Merge tag 'arc-6.6-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[platform/kernel/linux-rpi.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object_tree_root (or
18  *   object_phys_tree_root). The object_list is the main list holding the
19  *   metadata (struct kmemleak_object) for the allocated memory blocks.
20  *   The object_tree_root and object_phys_tree_root are red
21  *   black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The object_phys_tree_root is for objects
23  *   allocated with physical address. The kmemleak_object structures are
24  *   added to the object_list and object_tree_root (or object_phys_tree_root)
25  *   in the create_object() function called from the kmemleak_alloc() (or
26  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
27  *   the kmemleak_free() callback
28  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
30  *   that some members of this structure may be protected by other means
31  *   (atomic or kmemleak_lock). This lock is also held when scanning the
32  *   corresponding memory block to avoid the kernel freeing it via the
33  *   kmemleak_free() callback. This is less heavyweight than holding a global
34  *   lock like kmemleak_lock during scanning.
35  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36  *   unreferenced objects at a time. The gray_list contains the objects which
37  *   are already referenced or marked as false positives and need to be
38  *   scanned. This list is only modified during a scanning episode when the
39  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
40  *   Note that the kmemleak_object.use_count is incremented when an object is
41  *   added to the gray_list and therefore cannot be freed. This mutex also
42  *   prevents multiple users of the "kmemleak" debugfs file together with
43  *   modifications to the memory scanning parameters including the scan_thread
44  *   pointer
45  *
46  * Locks and mutexes are acquired/nested in the following order:
47  *
48  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49  *
50  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51  * regions.
52  *
53  * The kmemleak_object structures have a use_count incremented or decremented
54  * using the get_object()/put_object() functions. When the use_count becomes
55  * 0, this count can no longer be incremented and put_object() schedules the
56  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57  * function must be protected by rcu_read_lock() to avoid accessing a freed
58  * structure.
59  */
60
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
63 #include <linux/init.h>
64 #include <linux/kernel.h>
65 #include <linux/list.h>
66 #include <linux/sched/signal.h>
67 #include <linux/sched/task.h>
68 #include <linux/sched/task_stack.h>
69 #include <linux/jiffies.h>
70 #include <linux/delay.h>
71 #include <linux/export.h>
72 #include <linux/kthread.h>
73 #include <linux/rbtree.h>
74 #include <linux/fs.h>
75 #include <linux/debugfs.h>
76 #include <linux/seq_file.h>
77 #include <linux/cpumask.h>
78 #include <linux/spinlock.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/stackdepot.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/memblock.h>
87 #include <linux/pfn.h>
88 #include <linux/mmzone.h>
89 #include <linux/slab.h>
90 #include <linux/thread_info.h>
91 #include <linux/err.h>
92 #include <linux/uaccess.h>
93 #include <linux/string.h>
94 #include <linux/nodemask.h>
95 #include <linux/mm.h>
96 #include <linux/workqueue.h>
97 #include <linux/crc32.h>
98
99 #include <asm/sections.h>
100 #include <asm/processor.h>
101 #include <linux/atomic.h>
102
103 #include <linux/kasan.h>
104 #include <linux/kfence.h>
105 #include <linux/kmemleak.h>
106 #include <linux/memory_hotplug.h>
107
108 /*
109  * Kmemleak configuration and common defines.
110  */
111 #define MAX_TRACE               16      /* stack trace length */
112 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
113 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
114 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
115 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
116
117 #define BYTES_PER_POINTER       sizeof(void *)
118
119 /* GFP bitmask for kmemleak internal allocations */
120 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121                                            __GFP_NOLOCKDEP)) | \
122                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
123                                  __GFP_NOWARN)
124
125 /* scanning area inside a memory block */
126 struct kmemleak_scan_area {
127         struct hlist_node node;
128         unsigned long start;
129         size_t size;
130 };
131
132 #define KMEMLEAK_GREY   0
133 #define KMEMLEAK_BLACK  -1
134
135 /*
136  * Structure holding the metadata for each allocated memory block.
137  * Modifications to such objects should be made while holding the
138  * object->lock. Insertions or deletions from object_list, gray_list or
139  * rb_node are already protected by the corresponding locks or mutex (see
140  * the notes on locking above). These objects are reference-counted
141  * (use_count) and freed using the RCU mechanism.
142  */
143 struct kmemleak_object {
144         raw_spinlock_t lock;
145         unsigned int flags;             /* object status flags */
146         struct list_head object_list;
147         struct list_head gray_list;
148         struct rb_node rb_node;
149         struct rcu_head rcu;            /* object_list lockless traversal */
150         /* object usage count; object freed when use_count == 0 */
151         atomic_t use_count;
152         unsigned int del_state;         /* deletion state */
153         unsigned long pointer;
154         size_t size;
155         /* pass surplus references to this pointer */
156         unsigned long excess_ref;
157         /* minimum number of a pointers found before it is considered leak */
158         int min_count;
159         /* the total number of pointers found pointing to this object */
160         int count;
161         /* checksum for detecting modified objects */
162         u32 checksum;
163         /* memory ranges to be scanned inside an object (empty for all) */
164         struct hlist_head area_list;
165         depot_stack_handle_t trace_handle;
166         unsigned long jiffies;          /* creation timestamp */
167         pid_t pid;                      /* pid of the current task */
168         char comm[TASK_COMM_LEN];       /* executable name */
169 };
170
171 /* flag representing the memory block allocation status */
172 #define OBJECT_ALLOCATED        (1 << 0)
173 /* flag set after the first reporting of an unreference object */
174 #define OBJECT_REPORTED         (1 << 1)
175 /* flag set to not scan the object */
176 #define OBJECT_NO_SCAN          (1 << 2)
177 /* flag set to fully scan the object when scan_area allocation failed */
178 #define OBJECT_FULL_SCAN        (1 << 3)
179 /* flag set for object allocated with physical address */
180 #define OBJECT_PHYS             (1 << 4)
181
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED        (1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE      (1 << 1)
186
187 #define HEX_PREFIX              "    "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE            16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE          1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII               1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES           2
196
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
210 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
211
212 /* allocation caches for kmemleak internal data */
213 static struct kmem_cache *object_cache;
214 static struct kmem_cache *scan_area_cache;
215
216 /* set if tracing memory operations is enabled */
217 static int kmemleak_enabled = 1;
218 /* same as above but only for the kmemleak_free() callback */
219 static int kmemleak_free_enabled = 1;
220 /* set in the late_initcall if there were no errors */
221 static int kmemleak_late_initialized;
222 /* set if a kmemleak warning was issued */
223 static int kmemleak_warning;
224 /* set if a fatal kmemleak error has occurred */
225 static int kmemleak_error;
226
227 /* minimum and maximum address that may be valid pointers */
228 static unsigned long min_addr = ULONG_MAX;
229 static unsigned long max_addr;
230
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
249 static void kmemleak_disable(void);
250
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)     do {            \
255         pr_warn(x);                             \
256         dump_stack();                           \
257         kmemleak_warning = 1;                   \
258 } while (0)
259
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)     do {    \
266         kmemleak_warn(x);               \
267         kmemleak_disable();             \
268 } while (0)
269
270 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
271         if (seq)                                        \
272                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
273         else                                            \
274                 pr_warn(fmt, ##__VA_ARGS__);            \
275 } while (0)
276
277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278                                  int rowsize, int groupsize, const void *buf,
279                                  size_t len, bool ascii)
280 {
281         if (seq)
282                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283                              buf, len, ascii);
284         else
285                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286                                rowsize, groupsize, buf, len, ascii);
287 }
288
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
295 static void hex_dump_object(struct seq_file *seq,
296                             struct kmemleak_object *object)
297 {
298         const u8 *ptr = (const u8 *)object->pointer;
299         size_t len;
300
301         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302                 return;
303
304         /* limit the number of lines to HEX_MAX_LINES */
305         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306
307         warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
308         kasan_disable_current();
309         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
310                              HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
311         kasan_enable_current();
312 }
313
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *              sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *              (min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326         return object->count != KMEMLEAK_BLACK &&
327                 object->count < object->min_count;
328 }
329
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332         return object->min_count != KMEMLEAK_BLACK &&
333                 object->count >= object->min_count;
334 }
335
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344                 time_before_eq(object->jiffies + jiffies_min_age,
345                                jiffies_last_scan);
346 }
347
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353                                struct kmemleak_object *object)
354 {
355         int i;
356         unsigned long *entries;
357         unsigned int nr_entries;
358         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
359
360         nr_entries = stack_depot_fetch(object->trace_handle, &entries);
361         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362                           object->pointer, object->size);
363         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364                            object->comm, object->pid, object->jiffies,
365                            msecs_age / 1000, msecs_age % 1000);
366         hex_dump_object(seq, object);
367         warn_or_seq_printf(seq, "  backtrace:\n");
368
369         for (i = 0; i < nr_entries; i++) {
370                 void *ptr = (void *)entries[i];
371                 warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372         }
373 }
374
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382         pr_notice("Object 0x%08lx (size %zu):\n",
383                         object->pointer, object->size);
384         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385                         object->comm, object->pid, object->jiffies);
386         pr_notice("  min_count = %d\n", object->min_count);
387         pr_notice("  count = %d\n", object->count);
388         pr_notice("  flags = 0x%x\n", object->flags);
389         pr_notice("  checksum = %u\n", object->checksum);
390         pr_notice("  backtrace:\n");
391         if (object->trace_handle)
392                 stack_depot_print(object->trace_handle);
393 }
394
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402                                                bool is_phys)
403 {
404         struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405                              object_tree_root.rb_node;
406         unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
407
408         while (rb) {
409                 struct kmemleak_object *object;
410                 unsigned long untagged_objp;
411
412                 object = rb_entry(rb, struct kmemleak_object, rb_node);
413                 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414
415                 if (untagged_ptr < untagged_objp)
416                         rb = object->rb_node.rb_left;
417                 else if (untagged_objp + object->size <= untagged_ptr)
418                         rb = object->rb_node.rb_right;
419                 else if (untagged_objp == untagged_ptr || alias)
420                         return object;
421                 else {
422                         kmemleak_warn("Found object by alias at 0x%08lx\n",
423                                       ptr);
424                         dump_object_info(object);
425                         break;
426                 }
427         }
428         return NULL;
429 }
430
431 /* Look-up a kmemleak object which allocated with virtual address. */
432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433 {
434         return __lookup_object(ptr, alias, false);
435 }
436
437 /*
438  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439  * that once an object's use_count reached 0, the RCU freeing was already
440  * registered and the object should no longer be used. This function must be
441  * called under the protection of rcu_read_lock().
442  */
443 static int get_object(struct kmemleak_object *object)
444 {
445         return atomic_inc_not_zero(&object->use_count);
446 }
447
448 /*
449  * Memory pool allocation and freeing. kmemleak_lock must not be held.
450  */
451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452 {
453         unsigned long flags;
454         struct kmemleak_object *object;
455
456         /* try the slab allocator first */
457         if (object_cache) {
458                 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459                 if (object)
460                         return object;
461         }
462
463         /* slab allocation failed, try the memory pool */
464         raw_spin_lock_irqsave(&kmemleak_lock, flags);
465         object = list_first_entry_or_null(&mem_pool_free_list,
466                                           typeof(*object), object_list);
467         if (object)
468                 list_del(&object->object_list);
469         else if (mem_pool_free_count)
470                 object = &mem_pool[--mem_pool_free_count];
471         else
472                 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
473         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
474
475         return object;
476 }
477
478 /*
479  * Return the object to either the slab allocator or the memory pool.
480  */
481 static void mem_pool_free(struct kmemleak_object *object)
482 {
483         unsigned long flags;
484
485         if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486                 kmem_cache_free(object_cache, object);
487                 return;
488         }
489
490         /* add the object to the memory pool free list */
491         raw_spin_lock_irqsave(&kmemleak_lock, flags);
492         list_add(&object->object_list, &mem_pool_free_list);
493         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 }
495
496 /*
497  * RCU callback to free a kmemleak_object.
498  */
499 static void free_object_rcu(struct rcu_head *rcu)
500 {
501         struct hlist_node *tmp;
502         struct kmemleak_scan_area *area;
503         struct kmemleak_object *object =
504                 container_of(rcu, struct kmemleak_object, rcu);
505
506         /*
507          * Once use_count is 0 (guaranteed by put_object), there is no other
508          * code accessing this object, hence no need for locking.
509          */
510         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511                 hlist_del(&area->node);
512                 kmem_cache_free(scan_area_cache, area);
513         }
514         mem_pool_free(object);
515 }
516
517 /*
518  * Decrement the object use_count. Once the count is 0, free the object using
519  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520  * delete_object() path, the delayed RCU freeing ensures that there is no
521  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522  * is also possible.
523  */
524 static void put_object(struct kmemleak_object *object)
525 {
526         if (!atomic_dec_and_test(&object->use_count))
527                 return;
528
529         /* should only get here after delete_object was called */
530         WARN_ON(object->flags & OBJECT_ALLOCATED);
531
532         /*
533          * It may be too early for the RCU callbacks, however, there is no
534          * concurrent object_list traversal when !object_cache and all objects
535          * came from the memory pool. Free the object directly.
536          */
537         if (object_cache)
538                 call_rcu(&object->rcu, free_object_rcu);
539         else
540                 free_object_rcu(&object->rcu);
541 }
542
543 /*
544  * Look up an object in the object search tree and increase its use_count.
545  */
546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547                                                      bool is_phys)
548 {
549         unsigned long flags;
550         struct kmemleak_object *object;
551
552         rcu_read_lock();
553         raw_spin_lock_irqsave(&kmemleak_lock, flags);
554         object = __lookup_object(ptr, alias, is_phys);
555         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556
557         /* check whether the object is still available */
558         if (object && !get_object(object))
559                 object = NULL;
560         rcu_read_unlock();
561
562         return object;
563 }
564
565 /* Look up and get an object which allocated with virtual address. */
566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567 {
568         return __find_and_get_object(ptr, alias, false);
569 }
570
571 /*
572  * Remove an object from the object_tree_root (or object_phys_tree_root)
573  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574  * is still enabled.
575  */
576 static void __remove_object(struct kmemleak_object *object)
577 {
578         rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579                                    &object_phys_tree_root :
580                                    &object_tree_root);
581         if (!(object->del_state & DELSTATE_NO_DELETE))
582                 list_del_rcu(&object->object_list);
583         object->del_state |= DELSTATE_REMOVED;
584 }
585
586 /*
587  * Look up an object in the object search tree and remove it from both
588  * object_tree_root (or object_phys_tree_root) and object_list. The
589  * returned object's use_count should be at least 1, as initially set
590  * by create_object().
591  */
592 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
593                                                       bool is_phys)
594 {
595         unsigned long flags;
596         struct kmemleak_object *object;
597
598         raw_spin_lock_irqsave(&kmemleak_lock, flags);
599         object = __lookup_object(ptr, alias, is_phys);
600         if (object)
601                 __remove_object(object);
602         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
603
604         return object;
605 }
606
607 static noinline depot_stack_handle_t set_track_prepare(void)
608 {
609         depot_stack_handle_t trace_handle;
610         unsigned long entries[MAX_TRACE];
611         unsigned int nr_entries;
612
613         /*
614          * Use object_cache to determine whether kmemleak_init() has
615          * been invoked. stack_depot_early_init() is called before
616          * kmemleak_init() in mm_core_init().
617          */
618         if (!object_cache)
619                 return 0;
620         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
621         trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
622
623         return trace_handle;
624 }
625
626 /*
627  * Create the metadata (struct kmemleak_object) corresponding to an allocated
628  * memory block and add it to the object_list and object_tree_root (or
629  * object_phys_tree_root).
630  */
631 static void __create_object(unsigned long ptr, size_t size,
632                             int min_count, gfp_t gfp, bool is_phys)
633 {
634         unsigned long flags;
635         struct kmemleak_object *object, *parent;
636         struct rb_node **link, *rb_parent;
637         unsigned long untagged_ptr;
638         unsigned long untagged_objp;
639
640         object = mem_pool_alloc(gfp);
641         if (!object) {
642                 pr_warn("Cannot allocate a kmemleak_object structure\n");
643                 kmemleak_disable();
644                 return;
645         }
646
647         INIT_LIST_HEAD(&object->object_list);
648         INIT_LIST_HEAD(&object->gray_list);
649         INIT_HLIST_HEAD(&object->area_list);
650         raw_spin_lock_init(&object->lock);
651         atomic_set(&object->use_count, 1);
652         object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
653         object->pointer = ptr;
654         object->size = kfence_ksize((void *)ptr) ?: size;
655         object->excess_ref = 0;
656         object->min_count = min_count;
657         object->count = 0;                      /* white color initially */
658         object->jiffies = jiffies;
659         object->checksum = 0;
660         object->del_state = 0;
661
662         /* task information */
663         if (in_hardirq()) {
664                 object->pid = 0;
665                 strncpy(object->comm, "hardirq", sizeof(object->comm));
666         } else if (in_serving_softirq()) {
667                 object->pid = 0;
668                 strncpy(object->comm, "softirq", sizeof(object->comm));
669         } else {
670                 object->pid = current->pid;
671                 /*
672                  * There is a small chance of a race with set_task_comm(),
673                  * however using get_task_comm() here may cause locking
674                  * dependency issues with current->alloc_lock. In the worst
675                  * case, the command line is not correct.
676                  */
677                 strncpy(object->comm, current->comm, sizeof(object->comm));
678         }
679
680         /* kernel backtrace */
681         object->trace_handle = set_track_prepare();
682
683         raw_spin_lock_irqsave(&kmemleak_lock, flags);
684
685         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
686         /*
687          * Only update min_addr and max_addr with object
688          * storing virtual address.
689          */
690         if (!is_phys) {
691                 min_addr = min(min_addr, untagged_ptr);
692                 max_addr = max(max_addr, untagged_ptr + size);
693         }
694         link = is_phys ? &object_phys_tree_root.rb_node :
695                 &object_tree_root.rb_node;
696         rb_parent = NULL;
697         while (*link) {
698                 rb_parent = *link;
699                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
700                 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
701                 if (untagged_ptr + size <= untagged_objp)
702                         link = &parent->rb_node.rb_left;
703                 else if (untagged_objp + parent->size <= untagged_ptr)
704                         link = &parent->rb_node.rb_right;
705                 else {
706                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
707                                       ptr);
708                         /*
709                          * No need for parent->lock here since "parent" cannot
710                          * be freed while the kmemleak_lock is held.
711                          */
712                         dump_object_info(parent);
713                         kmem_cache_free(object_cache, object);
714                         goto out;
715                 }
716         }
717         rb_link_node(&object->rb_node, rb_parent, link);
718         rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
719                                           &object_tree_root);
720         list_add_tail_rcu(&object->object_list, &object_list);
721 out:
722         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
723 }
724
725 /* Create kmemleak object which allocated with virtual address. */
726 static void create_object(unsigned long ptr, size_t size,
727                           int min_count, gfp_t gfp)
728 {
729         __create_object(ptr, size, min_count, gfp, false);
730 }
731
732 /* Create kmemleak object which allocated with physical address. */
733 static void create_object_phys(unsigned long ptr, size_t size,
734                                int min_count, gfp_t gfp)
735 {
736         __create_object(ptr, size, min_count, gfp, true);
737 }
738
739 /*
740  * Mark the object as not allocated and schedule RCU freeing via put_object().
741  */
742 static void __delete_object(struct kmemleak_object *object)
743 {
744         unsigned long flags;
745
746         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
747         WARN_ON(atomic_read(&object->use_count) < 1);
748
749         /*
750          * Locking here also ensures that the corresponding memory block
751          * cannot be freed when it is being scanned.
752          */
753         raw_spin_lock_irqsave(&object->lock, flags);
754         object->flags &= ~OBJECT_ALLOCATED;
755         raw_spin_unlock_irqrestore(&object->lock, flags);
756         put_object(object);
757 }
758
759 /*
760  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
761  * delete it.
762  */
763 static void delete_object_full(unsigned long ptr)
764 {
765         struct kmemleak_object *object;
766
767         object = find_and_remove_object(ptr, 0, false);
768         if (!object) {
769 #ifdef DEBUG
770                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
771                               ptr);
772 #endif
773                 return;
774         }
775         __delete_object(object);
776 }
777
778 /*
779  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
780  * delete it. If the memory block is partially freed, the function may create
781  * additional metadata for the remaining parts of the block.
782  */
783 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
784 {
785         struct kmemleak_object *object;
786         unsigned long start, end;
787
788         object = find_and_remove_object(ptr, 1, is_phys);
789         if (!object) {
790 #ifdef DEBUG
791                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
792                               ptr, size);
793 #endif
794                 return;
795         }
796
797         /*
798          * Create one or two objects that may result from the memory block
799          * split. Note that partial freeing is only done by free_bootmem() and
800          * this happens before kmemleak_init() is called.
801          */
802         start = object->pointer;
803         end = object->pointer + object->size;
804         if (ptr > start)
805                 __create_object(start, ptr - start, object->min_count,
806                               GFP_KERNEL, is_phys);
807         if (ptr + size < end)
808                 __create_object(ptr + size, end - ptr - size, object->min_count,
809                               GFP_KERNEL, is_phys);
810
811         __delete_object(object);
812 }
813
814 static void __paint_it(struct kmemleak_object *object, int color)
815 {
816         object->min_count = color;
817         if (color == KMEMLEAK_BLACK)
818                 object->flags |= OBJECT_NO_SCAN;
819 }
820
821 static void paint_it(struct kmemleak_object *object, int color)
822 {
823         unsigned long flags;
824
825         raw_spin_lock_irqsave(&object->lock, flags);
826         __paint_it(object, color);
827         raw_spin_unlock_irqrestore(&object->lock, flags);
828 }
829
830 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
831 {
832         struct kmemleak_object *object;
833
834         object = __find_and_get_object(ptr, 0, is_phys);
835         if (!object) {
836                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
837                               ptr,
838                               (color == KMEMLEAK_GREY) ? "Grey" :
839                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
840                 return;
841         }
842         paint_it(object, color);
843         put_object(object);
844 }
845
846 /*
847  * Mark an object permanently as gray-colored so that it can no longer be
848  * reported as a leak. This is used in general to mark a false positive.
849  */
850 static void make_gray_object(unsigned long ptr)
851 {
852         paint_ptr(ptr, KMEMLEAK_GREY, false);
853 }
854
855 /*
856  * Mark the object as black-colored so that it is ignored from scans and
857  * reporting.
858  */
859 static void make_black_object(unsigned long ptr, bool is_phys)
860 {
861         paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
862 }
863
864 /*
865  * Add a scanning area to the object. If at least one such area is added,
866  * kmemleak will only scan these ranges rather than the whole memory block.
867  */
868 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
869 {
870         unsigned long flags;
871         struct kmemleak_object *object;
872         struct kmemleak_scan_area *area = NULL;
873         unsigned long untagged_ptr;
874         unsigned long untagged_objp;
875
876         object = find_and_get_object(ptr, 1);
877         if (!object) {
878                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
879                               ptr);
880                 return;
881         }
882
883         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
884         untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
885
886         if (scan_area_cache)
887                 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
888
889         raw_spin_lock_irqsave(&object->lock, flags);
890         if (!area) {
891                 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
892                 /* mark the object for full scan to avoid false positives */
893                 object->flags |= OBJECT_FULL_SCAN;
894                 goto out_unlock;
895         }
896         if (size == SIZE_MAX) {
897                 size = untagged_objp + object->size - untagged_ptr;
898         } else if (untagged_ptr + size > untagged_objp + object->size) {
899                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
900                 dump_object_info(object);
901                 kmem_cache_free(scan_area_cache, area);
902                 goto out_unlock;
903         }
904
905         INIT_HLIST_NODE(&area->node);
906         area->start = ptr;
907         area->size = size;
908
909         hlist_add_head(&area->node, &object->area_list);
910 out_unlock:
911         raw_spin_unlock_irqrestore(&object->lock, flags);
912         put_object(object);
913 }
914
915 /*
916  * Any surplus references (object already gray) to 'ptr' are passed to
917  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
918  * vm_struct may be used as an alternative reference to the vmalloc'ed object
919  * (see free_thread_stack()).
920  */
921 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
922 {
923         unsigned long flags;
924         struct kmemleak_object *object;
925
926         object = find_and_get_object(ptr, 0);
927         if (!object) {
928                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
929                               ptr);
930                 return;
931         }
932
933         raw_spin_lock_irqsave(&object->lock, flags);
934         object->excess_ref = excess_ref;
935         raw_spin_unlock_irqrestore(&object->lock, flags);
936         put_object(object);
937 }
938
939 /*
940  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
941  * pointer. Such object will not be scanned by kmemleak but references to it
942  * are searched.
943  */
944 static void object_no_scan(unsigned long ptr)
945 {
946         unsigned long flags;
947         struct kmemleak_object *object;
948
949         object = find_and_get_object(ptr, 0);
950         if (!object) {
951                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
952                 return;
953         }
954
955         raw_spin_lock_irqsave(&object->lock, flags);
956         object->flags |= OBJECT_NO_SCAN;
957         raw_spin_unlock_irqrestore(&object->lock, flags);
958         put_object(object);
959 }
960
961 /**
962  * kmemleak_alloc - register a newly allocated object
963  * @ptr:        pointer to beginning of the object
964  * @size:       size of the object
965  * @min_count:  minimum number of references to this object. If during memory
966  *              scanning a number of references less than @min_count is found,
967  *              the object is reported as a memory leak. If @min_count is 0,
968  *              the object is never reported as a leak. If @min_count is -1,
969  *              the object is ignored (not scanned and not reported as a leak)
970  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
971  *
972  * This function is called from the kernel allocators when a new object
973  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
974  */
975 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
976                           gfp_t gfp)
977 {
978         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
979
980         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
981                 create_object((unsigned long)ptr, size, min_count, gfp);
982 }
983 EXPORT_SYMBOL_GPL(kmemleak_alloc);
984
985 /**
986  * kmemleak_alloc_percpu - register a newly allocated __percpu object
987  * @ptr:        __percpu pointer to beginning of the object
988  * @size:       size of the object
989  * @gfp:        flags used for kmemleak internal memory allocations
990  *
991  * This function is called from the kernel percpu allocator when a new object
992  * (memory block) is allocated (alloc_percpu).
993  */
994 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
995                                  gfp_t gfp)
996 {
997         unsigned int cpu;
998
999         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
1000
1001         /*
1002          * Percpu allocations are only scanned and not reported as leaks
1003          * (min_count is set to 0).
1004          */
1005         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1006                 for_each_possible_cpu(cpu)
1007                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1008                                       size, 0, gfp);
1009 }
1010 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1011
1012 /**
1013  * kmemleak_vmalloc - register a newly vmalloc'ed object
1014  * @area:       pointer to vm_struct
1015  * @size:       size of the object
1016  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
1017  *
1018  * This function is called from the vmalloc() kernel allocator when a new
1019  * object (memory block) is allocated.
1020  */
1021 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1022 {
1023         pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1024
1025         /*
1026          * A min_count = 2 is needed because vm_struct contains a reference to
1027          * the virtual address of the vmalloc'ed block.
1028          */
1029         if (kmemleak_enabled) {
1030                 create_object((unsigned long)area->addr, size, 2, gfp);
1031                 object_set_excess_ref((unsigned long)area,
1032                                       (unsigned long)area->addr);
1033         }
1034 }
1035 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1036
1037 /**
1038  * kmemleak_free - unregister a previously registered object
1039  * @ptr:        pointer to beginning of the object
1040  *
1041  * This function is called from the kernel allocators when an object (memory
1042  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1043  */
1044 void __ref kmemleak_free(const void *ptr)
1045 {
1046         pr_debug("%s(0x%p)\n", __func__, ptr);
1047
1048         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1049                 delete_object_full((unsigned long)ptr);
1050 }
1051 EXPORT_SYMBOL_GPL(kmemleak_free);
1052
1053 /**
1054  * kmemleak_free_part - partially unregister a previously registered object
1055  * @ptr:        pointer to the beginning or inside the object. This also
1056  *              represents the start of the range to be freed
1057  * @size:       size to be unregistered
1058  *
1059  * This function is called when only a part of a memory block is freed
1060  * (usually from the bootmem allocator).
1061  */
1062 void __ref kmemleak_free_part(const void *ptr, size_t size)
1063 {
1064         pr_debug("%s(0x%p)\n", __func__, ptr);
1065
1066         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1067                 delete_object_part((unsigned long)ptr, size, false);
1068 }
1069 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1070
1071 /**
1072  * kmemleak_free_percpu - unregister a previously registered __percpu object
1073  * @ptr:        __percpu pointer to beginning of the object
1074  *
1075  * This function is called from the kernel percpu allocator when an object
1076  * (memory block) is freed (free_percpu).
1077  */
1078 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1079 {
1080         unsigned int cpu;
1081
1082         pr_debug("%s(0x%p)\n", __func__, ptr);
1083
1084         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1085                 for_each_possible_cpu(cpu)
1086                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1087                                                                       cpu));
1088 }
1089 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1090
1091 /**
1092  * kmemleak_update_trace - update object allocation stack trace
1093  * @ptr:        pointer to beginning of the object
1094  *
1095  * Override the object allocation stack trace for cases where the actual
1096  * allocation place is not always useful.
1097  */
1098 void __ref kmemleak_update_trace(const void *ptr)
1099 {
1100         struct kmemleak_object *object;
1101         unsigned long flags;
1102
1103         pr_debug("%s(0x%p)\n", __func__, ptr);
1104
1105         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1106                 return;
1107
1108         object = find_and_get_object((unsigned long)ptr, 1);
1109         if (!object) {
1110 #ifdef DEBUG
1111                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1112                               ptr);
1113 #endif
1114                 return;
1115         }
1116
1117         raw_spin_lock_irqsave(&object->lock, flags);
1118         object->trace_handle = set_track_prepare();
1119         raw_spin_unlock_irqrestore(&object->lock, flags);
1120
1121         put_object(object);
1122 }
1123 EXPORT_SYMBOL(kmemleak_update_trace);
1124
1125 /**
1126  * kmemleak_not_leak - mark an allocated object as false positive
1127  * @ptr:        pointer to beginning of the object
1128  *
1129  * Calling this function on an object will cause the memory block to no longer
1130  * be reported as leak and always be scanned.
1131  */
1132 void __ref kmemleak_not_leak(const void *ptr)
1133 {
1134         pr_debug("%s(0x%p)\n", __func__, ptr);
1135
1136         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1137                 make_gray_object((unsigned long)ptr);
1138 }
1139 EXPORT_SYMBOL(kmemleak_not_leak);
1140
1141 /**
1142  * kmemleak_ignore - ignore an allocated object
1143  * @ptr:        pointer to beginning of the object
1144  *
1145  * Calling this function on an object will cause the memory block to be
1146  * ignored (not scanned and not reported as a leak). This is usually done when
1147  * it is known that the corresponding block is not a leak and does not contain
1148  * any references to other allocated memory blocks.
1149  */
1150 void __ref kmemleak_ignore(const void *ptr)
1151 {
1152         pr_debug("%s(0x%p)\n", __func__, ptr);
1153
1154         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1155                 make_black_object((unsigned long)ptr, false);
1156 }
1157 EXPORT_SYMBOL(kmemleak_ignore);
1158
1159 /**
1160  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1161  * @ptr:        pointer to beginning or inside the object. This also
1162  *              represents the start of the scan area
1163  * @size:       size of the scan area
1164  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1165  *
1166  * This function is used when it is known that only certain parts of an object
1167  * contain references to other objects. Kmemleak will only scan these areas
1168  * reducing the number false negatives.
1169  */
1170 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1171 {
1172         pr_debug("%s(0x%p)\n", __func__, ptr);
1173
1174         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1175                 add_scan_area((unsigned long)ptr, size, gfp);
1176 }
1177 EXPORT_SYMBOL(kmemleak_scan_area);
1178
1179 /**
1180  * kmemleak_no_scan - do not scan an allocated object
1181  * @ptr:        pointer to beginning of the object
1182  *
1183  * This function notifies kmemleak not to scan the given memory block. Useful
1184  * in situations where it is known that the given object does not contain any
1185  * references to other objects. Kmemleak will not scan such objects reducing
1186  * the number of false negatives.
1187  */
1188 void __ref kmemleak_no_scan(const void *ptr)
1189 {
1190         pr_debug("%s(0x%p)\n", __func__, ptr);
1191
1192         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1193                 object_no_scan((unsigned long)ptr);
1194 }
1195 EXPORT_SYMBOL(kmemleak_no_scan);
1196
1197 /**
1198  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1199  *                       address argument
1200  * @phys:       physical address of the object
1201  * @size:       size of the object
1202  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1203  */
1204 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1205 {
1206         pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1207
1208         if (kmemleak_enabled)
1209                 /*
1210                  * Create object with OBJECT_PHYS flag and
1211                  * assume min_count 0.
1212                  */
1213                 create_object_phys((unsigned long)phys, size, 0, gfp);
1214 }
1215 EXPORT_SYMBOL(kmemleak_alloc_phys);
1216
1217 /**
1218  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1219  *                           physical address argument
1220  * @phys:       physical address if the beginning or inside an object. This
1221  *              also represents the start of the range to be freed
1222  * @size:       size to be unregistered
1223  */
1224 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1225 {
1226         pr_debug("%s(0x%pa)\n", __func__, &phys);
1227
1228         if (kmemleak_enabled)
1229                 delete_object_part((unsigned long)phys, size, true);
1230 }
1231 EXPORT_SYMBOL(kmemleak_free_part_phys);
1232
1233 /**
1234  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1235  *                        address argument
1236  * @phys:       physical address of the object
1237  */
1238 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1239 {
1240         pr_debug("%s(0x%pa)\n", __func__, &phys);
1241
1242         if (kmemleak_enabled)
1243                 make_black_object((unsigned long)phys, true);
1244 }
1245 EXPORT_SYMBOL(kmemleak_ignore_phys);
1246
1247 /*
1248  * Update an object's checksum and return true if it was modified.
1249  */
1250 static bool update_checksum(struct kmemleak_object *object)
1251 {
1252         u32 old_csum = object->checksum;
1253
1254         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1255                 return false;
1256
1257         kasan_disable_current();
1258         kcsan_disable_current();
1259         object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1260         kasan_enable_current();
1261         kcsan_enable_current();
1262
1263         return object->checksum != old_csum;
1264 }
1265
1266 /*
1267  * Update an object's references. object->lock must be held by the caller.
1268  */
1269 static void update_refs(struct kmemleak_object *object)
1270 {
1271         if (!color_white(object)) {
1272                 /* non-orphan, ignored or new */
1273                 return;
1274         }
1275
1276         /*
1277          * Increase the object's reference count (number of pointers to the
1278          * memory block). If this count reaches the required minimum, the
1279          * object's color will become gray and it will be added to the
1280          * gray_list.
1281          */
1282         object->count++;
1283         if (color_gray(object)) {
1284                 /* put_object() called when removing from gray_list */
1285                 WARN_ON(!get_object(object));
1286                 list_add_tail(&object->gray_list, &gray_list);
1287         }
1288 }
1289
1290 /*
1291  * Memory scanning is a long process and it needs to be interruptible. This
1292  * function checks whether such interrupt condition occurred.
1293  */
1294 static int scan_should_stop(void)
1295 {
1296         if (!kmemleak_enabled)
1297                 return 1;
1298
1299         /*
1300          * This function may be called from either process or kthread context,
1301          * hence the need to check for both stop conditions.
1302          */
1303         if (current->mm)
1304                 return signal_pending(current);
1305         else
1306                 return kthread_should_stop();
1307
1308         return 0;
1309 }
1310
1311 /*
1312  * Scan a memory block (exclusive range) for valid pointers and add those
1313  * found to the gray list.
1314  */
1315 static void scan_block(void *_start, void *_end,
1316                        struct kmemleak_object *scanned)
1317 {
1318         unsigned long *ptr;
1319         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1320         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1321         unsigned long flags;
1322         unsigned long untagged_ptr;
1323
1324         raw_spin_lock_irqsave(&kmemleak_lock, flags);
1325         for (ptr = start; ptr < end; ptr++) {
1326                 struct kmemleak_object *object;
1327                 unsigned long pointer;
1328                 unsigned long excess_ref;
1329
1330                 if (scan_should_stop())
1331                         break;
1332
1333                 kasan_disable_current();
1334                 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1335                 kasan_enable_current();
1336
1337                 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1338                 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1339                         continue;
1340
1341                 /*
1342                  * No need for get_object() here since we hold kmemleak_lock.
1343                  * object->use_count cannot be dropped to 0 while the object
1344                  * is still present in object_tree_root and object_list
1345                  * (with updates protected by kmemleak_lock).
1346                  */
1347                 object = lookup_object(pointer, 1);
1348                 if (!object)
1349                         continue;
1350                 if (object == scanned)
1351                         /* self referenced, ignore */
1352                         continue;
1353
1354                 /*
1355                  * Avoid the lockdep recursive warning on object->lock being
1356                  * previously acquired in scan_object(). These locks are
1357                  * enclosed by scan_mutex.
1358                  */
1359                 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1360                 /* only pass surplus references (object already gray) */
1361                 if (color_gray(object)) {
1362                         excess_ref = object->excess_ref;
1363                         /* no need for update_refs() if object already gray */
1364                 } else {
1365                         excess_ref = 0;
1366                         update_refs(object);
1367                 }
1368                 raw_spin_unlock(&object->lock);
1369
1370                 if (excess_ref) {
1371                         object = lookup_object(excess_ref, 0);
1372                         if (!object)
1373                                 continue;
1374                         if (object == scanned)
1375                                 /* circular reference, ignore */
1376                                 continue;
1377                         raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1378                         update_refs(object);
1379                         raw_spin_unlock(&object->lock);
1380                 }
1381         }
1382         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1383 }
1384
1385 /*
1386  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1387  */
1388 #ifdef CONFIG_SMP
1389 static void scan_large_block(void *start, void *end)
1390 {
1391         void *next;
1392
1393         while (start < end) {
1394                 next = min(start + MAX_SCAN_SIZE, end);
1395                 scan_block(start, next, NULL);
1396                 start = next;
1397                 cond_resched();
1398         }
1399 }
1400 #endif
1401
1402 /*
1403  * Scan a memory block corresponding to a kmemleak_object. A condition is
1404  * that object->use_count >= 1.
1405  */
1406 static void scan_object(struct kmemleak_object *object)
1407 {
1408         struct kmemleak_scan_area *area;
1409         unsigned long flags;
1410         void *obj_ptr;
1411
1412         /*
1413          * Once the object->lock is acquired, the corresponding memory block
1414          * cannot be freed (the same lock is acquired in delete_object).
1415          */
1416         raw_spin_lock_irqsave(&object->lock, flags);
1417         if (object->flags & OBJECT_NO_SCAN)
1418                 goto out;
1419         if (!(object->flags & OBJECT_ALLOCATED))
1420                 /* already freed object */
1421                 goto out;
1422
1423         obj_ptr = object->flags & OBJECT_PHYS ?
1424                   __va((phys_addr_t)object->pointer) :
1425                   (void *)object->pointer;
1426
1427         if (hlist_empty(&object->area_list) ||
1428             object->flags & OBJECT_FULL_SCAN) {
1429                 void *start = obj_ptr;
1430                 void *end = obj_ptr + object->size;
1431                 void *next;
1432
1433                 do {
1434                         next = min(start + MAX_SCAN_SIZE, end);
1435                         scan_block(start, next, object);
1436
1437                         start = next;
1438                         if (start >= end)
1439                                 break;
1440
1441                         raw_spin_unlock_irqrestore(&object->lock, flags);
1442                         cond_resched();
1443                         raw_spin_lock_irqsave(&object->lock, flags);
1444                 } while (object->flags & OBJECT_ALLOCATED);
1445         } else
1446                 hlist_for_each_entry(area, &object->area_list, node)
1447                         scan_block((void *)area->start,
1448                                    (void *)(area->start + area->size),
1449                                    object);
1450 out:
1451         raw_spin_unlock_irqrestore(&object->lock, flags);
1452 }
1453
1454 /*
1455  * Scan the objects already referenced (gray objects). More objects will be
1456  * referenced and, if there are no memory leaks, all the objects are scanned.
1457  */
1458 static void scan_gray_list(void)
1459 {
1460         struct kmemleak_object *object, *tmp;
1461
1462         /*
1463          * The list traversal is safe for both tail additions and removals
1464          * from inside the loop. The kmemleak objects cannot be freed from
1465          * outside the loop because their use_count was incremented.
1466          */
1467         object = list_entry(gray_list.next, typeof(*object), gray_list);
1468         while (&object->gray_list != &gray_list) {
1469                 cond_resched();
1470
1471                 /* may add new objects to the list */
1472                 if (!scan_should_stop())
1473                         scan_object(object);
1474
1475                 tmp = list_entry(object->gray_list.next, typeof(*object),
1476                                  gray_list);
1477
1478                 /* remove the object from the list and release it */
1479                 list_del(&object->gray_list);
1480                 put_object(object);
1481
1482                 object = tmp;
1483         }
1484         WARN_ON(!list_empty(&gray_list));
1485 }
1486
1487 /*
1488  * Conditionally call resched() in an object iteration loop while making sure
1489  * that the given object won't go away without RCU read lock by performing a
1490  * get_object() if necessaary.
1491  */
1492 static void kmemleak_cond_resched(struct kmemleak_object *object)
1493 {
1494         if (!get_object(object))
1495                 return; /* Try next object */
1496
1497         raw_spin_lock_irq(&kmemleak_lock);
1498         if (object->del_state & DELSTATE_REMOVED)
1499                 goto unlock_put;        /* Object removed */
1500         object->del_state |= DELSTATE_NO_DELETE;
1501         raw_spin_unlock_irq(&kmemleak_lock);
1502
1503         rcu_read_unlock();
1504         cond_resched();
1505         rcu_read_lock();
1506
1507         raw_spin_lock_irq(&kmemleak_lock);
1508         if (object->del_state & DELSTATE_REMOVED)
1509                 list_del_rcu(&object->object_list);
1510         object->del_state &= ~DELSTATE_NO_DELETE;
1511 unlock_put:
1512         raw_spin_unlock_irq(&kmemleak_lock);
1513         put_object(object);
1514 }
1515
1516 /*
1517  * Scan data sections and all the referenced memory blocks allocated via the
1518  * kernel's standard allocators. This function must be called with the
1519  * scan_mutex held.
1520  */
1521 static void kmemleak_scan(void)
1522 {
1523         struct kmemleak_object *object;
1524         struct zone *zone;
1525         int __maybe_unused i;
1526         int new_leaks = 0;
1527
1528         jiffies_last_scan = jiffies;
1529
1530         /* prepare the kmemleak_object's */
1531         rcu_read_lock();
1532         list_for_each_entry_rcu(object, &object_list, object_list) {
1533                 raw_spin_lock_irq(&object->lock);
1534 #ifdef DEBUG
1535                 /*
1536                  * With a few exceptions there should be a maximum of
1537                  * 1 reference to any object at this point.
1538                  */
1539                 if (atomic_read(&object->use_count) > 1) {
1540                         pr_debug("object->use_count = %d\n",
1541                                  atomic_read(&object->use_count));
1542                         dump_object_info(object);
1543                 }
1544 #endif
1545
1546                 /* ignore objects outside lowmem (paint them black) */
1547                 if ((object->flags & OBJECT_PHYS) &&
1548                    !(object->flags & OBJECT_NO_SCAN)) {
1549                         unsigned long phys = object->pointer;
1550
1551                         if (PHYS_PFN(phys) < min_low_pfn ||
1552                             PHYS_PFN(phys + object->size) >= max_low_pfn)
1553                                 __paint_it(object, KMEMLEAK_BLACK);
1554                 }
1555
1556                 /* reset the reference count (whiten the object) */
1557                 object->count = 0;
1558                 if (color_gray(object) && get_object(object))
1559                         list_add_tail(&object->gray_list, &gray_list);
1560
1561                 raw_spin_unlock_irq(&object->lock);
1562
1563                 if (need_resched())
1564                         kmemleak_cond_resched(object);
1565         }
1566         rcu_read_unlock();
1567
1568 #ifdef CONFIG_SMP
1569         /* per-cpu sections scanning */
1570         for_each_possible_cpu(i)
1571                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1572                                  __per_cpu_end + per_cpu_offset(i));
1573 #endif
1574
1575         /*
1576          * Struct page scanning for each node.
1577          */
1578         get_online_mems();
1579         for_each_populated_zone(zone) {
1580                 unsigned long start_pfn = zone->zone_start_pfn;
1581                 unsigned long end_pfn = zone_end_pfn(zone);
1582                 unsigned long pfn;
1583
1584                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1585                         struct page *page = pfn_to_online_page(pfn);
1586
1587                         if (!page)
1588                                 continue;
1589
1590                         /* only scan pages belonging to this zone */
1591                         if (page_zone(page) != zone)
1592                                 continue;
1593                         /* only scan if page is in use */
1594                         if (page_count(page) == 0)
1595                                 continue;
1596                         scan_block(page, page + 1, NULL);
1597                         if (!(pfn & 63))
1598                                 cond_resched();
1599                 }
1600         }
1601         put_online_mems();
1602
1603         /*
1604          * Scanning the task stacks (may introduce false negatives).
1605          */
1606         if (kmemleak_stack_scan) {
1607                 struct task_struct *p, *g;
1608
1609                 rcu_read_lock();
1610                 for_each_process_thread(g, p) {
1611                         void *stack = try_get_task_stack(p);
1612                         if (stack) {
1613                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1614                                 put_task_stack(p);
1615                         }
1616                 }
1617                 rcu_read_unlock();
1618         }
1619
1620         /*
1621          * Scan the objects already referenced from the sections scanned
1622          * above.
1623          */
1624         scan_gray_list();
1625
1626         /*
1627          * Check for new or unreferenced objects modified since the previous
1628          * scan and color them gray until the next scan.
1629          */
1630         rcu_read_lock();
1631         list_for_each_entry_rcu(object, &object_list, object_list) {
1632                 if (need_resched())
1633                         kmemleak_cond_resched(object);
1634
1635                 /*
1636                  * This is racy but we can save the overhead of lock/unlock
1637                  * calls. The missed objects, if any, should be caught in
1638                  * the next scan.
1639                  */
1640                 if (!color_white(object))
1641                         continue;
1642                 raw_spin_lock_irq(&object->lock);
1643                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1644                     && update_checksum(object) && get_object(object)) {
1645                         /* color it gray temporarily */
1646                         object->count = object->min_count;
1647                         list_add_tail(&object->gray_list, &gray_list);
1648                 }
1649                 raw_spin_unlock_irq(&object->lock);
1650         }
1651         rcu_read_unlock();
1652
1653         /*
1654          * Re-scan the gray list for modified unreferenced objects.
1655          */
1656         scan_gray_list();
1657
1658         /*
1659          * If scanning was stopped do not report any new unreferenced objects.
1660          */
1661         if (scan_should_stop())
1662                 return;
1663
1664         /*
1665          * Scanning result reporting.
1666          */
1667         rcu_read_lock();
1668         list_for_each_entry_rcu(object, &object_list, object_list) {
1669                 if (need_resched())
1670                         kmemleak_cond_resched(object);
1671
1672                 /*
1673                  * This is racy but we can save the overhead of lock/unlock
1674                  * calls. The missed objects, if any, should be caught in
1675                  * the next scan.
1676                  */
1677                 if (!color_white(object))
1678                         continue;
1679                 raw_spin_lock_irq(&object->lock);
1680                 if (unreferenced_object(object) &&
1681                     !(object->flags & OBJECT_REPORTED)) {
1682                         object->flags |= OBJECT_REPORTED;
1683
1684                         if (kmemleak_verbose)
1685                                 print_unreferenced(NULL, object);
1686
1687                         new_leaks++;
1688                 }
1689                 raw_spin_unlock_irq(&object->lock);
1690         }
1691         rcu_read_unlock();
1692
1693         if (new_leaks) {
1694                 kmemleak_found_leaks = true;
1695
1696                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1697                         new_leaks);
1698         }
1699
1700 }
1701
1702 /*
1703  * Thread function performing automatic memory scanning. Unreferenced objects
1704  * at the end of a memory scan are reported but only the first time.
1705  */
1706 static int kmemleak_scan_thread(void *arg)
1707 {
1708         static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1709
1710         pr_info("Automatic memory scanning thread started\n");
1711         set_user_nice(current, 10);
1712
1713         /*
1714          * Wait before the first scan to allow the system to fully initialize.
1715          */
1716         if (first_run) {
1717                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1718                 first_run = 0;
1719                 while (timeout && !kthread_should_stop())
1720                         timeout = schedule_timeout_interruptible(timeout);
1721         }
1722
1723         while (!kthread_should_stop()) {
1724                 signed long timeout = READ_ONCE(jiffies_scan_wait);
1725
1726                 mutex_lock(&scan_mutex);
1727                 kmemleak_scan();
1728                 mutex_unlock(&scan_mutex);
1729
1730                 /* wait before the next scan */
1731                 while (timeout && !kthread_should_stop())
1732                         timeout = schedule_timeout_interruptible(timeout);
1733         }
1734
1735         pr_info("Automatic memory scanning thread ended\n");
1736
1737         return 0;
1738 }
1739
1740 /*
1741  * Start the automatic memory scanning thread. This function must be called
1742  * with the scan_mutex held.
1743  */
1744 static void start_scan_thread(void)
1745 {
1746         if (scan_thread)
1747                 return;
1748         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1749         if (IS_ERR(scan_thread)) {
1750                 pr_warn("Failed to create the scan thread\n");
1751                 scan_thread = NULL;
1752         }
1753 }
1754
1755 /*
1756  * Stop the automatic memory scanning thread.
1757  */
1758 static void stop_scan_thread(void)
1759 {
1760         if (scan_thread) {
1761                 kthread_stop(scan_thread);
1762                 scan_thread = NULL;
1763         }
1764 }
1765
1766 /*
1767  * Iterate over the object_list and return the first valid object at or after
1768  * the required position with its use_count incremented. The function triggers
1769  * a memory scanning when the pos argument points to the first position.
1770  */
1771 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1772 {
1773         struct kmemleak_object *object;
1774         loff_t n = *pos;
1775         int err;
1776
1777         err = mutex_lock_interruptible(&scan_mutex);
1778         if (err < 0)
1779                 return ERR_PTR(err);
1780
1781         rcu_read_lock();
1782         list_for_each_entry_rcu(object, &object_list, object_list) {
1783                 if (n-- > 0)
1784                         continue;
1785                 if (get_object(object))
1786                         goto out;
1787         }
1788         object = NULL;
1789 out:
1790         return object;
1791 }
1792
1793 /*
1794  * Return the next object in the object_list. The function decrements the
1795  * use_count of the previous object and increases that of the next one.
1796  */
1797 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1798 {
1799         struct kmemleak_object *prev_obj = v;
1800         struct kmemleak_object *next_obj = NULL;
1801         struct kmemleak_object *obj = prev_obj;
1802
1803         ++(*pos);
1804
1805         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1806                 if (get_object(obj)) {
1807                         next_obj = obj;
1808                         break;
1809                 }
1810         }
1811
1812         put_object(prev_obj);
1813         return next_obj;
1814 }
1815
1816 /*
1817  * Decrement the use_count of the last object required, if any.
1818  */
1819 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1820 {
1821         if (!IS_ERR(v)) {
1822                 /*
1823                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1824                  * waiting was interrupted, so only release it if !IS_ERR.
1825                  */
1826                 rcu_read_unlock();
1827                 mutex_unlock(&scan_mutex);
1828                 if (v)
1829                         put_object(v);
1830         }
1831 }
1832
1833 /*
1834  * Print the information for an unreferenced object to the seq file.
1835  */
1836 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1837 {
1838         struct kmemleak_object *object = v;
1839         unsigned long flags;
1840
1841         raw_spin_lock_irqsave(&object->lock, flags);
1842         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1843                 print_unreferenced(seq, object);
1844         raw_spin_unlock_irqrestore(&object->lock, flags);
1845         return 0;
1846 }
1847
1848 static const struct seq_operations kmemleak_seq_ops = {
1849         .start = kmemleak_seq_start,
1850         .next  = kmemleak_seq_next,
1851         .stop  = kmemleak_seq_stop,
1852         .show  = kmemleak_seq_show,
1853 };
1854
1855 static int kmemleak_open(struct inode *inode, struct file *file)
1856 {
1857         return seq_open(file, &kmemleak_seq_ops);
1858 }
1859
1860 static int dump_str_object_info(const char *str)
1861 {
1862         unsigned long flags;
1863         struct kmemleak_object *object;
1864         unsigned long addr;
1865
1866         if (kstrtoul(str, 0, &addr))
1867                 return -EINVAL;
1868         object = find_and_get_object(addr, 0);
1869         if (!object) {
1870                 pr_info("Unknown object at 0x%08lx\n", addr);
1871                 return -EINVAL;
1872         }
1873
1874         raw_spin_lock_irqsave(&object->lock, flags);
1875         dump_object_info(object);
1876         raw_spin_unlock_irqrestore(&object->lock, flags);
1877
1878         put_object(object);
1879         return 0;
1880 }
1881
1882 /*
1883  * We use grey instead of black to ensure we can do future scans on the same
1884  * objects. If we did not do future scans these black objects could
1885  * potentially contain references to newly allocated objects in the future and
1886  * we'd end up with false positives.
1887  */
1888 static void kmemleak_clear(void)
1889 {
1890         struct kmemleak_object *object;
1891
1892         rcu_read_lock();
1893         list_for_each_entry_rcu(object, &object_list, object_list) {
1894                 raw_spin_lock_irq(&object->lock);
1895                 if ((object->flags & OBJECT_REPORTED) &&
1896                     unreferenced_object(object))
1897                         __paint_it(object, KMEMLEAK_GREY);
1898                 raw_spin_unlock_irq(&object->lock);
1899         }
1900         rcu_read_unlock();
1901
1902         kmemleak_found_leaks = false;
1903 }
1904
1905 static void __kmemleak_do_cleanup(void);
1906
1907 /*
1908  * File write operation to configure kmemleak at run-time. The following
1909  * commands can be written to the /sys/kernel/debug/kmemleak file:
1910  *   off        - disable kmemleak (irreversible)
1911  *   stack=on   - enable the task stacks scanning
1912  *   stack=off  - disable the tasks stacks scanning
1913  *   scan=on    - start the automatic memory scanning thread
1914  *   scan=off   - stop the automatic memory scanning thread
1915  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1916  *                disable it)
1917  *   scan       - trigger a memory scan
1918  *   clear      - mark all current reported unreferenced kmemleak objects as
1919  *                grey to ignore printing them, or free all kmemleak objects
1920  *                if kmemleak has been disabled.
1921  *   dump=...   - dump information about the object found at the given address
1922  */
1923 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1924                               size_t size, loff_t *ppos)
1925 {
1926         char buf[64];
1927         int buf_size;
1928         int ret;
1929
1930         buf_size = min(size, (sizeof(buf) - 1));
1931         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1932                 return -EFAULT;
1933         buf[buf_size] = 0;
1934
1935         ret = mutex_lock_interruptible(&scan_mutex);
1936         if (ret < 0)
1937                 return ret;
1938
1939         if (strncmp(buf, "clear", 5) == 0) {
1940                 if (kmemleak_enabled)
1941                         kmemleak_clear();
1942                 else
1943                         __kmemleak_do_cleanup();
1944                 goto out;
1945         }
1946
1947         if (!kmemleak_enabled) {
1948                 ret = -EPERM;
1949                 goto out;
1950         }
1951
1952         if (strncmp(buf, "off", 3) == 0)
1953                 kmemleak_disable();
1954         else if (strncmp(buf, "stack=on", 8) == 0)
1955                 kmemleak_stack_scan = 1;
1956         else if (strncmp(buf, "stack=off", 9) == 0)
1957                 kmemleak_stack_scan = 0;
1958         else if (strncmp(buf, "scan=on", 7) == 0)
1959                 start_scan_thread();
1960         else if (strncmp(buf, "scan=off", 8) == 0)
1961                 stop_scan_thread();
1962         else if (strncmp(buf, "scan=", 5) == 0) {
1963                 unsigned secs;
1964                 unsigned long msecs;
1965
1966                 ret = kstrtouint(buf + 5, 0, &secs);
1967                 if (ret < 0)
1968                         goto out;
1969
1970                 msecs = secs * MSEC_PER_SEC;
1971                 if (msecs > UINT_MAX)
1972                         msecs = UINT_MAX;
1973
1974                 stop_scan_thread();
1975                 if (msecs) {
1976                         WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1977                         start_scan_thread();
1978                 }
1979         } else if (strncmp(buf, "scan", 4) == 0)
1980                 kmemleak_scan();
1981         else if (strncmp(buf, "dump=", 5) == 0)
1982                 ret = dump_str_object_info(buf + 5);
1983         else
1984                 ret = -EINVAL;
1985
1986 out:
1987         mutex_unlock(&scan_mutex);
1988         if (ret < 0)
1989                 return ret;
1990
1991         /* ignore the rest of the buffer, only one command at a time */
1992         *ppos += size;
1993         return size;
1994 }
1995
1996 static const struct file_operations kmemleak_fops = {
1997         .owner          = THIS_MODULE,
1998         .open           = kmemleak_open,
1999         .read           = seq_read,
2000         .write          = kmemleak_write,
2001         .llseek         = seq_lseek,
2002         .release        = seq_release,
2003 };
2004
2005 static void __kmemleak_do_cleanup(void)
2006 {
2007         struct kmemleak_object *object, *tmp;
2008
2009         /*
2010          * Kmemleak has already been disabled, no need for RCU list traversal
2011          * or kmemleak_lock held.
2012          */
2013         list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2014                 __remove_object(object);
2015                 __delete_object(object);
2016         }
2017 }
2018
2019 /*
2020  * Stop the memory scanning thread and free the kmemleak internal objects if
2021  * no previous scan thread (otherwise, kmemleak may still have some useful
2022  * information on memory leaks).
2023  */
2024 static void kmemleak_do_cleanup(struct work_struct *work)
2025 {
2026         stop_scan_thread();
2027
2028         mutex_lock(&scan_mutex);
2029         /*
2030          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2031          * longer track object freeing. Ordering of the scan thread stopping and
2032          * the memory accesses below is guaranteed by the kthread_stop()
2033          * function.
2034          */
2035         kmemleak_free_enabled = 0;
2036         mutex_unlock(&scan_mutex);
2037
2038         if (!kmemleak_found_leaks)
2039                 __kmemleak_do_cleanup();
2040         else
2041                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2042 }
2043
2044 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2045
2046 /*
2047  * Disable kmemleak. No memory allocation/freeing will be traced once this
2048  * function is called. Disabling kmemleak is an irreversible operation.
2049  */
2050 static void kmemleak_disable(void)
2051 {
2052         /* atomically check whether it was already invoked */
2053         if (cmpxchg(&kmemleak_error, 0, 1))
2054                 return;
2055
2056         /* stop any memory operation tracing */
2057         kmemleak_enabled = 0;
2058
2059         /* check whether it is too early for a kernel thread */
2060         if (kmemleak_late_initialized)
2061                 schedule_work(&cleanup_work);
2062         else
2063                 kmemleak_free_enabled = 0;
2064
2065         pr_info("Kernel memory leak detector disabled\n");
2066 }
2067
2068 /*
2069  * Allow boot-time kmemleak disabling (enabled by default).
2070  */
2071 static int __init kmemleak_boot_config(char *str)
2072 {
2073         if (!str)
2074                 return -EINVAL;
2075         if (strcmp(str, "off") == 0)
2076                 kmemleak_disable();
2077         else if (strcmp(str, "on") == 0) {
2078                 kmemleak_skip_disable = 1;
2079                 stack_depot_request_early_init();
2080         }
2081         else
2082                 return -EINVAL;
2083         return 0;
2084 }
2085 early_param("kmemleak", kmemleak_boot_config);
2086
2087 /*
2088  * Kmemleak initialization.
2089  */
2090 void __init kmemleak_init(void)
2091 {
2092 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2093         if (!kmemleak_skip_disable) {
2094                 kmemleak_disable();
2095                 return;
2096         }
2097 #endif
2098
2099         if (kmemleak_error)
2100                 return;
2101
2102         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2103         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2104
2105         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2106         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2107
2108         /* register the data/bss sections */
2109         create_object((unsigned long)_sdata, _edata - _sdata,
2110                       KMEMLEAK_GREY, GFP_ATOMIC);
2111         create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2112                       KMEMLEAK_GREY, GFP_ATOMIC);
2113         /* only register .data..ro_after_init if not within .data */
2114         if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2115                 create_object((unsigned long)__start_ro_after_init,
2116                               __end_ro_after_init - __start_ro_after_init,
2117                               KMEMLEAK_GREY, GFP_ATOMIC);
2118 }
2119
2120 /*
2121  * Late initialization function.
2122  */
2123 static int __init kmemleak_late_init(void)
2124 {
2125         kmemleak_late_initialized = 1;
2126
2127         debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2128
2129         if (kmemleak_error) {
2130                 /*
2131                  * Some error occurred and kmemleak was disabled. There is a
2132                  * small chance that kmemleak_disable() was called immediately
2133                  * after setting kmemleak_late_initialized and we may end up with
2134                  * two clean-up threads but serialized by scan_mutex.
2135                  */
2136                 schedule_work(&cleanup_work);
2137                 return -ENOMEM;
2138         }
2139
2140         if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2141                 mutex_lock(&scan_mutex);
2142                 start_scan_thread();
2143                 mutex_unlock(&scan_mutex);
2144         }
2145
2146         pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2147                 mem_pool_free_count);
2148
2149         return 0;
2150 }
2151 late_initcall(kmemleak_late_init);