media: ipu-bridge: Move ipu-bridge.h to include/media/
[platform/kernel/linux-starfive.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list as well as
17  *   del_state modifications and accesses to the object_tree_root (or
18  *   object_phys_tree_root). The object_list is the main list holding the
19  *   metadata (struct kmemleak_object) for the allocated memory blocks.
20  *   The object_tree_root and object_phys_tree_root are red
21  *   black trees used to look-up metadata based on a pointer to the
22  *   corresponding memory block. The object_phys_tree_root is for objects
23  *   allocated with physical address. The kmemleak_object structures are
24  *   added to the object_list and object_tree_root (or object_phys_tree_root)
25  *   in the create_object() function called from the kmemleak_alloc() (or
26  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
27  *   the kmemleak_free() callback
28  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
29  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
30  *   that some members of this structure may be protected by other means
31  *   (atomic or kmemleak_lock). This lock is also held when scanning the
32  *   corresponding memory block to avoid the kernel freeing it via the
33  *   kmemleak_free() callback. This is less heavyweight than holding a global
34  *   lock like kmemleak_lock during scanning.
35  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
36  *   unreferenced objects at a time. The gray_list contains the objects which
37  *   are already referenced or marked as false positives and need to be
38  *   scanned. This list is only modified during a scanning episode when the
39  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
40  *   Note that the kmemleak_object.use_count is incremented when an object is
41  *   added to the gray_list and therefore cannot be freed. This mutex also
42  *   prevents multiple users of the "kmemleak" debugfs file together with
43  *   modifications to the memory scanning parameters including the scan_thread
44  *   pointer
45  *
46  * Locks and mutexes are acquired/nested in the following order:
47  *
48  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49  *
50  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
51  * regions.
52  *
53  * The kmemleak_object structures have a use_count incremented or decremented
54  * using the get_object()/put_object() functions. When the use_count becomes
55  * 0, this count can no longer be incremented and put_object() schedules the
56  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
57  * function must be protected by rcu_read_lock() to avoid accessing a freed
58  * structure.
59  */
60
61 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62
63 #include <linux/init.h>
64 #include <linux/kernel.h>
65 #include <linux/list.h>
66 #include <linux/sched/signal.h>
67 #include <linux/sched/task.h>
68 #include <linux/sched/task_stack.h>
69 #include <linux/jiffies.h>
70 #include <linux/delay.h>
71 #include <linux/export.h>
72 #include <linux/kthread.h>
73 #include <linux/rbtree.h>
74 #include <linux/fs.h>
75 #include <linux/debugfs.h>
76 #include <linux/seq_file.h>
77 #include <linux/cpumask.h>
78 #include <linux/spinlock.h>
79 #include <linux/module.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/stackdepot.h>
84 #include <linux/cache.h>
85 #include <linux/percpu.h>
86 #include <linux/memblock.h>
87 #include <linux/pfn.h>
88 #include <linux/mmzone.h>
89 #include <linux/slab.h>
90 #include <linux/thread_info.h>
91 #include <linux/err.h>
92 #include <linux/uaccess.h>
93 #include <linux/string.h>
94 #include <linux/nodemask.h>
95 #include <linux/mm.h>
96 #include <linux/workqueue.h>
97 #include <linux/crc32.h>
98
99 #include <asm/sections.h>
100 #include <asm/processor.h>
101 #include <linux/atomic.h>
102
103 #include <linux/kasan.h>
104 #include <linux/kfence.h>
105 #include <linux/kmemleak.h>
106 #include <linux/memory_hotplug.h>
107
108 /*
109  * Kmemleak configuration and common defines.
110  */
111 #define MAX_TRACE               16      /* stack trace length */
112 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
113 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
114 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
115 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
116
117 #define BYTES_PER_POINTER       sizeof(void *)
118
119 /* GFP bitmask for kmemleak internal allocations */
120 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
121                                            __GFP_NOLOCKDEP)) | \
122                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
123                                  __GFP_NOWARN)
124
125 /* scanning area inside a memory block */
126 struct kmemleak_scan_area {
127         struct hlist_node node;
128         unsigned long start;
129         size_t size;
130 };
131
132 #define KMEMLEAK_GREY   0
133 #define KMEMLEAK_BLACK  -1
134
135 /*
136  * Structure holding the metadata for each allocated memory block.
137  * Modifications to such objects should be made while holding the
138  * object->lock. Insertions or deletions from object_list, gray_list or
139  * rb_node are already protected by the corresponding locks or mutex (see
140  * the notes on locking above). These objects are reference-counted
141  * (use_count) and freed using the RCU mechanism.
142  */
143 struct kmemleak_object {
144         raw_spinlock_t lock;
145         unsigned int flags;             /* object status flags */
146         struct list_head object_list;
147         struct list_head gray_list;
148         struct rb_node rb_node;
149         struct rcu_head rcu;            /* object_list lockless traversal */
150         /* object usage count; object freed when use_count == 0 */
151         atomic_t use_count;
152         unsigned int del_state;         /* deletion state */
153         unsigned long pointer;
154         size_t size;
155         /* pass surplus references to this pointer */
156         unsigned long excess_ref;
157         /* minimum number of a pointers found before it is considered leak */
158         int min_count;
159         /* the total number of pointers found pointing to this object */
160         int count;
161         /* checksum for detecting modified objects */
162         u32 checksum;
163         /* memory ranges to be scanned inside an object (empty for all) */
164         struct hlist_head area_list;
165         depot_stack_handle_t trace_handle;
166         unsigned long jiffies;          /* creation timestamp */
167         pid_t pid;                      /* pid of the current task */
168         char comm[TASK_COMM_LEN];       /* executable name */
169 };
170
171 /* flag representing the memory block allocation status */
172 #define OBJECT_ALLOCATED        (1 << 0)
173 /* flag set after the first reporting of an unreference object */
174 #define OBJECT_REPORTED         (1 << 1)
175 /* flag set to not scan the object */
176 #define OBJECT_NO_SCAN          (1 << 2)
177 /* flag set to fully scan the object when scan_area allocation failed */
178 #define OBJECT_FULL_SCAN        (1 << 3)
179 /* flag set for object allocated with physical address */
180 #define OBJECT_PHYS             (1 << 4)
181
182 /* set when __remove_object() called */
183 #define DELSTATE_REMOVED        (1 << 0)
184 /* set to temporarily prevent deletion from object_list */
185 #define DELSTATE_NO_DELETE      (1 << 1)
186
187 #define HEX_PREFIX              "    "
188 /* number of bytes to print per line; must be 16 or 32 */
189 #define HEX_ROW_SIZE            16
190 /* number of bytes to print at a time (1, 2, 4, 8) */
191 #define HEX_GROUP_SIZE          1
192 /* include ASCII after the hex output */
193 #define HEX_ASCII               1
194 /* max number of lines to be printed */
195 #define HEX_MAX_LINES           2
196
197 /* the list of all allocated objects */
198 static LIST_HEAD(object_list);
199 /* the list of gray-colored objects (see color_gray comment below) */
200 static LIST_HEAD(gray_list);
201 /* memory pool allocation */
202 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
203 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
204 static LIST_HEAD(mem_pool_free_list);
205 /* search tree for object boundaries */
206 static struct rb_root object_tree_root = RB_ROOT;
207 /* search tree for object (with OBJECT_PHYS flag) boundaries */
208 static struct rb_root object_phys_tree_root = RB_ROOT;
209 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
210 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
211
212 /* allocation caches for kmemleak internal data */
213 static struct kmem_cache *object_cache;
214 static struct kmem_cache *scan_area_cache;
215
216 /* set if tracing memory operations is enabled */
217 static int kmemleak_enabled = 1;
218 /* same as above but only for the kmemleak_free() callback */
219 static int kmemleak_free_enabled = 1;
220 /* set in the late_initcall if there were no errors */
221 static int kmemleak_initialized;
222 /* set if a kmemleak warning was issued */
223 static int kmemleak_warning;
224 /* set if a fatal kmemleak error has occurred */
225 static int kmemleak_error;
226
227 /* minimum and maximum address that may be valid pointers */
228 static unsigned long min_addr = ULONG_MAX;
229 static unsigned long max_addr;
230
231 static struct task_struct *scan_thread;
232 /* used to avoid reporting of recently allocated objects */
233 static unsigned long jiffies_min_age;
234 static unsigned long jiffies_last_scan;
235 /* delay between automatic memory scannings */
236 static unsigned long jiffies_scan_wait;
237 /* enables or disables the task stacks scanning */
238 static int kmemleak_stack_scan = 1;
239 /* protects the memory scanning, parameters and debug/kmemleak file access */
240 static DEFINE_MUTEX(scan_mutex);
241 /* setting kmemleak=on, will set this var, skipping the disable */
242 static int kmemleak_skip_disable;
243 /* If there are leaks that can be reported */
244 static bool kmemleak_found_leaks;
245
246 static bool kmemleak_verbose;
247 module_param_named(verbose, kmemleak_verbose, bool, 0600);
248
249 static void kmemleak_disable(void);
250
251 /*
252  * Print a warning and dump the stack trace.
253  */
254 #define kmemleak_warn(x...)     do {            \
255         pr_warn(x);                             \
256         dump_stack();                           \
257         kmemleak_warning = 1;                   \
258 } while (0)
259
260 /*
261  * Macro invoked when a serious kmemleak condition occurred and cannot be
262  * recovered from. Kmemleak will be disabled and further allocation/freeing
263  * tracing no longer available.
264  */
265 #define kmemleak_stop(x...)     do {    \
266         kmemleak_warn(x);               \
267         kmemleak_disable();             \
268 } while (0)
269
270 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
271         if (seq)                                        \
272                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
273         else                                            \
274                 pr_warn(fmt, ##__VA_ARGS__);            \
275 } while (0)
276
277 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
278                                  int rowsize, int groupsize, const void *buf,
279                                  size_t len, bool ascii)
280 {
281         if (seq)
282                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
283                              buf, len, ascii);
284         else
285                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
286                                rowsize, groupsize, buf, len, ascii);
287 }
288
289 /*
290  * Printing of the objects hex dump to the seq file. The number of lines to be
291  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
292  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
293  * with the object->lock held.
294  */
295 static void hex_dump_object(struct seq_file *seq,
296                             struct kmemleak_object *object)
297 {
298         const u8 *ptr = (const u8 *)object->pointer;
299         size_t len;
300
301         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
302                 return;
303
304         /* limit the number of lines to HEX_MAX_LINES */
305         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
306
307         warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
308         kasan_disable_current();
309         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
310                              HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
311         kasan_enable_current();
312 }
313
314 /*
315  * Object colors, encoded with count and min_count:
316  * - white - orphan object, not enough references to it (count < min_count)
317  * - gray  - not orphan, not marked as false positive (min_count == 0) or
318  *              sufficient references to it (count >= min_count)
319  * - black - ignore, it doesn't contain references (e.g. text section)
320  *              (min_count == -1). No function defined for this color.
321  * Newly created objects don't have any color assigned (object->count == -1)
322  * before the next memory scan when they become white.
323  */
324 static bool color_white(const struct kmemleak_object *object)
325 {
326         return object->count != KMEMLEAK_BLACK &&
327                 object->count < object->min_count;
328 }
329
330 static bool color_gray(const struct kmemleak_object *object)
331 {
332         return object->min_count != KMEMLEAK_BLACK &&
333                 object->count >= object->min_count;
334 }
335
336 /*
337  * Objects are considered unreferenced only if their color is white, they have
338  * not be deleted and have a minimum age to avoid false positives caused by
339  * pointers temporarily stored in CPU registers.
340  */
341 static bool unreferenced_object(struct kmemleak_object *object)
342 {
343         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
344                 time_before_eq(object->jiffies + jiffies_min_age,
345                                jiffies_last_scan);
346 }
347
348 /*
349  * Printing of the unreferenced objects information to the seq file. The
350  * print_unreferenced function must be called with the object->lock held.
351  */
352 static void print_unreferenced(struct seq_file *seq,
353                                struct kmemleak_object *object)
354 {
355         int i;
356         unsigned long *entries;
357         unsigned int nr_entries;
358         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
359
360         nr_entries = stack_depot_fetch(object->trace_handle, &entries);
361         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
362                           object->pointer, object->size);
363         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
364                            object->comm, object->pid, object->jiffies,
365                            msecs_age / 1000, msecs_age % 1000);
366         hex_dump_object(seq, object);
367         warn_or_seq_printf(seq, "  backtrace:\n");
368
369         for (i = 0; i < nr_entries; i++) {
370                 void *ptr = (void *)entries[i];
371                 warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
372         }
373 }
374
375 /*
376  * Print the kmemleak_object information. This function is used mainly for
377  * debugging special cases when kmemleak operations. It must be called with
378  * the object->lock held.
379  */
380 static void dump_object_info(struct kmemleak_object *object)
381 {
382         pr_notice("Object 0x%08lx (size %zu):\n",
383                         object->pointer, object->size);
384         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385                         object->comm, object->pid, object->jiffies);
386         pr_notice("  min_count = %d\n", object->min_count);
387         pr_notice("  count = %d\n", object->count);
388         pr_notice("  flags = 0x%x\n", object->flags);
389         pr_notice("  checksum = %u\n", object->checksum);
390         pr_notice("  backtrace:\n");
391         if (object->trace_handle)
392                 stack_depot_print(object->trace_handle);
393 }
394
395 /*
396  * Look-up a memory block metadata (kmemleak_object) in the object search
397  * tree based on a pointer value. If alias is 0, only values pointing to the
398  * beginning of the memory block are allowed. The kmemleak_lock must be held
399  * when calling this function.
400  */
401 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
402                                                bool is_phys)
403 {
404         struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
405                              object_tree_root.rb_node;
406         unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
407
408         while (rb) {
409                 struct kmemleak_object *object;
410                 unsigned long untagged_objp;
411
412                 object = rb_entry(rb, struct kmemleak_object, rb_node);
413                 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
414
415                 if (untagged_ptr < untagged_objp)
416                         rb = object->rb_node.rb_left;
417                 else if (untagged_objp + object->size <= untagged_ptr)
418                         rb = object->rb_node.rb_right;
419                 else if (untagged_objp == untagged_ptr || alias)
420                         return object;
421                 else {
422                         kmemleak_warn("Found object by alias at 0x%08lx\n",
423                                       ptr);
424                         dump_object_info(object);
425                         break;
426                 }
427         }
428         return NULL;
429 }
430
431 /* Look-up a kmemleak object which allocated with virtual address. */
432 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
433 {
434         return __lookup_object(ptr, alias, false);
435 }
436
437 /*
438  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
439  * that once an object's use_count reached 0, the RCU freeing was already
440  * registered and the object should no longer be used. This function must be
441  * called under the protection of rcu_read_lock().
442  */
443 static int get_object(struct kmemleak_object *object)
444 {
445         return atomic_inc_not_zero(&object->use_count);
446 }
447
448 /*
449  * Memory pool allocation and freeing. kmemleak_lock must not be held.
450  */
451 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
452 {
453         unsigned long flags;
454         struct kmemleak_object *object;
455
456         /* try the slab allocator first */
457         if (object_cache) {
458                 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
459                 if (object)
460                         return object;
461         }
462
463         /* slab allocation failed, try the memory pool */
464         raw_spin_lock_irqsave(&kmemleak_lock, flags);
465         object = list_first_entry_or_null(&mem_pool_free_list,
466                                           typeof(*object), object_list);
467         if (object)
468                 list_del(&object->object_list);
469         else if (mem_pool_free_count)
470                 object = &mem_pool[--mem_pool_free_count];
471         else
472                 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
473         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
474
475         return object;
476 }
477
478 /*
479  * Return the object to either the slab allocator or the memory pool.
480  */
481 static void mem_pool_free(struct kmemleak_object *object)
482 {
483         unsigned long flags;
484
485         if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
486                 kmem_cache_free(object_cache, object);
487                 return;
488         }
489
490         /* add the object to the memory pool free list */
491         raw_spin_lock_irqsave(&kmemleak_lock, flags);
492         list_add(&object->object_list, &mem_pool_free_list);
493         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
494 }
495
496 /*
497  * RCU callback to free a kmemleak_object.
498  */
499 static void free_object_rcu(struct rcu_head *rcu)
500 {
501         struct hlist_node *tmp;
502         struct kmemleak_scan_area *area;
503         struct kmemleak_object *object =
504                 container_of(rcu, struct kmemleak_object, rcu);
505
506         /*
507          * Once use_count is 0 (guaranteed by put_object), there is no other
508          * code accessing this object, hence no need for locking.
509          */
510         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
511                 hlist_del(&area->node);
512                 kmem_cache_free(scan_area_cache, area);
513         }
514         mem_pool_free(object);
515 }
516
517 /*
518  * Decrement the object use_count. Once the count is 0, free the object using
519  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
520  * delete_object() path, the delayed RCU freeing ensures that there is no
521  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
522  * is also possible.
523  */
524 static void put_object(struct kmemleak_object *object)
525 {
526         if (!atomic_dec_and_test(&object->use_count))
527                 return;
528
529         /* should only get here after delete_object was called */
530         WARN_ON(object->flags & OBJECT_ALLOCATED);
531
532         /*
533          * It may be too early for the RCU callbacks, however, there is no
534          * concurrent object_list traversal when !object_cache and all objects
535          * came from the memory pool. Free the object directly.
536          */
537         if (object_cache)
538                 call_rcu(&object->rcu, free_object_rcu);
539         else
540                 free_object_rcu(&object->rcu);
541 }
542
543 /*
544  * Look up an object in the object search tree and increase its use_count.
545  */
546 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
547                                                      bool is_phys)
548 {
549         unsigned long flags;
550         struct kmemleak_object *object;
551
552         rcu_read_lock();
553         raw_spin_lock_irqsave(&kmemleak_lock, flags);
554         object = __lookup_object(ptr, alias, is_phys);
555         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
556
557         /* check whether the object is still available */
558         if (object && !get_object(object))
559                 object = NULL;
560         rcu_read_unlock();
561
562         return object;
563 }
564
565 /* Look up and get an object which allocated with virtual address. */
566 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
567 {
568         return __find_and_get_object(ptr, alias, false);
569 }
570
571 /*
572  * Remove an object from the object_tree_root (or object_phys_tree_root)
573  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
574  * is still enabled.
575  */
576 static void __remove_object(struct kmemleak_object *object)
577 {
578         rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
579                                    &object_phys_tree_root :
580                                    &object_tree_root);
581         if (!(object->del_state & DELSTATE_NO_DELETE))
582                 list_del_rcu(&object->object_list);
583         object->del_state |= DELSTATE_REMOVED;
584 }
585
586 /*
587  * Look up an object in the object search tree and remove it from both
588  * object_tree_root (or object_phys_tree_root) and object_list. The
589  * returned object's use_count should be at least 1, as initially set
590  * by create_object().
591  */
592 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
593                                                       bool is_phys)
594 {
595         unsigned long flags;
596         struct kmemleak_object *object;
597
598         raw_spin_lock_irqsave(&kmemleak_lock, flags);
599         object = __lookup_object(ptr, alias, is_phys);
600         if (object)
601                 __remove_object(object);
602         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
603
604         return object;
605 }
606
607 static noinline depot_stack_handle_t set_track_prepare(void)
608 {
609         depot_stack_handle_t trace_handle;
610         unsigned long entries[MAX_TRACE];
611         unsigned int nr_entries;
612
613         if (!kmemleak_initialized)
614                 return 0;
615         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
616         trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
617
618         return trace_handle;
619 }
620
621 /*
622  * Create the metadata (struct kmemleak_object) corresponding to an allocated
623  * memory block and add it to the object_list and object_tree_root (or
624  * object_phys_tree_root).
625  */
626 static void __create_object(unsigned long ptr, size_t size,
627                             int min_count, gfp_t gfp, bool is_phys)
628 {
629         unsigned long flags;
630         struct kmemleak_object *object, *parent;
631         struct rb_node **link, *rb_parent;
632         unsigned long untagged_ptr;
633         unsigned long untagged_objp;
634
635         object = mem_pool_alloc(gfp);
636         if (!object) {
637                 pr_warn("Cannot allocate a kmemleak_object structure\n");
638                 kmemleak_disable();
639                 return;
640         }
641
642         INIT_LIST_HEAD(&object->object_list);
643         INIT_LIST_HEAD(&object->gray_list);
644         INIT_HLIST_HEAD(&object->area_list);
645         raw_spin_lock_init(&object->lock);
646         atomic_set(&object->use_count, 1);
647         object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
648         object->pointer = ptr;
649         object->size = kfence_ksize((void *)ptr) ?: size;
650         object->excess_ref = 0;
651         object->min_count = min_count;
652         object->count = 0;                      /* white color initially */
653         object->jiffies = jiffies;
654         object->checksum = 0;
655         object->del_state = 0;
656
657         /* task information */
658         if (in_hardirq()) {
659                 object->pid = 0;
660                 strncpy(object->comm, "hardirq", sizeof(object->comm));
661         } else if (in_serving_softirq()) {
662                 object->pid = 0;
663                 strncpy(object->comm, "softirq", sizeof(object->comm));
664         } else {
665                 object->pid = current->pid;
666                 /*
667                  * There is a small chance of a race with set_task_comm(),
668                  * however using get_task_comm() here may cause locking
669                  * dependency issues with current->alloc_lock. In the worst
670                  * case, the command line is not correct.
671                  */
672                 strncpy(object->comm, current->comm, sizeof(object->comm));
673         }
674
675         /* kernel backtrace */
676         object->trace_handle = set_track_prepare();
677
678         raw_spin_lock_irqsave(&kmemleak_lock, flags);
679
680         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
681         /*
682          * Only update min_addr and max_addr with object
683          * storing virtual address.
684          */
685         if (!is_phys) {
686                 min_addr = min(min_addr, untagged_ptr);
687                 max_addr = max(max_addr, untagged_ptr + size);
688         }
689         link = is_phys ? &object_phys_tree_root.rb_node :
690                 &object_tree_root.rb_node;
691         rb_parent = NULL;
692         while (*link) {
693                 rb_parent = *link;
694                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
695                 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
696                 if (untagged_ptr + size <= untagged_objp)
697                         link = &parent->rb_node.rb_left;
698                 else if (untagged_objp + parent->size <= untagged_ptr)
699                         link = &parent->rb_node.rb_right;
700                 else {
701                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
702                                       ptr);
703                         /*
704                          * No need for parent->lock here since "parent" cannot
705                          * be freed while the kmemleak_lock is held.
706                          */
707                         dump_object_info(parent);
708                         kmem_cache_free(object_cache, object);
709                         goto out;
710                 }
711         }
712         rb_link_node(&object->rb_node, rb_parent, link);
713         rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
714                                           &object_tree_root);
715         list_add_tail_rcu(&object->object_list, &object_list);
716 out:
717         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
718 }
719
720 /* Create kmemleak object which allocated with virtual address. */
721 static void create_object(unsigned long ptr, size_t size,
722                           int min_count, gfp_t gfp)
723 {
724         __create_object(ptr, size, min_count, gfp, false);
725 }
726
727 /* Create kmemleak object which allocated with physical address. */
728 static void create_object_phys(unsigned long ptr, size_t size,
729                                int min_count, gfp_t gfp)
730 {
731         __create_object(ptr, size, min_count, gfp, true);
732 }
733
734 /*
735  * Mark the object as not allocated and schedule RCU freeing via put_object().
736  */
737 static void __delete_object(struct kmemleak_object *object)
738 {
739         unsigned long flags;
740
741         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
742         WARN_ON(atomic_read(&object->use_count) < 1);
743
744         /*
745          * Locking here also ensures that the corresponding memory block
746          * cannot be freed when it is being scanned.
747          */
748         raw_spin_lock_irqsave(&object->lock, flags);
749         object->flags &= ~OBJECT_ALLOCATED;
750         raw_spin_unlock_irqrestore(&object->lock, flags);
751         put_object(object);
752 }
753
754 /*
755  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
756  * delete it.
757  */
758 static void delete_object_full(unsigned long ptr)
759 {
760         struct kmemleak_object *object;
761
762         object = find_and_remove_object(ptr, 0, false);
763         if (!object) {
764 #ifdef DEBUG
765                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
766                               ptr);
767 #endif
768                 return;
769         }
770         __delete_object(object);
771 }
772
773 /*
774  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
775  * delete it. If the memory block is partially freed, the function may create
776  * additional metadata for the remaining parts of the block.
777  */
778 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
779 {
780         struct kmemleak_object *object;
781         unsigned long start, end;
782
783         object = find_and_remove_object(ptr, 1, is_phys);
784         if (!object) {
785 #ifdef DEBUG
786                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
787                               ptr, size);
788 #endif
789                 return;
790         }
791
792         /*
793          * Create one or two objects that may result from the memory block
794          * split. Note that partial freeing is only done by free_bootmem() and
795          * this happens before kmemleak_init() is called.
796          */
797         start = object->pointer;
798         end = object->pointer + object->size;
799         if (ptr > start)
800                 __create_object(start, ptr - start, object->min_count,
801                               GFP_KERNEL, is_phys);
802         if (ptr + size < end)
803                 __create_object(ptr + size, end - ptr - size, object->min_count,
804                               GFP_KERNEL, is_phys);
805
806         __delete_object(object);
807 }
808
809 static void __paint_it(struct kmemleak_object *object, int color)
810 {
811         object->min_count = color;
812         if (color == KMEMLEAK_BLACK)
813                 object->flags |= OBJECT_NO_SCAN;
814 }
815
816 static void paint_it(struct kmemleak_object *object, int color)
817 {
818         unsigned long flags;
819
820         raw_spin_lock_irqsave(&object->lock, flags);
821         __paint_it(object, color);
822         raw_spin_unlock_irqrestore(&object->lock, flags);
823 }
824
825 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
826 {
827         struct kmemleak_object *object;
828
829         object = __find_and_get_object(ptr, 0, is_phys);
830         if (!object) {
831                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
832                               ptr,
833                               (color == KMEMLEAK_GREY) ? "Grey" :
834                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
835                 return;
836         }
837         paint_it(object, color);
838         put_object(object);
839 }
840
841 /*
842  * Mark an object permanently as gray-colored so that it can no longer be
843  * reported as a leak. This is used in general to mark a false positive.
844  */
845 static void make_gray_object(unsigned long ptr)
846 {
847         paint_ptr(ptr, KMEMLEAK_GREY, false);
848 }
849
850 /*
851  * Mark the object as black-colored so that it is ignored from scans and
852  * reporting.
853  */
854 static void make_black_object(unsigned long ptr, bool is_phys)
855 {
856         paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
857 }
858
859 /*
860  * Add a scanning area to the object. If at least one such area is added,
861  * kmemleak will only scan these ranges rather than the whole memory block.
862  */
863 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
864 {
865         unsigned long flags;
866         struct kmemleak_object *object;
867         struct kmemleak_scan_area *area = NULL;
868         unsigned long untagged_ptr;
869         unsigned long untagged_objp;
870
871         object = find_and_get_object(ptr, 1);
872         if (!object) {
873                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
874                               ptr);
875                 return;
876         }
877
878         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
879         untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
880
881         if (scan_area_cache)
882                 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
883
884         raw_spin_lock_irqsave(&object->lock, flags);
885         if (!area) {
886                 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
887                 /* mark the object for full scan to avoid false positives */
888                 object->flags |= OBJECT_FULL_SCAN;
889                 goto out_unlock;
890         }
891         if (size == SIZE_MAX) {
892                 size = untagged_objp + object->size - untagged_ptr;
893         } else if (untagged_ptr + size > untagged_objp + object->size) {
894                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
895                 dump_object_info(object);
896                 kmem_cache_free(scan_area_cache, area);
897                 goto out_unlock;
898         }
899
900         INIT_HLIST_NODE(&area->node);
901         area->start = ptr;
902         area->size = size;
903
904         hlist_add_head(&area->node, &object->area_list);
905 out_unlock:
906         raw_spin_unlock_irqrestore(&object->lock, flags);
907         put_object(object);
908 }
909
910 /*
911  * Any surplus references (object already gray) to 'ptr' are passed to
912  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
913  * vm_struct may be used as an alternative reference to the vmalloc'ed object
914  * (see free_thread_stack()).
915  */
916 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
917 {
918         unsigned long flags;
919         struct kmemleak_object *object;
920
921         object = find_and_get_object(ptr, 0);
922         if (!object) {
923                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
924                               ptr);
925                 return;
926         }
927
928         raw_spin_lock_irqsave(&object->lock, flags);
929         object->excess_ref = excess_ref;
930         raw_spin_unlock_irqrestore(&object->lock, flags);
931         put_object(object);
932 }
933
934 /*
935  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
936  * pointer. Such object will not be scanned by kmemleak but references to it
937  * are searched.
938  */
939 static void object_no_scan(unsigned long ptr)
940 {
941         unsigned long flags;
942         struct kmemleak_object *object;
943
944         object = find_and_get_object(ptr, 0);
945         if (!object) {
946                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
947                 return;
948         }
949
950         raw_spin_lock_irqsave(&object->lock, flags);
951         object->flags |= OBJECT_NO_SCAN;
952         raw_spin_unlock_irqrestore(&object->lock, flags);
953         put_object(object);
954 }
955
956 /**
957  * kmemleak_alloc - register a newly allocated object
958  * @ptr:        pointer to beginning of the object
959  * @size:       size of the object
960  * @min_count:  minimum number of references to this object. If during memory
961  *              scanning a number of references less than @min_count is found,
962  *              the object is reported as a memory leak. If @min_count is 0,
963  *              the object is never reported as a leak. If @min_count is -1,
964  *              the object is ignored (not scanned and not reported as a leak)
965  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
966  *
967  * This function is called from the kernel allocators when a new object
968  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
969  */
970 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
971                           gfp_t gfp)
972 {
973         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
974
975         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
976                 create_object((unsigned long)ptr, size, min_count, gfp);
977 }
978 EXPORT_SYMBOL_GPL(kmemleak_alloc);
979
980 /**
981  * kmemleak_alloc_percpu - register a newly allocated __percpu object
982  * @ptr:        __percpu pointer to beginning of the object
983  * @size:       size of the object
984  * @gfp:        flags used for kmemleak internal memory allocations
985  *
986  * This function is called from the kernel percpu allocator when a new object
987  * (memory block) is allocated (alloc_percpu).
988  */
989 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
990                                  gfp_t gfp)
991 {
992         unsigned int cpu;
993
994         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
995
996         /*
997          * Percpu allocations are only scanned and not reported as leaks
998          * (min_count is set to 0).
999          */
1000         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1001                 for_each_possible_cpu(cpu)
1002                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
1003                                       size, 0, gfp);
1004 }
1005 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
1006
1007 /**
1008  * kmemleak_vmalloc - register a newly vmalloc'ed object
1009  * @area:       pointer to vm_struct
1010  * @size:       size of the object
1011  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
1012  *
1013  * This function is called from the vmalloc() kernel allocator when a new
1014  * object (memory block) is allocated.
1015  */
1016 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1017 {
1018         pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1019
1020         /*
1021          * A min_count = 2 is needed because vm_struct contains a reference to
1022          * the virtual address of the vmalloc'ed block.
1023          */
1024         if (kmemleak_enabled) {
1025                 create_object((unsigned long)area->addr, size, 2, gfp);
1026                 object_set_excess_ref((unsigned long)area,
1027                                       (unsigned long)area->addr);
1028         }
1029 }
1030 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1031
1032 /**
1033  * kmemleak_free - unregister a previously registered object
1034  * @ptr:        pointer to beginning of the object
1035  *
1036  * This function is called from the kernel allocators when an object (memory
1037  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1038  */
1039 void __ref kmemleak_free(const void *ptr)
1040 {
1041         pr_debug("%s(0x%p)\n", __func__, ptr);
1042
1043         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1044                 delete_object_full((unsigned long)ptr);
1045 }
1046 EXPORT_SYMBOL_GPL(kmemleak_free);
1047
1048 /**
1049  * kmemleak_free_part - partially unregister a previously registered object
1050  * @ptr:        pointer to the beginning or inside the object. This also
1051  *              represents the start of the range to be freed
1052  * @size:       size to be unregistered
1053  *
1054  * This function is called when only a part of a memory block is freed
1055  * (usually from the bootmem allocator).
1056  */
1057 void __ref kmemleak_free_part(const void *ptr, size_t size)
1058 {
1059         pr_debug("%s(0x%p)\n", __func__, ptr);
1060
1061         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1062                 delete_object_part((unsigned long)ptr, size, false);
1063 }
1064 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1065
1066 /**
1067  * kmemleak_free_percpu - unregister a previously registered __percpu object
1068  * @ptr:        __percpu pointer to beginning of the object
1069  *
1070  * This function is called from the kernel percpu allocator when an object
1071  * (memory block) is freed (free_percpu).
1072  */
1073 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1074 {
1075         unsigned int cpu;
1076
1077         pr_debug("%s(0x%p)\n", __func__, ptr);
1078
1079         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1080                 for_each_possible_cpu(cpu)
1081                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1082                                                                       cpu));
1083 }
1084 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1085
1086 /**
1087  * kmemleak_update_trace - update object allocation stack trace
1088  * @ptr:        pointer to beginning of the object
1089  *
1090  * Override the object allocation stack trace for cases where the actual
1091  * allocation place is not always useful.
1092  */
1093 void __ref kmemleak_update_trace(const void *ptr)
1094 {
1095         struct kmemleak_object *object;
1096         unsigned long flags;
1097
1098         pr_debug("%s(0x%p)\n", __func__, ptr);
1099
1100         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1101                 return;
1102
1103         object = find_and_get_object((unsigned long)ptr, 1);
1104         if (!object) {
1105 #ifdef DEBUG
1106                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1107                               ptr);
1108 #endif
1109                 return;
1110         }
1111
1112         raw_spin_lock_irqsave(&object->lock, flags);
1113         object->trace_handle = set_track_prepare();
1114         raw_spin_unlock_irqrestore(&object->lock, flags);
1115
1116         put_object(object);
1117 }
1118 EXPORT_SYMBOL(kmemleak_update_trace);
1119
1120 /**
1121  * kmemleak_not_leak - mark an allocated object as false positive
1122  * @ptr:        pointer to beginning of the object
1123  *
1124  * Calling this function on an object will cause the memory block to no longer
1125  * be reported as leak and always be scanned.
1126  */
1127 void __ref kmemleak_not_leak(const void *ptr)
1128 {
1129         pr_debug("%s(0x%p)\n", __func__, ptr);
1130
1131         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1132                 make_gray_object((unsigned long)ptr);
1133 }
1134 EXPORT_SYMBOL(kmemleak_not_leak);
1135
1136 /**
1137  * kmemleak_ignore - ignore an allocated object
1138  * @ptr:        pointer to beginning of the object
1139  *
1140  * Calling this function on an object will cause the memory block to be
1141  * ignored (not scanned and not reported as a leak). This is usually done when
1142  * it is known that the corresponding block is not a leak and does not contain
1143  * any references to other allocated memory blocks.
1144  */
1145 void __ref kmemleak_ignore(const void *ptr)
1146 {
1147         pr_debug("%s(0x%p)\n", __func__, ptr);
1148
1149         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1150                 make_black_object((unsigned long)ptr, false);
1151 }
1152 EXPORT_SYMBOL(kmemleak_ignore);
1153
1154 /**
1155  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1156  * @ptr:        pointer to beginning or inside the object. This also
1157  *              represents the start of the scan area
1158  * @size:       size of the scan area
1159  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1160  *
1161  * This function is used when it is known that only certain parts of an object
1162  * contain references to other objects. Kmemleak will only scan these areas
1163  * reducing the number false negatives.
1164  */
1165 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1166 {
1167         pr_debug("%s(0x%p)\n", __func__, ptr);
1168
1169         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1170                 add_scan_area((unsigned long)ptr, size, gfp);
1171 }
1172 EXPORT_SYMBOL(kmemleak_scan_area);
1173
1174 /**
1175  * kmemleak_no_scan - do not scan an allocated object
1176  * @ptr:        pointer to beginning of the object
1177  *
1178  * This function notifies kmemleak not to scan the given memory block. Useful
1179  * in situations where it is known that the given object does not contain any
1180  * references to other objects. Kmemleak will not scan such objects reducing
1181  * the number of false negatives.
1182  */
1183 void __ref kmemleak_no_scan(const void *ptr)
1184 {
1185         pr_debug("%s(0x%p)\n", __func__, ptr);
1186
1187         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1188                 object_no_scan((unsigned long)ptr);
1189 }
1190 EXPORT_SYMBOL(kmemleak_no_scan);
1191
1192 /**
1193  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1194  *                       address argument
1195  * @phys:       physical address of the object
1196  * @size:       size of the object
1197  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1198  */
1199 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1200 {
1201         pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1202
1203         if (kmemleak_enabled)
1204                 /*
1205                  * Create object with OBJECT_PHYS flag and
1206                  * assume min_count 0.
1207                  */
1208                 create_object_phys((unsigned long)phys, size, 0, gfp);
1209 }
1210 EXPORT_SYMBOL(kmemleak_alloc_phys);
1211
1212 /**
1213  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1214  *                           physical address argument
1215  * @phys:       physical address if the beginning or inside an object. This
1216  *              also represents the start of the range to be freed
1217  * @size:       size to be unregistered
1218  */
1219 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1220 {
1221         pr_debug("%s(0x%pa)\n", __func__, &phys);
1222
1223         if (kmemleak_enabled)
1224                 delete_object_part((unsigned long)phys, size, true);
1225 }
1226 EXPORT_SYMBOL(kmemleak_free_part_phys);
1227
1228 /**
1229  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1230  *                        address argument
1231  * @phys:       physical address of the object
1232  */
1233 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1234 {
1235         pr_debug("%s(0x%pa)\n", __func__, &phys);
1236
1237         if (kmemleak_enabled)
1238                 make_black_object((unsigned long)phys, true);
1239 }
1240 EXPORT_SYMBOL(kmemleak_ignore_phys);
1241
1242 /*
1243  * Update an object's checksum and return true if it was modified.
1244  */
1245 static bool update_checksum(struct kmemleak_object *object)
1246 {
1247         u32 old_csum = object->checksum;
1248
1249         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1250                 return false;
1251
1252         kasan_disable_current();
1253         kcsan_disable_current();
1254         object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1255         kasan_enable_current();
1256         kcsan_enable_current();
1257
1258         return object->checksum != old_csum;
1259 }
1260
1261 /*
1262  * Update an object's references. object->lock must be held by the caller.
1263  */
1264 static void update_refs(struct kmemleak_object *object)
1265 {
1266         if (!color_white(object)) {
1267                 /* non-orphan, ignored or new */
1268                 return;
1269         }
1270
1271         /*
1272          * Increase the object's reference count (number of pointers to the
1273          * memory block). If this count reaches the required minimum, the
1274          * object's color will become gray and it will be added to the
1275          * gray_list.
1276          */
1277         object->count++;
1278         if (color_gray(object)) {
1279                 /* put_object() called when removing from gray_list */
1280                 WARN_ON(!get_object(object));
1281                 list_add_tail(&object->gray_list, &gray_list);
1282         }
1283 }
1284
1285 /*
1286  * Memory scanning is a long process and it needs to be interruptible. This
1287  * function checks whether such interrupt condition occurred.
1288  */
1289 static int scan_should_stop(void)
1290 {
1291         if (!kmemleak_enabled)
1292                 return 1;
1293
1294         /*
1295          * This function may be called from either process or kthread context,
1296          * hence the need to check for both stop conditions.
1297          */
1298         if (current->mm)
1299                 return signal_pending(current);
1300         else
1301                 return kthread_should_stop();
1302
1303         return 0;
1304 }
1305
1306 /*
1307  * Scan a memory block (exclusive range) for valid pointers and add those
1308  * found to the gray list.
1309  */
1310 static void scan_block(void *_start, void *_end,
1311                        struct kmemleak_object *scanned)
1312 {
1313         unsigned long *ptr;
1314         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1315         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1316         unsigned long flags;
1317         unsigned long untagged_ptr;
1318
1319         raw_spin_lock_irqsave(&kmemleak_lock, flags);
1320         for (ptr = start; ptr < end; ptr++) {
1321                 struct kmemleak_object *object;
1322                 unsigned long pointer;
1323                 unsigned long excess_ref;
1324
1325                 if (scan_should_stop())
1326                         break;
1327
1328                 kasan_disable_current();
1329                 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1330                 kasan_enable_current();
1331
1332                 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1333                 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1334                         continue;
1335
1336                 /*
1337                  * No need for get_object() here since we hold kmemleak_lock.
1338                  * object->use_count cannot be dropped to 0 while the object
1339                  * is still present in object_tree_root and object_list
1340                  * (with updates protected by kmemleak_lock).
1341                  */
1342                 object = lookup_object(pointer, 1);
1343                 if (!object)
1344                         continue;
1345                 if (object == scanned)
1346                         /* self referenced, ignore */
1347                         continue;
1348
1349                 /*
1350                  * Avoid the lockdep recursive warning on object->lock being
1351                  * previously acquired in scan_object(). These locks are
1352                  * enclosed by scan_mutex.
1353                  */
1354                 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1355                 /* only pass surplus references (object already gray) */
1356                 if (color_gray(object)) {
1357                         excess_ref = object->excess_ref;
1358                         /* no need for update_refs() if object already gray */
1359                 } else {
1360                         excess_ref = 0;
1361                         update_refs(object);
1362                 }
1363                 raw_spin_unlock(&object->lock);
1364
1365                 if (excess_ref) {
1366                         object = lookup_object(excess_ref, 0);
1367                         if (!object)
1368                                 continue;
1369                         if (object == scanned)
1370                                 /* circular reference, ignore */
1371                                 continue;
1372                         raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1373                         update_refs(object);
1374                         raw_spin_unlock(&object->lock);
1375                 }
1376         }
1377         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1378 }
1379
1380 /*
1381  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1382  */
1383 #ifdef CONFIG_SMP
1384 static void scan_large_block(void *start, void *end)
1385 {
1386         void *next;
1387
1388         while (start < end) {
1389                 next = min(start + MAX_SCAN_SIZE, end);
1390                 scan_block(start, next, NULL);
1391                 start = next;
1392                 cond_resched();
1393         }
1394 }
1395 #endif
1396
1397 /*
1398  * Scan a memory block corresponding to a kmemleak_object. A condition is
1399  * that object->use_count >= 1.
1400  */
1401 static void scan_object(struct kmemleak_object *object)
1402 {
1403         struct kmemleak_scan_area *area;
1404         unsigned long flags;
1405         void *obj_ptr;
1406
1407         /*
1408          * Once the object->lock is acquired, the corresponding memory block
1409          * cannot be freed (the same lock is acquired in delete_object).
1410          */
1411         raw_spin_lock_irqsave(&object->lock, flags);
1412         if (object->flags & OBJECT_NO_SCAN)
1413                 goto out;
1414         if (!(object->flags & OBJECT_ALLOCATED))
1415                 /* already freed object */
1416                 goto out;
1417
1418         obj_ptr = object->flags & OBJECT_PHYS ?
1419                   __va((phys_addr_t)object->pointer) :
1420                   (void *)object->pointer;
1421
1422         if (hlist_empty(&object->area_list) ||
1423             object->flags & OBJECT_FULL_SCAN) {
1424                 void *start = obj_ptr;
1425                 void *end = obj_ptr + object->size;
1426                 void *next;
1427
1428                 do {
1429                         next = min(start + MAX_SCAN_SIZE, end);
1430                         scan_block(start, next, object);
1431
1432                         start = next;
1433                         if (start >= end)
1434                                 break;
1435
1436                         raw_spin_unlock_irqrestore(&object->lock, flags);
1437                         cond_resched();
1438                         raw_spin_lock_irqsave(&object->lock, flags);
1439                 } while (object->flags & OBJECT_ALLOCATED);
1440         } else
1441                 hlist_for_each_entry(area, &object->area_list, node)
1442                         scan_block((void *)area->start,
1443                                    (void *)(area->start + area->size),
1444                                    object);
1445 out:
1446         raw_spin_unlock_irqrestore(&object->lock, flags);
1447 }
1448
1449 /*
1450  * Scan the objects already referenced (gray objects). More objects will be
1451  * referenced and, if there are no memory leaks, all the objects are scanned.
1452  */
1453 static void scan_gray_list(void)
1454 {
1455         struct kmemleak_object *object, *tmp;
1456
1457         /*
1458          * The list traversal is safe for both tail additions and removals
1459          * from inside the loop. The kmemleak objects cannot be freed from
1460          * outside the loop because their use_count was incremented.
1461          */
1462         object = list_entry(gray_list.next, typeof(*object), gray_list);
1463         while (&object->gray_list != &gray_list) {
1464                 cond_resched();
1465
1466                 /* may add new objects to the list */
1467                 if (!scan_should_stop())
1468                         scan_object(object);
1469
1470                 tmp = list_entry(object->gray_list.next, typeof(*object),
1471                                  gray_list);
1472
1473                 /* remove the object from the list and release it */
1474                 list_del(&object->gray_list);
1475                 put_object(object);
1476
1477                 object = tmp;
1478         }
1479         WARN_ON(!list_empty(&gray_list));
1480 }
1481
1482 /*
1483  * Conditionally call resched() in an object iteration loop while making sure
1484  * that the given object won't go away without RCU read lock by performing a
1485  * get_object() if necessaary.
1486  */
1487 static void kmemleak_cond_resched(struct kmemleak_object *object)
1488 {
1489         if (!get_object(object))
1490                 return; /* Try next object */
1491
1492         raw_spin_lock_irq(&kmemleak_lock);
1493         if (object->del_state & DELSTATE_REMOVED)
1494                 goto unlock_put;        /* Object removed */
1495         object->del_state |= DELSTATE_NO_DELETE;
1496         raw_spin_unlock_irq(&kmemleak_lock);
1497
1498         rcu_read_unlock();
1499         cond_resched();
1500         rcu_read_lock();
1501
1502         raw_spin_lock_irq(&kmemleak_lock);
1503         if (object->del_state & DELSTATE_REMOVED)
1504                 list_del_rcu(&object->object_list);
1505         object->del_state &= ~DELSTATE_NO_DELETE;
1506 unlock_put:
1507         raw_spin_unlock_irq(&kmemleak_lock);
1508         put_object(object);
1509 }
1510
1511 /*
1512  * Scan data sections and all the referenced memory blocks allocated via the
1513  * kernel's standard allocators. This function must be called with the
1514  * scan_mutex held.
1515  */
1516 static void kmemleak_scan(void)
1517 {
1518         struct kmemleak_object *object;
1519         struct zone *zone;
1520         int __maybe_unused i;
1521         int new_leaks = 0;
1522
1523         jiffies_last_scan = jiffies;
1524
1525         /* prepare the kmemleak_object's */
1526         rcu_read_lock();
1527         list_for_each_entry_rcu(object, &object_list, object_list) {
1528                 raw_spin_lock_irq(&object->lock);
1529 #ifdef DEBUG
1530                 /*
1531                  * With a few exceptions there should be a maximum of
1532                  * 1 reference to any object at this point.
1533                  */
1534                 if (atomic_read(&object->use_count) > 1) {
1535                         pr_debug("object->use_count = %d\n",
1536                                  atomic_read(&object->use_count));
1537                         dump_object_info(object);
1538                 }
1539 #endif
1540
1541                 /* ignore objects outside lowmem (paint them black) */
1542                 if ((object->flags & OBJECT_PHYS) &&
1543                    !(object->flags & OBJECT_NO_SCAN)) {
1544                         unsigned long phys = object->pointer;
1545
1546                         if (PHYS_PFN(phys) < min_low_pfn ||
1547                             PHYS_PFN(phys + object->size) >= max_low_pfn)
1548                                 __paint_it(object, KMEMLEAK_BLACK);
1549                 }
1550
1551                 /* reset the reference count (whiten the object) */
1552                 object->count = 0;
1553                 if (color_gray(object) && get_object(object))
1554                         list_add_tail(&object->gray_list, &gray_list);
1555
1556                 raw_spin_unlock_irq(&object->lock);
1557
1558                 if (need_resched())
1559                         kmemleak_cond_resched(object);
1560         }
1561         rcu_read_unlock();
1562
1563 #ifdef CONFIG_SMP
1564         /* per-cpu sections scanning */
1565         for_each_possible_cpu(i)
1566                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1567                                  __per_cpu_end + per_cpu_offset(i));
1568 #endif
1569
1570         /*
1571          * Struct page scanning for each node.
1572          */
1573         get_online_mems();
1574         for_each_populated_zone(zone) {
1575                 unsigned long start_pfn = zone->zone_start_pfn;
1576                 unsigned long end_pfn = zone_end_pfn(zone);
1577                 unsigned long pfn;
1578
1579                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1580                         struct page *page = pfn_to_online_page(pfn);
1581
1582                         if (!page)
1583                                 continue;
1584
1585                         /* only scan pages belonging to this zone */
1586                         if (page_zone(page) != zone)
1587                                 continue;
1588                         /* only scan if page is in use */
1589                         if (page_count(page) == 0)
1590                                 continue;
1591                         scan_block(page, page + 1, NULL);
1592                         if (!(pfn & 63))
1593                                 cond_resched();
1594                 }
1595         }
1596         put_online_mems();
1597
1598         /*
1599          * Scanning the task stacks (may introduce false negatives).
1600          */
1601         if (kmemleak_stack_scan) {
1602                 struct task_struct *p, *g;
1603
1604                 rcu_read_lock();
1605                 for_each_process_thread(g, p) {
1606                         void *stack = try_get_task_stack(p);
1607                         if (stack) {
1608                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1609                                 put_task_stack(p);
1610                         }
1611                 }
1612                 rcu_read_unlock();
1613         }
1614
1615         /*
1616          * Scan the objects already referenced from the sections scanned
1617          * above.
1618          */
1619         scan_gray_list();
1620
1621         /*
1622          * Check for new or unreferenced objects modified since the previous
1623          * scan and color them gray until the next scan.
1624          */
1625         rcu_read_lock();
1626         list_for_each_entry_rcu(object, &object_list, object_list) {
1627                 if (need_resched())
1628                         kmemleak_cond_resched(object);
1629
1630                 /*
1631                  * This is racy but we can save the overhead of lock/unlock
1632                  * calls. The missed objects, if any, should be caught in
1633                  * the next scan.
1634                  */
1635                 if (!color_white(object))
1636                         continue;
1637                 raw_spin_lock_irq(&object->lock);
1638                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1639                     && update_checksum(object) && get_object(object)) {
1640                         /* color it gray temporarily */
1641                         object->count = object->min_count;
1642                         list_add_tail(&object->gray_list, &gray_list);
1643                 }
1644                 raw_spin_unlock_irq(&object->lock);
1645         }
1646         rcu_read_unlock();
1647
1648         /*
1649          * Re-scan the gray list for modified unreferenced objects.
1650          */
1651         scan_gray_list();
1652
1653         /*
1654          * If scanning was stopped do not report any new unreferenced objects.
1655          */
1656         if (scan_should_stop())
1657                 return;
1658
1659         /*
1660          * Scanning result reporting.
1661          */
1662         rcu_read_lock();
1663         list_for_each_entry_rcu(object, &object_list, object_list) {
1664                 if (need_resched())
1665                         kmemleak_cond_resched(object);
1666
1667                 /*
1668                  * This is racy but we can save the overhead of lock/unlock
1669                  * calls. The missed objects, if any, should be caught in
1670                  * the next scan.
1671                  */
1672                 if (!color_white(object))
1673                         continue;
1674                 raw_spin_lock_irq(&object->lock);
1675                 if (unreferenced_object(object) &&
1676                     !(object->flags & OBJECT_REPORTED)) {
1677                         object->flags |= OBJECT_REPORTED;
1678
1679                         if (kmemleak_verbose)
1680                                 print_unreferenced(NULL, object);
1681
1682                         new_leaks++;
1683                 }
1684                 raw_spin_unlock_irq(&object->lock);
1685         }
1686         rcu_read_unlock();
1687
1688         if (new_leaks) {
1689                 kmemleak_found_leaks = true;
1690
1691                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1692                         new_leaks);
1693         }
1694
1695 }
1696
1697 /*
1698  * Thread function performing automatic memory scanning. Unreferenced objects
1699  * at the end of a memory scan are reported but only the first time.
1700  */
1701 static int kmemleak_scan_thread(void *arg)
1702 {
1703         static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1704
1705         pr_info("Automatic memory scanning thread started\n");
1706         set_user_nice(current, 10);
1707
1708         /*
1709          * Wait before the first scan to allow the system to fully initialize.
1710          */
1711         if (first_run) {
1712                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1713                 first_run = 0;
1714                 while (timeout && !kthread_should_stop())
1715                         timeout = schedule_timeout_interruptible(timeout);
1716         }
1717
1718         while (!kthread_should_stop()) {
1719                 signed long timeout = READ_ONCE(jiffies_scan_wait);
1720
1721                 mutex_lock(&scan_mutex);
1722                 kmemleak_scan();
1723                 mutex_unlock(&scan_mutex);
1724
1725                 /* wait before the next scan */
1726                 while (timeout && !kthread_should_stop())
1727                         timeout = schedule_timeout_interruptible(timeout);
1728         }
1729
1730         pr_info("Automatic memory scanning thread ended\n");
1731
1732         return 0;
1733 }
1734
1735 /*
1736  * Start the automatic memory scanning thread. This function must be called
1737  * with the scan_mutex held.
1738  */
1739 static void start_scan_thread(void)
1740 {
1741         if (scan_thread)
1742                 return;
1743         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1744         if (IS_ERR(scan_thread)) {
1745                 pr_warn("Failed to create the scan thread\n");
1746                 scan_thread = NULL;
1747         }
1748 }
1749
1750 /*
1751  * Stop the automatic memory scanning thread.
1752  */
1753 static void stop_scan_thread(void)
1754 {
1755         if (scan_thread) {
1756                 kthread_stop(scan_thread);
1757                 scan_thread = NULL;
1758         }
1759 }
1760
1761 /*
1762  * Iterate over the object_list and return the first valid object at or after
1763  * the required position with its use_count incremented. The function triggers
1764  * a memory scanning when the pos argument points to the first position.
1765  */
1766 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1767 {
1768         struct kmemleak_object *object;
1769         loff_t n = *pos;
1770         int err;
1771
1772         err = mutex_lock_interruptible(&scan_mutex);
1773         if (err < 0)
1774                 return ERR_PTR(err);
1775
1776         rcu_read_lock();
1777         list_for_each_entry_rcu(object, &object_list, object_list) {
1778                 if (n-- > 0)
1779                         continue;
1780                 if (get_object(object))
1781                         goto out;
1782         }
1783         object = NULL;
1784 out:
1785         return object;
1786 }
1787
1788 /*
1789  * Return the next object in the object_list. The function decrements the
1790  * use_count of the previous object and increases that of the next one.
1791  */
1792 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1793 {
1794         struct kmemleak_object *prev_obj = v;
1795         struct kmemleak_object *next_obj = NULL;
1796         struct kmemleak_object *obj = prev_obj;
1797
1798         ++(*pos);
1799
1800         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1801                 if (get_object(obj)) {
1802                         next_obj = obj;
1803                         break;
1804                 }
1805         }
1806
1807         put_object(prev_obj);
1808         return next_obj;
1809 }
1810
1811 /*
1812  * Decrement the use_count of the last object required, if any.
1813  */
1814 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1815 {
1816         if (!IS_ERR(v)) {
1817                 /*
1818                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1819                  * waiting was interrupted, so only release it if !IS_ERR.
1820                  */
1821                 rcu_read_unlock();
1822                 mutex_unlock(&scan_mutex);
1823                 if (v)
1824                         put_object(v);
1825         }
1826 }
1827
1828 /*
1829  * Print the information for an unreferenced object to the seq file.
1830  */
1831 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1832 {
1833         struct kmemleak_object *object = v;
1834         unsigned long flags;
1835
1836         raw_spin_lock_irqsave(&object->lock, flags);
1837         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1838                 print_unreferenced(seq, object);
1839         raw_spin_unlock_irqrestore(&object->lock, flags);
1840         return 0;
1841 }
1842
1843 static const struct seq_operations kmemleak_seq_ops = {
1844         .start = kmemleak_seq_start,
1845         .next  = kmemleak_seq_next,
1846         .stop  = kmemleak_seq_stop,
1847         .show  = kmemleak_seq_show,
1848 };
1849
1850 static int kmemleak_open(struct inode *inode, struct file *file)
1851 {
1852         return seq_open(file, &kmemleak_seq_ops);
1853 }
1854
1855 static int dump_str_object_info(const char *str)
1856 {
1857         unsigned long flags;
1858         struct kmemleak_object *object;
1859         unsigned long addr;
1860
1861         if (kstrtoul(str, 0, &addr))
1862                 return -EINVAL;
1863         object = find_and_get_object(addr, 0);
1864         if (!object) {
1865                 pr_info("Unknown object at 0x%08lx\n", addr);
1866                 return -EINVAL;
1867         }
1868
1869         raw_spin_lock_irqsave(&object->lock, flags);
1870         dump_object_info(object);
1871         raw_spin_unlock_irqrestore(&object->lock, flags);
1872
1873         put_object(object);
1874         return 0;
1875 }
1876
1877 /*
1878  * We use grey instead of black to ensure we can do future scans on the same
1879  * objects. If we did not do future scans these black objects could
1880  * potentially contain references to newly allocated objects in the future and
1881  * we'd end up with false positives.
1882  */
1883 static void kmemleak_clear(void)
1884 {
1885         struct kmemleak_object *object;
1886
1887         rcu_read_lock();
1888         list_for_each_entry_rcu(object, &object_list, object_list) {
1889                 raw_spin_lock_irq(&object->lock);
1890                 if ((object->flags & OBJECT_REPORTED) &&
1891                     unreferenced_object(object))
1892                         __paint_it(object, KMEMLEAK_GREY);
1893                 raw_spin_unlock_irq(&object->lock);
1894         }
1895         rcu_read_unlock();
1896
1897         kmemleak_found_leaks = false;
1898 }
1899
1900 static void __kmemleak_do_cleanup(void);
1901
1902 /*
1903  * File write operation to configure kmemleak at run-time. The following
1904  * commands can be written to the /sys/kernel/debug/kmemleak file:
1905  *   off        - disable kmemleak (irreversible)
1906  *   stack=on   - enable the task stacks scanning
1907  *   stack=off  - disable the tasks stacks scanning
1908  *   scan=on    - start the automatic memory scanning thread
1909  *   scan=off   - stop the automatic memory scanning thread
1910  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1911  *                disable it)
1912  *   scan       - trigger a memory scan
1913  *   clear      - mark all current reported unreferenced kmemleak objects as
1914  *                grey to ignore printing them, or free all kmemleak objects
1915  *                if kmemleak has been disabled.
1916  *   dump=...   - dump information about the object found at the given address
1917  */
1918 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1919                               size_t size, loff_t *ppos)
1920 {
1921         char buf[64];
1922         int buf_size;
1923         int ret;
1924
1925         buf_size = min(size, (sizeof(buf) - 1));
1926         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1927                 return -EFAULT;
1928         buf[buf_size] = 0;
1929
1930         ret = mutex_lock_interruptible(&scan_mutex);
1931         if (ret < 0)
1932                 return ret;
1933
1934         if (strncmp(buf, "clear", 5) == 0) {
1935                 if (kmemleak_enabled)
1936                         kmemleak_clear();
1937                 else
1938                         __kmemleak_do_cleanup();
1939                 goto out;
1940         }
1941
1942         if (!kmemleak_enabled) {
1943                 ret = -EPERM;
1944                 goto out;
1945         }
1946
1947         if (strncmp(buf, "off", 3) == 0)
1948                 kmemleak_disable();
1949         else if (strncmp(buf, "stack=on", 8) == 0)
1950                 kmemleak_stack_scan = 1;
1951         else if (strncmp(buf, "stack=off", 9) == 0)
1952                 kmemleak_stack_scan = 0;
1953         else if (strncmp(buf, "scan=on", 7) == 0)
1954                 start_scan_thread();
1955         else if (strncmp(buf, "scan=off", 8) == 0)
1956                 stop_scan_thread();
1957         else if (strncmp(buf, "scan=", 5) == 0) {
1958                 unsigned secs;
1959                 unsigned long msecs;
1960
1961                 ret = kstrtouint(buf + 5, 0, &secs);
1962                 if (ret < 0)
1963                         goto out;
1964
1965                 msecs = secs * MSEC_PER_SEC;
1966                 if (msecs > UINT_MAX)
1967                         msecs = UINT_MAX;
1968
1969                 stop_scan_thread();
1970                 if (msecs) {
1971                         WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1972                         start_scan_thread();
1973                 }
1974         } else if (strncmp(buf, "scan", 4) == 0)
1975                 kmemleak_scan();
1976         else if (strncmp(buf, "dump=", 5) == 0)
1977                 ret = dump_str_object_info(buf + 5);
1978         else
1979                 ret = -EINVAL;
1980
1981 out:
1982         mutex_unlock(&scan_mutex);
1983         if (ret < 0)
1984                 return ret;
1985
1986         /* ignore the rest of the buffer, only one command at a time */
1987         *ppos += size;
1988         return size;
1989 }
1990
1991 static const struct file_operations kmemleak_fops = {
1992         .owner          = THIS_MODULE,
1993         .open           = kmemleak_open,
1994         .read           = seq_read,
1995         .write          = kmemleak_write,
1996         .llseek         = seq_lseek,
1997         .release        = seq_release,
1998 };
1999
2000 static void __kmemleak_do_cleanup(void)
2001 {
2002         struct kmemleak_object *object, *tmp;
2003
2004         /*
2005          * Kmemleak has already been disabled, no need for RCU list traversal
2006          * or kmemleak_lock held.
2007          */
2008         list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2009                 __remove_object(object);
2010                 __delete_object(object);
2011         }
2012 }
2013
2014 /*
2015  * Stop the memory scanning thread and free the kmemleak internal objects if
2016  * no previous scan thread (otherwise, kmemleak may still have some useful
2017  * information on memory leaks).
2018  */
2019 static void kmemleak_do_cleanup(struct work_struct *work)
2020 {
2021         stop_scan_thread();
2022
2023         mutex_lock(&scan_mutex);
2024         /*
2025          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2026          * longer track object freeing. Ordering of the scan thread stopping and
2027          * the memory accesses below is guaranteed by the kthread_stop()
2028          * function.
2029          */
2030         kmemleak_free_enabled = 0;
2031         mutex_unlock(&scan_mutex);
2032
2033         if (!kmemleak_found_leaks)
2034                 __kmemleak_do_cleanup();
2035         else
2036                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2037 }
2038
2039 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2040
2041 /*
2042  * Disable kmemleak. No memory allocation/freeing will be traced once this
2043  * function is called. Disabling kmemleak is an irreversible operation.
2044  */
2045 static void kmemleak_disable(void)
2046 {
2047         /* atomically check whether it was already invoked */
2048         if (cmpxchg(&kmemleak_error, 0, 1))
2049                 return;
2050
2051         /* stop any memory operation tracing */
2052         kmemleak_enabled = 0;
2053
2054         /* check whether it is too early for a kernel thread */
2055         if (kmemleak_initialized)
2056                 schedule_work(&cleanup_work);
2057         else
2058                 kmemleak_free_enabled = 0;
2059
2060         pr_info("Kernel memory leak detector disabled\n");
2061 }
2062
2063 /*
2064  * Allow boot-time kmemleak disabling (enabled by default).
2065  */
2066 static int __init kmemleak_boot_config(char *str)
2067 {
2068         if (!str)
2069                 return -EINVAL;
2070         if (strcmp(str, "off") == 0)
2071                 kmemleak_disable();
2072         else if (strcmp(str, "on") == 0) {
2073                 kmemleak_skip_disable = 1;
2074                 stack_depot_request_early_init();
2075         }
2076         else
2077                 return -EINVAL;
2078         return 0;
2079 }
2080 early_param("kmemleak", kmemleak_boot_config);
2081
2082 /*
2083  * Kmemleak initialization.
2084  */
2085 void __init kmemleak_init(void)
2086 {
2087 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2088         if (!kmemleak_skip_disable) {
2089                 kmemleak_disable();
2090                 return;
2091         }
2092 #endif
2093
2094         if (kmemleak_error)
2095                 return;
2096
2097         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2098         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2099
2100         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2101         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2102
2103         /* register the data/bss sections */
2104         create_object((unsigned long)_sdata, _edata - _sdata,
2105                       KMEMLEAK_GREY, GFP_ATOMIC);
2106         create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2107                       KMEMLEAK_GREY, GFP_ATOMIC);
2108         /* only register .data..ro_after_init if not within .data */
2109         if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2110                 create_object((unsigned long)__start_ro_after_init,
2111                               __end_ro_after_init - __start_ro_after_init,
2112                               KMEMLEAK_GREY, GFP_ATOMIC);
2113 }
2114
2115 /*
2116  * Late initialization function.
2117  */
2118 static int __init kmemleak_late_init(void)
2119 {
2120         kmemleak_initialized = 1;
2121
2122         debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2123
2124         if (kmemleak_error) {
2125                 /*
2126                  * Some error occurred and kmemleak was disabled. There is a
2127                  * small chance that kmemleak_disable() was called immediately
2128                  * after setting kmemleak_initialized and we may end up with
2129                  * two clean-up threads but serialized by scan_mutex.
2130                  */
2131                 schedule_work(&cleanup_work);
2132                 return -ENOMEM;
2133         }
2134
2135         if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2136                 mutex_lock(&scan_mutex);
2137                 start_scan_thread();
2138                 mutex_unlock(&scan_mutex);
2139         }
2140
2141         pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2142                 mem_pool_free_count);
2143
2144         return 0;
2145 }
2146 late_initcall(kmemleak_late_init);