                          * we examine covering vmas in other mms: in case they
2701                          * were forked from the original since ksmd passed.
2702                          */
2703                         if ((rmap_item->mm == vma->vm_mm) == search_new_forks)
2704                                 continue;
2705
2706                         if (rwc->invalid_vma && rwc->invalid_vma(vma, rwc->arg))
2707                                 continue;
2708
2709                         if (!rwc->rmap_one(folio, vma, addr, rwc->arg)) {
2710                                 anon_vma_unlock_read(anon_vma);
2711                                 return;
2712                         }
2713                         if (rwc->done && rwc->done(folio)) {
2714                                 anon_vma_unlock_read(anon_vma);
2715                                 return;
2716                         }
2717                 }
2718                 anon_vma_unlock_read(anon_vma);
2719         }
2720         if (!search_new_forks++)
2721                 goto again;
2722 }
2723
2724 #ifdef CONFIG_MIGRATION
2725 void folio_migrate_ksm(struct folio *newfolio, struct folio *folio)
2726 {
2727         struct ksm_stable_node *stable_node;
2728
2729         VM_BUG_ON_FOLIO(!folio_test_locked(folio), folio);
2730         VM_BUG_ON_FOLIO(!folio_test_locked(newfolio), newfolio);
2731         VM_BUG_ON_FOLIO(newfolio->mapping != folio->mapping, newfolio);
2732
2733         stable_node = folio_stable_node(folio);
2734         if (stable_node) {
2735                 VM_BUG_ON_FOLIO(stable_node->kpfn != folio_pfn(folio), folio);
2736                 stable_node->kpfn = folio_pfn(newfolio);
2737                 /*
2738                  * newfolio->mapping was set in advance; now we need smp_wmb()
2739                  * to make sure that the new stable_node->kpfn is visible
2740                  * to get_ksm_page() before it can see that folio->mapping
2741                  * has gone stale (or that folio_test_swapcache has been cleared).
2742                  */
2743                 smp_wmb();
2744                 set_page_stable_node(&folio->page, NULL);
2745         }
2746 }
2747 #endif /* CONFIG_MIGRATION */
2748
2749 #ifdef CONFIG_MEMORY_HOTREMOVE
2750 static void wait_while_offlining(void)
2751 {
2752         while (ksm_run & KSM_RUN_OFFLINE) {
2753                 mutex_unlock(&ksm_thread_mutex);
2754                 wait_on_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE),
2755                             TASK_UNINTERRUPTIBLE);
2756                 mutex_lock(&ksm_thread_mutex);
2757         }
2758 }
2759
2760 static bool stable_node_dup_remove_range(struct ksm_stable_node *stable_node,
2761                                          unsigned long start_pfn,
2762                                          unsigned long end_pfn)
2763 {
2764         if (stable_node->kpfn >= start_pfn &&
2765             stable_node->kpfn < end_pfn) {
2766                 /*
2767                  * Don't get_ksm_page, page has already gone:
2768                  * which is why we keep kpfn instead of page*
2769                  */
2770                 remove_node_from_stable_tree(stable_node);
2771                 return true;
2772         }
2773         return false;
2774 }
2775
2776 static bool stable_node_chain_remove_range(struct ksm_stable_node *stable_node,
2777                                            unsigned long start_pfn,
2778                                            unsigned long end_pfn,
2779                                            struct rb_root *root)
2780 {
2781         struct ksm_stable_node *dup;
2782         struct hlist_node *hlist_safe;
2783
2784         if (!is_stable_node_chain(stable_node)) {
2785                 VM_BUG_ON(is_stable_node_dup(stable_node));
2786                 return stable_node_dup_remove_range(stable_node, start_pfn,
2787                                                     end_pfn);
2788         }
2789
2790         hlist_for_each_entry_safe(dup, hlist_safe,
2791                                   &stable_node->hlist, hlist_dup) {
2792                 VM_BUG_ON(!is_stable_node_dup(dup));
2793                 stable_node_dup_remove_range(dup, start_pfn, end_pfn);
2794         }
2795         if (hlist_empty(&stable_node->hlist)) {
2796                 free_stable_node_chain(stable_node, root);
2797                 return true; /* notify caller that tree was rebalanced */
2798         } else
2799                 return false;
2800 }
2801
2802 static void ksm_check_stable_tree(unsigned long start_pfn,
2803                                   unsigned long end_pfn)
2804 {
2805         struct ksm_stable_node *stable_node, *next;
2806         struct rb_node *node;
2807         int nid;
2808
2809         for (nid = 0; nid < ksm_nr_node_ids; nid++) {
2810                 node = rb_first(root_stable_tree + nid);
2811                 while (node) {
2812                         stable_node = rb_entry(node, struct ksm_stable_node, node);
2813                         if (stable_node_chain_remove_range(stable_node,
2814                                                            start_pfn, end_pfn,
2815                                                            root_stable_tree +
2816                                                            nid))
2817                                 node = rb_first(root_stable_tree + nid);
2818                         else
2819                                 node = rb_next(node);
2820                         cond_resched();
2821                 }
2822         }
2823         list_for_each_entry_safe(stable_node, next, &migrate_nodes, list) {
2824                 if (stable_node->kpfn >= start_pfn &&
2825                     stable_node->kpfn < end_pfn)
2826                         remove_node_from_stable_tree(stable_node);
2827                 cond_resched();
2828         }
2829 }
2830
2831 static int ksm_memory_callback(struct notifier_block *self,
2832                                unsigned long action, void *arg)
2833 {
2834         struct memory_notify *mn = arg;
2835
2836         switch (action) {
2837         case MEM_GOING_OFFLINE:
2838                 /*
2839                  * Prevent ksm_do_scan(), unmerge_and_remove_all_rmap_items()
2840                  * and remove_all_stable_nodes() while memory is going offline:
2841                  * it is unsafe for them to touch the stable tree at this time.
2842                  * But unmerge_ksm_pages(), rmap lookups and other entry points
2843                  * which do not need the ksm_thread_mutex are all safe.
2844                  */
2845                 mutex_lock(&ksm_thread_mutex);
2846                 ksm_run |= KSM_RUN_OFFLINE;
2847                 mutex_unlock(&ksm_thread_mutex);
2848                 break;
2849
2850         case MEM_OFFLINE:
2851                 /*
2852                  * Most of the work is done by page migration; but there might
2853                  * be a few stable_nodes left over, still pointing to struct
2854                  * pages which have been offlined: prune those from the tree,
2855                  * otherwise get_ksm_page() might later try to access a
2856                  * non-existent struct page.
2857                  */
2858                 ksm_check_stable_tree(mn->start_pfn,
2859                                       mn->start_pfn + mn->nr_pages);
2860                 fallthrough;
2861         case MEM_CANCEL_OFFLINE:
2862                 mutex_lock(&ksm_thread_mutex);
2863                 ksm_run &= ~KSM_RUN_OFFLINE;
2864                 mutex_unlock(&ksm_thread_mutex);
2865
2866                 smp_mb();       /* wake_up_bit advises this */
2867                 wake_up_bit(&ksm_run, ilog2(KSM_RUN_OFFLINE));
2868                 break;
2869         }
2870         return NOTIFY_OK;
2871 }
2872 #else
2873 static void wait_while_offlining(void)
2874 {
2875 }
2876 #endif /* CONFIG_MEMORY_HOTREMOVE */
2877
2878 #ifdef CONFIG_SYSFS
2879 /*
2880  * This all compiles without CONFIG_SYSFS, but is a waste of space.
2881  */
2882
2883 #define KSM_ATTR_RO(_name) \
2884         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2885 #define KSM_ATTR(_name) \
2886         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
2887
2888 static ssize_t sleep_millisecs_show(struct kobject *kobj,
2889                                     struct kobj_attribute *attr, char *buf)
2890 {
2891         return sysfs_emit(buf, "%u\n", ksm_thread_sleep_millisecs);
2892 }
2893
2894 static ssize_t sleep_millisecs_store(struct kobject *kobj,
2895                                      struct kobj_attribute *attr,
2896                                      const char *buf, size_t count)
2897 {
2898         unsigned int msecs;
2899         int err;
2900
2901         err = kstrtouint(buf, 10, &msecs);
2902         if (err)
2903                 return -EINVAL;
2904
2905         ksm_thread_sleep_millisecs = msecs;
2906         wake_up_interruptible(&ksm_iter_wait);
2907
2908         return count;
2909 }
2910 KSM_ATTR(sleep_millisecs);
2911
2912 static ssize_t pages_to_scan_show(struct kobject *kobj,
2913                                   struct kobj_attribute *attr, char *buf)
2914 {
2915         return sysfs_emit(buf, "%u\n", ksm_thread_pages_to_scan);
2916 }
2917
2918 static ssize_t pages_to_scan_store(struct kobject *kobj,
2919                                    struct kobj_attribute *attr,
2920                                    const char *buf, size_t count)
2921 {
2922         unsigned int nr_pages;
2923         int err;
2924
2925         err = kstrtouint(buf, 10, &nr_pages);
2926         if (err)
2927                 return -EINVAL;
2928
2929         ksm_thread_pages_to_scan = nr_pages;
2930
2931         return count;
2932 }
2933 KSM_ATTR(pages_to_scan);
2934
2935 static ssize_t run_show(struct kobject *kobj, struct kobj_attribute *attr,
2936                         char *buf)
2937 {
2938         return sysfs_emit(buf, "%lu\n", ksm_run);
2939 }
2940
2941 static ssize_t run_store(struct kobject *kobj, struct kobj_attribute *attr,
2942                          const char *buf, size_t count)
2943 {
2944         unsigned int flags;
2945         int err;
2946
2947         err = kstrtouint(buf, 10, &flags);
2948         if (err)
2949                 return -EINVAL;
2950         if (flags > KSM_RUN_UNMERGE)
2951                 return -EINVAL;
2952
2953         /*
2954          * KSM_RUN_MERGE sets ksmd running, and 0 stops it running.
2955          * KSM_RUN_UNMERGE stops it running and unmerges all rmap_items,
2956          * breaking COW to free the pages_shared (but leaves mm_slots
2957          * on the list for when ksmd may be set running again).
2958          */
2959
2960         mutex_lock(&ksm_thread_mutex);
2961         wait_while_offlining();
2962         if (ksm_run != flags) {
2963                 ksm_run = flags;
2964                 if (flags & KSM_RUN_UNMERGE) {
2965                         set_current_oom_origin();
2966                         err = unmerge_and_remove_all_rmap_items();
2967                         clear_current_oom_origin();
2968                         if (err) {
2969                                 ksm_run = KSM_RUN_STOP;
2970                                 count = err;
2971                         }
2972                 }
2973         }
2974         mutex_unlock(&ksm_thread_mutex);
2975
2976         if (flags & KSM_RUN_MERGE)
2977                 wake_up_interruptible(&ksm_thread_wait);
2978
2979         return count;
2980 }
2981 KSM_ATTR(run);
2982
2983 #ifdef CONFIG_NUMA
2984 static ssize_t merge_across_nodes_show(struct kobject *kobj,
2985                                        struct kobj_attribute *attr, char *buf)
2986 {
2987         return sysfs_emit(buf, "%u\n", ksm_merge_across_nodes);
2988 }
2989
2990 static ssize_t merge_across_nodes_store(struct kobject *kobj,
2991                                    struct kobj_attribute *attr,
2992                                    const char *buf, size_t count)
2993 {
2994         int err;
2995         unsigned long knob;
2996
2997         err = kstrtoul(buf, 10, &knob);
2998         if (err)
2999                 return err;
3000         if (knob > 1)
3001                 return -EINVAL;
3002
3003         mutex_lock(&ksm_thread_mutex);
3004         wait_while_offlining();
3005         if (ksm_merge_across_nodes != knob) {
3006                 if (ksm_pages_shared || remove_all_stable_nodes())
3007                         err = -EBUSY;
3008                 else if (root_stable_tree == one_stable_tree) {
3009                         struct rb_root *buf;
3010                         /*
3011                          * This is the first time that we switch away from the
3012                          * default of merging across nodes: must now allocate
3013                          * a buffer to hold as many roots as may be needed.
3014                          * Allocate stable and unstable together:
3015                          * MAXSMP NODES_SHIFT 10 will use 16kB.
3016                          */
3017                         buf = kcalloc(nr_node_ids + nr_node_ids, sizeof(*buf),
3018                                       GFP_KERNEL);
3019                         /* Let us assume that RB_ROOT is NULL is zero */
3020                         if (!buf)
3021                                 err = -ENOMEM;
3022                         else {
3023                                 root_stable_tree = buf;
3024                                 root_unstable_tree = buf + nr_node_ids;
3025                                 /* Stable tree is empty but not the unstable */
3026                                 root_unstable_tree[0] = one_unstable_tree[0];
3027                         }
3028                 }
3029                 if (!err) {
3030                         ksm_merge_across_nodes = knob;
3031                         ksm_nr_node_ids = knob ? 1 : nr_node_ids;
3032                 }
3033         }
3034         mutex_unlock(&ksm_thread_mutex);
3035
3036         return err ? err : count;
3037 }
3038 KSM_ATTR(merge_across_nodes);
3039 #endif
3040
3041 static ssize_t use_zero_pages_show(struct kobject *kobj,
3042                                    struct kobj_attribute *attr, char *buf)
3043 {
3044         return sysfs_emit(buf, "%u\n", ksm_use_zero_pages);
3045 }
3046 static ssize_t use_zero_pages_store(struct kobject *kobj,
3047                                    struct kobj_attribute *attr,
3048                                    const char *buf, size_t count)
3049 {
3050         int err;
3051         bool value;
3052
3053         err = kstrtobool(buf, &value);
3054         if (err)
3055                 return -EINVAL;
3056
3057         ksm_use_zero_pages = value;
3058
3059         return count;
3060 }
3061 KSM_ATTR(use_zero_pages);
3062
3063 static ssize_t max_page_sharing_show(struct kobject *kobj,
3064                                      struct kobj_attribute *attr, char *buf)
3065 {
3066         return sysfs_emit(buf, "%u\n", ksm_max_page_sharing);
3067 }
3068
3069 static ssize_t max_page_sharing_store(struct kobject *kobj,
3070                                       struct kobj_attribute *attr,
3071                                       const char *buf, size_t count)
3072 {
3073         int err;
3074         int knob;
3075
3076         err = kstrtoint(buf, 10, &knob);
3077         if (err)
3078                 return err;
3079         /*
3080          * When a KSM page is created it is shared by 2 mappings. This
3081          * being a signed comparison, it implicitly verifies it's not
3082          * negative.
3083          */
3084         if (knob < 2)
3085                 return -EINVAL;
3086
3087         if (READ_ONCE(ksm_max_page_sharing) == knob)
3088                 return count;
3089
3090         mutex_lock(&ksm_thread_mutex);
3091         wait_while_offlining();
3092         if (ksm_max_page_sharing != knob) {
3093                 if (ksm_pages_shared || remove_all_stable_nodes())
3094                         err = -EBUSY;
3095                 else
3096                         ksm_max_page_sharing = knob;
3097         }
3098         mutex_unlock(&ksm_thread_mutex);
3099
3100         return err ? err : count;
3101 }
3102 KSM_ATTR(max_page_sharing);
3103
3104 static ssize_t pages_shared_show(struct kobject *kobj,
3105                                  struct kobj_attribute *attr, char *buf)
3106 {
3107         return sysfs_emit(buf, "%lu\n", ksm_pages_shared);
3108 }
3109 KSM_ATTR_RO(pages_shared);
3110
3111 static ssize_t pages_sharing_show(struct kobject *kobj,
3112                                   struct kobj_attribute *attr, char *buf)
3113 {
3114         return sysfs_emit(buf, "%lu\n", ksm_pages_sharing);
3115 }
3116 KSM_ATTR_RO(pages_sharing);
3117
3118 static ssize_t pages_unshared_show(struct kobject *kobj,
3119                                    struct kobj_attribute *attr, char *buf)
3120 {
3121         return sysfs_emit(buf, "%lu\n", ksm_pages_unshared);
3122 }
3123 KSM_ATTR_RO(pages_unshared);
3124
3125 static ssize_t pages_volatile_show(struct kobject *kobj,
3126                                    struct kobj_attribute *attr, char *buf)
3127 {
3128         long ksm_pages_volatile;
3129
3130         ksm_pages_volatile = ksm_rmap_items - ksm_pages_shared
3131                                 - ksm_pages_sharing - ksm_pages_unshared;
3132         /*
3133          * It was not worth any locking to calculate that statistic,
3134          * but it might therefore sometimes be negative: conceal that.
3135          */
3136         if (ksm_pages_volatile < 0)
3137                 ksm_pages_volatile = 0;
3138         return sysfs_emit(buf, "%ld\n", ksm_pages_volatile);
3139 }
3140 KSM_ATTR_RO(pages_volatile);
3141
3142 static ssize_t stable_node_dups_show(struct kobject *kobj,
3143                                      struct kobj_attribute *attr, char *buf)
3144 {
3145         return sysfs_emit(buf, "%lu\n", ksm_stable_node_dups);
3146 }
3147 KSM_ATTR_RO(stable_node_dups);
3148
3149 static ssize_t stable_node_chains_show(struct kobject *kobj,
3150                                        struct kobj_attribute *attr, char *buf)
3151 {
3152         return sysfs_emit(buf, "%lu\n", ksm_stable_node_chains);
3153 }
3154 KSM_ATTR_RO(stable_node_chains);
3155
3156 static ssize_t
3157 stable_node_chains_prune_millisecs_show(struct kobject *kobj,
3158                                         struct kobj_attribute *attr,
3159                                         char *buf)
3160 {
3161         return sysfs_emit(buf, "%u\n", ksm_stable_node_chains_prune_millisecs);
3162 }
3163
3164 static ssize_t
3165 stable_node_chains_prune_millisecs_store(struct kobject *kobj,
3166                                          struct kobj_attribute *attr,
3167                                          const char *buf, size_t count)
3168 {
3169         unsigned int msecs;
3170         int err;
3171
3172         err = kstrtouint(buf, 10, &msecs);
3173         if (err)
3174                 return -EINVAL;
3175
3176         ksm_stable_node_chains_prune_millisecs = msecs;
3177
3178         return count;
3179 }
3180 KSM_ATTR(stable_node_chains_prune_millisecs);
3181
3182 static ssize_t full_scans_show(struct kobject *kobj,
3183                                struct kobj_attribute *attr, char *buf)
3184 {
3185         return sysfs_emit(buf, "%lu\n", ksm_scan.seqnr);
3186 }
3187 KSM_ATTR_RO(full_scans);
3188
3189 static struct attribute *ksm_attrs[] = {
3190         &sleep_millisecs_attr.attr,
3191         &pages_to_scan_attr.attr,
3192         &run_attr.attr,
3193         &pages_shared_attr.attr,
3194         &pages_sharing_attr.attr,
3195         &pages_unshared_attr.attr,
3196         &pages_volatile_attr.attr,
3197         &full_scans_attr.attr,
3198 #ifdef CONFIG_NUMA
3199         &merge_across_nodes_attr.attr,
3200 #endif
3201         &max_page_sharing_attr.attr,
3202         &stable_node_chains_attr.attr,
3203         &stable_node_dups_attr.attr,
3204         &stable_node_chains_prune_millisecs_attr.attr,
3205         &use_zero_pages_attr.attr,
3206         NULL,
3207 };
3208
3209 static const struct attribute_group ksm_attr_group = {
3210         .attrs = ksm_attrs,
3211         .name = "ksm",
3212 };
3213 #endif /* CONFIG_SYSFS */
3214
3215 static int __init ksm_init(void)
3216 {
3217         struct task_struct *ksm_thread;
3218         int err;
3219
3220         /* The correct value depends on page size and endianness */
3221         zero_checksum = calc_checksum(ZERO_PAGE(0));
3222         /* Default to false for backwards compatibility */
3223         ksm_use_zero_pages = false;
3224
3225         err = ksm_slab_init();
3226         if (err)
3227                 goto out;
3228
3229         ksm_thread = kthread_run(ksm_scan_thread, NULL, "ksmd");
3230         if (IS_ERR(ksm_thread)) {
3231                 pr_err("ksm: creating kthread failed\n");
3232                 err = PTR_ERR(ksm_thread);
3233                 goto out_free;
3234         }
3235
3236 #ifdef CONFIG_SYSFS
3237         err = sysfs_create_group(mm_kobj, &ksm_attr_group);
3238         if (err) {
3239                 pr_err("ksm: register sysfs failed\n");
3240                 kthread_stop(ksm_thread);
3241                 goto out_free;
3242         }
3243 #else
3244         ksm_run = KSM_RUN_MERGE;        /* no way for user to start it */
3245
3246 #endif /* CONFIG_SYSFS */
3247
3248 #ifdef CONFIG_MEMORY_HOTREMOVE
3249         /* There is no significance to this priority 100 */
3250         hotplug_memory_notifier(ksm_memory_callback, KSM_CALLBACK_PRI);
3251 #endif
3252         return 0;
3253
3254 out_free:
3255         ksm_slab_free();
3256 out:
3257         return err;
3258 }
3259 subsys_initcall(ksm_init);