watchdog: pm8916_wdt: Handle watchdog enabled by bootloader
[platform/kernel/linux-starfive.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17  *   accesses to the object_tree_root. The object_list is the main list
18  *   holding the metadata (struct kmemleak_object) for the allocated memory
19  *   blocks. The object_tree_root is a red black tree used to look-up
20  *   metadata based on a pointer to the corresponding memory block.  The
21  *   kmemleak_object structures are added to the object_list and
22  *   object_tree_root in the create_object() function called from the
23  *   kmemleak_alloc() callback and removed in delete_object() called from the
24  *   kmemleak_free() callback
25  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
26  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
27  *   that some members of this structure may be protected by other means
28  *   (atomic or kmemleak_lock). This lock is also held when scanning the
29  *   corresponding memory block to avoid the kernel freeing it via the
30  *   kmemleak_free() callback. This is less heavyweight than holding a global
31  *   lock like kmemleak_lock during scanning.
32  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
33  *   unreferenced objects at a time. The gray_list contains the objects which
34  *   are already referenced or marked as false positives and need to be
35  *   scanned. This list is only modified during a scanning episode when the
36  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
37  *   Note that the kmemleak_object.use_count is incremented when an object is
38  *   added to the gray_list and therefore cannot be freed. This mutex also
39  *   prevents multiple users of the "kmemleak" debugfs file together with
40  *   modifications to the memory scanning parameters including the scan_thread
41  *   pointer
42  *
43  * Locks and mutexes are acquired/nested in the following order:
44  *
45  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
46  *
47  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
48  * regions.
49  *
50  * The kmemleak_object structures have a use_count incremented or decremented
51  * using the get_object()/put_object() functions. When the use_count becomes
52  * 0, this count can no longer be incremented and put_object() schedules the
53  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
54  * function must be protected by rcu_read_lock() to avoid accessing a freed
55  * structure.
56  */
57
58 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
59
60 #include <linux/init.h>
61 #include <linux/kernel.h>
62 #include <linux/list.h>
63 #include <linux/sched/signal.h>
64 #include <linux/sched/task.h>
65 #include <linux/sched/task_stack.h>
66 #include <linux/jiffies.h>
67 #include <linux/delay.h>
68 #include <linux/export.h>
69 #include <linux/kthread.h>
70 #include <linux/rbtree.h>
71 #include <linux/fs.h>
72 #include <linux/debugfs.h>
73 #include <linux/seq_file.h>
74 #include <linux/cpumask.h>
75 #include <linux/spinlock.h>
76 #include <linux/module.h>
77 #include <linux/mutex.h>
78 #include <linux/rcupdate.h>
79 #include <linux/stacktrace.h>
80 #include <linux/cache.h>
81 #include <linux/percpu.h>
82 #include <linux/memblock.h>
83 #include <linux/pfn.h>
84 #include <linux/mmzone.h>
85 #include <linux/slab.h>
86 #include <linux/thread_info.h>
87 #include <linux/err.h>
88 #include <linux/uaccess.h>
89 #include <linux/string.h>
90 #include <linux/nodemask.h>
91 #include <linux/mm.h>
92 #include <linux/workqueue.h>
93 #include <linux/crc32.h>
94
95 #include <asm/sections.h>
96 #include <asm/processor.h>
97 #include <linux/atomic.h>
98
99 #include <linux/kasan.h>
100 #include <linux/kfence.h>
101 #include <linux/kmemleak.h>
102 #include <linux/memory_hotplug.h>
103
104 /*
105  * Kmemleak configuration and common defines.
106  */
107 #define MAX_TRACE               16      /* stack trace length */
108 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
109 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
110 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
111 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
112
113 #define BYTES_PER_POINTER       sizeof(void *)
114
115 /* GFP bitmask for kmemleak internal allocations */
116 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
117                                            __GFP_NOLOCKDEP)) | \
118                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
119                                  __GFP_NOWARN)
120
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123         struct hlist_node node;
124         unsigned long start;
125         size_t size;
126 };
127
128 #define KMEMLEAK_GREY   0
129 #define KMEMLEAK_BLACK  -1
130
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * rb_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140         raw_spinlock_t lock;
141         unsigned int flags;             /* object status flags */
142         struct list_head object_list;
143         struct list_head gray_list;
144         struct rb_node rb_node;
145         struct rcu_head rcu;            /* object_list lockless traversal */
146         /* object usage count; object freed when use_count == 0 */
147         atomic_t use_count;
148         unsigned long pointer;
149         size_t size;
150         /* pass surplus references to this pointer */
151         unsigned long excess_ref;
152         /* minimum number of a pointers found before it is considered leak */
153         int min_count;
154         /* the total number of pointers found pointing to this object */
155         int count;
156         /* checksum for detecting modified objects */
157         u32 checksum;
158         /* memory ranges to be scanned inside an object (empty for all) */
159         struct hlist_head area_list;
160         unsigned long trace[MAX_TRACE];
161         unsigned int trace_len;
162         unsigned long jiffies;          /* creation timestamp */
163         pid_t pid;                      /* pid of the current task */
164         char comm[TASK_COMM_LEN];       /* executable name */
165 };
166
167 /* flag representing the memory block allocation status */
168 #define OBJECT_ALLOCATED        (1 << 0)
169 /* flag set after the first reporting of an unreference object */
170 #define OBJECT_REPORTED         (1 << 1)
171 /* flag set to not scan the object */
172 #define OBJECT_NO_SCAN          (1 << 2)
173 /* flag set to fully scan the object when scan_area allocation failed */
174 #define OBJECT_FULL_SCAN        (1 << 3)
175
176 #define HEX_PREFIX              "    "
177 /* number of bytes to print per line; must be 16 or 32 */
178 #define HEX_ROW_SIZE            16
179 /* number of bytes to print at a time (1, 2, 4, 8) */
180 #define HEX_GROUP_SIZE          1
181 /* include ASCII after the hex output */
182 #define HEX_ASCII               1
183 /* max number of lines to be printed */
184 #define HEX_MAX_LINES           2
185
186 /* the list of all allocated objects */
187 static LIST_HEAD(object_list);
188 /* the list of gray-colored objects (see color_gray comment below) */
189 static LIST_HEAD(gray_list);
190 /* memory pool allocation */
191 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
192 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
193 static LIST_HEAD(mem_pool_free_list);
194 /* search tree for object boundaries */
195 static struct rb_root object_tree_root = RB_ROOT;
196 /* protecting the access to object_list and object_tree_root */
197 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
198
199 /* allocation caches for kmemleak internal data */
200 static struct kmem_cache *object_cache;
201 static struct kmem_cache *scan_area_cache;
202
203 /* set if tracing memory operations is enabled */
204 static int kmemleak_enabled = 1;
205 /* same as above but only for the kmemleak_free() callback */
206 static int kmemleak_free_enabled = 1;
207 /* set in the late_initcall if there were no errors */
208 static int kmemleak_initialized;
209 /* set if a kmemleak warning was issued */
210 static int kmemleak_warning;
211 /* set if a fatal kmemleak error has occurred */
212 static int kmemleak_error;
213
214 /* minimum and maximum address that may be valid pointers */
215 static unsigned long min_addr = ULONG_MAX;
216 static unsigned long max_addr;
217
218 static struct task_struct *scan_thread;
219 /* used to avoid reporting of recently allocated objects */
220 static unsigned long jiffies_min_age;
221 static unsigned long jiffies_last_scan;
222 /* delay between automatic memory scannings */
223 static unsigned long jiffies_scan_wait;
224 /* enables or disables the task stacks scanning */
225 static int kmemleak_stack_scan = 1;
226 /* protects the memory scanning, parameters and debug/kmemleak file access */
227 static DEFINE_MUTEX(scan_mutex);
228 /* setting kmemleak=on, will set this var, skipping the disable */
229 static int kmemleak_skip_disable;
230 /* If there are leaks that can be reported */
231 static bool kmemleak_found_leaks;
232
233 static bool kmemleak_verbose;
234 module_param_named(verbose, kmemleak_verbose, bool, 0600);
235
236 static void kmemleak_disable(void);
237
238 /*
239  * Print a warning and dump the stack trace.
240  */
241 #define kmemleak_warn(x...)     do {            \
242         pr_warn(x);                             \
243         dump_stack();                           \
244         kmemleak_warning = 1;                   \
245 } while (0)
246
247 /*
248  * Macro invoked when a serious kmemleak condition occurred and cannot be
249  * recovered from. Kmemleak will be disabled and further allocation/freeing
250  * tracing no longer available.
251  */
252 #define kmemleak_stop(x...)     do {    \
253         kmemleak_warn(x);               \
254         kmemleak_disable();             \
255 } while (0)
256
257 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
258         if (seq)                                        \
259                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
260         else                                            \
261                 pr_warn(fmt, ##__VA_ARGS__);            \
262 } while (0)
263
264 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
265                                  int rowsize, int groupsize, const void *buf,
266                                  size_t len, bool ascii)
267 {
268         if (seq)
269                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
270                              buf, len, ascii);
271         else
272                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
273                                rowsize, groupsize, buf, len, ascii);
274 }
275
276 /*
277  * Printing of the objects hex dump to the seq file. The number of lines to be
278  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
279  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
280  * with the object->lock held.
281  */
282 static void hex_dump_object(struct seq_file *seq,
283                             struct kmemleak_object *object)
284 {
285         const u8 *ptr = (const u8 *)object->pointer;
286         size_t len;
287
288         /* limit the number of lines to HEX_MAX_LINES */
289         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
290
291         warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
292         kasan_disable_current();
293         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
294                              HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
295         kasan_enable_current();
296 }
297
298 /*
299  * Object colors, encoded with count and min_count:
300  * - white - orphan object, not enough references to it (count < min_count)
301  * - gray  - not orphan, not marked as false positive (min_count == 0) or
302  *              sufficient references to it (count >= min_count)
303  * - black - ignore, it doesn't contain references (e.g. text section)
304  *              (min_count == -1). No function defined for this color.
305  * Newly created objects don't have any color assigned (object->count == -1)
306  * before the next memory scan when they become white.
307  */
308 static bool color_white(const struct kmemleak_object *object)
309 {
310         return object->count != KMEMLEAK_BLACK &&
311                 object->count < object->min_count;
312 }
313
314 static bool color_gray(const struct kmemleak_object *object)
315 {
316         return object->min_count != KMEMLEAK_BLACK &&
317                 object->count >= object->min_count;
318 }
319
320 /*
321  * Objects are considered unreferenced only if their color is white, they have
322  * not be deleted and have a minimum age to avoid false positives caused by
323  * pointers temporarily stored in CPU registers.
324  */
325 static bool unreferenced_object(struct kmemleak_object *object)
326 {
327         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
328                 time_before_eq(object->jiffies + jiffies_min_age,
329                                jiffies_last_scan);
330 }
331
332 /*
333  * Printing of the unreferenced objects information to the seq file. The
334  * print_unreferenced function must be called with the object->lock held.
335  */
336 static void print_unreferenced(struct seq_file *seq,
337                                struct kmemleak_object *object)
338 {
339         int i;
340         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
341
342         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
343                    object->pointer, object->size);
344         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
345                    object->comm, object->pid, object->jiffies,
346                    msecs_age / 1000, msecs_age % 1000);
347         hex_dump_object(seq, object);
348         warn_or_seq_printf(seq, "  backtrace:\n");
349
350         for (i = 0; i < object->trace_len; i++) {
351                 void *ptr = (void *)object->trace[i];
352                 warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
353         }
354 }
355
356 /*
357  * Print the kmemleak_object information. This function is used mainly for
358  * debugging special cases when kmemleak operations. It must be called with
359  * the object->lock held.
360  */
361 static void dump_object_info(struct kmemleak_object *object)
362 {
363         pr_notice("Object 0x%08lx (size %zu):\n",
364                   object->pointer, object->size);
365         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
366                   object->comm, object->pid, object->jiffies);
367         pr_notice("  min_count = %d\n", object->min_count);
368         pr_notice("  count = %d\n", object->count);
369         pr_notice("  flags = 0x%x\n", object->flags);
370         pr_notice("  checksum = %u\n", object->checksum);
371         pr_notice("  backtrace:\n");
372         stack_trace_print(object->trace, object->trace_len, 4);
373 }
374
375 /*
376  * Look-up a memory block metadata (kmemleak_object) in the object search
377  * tree based on a pointer value. If alias is 0, only values pointing to the
378  * beginning of the memory block are allowed. The kmemleak_lock must be held
379  * when calling this function.
380  */
381 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
382 {
383         struct rb_node *rb = object_tree_root.rb_node;
384         unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
385
386         while (rb) {
387                 struct kmemleak_object *object;
388                 unsigned long untagged_objp;
389
390                 object = rb_entry(rb, struct kmemleak_object, rb_node);
391                 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
392
393                 if (untagged_ptr < untagged_objp)
394                         rb = object->rb_node.rb_left;
395                 else if (untagged_objp + object->size <= untagged_ptr)
396                         rb = object->rb_node.rb_right;
397                 else if (untagged_objp == untagged_ptr || alias)
398                         return object;
399                 else {
400                         kmemleak_warn("Found object by alias at 0x%08lx\n",
401                                       ptr);
402                         dump_object_info(object);
403                         break;
404                 }
405         }
406         return NULL;
407 }
408
409 /*
410  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
411  * that once an object's use_count reached 0, the RCU freeing was already
412  * registered and the object should no longer be used. This function must be
413  * called under the protection of rcu_read_lock().
414  */
415 static int get_object(struct kmemleak_object *object)
416 {
417         return atomic_inc_not_zero(&object->use_count);
418 }
419
420 /*
421  * Memory pool allocation and freeing. kmemleak_lock must not be held.
422  */
423 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
424 {
425         unsigned long flags;
426         struct kmemleak_object *object;
427
428         /* try the slab allocator first */
429         if (object_cache) {
430                 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
431                 if (object)
432                         return object;
433         }
434
435         /* slab allocation failed, try the memory pool */
436         raw_spin_lock_irqsave(&kmemleak_lock, flags);
437         object = list_first_entry_or_null(&mem_pool_free_list,
438                                           typeof(*object), object_list);
439         if (object)
440                 list_del(&object->object_list);
441         else if (mem_pool_free_count)
442                 object = &mem_pool[--mem_pool_free_count];
443         else
444                 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
445         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
446
447         return object;
448 }
449
450 /*
451  * Return the object to either the slab allocator or the memory pool.
452  */
453 static void mem_pool_free(struct kmemleak_object *object)
454 {
455         unsigned long flags;
456
457         if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
458                 kmem_cache_free(object_cache, object);
459                 return;
460         }
461
462         /* add the object to the memory pool free list */
463         raw_spin_lock_irqsave(&kmemleak_lock, flags);
464         list_add(&object->object_list, &mem_pool_free_list);
465         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
466 }
467
468 /*
469  * RCU callback to free a kmemleak_object.
470  */
471 static void free_object_rcu(struct rcu_head *rcu)
472 {
473         struct hlist_node *tmp;
474         struct kmemleak_scan_area *area;
475         struct kmemleak_object *object =
476                 container_of(rcu, struct kmemleak_object, rcu);
477
478         /*
479          * Once use_count is 0 (guaranteed by put_object), there is no other
480          * code accessing this object, hence no need for locking.
481          */
482         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
483                 hlist_del(&area->node);
484                 kmem_cache_free(scan_area_cache, area);
485         }
486         mem_pool_free(object);
487 }
488
489 /*
490  * Decrement the object use_count. Once the count is 0, free the object using
491  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
492  * delete_object() path, the delayed RCU freeing ensures that there is no
493  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
494  * is also possible.
495  */
496 static void put_object(struct kmemleak_object *object)
497 {
498         if (!atomic_dec_and_test(&object->use_count))
499                 return;
500
501         /* should only get here after delete_object was called */
502         WARN_ON(object->flags & OBJECT_ALLOCATED);
503
504         /*
505          * It may be too early for the RCU callbacks, however, there is no
506          * concurrent object_list traversal when !object_cache and all objects
507          * came from the memory pool. Free the object directly.
508          */
509         if (object_cache)
510                 call_rcu(&object->rcu, free_object_rcu);
511         else
512                 free_object_rcu(&object->rcu);
513 }
514
515 /*
516  * Look up an object in the object search tree and increase its use_count.
517  */
518 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
519 {
520         unsigned long flags;
521         struct kmemleak_object *object;
522
523         rcu_read_lock();
524         raw_spin_lock_irqsave(&kmemleak_lock, flags);
525         object = lookup_object(ptr, alias);
526         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
527
528         /* check whether the object is still available */
529         if (object && !get_object(object))
530                 object = NULL;
531         rcu_read_unlock();
532
533         return object;
534 }
535
536 /*
537  * Remove an object from the object_tree_root and object_list. Must be called
538  * with the kmemleak_lock held _if_ kmemleak is still enabled.
539  */
540 static void __remove_object(struct kmemleak_object *object)
541 {
542         rb_erase(&object->rb_node, &object_tree_root);
543         list_del_rcu(&object->object_list);
544 }
545
546 /*
547  * Look up an object in the object search tree and remove it from both
548  * object_tree_root and object_list. The returned object's use_count should be
549  * at least 1, as initially set by create_object().
550  */
551 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
552 {
553         unsigned long flags;
554         struct kmemleak_object *object;
555
556         raw_spin_lock_irqsave(&kmemleak_lock, flags);
557         object = lookup_object(ptr, alias);
558         if (object)
559                 __remove_object(object);
560         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
561
562         return object;
563 }
564
565 /*
566  * Save stack trace to the given array of MAX_TRACE size.
567  */
568 static int __save_stack_trace(unsigned long *trace)
569 {
570         return stack_trace_save(trace, MAX_TRACE, 2);
571 }
572
573 /*
574  * Create the metadata (struct kmemleak_object) corresponding to an allocated
575  * memory block and add it to the object_list and object_tree_root.
576  */
577 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
578                                              int min_count, gfp_t gfp)
579 {
580         unsigned long flags;
581         struct kmemleak_object *object, *parent;
582         struct rb_node **link, *rb_parent;
583         unsigned long untagged_ptr;
584         unsigned long untagged_objp;
585
586         object = mem_pool_alloc(gfp);
587         if (!object) {
588                 pr_warn("Cannot allocate a kmemleak_object structure\n");
589                 kmemleak_disable();
590                 return NULL;
591         }
592
593         INIT_LIST_HEAD(&object->object_list);
594         INIT_LIST_HEAD(&object->gray_list);
595         INIT_HLIST_HEAD(&object->area_list);
596         raw_spin_lock_init(&object->lock);
597         atomic_set(&object->use_count, 1);
598         object->flags = OBJECT_ALLOCATED;
599         object->pointer = ptr;
600         object->size = kfence_ksize((void *)ptr) ?: size;
601         object->excess_ref = 0;
602         object->min_count = min_count;
603         object->count = 0;                      /* white color initially */
604         object->jiffies = jiffies;
605         object->checksum = 0;
606
607         /* task information */
608         if (in_hardirq()) {
609                 object->pid = 0;
610                 strncpy(object->comm, "hardirq", sizeof(object->comm));
611         } else if (in_serving_softirq()) {
612                 object->pid = 0;
613                 strncpy(object->comm, "softirq", sizeof(object->comm));
614         } else {
615                 object->pid = current->pid;
616                 /*
617                  * There is a small chance of a race with set_task_comm(),
618                  * however using get_task_comm() here may cause locking
619                  * dependency issues with current->alloc_lock. In the worst
620                  * case, the command line is not correct.
621                  */
622                 strncpy(object->comm, current->comm, sizeof(object->comm));
623         }
624
625         /* kernel backtrace */
626         object->trace_len = __save_stack_trace(object->trace);
627
628         raw_spin_lock_irqsave(&kmemleak_lock, flags);
629
630         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
631         min_addr = min(min_addr, untagged_ptr);
632         max_addr = max(max_addr, untagged_ptr + size);
633         link = &object_tree_root.rb_node;
634         rb_parent = NULL;
635         while (*link) {
636                 rb_parent = *link;
637                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
638                 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
639                 if (untagged_ptr + size <= untagged_objp)
640                         link = &parent->rb_node.rb_left;
641                 else if (untagged_objp + parent->size <= untagged_ptr)
642                         link = &parent->rb_node.rb_right;
643                 else {
644                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
645                                       ptr);
646                         /*
647                          * No need for parent->lock here since "parent" cannot
648                          * be freed while the kmemleak_lock is held.
649                          */
650                         dump_object_info(parent);
651                         kmem_cache_free(object_cache, object);
652                         object = NULL;
653                         goto out;
654                 }
655         }
656         rb_link_node(&object->rb_node, rb_parent, link);
657         rb_insert_color(&object->rb_node, &object_tree_root);
658
659         list_add_tail_rcu(&object->object_list, &object_list);
660 out:
661         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
662         return object;
663 }
664
665 /*
666  * Mark the object as not allocated and schedule RCU freeing via put_object().
667  */
668 static void __delete_object(struct kmemleak_object *object)
669 {
670         unsigned long flags;
671
672         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
673         WARN_ON(atomic_read(&object->use_count) < 1);
674
675         /*
676          * Locking here also ensures that the corresponding memory block
677          * cannot be freed when it is being scanned.
678          */
679         raw_spin_lock_irqsave(&object->lock, flags);
680         object->flags &= ~OBJECT_ALLOCATED;
681         raw_spin_unlock_irqrestore(&object->lock, flags);
682         put_object(object);
683 }
684
685 /*
686  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
687  * delete it.
688  */
689 static void delete_object_full(unsigned long ptr)
690 {
691         struct kmemleak_object *object;
692
693         object = find_and_remove_object(ptr, 0);
694         if (!object) {
695 #ifdef DEBUG
696                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
697                               ptr);
698 #endif
699                 return;
700         }
701         __delete_object(object);
702 }
703
704 /*
705  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
706  * delete it. If the memory block is partially freed, the function may create
707  * additional metadata for the remaining parts of the block.
708  */
709 static void delete_object_part(unsigned long ptr, size_t size)
710 {
711         struct kmemleak_object *object;
712         unsigned long start, end;
713
714         object = find_and_remove_object(ptr, 1);
715         if (!object) {
716 #ifdef DEBUG
717                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
718                               ptr, size);
719 #endif
720                 return;
721         }
722
723         /*
724          * Create one or two objects that may result from the memory block
725          * split. Note that partial freeing is only done by free_bootmem() and
726          * this happens before kmemleak_init() is called.
727          */
728         start = object->pointer;
729         end = object->pointer + object->size;
730         if (ptr > start)
731                 create_object(start, ptr - start, object->min_count,
732                               GFP_KERNEL);
733         if (ptr + size < end)
734                 create_object(ptr + size, end - ptr - size, object->min_count,
735                               GFP_KERNEL);
736
737         __delete_object(object);
738 }
739
740 static void __paint_it(struct kmemleak_object *object, int color)
741 {
742         object->min_count = color;
743         if (color == KMEMLEAK_BLACK)
744                 object->flags |= OBJECT_NO_SCAN;
745 }
746
747 static void paint_it(struct kmemleak_object *object, int color)
748 {
749         unsigned long flags;
750
751         raw_spin_lock_irqsave(&object->lock, flags);
752         __paint_it(object, color);
753         raw_spin_unlock_irqrestore(&object->lock, flags);
754 }
755
756 static void paint_ptr(unsigned long ptr, int color)
757 {
758         struct kmemleak_object *object;
759
760         object = find_and_get_object(ptr, 0);
761         if (!object) {
762                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
763                               ptr,
764                               (color == KMEMLEAK_GREY) ? "Grey" :
765                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
766                 return;
767         }
768         paint_it(object, color);
769         put_object(object);
770 }
771
772 /*
773  * Mark an object permanently as gray-colored so that it can no longer be
774  * reported as a leak. This is used in general to mark a false positive.
775  */
776 static void make_gray_object(unsigned long ptr)
777 {
778         paint_ptr(ptr, KMEMLEAK_GREY);
779 }
780
781 /*
782  * Mark the object as black-colored so that it is ignored from scans and
783  * reporting.
784  */
785 static void make_black_object(unsigned long ptr)
786 {
787         paint_ptr(ptr, KMEMLEAK_BLACK);
788 }
789
790 /*
791  * Add a scanning area to the object. If at least one such area is added,
792  * kmemleak will only scan these ranges rather than the whole memory block.
793  */
794 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
795 {
796         unsigned long flags;
797         struct kmemleak_object *object;
798         struct kmemleak_scan_area *area = NULL;
799         unsigned long untagged_ptr;
800         unsigned long untagged_objp;
801
802         object = find_and_get_object(ptr, 1);
803         if (!object) {
804                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
805                               ptr);
806                 return;
807         }
808
809         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
810         untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
811
812         if (scan_area_cache)
813                 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
814
815         raw_spin_lock_irqsave(&object->lock, flags);
816         if (!area) {
817                 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
818                 /* mark the object for full scan to avoid false positives */
819                 object->flags |= OBJECT_FULL_SCAN;
820                 goto out_unlock;
821         }
822         if (size == SIZE_MAX) {
823                 size = untagged_objp + object->size - untagged_ptr;
824         } else if (untagged_ptr + size > untagged_objp + object->size) {
825                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
826                 dump_object_info(object);
827                 kmem_cache_free(scan_area_cache, area);
828                 goto out_unlock;
829         }
830
831         INIT_HLIST_NODE(&area->node);
832         area->start = ptr;
833         area->size = size;
834
835         hlist_add_head(&area->node, &object->area_list);
836 out_unlock:
837         raw_spin_unlock_irqrestore(&object->lock, flags);
838         put_object(object);
839 }
840
841 /*
842  * Any surplus references (object already gray) to 'ptr' are passed to
843  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
844  * vm_struct may be used as an alternative reference to the vmalloc'ed object
845  * (see free_thread_stack()).
846  */
847 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
848 {
849         unsigned long flags;
850         struct kmemleak_object *object;
851
852         object = find_and_get_object(ptr, 0);
853         if (!object) {
854                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
855                               ptr);
856                 return;
857         }
858
859         raw_spin_lock_irqsave(&object->lock, flags);
860         object->excess_ref = excess_ref;
861         raw_spin_unlock_irqrestore(&object->lock, flags);
862         put_object(object);
863 }
864
865 /*
866  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
867  * pointer. Such object will not be scanned by kmemleak but references to it
868  * are searched.
869  */
870 static void object_no_scan(unsigned long ptr)
871 {
872         unsigned long flags;
873         struct kmemleak_object *object;
874
875         object = find_and_get_object(ptr, 0);
876         if (!object) {
877                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
878                 return;
879         }
880
881         raw_spin_lock_irqsave(&object->lock, flags);
882         object->flags |= OBJECT_NO_SCAN;
883         raw_spin_unlock_irqrestore(&object->lock, flags);
884         put_object(object);
885 }
886
887 /**
888  * kmemleak_alloc - register a newly allocated object
889  * @ptr:        pointer to beginning of the object
890  * @size:       size of the object
891  * @min_count:  minimum number of references to this object. If during memory
892  *              scanning a number of references less than @min_count is found,
893  *              the object is reported as a memory leak. If @min_count is 0,
894  *              the object is never reported as a leak. If @min_count is -1,
895  *              the object is ignored (not scanned and not reported as a leak)
896  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
897  *
898  * This function is called from the kernel allocators when a new object
899  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
900  */
901 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
902                           gfp_t gfp)
903 {
904         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
905
906         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
907                 create_object((unsigned long)ptr, size, min_count, gfp);
908 }
909 EXPORT_SYMBOL_GPL(kmemleak_alloc);
910
911 /**
912  * kmemleak_alloc_percpu - register a newly allocated __percpu object
913  * @ptr:        __percpu pointer to beginning of the object
914  * @size:       size of the object
915  * @gfp:        flags used for kmemleak internal memory allocations
916  *
917  * This function is called from the kernel percpu allocator when a new object
918  * (memory block) is allocated (alloc_percpu).
919  */
920 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
921                                  gfp_t gfp)
922 {
923         unsigned int cpu;
924
925         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
926
927         /*
928          * Percpu allocations are only scanned and not reported as leaks
929          * (min_count is set to 0).
930          */
931         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
932                 for_each_possible_cpu(cpu)
933                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
934                                       size, 0, gfp);
935 }
936 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
937
938 /**
939  * kmemleak_vmalloc - register a newly vmalloc'ed object
940  * @area:       pointer to vm_struct
941  * @size:       size of the object
942  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
943  *
944  * This function is called from the vmalloc() kernel allocator when a new
945  * object (memory block) is allocated.
946  */
947 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
948 {
949         pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
950
951         /*
952          * A min_count = 2 is needed because vm_struct contains a reference to
953          * the virtual address of the vmalloc'ed block.
954          */
955         if (kmemleak_enabled) {
956                 create_object((unsigned long)area->addr, size, 2, gfp);
957                 object_set_excess_ref((unsigned long)area,
958                                       (unsigned long)area->addr);
959         }
960 }
961 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
962
963 /**
964  * kmemleak_free - unregister a previously registered object
965  * @ptr:        pointer to beginning of the object
966  *
967  * This function is called from the kernel allocators when an object (memory
968  * block) is freed (kmem_cache_free, kfree, vfree etc.).
969  */
970 void __ref kmemleak_free(const void *ptr)
971 {
972         pr_debug("%s(0x%p)\n", __func__, ptr);
973
974         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
975                 delete_object_full((unsigned long)ptr);
976 }
977 EXPORT_SYMBOL_GPL(kmemleak_free);
978
979 /**
980  * kmemleak_free_part - partially unregister a previously registered object
981  * @ptr:        pointer to the beginning or inside the object. This also
982  *              represents the start of the range to be freed
983  * @size:       size to be unregistered
984  *
985  * This function is called when only a part of a memory block is freed
986  * (usually from the bootmem allocator).
987  */
988 void __ref kmemleak_free_part(const void *ptr, size_t size)
989 {
990         pr_debug("%s(0x%p)\n", __func__, ptr);
991
992         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
993                 delete_object_part((unsigned long)ptr, size);
994 }
995 EXPORT_SYMBOL_GPL(kmemleak_free_part);
996
997 /**
998  * kmemleak_free_percpu - unregister a previously registered __percpu object
999  * @ptr:        __percpu pointer to beginning of the object
1000  *
1001  * This function is called from the kernel percpu allocator when an object
1002  * (memory block) is freed (free_percpu).
1003  */
1004 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1005 {
1006         unsigned int cpu;
1007
1008         pr_debug("%s(0x%p)\n", __func__, ptr);
1009
1010         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1011                 for_each_possible_cpu(cpu)
1012                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1013                                                                       cpu));
1014 }
1015 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1016
1017 /**
1018  * kmemleak_update_trace - update object allocation stack trace
1019  * @ptr:        pointer to beginning of the object
1020  *
1021  * Override the object allocation stack trace for cases where the actual
1022  * allocation place is not always useful.
1023  */
1024 void __ref kmemleak_update_trace(const void *ptr)
1025 {
1026         struct kmemleak_object *object;
1027         unsigned long flags;
1028
1029         pr_debug("%s(0x%p)\n", __func__, ptr);
1030
1031         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1032                 return;
1033
1034         object = find_and_get_object((unsigned long)ptr, 1);
1035         if (!object) {
1036 #ifdef DEBUG
1037                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1038                               ptr);
1039 #endif
1040                 return;
1041         }
1042
1043         raw_spin_lock_irqsave(&object->lock, flags);
1044         object->trace_len = __save_stack_trace(object->trace);
1045         raw_spin_unlock_irqrestore(&object->lock, flags);
1046
1047         put_object(object);
1048 }
1049 EXPORT_SYMBOL(kmemleak_update_trace);
1050
1051 /**
1052  * kmemleak_not_leak - mark an allocated object as false positive
1053  * @ptr:        pointer to beginning of the object
1054  *
1055  * Calling this function on an object will cause the memory block to no longer
1056  * be reported as leak and always be scanned.
1057  */
1058 void __ref kmemleak_not_leak(const void *ptr)
1059 {
1060         pr_debug("%s(0x%p)\n", __func__, ptr);
1061
1062         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1063                 make_gray_object((unsigned long)ptr);
1064 }
1065 EXPORT_SYMBOL(kmemleak_not_leak);
1066
1067 /**
1068  * kmemleak_ignore - ignore an allocated object
1069  * @ptr:        pointer to beginning of the object
1070  *
1071  * Calling this function on an object will cause the memory block to be
1072  * ignored (not scanned and not reported as a leak). This is usually done when
1073  * it is known that the corresponding block is not a leak and does not contain
1074  * any references to other allocated memory blocks.
1075  */
1076 void __ref kmemleak_ignore(const void *ptr)
1077 {
1078         pr_debug("%s(0x%p)\n", __func__, ptr);
1079
1080         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1081                 make_black_object((unsigned long)ptr);
1082 }
1083 EXPORT_SYMBOL(kmemleak_ignore);
1084
1085 /**
1086  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1087  * @ptr:        pointer to beginning or inside the object. This also
1088  *              represents the start of the scan area
1089  * @size:       size of the scan area
1090  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1091  *
1092  * This function is used when it is known that only certain parts of an object
1093  * contain references to other objects. Kmemleak will only scan these areas
1094  * reducing the number false negatives.
1095  */
1096 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1097 {
1098         pr_debug("%s(0x%p)\n", __func__, ptr);
1099
1100         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1101                 add_scan_area((unsigned long)ptr, size, gfp);
1102 }
1103 EXPORT_SYMBOL(kmemleak_scan_area);
1104
1105 /**
1106  * kmemleak_no_scan - do not scan an allocated object
1107  * @ptr:        pointer to beginning of the object
1108  *
1109  * This function notifies kmemleak not to scan the given memory block. Useful
1110  * in situations where it is known that the given object does not contain any
1111  * references to other objects. Kmemleak will not scan such objects reducing
1112  * the number of false negatives.
1113  */
1114 void __ref kmemleak_no_scan(const void *ptr)
1115 {
1116         pr_debug("%s(0x%p)\n", __func__, ptr);
1117
1118         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1119                 object_no_scan((unsigned long)ptr);
1120 }
1121 EXPORT_SYMBOL(kmemleak_no_scan);
1122
1123 /**
1124  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1125  *                       address argument
1126  * @phys:       physical address of the object
1127  * @size:       size of the object
1128  * @min_count:  minimum number of references to this object.
1129  *              See kmemleak_alloc()
1130  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1131  */
1132 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1133                                gfp_t gfp)
1134 {
1135         if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn)
1136                 kmemleak_alloc(__va(phys), size, min_count, gfp);
1137 }
1138 EXPORT_SYMBOL(kmemleak_alloc_phys);
1139
1140 /**
1141  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1142  *                           physical address argument
1143  * @phys:       physical address if the beginning or inside an object. This
1144  *              also represents the start of the range to be freed
1145  * @size:       size to be unregistered
1146  */
1147 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1148 {
1149         if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn)
1150                 kmemleak_free_part(__va(phys), size);
1151 }
1152 EXPORT_SYMBOL(kmemleak_free_part_phys);
1153
1154 /**
1155  * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1156  *                          address argument
1157  * @phys:       physical address of the object
1158  */
1159 void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1160 {
1161         if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn)
1162                 kmemleak_not_leak(__va(phys));
1163 }
1164 EXPORT_SYMBOL(kmemleak_not_leak_phys);
1165
1166 /**
1167  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1168  *                        address argument
1169  * @phys:       physical address of the object
1170  */
1171 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1172 {
1173         if (PHYS_PFN(phys) >= min_low_pfn && PHYS_PFN(phys) < max_low_pfn)
1174                 kmemleak_ignore(__va(phys));
1175 }
1176 EXPORT_SYMBOL(kmemleak_ignore_phys);
1177
1178 /*
1179  * Update an object's checksum and return true if it was modified.
1180  */
1181 static bool update_checksum(struct kmemleak_object *object)
1182 {
1183         u32 old_csum = object->checksum;
1184
1185         kasan_disable_current();
1186         kcsan_disable_current();
1187         object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1188         kasan_enable_current();
1189         kcsan_enable_current();
1190
1191         return object->checksum != old_csum;
1192 }
1193
1194 /*
1195  * Update an object's references. object->lock must be held by the caller.
1196  */
1197 static void update_refs(struct kmemleak_object *object)
1198 {
1199         if (!color_white(object)) {
1200                 /* non-orphan, ignored or new */
1201                 return;
1202         }
1203
1204         /*
1205          * Increase the object's reference count (number of pointers to the
1206          * memory block). If this count reaches the required minimum, the
1207          * object's color will become gray and it will be added to the
1208          * gray_list.
1209          */
1210         object->count++;
1211         if (color_gray(object)) {
1212                 /* put_object() called when removing from gray_list */
1213                 WARN_ON(!get_object(object));
1214                 list_add_tail(&object->gray_list, &gray_list);
1215         }
1216 }
1217
1218 /*
1219  * Memory scanning is a long process and it needs to be interruptible. This
1220  * function checks whether such interrupt condition occurred.
1221  */
1222 static int scan_should_stop(void)
1223 {
1224         if (!kmemleak_enabled)
1225                 return 1;
1226
1227         /*
1228          * This function may be called from either process or kthread context,
1229          * hence the need to check for both stop conditions.
1230          */
1231         if (current->mm)
1232                 return signal_pending(current);
1233         else
1234                 return kthread_should_stop();
1235
1236         return 0;
1237 }
1238
1239 /*
1240  * Scan a memory block (exclusive range) for valid pointers and add those
1241  * found to the gray list.
1242  */
1243 static void scan_block(void *_start, void *_end,
1244                        struct kmemleak_object *scanned)
1245 {
1246         unsigned long *ptr;
1247         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1248         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1249         unsigned long flags;
1250         unsigned long untagged_ptr;
1251
1252         raw_spin_lock_irqsave(&kmemleak_lock, flags);
1253         for (ptr = start; ptr < end; ptr++) {
1254                 struct kmemleak_object *object;
1255                 unsigned long pointer;
1256                 unsigned long excess_ref;
1257
1258                 if (scan_should_stop())
1259                         break;
1260
1261                 kasan_disable_current();
1262                 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1263                 kasan_enable_current();
1264
1265                 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1266                 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1267                         continue;
1268
1269                 /*
1270                  * No need for get_object() here since we hold kmemleak_lock.
1271                  * object->use_count cannot be dropped to 0 while the object
1272                  * is still present in object_tree_root and object_list
1273                  * (with updates protected by kmemleak_lock).
1274                  */
1275                 object = lookup_object(pointer, 1);
1276                 if (!object)
1277                         continue;
1278                 if (object == scanned)
1279                         /* self referenced, ignore */
1280                         continue;
1281
1282                 /*
1283                  * Avoid the lockdep recursive warning on object->lock being
1284                  * previously acquired in scan_object(). These locks are
1285                  * enclosed by scan_mutex.
1286                  */
1287                 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1288                 /* only pass surplus references (object already gray) */
1289                 if (color_gray(object)) {
1290                         excess_ref = object->excess_ref;
1291                         /* no need for update_refs() if object already gray */
1292                 } else {
1293                         excess_ref = 0;
1294                         update_refs(object);
1295                 }
1296                 raw_spin_unlock(&object->lock);
1297
1298                 if (excess_ref) {
1299                         object = lookup_object(excess_ref, 0);
1300                         if (!object)
1301                                 continue;
1302                         if (object == scanned)
1303                                 /* circular reference, ignore */
1304                                 continue;
1305                         raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1306                         update_refs(object);
1307                         raw_spin_unlock(&object->lock);
1308                 }
1309         }
1310         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1311 }
1312
1313 /*
1314  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1315  */
1316 #ifdef CONFIG_SMP
1317 static void scan_large_block(void *start, void *end)
1318 {
1319         void *next;
1320
1321         while (start < end) {
1322                 next = min(start + MAX_SCAN_SIZE, end);
1323                 scan_block(start, next, NULL);
1324                 start = next;
1325                 cond_resched();
1326         }
1327 }
1328 #endif
1329
1330 /*
1331  * Scan a memory block corresponding to a kmemleak_object. A condition is
1332  * that object->use_count >= 1.
1333  */
1334 static void scan_object(struct kmemleak_object *object)
1335 {
1336         struct kmemleak_scan_area *area;
1337         unsigned long flags;
1338
1339         /*
1340          * Once the object->lock is acquired, the corresponding memory block
1341          * cannot be freed (the same lock is acquired in delete_object).
1342          */
1343         raw_spin_lock_irqsave(&object->lock, flags);
1344         if (object->flags & OBJECT_NO_SCAN)
1345                 goto out;
1346         if (!(object->flags & OBJECT_ALLOCATED))
1347                 /* already freed object */
1348                 goto out;
1349         if (hlist_empty(&object->area_list) ||
1350             object->flags & OBJECT_FULL_SCAN) {
1351                 void *start = (void *)object->pointer;
1352                 void *end = (void *)(object->pointer + object->size);
1353                 void *next;
1354
1355                 do {
1356                         next = min(start + MAX_SCAN_SIZE, end);
1357                         scan_block(start, next, object);
1358
1359                         start = next;
1360                         if (start >= end)
1361                                 break;
1362
1363                         raw_spin_unlock_irqrestore(&object->lock, flags);
1364                         cond_resched();
1365                         raw_spin_lock_irqsave(&object->lock, flags);
1366                 } while (object->flags & OBJECT_ALLOCATED);
1367         } else
1368                 hlist_for_each_entry(area, &object->area_list, node)
1369                         scan_block((void *)area->start,
1370                                    (void *)(area->start + area->size),
1371                                    object);
1372 out:
1373         raw_spin_unlock_irqrestore(&object->lock, flags);
1374 }
1375
1376 /*
1377  * Scan the objects already referenced (gray objects). More objects will be
1378  * referenced and, if there are no memory leaks, all the objects are scanned.
1379  */
1380 static void scan_gray_list(void)
1381 {
1382         struct kmemleak_object *object, *tmp;
1383
1384         /*
1385          * The list traversal is safe for both tail additions and removals
1386          * from inside the loop. The kmemleak objects cannot be freed from
1387          * outside the loop because their use_count was incremented.
1388          */
1389         object = list_entry(gray_list.next, typeof(*object), gray_list);
1390         while (&object->gray_list != &gray_list) {
1391                 cond_resched();
1392
1393                 /* may add new objects to the list */
1394                 if (!scan_should_stop())
1395                         scan_object(object);
1396
1397                 tmp = list_entry(object->gray_list.next, typeof(*object),
1398                                  gray_list);
1399
1400                 /* remove the object from the list and release it */
1401                 list_del(&object->gray_list);
1402                 put_object(object);
1403
1404                 object = tmp;
1405         }
1406         WARN_ON(!list_empty(&gray_list));
1407 }
1408
1409 /*
1410  * Scan data sections and all the referenced memory blocks allocated via the
1411  * kernel's standard allocators. This function must be called with the
1412  * scan_mutex held.
1413  */
1414 static void kmemleak_scan(void)
1415 {
1416         unsigned long flags;
1417         struct kmemleak_object *object;
1418         struct zone *zone;
1419         int __maybe_unused i;
1420         int new_leaks = 0;
1421
1422         jiffies_last_scan = jiffies;
1423
1424         /* prepare the kmemleak_object's */
1425         rcu_read_lock();
1426         list_for_each_entry_rcu(object, &object_list, object_list) {
1427                 raw_spin_lock_irqsave(&object->lock, flags);
1428 #ifdef DEBUG
1429                 /*
1430                  * With a few exceptions there should be a maximum of
1431                  * 1 reference to any object at this point.
1432                  */
1433                 if (atomic_read(&object->use_count) > 1) {
1434                         pr_debug("object->use_count = %d\n",
1435                                  atomic_read(&object->use_count));
1436                         dump_object_info(object);
1437                 }
1438 #endif
1439                 /* reset the reference count (whiten the object) */
1440                 object->count = 0;
1441                 if (color_gray(object) && get_object(object))
1442                         list_add_tail(&object->gray_list, &gray_list);
1443
1444                 raw_spin_unlock_irqrestore(&object->lock, flags);
1445         }
1446         rcu_read_unlock();
1447
1448 #ifdef CONFIG_SMP
1449         /* per-cpu sections scanning */
1450         for_each_possible_cpu(i)
1451                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1452                                  __per_cpu_end + per_cpu_offset(i));
1453 #endif
1454
1455         /*
1456          * Struct page scanning for each node.
1457          */
1458         get_online_mems();
1459         for_each_populated_zone(zone) {
1460                 unsigned long start_pfn = zone->zone_start_pfn;
1461                 unsigned long end_pfn = zone_end_pfn(zone);
1462                 unsigned long pfn;
1463
1464                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1465                         struct page *page = pfn_to_online_page(pfn);
1466
1467                         if (!page)
1468                                 continue;
1469
1470                         /* only scan pages belonging to this zone */
1471                         if (page_zone(page) != zone)
1472                                 continue;
1473                         /* only scan if page is in use */
1474                         if (page_count(page) == 0)
1475                                 continue;
1476                         scan_block(page, page + 1, NULL);
1477                         if (!(pfn & 63))
1478                                 cond_resched();
1479                 }
1480         }
1481         put_online_mems();
1482
1483         /*
1484          * Scanning the task stacks (may introduce false negatives).
1485          */
1486         if (kmemleak_stack_scan) {
1487                 struct task_struct *p, *g;
1488
1489                 rcu_read_lock();
1490                 for_each_process_thread(g, p) {
1491                         void *stack = try_get_task_stack(p);
1492                         if (stack) {
1493                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1494                                 put_task_stack(p);
1495                         }
1496                 }
1497                 rcu_read_unlock();
1498         }
1499
1500         /*
1501          * Scan the objects already referenced from the sections scanned
1502          * above.
1503          */
1504         scan_gray_list();
1505
1506         /*
1507          * Check for new or unreferenced objects modified since the previous
1508          * scan and color them gray until the next scan.
1509          */
1510         rcu_read_lock();
1511         list_for_each_entry_rcu(object, &object_list, object_list) {
1512                 raw_spin_lock_irqsave(&object->lock, flags);
1513                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1514                     && update_checksum(object) && get_object(object)) {
1515                         /* color it gray temporarily */
1516                         object->count = object->min_count;
1517                         list_add_tail(&object->gray_list, &gray_list);
1518                 }
1519                 raw_spin_unlock_irqrestore(&object->lock, flags);
1520         }
1521         rcu_read_unlock();
1522
1523         /*
1524          * Re-scan the gray list for modified unreferenced objects.
1525          */
1526         scan_gray_list();
1527
1528         /*
1529          * If scanning was stopped do not report any new unreferenced objects.
1530          */
1531         if (scan_should_stop())
1532                 return;
1533
1534         /*
1535          * Scanning result reporting.
1536          */
1537         rcu_read_lock();
1538         list_for_each_entry_rcu(object, &object_list, object_list) {
1539                 raw_spin_lock_irqsave(&object->lock, flags);
1540                 if (unreferenced_object(object) &&
1541                     !(object->flags & OBJECT_REPORTED)) {
1542                         object->flags |= OBJECT_REPORTED;
1543
1544                         if (kmemleak_verbose)
1545                                 print_unreferenced(NULL, object);
1546
1547                         new_leaks++;
1548                 }
1549                 raw_spin_unlock_irqrestore(&object->lock, flags);
1550         }
1551         rcu_read_unlock();
1552
1553         if (new_leaks) {
1554                 kmemleak_found_leaks = true;
1555
1556                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1557                         new_leaks);
1558         }
1559
1560 }
1561
1562 /*
1563  * Thread function performing automatic memory scanning. Unreferenced objects
1564  * at the end of a memory scan are reported but only the first time.
1565  */
1566 static int kmemleak_scan_thread(void *arg)
1567 {
1568         static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1569
1570         pr_info("Automatic memory scanning thread started\n");
1571         set_user_nice(current, 10);
1572
1573         /*
1574          * Wait before the first scan to allow the system to fully initialize.
1575          */
1576         if (first_run) {
1577                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1578                 first_run = 0;
1579                 while (timeout && !kthread_should_stop())
1580                         timeout = schedule_timeout_interruptible(timeout);
1581         }
1582
1583         while (!kthread_should_stop()) {
1584                 signed long timeout = READ_ONCE(jiffies_scan_wait);
1585
1586                 mutex_lock(&scan_mutex);
1587                 kmemleak_scan();
1588                 mutex_unlock(&scan_mutex);
1589
1590                 /* wait before the next scan */
1591                 while (timeout && !kthread_should_stop())
1592                         timeout = schedule_timeout_interruptible(timeout);
1593         }
1594
1595         pr_info("Automatic memory scanning thread ended\n");
1596
1597         return 0;
1598 }
1599
1600 /*
1601  * Start the automatic memory scanning thread. This function must be called
1602  * with the scan_mutex held.
1603  */
1604 static void start_scan_thread(void)
1605 {
1606         if (scan_thread)
1607                 return;
1608         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1609         if (IS_ERR(scan_thread)) {
1610                 pr_warn("Failed to create the scan thread\n");
1611                 scan_thread = NULL;
1612         }
1613 }
1614
1615 /*
1616  * Stop the automatic memory scanning thread.
1617  */
1618 static void stop_scan_thread(void)
1619 {
1620         if (scan_thread) {
1621                 kthread_stop(scan_thread);
1622                 scan_thread = NULL;
1623         }
1624 }
1625
1626 /*
1627  * Iterate over the object_list and return the first valid object at or after
1628  * the required position with its use_count incremented. The function triggers
1629  * a memory scanning when the pos argument points to the first position.
1630  */
1631 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1632 {
1633         struct kmemleak_object *object;
1634         loff_t n = *pos;
1635         int err;
1636
1637         err = mutex_lock_interruptible(&scan_mutex);
1638         if (err < 0)
1639                 return ERR_PTR(err);
1640
1641         rcu_read_lock();
1642         list_for_each_entry_rcu(object, &object_list, object_list) {
1643                 if (n-- > 0)
1644                         continue;
1645                 if (get_object(object))
1646                         goto out;
1647         }
1648         object = NULL;
1649 out:
1650         return object;
1651 }
1652
1653 /*
1654  * Return the next object in the object_list. The function decrements the
1655  * use_count of the previous object and increases that of the next one.
1656  */
1657 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1658 {
1659         struct kmemleak_object *prev_obj = v;
1660         struct kmemleak_object *next_obj = NULL;
1661         struct kmemleak_object *obj = prev_obj;
1662
1663         ++(*pos);
1664
1665         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1666                 if (get_object(obj)) {
1667                         next_obj = obj;
1668                         break;
1669                 }
1670         }
1671
1672         put_object(prev_obj);
1673         return next_obj;
1674 }
1675
1676 /*
1677  * Decrement the use_count of the last object required, if any.
1678  */
1679 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1680 {
1681         if (!IS_ERR(v)) {
1682                 /*
1683                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1684                  * waiting was interrupted, so only release it if !IS_ERR.
1685                  */
1686                 rcu_read_unlock();
1687                 mutex_unlock(&scan_mutex);
1688                 if (v)
1689                         put_object(v);
1690         }
1691 }
1692
1693 /*
1694  * Print the information for an unreferenced object to the seq file.
1695  */
1696 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1697 {
1698         struct kmemleak_object *object = v;
1699         unsigned long flags;
1700
1701         raw_spin_lock_irqsave(&object->lock, flags);
1702         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1703                 print_unreferenced(seq, object);
1704         raw_spin_unlock_irqrestore(&object->lock, flags);
1705         return 0;
1706 }
1707
1708 static const struct seq_operations kmemleak_seq_ops = {
1709         .start = kmemleak_seq_start,
1710         .next  = kmemleak_seq_next,
1711         .stop  = kmemleak_seq_stop,
1712         .show  = kmemleak_seq_show,
1713 };
1714
1715 static int kmemleak_open(struct inode *inode, struct file *file)
1716 {
1717         return seq_open(file, &kmemleak_seq_ops);
1718 }
1719
1720 static int dump_str_object_info(const char *str)
1721 {
1722         unsigned long flags;
1723         struct kmemleak_object *object;
1724         unsigned long addr;
1725
1726         if (kstrtoul(str, 0, &addr))
1727                 return -EINVAL;
1728         object = find_and_get_object(addr, 0);
1729         if (!object) {
1730                 pr_info("Unknown object at 0x%08lx\n", addr);
1731                 return -EINVAL;
1732         }
1733
1734         raw_spin_lock_irqsave(&object->lock, flags);
1735         dump_object_info(object);
1736         raw_spin_unlock_irqrestore(&object->lock, flags);
1737
1738         put_object(object);
1739         return 0;
1740 }
1741
1742 /*
1743  * We use grey instead of black to ensure we can do future scans on the same
1744  * objects. If we did not do future scans these black objects could
1745  * potentially contain references to newly allocated objects in the future and
1746  * we'd end up with false positives.
1747  */
1748 static void kmemleak_clear(void)
1749 {
1750         struct kmemleak_object *object;
1751         unsigned long flags;
1752
1753         rcu_read_lock();
1754         list_for_each_entry_rcu(object, &object_list, object_list) {
1755                 raw_spin_lock_irqsave(&object->lock, flags);
1756                 if ((object->flags & OBJECT_REPORTED) &&
1757                     unreferenced_object(object))
1758                         __paint_it(object, KMEMLEAK_GREY);
1759                 raw_spin_unlock_irqrestore(&object->lock, flags);
1760         }
1761         rcu_read_unlock();
1762
1763         kmemleak_found_leaks = false;
1764 }
1765
1766 static void __kmemleak_do_cleanup(void);
1767
1768 /*
1769  * File write operation to configure kmemleak at run-time. The following
1770  * commands can be written to the /sys/kernel/debug/kmemleak file:
1771  *   off        - disable kmemleak (irreversible)
1772  *   stack=on   - enable the task stacks scanning
1773  *   stack=off  - disable the tasks stacks scanning
1774  *   scan=on    - start the automatic memory scanning thread
1775  *   scan=off   - stop the automatic memory scanning thread
1776  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1777  *                disable it)
1778  *   scan       - trigger a memory scan
1779  *   clear      - mark all current reported unreferenced kmemleak objects as
1780  *                grey to ignore printing them, or free all kmemleak objects
1781  *                if kmemleak has been disabled.
1782  *   dump=...   - dump information about the object found at the given address
1783  */
1784 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1785                               size_t size, loff_t *ppos)
1786 {
1787         char buf[64];
1788         int buf_size;
1789         int ret;
1790
1791         buf_size = min(size, (sizeof(buf) - 1));
1792         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1793                 return -EFAULT;
1794         buf[buf_size] = 0;
1795
1796         ret = mutex_lock_interruptible(&scan_mutex);
1797         if (ret < 0)
1798                 return ret;
1799
1800         if (strncmp(buf, "clear", 5) == 0) {
1801                 if (kmemleak_enabled)
1802                         kmemleak_clear();
1803                 else
1804                         __kmemleak_do_cleanup();
1805                 goto out;
1806         }
1807
1808         if (!kmemleak_enabled) {
1809                 ret = -EPERM;
1810                 goto out;
1811         }
1812
1813         if (strncmp(buf, "off", 3) == 0)
1814                 kmemleak_disable();
1815         else if (strncmp(buf, "stack=on", 8) == 0)
1816                 kmemleak_stack_scan = 1;
1817         else if (strncmp(buf, "stack=off", 9) == 0)
1818                 kmemleak_stack_scan = 0;
1819         else if (strncmp(buf, "scan=on", 7) == 0)
1820                 start_scan_thread();
1821         else if (strncmp(buf, "scan=off", 8) == 0)
1822                 stop_scan_thread();
1823         else if (strncmp(buf, "scan=", 5) == 0) {
1824                 unsigned secs;
1825                 unsigned long msecs;
1826
1827                 ret = kstrtouint(buf + 5, 0, &secs);
1828                 if (ret < 0)
1829                         goto out;
1830
1831                 msecs = secs * MSEC_PER_SEC;
1832                 if (msecs > UINT_MAX)
1833                         msecs = UINT_MAX;
1834
1835                 stop_scan_thread();
1836                 if (msecs) {
1837                         WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1838                         start_scan_thread();
1839                 }
1840         } else if (strncmp(buf, "scan", 4) == 0)
1841                 kmemleak_scan();
1842         else if (strncmp(buf, "dump=", 5) == 0)
1843                 ret = dump_str_object_info(buf + 5);
1844         else
1845                 ret = -EINVAL;
1846
1847 out:
1848         mutex_unlock(&scan_mutex);
1849         if (ret < 0)
1850                 return ret;
1851
1852         /* ignore the rest of the buffer, only one command at a time */
1853         *ppos += size;
1854         return size;
1855 }
1856
1857 static const struct file_operations kmemleak_fops = {
1858         .owner          = THIS_MODULE,
1859         .open           = kmemleak_open,
1860         .read           = seq_read,
1861         .write          = kmemleak_write,
1862         .llseek         = seq_lseek,
1863         .release        = seq_release,
1864 };
1865
1866 static void __kmemleak_do_cleanup(void)
1867 {
1868         struct kmemleak_object *object, *tmp;
1869
1870         /*
1871          * Kmemleak has already been disabled, no need for RCU list traversal
1872          * or kmemleak_lock held.
1873          */
1874         list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1875                 __remove_object(object);
1876                 __delete_object(object);
1877         }
1878 }
1879
1880 /*
1881  * Stop the memory scanning thread and free the kmemleak internal objects if
1882  * no previous scan thread (otherwise, kmemleak may still have some useful
1883  * information on memory leaks).
1884  */
1885 static void kmemleak_do_cleanup(struct work_struct *work)
1886 {
1887         stop_scan_thread();
1888
1889         mutex_lock(&scan_mutex);
1890         /*
1891          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1892          * longer track object freeing. Ordering of the scan thread stopping and
1893          * the memory accesses below is guaranteed by the kthread_stop()
1894          * function.
1895          */
1896         kmemleak_free_enabled = 0;
1897         mutex_unlock(&scan_mutex);
1898
1899         if (!kmemleak_found_leaks)
1900                 __kmemleak_do_cleanup();
1901         else
1902                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
1903 }
1904
1905 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1906
1907 /*
1908  * Disable kmemleak. No memory allocation/freeing will be traced once this
1909  * function is called. Disabling kmemleak is an irreversible operation.
1910  */
1911 static void kmemleak_disable(void)
1912 {
1913         /* atomically check whether it was already invoked */
1914         if (cmpxchg(&kmemleak_error, 0, 1))
1915                 return;
1916
1917         /* stop any memory operation tracing */
1918         kmemleak_enabled = 0;
1919
1920         /* check whether it is too early for a kernel thread */
1921         if (kmemleak_initialized)
1922                 schedule_work(&cleanup_work);
1923         else
1924                 kmemleak_free_enabled = 0;
1925
1926         pr_info("Kernel memory leak detector disabled\n");
1927 }
1928
1929 /*
1930  * Allow boot-time kmemleak disabling (enabled by default).
1931  */
1932 static int __init kmemleak_boot_config(char *str)
1933 {
1934         if (!str)
1935                 return -EINVAL;
1936         if (strcmp(str, "off") == 0)
1937                 kmemleak_disable();
1938         else if (strcmp(str, "on") == 0)
1939                 kmemleak_skip_disable = 1;
1940         else
1941                 return -EINVAL;
1942         return 0;
1943 }
1944 early_param("kmemleak", kmemleak_boot_config);
1945
1946 /*
1947  * Kmemleak initialization.
1948  */
1949 void __init kmemleak_init(void)
1950 {
1951 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1952         if (!kmemleak_skip_disable) {
1953                 kmemleak_disable();
1954                 return;
1955         }
1956 #endif
1957
1958         if (kmemleak_error)
1959                 return;
1960
1961         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1962         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1963
1964         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1965         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1966
1967         /* register the data/bss sections */
1968         create_object((unsigned long)_sdata, _edata - _sdata,
1969                       KMEMLEAK_GREY, GFP_ATOMIC);
1970         create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
1971                       KMEMLEAK_GREY, GFP_ATOMIC);
1972         /* only register .data..ro_after_init if not within .data */
1973         if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
1974                 create_object((unsigned long)__start_ro_after_init,
1975                               __end_ro_after_init - __start_ro_after_init,
1976                               KMEMLEAK_GREY, GFP_ATOMIC);
1977 }
1978
1979 /*
1980  * Late initialization function.
1981  */
1982 static int __init kmemleak_late_init(void)
1983 {
1984         kmemleak_initialized = 1;
1985
1986         debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
1987
1988         if (kmemleak_error) {
1989                 /*
1990                  * Some error occurred and kmemleak was disabled. There is a
1991                  * small chance that kmemleak_disable() was called immediately
1992                  * after setting kmemleak_initialized and we may end up with
1993                  * two clean-up threads but serialized by scan_mutex.
1994                  */
1995                 schedule_work(&cleanup_work);
1996                 return -ENOMEM;
1997         }
1998
1999         if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2000                 mutex_lock(&scan_mutex);
2001                 start_scan_thread();
2002                 mutex_unlock(&scan_mutex);
2003         }
2004
2005         pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2006                 mem_pool_free_count);
2007
2008         return 0;
2009 }
2010 late_initcall(kmemleak_late_init);