IB/mlx5: Add additional checks before processing MADs
[platform/kernel/linux-rpi.git] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/dev-tools/kmemleak.rst.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a red black tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * Locks and mutexes are acquired/nested in the following order:
57  *
58  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59  *
60  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61  * regions.
62  *
63  * The kmemleak_object structures have a use_count incremented or decremented
64  * using the get_object()/put_object() functions. When the use_count becomes
65  * 0, this count can no longer be incremented and put_object() schedules the
66  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67  * function must be protected by rcu_read_lock() to avoid accessing a freed
68  * structure.
69  */
70
71 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
73 #include <linux/init.h>
74 #include <linux/kernel.h>
75 #include <linux/list.h>
76 #include <linux/sched.h>
77 #include <linux/jiffies.h>
78 #include <linux/delay.h>
79 #include <linux/export.h>
80 #include <linux/kthread.h>
81 #include <linux/rbtree.h>
82 #include <linux/fs.h>
83 #include <linux/debugfs.h>
84 #include <linux/seq_file.h>
85 #include <linux/cpumask.h>
86 #include <linux/spinlock.h>
87 #include <linux/mutex.h>
88 #include <linux/rcupdate.h>
89 #include <linux/stacktrace.h>
90 #include <linux/cache.h>
91 #include <linux/percpu.h>
92 #include <linux/hardirq.h>
93 #include <linux/bootmem.h>
94 #include <linux/pfn.h>
95 #include <linux/mmzone.h>
96 #include <linux/slab.h>
97 #include <linux/thread_info.h>
98 #include <linux/err.h>
99 #include <linux/uaccess.h>
100 #include <linux/string.h>
101 #include <linux/nodemask.h>
102 #include <linux/mm.h>
103 #include <linux/workqueue.h>
104 #include <linux/crc32.h>
105
106 #include <asm/sections.h>
107 #include <asm/processor.h>
108 #include <linux/atomic.h>
109
110 #include <linux/kasan.h>
111 #include <linux/kmemcheck.h>
112 #include <linux/kmemleak.h>
113 #include <linux/memory_hotplug.h>
114
115 /*
116  * Kmemleak configuration and common defines.
117  */
118 #define MAX_TRACE               16      /* stack trace length */
119 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
120 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
121 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
122 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
123
124 #define BYTES_PER_POINTER       sizeof(void *)
125
126 /* GFP bitmask for kmemleak internal allocations */
127 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
128                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
129                                  __GFP_NOWARN)
130
131 /* scanning area inside a memory block */
132 struct kmemleak_scan_area {
133         struct hlist_node node;
134         unsigned long start;
135         size_t size;
136 };
137
138 #define KMEMLEAK_GREY   0
139 #define KMEMLEAK_BLACK  -1
140
141 /*
142  * Structure holding the metadata for each allocated memory block.
143  * Modifications to such objects should be made while holding the
144  * object->lock. Insertions or deletions from object_list, gray_list or
145  * rb_node are already protected by the corresponding locks or mutex (see
146  * the notes on locking above). These objects are reference-counted
147  * (use_count) and freed using the RCU mechanism.
148  */
149 struct kmemleak_object {
150         spinlock_t lock;
151         unsigned long flags;            /* object status flags */
152         struct list_head object_list;
153         struct list_head gray_list;
154         struct rb_node rb_node;
155         struct rcu_head rcu;            /* object_list lockless traversal */
156         /* object usage count; object freed when use_count == 0 */
157         atomic_t use_count;
158         unsigned long pointer;
159         size_t size;
160         /* minimum number of a pointers found before it is considered leak */
161         int min_count;
162         /* the total number of pointers found pointing to this object */
163         int count;
164         /* checksum for detecting modified objects */
165         u32 checksum;
166         /* memory ranges to be scanned inside an object (empty for all) */
167         struct hlist_head area_list;
168         unsigned long trace[MAX_TRACE];
169         unsigned int trace_len;
170         unsigned long jiffies;          /* creation timestamp */
171         pid_t pid;                      /* pid of the current task */
172         char comm[TASK_COMM_LEN];       /* executable name */
173 };
174
175 /* flag representing the memory block allocation status */
176 #define OBJECT_ALLOCATED        (1 << 0)
177 /* flag set after the first reporting of an unreference object */
178 #define OBJECT_REPORTED         (1 << 1)
179 /* flag set to not scan the object */
180 #define OBJECT_NO_SCAN          (1 << 2)
181
182 /* number of bytes to print per line; must be 16 or 32 */
183 #define HEX_ROW_SIZE            16
184 /* number of bytes to print at a time (1, 2, 4, 8) */
185 #define HEX_GROUP_SIZE          1
186 /* include ASCII after the hex output */
187 #define HEX_ASCII               1
188 /* max number of lines to be printed */
189 #define HEX_MAX_LINES           2
190
191 /* the list of all allocated objects */
192 static LIST_HEAD(object_list);
193 /* the list of gray-colored objects (see color_gray comment below) */
194 static LIST_HEAD(gray_list);
195 /* search tree for object boundaries */
196 static struct rb_root object_tree_root = RB_ROOT;
197 /* rw_lock protecting the access to object_list and object_tree_root */
198 static DEFINE_RWLOCK(kmemleak_lock);
199
200 /* allocation caches for kmemleak internal data */
201 static struct kmem_cache *object_cache;
202 static struct kmem_cache *scan_area_cache;
203
204 /* set if tracing memory operations is enabled */
205 static int kmemleak_enabled;
206 /* same as above but only for the kmemleak_free() callback */
207 static int kmemleak_free_enabled;
208 /* set in the late_initcall if there were no errors */
209 static int kmemleak_initialized;
210 /* enables or disables early logging of the memory operations */
211 static int kmemleak_early_log = 1;
212 /* set if a kmemleak warning was issued */
213 static int kmemleak_warning;
214 /* set if a fatal kmemleak error has occurred */
215 static int kmemleak_error;
216
217 /* minimum and maximum address that may be valid pointers */
218 static unsigned long min_addr = ULONG_MAX;
219 static unsigned long max_addr;
220
221 static struct task_struct *scan_thread;
222 /* used to avoid reporting of recently allocated objects */
223 static unsigned long jiffies_min_age;
224 static unsigned long jiffies_last_scan;
225 /* delay between automatic memory scannings */
226 static signed long jiffies_scan_wait;
227 /* enables or disables the task stacks scanning */
228 static int kmemleak_stack_scan = 1;
229 /* protects the memory scanning, parameters and debug/kmemleak file access */
230 static DEFINE_MUTEX(scan_mutex);
231 /* setting kmemleak=on, will set this var, skipping the disable */
232 static int kmemleak_skip_disable;
233 /* If there are leaks that can be reported */
234 static bool kmemleak_found_leaks;
235
236 /*
237  * Early object allocation/freeing logging. Kmemleak is initialized after the
238  * kernel allocator. However, both the kernel allocator and kmemleak may
239  * allocate memory blocks which need to be tracked. Kmemleak defines an
240  * arbitrary buffer to hold the allocation/freeing information before it is
241  * fully initialized.
242  */
243
244 /* kmemleak operation type for early logging */
245 enum {
246         KMEMLEAK_ALLOC,
247         KMEMLEAK_ALLOC_PERCPU,
248         KMEMLEAK_FREE,
249         KMEMLEAK_FREE_PART,
250         KMEMLEAK_FREE_PERCPU,
251         KMEMLEAK_NOT_LEAK,
252         KMEMLEAK_IGNORE,
253         KMEMLEAK_SCAN_AREA,
254         KMEMLEAK_NO_SCAN
255 };
256
257 /*
258  * Structure holding the information passed to kmemleak callbacks during the
259  * early logging.
260  */
261 struct early_log {
262         int op_type;                    /* kmemleak operation type */
263         const void *ptr;                /* allocated/freed memory block */
264         size_t size;                    /* memory block size */
265         int min_count;                  /* minimum reference count */
266         unsigned long trace[MAX_TRACE]; /* stack trace */
267         unsigned int trace_len;         /* stack trace length */
268 };
269
270 /* early logging buffer and current position */
271 static struct early_log
272         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
273 static int crt_early_log __initdata;
274
275 static void kmemleak_disable(void);
276
277 /*
278  * Print a warning and dump the stack trace.
279  */
280 #define kmemleak_warn(x...)     do {            \
281         pr_warn(x);                             \
282         dump_stack();                           \
283         kmemleak_warning = 1;                   \
284 } while (0)
285
286 /*
287  * Macro invoked when a serious kmemleak condition occurred and cannot be
288  * recovered from. Kmemleak will be disabled and further allocation/freeing
289  * tracing no longer available.
290  */
291 #define kmemleak_stop(x...)     do {    \
292         kmemleak_warn(x);               \
293         kmemleak_disable();             \
294 } while (0)
295
296 /*
297  * Printing of the objects hex dump to the seq file. The number of lines to be
298  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
299  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
300  * with the object->lock held.
301  */
302 static void hex_dump_object(struct seq_file *seq,
303                             struct kmemleak_object *object)
304 {
305         const u8 *ptr = (const u8 *)object->pointer;
306         size_t len;
307
308         /* limit the number of lines to HEX_MAX_LINES */
309         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
310
311         seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
312         kasan_disable_current();
313         seq_hex_dump(seq, "    ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
314                      HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
315         kasan_enable_current();
316 }
317
318 /*
319  * Object colors, encoded with count and min_count:
320  * - white - orphan object, not enough references to it (count < min_count)
321  * - gray  - not orphan, not marked as false positive (min_count == 0) or
322  *              sufficient references to it (count >= min_count)
323  * - black - ignore, it doesn't contain references (e.g. text section)
324  *              (min_count == -1). No function defined for this color.
325  * Newly created objects don't have any color assigned (object->count == -1)
326  * before the next memory scan when they become white.
327  */
328 static bool color_white(const struct kmemleak_object *object)
329 {
330         return object->count != KMEMLEAK_BLACK &&
331                 object->count < object->min_count;
332 }
333
334 static bool color_gray(const struct kmemleak_object *object)
335 {
336         return object->min_count != KMEMLEAK_BLACK &&
337                 object->count >= object->min_count;
338 }
339
340 /*
341  * Objects are considered unreferenced only if their color is white, they have
342  * not be deleted and have a minimum age to avoid false positives caused by
343  * pointers temporarily stored in CPU registers.
344  */
345 static bool unreferenced_object(struct kmemleak_object *object)
346 {
347         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
348                 time_before_eq(object->jiffies + jiffies_min_age,
349                                jiffies_last_scan);
350 }
351
352 /*
353  * Printing of the unreferenced objects information to the seq file. The
354  * print_unreferenced function must be called with the object->lock held.
355  */
356 static void print_unreferenced(struct seq_file *seq,
357                                struct kmemleak_object *object)
358 {
359         int i;
360         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
361
362         seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
363                    object->pointer, object->size);
364         seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
365                    object->comm, object->pid, object->jiffies,
366                    msecs_age / 1000, msecs_age % 1000);
367         hex_dump_object(seq, object);
368         seq_printf(seq, "  backtrace:\n");
369
370         for (i = 0; i < object->trace_len; i++) {
371                 void *ptr = (void *)object->trace[i];
372                 seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
373         }
374 }
375
376 /*
377  * Print the kmemleak_object information. This function is used mainly for
378  * debugging special cases when kmemleak operations. It must be called with
379  * the object->lock held.
380  */
381 static void dump_object_info(struct kmemleak_object *object)
382 {
383         struct stack_trace trace;
384
385         trace.nr_entries = object->trace_len;
386         trace.entries = object->trace;
387
388         pr_notice("Object 0x%08lx (size %zu):\n",
389                   object->pointer, object->size);
390         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
391                   object->comm, object->pid, object->jiffies);
392         pr_notice("  min_count = %d\n", object->min_count);
393         pr_notice("  count = %d\n", object->count);
394         pr_notice("  flags = 0x%lx\n", object->flags);
395         pr_notice("  checksum = %u\n", object->checksum);
396         pr_notice("  backtrace:\n");
397         print_stack_trace(&trace, 4);
398 }
399
400 /*
401  * Look-up a memory block metadata (kmemleak_object) in the object search
402  * tree based on a pointer value. If alias is 0, only values pointing to the
403  * beginning of the memory block are allowed. The kmemleak_lock must be held
404  * when calling this function.
405  */
406 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
407 {
408         struct rb_node *rb = object_tree_root.rb_node;
409
410         while (rb) {
411                 struct kmemleak_object *object =
412                         rb_entry(rb, struct kmemleak_object, rb_node);
413                 if (ptr < object->pointer)
414                         rb = object->rb_node.rb_left;
415                 else if (object->pointer + object->size <= ptr)
416                         rb = object->rb_node.rb_right;
417                 else if (object->pointer == ptr || alias)
418                         return object;
419                 else {
420                         kmemleak_warn("Found object by alias at 0x%08lx\n",
421                                       ptr);
422                         dump_object_info(object);
423                         break;
424                 }
425         }
426         return NULL;
427 }
428
429 /*
430  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
431  * that once an object's use_count reached 0, the RCU freeing was already
432  * registered and the object should no longer be used. This function must be
433  * called under the protection of rcu_read_lock().
434  */
435 static int get_object(struct kmemleak_object *object)
436 {
437         return atomic_inc_not_zero(&object->use_count);
438 }
439
440 /*
441  * RCU callback to free a kmemleak_object.
442  */
443 static void free_object_rcu(struct rcu_head *rcu)
444 {
445         struct hlist_node *tmp;
446         struct kmemleak_scan_area *area;
447         struct kmemleak_object *object =
448                 container_of(rcu, struct kmemleak_object, rcu);
449
450         /*
451          * Once use_count is 0 (guaranteed by put_object), there is no other
452          * code accessing this object, hence no need for locking.
453          */
454         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
455                 hlist_del(&area->node);
456                 kmem_cache_free(scan_area_cache, area);
457         }
458         kmem_cache_free(object_cache, object);
459 }
460
461 /*
462  * Decrement the object use_count. Once the count is 0, free the object using
463  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
464  * delete_object() path, the delayed RCU freeing ensures that there is no
465  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
466  * is also possible.
467  */
468 static void put_object(struct kmemleak_object *object)
469 {
470         if (!atomic_dec_and_test(&object->use_count))
471                 return;
472
473         /* should only get here after delete_object was called */
474         WARN_ON(object->flags & OBJECT_ALLOCATED);
475
476         call_rcu(&object->rcu, free_object_rcu);
477 }
478
479 /*
480  * Look up an object in the object search tree and increase its use_count.
481  */
482 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
483 {
484         unsigned long flags;
485         struct kmemleak_object *object;
486
487         rcu_read_lock();
488         read_lock_irqsave(&kmemleak_lock, flags);
489         object = lookup_object(ptr, alias);
490         read_unlock_irqrestore(&kmemleak_lock, flags);
491
492         /* check whether the object is still available */
493         if (object && !get_object(object))
494                 object = NULL;
495         rcu_read_unlock();
496
497         return object;
498 }
499
500 /*
501  * Look up an object in the object search tree and remove it from both
502  * object_tree_root and object_list. The returned object's use_count should be
503  * at least 1, as initially set by create_object().
504  */
505 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
506 {
507         unsigned long flags;
508         struct kmemleak_object *object;
509
510         write_lock_irqsave(&kmemleak_lock, flags);
511         object = lookup_object(ptr, alias);
512         if (object) {
513                 rb_erase(&object->rb_node, &object_tree_root);
514                 list_del_rcu(&object->object_list);
515         }
516         write_unlock_irqrestore(&kmemleak_lock, flags);
517
518         return object;
519 }
520
521 /*
522  * Save stack trace to the given array of MAX_TRACE size.
523  */
524 static int __save_stack_trace(unsigned long *trace)
525 {
526         struct stack_trace stack_trace;
527
528         stack_trace.max_entries = MAX_TRACE;
529         stack_trace.nr_entries = 0;
530         stack_trace.entries = trace;
531         stack_trace.skip = 2;
532         save_stack_trace(&stack_trace);
533
534         return stack_trace.nr_entries;
535 }
536
537 /*
538  * Create the metadata (struct kmemleak_object) corresponding to an allocated
539  * memory block and add it to the object_list and object_tree_root.
540  */
541 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
542                                              int min_count, gfp_t gfp)
543 {
544         unsigned long flags;
545         struct kmemleak_object *object, *parent;
546         struct rb_node **link, *rb_parent;
547
548         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
549         if (!object) {
550                 pr_warn("Cannot allocate a kmemleak_object structure\n");
551                 kmemleak_disable();
552                 return NULL;
553         }
554
555         INIT_LIST_HEAD(&object->object_list);
556         INIT_LIST_HEAD(&object->gray_list);
557         INIT_HLIST_HEAD(&object->area_list);
558         spin_lock_init(&object->lock);
559         atomic_set(&object->use_count, 1);
560         object->flags = OBJECT_ALLOCATED;
561         object->pointer = ptr;
562         object->size = size;
563         object->min_count = min_count;
564         object->count = 0;                      /* white color initially */
565         object->jiffies = jiffies;
566         object->checksum = 0;
567
568         /* task information */
569         if (in_irq()) {
570                 object->pid = 0;
571                 strncpy(object->comm, "hardirq", sizeof(object->comm));
572         } else if (in_softirq()) {
573                 object->pid = 0;
574                 strncpy(object->comm, "softirq", sizeof(object->comm));
575         } else {
576                 object->pid = current->pid;
577                 /*
578                  * There is a small chance of a race with set_task_comm(),
579                  * however using get_task_comm() here may cause locking
580                  * dependency issues with current->alloc_lock. In the worst
581                  * case, the command line is not correct.
582                  */
583                 strncpy(object->comm, current->comm, sizeof(object->comm));
584         }
585
586         /* kernel backtrace */
587         object->trace_len = __save_stack_trace(object->trace);
588
589         write_lock_irqsave(&kmemleak_lock, flags);
590
591         min_addr = min(min_addr, ptr);
592         max_addr = max(max_addr, ptr + size);
593         link = &object_tree_root.rb_node;
594         rb_parent = NULL;
595         while (*link) {
596                 rb_parent = *link;
597                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
598                 if (ptr + size <= parent->pointer)
599                         link = &parent->rb_node.rb_left;
600                 else if (parent->pointer + parent->size <= ptr)
601                         link = &parent->rb_node.rb_right;
602                 else {
603                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
604                                       ptr);
605                         /*
606                          * No need for parent->lock here since "parent" cannot
607                          * be freed while the kmemleak_lock is held.
608                          */
609                         dump_object_info(parent);
610                         kmem_cache_free(object_cache, object);
611                         object = NULL;
612                         goto out;
613                 }
614         }
615         rb_link_node(&object->rb_node, rb_parent, link);
616         rb_insert_color(&object->rb_node, &object_tree_root);
617
618         list_add_tail_rcu(&object->object_list, &object_list);
619 out:
620         write_unlock_irqrestore(&kmemleak_lock, flags);
621         return object;
622 }
623
624 /*
625  * Mark the object as not allocated and schedule RCU freeing via put_object().
626  */
627 static void __delete_object(struct kmemleak_object *object)
628 {
629         unsigned long flags;
630
631         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
632         WARN_ON(atomic_read(&object->use_count) < 1);
633
634         /*
635          * Locking here also ensures that the corresponding memory block
636          * cannot be freed when it is being scanned.
637          */
638         spin_lock_irqsave(&object->lock, flags);
639         object->flags &= ~OBJECT_ALLOCATED;
640         spin_unlock_irqrestore(&object->lock, flags);
641         put_object(object);
642 }
643
644 /*
645  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
646  * delete it.
647  */
648 static void delete_object_full(unsigned long ptr)
649 {
650         struct kmemleak_object *object;
651
652         object = find_and_remove_object(ptr, 0);
653         if (!object) {
654 #ifdef DEBUG
655                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
656                               ptr);
657 #endif
658                 return;
659         }
660         __delete_object(object);
661 }
662
663 /*
664  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
665  * delete it. If the memory block is partially freed, the function may create
666  * additional metadata for the remaining parts of the block.
667  */
668 static void delete_object_part(unsigned long ptr, size_t size)
669 {
670         struct kmemleak_object *object;
671         unsigned long start, end;
672
673         object = find_and_remove_object(ptr, 1);
674         if (!object) {
675 #ifdef DEBUG
676                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
677                               ptr, size);
678 #endif
679                 return;
680         }
681
682         /*
683          * Create one or two objects that may result from the memory block
684          * split. Note that partial freeing is only done by free_bootmem() and
685          * this happens before kmemleak_init() is called. The path below is
686          * only executed during early log recording in kmemleak_init(), so
687          * GFP_KERNEL is enough.
688          */
689         start = object->pointer;
690         end = object->pointer + object->size;
691         if (ptr > start)
692                 create_object(start, ptr - start, object->min_count,
693                               GFP_KERNEL);
694         if (ptr + size < end)
695                 create_object(ptr + size, end - ptr - size, object->min_count,
696                               GFP_KERNEL);
697
698         __delete_object(object);
699 }
700
701 static void __paint_it(struct kmemleak_object *object, int color)
702 {
703         object->min_count = color;
704         if (color == KMEMLEAK_BLACK)
705                 object->flags |= OBJECT_NO_SCAN;
706 }
707
708 static void paint_it(struct kmemleak_object *object, int color)
709 {
710         unsigned long flags;
711
712         spin_lock_irqsave(&object->lock, flags);
713         __paint_it(object, color);
714         spin_unlock_irqrestore(&object->lock, flags);
715 }
716
717 static void paint_ptr(unsigned long ptr, int color)
718 {
719         struct kmemleak_object *object;
720
721         object = find_and_get_object(ptr, 0);
722         if (!object) {
723                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
724                               ptr,
725                               (color == KMEMLEAK_GREY) ? "Grey" :
726                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
727                 return;
728         }
729         paint_it(object, color);
730         put_object(object);
731 }
732
733 /*
734  * Mark an object permanently as gray-colored so that it can no longer be
735  * reported as a leak. This is used in general to mark a false positive.
736  */
737 static void make_gray_object(unsigned long ptr)
738 {
739         paint_ptr(ptr, KMEMLEAK_GREY);
740 }
741
742 /*
743  * Mark the object as black-colored so that it is ignored from scans and
744  * reporting.
745  */
746 static void make_black_object(unsigned long ptr)
747 {
748         paint_ptr(ptr, KMEMLEAK_BLACK);
749 }
750
751 /*
752  * Add a scanning area to the object. If at least one such area is added,
753  * kmemleak will only scan these ranges rather than the whole memory block.
754  */
755 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
756 {
757         unsigned long flags;
758         struct kmemleak_object *object;
759         struct kmemleak_scan_area *area;
760
761         object = find_and_get_object(ptr, 1);
762         if (!object) {
763                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
764                               ptr);
765                 return;
766         }
767
768         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
769         if (!area) {
770                 pr_warn("Cannot allocate a scan area\n");
771                 goto out;
772         }
773
774         spin_lock_irqsave(&object->lock, flags);
775         if (size == SIZE_MAX) {
776                 size = object->pointer + object->size - ptr;
777         } else if (ptr + size > object->pointer + object->size) {
778                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
779                 dump_object_info(object);
780                 kmem_cache_free(scan_area_cache, area);
781                 goto out_unlock;
782         }
783
784         INIT_HLIST_NODE(&area->node);
785         area->start = ptr;
786         area->size = size;
787
788         hlist_add_head(&area->node, &object->area_list);
789 out_unlock:
790         spin_unlock_irqrestore(&object->lock, flags);
791 out:
792         put_object(object);
793 }
794
795 /*
796  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
797  * pointer. Such object will not be scanned by kmemleak but references to it
798  * are searched.
799  */
800 static void object_no_scan(unsigned long ptr)
801 {
802         unsigned long flags;
803         struct kmemleak_object *object;
804
805         object = find_and_get_object(ptr, 0);
806         if (!object) {
807                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
808                 return;
809         }
810
811         spin_lock_irqsave(&object->lock, flags);
812         object->flags |= OBJECT_NO_SCAN;
813         spin_unlock_irqrestore(&object->lock, flags);
814         put_object(object);
815 }
816
817 /*
818  * Log an early kmemleak_* call to the early_log buffer. These calls will be
819  * processed later once kmemleak is fully initialized.
820  */
821 static void __init log_early(int op_type, const void *ptr, size_t size,
822                              int min_count)
823 {
824         unsigned long flags;
825         struct early_log *log;
826
827         if (kmemleak_error) {
828                 /* kmemleak stopped recording, just count the requests */
829                 crt_early_log++;
830                 return;
831         }
832
833         if (crt_early_log >= ARRAY_SIZE(early_log)) {
834                 crt_early_log++;
835                 kmemleak_disable();
836                 return;
837         }
838
839         /*
840          * There is no need for locking since the kernel is still in UP mode
841          * at this stage. Disabling the IRQs is enough.
842          */
843         local_irq_save(flags);
844         log = &early_log[crt_early_log];
845         log->op_type = op_type;
846         log->ptr = ptr;
847         log->size = size;
848         log->min_count = min_count;
849         log->trace_len = __save_stack_trace(log->trace);
850         crt_early_log++;
851         local_irq_restore(flags);
852 }
853
854 /*
855  * Log an early allocated block and populate the stack trace.
856  */
857 static void early_alloc(struct early_log *log)
858 {
859         struct kmemleak_object *object;
860         unsigned long flags;
861         int i;
862
863         if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
864                 return;
865
866         /*
867          * RCU locking needed to ensure object is not freed via put_object().
868          */
869         rcu_read_lock();
870         object = create_object((unsigned long)log->ptr, log->size,
871                                log->min_count, GFP_ATOMIC);
872         if (!object)
873                 goto out;
874         spin_lock_irqsave(&object->lock, flags);
875         for (i = 0; i < log->trace_len; i++)
876                 object->trace[i] = log->trace[i];
877         object->trace_len = log->trace_len;
878         spin_unlock_irqrestore(&object->lock, flags);
879 out:
880         rcu_read_unlock();
881 }
882
883 /*
884  * Log an early allocated block and populate the stack trace.
885  */
886 static void early_alloc_percpu(struct early_log *log)
887 {
888         unsigned int cpu;
889         const void __percpu *ptr = log->ptr;
890
891         for_each_possible_cpu(cpu) {
892                 log->ptr = per_cpu_ptr(ptr, cpu);
893                 early_alloc(log);
894         }
895 }
896
897 /**
898  * kmemleak_alloc - register a newly allocated object
899  * @ptr:        pointer to beginning of the object
900  * @size:       size of the object
901  * @min_count:  minimum number of references to this object. If during memory
902  *              scanning a number of references less than @min_count is found,
903  *              the object is reported as a memory leak. If @min_count is 0,
904  *              the object is never reported as a leak. If @min_count is -1,
905  *              the object is ignored (not scanned and not reported as a leak)
906  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
907  *
908  * This function is called from the kernel allocators when a new object
909  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
910  */
911 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
912                           gfp_t gfp)
913 {
914         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
915
916         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
917                 create_object((unsigned long)ptr, size, min_count, gfp);
918         else if (kmemleak_early_log)
919                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
920 }
921 EXPORT_SYMBOL_GPL(kmemleak_alloc);
922
923 /**
924  * kmemleak_alloc_percpu - register a newly allocated __percpu object
925  * @ptr:        __percpu pointer to beginning of the object
926  * @size:       size of the object
927  * @gfp:        flags used for kmemleak internal memory allocations
928  *
929  * This function is called from the kernel percpu allocator when a new object
930  * (memory block) is allocated (alloc_percpu).
931  */
932 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
933                                  gfp_t gfp)
934 {
935         unsigned int cpu;
936
937         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
938
939         /*
940          * Percpu allocations are only scanned and not reported as leaks
941          * (min_count is set to 0).
942          */
943         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
944                 for_each_possible_cpu(cpu)
945                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
946                                       size, 0, gfp);
947         else if (kmemleak_early_log)
948                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
949 }
950 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
951
952 /**
953  * kmemleak_free - unregister a previously registered object
954  * @ptr:        pointer to beginning of the object
955  *
956  * This function is called from the kernel allocators when an object (memory
957  * block) is freed (kmem_cache_free, kfree, vfree etc.).
958  */
959 void __ref kmemleak_free(const void *ptr)
960 {
961         pr_debug("%s(0x%p)\n", __func__, ptr);
962
963         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
964                 delete_object_full((unsigned long)ptr);
965         else if (kmemleak_early_log)
966                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
967 }
968 EXPORT_SYMBOL_GPL(kmemleak_free);
969
970 /**
971  * kmemleak_free_part - partially unregister a previously registered object
972  * @ptr:        pointer to the beginning or inside the object. This also
973  *              represents the start of the range to be freed
974  * @size:       size to be unregistered
975  *
976  * This function is called when only a part of a memory block is freed
977  * (usually from the bootmem allocator).
978  */
979 void __ref kmemleak_free_part(const void *ptr, size_t size)
980 {
981         pr_debug("%s(0x%p)\n", __func__, ptr);
982
983         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
984                 delete_object_part((unsigned long)ptr, size);
985         else if (kmemleak_early_log)
986                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
987 }
988 EXPORT_SYMBOL_GPL(kmemleak_free_part);
989
990 /**
991  * kmemleak_free_percpu - unregister a previously registered __percpu object
992  * @ptr:        __percpu pointer to beginning of the object
993  *
994  * This function is called from the kernel percpu allocator when an object
995  * (memory block) is freed (free_percpu).
996  */
997 void __ref kmemleak_free_percpu(const void __percpu *ptr)
998 {
999         unsigned int cpu;
1000
1001         pr_debug("%s(0x%p)\n", __func__, ptr);
1002
1003         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1004                 for_each_possible_cpu(cpu)
1005                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1006                                                                       cpu));
1007         else if (kmemleak_early_log)
1008                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1009 }
1010 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1011
1012 /**
1013  * kmemleak_update_trace - update object allocation stack trace
1014  * @ptr:        pointer to beginning of the object
1015  *
1016  * Override the object allocation stack trace for cases where the actual
1017  * allocation place is not always useful.
1018  */
1019 void __ref kmemleak_update_trace(const void *ptr)
1020 {
1021         struct kmemleak_object *object;
1022         unsigned long flags;
1023
1024         pr_debug("%s(0x%p)\n", __func__, ptr);
1025
1026         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1027                 return;
1028
1029         object = find_and_get_object((unsigned long)ptr, 1);
1030         if (!object) {
1031 #ifdef DEBUG
1032                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1033                               ptr);
1034 #endif
1035                 return;
1036         }
1037
1038         spin_lock_irqsave(&object->lock, flags);
1039         object->trace_len = __save_stack_trace(object->trace);
1040         spin_unlock_irqrestore(&object->lock, flags);
1041
1042         put_object(object);
1043 }
1044 EXPORT_SYMBOL(kmemleak_update_trace);
1045
1046 /**
1047  * kmemleak_not_leak - mark an allocated object as false positive
1048  * @ptr:        pointer to beginning of the object
1049  *
1050  * Calling this function on an object will cause the memory block to no longer
1051  * be reported as leak and always be scanned.
1052  */
1053 void __ref kmemleak_not_leak(const void *ptr)
1054 {
1055         pr_debug("%s(0x%p)\n", __func__, ptr);
1056
1057         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1058                 make_gray_object((unsigned long)ptr);
1059         else if (kmemleak_early_log)
1060                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1061 }
1062 EXPORT_SYMBOL(kmemleak_not_leak);
1063
1064 /**
1065  * kmemleak_ignore - ignore an allocated object
1066  * @ptr:        pointer to beginning of the object
1067  *
1068  * Calling this function on an object will cause the memory block to be
1069  * ignored (not scanned and not reported as a leak). This is usually done when
1070  * it is known that the corresponding block is not a leak and does not contain
1071  * any references to other allocated memory blocks.
1072  */
1073 void __ref kmemleak_ignore(const void *ptr)
1074 {
1075         pr_debug("%s(0x%p)\n", __func__, ptr);
1076
1077         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1078                 make_black_object((unsigned long)ptr);
1079         else if (kmemleak_early_log)
1080                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1081 }
1082 EXPORT_SYMBOL(kmemleak_ignore);
1083
1084 /**
1085  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1086  * @ptr:        pointer to beginning or inside the object. This also
1087  *              represents the start of the scan area
1088  * @size:       size of the scan area
1089  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1090  *
1091  * This function is used when it is known that only certain parts of an object
1092  * contain references to other objects. Kmemleak will only scan these areas
1093  * reducing the number false negatives.
1094  */
1095 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1096 {
1097         pr_debug("%s(0x%p)\n", __func__, ptr);
1098
1099         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1100                 add_scan_area((unsigned long)ptr, size, gfp);
1101         else if (kmemleak_early_log)
1102                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1103 }
1104 EXPORT_SYMBOL(kmemleak_scan_area);
1105
1106 /**
1107  * kmemleak_no_scan - do not scan an allocated object
1108  * @ptr:        pointer to beginning of the object
1109  *
1110  * This function notifies kmemleak not to scan the given memory block. Useful
1111  * in situations where it is known that the given object does not contain any
1112  * references to other objects. Kmemleak will not scan such objects reducing
1113  * the number of false negatives.
1114  */
1115 void __ref kmemleak_no_scan(const void *ptr)
1116 {
1117         pr_debug("%s(0x%p)\n", __func__, ptr);
1118
1119         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1120                 object_no_scan((unsigned long)ptr);
1121         else if (kmemleak_early_log)
1122                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1123 }
1124 EXPORT_SYMBOL(kmemleak_no_scan);
1125
1126 /**
1127  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1128  *                       address argument
1129  */
1130 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1131                                gfp_t gfp)
1132 {
1133         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1134                 kmemleak_alloc(__va(phys), size, min_count, gfp);
1135 }
1136 EXPORT_SYMBOL(kmemleak_alloc_phys);
1137
1138 /**
1139  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1140  *                           physical address argument
1141  */
1142 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1143 {
1144         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1145                 kmemleak_free_part(__va(phys), size);
1146 }
1147 EXPORT_SYMBOL(kmemleak_free_part_phys);
1148
1149 /**
1150  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1151  *                          address argument
1152  */
1153 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1154 {
1155         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1156                 kmemleak_not_leak(__va(phys));
1157 }
1158 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1159
1160 /**
1161  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1162  *                        address argument
1163  */
1164 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1165 {
1166         if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1167                 kmemleak_ignore(__va(phys));
1168 }
1169 EXPORT_SYMBOL(kmemleak_ignore_phys);
1170
1171 /*
1172  * Update an object's checksum and return true if it was modified.
1173  */
1174 static bool update_checksum(struct kmemleak_object *object)
1175 {
1176         u32 old_csum = object->checksum;
1177
1178         if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1179                 return false;
1180
1181         kasan_disable_current();
1182         object->checksum = crc32(0, (void *)object->pointer, object->size);
1183         kasan_enable_current();
1184
1185         return object->checksum != old_csum;
1186 }
1187
1188 /*
1189  * Memory scanning is a long process and it needs to be interruptable. This
1190  * function checks whether such interrupt condition occurred.
1191  */
1192 static int scan_should_stop(void)
1193 {
1194         if (!kmemleak_enabled)
1195                 return 1;
1196
1197         /*
1198          * This function may be called from either process or kthread context,
1199          * hence the need to check for both stop conditions.
1200          */
1201         if (current->mm)
1202                 return signal_pending(current);
1203         else
1204                 return kthread_should_stop();
1205
1206         return 0;
1207 }
1208
1209 /*
1210  * Scan a memory block (exclusive range) for valid pointers and add those
1211  * found to the gray list.
1212  */
1213 static void scan_block(void *_start, void *_end,
1214                        struct kmemleak_object *scanned)
1215 {
1216         unsigned long *ptr;
1217         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1218         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1219         unsigned long flags;
1220
1221         read_lock_irqsave(&kmemleak_lock, flags);
1222         for (ptr = start; ptr < end; ptr++) {
1223                 struct kmemleak_object *object;
1224                 unsigned long pointer;
1225
1226                 if (scan_should_stop())
1227                         break;
1228
1229                 /* don't scan uninitialized memory */
1230                 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1231                                                   BYTES_PER_POINTER))
1232                         continue;
1233
1234                 kasan_disable_current();
1235                 pointer = *ptr;
1236                 kasan_enable_current();
1237
1238                 if (pointer < min_addr || pointer >= max_addr)
1239                         continue;
1240
1241                 /*
1242                  * No need for get_object() here since we hold kmemleak_lock.
1243                  * object->use_count cannot be dropped to 0 while the object
1244                  * is still present in object_tree_root and object_list
1245                  * (with updates protected by kmemleak_lock).
1246                  */
1247                 object = lookup_object(pointer, 1);
1248                 if (!object)
1249                         continue;
1250                 if (object == scanned)
1251                         /* self referenced, ignore */
1252                         continue;
1253
1254                 /*
1255                  * Avoid the lockdep recursive warning on object->lock being
1256                  * previously acquired in scan_object(). These locks are
1257                  * enclosed by scan_mutex.
1258                  */
1259                 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1260                 if (!color_white(object)) {
1261                         /* non-orphan, ignored or new */
1262                         spin_unlock(&object->lock);
1263                         continue;
1264                 }
1265
1266                 /*
1267                  * Increase the object's reference count (number of pointers
1268                  * to the memory block). If this count reaches the required
1269                  * minimum, the object's color will become gray and it will be
1270                  * added to the gray_list.
1271                  */
1272                 object->count++;
1273                 if (color_gray(object)) {
1274                         /* put_object() called when removing from gray_list */
1275                         WARN_ON(!get_object(object));
1276                         list_add_tail(&object->gray_list, &gray_list);
1277                 }
1278                 spin_unlock(&object->lock);
1279         }
1280         read_unlock_irqrestore(&kmemleak_lock, flags);
1281 }
1282
1283 /*
1284  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1285  */
1286 static void scan_large_block(void *start, void *end)
1287 {
1288         void *next;
1289
1290         while (start < end) {
1291                 next = min(start + MAX_SCAN_SIZE, end);
1292                 scan_block(start, next, NULL);
1293                 start = next;
1294                 cond_resched();
1295         }
1296 }
1297
1298 /*
1299  * Scan a memory block corresponding to a kmemleak_object. A condition is
1300  * that object->use_count >= 1.
1301  */
1302 static void scan_object(struct kmemleak_object *object)
1303 {
1304         struct kmemleak_scan_area *area;
1305         unsigned long flags;
1306
1307         /*
1308          * Once the object->lock is acquired, the corresponding memory block
1309          * cannot be freed (the same lock is acquired in delete_object).
1310          */
1311         spin_lock_irqsave(&object->lock, flags);
1312         if (object->flags & OBJECT_NO_SCAN)
1313                 goto out;
1314         if (!(object->flags & OBJECT_ALLOCATED))
1315                 /* already freed object */
1316                 goto out;
1317         if (hlist_empty(&object->area_list)) {
1318                 void *start = (void *)object->pointer;
1319                 void *end = (void *)(object->pointer + object->size);
1320                 void *next;
1321
1322                 do {
1323                         next = min(start + MAX_SCAN_SIZE, end);
1324                         scan_block(start, next, object);
1325
1326                         start = next;
1327                         if (start >= end)
1328                                 break;
1329
1330                         spin_unlock_irqrestore(&object->lock, flags);
1331                         cond_resched();
1332                         spin_lock_irqsave(&object->lock, flags);
1333                 } while (object->flags & OBJECT_ALLOCATED);
1334         } else
1335                 hlist_for_each_entry(area, &object->area_list, node)
1336                         scan_block((void *)area->start,
1337                                    (void *)(area->start + area->size),
1338                                    object);
1339 out:
1340         spin_unlock_irqrestore(&object->lock, flags);
1341 }
1342
1343 /*
1344  * Scan the objects already referenced (gray objects). More objects will be
1345  * referenced and, if there are no memory leaks, all the objects are scanned.
1346  */
1347 static void scan_gray_list(void)
1348 {
1349         struct kmemleak_object *object, *tmp;
1350
1351         /*
1352          * The list traversal is safe for both tail additions and removals
1353          * from inside the loop. The kmemleak objects cannot be freed from
1354          * outside the loop because their use_count was incremented.
1355          */
1356         object = list_entry(gray_list.next, typeof(*object), gray_list);
1357         while (&object->gray_list != &gray_list) {
1358                 cond_resched();
1359
1360                 /* may add new objects to the list */
1361                 if (!scan_should_stop())
1362                         scan_object(object);
1363
1364                 tmp = list_entry(object->gray_list.next, typeof(*object),
1365                                  gray_list);
1366
1367                 /* remove the object from the list and release it */
1368                 list_del(&object->gray_list);
1369                 put_object(object);
1370
1371                 object = tmp;
1372         }
1373         WARN_ON(!list_empty(&gray_list));
1374 }
1375
1376 /*
1377  * Scan data sections and all the referenced memory blocks allocated via the
1378  * kernel's standard allocators. This function must be called with the
1379  * scan_mutex held.
1380  */
1381 static void kmemleak_scan(void)
1382 {
1383         unsigned long flags;
1384         struct kmemleak_object *object;
1385         int i;
1386         int new_leaks = 0;
1387
1388         jiffies_last_scan = jiffies;
1389
1390         /* prepare the kmemleak_object's */
1391         rcu_read_lock();
1392         list_for_each_entry_rcu(object, &object_list, object_list) {
1393                 spin_lock_irqsave(&object->lock, flags);
1394 #ifdef DEBUG
1395                 /*
1396                  * With a few exceptions there should be a maximum of
1397                  * 1 reference to any object at this point.
1398                  */
1399                 if (atomic_read(&object->use_count) > 1) {
1400                         pr_debug("object->use_count = %d\n",
1401                                  atomic_read(&object->use_count));
1402                         dump_object_info(object);
1403                 }
1404 #endif
1405                 /* reset the reference count (whiten the object) */
1406                 object->count = 0;
1407                 if (color_gray(object) && get_object(object))
1408                         list_add_tail(&object->gray_list, &gray_list);
1409
1410                 spin_unlock_irqrestore(&object->lock, flags);
1411         }
1412         rcu_read_unlock();
1413
1414         /* data/bss scanning */
1415         scan_large_block(_sdata, _edata);
1416         scan_large_block(__bss_start, __bss_stop);
1417         scan_large_block(__start_data_ro_after_init, __end_data_ro_after_init);
1418
1419 #ifdef CONFIG_SMP
1420         /* per-cpu sections scanning */
1421         for_each_possible_cpu(i)
1422                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1423                                  __per_cpu_end + per_cpu_offset(i));
1424 #endif
1425
1426         /*
1427          * Struct page scanning for each node.
1428          */
1429         get_online_mems();
1430         for_each_online_node(i) {
1431                 unsigned long start_pfn = node_start_pfn(i);
1432                 unsigned long end_pfn = node_end_pfn(i);
1433                 unsigned long pfn;
1434
1435                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1436                         struct page *page;
1437
1438                         if (!pfn_valid(pfn))
1439                                 continue;
1440                         page = pfn_to_page(pfn);
1441                         /* only scan if page is in use */
1442                         if (page_count(page) == 0)
1443                                 continue;
1444                         scan_block(page, page + 1, NULL);
1445                 }
1446         }
1447         put_online_mems();
1448
1449         /*
1450          * Scanning the task stacks (may introduce false negatives).
1451          */
1452         if (kmemleak_stack_scan) {
1453                 struct task_struct *p, *g;
1454
1455                 read_lock(&tasklist_lock);
1456                 do_each_thread(g, p) {
1457                         void *stack = try_get_task_stack(p);
1458                         if (stack) {
1459                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1460                                 put_task_stack(p);
1461                         }
1462                 } while_each_thread(g, p);
1463                 read_unlock(&tasklist_lock);
1464         }
1465
1466         /*
1467          * Scan the objects already referenced from the sections scanned
1468          * above.
1469          */
1470         scan_gray_list();
1471
1472         /*
1473          * Check for new or unreferenced objects modified since the previous
1474          * scan and color them gray until the next scan.
1475          */
1476         rcu_read_lock();
1477         list_for_each_entry_rcu(object, &object_list, object_list) {
1478                 spin_lock_irqsave(&object->lock, flags);
1479                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1480                     && update_checksum(object) && get_object(object)) {
1481                         /* color it gray temporarily */
1482                         object->count = object->min_count;
1483                         list_add_tail(&object->gray_list, &gray_list);
1484                 }
1485                 spin_unlock_irqrestore(&object->lock, flags);
1486         }
1487         rcu_read_unlock();
1488
1489         /*
1490          * Re-scan the gray list for modified unreferenced objects.
1491          */
1492         scan_gray_list();
1493
1494         /*
1495          * If scanning was stopped do not report any new unreferenced objects.
1496          */
1497         if (scan_should_stop())
1498                 return;
1499
1500         /*
1501          * Scanning result reporting.
1502          */
1503         rcu_read_lock();
1504         list_for_each_entry_rcu(object, &object_list, object_list) {
1505                 spin_lock_irqsave(&object->lock, flags);
1506                 if (unreferenced_object(object) &&
1507                     !(object->flags & OBJECT_REPORTED)) {
1508                         object->flags |= OBJECT_REPORTED;
1509                         new_leaks++;
1510                 }
1511                 spin_unlock_irqrestore(&object->lock, flags);
1512         }
1513         rcu_read_unlock();
1514
1515         if (new_leaks) {
1516                 kmemleak_found_leaks = true;
1517
1518                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1519                         new_leaks);
1520         }
1521
1522 }
1523
1524 /*
1525  * Thread function performing automatic memory scanning. Unreferenced objects
1526  * at the end of a memory scan are reported but only the first time.
1527  */
1528 static int kmemleak_scan_thread(void *arg)
1529 {
1530         static int first_run = 1;
1531
1532         pr_info("Automatic memory scanning thread started\n");
1533         set_user_nice(current, 10);
1534
1535         /*
1536          * Wait before the first scan to allow the system to fully initialize.
1537          */
1538         if (first_run) {
1539                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1540                 first_run = 0;
1541                 while (timeout && !kthread_should_stop())
1542                         timeout = schedule_timeout_interruptible(timeout);
1543         }
1544
1545         while (!kthread_should_stop()) {
1546                 signed long timeout = jiffies_scan_wait;
1547
1548                 mutex_lock(&scan_mutex);
1549                 kmemleak_scan();
1550                 mutex_unlock(&scan_mutex);
1551
1552                 /* wait before the next scan */
1553                 while (timeout && !kthread_should_stop())
1554                         timeout = schedule_timeout_interruptible(timeout);
1555         }
1556
1557         pr_info("Automatic memory scanning thread ended\n");
1558
1559         return 0;
1560 }
1561
1562 /*
1563  * Start the automatic memory scanning thread. This function must be called
1564  * with the scan_mutex held.
1565  */
1566 static void start_scan_thread(void)
1567 {
1568         if (scan_thread)
1569                 return;
1570         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1571         if (IS_ERR(scan_thread)) {
1572                 pr_warn("Failed to create the scan thread\n");
1573                 scan_thread = NULL;
1574         }
1575 }
1576
1577 /*
1578  * Stop the automatic memory scanning thread. This function must be called
1579  * with the scan_mutex held.
1580  */
1581 static void stop_scan_thread(void)
1582 {
1583         if (scan_thread) {
1584                 kthread_stop(scan_thread);
1585                 scan_thread = NULL;
1586         }
1587 }
1588
1589 /*
1590  * Iterate over the object_list and return the first valid object at or after
1591  * the required position with its use_count incremented. The function triggers
1592  * a memory scanning when the pos argument points to the first position.
1593  */
1594 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1595 {
1596         struct kmemleak_object *object;
1597         loff_t n = *pos;
1598         int err;
1599
1600         err = mutex_lock_interruptible(&scan_mutex);
1601         if (err < 0)
1602                 return ERR_PTR(err);
1603
1604         rcu_read_lock();
1605         list_for_each_entry_rcu(object, &object_list, object_list) {
1606                 if (n-- > 0)
1607                         continue;
1608                 if (get_object(object))
1609                         goto out;
1610         }
1611         object = NULL;
1612 out:
1613         return object;
1614 }
1615
1616 /*
1617  * Return the next object in the object_list. The function decrements the
1618  * use_count of the previous object and increases that of the next one.
1619  */
1620 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1621 {
1622         struct kmemleak_object *prev_obj = v;
1623         struct kmemleak_object *next_obj = NULL;
1624         struct kmemleak_object *obj = prev_obj;
1625
1626         ++(*pos);
1627
1628         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1629                 if (get_object(obj)) {
1630                         next_obj = obj;
1631                         break;
1632                 }
1633         }
1634
1635         put_object(prev_obj);
1636         return next_obj;
1637 }
1638
1639 /*
1640  * Decrement the use_count of the last object required, if any.
1641  */
1642 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1643 {
1644         if (!IS_ERR(v)) {
1645                 /*
1646                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1647                  * waiting was interrupted, so only release it if !IS_ERR.
1648                  */
1649                 rcu_read_unlock();
1650                 mutex_unlock(&scan_mutex);
1651                 if (v)
1652                         put_object(v);
1653         }
1654 }
1655
1656 /*
1657  * Print the information for an unreferenced object to the seq file.
1658  */
1659 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1660 {
1661         struct kmemleak_object *object = v;
1662         unsigned long flags;
1663
1664         spin_lock_irqsave(&object->lock, flags);
1665         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1666                 print_unreferenced(seq, object);
1667         spin_unlock_irqrestore(&object->lock, flags);
1668         return 0;
1669 }
1670
1671 static const struct seq_operations kmemleak_seq_ops = {
1672         .start = kmemleak_seq_start,
1673         .next  = kmemleak_seq_next,
1674         .stop  = kmemleak_seq_stop,
1675         .show  = kmemleak_seq_show,
1676 };
1677
1678 static int kmemleak_open(struct inode *inode, struct file *file)
1679 {
1680         return seq_open(file, &kmemleak_seq_ops);
1681 }
1682
1683 static int dump_str_object_info(const char *str)
1684 {
1685         unsigned long flags;
1686         struct kmemleak_object *object;
1687         unsigned long addr;
1688
1689         if (kstrtoul(str, 0, &addr))
1690                 return -EINVAL;
1691         object = find_and_get_object(addr, 0);
1692         if (!object) {
1693                 pr_info("Unknown object at 0x%08lx\n", addr);
1694                 return -EINVAL;
1695         }
1696
1697         spin_lock_irqsave(&object->lock, flags);
1698         dump_object_info(object);
1699         spin_unlock_irqrestore(&object->lock, flags);
1700
1701         put_object(object);
1702         return 0;
1703 }
1704
1705 /*
1706  * We use grey instead of black to ensure we can do future scans on the same
1707  * objects. If we did not do future scans these black objects could
1708  * potentially contain references to newly allocated objects in the future and
1709  * we'd end up with false positives.
1710  */
1711 static void kmemleak_clear(void)
1712 {
1713         struct kmemleak_object *object;
1714         unsigned long flags;
1715
1716         rcu_read_lock();
1717         list_for_each_entry_rcu(object, &object_list, object_list) {
1718                 spin_lock_irqsave(&object->lock, flags);
1719                 if ((object->flags & OBJECT_REPORTED) &&
1720                     unreferenced_object(object))
1721                         __paint_it(object, KMEMLEAK_GREY);
1722                 spin_unlock_irqrestore(&object->lock, flags);
1723         }
1724         rcu_read_unlock();
1725
1726         kmemleak_found_leaks = false;
1727 }
1728
1729 static void __kmemleak_do_cleanup(void);
1730
1731 /*
1732  * File write operation to configure kmemleak at run-time. The following
1733  * commands can be written to the /sys/kernel/debug/kmemleak file:
1734  *   off        - disable kmemleak (irreversible)
1735  *   stack=on   - enable the task stacks scanning
1736  *   stack=off  - disable the tasks stacks scanning
1737  *   scan=on    - start the automatic memory scanning thread
1738  *   scan=off   - stop the automatic memory scanning thread
1739  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1740  *                disable it)
1741  *   scan       - trigger a memory scan
1742  *   clear      - mark all current reported unreferenced kmemleak objects as
1743  *                grey to ignore printing them, or free all kmemleak objects
1744  *                if kmemleak has been disabled.
1745  *   dump=...   - dump information about the object found at the given address
1746  */
1747 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1748                               size_t size, loff_t *ppos)
1749 {
1750         char buf[64];
1751         int buf_size;
1752         int ret;
1753
1754         buf_size = min(size, (sizeof(buf) - 1));
1755         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1756                 return -EFAULT;
1757         buf[buf_size] = 0;
1758
1759         ret = mutex_lock_interruptible(&scan_mutex);
1760         if (ret < 0)
1761                 return ret;
1762
1763         if (strncmp(buf, "clear", 5) == 0) {
1764                 if (kmemleak_enabled)
1765                         kmemleak_clear();
1766                 else
1767                         __kmemleak_do_cleanup();
1768                 goto out;
1769         }
1770
1771         if (!kmemleak_enabled) {
1772                 ret = -EBUSY;
1773                 goto out;
1774         }
1775
1776         if (strncmp(buf, "off", 3) == 0)
1777                 kmemleak_disable();
1778         else if (strncmp(buf, "stack=on", 8) == 0)
1779                 kmemleak_stack_scan = 1;
1780         else if (strncmp(buf, "stack=off", 9) == 0)
1781                 kmemleak_stack_scan = 0;
1782         else if (strncmp(buf, "scan=on", 7) == 0)
1783                 start_scan_thread();
1784         else if (strncmp(buf, "scan=off", 8) == 0)
1785                 stop_scan_thread();
1786         else if (strncmp(buf, "scan=", 5) == 0) {
1787                 unsigned long secs;
1788
1789                 ret = kstrtoul(buf + 5, 0, &secs);
1790                 if (ret < 0)
1791                         goto out;
1792                 stop_scan_thread();
1793                 if (secs) {
1794                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1795                         start_scan_thread();
1796                 }
1797         } else if (strncmp(buf, "scan", 4) == 0)
1798                 kmemleak_scan();
1799         else if (strncmp(buf, "dump=", 5) == 0)
1800                 ret = dump_str_object_info(buf + 5);
1801         else
1802                 ret = -EINVAL;
1803
1804 out:
1805         mutex_unlock(&scan_mutex);
1806         if (ret < 0)
1807                 return ret;
1808
1809         /* ignore the rest of the buffer, only one command at a time */
1810         *ppos += size;
1811         return size;
1812 }
1813
1814 static const struct file_operations kmemleak_fops = {
1815         .owner          = THIS_MODULE,
1816         .open           = kmemleak_open,
1817         .read           = seq_read,
1818         .write          = kmemleak_write,
1819         .llseek         = seq_lseek,
1820         .release        = seq_release,
1821 };
1822
1823 static void __kmemleak_do_cleanup(void)
1824 {
1825         struct kmemleak_object *object;
1826
1827         rcu_read_lock();
1828         list_for_each_entry_rcu(object, &object_list, object_list)
1829                 delete_object_full(object->pointer);
1830         rcu_read_unlock();
1831 }
1832
1833 /*
1834  * Stop the memory scanning thread and free the kmemleak internal objects if
1835  * no previous scan thread (otherwise, kmemleak may still have some useful
1836  * information on memory leaks).
1837  */
1838 static void kmemleak_do_cleanup(struct work_struct *work)
1839 {
1840         stop_scan_thread();
1841
1842         /*
1843          * Once the scan thread has stopped, it is safe to no longer track
1844          * object freeing. Ordering of the scan thread stopping and the memory
1845          * accesses below is guaranteed by the kthread_stop() function.
1846          */
1847         kmemleak_free_enabled = 0;
1848
1849         if (!kmemleak_found_leaks)
1850                 __kmemleak_do_cleanup();
1851         else
1852                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1853 }
1854
1855 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1856
1857 /*
1858  * Disable kmemleak. No memory allocation/freeing will be traced once this
1859  * function is called. Disabling kmemleak is an irreversible operation.
1860  */
1861 static void kmemleak_disable(void)
1862 {
1863         /* atomically check whether it was already invoked */
1864         if (cmpxchg(&kmemleak_error, 0, 1))
1865                 return;
1866
1867         /* stop any memory operation tracing */
1868         kmemleak_enabled = 0;
1869
1870         /* check whether it is too early for a kernel thread */
1871         if (kmemleak_initialized)
1872                 schedule_work(&cleanup_work);
1873         else
1874                 kmemleak_free_enabled = 0;
1875
1876         pr_info("Kernel memory leak detector disabled\n");
1877 }
1878
1879 /*
1880  * Allow boot-time kmemleak disabling (enabled by default).
1881  */
1882 static int kmemleak_boot_config(char *str)
1883 {
1884         if (!str)
1885                 return -EINVAL;
1886         if (strcmp(str, "off") == 0)
1887                 kmemleak_disable();
1888         else if (strcmp(str, "on") == 0)
1889                 kmemleak_skip_disable = 1;
1890         else
1891                 return -EINVAL;
1892         return 0;
1893 }
1894 early_param("kmemleak", kmemleak_boot_config);
1895
1896 static void __init print_log_trace(struct early_log *log)
1897 {
1898         struct stack_trace trace;
1899
1900         trace.nr_entries = log->trace_len;
1901         trace.entries = log->trace;
1902
1903         pr_notice("Early log backtrace:\n");
1904         print_stack_trace(&trace, 2);
1905 }
1906
1907 /*
1908  * Kmemleak initialization.
1909  */
1910 void __init kmemleak_init(void)
1911 {
1912         int i;
1913         unsigned long flags;
1914
1915 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1916         if (!kmemleak_skip_disable) {
1917                 kmemleak_early_log = 0;
1918                 kmemleak_disable();
1919                 return;
1920         }
1921 #endif
1922
1923         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1924         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1925
1926         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1927         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1928
1929         if (crt_early_log > ARRAY_SIZE(early_log))
1930                 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
1931                         crt_early_log);
1932
1933         /* the kernel is still in UP mode, so disabling the IRQs is enough */
1934         local_irq_save(flags);
1935         kmemleak_early_log = 0;
1936         if (kmemleak_error) {
1937                 local_irq_restore(flags);
1938                 return;
1939         } else {
1940                 kmemleak_enabled = 1;
1941                 kmemleak_free_enabled = 1;
1942         }
1943         local_irq_restore(flags);
1944
1945         /*
1946          * This is the point where tracking allocations is safe. Automatic
1947          * scanning is started during the late initcall. Add the early logged
1948          * callbacks to the kmemleak infrastructure.
1949          */
1950         for (i = 0; i < crt_early_log; i++) {
1951                 struct early_log *log = &early_log[i];
1952
1953                 switch (log->op_type) {
1954                 case KMEMLEAK_ALLOC:
1955                         early_alloc(log);
1956                         break;
1957                 case KMEMLEAK_ALLOC_PERCPU:
1958                         early_alloc_percpu(log);
1959                         break;
1960                 case KMEMLEAK_FREE:
1961                         kmemleak_free(log->ptr);
1962                         break;
1963                 case KMEMLEAK_FREE_PART:
1964                         kmemleak_free_part(log->ptr, log->size);
1965                         break;
1966                 case KMEMLEAK_FREE_PERCPU:
1967                         kmemleak_free_percpu(log->ptr);
1968                         break;
1969                 case KMEMLEAK_NOT_LEAK:
1970                         kmemleak_not_leak(log->ptr);
1971                         break;
1972                 case KMEMLEAK_IGNORE:
1973                         kmemleak_ignore(log->ptr);
1974                         break;
1975                 case KMEMLEAK_SCAN_AREA:
1976                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1977                         break;
1978                 case KMEMLEAK_NO_SCAN:
1979                         kmemleak_no_scan(log->ptr);
1980                         break;
1981                 default:
1982                         kmemleak_warn("Unknown early log operation: %d\n",
1983                                       log->op_type);
1984                 }
1985
1986                 if (kmemleak_warning) {
1987                         print_log_trace(log);
1988                         kmemleak_warning = 0;
1989                 }
1990         }
1991 }
1992
1993 /*
1994  * Late initialization function.
1995  */
1996 static int __init kmemleak_late_init(void)
1997 {
1998         struct dentry *dentry;
1999
2000         kmemleak_initialized = 1;
2001
2002         if (kmemleak_error) {
2003                 /*
2004                  * Some error occurred and kmemleak was disabled. There is a
2005                  * small chance that kmemleak_disable() was called immediately
2006                  * after setting kmemleak_initialized and we may end up with
2007                  * two clean-up threads but serialized by scan_mutex.
2008                  */
2009                 schedule_work(&cleanup_work);
2010                 return -ENOMEM;
2011         }
2012
2013         dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
2014                                      &kmemleak_fops);
2015         if (!dentry)
2016                 pr_warn("Failed to create the debugfs kmemleak file\n");
2017         mutex_lock(&scan_mutex);
2018         start_scan_thread();
2019         mutex_unlock(&scan_mutex);
2020
2021         pr_info("Kernel memory leak detector initialized\n");
2022
2023         return 0;
2024 }
2025 late_initcall(kmemleak_late_init);