1 // SPDX-License-Identifier: GPL-2.0-only
5 * Copyright (C) 2008 ARM Limited
6 * Written by Catalin Marinas <catalin.marinas@arm.com>
8 * For more information on the algorithm and kmemleak usage, please see
9 * Documentation/dev-tools/kmemleak.rst.
14 * The following locks and mutexes are used by kmemleak:
16 * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17 * accesses to the object_tree_root (or object_phys_tree_root). The
18 * object_list is the main list holding the metadata (struct kmemleak_object)
19 * for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20 * are red black trees used to look-up metadata based on a pointer to the
21 * corresponding memory block. The object_phys_tree_root is for objects
22 * allocated with physical address. The kmemleak_object structures are
23 * added to the object_list and object_tree_root (or object_phys_tree_root)
24 * in the create_object() function called from the kmemleak_alloc() (or
25 * kmemleak_alloc_phys()) callback and removed in delete_object() called from
26 * the kmemleak_free() callback
27 * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28 * Accesses to the metadata (e.g. count) are protected by this lock. Note
29 * that some members of this structure may be protected by other means
30 * (atomic or kmemleak_lock). This lock is also held when scanning the
31 * corresponding memory block to avoid the kernel freeing it via the
32 * kmemleak_free() callback. This is less heavyweight than holding a global
33 * lock like kmemleak_lock during scanning.
34 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35 * unreferenced objects at a time. The gray_list contains the objects which
36 * are already referenced or marked as false positives and need to be
37 * scanned. This list is only modified during a scanning episode when the
38 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
39 * Note that the kmemleak_object.use_count is incremented when an object is
40 * added to the gray_list and therefore cannot be freed. This mutex also
41 * prevents multiple users of the "kmemleak" debugfs file together with
42 * modifications to the memory scanning parameters including the scan_thread
45 * Locks and mutexes are acquired/nested in the following order:
47 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
49 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
52 * The kmemleak_object structures have a use_count incremented or decremented
53 * using the get_object()/put_object() functions. When the use_count becomes
54 * 0, this count can no longer be incremented and put_object() schedules the
55 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56 * function must be protected by rcu_read_lock() to avoid accessing a freed
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62 #include <linux/init.h>
63 #include <linux/kernel.h>
64 #include <linux/list.h>
65 #include <linux/sched/signal.h>
66 #include <linux/sched/task.h>
67 #include <linux/sched/task_stack.h>
68 #include <linux/jiffies.h>
69 #include <linux/delay.h>
70 #include <linux/export.h>
71 #include <linux/kthread.h>
72 #include <linux/rbtree.h>
74 #include <linux/debugfs.h>
75 #include <linux/seq_file.h>
76 #include <linux/cpumask.h>
77 #include <linux/spinlock.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/rcupdate.h>
81 #include <linux/stacktrace.h>
82 #include <linux/stackdepot.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/memblock.h>
86 #include <linux/pfn.h>
87 #include <linux/mmzone.h>
88 #include <linux/slab.h>
89 #include <linux/thread_info.h>
90 #include <linux/err.h>
91 #include <linux/uaccess.h>
92 #include <linux/string.h>
93 #include <linux/nodemask.h>
95 #include <linux/workqueue.h>
96 #include <linux/crc32.h>
98 #include <asm/sections.h>
99 #include <asm/processor.h>
100 #include <linux/atomic.h>
102 #include <linux/kasan.h>
103 #include <linux/kfence.h>
104 #include <linux/kmemleak.h>
105 #include <linux/memory_hotplug.h>
108 * Kmemleak configuration and common defines.
110 #define MAX_TRACE 16 /* stack trace length */
111 #define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
112 #define SECS_FIRST_SCAN 60 /* delay before the first scan */
113 #define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
114 #define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
116 #define BYTES_PER_POINTER sizeof(void *)
118 /* GFP bitmask for kmemleak internal allocations */
119 #define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
120 __GFP_NOLOCKDEP)) | \
121 __GFP_NORETRY | __GFP_NOMEMALLOC | \
124 /* scanning area inside a memory block */
125 struct kmemleak_scan_area {
126 struct hlist_node node;
131 #define KMEMLEAK_GREY 0
132 #define KMEMLEAK_BLACK -1
135 * Structure holding the metadata for each allocated memory block.
136 * Modifications to such objects should be made while holding the
137 * object->lock. Insertions or deletions from object_list, gray_list or
138 * rb_node are already protected by the corresponding locks or mutex (see
139 * the notes on locking above). These objects are reference-counted
140 * (use_count) and freed using the RCU mechanism.
142 struct kmemleak_object {
144 unsigned int flags; /* object status flags */
145 struct list_head object_list;
146 struct list_head gray_list;
147 struct rb_node rb_node;
148 struct rcu_head rcu; /* object_list lockless traversal */
149 /* object usage count; object freed when use_count == 0 */
151 unsigned long pointer;
153 /* pass surplus references to this pointer */
154 unsigned long excess_ref;
155 /* minimum number of a pointers found before it is considered leak */
157 /* the total number of pointers found pointing to this object */
159 /* checksum for detecting modified objects */
161 /* memory ranges to be scanned inside an object (empty for all) */
162 struct hlist_head area_list;
163 depot_stack_handle_t trace_handle;
164 unsigned long jiffies; /* creation timestamp */
165 pid_t pid; /* pid of the current task */
166 char comm[TASK_COMM_LEN]; /* executable name */
169 /* flag representing the memory block allocation status */
170 #define OBJECT_ALLOCATED (1 << 0)
171 /* flag set after the first reporting of an unreference object */
172 #define OBJECT_REPORTED (1 << 1)
173 /* flag set to not scan the object */
174 #define OBJECT_NO_SCAN (1 << 2)
175 /* flag set to fully scan the object when scan_area allocation failed */
176 #define OBJECT_FULL_SCAN (1 << 3)
177 /* flag set for object allocated with physical address */
178 #define OBJECT_PHYS (1 << 4)
180 #define HEX_PREFIX " "
181 /* number of bytes to print per line; must be 16 or 32 */
182 #define HEX_ROW_SIZE 16
183 /* number of bytes to print at a time (1, 2, 4, 8) */
184 #define HEX_GROUP_SIZE 1
185 /* include ASCII after the hex output */
187 /* max number of lines to be printed */
188 #define HEX_MAX_LINES 2
190 /* the list of all allocated objects */
191 static LIST_HEAD(object_list);
192 /* the list of gray-colored objects (see color_gray comment below) */
193 static LIST_HEAD(gray_list);
194 /* memory pool allocation */
195 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
196 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197 static LIST_HEAD(mem_pool_free_list);
198 /* search tree for object boundaries */
199 static struct rb_root object_tree_root = RB_ROOT;
200 /* search tree for object (with OBJECT_PHYS flag) boundaries */
201 static struct rb_root object_phys_tree_root = RB_ROOT;
202 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
203 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
205 /* allocation caches for kmemleak internal data */
206 static struct kmem_cache *object_cache;
207 static struct kmem_cache *scan_area_cache;
209 /* set if tracing memory operations is enabled */
210 static int kmemleak_enabled = 1;
211 /* same as above but only for the kmemleak_free() callback */
212 static int kmemleak_free_enabled = 1;
213 /* set in the late_initcall if there were no errors */
214 static int kmemleak_initialized;
215 /* set if a kmemleak warning was issued */
216 static int kmemleak_warning;
217 /* set if a fatal kmemleak error has occurred */
218 static int kmemleak_error;
220 /* minimum and maximum address that may be valid pointers */
221 static unsigned long min_addr = ULONG_MAX;
222 static unsigned long max_addr;
224 static struct task_struct *scan_thread;
225 /* used to avoid reporting of recently allocated objects */
226 static unsigned long jiffies_min_age;
227 static unsigned long jiffies_last_scan;
228 /* delay between automatic memory scannings */
229 static unsigned long jiffies_scan_wait;
230 /* enables or disables the task stacks scanning */
231 static int kmemleak_stack_scan = 1;
232 /* protects the memory scanning, parameters and debug/kmemleak file access */
233 static DEFINE_MUTEX(scan_mutex);
234 /* setting kmemleak=on, will set this var, skipping the disable */
235 static int kmemleak_skip_disable;
236 /* If there are leaks that can be reported */
237 static bool kmemleak_found_leaks;
239 static bool kmemleak_verbose;
240 module_param_named(verbose, kmemleak_verbose, bool, 0600);
242 static void kmemleak_disable(void);
245 * Print a warning and dump the stack trace.
247 #define kmemleak_warn(x...) do { \
250 kmemleak_warning = 1; \
254 * Macro invoked when a serious kmemleak condition occurred and cannot be
255 * recovered from. Kmemleak will be disabled and further allocation/freeing
256 * tracing no longer available.
258 #define kmemleak_stop(x...) do { \
260 kmemleak_disable(); \
263 #define warn_or_seq_printf(seq, fmt, ...) do { \
265 seq_printf(seq, fmt, ##__VA_ARGS__); \
267 pr_warn(fmt, ##__VA_ARGS__); \
270 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271 int rowsize, int groupsize, const void *buf,
272 size_t len, bool ascii)
275 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
278 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279 rowsize, groupsize, buf, len, ascii);
283 * Printing of the objects hex dump to the seq file. The number of lines to be
284 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286 * with the object->lock held.
288 static void hex_dump_object(struct seq_file *seq,
289 struct kmemleak_object *object)
291 const u8 *ptr = (const u8 *)object->pointer;
294 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
297 /* limit the number of lines to HEX_MAX_LINES */
298 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
300 warn_or_seq_printf(seq, " hex dump (first %zu bytes):\n", len);
301 kasan_disable_current();
302 warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
303 HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
304 kasan_enable_current();
308 * Object colors, encoded with count and min_count:
309 * - white - orphan object, not enough references to it (count < min_count)
310 * - gray - not orphan, not marked as false positive (min_count == 0) or
311 * sufficient references to it (count >= min_count)
312 * - black - ignore, it doesn't contain references (e.g. text section)
313 * (min_count == -1). No function defined for this color.
314 * Newly created objects don't have any color assigned (object->count == -1)
315 * before the next memory scan when they become white.
317 static bool color_white(const struct kmemleak_object *object)
319 return object->count != KMEMLEAK_BLACK &&
320 object->count < object->min_count;
323 static bool color_gray(const struct kmemleak_object *object)
325 return object->min_count != KMEMLEAK_BLACK &&
326 object->count >= object->min_count;
330 * Objects are considered unreferenced only if their color is white, they have
331 * not be deleted and have a minimum age to avoid false positives caused by
332 * pointers temporarily stored in CPU registers.
334 static bool unreferenced_object(struct kmemleak_object *object)
336 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
337 time_before_eq(object->jiffies + jiffies_min_age,
342 * Printing of the unreferenced objects information to the seq file. The
343 * print_unreferenced function must be called with the object->lock held.
345 static void print_unreferenced(struct seq_file *seq,
346 struct kmemleak_object *object)
349 unsigned long *entries;
350 unsigned int nr_entries;
351 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
353 nr_entries = stack_depot_fetch(object->trace_handle, &entries);
354 warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
355 object->pointer, object->size);
356 warn_or_seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
357 object->comm, object->pid, object->jiffies,
358 msecs_age / 1000, msecs_age % 1000);
359 hex_dump_object(seq, object);
360 warn_or_seq_printf(seq, " backtrace:\n");
362 for (i = 0; i < nr_entries; i++) {
363 void *ptr = (void *)entries[i];
364 warn_or_seq_printf(seq, " [<%pK>] %pS\n", ptr, ptr);
369 * Print the kmemleak_object information. This function is used mainly for
370 * debugging special cases when kmemleak operations. It must be called with
371 * the object->lock held.
373 static void dump_object_info(struct kmemleak_object *object)
375 pr_notice("Object 0x%08lx (size %zu):\n",
376 object->pointer, object->size);
377 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
378 object->comm, object->pid, object->jiffies);
379 pr_notice(" min_count = %d\n", object->min_count);
380 pr_notice(" count = %d\n", object->count);
381 pr_notice(" flags = 0x%x\n", object->flags);
382 pr_notice(" checksum = %u\n", object->checksum);
383 pr_notice(" backtrace:\n");
384 if (object->trace_handle)
385 stack_depot_print(object->trace_handle);
389 * Look-up a memory block metadata (kmemleak_object) in the object search
390 * tree based on a pointer value. If alias is 0, only values pointing to the
391 * beginning of the memory block are allowed. The kmemleak_lock must be held
392 * when calling this function.
394 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
397 struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
398 object_tree_root.rb_node;
399 unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
402 struct kmemleak_object *object;
403 unsigned long untagged_objp;
405 object = rb_entry(rb, struct kmemleak_object, rb_node);
406 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
408 if (untagged_ptr < untagged_objp)
409 rb = object->rb_node.rb_left;
410 else if (untagged_objp + object->size <= untagged_ptr)
411 rb = object->rb_node.rb_right;
412 else if (untagged_objp == untagged_ptr || alias)
415 kmemleak_warn("Found object by alias at 0x%08lx\n",
417 dump_object_info(object);
424 /* Look-up a kmemleak object which allocated with virtual address. */
425 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
427 return __lookup_object(ptr, alias, false);
431 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
432 * that once an object's use_count reached 0, the RCU freeing was already
433 * registered and the object should no longer be used. This function must be
434 * called under the protection of rcu_read_lock().
436 static int get_object(struct kmemleak_object *object)
438 return atomic_inc_not_zero(&object->use_count);
442 * Memory pool allocation and freeing. kmemleak_lock must not be held.
444 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
447 struct kmemleak_object *object;
449 /* try the slab allocator first */
451 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
456 /* slab allocation failed, try the memory pool */
457 raw_spin_lock_irqsave(&kmemleak_lock, flags);
458 object = list_first_entry_or_null(&mem_pool_free_list,
459 typeof(*object), object_list);
461 list_del(&object->object_list);
462 else if (mem_pool_free_count)
463 object = &mem_pool[--mem_pool_free_count];
465 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
466 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
472 * Return the object to either the slab allocator or the memory pool.
474 static void mem_pool_free(struct kmemleak_object *object)
478 if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
479 kmem_cache_free(object_cache, object);
483 /* add the object to the memory pool free list */
484 raw_spin_lock_irqsave(&kmemleak_lock, flags);
485 list_add(&object->object_list, &mem_pool_free_list);
486 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
490 * RCU callback to free a kmemleak_object.
492 static void free_object_rcu(struct rcu_head *rcu)
494 struct hlist_node *tmp;
495 struct kmemleak_scan_area *area;
496 struct kmemleak_object *object =
497 container_of(rcu, struct kmemleak_object, rcu);
500 * Once use_count is 0 (guaranteed by put_object), there is no other
501 * code accessing this object, hence no need for locking.
503 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
504 hlist_del(&area->node);
505 kmem_cache_free(scan_area_cache, area);
507 mem_pool_free(object);
511 * Decrement the object use_count. Once the count is 0, free the object using
512 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
513 * delete_object() path, the delayed RCU freeing ensures that there is no
514 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
517 static void put_object(struct kmemleak_object *object)
519 if (!atomic_dec_and_test(&object->use_count))
522 /* should only get here after delete_object was called */
523 WARN_ON(object->flags & OBJECT_ALLOCATED);
526 * It may be too early for the RCU callbacks, however, there is no
527 * concurrent object_list traversal when !object_cache and all objects
528 * came from the memory pool. Free the object directly.
531 call_rcu(&object->rcu, free_object_rcu);
533 free_object_rcu(&object->rcu);
537 * Look up an object in the object search tree and increase its use_count.
539 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
543 struct kmemleak_object *object;
546 raw_spin_lock_irqsave(&kmemleak_lock, flags);
547 object = __lookup_object(ptr, alias, is_phys);
548 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
550 /* check whether the object is still available */
551 if (object && !get_object(object))
558 /* Look up and get an object which allocated with virtual address. */
559 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
561 return __find_and_get_object(ptr, alias, false);
565 * Remove an object from the object_tree_root (or object_phys_tree_root)
566 * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
569 static void __remove_object(struct kmemleak_object *object)
571 rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
572 &object_phys_tree_root :
574 list_del_rcu(&object->object_list);
578 * Look up an object in the object search tree and remove it from both
579 * object_tree_root (or object_phys_tree_root) and object_list. The
580 * returned object's use_count should be at least 1, as initially set
581 * by create_object().
583 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
587 struct kmemleak_object *object;
589 raw_spin_lock_irqsave(&kmemleak_lock, flags);
590 object = __lookup_object(ptr, alias, is_phys);
592 __remove_object(object);
593 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
598 static noinline depot_stack_handle_t set_track_prepare(void)
600 depot_stack_handle_t trace_handle;
601 unsigned long entries[MAX_TRACE];
602 unsigned int nr_entries;
604 if (!kmemleak_initialized)
606 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
607 trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
613 * Create the metadata (struct kmemleak_object) corresponding to an allocated
614 * memory block and add it to the object_list and object_tree_root (or
615 * object_phys_tree_root).
617 static void __create_object(unsigned long ptr, size_t size,
618 int min_count, gfp_t gfp, bool is_phys)
621 struct kmemleak_object *object, *parent;
622 struct rb_node **link, *rb_parent;
623 unsigned long untagged_ptr;
624 unsigned long untagged_objp;
626 object = mem_pool_alloc(gfp);
628 pr_warn("Cannot allocate a kmemleak_object structure\n");
633 INIT_LIST_HEAD(&object->object_list);
634 INIT_LIST_HEAD(&object->gray_list);
635 INIT_HLIST_HEAD(&object->area_list);
636 raw_spin_lock_init(&object->lock);
637 atomic_set(&object->use_count, 1);
638 object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
639 object->pointer = ptr;
640 object->size = kfence_ksize((void *)ptr) ?: size;
641 object->excess_ref = 0;
642 object->min_count = min_count;
643 object->count = 0; /* white color initially */
644 object->jiffies = jiffies;
645 object->checksum = 0;
647 /* task information */
650 strncpy(object->comm, "hardirq", sizeof(object->comm));
651 } else if (in_serving_softirq()) {
653 strncpy(object->comm, "softirq", sizeof(object->comm));
655 object->pid = current->pid;
657 * There is a small chance of a race with set_task_comm(),
658 * however using get_task_comm() here may cause locking
659 * dependency issues with current->alloc_lock. In the worst
660 * case, the command line is not correct.
662 strncpy(object->comm, current->comm, sizeof(object->comm));
665 /* kernel backtrace */
666 object->trace_handle = set_track_prepare();
668 raw_spin_lock_irqsave(&kmemleak_lock, flags);
670 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
672 * Only update min_addr and max_addr with object
673 * storing virtual address.
676 min_addr = min(min_addr, untagged_ptr);
677 max_addr = max(max_addr, untagged_ptr + size);
679 link = is_phys ? &object_phys_tree_root.rb_node :
680 &object_tree_root.rb_node;
684 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
685 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
686 if (untagged_ptr + size <= untagged_objp)
687 link = &parent->rb_node.rb_left;
688 else if (untagged_objp + parent->size <= untagged_ptr)
689 link = &parent->rb_node.rb_right;
691 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
694 * No need for parent->lock here since "parent" cannot
695 * be freed while the kmemleak_lock is held.
697 dump_object_info(parent);
698 kmem_cache_free(object_cache, object);
702 rb_link_node(&object->rb_node, rb_parent, link);
703 rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
705 list_add_tail_rcu(&object->object_list, &object_list);
707 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
710 /* Create kmemleak object which allocated with virtual address. */
711 static void create_object(unsigned long ptr, size_t size,
712 int min_count, gfp_t gfp)
714 __create_object(ptr, size, min_count, gfp, false);
717 /* Create kmemleak object which allocated with physical address. */
718 static void create_object_phys(unsigned long ptr, size_t size,
719 int min_count, gfp_t gfp)
721 __create_object(ptr, size, min_count, gfp, true);
725 * Mark the object as not allocated and schedule RCU freeing via put_object().
727 static void __delete_object(struct kmemleak_object *object)
731 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
732 WARN_ON(atomic_read(&object->use_count) < 1);
735 * Locking here also ensures that the corresponding memory block
736 * cannot be freed when it is being scanned.
738 raw_spin_lock_irqsave(&object->lock, flags);
739 object->flags &= ~OBJECT_ALLOCATED;
740 raw_spin_unlock_irqrestore(&object->lock, flags);
745 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
748 static void delete_object_full(unsigned long ptr)
750 struct kmemleak_object *object;
752 object = find_and_remove_object(ptr, 0, false);
755 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
760 __delete_object(object);
764 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
765 * delete it. If the memory block is partially freed, the function may create
766 * additional metadata for the remaining parts of the block.
768 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
770 struct kmemleak_object *object;
771 unsigned long start, end;
773 object = find_and_remove_object(ptr, 1, is_phys);
776 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
783 * Create one or two objects that may result from the memory block
784 * split. Note that partial freeing is only done by free_bootmem() and
785 * this happens before kmemleak_init() is called.
787 start = object->pointer;
788 end = object->pointer + object->size;
790 __create_object(start, ptr - start, object->min_count,
791 GFP_KERNEL, is_phys);
792 if (ptr + size < end)
793 __create_object(ptr + size, end - ptr - size, object->min_count,
794 GFP_KERNEL, is_phys);
796 __delete_object(object);
799 static void __paint_it(struct kmemleak_object *object, int color)
801 object->min_count = color;
802 if (color == KMEMLEAK_BLACK)
803 object->flags |= OBJECT_NO_SCAN;
806 static void paint_it(struct kmemleak_object *object, int color)
810 raw_spin_lock_irqsave(&object->lock, flags);
811 __paint_it(object, color);
812 raw_spin_unlock_irqrestore(&object->lock, flags);
815 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
817 struct kmemleak_object *object;
819 object = __find_and_get_object(ptr, 0, is_phys);
821 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
823 (color == KMEMLEAK_GREY) ? "Grey" :
824 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
827 paint_it(object, color);
832 * Mark an object permanently as gray-colored so that it can no longer be
833 * reported as a leak. This is used in general to mark a false positive.
835 static void make_gray_object(unsigned long ptr)
837 paint_ptr(ptr, KMEMLEAK_GREY, false);
841 * Mark the object as black-colored so that it is ignored from scans and
844 static void make_black_object(unsigned long ptr, bool is_phys)
846 paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
850 * Add a scanning area to the object. If at least one such area is added,
851 * kmemleak will only scan these ranges rather than the whole memory block.
853 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
856 struct kmemleak_object *object;
857 struct kmemleak_scan_area *area = NULL;
858 unsigned long untagged_ptr;
859 unsigned long untagged_objp;
861 object = find_and_get_object(ptr, 1);
863 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
868 untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
869 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
872 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
874 raw_spin_lock_irqsave(&object->lock, flags);
876 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
877 /* mark the object for full scan to avoid false positives */
878 object->flags |= OBJECT_FULL_SCAN;
881 if (size == SIZE_MAX) {
882 size = untagged_objp + object->size - untagged_ptr;
883 } else if (untagged_ptr + size > untagged_objp + object->size) {
884 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
885 dump_object_info(object);
886 kmem_cache_free(scan_area_cache, area);
890 INIT_HLIST_NODE(&area->node);
894 hlist_add_head(&area->node, &object->area_list);
896 raw_spin_unlock_irqrestore(&object->lock, flags);
901 * Any surplus references (object already gray) to 'ptr' are passed to
902 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
903 * vm_struct may be used as an alternative reference to the vmalloc'ed object
904 * (see free_thread_stack()).
906 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
909 struct kmemleak_object *object;
911 object = find_and_get_object(ptr, 0);
913 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
918 raw_spin_lock_irqsave(&object->lock, flags);
919 object->excess_ref = excess_ref;
920 raw_spin_unlock_irqrestore(&object->lock, flags);
925 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
926 * pointer. Such object will not be scanned by kmemleak but references to it
929 static void object_no_scan(unsigned long ptr)
932 struct kmemleak_object *object;
934 object = find_and_get_object(ptr, 0);
936 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
940 raw_spin_lock_irqsave(&object->lock, flags);
941 object->flags |= OBJECT_NO_SCAN;
942 raw_spin_unlock_irqrestore(&object->lock, flags);
947 * kmemleak_alloc - register a newly allocated object
948 * @ptr: pointer to beginning of the object
949 * @size: size of the object
950 * @min_count: minimum number of references to this object. If during memory
951 * scanning a number of references less than @min_count is found,
952 * the object is reported as a memory leak. If @min_count is 0,
953 * the object is never reported as a leak. If @min_count is -1,
954 * the object is ignored (not scanned and not reported as a leak)
955 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
957 * This function is called from the kernel allocators when a new object
958 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
960 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
963 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
965 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
966 create_object((unsigned long)ptr, size, min_count, gfp);
968 EXPORT_SYMBOL_GPL(kmemleak_alloc);
971 * kmemleak_alloc_percpu - register a newly allocated __percpu object
972 * @ptr: __percpu pointer to beginning of the object
973 * @size: size of the object
974 * @gfp: flags used for kmemleak internal memory allocations
976 * This function is called from the kernel percpu allocator when a new object
977 * (memory block) is allocated (alloc_percpu).
979 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
984 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
987 * Percpu allocations are only scanned and not reported as leaks
988 * (min_count is set to 0).
990 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
991 for_each_possible_cpu(cpu)
992 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
995 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
998 * kmemleak_vmalloc - register a newly vmalloc'ed object
999 * @area: pointer to vm_struct
1000 * @size: size of the object
1001 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
1003 * This function is called from the vmalloc() kernel allocator when a new
1004 * object (memory block) is allocated.
1006 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1008 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1011 * A min_count = 2 is needed because vm_struct contains a reference to
1012 * the virtual address of the vmalloc'ed block.
1014 if (kmemleak_enabled) {
1015 create_object((unsigned long)area->addr, size, 2, gfp);
1016 object_set_excess_ref((unsigned long)area,
1017 (unsigned long)area->addr);
1020 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1023 * kmemleak_free - unregister a previously registered object
1024 * @ptr: pointer to beginning of the object
1026 * This function is called from the kernel allocators when an object (memory
1027 * block) is freed (kmem_cache_free, kfree, vfree etc.).
1029 void __ref kmemleak_free(const void *ptr)
1031 pr_debug("%s(0x%p)\n", __func__, ptr);
1033 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1034 delete_object_full((unsigned long)ptr);
1036 EXPORT_SYMBOL_GPL(kmemleak_free);
1039 * kmemleak_free_part - partially unregister a previously registered object
1040 * @ptr: pointer to the beginning or inside the object. This also
1041 * represents the start of the range to be freed
1042 * @size: size to be unregistered
1044 * This function is called when only a part of a memory block is freed
1045 * (usually from the bootmem allocator).
1047 void __ref kmemleak_free_part(const void *ptr, size_t size)
1049 pr_debug("%s(0x%p)\n", __func__, ptr);
1051 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1052 delete_object_part((unsigned long)ptr, size, false);
1054 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1057 * kmemleak_free_percpu - unregister a previously registered __percpu object
1058 * @ptr: __percpu pointer to beginning of the object
1060 * This function is called from the kernel percpu allocator when an object
1061 * (memory block) is freed (free_percpu).
1063 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1067 pr_debug("%s(0x%p)\n", __func__, ptr);
1069 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1070 for_each_possible_cpu(cpu)
1071 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1074 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1077 * kmemleak_update_trace - update object allocation stack trace
1078 * @ptr: pointer to beginning of the object
1080 * Override the object allocation stack trace for cases where the actual
1081 * allocation place is not always useful.
1083 void __ref kmemleak_update_trace(const void *ptr)
1085 struct kmemleak_object *object;
1086 unsigned long flags;
1088 pr_debug("%s(0x%p)\n", __func__, ptr);
1090 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1093 object = find_and_get_object((unsigned long)ptr, 1);
1096 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1102 raw_spin_lock_irqsave(&object->lock, flags);
1103 object->trace_handle = set_track_prepare();
1104 raw_spin_unlock_irqrestore(&object->lock, flags);
1108 EXPORT_SYMBOL(kmemleak_update_trace);
1111 * kmemleak_not_leak - mark an allocated object as false positive
1112 * @ptr: pointer to beginning of the object
1114 * Calling this function on an object will cause the memory block to no longer
1115 * be reported as leak and always be scanned.
1117 void __ref kmemleak_not_leak(const void *ptr)
1119 pr_debug("%s(0x%p)\n", __func__, ptr);
1121 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1122 make_gray_object((unsigned long)ptr);
1124 EXPORT_SYMBOL(kmemleak_not_leak);
1127 * kmemleak_ignore - ignore an allocated object
1128 * @ptr: pointer to beginning of the object
1130 * Calling this function on an object will cause the memory block to be
1131 * ignored (not scanned and not reported as a leak). This is usually done when
1132 * it is known that the corresponding block is not a leak and does not contain
1133 * any references to other allocated memory blocks.
1135 void __ref kmemleak_ignore(const void *ptr)
1137 pr_debug("%s(0x%p)\n", __func__, ptr);
1139 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1140 make_black_object((unsigned long)ptr, false);
1142 EXPORT_SYMBOL(kmemleak_ignore);
1145 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1146 * @ptr: pointer to beginning or inside the object. This also
1147 * represents the start of the scan area
1148 * @size: size of the scan area
1149 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1151 * This function is used when it is known that only certain parts of an object
1152 * contain references to other objects. Kmemleak will only scan these areas
1153 * reducing the number false negatives.
1155 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1157 pr_debug("%s(0x%p)\n", __func__, ptr);
1159 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1160 add_scan_area((unsigned long)ptr, size, gfp);
1162 EXPORT_SYMBOL(kmemleak_scan_area);
1165 * kmemleak_no_scan - do not scan an allocated object
1166 * @ptr: pointer to beginning of the object
1168 * This function notifies kmemleak not to scan the given memory block. Useful
1169 * in situations where it is known that the given object does not contain any
1170 * references to other objects. Kmemleak will not scan such objects reducing
1171 * the number of false negatives.
1173 void __ref kmemleak_no_scan(const void *ptr)
1175 pr_debug("%s(0x%p)\n", __func__, ptr);
1177 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1178 object_no_scan((unsigned long)ptr);
1180 EXPORT_SYMBOL(kmemleak_no_scan);
1183 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1185 * @phys: physical address of the object
1186 * @size: size of the object
1187 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1189 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1191 pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1193 if (kmemleak_enabled)
1195 * Create object with OBJECT_PHYS flag and
1196 * assume min_count 0.
1198 create_object_phys((unsigned long)phys, size, 0, gfp);
1200 EXPORT_SYMBOL(kmemleak_alloc_phys);
1203 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1204 * physical address argument
1205 * @phys: physical address if the beginning or inside an object. This
1206 * also represents the start of the range to be freed
1207 * @size: size to be unregistered
1209 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1211 pr_debug("%s(0x%pa)\n", __func__, &phys);
1213 if (kmemleak_enabled)
1214 delete_object_part((unsigned long)phys, size, true);
1216 EXPORT_SYMBOL(kmemleak_free_part_phys);
1219 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1221 * @phys: physical address of the object
1223 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1225 pr_debug("%s(0x%pa)\n", __func__, &phys);
1227 if (kmemleak_enabled)
1228 make_black_object((unsigned long)phys, true);
1230 EXPORT_SYMBOL(kmemleak_ignore_phys);
1233 * Update an object's checksum and return true if it was modified.
1235 static bool update_checksum(struct kmemleak_object *object)
1237 u32 old_csum = object->checksum;
1239 if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1242 kasan_disable_current();
1243 kcsan_disable_current();
1244 object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1245 kasan_enable_current();
1246 kcsan_enable_current();
1248 return object->checksum != old_csum;
1252 * Update an object's references. object->lock must be held by the caller.
1254 static void update_refs(struct kmemleak_object *object)
1256 if (!color_white(object)) {
1257 /* non-orphan, ignored or new */
1262 * Increase the object's reference count (number of pointers to the
1263 * memory block). If this count reaches the required minimum, the
1264 * object's color will become gray and it will be added to the
1268 if (color_gray(object)) {
1269 /* put_object() called when removing from gray_list */
1270 WARN_ON(!get_object(object));
1271 list_add_tail(&object->gray_list, &gray_list);
1276 * Memory scanning is a long process and it needs to be interruptible. This
1277 * function checks whether such interrupt condition occurred.
1279 static int scan_should_stop(void)
1281 if (!kmemleak_enabled)
1285 * This function may be called from either process or kthread context,
1286 * hence the need to check for both stop conditions.
1289 return signal_pending(current);
1291 return kthread_should_stop();
1297 * Scan a memory block (exclusive range) for valid pointers and add those
1298 * found to the gray list.
1300 static void scan_block(void *_start, void *_end,
1301 struct kmemleak_object *scanned)
1304 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1306 unsigned long flags;
1307 unsigned long untagged_ptr;
1309 raw_spin_lock_irqsave(&kmemleak_lock, flags);
1310 for (ptr = start; ptr < end; ptr++) {
1311 struct kmemleak_object *object;
1312 unsigned long pointer;
1313 unsigned long excess_ref;
1315 if (scan_should_stop())
1318 kasan_disable_current();
1319 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1320 kasan_enable_current();
1322 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1323 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1327 * No need for get_object() here since we hold kmemleak_lock.
1328 * object->use_count cannot be dropped to 0 while the object
1329 * is still present in object_tree_root and object_list
1330 * (with updates protected by kmemleak_lock).
1332 object = lookup_object(pointer, 1);
1335 if (object == scanned)
1336 /* self referenced, ignore */
1340 * Avoid the lockdep recursive warning on object->lock being
1341 * previously acquired in scan_object(). These locks are
1342 * enclosed by scan_mutex.
1344 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1345 /* only pass surplus references (object already gray) */
1346 if (color_gray(object)) {
1347 excess_ref = object->excess_ref;
1348 /* no need for update_refs() if object already gray */
1351 update_refs(object);
1353 raw_spin_unlock(&object->lock);
1356 object = lookup_object(excess_ref, 0);
1359 if (object == scanned)
1360 /* circular reference, ignore */
1362 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1363 update_refs(object);
1364 raw_spin_unlock(&object->lock);
1367 raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1371 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1374 static void scan_large_block(void *start, void *end)
1378 while (start < end) {
1379 next = min(start + MAX_SCAN_SIZE, end);
1380 scan_block(start, next, NULL);
1388 * Scan a memory block corresponding to a kmemleak_object. A condition is
1389 * that object->use_count >= 1.
1391 static void scan_object(struct kmemleak_object *object)
1393 struct kmemleak_scan_area *area;
1394 unsigned long flags;
1398 * Once the object->lock is acquired, the corresponding memory block
1399 * cannot be freed (the same lock is acquired in delete_object).
1401 raw_spin_lock_irqsave(&object->lock, flags);
1402 if (object->flags & OBJECT_NO_SCAN)
1404 if (!(object->flags & OBJECT_ALLOCATED))
1405 /* already freed object */
1408 obj_ptr = object->flags & OBJECT_PHYS ?
1409 __va((phys_addr_t)object->pointer) :
1410 (void *)object->pointer;
1412 if (hlist_empty(&object->area_list) ||
1413 object->flags & OBJECT_FULL_SCAN) {
1414 void *start = obj_ptr;
1415 void *end = obj_ptr + object->size;
1419 next = min(start + MAX_SCAN_SIZE, end);
1420 scan_block(start, next, object);
1426 raw_spin_unlock_irqrestore(&object->lock, flags);
1428 raw_spin_lock_irqsave(&object->lock, flags);
1429 } while (object->flags & OBJECT_ALLOCATED);
1431 hlist_for_each_entry(area, &object->area_list, node)
1432 scan_block((void *)area->start,
1433 (void *)(area->start + area->size),
1436 raw_spin_unlock_irqrestore(&object->lock, flags);
1440 * Scan the objects already referenced (gray objects). More objects will be
1441 * referenced and, if there are no memory leaks, all the objects are scanned.
1443 static void scan_gray_list(void)
1445 struct kmemleak_object *object, *tmp;
1448 * The list traversal is safe for both tail additions and removals
1449 * from inside the loop. The kmemleak objects cannot be freed from
1450 * outside the loop because their use_count was incremented.
1452 object = list_entry(gray_list.next, typeof(*object), gray_list);
1453 while (&object->gray_list != &gray_list) {
1456 /* may add new objects to the list */
1457 if (!scan_should_stop())
1458 scan_object(object);
1460 tmp = list_entry(object->gray_list.next, typeof(*object),
1463 /* remove the object from the list and release it */
1464 list_del(&object->gray_list);
1469 WARN_ON(!list_empty(&gray_list));
1473 * Conditionally call resched() in an object iteration loop while making sure
1474 * that the given object won't go away without RCU read lock by performing a
1475 * get_object() if !pinned.
1477 * Return: false if can't do a cond_resched() due to get_object() failure
1480 static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1482 if (!pinned && !get_object(object))
1494 * Scan data sections and all the referenced memory blocks allocated via the
1495 * kernel's standard allocators. This function must be called with the
1498 static void kmemleak_scan(void)
1500 struct kmemleak_object *object;
1502 int __maybe_unused i;
1506 jiffies_last_scan = jiffies;
1508 /* prepare the kmemleak_object's */
1510 list_for_each_entry_rcu(object, &object_list, object_list) {
1511 bool obj_pinned = false;
1513 raw_spin_lock_irq(&object->lock);
1516 * With a few exceptions there should be a maximum of
1517 * 1 reference to any object at this point.
1519 if (atomic_read(&object->use_count) > 1) {
1520 pr_debug("object->use_count = %d\n",
1521 atomic_read(&object->use_count));
1522 dump_object_info(object);
1526 /* ignore objects outside lowmem (paint them black) */
1527 if ((object->flags & OBJECT_PHYS) &&
1528 !(object->flags & OBJECT_NO_SCAN)) {
1529 unsigned long phys = object->pointer;
1531 if (PHYS_PFN(phys) < min_low_pfn ||
1532 PHYS_PFN(phys + object->size) >= max_low_pfn)
1533 __paint_it(object, KMEMLEAK_BLACK);
1536 /* reset the reference count (whiten the object) */
1538 if (color_gray(object) && get_object(object)) {
1539 list_add_tail(&object->gray_list, &gray_list);
1543 raw_spin_unlock_irq(&object->lock);
1546 * Do a cond_resched() every 64k objects to avoid soft lockup.
1548 if (!(++loop_cnt & 0xffff) &&
1549 !kmemleak_cond_resched(object, obj_pinned))
1550 loop_cnt--; /* Try again on next object */
1555 /* per-cpu sections scanning */
1556 for_each_possible_cpu(i)
1557 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1558 __per_cpu_end + per_cpu_offset(i));
1562 * Struct page scanning for each node.
1565 for_each_populated_zone(zone) {
1566 unsigned long start_pfn = zone->zone_start_pfn;
1567 unsigned long end_pfn = zone_end_pfn(zone);
1570 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1571 struct page *page = pfn_to_online_page(pfn);
1576 /* only scan pages belonging to this zone */
1577 if (page_zone(page) != zone)
1579 /* only scan if page is in use */
1580 if (page_count(page) == 0)
1582 scan_block(page, page + 1, NULL);
1590 * Scanning the task stacks (may introduce false negatives).
1592 if (kmemleak_stack_scan) {
1593 struct task_struct *p, *g;
1596 for_each_process_thread(g, p) {
1597 void *stack = try_get_task_stack(p);
1599 scan_block(stack, stack + THREAD_SIZE, NULL);
1607 * Scan the objects already referenced from the sections scanned
1613 * Check for new or unreferenced objects modified since the previous
1614 * scan and color them gray until the next scan.
1618 list_for_each_entry_rcu(object, &object_list, object_list) {
1620 * Do a cond_resched() every 64k objects to avoid soft lockup.
1622 if (!(++loop_cnt & 0xffff) &&
1623 !kmemleak_cond_resched(object, false))
1624 loop_cnt--; /* Try again on next object */
1627 * This is racy but we can save the overhead of lock/unlock
1628 * calls. The missed objects, if any, should be caught in
1631 if (!color_white(object))
1633 raw_spin_lock_irq(&object->lock);
1634 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1635 && update_checksum(object) && get_object(object)) {
1636 /* color it gray temporarily */
1637 object->count = object->min_count;
1638 list_add_tail(&object->gray_list, &gray_list);
1640 raw_spin_unlock_irq(&object->lock);
1645 * Re-scan the gray list for modified unreferenced objects.
1650 * If scanning was stopped do not report any new unreferenced objects.
1652 if (scan_should_stop())
1656 * Scanning result reporting.
1660 list_for_each_entry_rcu(object, &object_list, object_list) {
1662 * Do a cond_resched() every 64k objects to avoid soft lockup.
1664 if (!(++loop_cnt & 0xffff) &&
1665 !kmemleak_cond_resched(object, false))
1666 loop_cnt--; /* Try again on next object */
1669 * This is racy but we can save the overhead of lock/unlock
1670 * calls. The missed objects, if any, should be caught in
1673 if (!color_white(object))
1675 raw_spin_lock_irq(&object->lock);
1676 if (unreferenced_object(object) &&
1677 !(object->flags & OBJECT_REPORTED)) {
1678 object->flags |= OBJECT_REPORTED;
1680 if (kmemleak_verbose)
1681 print_unreferenced(NULL, object);
1685 raw_spin_unlock_irq(&object->lock);
1690 kmemleak_found_leaks = true;
1692 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1699 * Thread function performing automatic memory scanning. Unreferenced objects
1700 * at the end of a memory scan are reported but only the first time.
1702 static int kmemleak_scan_thread(void *arg)
1704 static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1706 pr_info("Automatic memory scanning thread started\n");
1707 set_user_nice(current, 10);
1710 * Wait before the first scan to allow the system to fully initialize.
1713 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1715 while (timeout && !kthread_should_stop())
1716 timeout = schedule_timeout_interruptible(timeout);
1719 while (!kthread_should_stop()) {
1720 signed long timeout = READ_ONCE(jiffies_scan_wait);
1722 mutex_lock(&scan_mutex);
1724 mutex_unlock(&scan_mutex);
1726 /* wait before the next scan */
1727 while (timeout && !kthread_should_stop())
1728 timeout = schedule_timeout_interruptible(timeout);
1731 pr_info("Automatic memory scanning thread ended\n");
1737 * Start the automatic memory scanning thread. This function must be called
1738 * with the scan_mutex held.
1740 static void start_scan_thread(void)
1744 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1745 if (IS_ERR(scan_thread)) {
1746 pr_warn("Failed to create the scan thread\n");
1752 * Stop the automatic memory scanning thread.
1754 static void stop_scan_thread(void)
1757 kthread_stop(scan_thread);
1763 * Iterate over the object_list and return the first valid object at or after
1764 * the required position with its use_count incremented. The function triggers
1765 * a memory scanning when the pos argument points to the first position.
1767 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1769 struct kmemleak_object *object;
1773 err = mutex_lock_interruptible(&scan_mutex);
1775 return ERR_PTR(err);
1778 list_for_each_entry_rcu(object, &object_list, object_list) {
1781 if (get_object(object))
1790 * Return the next object in the object_list. The function decrements the
1791 * use_count of the previous object and increases that of the next one.
1793 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1795 struct kmemleak_object *prev_obj = v;
1796 struct kmemleak_object *next_obj = NULL;
1797 struct kmemleak_object *obj = prev_obj;
1801 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1802 if (get_object(obj)) {
1808 put_object(prev_obj);
1813 * Decrement the use_count of the last object required, if any.
1815 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1819 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1820 * waiting was interrupted, so only release it if !IS_ERR.
1823 mutex_unlock(&scan_mutex);
1830 * Print the information for an unreferenced object to the seq file.
1832 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1834 struct kmemleak_object *object = v;
1835 unsigned long flags;
1837 raw_spin_lock_irqsave(&object->lock, flags);
1838 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1839 print_unreferenced(seq, object);
1840 raw_spin_unlock_irqrestore(&object->lock, flags);
1844 static const struct seq_operations kmemleak_seq_ops = {
1845 .start = kmemleak_seq_start,
1846 .next = kmemleak_seq_next,
1847 .stop = kmemleak_seq_stop,
1848 .show = kmemleak_seq_show,
1851 static int kmemleak_open(struct inode *inode, struct file *file)
1853 return seq_open(file, &kmemleak_seq_ops);
1856 static int dump_str_object_info(const char *str)
1858 unsigned long flags;
1859 struct kmemleak_object *object;
1862 if (kstrtoul(str, 0, &addr))
1864 object = find_and_get_object(addr, 0);
1866 pr_info("Unknown object at 0x%08lx\n", addr);
1870 raw_spin_lock_irqsave(&object->lock, flags);
1871 dump_object_info(object);
1872 raw_spin_unlock_irqrestore(&object->lock, flags);
1879 * We use grey instead of black to ensure we can do future scans on the same
1880 * objects. If we did not do future scans these black objects could
1881 * potentially contain references to newly allocated objects in the future and
1882 * we'd end up with false positives.
1884 static void kmemleak_clear(void)
1886 struct kmemleak_object *object;
1889 list_for_each_entry_rcu(object, &object_list, object_list) {
1890 raw_spin_lock_irq(&object->lock);
1891 if ((object->flags & OBJECT_REPORTED) &&
1892 unreferenced_object(object))
1893 __paint_it(object, KMEMLEAK_GREY);
1894 raw_spin_unlock_irq(&object->lock);
1898 kmemleak_found_leaks = false;
1901 static void __kmemleak_do_cleanup(void);
1904 * File write operation to configure kmemleak at run-time. The following
1905 * commands can be written to the /sys/kernel/debug/kmemleak file:
1906 * off - disable kmemleak (irreversible)
1907 * stack=on - enable the task stacks scanning
1908 * stack=off - disable the tasks stacks scanning
1909 * scan=on - start the automatic memory scanning thread
1910 * scan=off - stop the automatic memory scanning thread
1911 * scan=... - set the automatic memory scanning period in seconds (0 to
1913 * scan - trigger a memory scan
1914 * clear - mark all current reported unreferenced kmemleak objects as
1915 * grey to ignore printing them, or free all kmemleak objects
1916 * if kmemleak has been disabled.
1917 * dump=... - dump information about the object found at the given address
1919 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1920 size_t size, loff_t *ppos)
1926 buf_size = min(size, (sizeof(buf) - 1));
1927 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1931 ret = mutex_lock_interruptible(&scan_mutex);
1935 if (strncmp(buf, "clear", 5) == 0) {
1936 if (kmemleak_enabled)
1939 __kmemleak_do_cleanup();
1943 if (!kmemleak_enabled) {
1948 if (strncmp(buf, "off", 3) == 0)
1950 else if (strncmp(buf, "stack=on", 8) == 0)
1951 kmemleak_stack_scan = 1;
1952 else if (strncmp(buf, "stack=off", 9) == 0)
1953 kmemleak_stack_scan = 0;
1954 else if (strncmp(buf, "scan=on", 7) == 0)
1955 start_scan_thread();
1956 else if (strncmp(buf, "scan=off", 8) == 0)
1958 else if (strncmp(buf, "scan=", 5) == 0) {
1960 unsigned long msecs;
1962 ret = kstrtouint(buf + 5, 0, &secs);
1966 msecs = secs * MSEC_PER_SEC;
1967 if (msecs > UINT_MAX)
1972 WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1973 start_scan_thread();
1975 } else if (strncmp(buf, "scan", 4) == 0)
1977 else if (strncmp(buf, "dump=", 5) == 0)
1978 ret = dump_str_object_info(buf + 5);
1983 mutex_unlock(&scan_mutex);
1987 /* ignore the rest of the buffer, only one command at a time */
1992 static const struct file_operations kmemleak_fops = {
1993 .owner = THIS_MODULE,
1994 .open = kmemleak_open,
1996 .write = kmemleak_write,
1997 .llseek = seq_lseek,
1998 .release = seq_release,
2001 static void __kmemleak_do_cleanup(void)
2003 struct kmemleak_object *object, *tmp;
2006 * Kmemleak has already been disabled, no need for RCU list traversal
2007 * or kmemleak_lock held.
2009 list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2010 __remove_object(object);
2011 __delete_object(object);
2016 * Stop the memory scanning thread and free the kmemleak internal objects if
2017 * no previous scan thread (otherwise, kmemleak may still have some useful
2018 * information on memory leaks).
2020 static void kmemleak_do_cleanup(struct work_struct *work)
2024 mutex_lock(&scan_mutex);
2026 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2027 * longer track object freeing. Ordering of the scan thread stopping and
2028 * the memory accesses below is guaranteed by the kthread_stop()
2031 kmemleak_free_enabled = 0;
2032 mutex_unlock(&scan_mutex);
2034 if (!kmemleak_found_leaks)
2035 __kmemleak_do_cleanup();
2037 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2040 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2043 * Disable kmemleak. No memory allocation/freeing will be traced once this
2044 * function is called. Disabling kmemleak is an irreversible operation.
2046 static void kmemleak_disable(void)
2048 /* atomically check whether it was already invoked */
2049 if (cmpxchg(&kmemleak_error, 0, 1))
2052 /* stop any memory operation tracing */
2053 kmemleak_enabled = 0;
2055 /* check whether it is too early for a kernel thread */
2056 if (kmemleak_initialized)
2057 schedule_work(&cleanup_work);
2059 kmemleak_free_enabled = 0;
2061 pr_info("Kernel memory leak detector disabled\n");
2065 * Allow boot-time kmemleak disabling (enabled by default).
2067 static int __init kmemleak_boot_config(char *str)
2071 if (strcmp(str, "off") == 0)
2073 else if (strcmp(str, "on") == 0)
2074 kmemleak_skip_disable = 1;
2079 early_param("kmemleak", kmemleak_boot_config);
2082 * Kmemleak initialization.
2084 void __init kmemleak_init(void)
2086 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2087 if (!kmemleak_skip_disable) {
2097 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2098 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2100 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2101 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2103 /* register the data/bss sections */
2104 create_object((unsigned long)_sdata, _edata - _sdata,
2105 KMEMLEAK_GREY, GFP_ATOMIC);
2106 create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2107 KMEMLEAK_GREY, GFP_ATOMIC);
2108 /* only register .data..ro_after_init if not within .data */
2109 if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2110 create_object((unsigned long)__start_ro_after_init,
2111 __end_ro_after_init - __start_ro_after_init,
2112 KMEMLEAK_GREY, GFP_ATOMIC);
2116 * Late initialization function.
2118 static int __init kmemleak_late_init(void)
2120 kmemleak_initialized = 1;
2122 debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2124 if (kmemleak_error) {
2126 * Some error occurred and kmemleak was disabled. There is a
2127 * small chance that kmemleak_disable() was called immediately
2128 * after setting kmemleak_initialized and we may end up with
2129 * two clean-up threads but serialized by scan_mutex.
2131 schedule_work(&cleanup_work);
2135 if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2136 mutex_lock(&scan_mutex);
2137 start_scan_thread();
2138 mutex_unlock(&scan_mutex);
2141 pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2142 mem_pool_free_count);
2146 late_initcall(kmemleak_late_init);