Merge tag 'mfd-next-6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/lee/mfd
[platform/kernel/linux-starfive.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17  *   accesses to the object_tree_root (or object_phys_tree_root). The
18  *   object_list is the main list holding the metadata (struct kmemleak_object)
19  *   for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20  *   are red black trees used to look-up metadata based on a pointer to the
21  *   corresponding memory block. The object_phys_tree_root is for objects
22  *   allocated with physical address. The kmemleak_object structures are
23  *   added to the object_list and object_tree_root (or object_phys_tree_root)
24  *   in the create_object() function called from the kmemleak_alloc() (or
25  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
26  *   the kmemleak_free() callback
27  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
29  *   that some members of this structure may be protected by other means
30  *   (atomic or kmemleak_lock). This lock is also held when scanning the
31  *   corresponding memory block to avoid the kernel freeing it via the
32  *   kmemleak_free() callback. This is less heavyweight than holding a global
33  *   lock like kmemleak_lock during scanning.
34  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35  *   unreferenced objects at a time. The gray_list contains the objects which
36  *   are already referenced or marked as false positives and need to be
37  *   scanned. This list is only modified during a scanning episode when the
38  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
39  *   Note that the kmemleak_object.use_count is incremented when an object is
40  *   added to the gray_list and therefore cannot be freed. This mutex also
41  *   prevents multiple users of the "kmemleak" debugfs file together with
42  *   modifications to the memory scanning parameters including the scan_thread
43  *   pointer
44  *
45  * Locks and mutexes are acquired/nested in the following order:
46  *
47  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48  *
49  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50  * regions.
51  *
52  * The kmemleak_object structures have a use_count incremented or decremented
53  * using the get_object()/put_object() functions. When the use_count becomes
54  * 0, this count can no longer be incremented and put_object() schedules the
55  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56  * function must be protected by rcu_read_lock() to avoid accessing a freed
57  * structure.
58  */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/init.h>
63 #include <linux/kernel.h>
64 #include <linux/list.h>
65 #include <linux/sched/signal.h>
66 #include <linux/sched/task.h>
67 #include <linux/sched/task_stack.h>
68 #include <linux/jiffies.h>
69 #include <linux/delay.h>
70 #include <linux/export.h>
71 #include <linux/kthread.h>
72 #include <linux/rbtree.h>
73 #include <linux/fs.h>
74 #include <linux/debugfs.h>
75 #include <linux/seq_file.h>
76 #include <linux/cpumask.h>
77 #include <linux/spinlock.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/rcupdate.h>
81 #include <linux/stacktrace.h>
82 #include <linux/stackdepot.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/memblock.h>
86 #include <linux/pfn.h>
87 #include <linux/mmzone.h>
88 #include <linux/slab.h>
89 #include <linux/thread_info.h>
90 #include <linux/err.h>
91 #include <linux/uaccess.h>
92 #include <linux/string.h>
93 #include <linux/nodemask.h>
94 #include <linux/mm.h>
95 #include <linux/workqueue.h>
96 #include <linux/crc32.h>
97
98 #include <asm/sections.h>
99 #include <asm/processor.h>
100 #include <linux/atomic.h>
101
102 #include <linux/kasan.h>
103 #include <linux/kfence.h>
104 #include <linux/kmemleak.h>
105 #include <linux/memory_hotplug.h>
106
107 /*
108  * Kmemleak configuration and common defines.
109  */
110 #define MAX_TRACE               16      /* stack trace length */
111 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
112 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
113 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
114 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
115
116 #define BYTES_PER_POINTER       sizeof(void *)
117
118 /* GFP bitmask for kmemleak internal allocations */
119 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
120                                            __GFP_NOLOCKDEP)) | \
121                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
122                                  __GFP_NOWARN)
123
124 /* scanning area inside a memory block */
125 struct kmemleak_scan_area {
126         struct hlist_node node;
127         unsigned long start;
128         size_t size;
129 };
130
131 #define KMEMLEAK_GREY   0
132 #define KMEMLEAK_BLACK  -1
133
134 /*
135  * Structure holding the metadata for each allocated memory block.
136  * Modifications to such objects should be made while holding the
137  * object->lock. Insertions or deletions from object_list, gray_list or
138  * rb_node are already protected by the corresponding locks or mutex (see
139  * the notes on locking above). These objects are reference-counted
140  * (use_count) and freed using the RCU mechanism.
141  */
142 struct kmemleak_object {
143         raw_spinlock_t lock;
144         unsigned int flags;             /* object status flags */
145         struct list_head object_list;
146         struct list_head gray_list;
147         struct rb_node rb_node;
148         struct rcu_head rcu;            /* object_list lockless traversal */
149         /* object usage count; object freed when use_count == 0 */
150         atomic_t use_count;
151         unsigned long pointer;
152         size_t size;
153         /* pass surplus references to this pointer */
154         unsigned long excess_ref;
155         /* minimum number of a pointers found before it is considered leak */
156         int min_count;
157         /* the total number of pointers found pointing to this object */
158         int count;
159         /* checksum for detecting modified objects */
160         u32 checksum;
161         /* memory ranges to be scanned inside an object (empty for all) */
162         struct hlist_head area_list;
163         depot_stack_handle_t trace_handle;
164         unsigned long jiffies;          /* creation timestamp */
165         pid_t pid;                      /* pid of the current task */
166         char comm[TASK_COMM_LEN];       /* executable name */
167 };
168
169 /* flag representing the memory block allocation status */
170 #define OBJECT_ALLOCATED        (1 << 0)
171 /* flag set after the first reporting of an unreference object */
172 #define OBJECT_REPORTED         (1 << 1)
173 /* flag set to not scan the object */
174 #define OBJECT_NO_SCAN          (1 << 2)
175 /* flag set to fully scan the object when scan_area allocation failed */
176 #define OBJECT_FULL_SCAN        (1 << 3)
177 /* flag set for object allocated with physical address */
178 #define OBJECT_PHYS             (1 << 4)
179
180 #define HEX_PREFIX              "    "
181 /* number of bytes to print per line; must be 16 or 32 */
182 #define HEX_ROW_SIZE            16
183 /* number of bytes to print at a time (1, 2, 4, 8) */
184 #define HEX_GROUP_SIZE          1
185 /* include ASCII after the hex output */
186 #define HEX_ASCII               1
187 /* max number of lines to be printed */
188 #define HEX_MAX_LINES           2
189
190 /* the list of all allocated objects */
191 static LIST_HEAD(object_list);
192 /* the list of gray-colored objects (see color_gray comment below) */
193 static LIST_HEAD(gray_list);
194 /* memory pool allocation */
195 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
196 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197 static LIST_HEAD(mem_pool_free_list);
198 /* search tree for object boundaries */
199 static struct rb_root object_tree_root = RB_ROOT;
200 /* search tree for object (with OBJECT_PHYS flag) boundaries */
201 static struct rb_root object_phys_tree_root = RB_ROOT;
202 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
203 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
204
205 /* allocation caches for kmemleak internal data */
206 static struct kmem_cache *object_cache;
207 static struct kmem_cache *scan_area_cache;
208
209 /* set if tracing memory operations is enabled */
210 static int kmemleak_enabled = 1;
211 /* same as above but only for the kmemleak_free() callback */
212 static int kmemleak_free_enabled = 1;
213 /* set in the late_initcall if there were no errors */
214 static int kmemleak_initialized;
215 /* set if a kmemleak warning was issued */
216 static int kmemleak_warning;
217 /* set if a fatal kmemleak error has occurred */
218 static int kmemleak_error;
219
220 /* minimum and maximum address that may be valid pointers */
221 static unsigned long min_addr = ULONG_MAX;
222 static unsigned long max_addr;
223
224 static struct task_struct *scan_thread;
225 /* used to avoid reporting of recently allocated objects */
226 static unsigned long jiffies_min_age;
227 static unsigned long jiffies_last_scan;
228 /* delay between automatic memory scannings */
229 static unsigned long jiffies_scan_wait;
230 /* enables or disables the task stacks scanning */
231 static int kmemleak_stack_scan = 1;
232 /* protects the memory scanning, parameters and debug/kmemleak file access */
233 static DEFINE_MUTEX(scan_mutex);
234 /* setting kmemleak=on, will set this var, skipping the disable */
235 static int kmemleak_skip_disable;
236 /* If there are leaks that can be reported */
237 static bool kmemleak_found_leaks;
238
239 static bool kmemleak_verbose;
240 module_param_named(verbose, kmemleak_verbose, bool, 0600);
241
242 static void kmemleak_disable(void);
243
244 /*
245  * Print a warning and dump the stack trace.
246  */
247 #define kmemleak_warn(x...)     do {            \
248         pr_warn(x);                             \
249         dump_stack();                           \
250         kmemleak_warning = 1;                   \
251 } while (0)
252
253 /*
254  * Macro invoked when a serious kmemleak condition occurred and cannot be
255  * recovered from. Kmemleak will be disabled and further allocation/freeing
256  * tracing no longer available.
257  */
258 #define kmemleak_stop(x...)     do {    \
259         kmemleak_warn(x);               \
260         kmemleak_disable();             \
261 } while (0)
262
263 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
264         if (seq)                                        \
265                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
266         else                                            \
267                 pr_warn(fmt, ##__VA_ARGS__);            \
268 } while (0)
269
270 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271                                  int rowsize, int groupsize, const void *buf,
272                                  size_t len, bool ascii)
273 {
274         if (seq)
275                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276                              buf, len, ascii);
277         else
278                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279                                rowsize, groupsize, buf, len, ascii);
280 }
281
282 /*
283  * Printing of the objects hex dump to the seq file. The number of lines to be
284  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286  * with the object->lock held.
287  */
288 static void hex_dump_object(struct seq_file *seq,
289                             struct kmemleak_object *object)
290 {
291         const u8 *ptr = (const u8 *)object->pointer;
292         size_t len;
293
294         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295                 return;
296
297         /* limit the number of lines to HEX_MAX_LINES */
298         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
299
300         warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
301         kasan_disable_current();
302         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
303                              HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
304         kasan_enable_current();
305 }
306
307 /*
308  * Object colors, encoded with count and min_count:
309  * - white - orphan object, not enough references to it (count < min_count)
310  * - gray  - not orphan, not marked as false positive (min_count == 0) or
311  *              sufficient references to it (count >= min_count)
312  * - black - ignore, it doesn't contain references (e.g. text section)
313  *              (min_count == -1). No function defined for this color.
314  * Newly created objects don't have any color assigned (object->count == -1)
315  * before the next memory scan when they become white.
316  */
317 static bool color_white(const struct kmemleak_object *object)
318 {
319         return object->count != KMEMLEAK_BLACK &&
320                 object->count < object->min_count;
321 }
322
323 static bool color_gray(const struct kmemleak_object *object)
324 {
325         return object->min_count != KMEMLEAK_BLACK &&
326                 object->count >= object->min_count;
327 }
328
329 /*
330  * Objects are considered unreferenced only if their color is white, they have
331  * not be deleted and have a minimum age to avoid false positives caused by
332  * pointers temporarily stored in CPU registers.
333  */
334 static bool unreferenced_object(struct kmemleak_object *object)
335 {
336         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
337                 time_before_eq(object->jiffies + jiffies_min_age,
338                                jiffies_last_scan);
339 }
340
341 /*
342  * Printing of the unreferenced objects information to the seq file. The
343  * print_unreferenced function must be called with the object->lock held.
344  */
345 static void print_unreferenced(struct seq_file *seq,
346                                struct kmemleak_object *object)
347 {
348         int i;
349         unsigned long *entries;
350         unsigned int nr_entries;
351         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
352
353         nr_entries = stack_depot_fetch(object->trace_handle, &entries);
354         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
355                           object->pointer, object->size);
356         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
357                            object->comm, object->pid, object->jiffies,
358                            msecs_age / 1000, msecs_age % 1000);
359         hex_dump_object(seq, object);
360         warn_or_seq_printf(seq, "  backtrace:\n");
361
362         for (i = 0; i < nr_entries; i++) {
363                 void *ptr = (void *)entries[i];
364                 warn_or_seq_printf(seq, "    [<%pK>] %pS\n", ptr, ptr);
365         }
366 }
367
368 /*
369  * Print the kmemleak_object information. This function is used mainly for
370  * debugging special cases when kmemleak operations. It must be called with
371  * the object->lock held.
372  */
373 static void dump_object_info(struct kmemleak_object *object)
374 {
375         pr_notice("Object 0x%08lx (size %zu):\n",
376                         object->pointer, object->size);
377         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
378                         object->comm, object->pid, object->jiffies);
379         pr_notice("  min_count = %d\n", object->min_count);
380         pr_notice("  count = %d\n", object->count);
381         pr_notice("  flags = 0x%x\n", object->flags);
382         pr_notice("  checksum = %u\n", object->checksum);
383         pr_notice("  backtrace:\n");
384         if (object->trace_handle)
385                 stack_depot_print(object->trace_handle);
386 }
387
388 /*
389  * Look-up a memory block metadata (kmemleak_object) in the object search
390  * tree based on a pointer value. If alias is 0, only values pointing to the
391  * beginning of the memory block are allowed. The kmemleak_lock must be held
392  * when calling this function.
393  */
394 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
395                                                bool is_phys)
396 {
397         struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
398                              object_tree_root.rb_node;
399         unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
400
401         while (rb) {
402                 struct kmemleak_object *object;
403                 unsigned long untagged_objp;
404
405                 object = rb_entry(rb, struct kmemleak_object, rb_node);
406                 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
407
408                 if (untagged_ptr < untagged_objp)
409                         rb = object->rb_node.rb_left;
410                 else if (untagged_objp + object->size <= untagged_ptr)
411                         rb = object->rb_node.rb_right;
412                 else if (untagged_objp == untagged_ptr || alias)
413                         return object;
414                 else {
415                         kmemleak_warn("Found object by alias at 0x%08lx\n",
416                                       ptr);
417                         dump_object_info(object);
418                         break;
419                 }
420         }
421         return NULL;
422 }
423
424 /* Look-up a kmemleak object which allocated with virtual address. */
425 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
426 {
427         return __lookup_object(ptr, alias, false);
428 }
429
430 /*
431  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
432  * that once an object's use_count reached 0, the RCU freeing was already
433  * registered and the object should no longer be used. This function must be
434  * called under the protection of rcu_read_lock().
435  */
436 static int get_object(struct kmemleak_object *object)
437 {
438         return atomic_inc_not_zero(&object->use_count);
439 }
440
441 /*
442  * Memory pool allocation and freeing. kmemleak_lock must not be held.
443  */
444 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
445 {
446         unsigned long flags;
447         struct kmemleak_object *object;
448
449         /* try the slab allocator first */
450         if (object_cache) {
451                 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
452                 if (object)
453                         return object;
454         }
455
456         /* slab allocation failed, try the memory pool */
457         raw_spin_lock_irqsave(&kmemleak_lock, flags);
458         object = list_first_entry_or_null(&mem_pool_free_list,
459                                           typeof(*object), object_list);
460         if (object)
461                 list_del(&object->object_list);
462         else if (mem_pool_free_count)
463                 object = &mem_pool[--mem_pool_free_count];
464         else
465                 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
466         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
467
468         return object;
469 }
470
471 /*
472  * Return the object to either the slab allocator or the memory pool.
473  */
474 static void mem_pool_free(struct kmemleak_object *object)
475 {
476         unsigned long flags;
477
478         if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
479                 kmem_cache_free(object_cache, object);
480                 return;
481         }
482
483         /* add the object to the memory pool free list */
484         raw_spin_lock_irqsave(&kmemleak_lock, flags);
485         list_add(&object->object_list, &mem_pool_free_list);
486         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
487 }
488
489 /*
490  * RCU callback to free a kmemleak_object.
491  */
492 static void free_object_rcu(struct rcu_head *rcu)
493 {
494         struct hlist_node *tmp;
495         struct kmemleak_scan_area *area;
496         struct kmemleak_object *object =
497                 container_of(rcu, struct kmemleak_object, rcu);
498
499         /*
500          * Once use_count is 0 (guaranteed by put_object), there is no other
501          * code accessing this object, hence no need for locking.
502          */
503         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
504                 hlist_del(&area->node);
505                 kmem_cache_free(scan_area_cache, area);
506         }
507         mem_pool_free(object);
508 }
509
510 /*
511  * Decrement the object use_count. Once the count is 0, free the object using
512  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
513  * delete_object() path, the delayed RCU freeing ensures that there is no
514  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
515  * is also possible.
516  */
517 static void put_object(struct kmemleak_object *object)
518 {
519         if (!atomic_dec_and_test(&object->use_count))
520                 return;
521
522         /* should only get here after delete_object was called */
523         WARN_ON(object->flags & OBJECT_ALLOCATED);
524
525         /*
526          * It may be too early for the RCU callbacks, however, there is no
527          * concurrent object_list traversal when !object_cache and all objects
528          * came from the memory pool. Free the object directly.
529          */
530         if (object_cache)
531                 call_rcu(&object->rcu, free_object_rcu);
532         else
533                 free_object_rcu(&object->rcu);
534 }
535
536 /*
537  * Look up an object in the object search tree and increase its use_count.
538  */
539 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
540                                                      bool is_phys)
541 {
542         unsigned long flags;
543         struct kmemleak_object *object;
544
545         rcu_read_lock();
546         raw_spin_lock_irqsave(&kmemleak_lock, flags);
547         object = __lookup_object(ptr, alias, is_phys);
548         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
549
550         /* check whether the object is still available */
551         if (object && !get_object(object))
552                 object = NULL;
553         rcu_read_unlock();
554
555         return object;
556 }
557
558 /* Look up and get an object which allocated with virtual address. */
559 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
560 {
561         return __find_and_get_object(ptr, alias, false);
562 }
563
564 /*
565  * Remove an object from the object_tree_root (or object_phys_tree_root)
566  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
567  * is still enabled.
568  */
569 static void __remove_object(struct kmemleak_object *object)
570 {
571         rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
572                                    &object_phys_tree_root :
573                                    &object_tree_root);
574         list_del_rcu(&object->object_list);
575 }
576
577 /*
578  * Look up an object in the object search tree and remove it from both
579  * object_tree_root (or object_phys_tree_root) and object_list. The
580  * returned object's use_count should be at least 1, as initially set
581  * by create_object().
582  */
583 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
584                                                       bool is_phys)
585 {
586         unsigned long flags;
587         struct kmemleak_object *object;
588
589         raw_spin_lock_irqsave(&kmemleak_lock, flags);
590         object = __lookup_object(ptr, alias, is_phys);
591         if (object)
592                 __remove_object(object);
593         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
594
595         return object;
596 }
597
598 static noinline depot_stack_handle_t set_track_prepare(void)
599 {
600         depot_stack_handle_t trace_handle;
601         unsigned long entries[MAX_TRACE];
602         unsigned int nr_entries;
603
604         if (!kmemleak_initialized)
605                 return 0;
606         nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 3);
607         trace_handle = stack_depot_save(entries, nr_entries, GFP_NOWAIT);
608
609         return trace_handle;
610 }
611
612 /*
613  * Create the metadata (struct kmemleak_object) corresponding to an allocated
614  * memory block and add it to the object_list and object_tree_root (or
615  * object_phys_tree_root).
616  */
617 static void __create_object(unsigned long ptr, size_t size,
618                             int min_count, gfp_t gfp, bool is_phys)
619 {
620         unsigned long flags;
621         struct kmemleak_object *object, *parent;
622         struct rb_node **link, *rb_parent;
623         unsigned long untagged_ptr;
624         unsigned long untagged_objp;
625
626         object = mem_pool_alloc(gfp);
627         if (!object) {
628                 pr_warn("Cannot allocate a kmemleak_object structure\n");
629                 kmemleak_disable();
630                 return;
631         }
632
633         INIT_LIST_HEAD(&object->object_list);
634         INIT_LIST_HEAD(&object->gray_list);
635         INIT_HLIST_HEAD(&object->area_list);
636         raw_spin_lock_init(&object->lock);
637         atomic_set(&object->use_count, 1);
638         object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
639         object->pointer = ptr;
640         object->size = kfence_ksize((void *)ptr) ?: size;
641         object->excess_ref = 0;
642         object->min_count = min_count;
643         object->count = 0;                      /* white color initially */
644         object->jiffies = jiffies;
645         object->checksum = 0;
646
647         /* task information */
648         if (in_hardirq()) {
649                 object->pid = 0;
650                 strncpy(object->comm, "hardirq", sizeof(object->comm));
651         } else if (in_serving_softirq()) {
652                 object->pid = 0;
653                 strncpy(object->comm, "softirq", sizeof(object->comm));
654         } else {
655                 object->pid = current->pid;
656                 /*
657                  * There is a small chance of a race with set_task_comm(),
658                  * however using get_task_comm() here may cause locking
659                  * dependency issues with current->alloc_lock. In the worst
660                  * case, the command line is not correct.
661                  */
662                 strncpy(object->comm, current->comm, sizeof(object->comm));
663         }
664
665         /* kernel backtrace */
666         object->trace_handle = set_track_prepare();
667
668         raw_spin_lock_irqsave(&kmemleak_lock, flags);
669
670         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
671         /*
672          * Only update min_addr and max_addr with object
673          * storing virtual address.
674          */
675         if (!is_phys) {
676                 min_addr = min(min_addr, untagged_ptr);
677                 max_addr = max(max_addr, untagged_ptr + size);
678         }
679         link = is_phys ? &object_phys_tree_root.rb_node :
680                 &object_tree_root.rb_node;
681         rb_parent = NULL;
682         while (*link) {
683                 rb_parent = *link;
684                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
685                 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
686                 if (untagged_ptr + size <= untagged_objp)
687                         link = &parent->rb_node.rb_left;
688                 else if (untagged_objp + parent->size <= untagged_ptr)
689                         link = &parent->rb_node.rb_right;
690                 else {
691                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
692                                       ptr);
693                         /*
694                          * No need for parent->lock here since "parent" cannot
695                          * be freed while the kmemleak_lock is held.
696                          */
697                         dump_object_info(parent);
698                         kmem_cache_free(object_cache, object);
699                         goto out;
700                 }
701         }
702         rb_link_node(&object->rb_node, rb_parent, link);
703         rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
704                                           &object_tree_root);
705         list_add_tail_rcu(&object->object_list, &object_list);
706 out:
707         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
708 }
709
710 /* Create kmemleak object which allocated with virtual address. */
711 static void create_object(unsigned long ptr, size_t size,
712                           int min_count, gfp_t gfp)
713 {
714         __create_object(ptr, size, min_count, gfp, false);
715 }
716
717 /* Create kmemleak object which allocated with physical address. */
718 static void create_object_phys(unsigned long ptr, size_t size,
719                                int min_count, gfp_t gfp)
720 {
721         __create_object(ptr, size, min_count, gfp, true);
722 }
723
724 /*
725  * Mark the object as not allocated and schedule RCU freeing via put_object().
726  */
727 static void __delete_object(struct kmemleak_object *object)
728 {
729         unsigned long flags;
730
731         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
732         WARN_ON(atomic_read(&object->use_count) < 1);
733
734         /*
735          * Locking here also ensures that the corresponding memory block
736          * cannot be freed when it is being scanned.
737          */
738         raw_spin_lock_irqsave(&object->lock, flags);
739         object->flags &= ~OBJECT_ALLOCATED;
740         raw_spin_unlock_irqrestore(&object->lock, flags);
741         put_object(object);
742 }
743
744 /*
745  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
746  * delete it.
747  */
748 static void delete_object_full(unsigned long ptr)
749 {
750         struct kmemleak_object *object;
751
752         object = find_and_remove_object(ptr, 0, false);
753         if (!object) {
754 #ifdef DEBUG
755                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
756                               ptr);
757 #endif
758                 return;
759         }
760         __delete_object(object);
761 }
762
763 /*
764  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
765  * delete it. If the memory block is partially freed, the function may create
766  * additional metadata for the remaining parts of the block.
767  */
768 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
769 {
770         struct kmemleak_object *object;
771         unsigned long start, end;
772
773         object = find_and_remove_object(ptr, 1, is_phys);
774         if (!object) {
775 #ifdef DEBUG
776                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
777                               ptr, size);
778 #endif
779                 return;
780         }
781
782         /*
783          * Create one or two objects that may result from the memory block
784          * split. Note that partial freeing is only done by free_bootmem() and
785          * this happens before kmemleak_init() is called.
786          */
787         start = object->pointer;
788         end = object->pointer + object->size;
789         if (ptr > start)
790                 __create_object(start, ptr - start, object->min_count,
791                               GFP_KERNEL, is_phys);
792         if (ptr + size < end)
793                 __create_object(ptr + size, end - ptr - size, object->min_count,
794                               GFP_KERNEL, is_phys);
795
796         __delete_object(object);
797 }
798
799 static void __paint_it(struct kmemleak_object *object, int color)
800 {
801         object->min_count = color;
802         if (color == KMEMLEAK_BLACK)
803                 object->flags |= OBJECT_NO_SCAN;
804 }
805
806 static void paint_it(struct kmemleak_object *object, int color)
807 {
808         unsigned long flags;
809
810         raw_spin_lock_irqsave(&object->lock, flags);
811         __paint_it(object, color);
812         raw_spin_unlock_irqrestore(&object->lock, flags);
813 }
814
815 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
816 {
817         struct kmemleak_object *object;
818
819         object = __find_and_get_object(ptr, 0, is_phys);
820         if (!object) {
821                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
822                               ptr,
823                               (color == KMEMLEAK_GREY) ? "Grey" :
824                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
825                 return;
826         }
827         paint_it(object, color);
828         put_object(object);
829 }
830
831 /*
832  * Mark an object permanently as gray-colored so that it can no longer be
833  * reported as a leak. This is used in general to mark a false positive.
834  */
835 static void make_gray_object(unsigned long ptr)
836 {
837         paint_ptr(ptr, KMEMLEAK_GREY, false);
838 }
839
840 /*
841  * Mark the object as black-colored so that it is ignored from scans and
842  * reporting.
843  */
844 static void make_black_object(unsigned long ptr, bool is_phys)
845 {
846         paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
847 }
848
849 /*
850  * Add a scanning area to the object. If at least one such area is added,
851  * kmemleak will only scan these ranges rather than the whole memory block.
852  */
853 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
854 {
855         unsigned long flags;
856         struct kmemleak_object *object;
857         struct kmemleak_scan_area *area = NULL;
858         unsigned long untagged_ptr;
859         unsigned long untagged_objp;
860
861         object = find_and_get_object(ptr, 1);
862         if (!object) {
863                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
864                               ptr);
865                 return;
866         }
867
868         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
869         untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
870
871         if (scan_area_cache)
872                 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
873
874         raw_spin_lock_irqsave(&object->lock, flags);
875         if (!area) {
876                 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
877                 /* mark the object for full scan to avoid false positives */
878                 object->flags |= OBJECT_FULL_SCAN;
879                 goto out_unlock;
880         }
881         if (size == SIZE_MAX) {
882                 size = untagged_objp + object->size - untagged_ptr;
883         } else if (untagged_ptr + size > untagged_objp + object->size) {
884                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
885                 dump_object_info(object);
886                 kmem_cache_free(scan_area_cache, area);
887                 goto out_unlock;
888         }
889
890         INIT_HLIST_NODE(&area->node);
891         area->start = ptr;
892         area->size = size;
893
894         hlist_add_head(&area->node, &object->area_list);
895 out_unlock:
896         raw_spin_unlock_irqrestore(&object->lock, flags);
897         put_object(object);
898 }
899
900 /*
901  * Any surplus references (object already gray) to 'ptr' are passed to
902  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
903  * vm_struct may be used as an alternative reference to the vmalloc'ed object
904  * (see free_thread_stack()).
905  */
906 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
907 {
908         unsigned long flags;
909         struct kmemleak_object *object;
910
911         object = find_and_get_object(ptr, 0);
912         if (!object) {
913                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
914                               ptr);
915                 return;
916         }
917
918         raw_spin_lock_irqsave(&object->lock, flags);
919         object->excess_ref = excess_ref;
920         raw_spin_unlock_irqrestore(&object->lock, flags);
921         put_object(object);
922 }
923
924 /*
925  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
926  * pointer. Such object will not be scanned by kmemleak but references to it
927  * are searched.
928  */
929 static void object_no_scan(unsigned long ptr)
930 {
931         unsigned long flags;
932         struct kmemleak_object *object;
933
934         object = find_and_get_object(ptr, 0);
935         if (!object) {
936                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
937                 return;
938         }
939
940         raw_spin_lock_irqsave(&object->lock, flags);
941         object->flags |= OBJECT_NO_SCAN;
942         raw_spin_unlock_irqrestore(&object->lock, flags);
943         put_object(object);
944 }
945
946 /**
947  * kmemleak_alloc - register a newly allocated object
948  * @ptr:        pointer to beginning of the object
949  * @size:       size of the object
950  * @min_count:  minimum number of references to this object. If during memory
951  *              scanning a number of references less than @min_count is found,
952  *              the object is reported as a memory leak. If @min_count is 0,
953  *              the object is never reported as a leak. If @min_count is -1,
954  *              the object is ignored (not scanned and not reported as a leak)
955  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
956  *
957  * This function is called from the kernel allocators when a new object
958  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
959  */
960 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
961                           gfp_t gfp)
962 {
963         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
964
965         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
966                 create_object((unsigned long)ptr, size, min_count, gfp);
967 }
968 EXPORT_SYMBOL_GPL(kmemleak_alloc);
969
970 /**
971  * kmemleak_alloc_percpu - register a newly allocated __percpu object
972  * @ptr:        __percpu pointer to beginning of the object
973  * @size:       size of the object
974  * @gfp:        flags used for kmemleak internal memory allocations
975  *
976  * This function is called from the kernel percpu allocator when a new object
977  * (memory block) is allocated (alloc_percpu).
978  */
979 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
980                                  gfp_t gfp)
981 {
982         unsigned int cpu;
983
984         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
985
986         /*
987          * Percpu allocations are only scanned and not reported as leaks
988          * (min_count is set to 0).
989          */
990         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
991                 for_each_possible_cpu(cpu)
992                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
993                                       size, 0, gfp);
994 }
995 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
996
997 /**
998  * kmemleak_vmalloc - register a newly vmalloc'ed object
999  * @area:       pointer to vm_struct
1000  * @size:       size of the object
1001  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
1002  *
1003  * This function is called from the vmalloc() kernel allocator when a new
1004  * object (memory block) is allocated.
1005  */
1006 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1007 {
1008         pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1009
1010         /*
1011          * A min_count = 2 is needed because vm_struct contains a reference to
1012          * the virtual address of the vmalloc'ed block.
1013          */
1014         if (kmemleak_enabled) {
1015                 create_object((unsigned long)area->addr, size, 2, gfp);
1016                 object_set_excess_ref((unsigned long)area,
1017                                       (unsigned long)area->addr);
1018         }
1019 }
1020 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1021
1022 /**
1023  * kmemleak_free - unregister a previously registered object
1024  * @ptr:        pointer to beginning of the object
1025  *
1026  * This function is called from the kernel allocators when an object (memory
1027  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1028  */
1029 void __ref kmemleak_free(const void *ptr)
1030 {
1031         pr_debug("%s(0x%p)\n", __func__, ptr);
1032
1033         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1034                 delete_object_full((unsigned long)ptr);
1035 }
1036 EXPORT_SYMBOL_GPL(kmemleak_free);
1037
1038 /**
1039  * kmemleak_free_part - partially unregister a previously registered object
1040  * @ptr:        pointer to the beginning or inside the object. This also
1041  *              represents the start of the range to be freed
1042  * @size:       size to be unregistered
1043  *
1044  * This function is called when only a part of a memory block is freed
1045  * (usually from the bootmem allocator).
1046  */
1047 void __ref kmemleak_free_part(const void *ptr, size_t size)
1048 {
1049         pr_debug("%s(0x%p)\n", __func__, ptr);
1050
1051         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1052                 delete_object_part((unsigned long)ptr, size, false);
1053 }
1054 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1055
1056 /**
1057  * kmemleak_free_percpu - unregister a previously registered __percpu object
1058  * @ptr:        __percpu pointer to beginning of the object
1059  *
1060  * This function is called from the kernel percpu allocator when an object
1061  * (memory block) is freed (free_percpu).
1062  */
1063 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1064 {
1065         unsigned int cpu;
1066
1067         pr_debug("%s(0x%p)\n", __func__, ptr);
1068
1069         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1070                 for_each_possible_cpu(cpu)
1071                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1072                                                                       cpu));
1073 }
1074 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1075
1076 /**
1077  * kmemleak_update_trace - update object allocation stack trace
1078  * @ptr:        pointer to beginning of the object
1079  *
1080  * Override the object allocation stack trace for cases where the actual
1081  * allocation place is not always useful.
1082  */
1083 void __ref kmemleak_update_trace(const void *ptr)
1084 {
1085         struct kmemleak_object *object;
1086         unsigned long flags;
1087
1088         pr_debug("%s(0x%p)\n", __func__, ptr);
1089
1090         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1091                 return;
1092
1093         object = find_and_get_object((unsigned long)ptr, 1);
1094         if (!object) {
1095 #ifdef DEBUG
1096                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1097                               ptr);
1098 #endif
1099                 return;
1100         }
1101
1102         raw_spin_lock_irqsave(&object->lock, flags);
1103         object->trace_handle = set_track_prepare();
1104         raw_spin_unlock_irqrestore(&object->lock, flags);
1105
1106         put_object(object);
1107 }
1108 EXPORT_SYMBOL(kmemleak_update_trace);
1109
1110 /**
1111  * kmemleak_not_leak - mark an allocated object as false positive
1112  * @ptr:        pointer to beginning of the object
1113  *
1114  * Calling this function on an object will cause the memory block to no longer
1115  * be reported as leak and always be scanned.
1116  */
1117 void __ref kmemleak_not_leak(const void *ptr)
1118 {
1119         pr_debug("%s(0x%p)\n", __func__, ptr);
1120
1121         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1122                 make_gray_object((unsigned long)ptr);
1123 }
1124 EXPORT_SYMBOL(kmemleak_not_leak);
1125
1126 /**
1127  * kmemleak_ignore - ignore an allocated object
1128  * @ptr:        pointer to beginning of the object
1129  *
1130  * Calling this function on an object will cause the memory block to be
1131  * ignored (not scanned and not reported as a leak). This is usually done when
1132  * it is known that the corresponding block is not a leak and does not contain
1133  * any references to other allocated memory blocks.
1134  */
1135 void __ref kmemleak_ignore(const void *ptr)
1136 {
1137         pr_debug("%s(0x%p)\n", __func__, ptr);
1138
1139         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1140                 make_black_object((unsigned long)ptr, false);
1141 }
1142 EXPORT_SYMBOL(kmemleak_ignore);
1143
1144 /**
1145  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1146  * @ptr:        pointer to beginning or inside the object. This also
1147  *              represents the start of the scan area
1148  * @size:       size of the scan area
1149  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1150  *
1151  * This function is used when it is known that only certain parts of an object
1152  * contain references to other objects. Kmemleak will only scan these areas
1153  * reducing the number false negatives.
1154  */
1155 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1156 {
1157         pr_debug("%s(0x%p)\n", __func__, ptr);
1158
1159         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1160                 add_scan_area((unsigned long)ptr, size, gfp);
1161 }
1162 EXPORT_SYMBOL(kmemleak_scan_area);
1163
1164 /**
1165  * kmemleak_no_scan - do not scan an allocated object
1166  * @ptr:        pointer to beginning of the object
1167  *
1168  * This function notifies kmemleak not to scan the given memory block. Useful
1169  * in situations where it is known that the given object does not contain any
1170  * references to other objects. Kmemleak will not scan such objects reducing
1171  * the number of false negatives.
1172  */
1173 void __ref kmemleak_no_scan(const void *ptr)
1174 {
1175         pr_debug("%s(0x%p)\n", __func__, ptr);
1176
1177         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1178                 object_no_scan((unsigned long)ptr);
1179 }
1180 EXPORT_SYMBOL(kmemleak_no_scan);
1181
1182 /**
1183  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1184  *                       address argument
1185  * @phys:       physical address of the object
1186  * @size:       size of the object
1187  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1188  */
1189 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1190 {
1191         pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1192
1193         if (kmemleak_enabled)
1194                 /*
1195                  * Create object with OBJECT_PHYS flag and
1196                  * assume min_count 0.
1197                  */
1198                 create_object_phys((unsigned long)phys, size, 0, gfp);
1199 }
1200 EXPORT_SYMBOL(kmemleak_alloc_phys);
1201
1202 /**
1203  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1204  *                           physical address argument
1205  * @phys:       physical address if the beginning or inside an object. This
1206  *              also represents the start of the range to be freed
1207  * @size:       size to be unregistered
1208  */
1209 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1210 {
1211         pr_debug("%s(0x%pa)\n", __func__, &phys);
1212
1213         if (kmemleak_enabled)
1214                 delete_object_part((unsigned long)phys, size, true);
1215 }
1216 EXPORT_SYMBOL(kmemleak_free_part_phys);
1217
1218 /**
1219  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1220  *                        address argument
1221  * @phys:       physical address of the object
1222  */
1223 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1224 {
1225         pr_debug("%s(0x%pa)\n", __func__, &phys);
1226
1227         if (kmemleak_enabled)
1228                 make_black_object((unsigned long)phys, true);
1229 }
1230 EXPORT_SYMBOL(kmemleak_ignore_phys);
1231
1232 /*
1233  * Update an object's checksum and return true if it was modified.
1234  */
1235 static bool update_checksum(struct kmemleak_object *object)
1236 {
1237         u32 old_csum = object->checksum;
1238
1239         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1240                 return false;
1241
1242         kasan_disable_current();
1243         kcsan_disable_current();
1244         object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1245         kasan_enable_current();
1246         kcsan_enable_current();
1247
1248         return object->checksum != old_csum;
1249 }
1250
1251 /*
1252  * Update an object's references. object->lock must be held by the caller.
1253  */
1254 static void update_refs(struct kmemleak_object *object)
1255 {
1256         if (!color_white(object)) {
1257                 /* non-orphan, ignored or new */
1258                 return;
1259         }
1260
1261         /*
1262          * Increase the object's reference count (number of pointers to the
1263          * memory block). If this count reaches the required minimum, the
1264          * object's color will become gray and it will be added to the
1265          * gray_list.
1266          */
1267         object->count++;
1268         if (color_gray(object)) {
1269                 /* put_object() called when removing from gray_list */
1270                 WARN_ON(!get_object(object));
1271                 list_add_tail(&object->gray_list, &gray_list);
1272         }
1273 }
1274
1275 /*
1276  * Memory scanning is a long process and it needs to be interruptible. This
1277  * function checks whether such interrupt condition occurred.
1278  */
1279 static int scan_should_stop(void)
1280 {
1281         if (!kmemleak_enabled)
1282                 return 1;
1283
1284         /*
1285          * This function may be called from either process or kthread context,
1286          * hence the need to check for both stop conditions.
1287          */
1288         if (current->mm)
1289                 return signal_pending(current);
1290         else
1291                 return kthread_should_stop();
1292
1293         return 0;
1294 }
1295
1296 /*
1297  * Scan a memory block (exclusive range) for valid pointers and add those
1298  * found to the gray list.
1299  */
1300 static void scan_block(void *_start, void *_end,
1301                        struct kmemleak_object *scanned)
1302 {
1303         unsigned long *ptr;
1304         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1305         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1306         unsigned long flags;
1307         unsigned long untagged_ptr;
1308
1309         raw_spin_lock_irqsave(&kmemleak_lock, flags);
1310         for (ptr = start; ptr < end; ptr++) {
1311                 struct kmemleak_object *object;
1312                 unsigned long pointer;
1313                 unsigned long excess_ref;
1314
1315                 if (scan_should_stop())
1316                         break;
1317
1318                 kasan_disable_current();
1319                 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1320                 kasan_enable_current();
1321
1322                 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1323                 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1324                         continue;
1325
1326                 /*
1327                  * No need for get_object() here since we hold kmemleak_lock.
1328                  * object->use_count cannot be dropped to 0 while the object
1329                  * is still present in object_tree_root and object_list
1330                  * (with updates protected by kmemleak_lock).
1331                  */
1332                 object = lookup_object(pointer, 1);
1333                 if (!object)
1334                         continue;
1335                 if (object == scanned)
1336                         /* self referenced, ignore */
1337                         continue;
1338
1339                 /*
1340                  * Avoid the lockdep recursive warning on object->lock being
1341                  * previously acquired in scan_object(). These locks are
1342                  * enclosed by scan_mutex.
1343                  */
1344                 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1345                 /* only pass surplus references (object already gray) */
1346                 if (color_gray(object)) {
1347                         excess_ref = object->excess_ref;
1348                         /* no need for update_refs() if object already gray */
1349                 } else {
1350                         excess_ref = 0;
1351                         update_refs(object);
1352                 }
1353                 raw_spin_unlock(&object->lock);
1354
1355                 if (excess_ref) {
1356                         object = lookup_object(excess_ref, 0);
1357                         if (!object)
1358                                 continue;
1359                         if (object == scanned)
1360                                 /* circular reference, ignore */
1361                                 continue;
1362                         raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1363                         update_refs(object);
1364                         raw_spin_unlock(&object->lock);
1365                 }
1366         }
1367         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1368 }
1369
1370 /*
1371  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1372  */
1373 #ifdef CONFIG_SMP
1374 static void scan_large_block(void *start, void *end)
1375 {
1376         void *next;
1377
1378         while (start < end) {
1379                 next = min(start + MAX_SCAN_SIZE, end);
1380                 scan_block(start, next, NULL);
1381                 start = next;
1382                 cond_resched();
1383         }
1384 }
1385 #endif
1386
1387 /*
1388  * Scan a memory block corresponding to a kmemleak_object. A condition is
1389  * that object->use_count >= 1.
1390  */
1391 static void scan_object(struct kmemleak_object *object)
1392 {
1393         struct kmemleak_scan_area *area;
1394         unsigned long flags;
1395         void *obj_ptr;
1396
1397         /*
1398          * Once the object->lock is acquired, the corresponding memory block
1399          * cannot be freed (the same lock is acquired in delete_object).
1400          */
1401         raw_spin_lock_irqsave(&object->lock, flags);
1402         if (object->flags & OBJECT_NO_SCAN)
1403                 goto out;
1404         if (!(object->flags & OBJECT_ALLOCATED))
1405                 /* already freed object */
1406                 goto out;
1407
1408         obj_ptr = object->flags & OBJECT_PHYS ?
1409                   __va((phys_addr_t)object->pointer) :
1410                   (void *)object->pointer;
1411
1412         if (hlist_empty(&object->area_list) ||
1413             object->flags & OBJECT_FULL_SCAN) {
1414                 void *start = obj_ptr;
1415                 void *end = obj_ptr + object->size;
1416                 void *next;
1417
1418                 do {
1419                         next = min(start + MAX_SCAN_SIZE, end);
1420                         scan_block(start, next, object);
1421
1422                         start = next;
1423                         if (start >= end)
1424                                 break;
1425
1426                         raw_spin_unlock_irqrestore(&object->lock, flags);
1427                         cond_resched();
1428                         raw_spin_lock_irqsave(&object->lock, flags);
1429                 } while (object->flags & OBJECT_ALLOCATED);
1430         } else
1431                 hlist_for_each_entry(area, &object->area_list, node)
1432                         scan_block((void *)area->start,
1433                                    (void *)(area->start + area->size),
1434                                    object);
1435 out:
1436         raw_spin_unlock_irqrestore(&object->lock, flags);
1437 }
1438
1439 /*
1440  * Scan the objects already referenced (gray objects). More objects will be
1441  * referenced and, if there are no memory leaks, all the objects are scanned.
1442  */
1443 static void scan_gray_list(void)
1444 {
1445         struct kmemleak_object *object, *tmp;
1446
1447         /*
1448          * The list traversal is safe for both tail additions and removals
1449          * from inside the loop. The kmemleak objects cannot be freed from
1450          * outside the loop because their use_count was incremented.
1451          */
1452         object = list_entry(gray_list.next, typeof(*object), gray_list);
1453         while (&object->gray_list != &gray_list) {
1454                 cond_resched();
1455
1456                 /* may add new objects to the list */
1457                 if (!scan_should_stop())
1458                         scan_object(object);
1459
1460                 tmp = list_entry(object->gray_list.next, typeof(*object),
1461                                  gray_list);
1462
1463                 /* remove the object from the list and release it */
1464                 list_del(&object->gray_list);
1465                 put_object(object);
1466
1467                 object = tmp;
1468         }
1469         WARN_ON(!list_empty(&gray_list));
1470 }
1471
1472 /*
1473  * Conditionally call resched() in an object iteration loop while making sure
1474  * that the given object won't go away without RCU read lock by performing a
1475  * get_object() if !pinned.
1476  *
1477  * Return: false if can't do a cond_resched() due to get_object() failure
1478  *         true otherwise
1479  */
1480 static bool kmemleak_cond_resched(struct kmemleak_object *object, bool pinned)
1481 {
1482         if (!pinned && !get_object(object))
1483                 return false;
1484
1485         rcu_read_unlock();
1486         cond_resched();
1487         rcu_read_lock();
1488         if (!pinned)
1489                 put_object(object);
1490         return true;
1491 }
1492
1493 /*
1494  * Scan data sections and all the referenced memory blocks allocated via the
1495  * kernel's standard allocators. This function must be called with the
1496  * scan_mutex held.
1497  */
1498 static void kmemleak_scan(void)
1499 {
1500         struct kmemleak_object *object;
1501         struct zone *zone;
1502         int __maybe_unused i;
1503         int new_leaks = 0;
1504         int loop_cnt = 0;
1505
1506         jiffies_last_scan = jiffies;
1507
1508         /* prepare the kmemleak_object's */
1509         rcu_read_lock();
1510         list_for_each_entry_rcu(object, &object_list, object_list) {
1511                 bool obj_pinned = false;
1512
1513                 raw_spin_lock_irq(&object->lock);
1514 #ifdef DEBUG
1515                 /*
1516                  * With a few exceptions there should be a maximum of
1517                  * 1 reference to any object at this point.
1518                  */
1519                 if (atomic_read(&object->use_count) > 1) {
1520                         pr_debug("object->use_count = %d\n",
1521                                  atomic_read(&object->use_count));
1522                         dump_object_info(object);
1523                 }
1524 #endif
1525
1526                 /* ignore objects outside lowmem (paint them black) */
1527                 if ((object->flags & OBJECT_PHYS) &&
1528                    !(object->flags & OBJECT_NO_SCAN)) {
1529                         unsigned long phys = object->pointer;
1530
1531                         if (PHYS_PFN(phys) < min_low_pfn ||
1532                             PHYS_PFN(phys + object->size) >= max_low_pfn)
1533                                 __paint_it(object, KMEMLEAK_BLACK);
1534                 }
1535
1536                 /* reset the reference count (whiten the object) */
1537                 object->count = 0;
1538                 if (color_gray(object) && get_object(object)) {
1539                         list_add_tail(&object->gray_list, &gray_list);
1540                         obj_pinned = true;
1541                 }
1542
1543                 raw_spin_unlock_irq(&object->lock);
1544
1545                 /*
1546                  * Do a cond_resched() every 64k objects to avoid soft lockup.
1547                  */
1548                 if (!(++loop_cnt & 0xffff) &&
1549                     !kmemleak_cond_resched(object, obj_pinned))
1550                         loop_cnt--; /* Try again on next object */
1551         }
1552         rcu_read_unlock();
1553
1554 #ifdef CONFIG_SMP
1555         /* per-cpu sections scanning */
1556         for_each_possible_cpu(i)
1557                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1558                                  __per_cpu_end + per_cpu_offset(i));
1559 #endif
1560
1561         /*
1562          * Struct page scanning for each node.
1563          */
1564         get_online_mems();
1565         for_each_populated_zone(zone) {
1566                 unsigned long start_pfn = zone->zone_start_pfn;
1567                 unsigned long end_pfn = zone_end_pfn(zone);
1568                 unsigned long pfn;
1569
1570                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1571                         struct page *page = pfn_to_online_page(pfn);
1572
1573                         if (!page)
1574                                 continue;
1575
1576                         /* only scan pages belonging to this zone */
1577                         if (page_zone(page) != zone)
1578                                 continue;
1579                         /* only scan if page is in use */
1580                         if (page_count(page) == 0)
1581                                 continue;
1582                         scan_block(page, page + 1, NULL);
1583                         if (!(pfn & 63))
1584                                 cond_resched();
1585                 }
1586         }
1587         put_online_mems();
1588
1589         /*
1590          * Scanning the task stacks (may introduce false negatives).
1591          */
1592         if (kmemleak_stack_scan) {
1593                 struct task_struct *p, *g;
1594
1595                 rcu_read_lock();
1596                 for_each_process_thread(g, p) {
1597                         void *stack = try_get_task_stack(p);
1598                         if (stack) {
1599                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1600                                 put_task_stack(p);
1601                         }
1602                 }
1603                 rcu_read_unlock();
1604         }
1605
1606         /*
1607          * Scan the objects already referenced from the sections scanned
1608          * above.
1609          */
1610         scan_gray_list();
1611
1612         /*
1613          * Check for new or unreferenced objects modified since the previous
1614          * scan and color them gray until the next scan.
1615          */
1616         rcu_read_lock();
1617         loop_cnt = 0;
1618         list_for_each_entry_rcu(object, &object_list, object_list) {
1619                 /*
1620                  * Do a cond_resched() every 64k objects to avoid soft lockup.
1621                  */
1622                 if (!(++loop_cnt & 0xffff) &&
1623                     !kmemleak_cond_resched(object, false))
1624                         loop_cnt--;     /* Try again on next object */
1625
1626                 /*
1627                  * This is racy but we can save the overhead of lock/unlock
1628                  * calls. The missed objects, if any, should be caught in
1629                  * the next scan.
1630                  */
1631                 if (!color_white(object))
1632                         continue;
1633                 raw_spin_lock_irq(&object->lock);
1634                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1635                     && update_checksum(object) && get_object(object)) {
1636                         /* color it gray temporarily */
1637                         object->count = object->min_count;
1638                         list_add_tail(&object->gray_list, &gray_list);
1639                 }
1640                 raw_spin_unlock_irq(&object->lock);
1641         }
1642         rcu_read_unlock();
1643
1644         /*
1645          * Re-scan the gray list for modified unreferenced objects.
1646          */
1647         scan_gray_list();
1648
1649         /*
1650          * If scanning was stopped do not report any new unreferenced objects.
1651          */
1652         if (scan_should_stop())
1653                 return;
1654
1655         /*
1656          * Scanning result reporting.
1657          */
1658         rcu_read_lock();
1659         loop_cnt = 0;
1660         list_for_each_entry_rcu(object, &object_list, object_list) {
1661                 /*
1662                  * Do a cond_resched() every 64k objects to avoid soft lockup.
1663                  */
1664                 if (!(++loop_cnt & 0xffff) &&
1665                     !kmemleak_cond_resched(object, false))
1666                         loop_cnt--;     /* Try again on next object */
1667
1668                 /*
1669                  * This is racy but we can save the overhead of lock/unlock
1670                  * calls. The missed objects, if any, should be caught in
1671                  * the next scan.
1672                  */
1673                 if (!color_white(object))
1674                         continue;
1675                 raw_spin_lock_irq(&object->lock);
1676                 if (unreferenced_object(object) &&
1677                     !(object->flags & OBJECT_REPORTED)) {
1678                         object->flags |= OBJECT_REPORTED;
1679
1680                         if (kmemleak_verbose)
1681                                 print_unreferenced(NULL, object);
1682
1683                         new_leaks++;
1684                 }
1685                 raw_spin_unlock_irq(&object->lock);
1686         }
1687         rcu_read_unlock();
1688
1689         if (new_leaks) {
1690                 kmemleak_found_leaks = true;
1691
1692                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1693                         new_leaks);
1694         }
1695
1696 }
1697
1698 /*
1699  * Thread function performing automatic memory scanning. Unreferenced objects
1700  * at the end of a memory scan are reported but only the first time.
1701  */
1702 static int kmemleak_scan_thread(void *arg)
1703 {
1704         static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1705
1706         pr_info("Automatic memory scanning thread started\n");
1707         set_user_nice(current, 10);
1708
1709         /*
1710          * Wait before the first scan to allow the system to fully initialize.
1711          */
1712         if (first_run) {
1713                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1714                 first_run = 0;
1715                 while (timeout && !kthread_should_stop())
1716                         timeout = schedule_timeout_interruptible(timeout);
1717         }
1718
1719         while (!kthread_should_stop()) {
1720                 signed long timeout = READ_ONCE(jiffies_scan_wait);
1721
1722                 mutex_lock(&scan_mutex);
1723                 kmemleak_scan();
1724                 mutex_unlock(&scan_mutex);
1725
1726                 /* wait before the next scan */
1727                 while (timeout && !kthread_should_stop())
1728                         timeout = schedule_timeout_interruptible(timeout);
1729         }
1730
1731         pr_info("Automatic memory scanning thread ended\n");
1732
1733         return 0;
1734 }
1735
1736 /*
1737  * Start the automatic memory scanning thread. This function must be called
1738  * with the scan_mutex held.
1739  */
1740 static void start_scan_thread(void)
1741 {
1742         if (scan_thread)
1743                 return;
1744         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1745         if (IS_ERR(scan_thread)) {
1746                 pr_warn("Failed to create the scan thread\n");
1747                 scan_thread = NULL;
1748         }
1749 }
1750
1751 /*
1752  * Stop the automatic memory scanning thread.
1753  */
1754 static void stop_scan_thread(void)
1755 {
1756         if (scan_thread) {
1757                 kthread_stop(scan_thread);
1758                 scan_thread = NULL;
1759         }
1760 }
1761
1762 /*
1763  * Iterate over the object_list and return the first valid object at or after
1764  * the required position with its use_count incremented. The function triggers
1765  * a memory scanning when the pos argument points to the first position.
1766  */
1767 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1768 {
1769         struct kmemleak_object *object;
1770         loff_t n = *pos;
1771         int err;
1772
1773         err = mutex_lock_interruptible(&scan_mutex);
1774         if (err < 0)
1775                 return ERR_PTR(err);
1776
1777         rcu_read_lock();
1778         list_for_each_entry_rcu(object, &object_list, object_list) {
1779                 if (n-- > 0)
1780                         continue;
1781                 if (get_object(object))
1782                         goto out;
1783         }
1784         object = NULL;
1785 out:
1786         return object;
1787 }
1788
1789 /*
1790  * Return the next object in the object_list. The function decrements the
1791  * use_count of the previous object and increases that of the next one.
1792  */
1793 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1794 {
1795         struct kmemleak_object *prev_obj = v;
1796         struct kmemleak_object *next_obj = NULL;
1797         struct kmemleak_object *obj = prev_obj;
1798
1799         ++(*pos);
1800
1801         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1802                 if (get_object(obj)) {
1803                         next_obj = obj;
1804                         break;
1805                 }
1806         }
1807
1808         put_object(prev_obj);
1809         return next_obj;
1810 }
1811
1812 /*
1813  * Decrement the use_count of the last object required, if any.
1814  */
1815 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1816 {
1817         if (!IS_ERR(v)) {
1818                 /*
1819                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1820                  * waiting was interrupted, so only release it if !IS_ERR.
1821                  */
1822                 rcu_read_unlock();
1823                 mutex_unlock(&scan_mutex);
1824                 if (v)
1825                         put_object(v);
1826         }
1827 }
1828
1829 /*
1830  * Print the information for an unreferenced object to the seq file.
1831  */
1832 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1833 {
1834         struct kmemleak_object *object = v;
1835         unsigned long flags;
1836
1837         raw_spin_lock_irqsave(&object->lock, flags);
1838         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1839                 print_unreferenced(seq, object);
1840         raw_spin_unlock_irqrestore(&object->lock, flags);
1841         return 0;
1842 }
1843
1844 static const struct seq_operations kmemleak_seq_ops = {
1845         .start = kmemleak_seq_start,
1846         .next  = kmemleak_seq_next,
1847         .stop  = kmemleak_seq_stop,
1848         .show  = kmemleak_seq_show,
1849 };
1850
1851 static int kmemleak_open(struct inode *inode, struct file *file)
1852 {
1853         return seq_open(file, &kmemleak_seq_ops);
1854 }
1855
1856 static int dump_str_object_info(const char *str)
1857 {
1858         unsigned long flags;
1859         struct kmemleak_object *object;
1860         unsigned long addr;
1861
1862         if (kstrtoul(str, 0, &addr))
1863                 return -EINVAL;
1864         object = find_and_get_object(addr, 0);
1865         if (!object) {
1866                 pr_info("Unknown object at 0x%08lx\n", addr);
1867                 return -EINVAL;
1868         }
1869
1870         raw_spin_lock_irqsave(&object->lock, flags);
1871         dump_object_info(object);
1872         raw_spin_unlock_irqrestore(&object->lock, flags);
1873
1874         put_object(object);
1875         return 0;
1876 }
1877
1878 /*
1879  * We use grey instead of black to ensure we can do future scans on the same
1880  * objects. If we did not do future scans these black objects could
1881  * potentially contain references to newly allocated objects in the future and
1882  * we'd end up with false positives.
1883  */
1884 static void kmemleak_clear(void)
1885 {
1886         struct kmemleak_object *object;
1887
1888         rcu_read_lock();
1889         list_for_each_entry_rcu(object, &object_list, object_list) {
1890                 raw_spin_lock_irq(&object->lock);
1891                 if ((object->flags & OBJECT_REPORTED) &&
1892                     unreferenced_object(object))
1893                         __paint_it(object, KMEMLEAK_GREY);
1894                 raw_spin_unlock_irq(&object->lock);
1895         }
1896         rcu_read_unlock();
1897
1898         kmemleak_found_leaks = false;
1899 }
1900
1901 static void __kmemleak_do_cleanup(void);
1902
1903 /*
1904  * File write operation to configure kmemleak at run-time. The following
1905  * commands can be written to the /sys/kernel/debug/kmemleak file:
1906  *   off        - disable kmemleak (irreversible)
1907  *   stack=on   - enable the task stacks scanning
1908  *   stack=off  - disable the tasks stacks scanning
1909  *   scan=on    - start the automatic memory scanning thread
1910  *   scan=off   - stop the automatic memory scanning thread
1911  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1912  *                disable it)
1913  *   scan       - trigger a memory scan
1914  *   clear      - mark all current reported unreferenced kmemleak objects as
1915  *                grey to ignore printing them, or free all kmemleak objects
1916  *                if kmemleak has been disabled.
1917  *   dump=...   - dump information about the object found at the given address
1918  */
1919 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1920                               size_t size, loff_t *ppos)
1921 {
1922         char buf[64];
1923         int buf_size;
1924         int ret;
1925
1926         buf_size = min(size, (sizeof(buf) - 1));
1927         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1928                 return -EFAULT;
1929         buf[buf_size] = 0;
1930
1931         ret = mutex_lock_interruptible(&scan_mutex);
1932         if (ret < 0)
1933                 return ret;
1934
1935         if (strncmp(buf, "clear", 5) == 0) {
1936                 if (kmemleak_enabled)
1937                         kmemleak_clear();
1938                 else
1939                         __kmemleak_do_cleanup();
1940                 goto out;
1941         }
1942
1943         if (!kmemleak_enabled) {
1944                 ret = -EPERM;
1945                 goto out;
1946         }
1947
1948         if (strncmp(buf, "off", 3) == 0)
1949                 kmemleak_disable();
1950         else if (strncmp(buf, "stack=on", 8) == 0)
1951                 kmemleak_stack_scan = 1;
1952         else if (strncmp(buf, "stack=off", 9) == 0)
1953                 kmemleak_stack_scan = 0;
1954         else if (strncmp(buf, "scan=on", 7) == 0)
1955                 start_scan_thread();
1956         else if (strncmp(buf, "scan=off", 8) == 0)
1957                 stop_scan_thread();
1958         else if (strncmp(buf, "scan=", 5) == 0) {
1959                 unsigned secs;
1960                 unsigned long msecs;
1961
1962                 ret = kstrtouint(buf + 5, 0, &secs);
1963                 if (ret < 0)
1964                         goto out;
1965
1966                 msecs = secs * MSEC_PER_SEC;
1967                 if (msecs > UINT_MAX)
1968                         msecs = UINT_MAX;
1969
1970                 stop_scan_thread();
1971                 if (msecs) {
1972                         WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1973                         start_scan_thread();
1974                 }
1975         } else if (strncmp(buf, "scan", 4) == 0)
1976                 kmemleak_scan();
1977         else if (strncmp(buf, "dump=", 5) == 0)
1978                 ret = dump_str_object_info(buf + 5);
1979         else
1980                 ret = -EINVAL;
1981
1982 out:
1983         mutex_unlock(&scan_mutex);
1984         if (ret < 0)
1985                 return ret;
1986
1987         /* ignore the rest of the buffer, only one command at a time */
1988         *ppos += size;
1989         return size;
1990 }
1991
1992 static const struct file_operations kmemleak_fops = {
1993         .owner          = THIS_MODULE,
1994         .open           = kmemleak_open,
1995         .read           = seq_read,
1996         .write          = kmemleak_write,
1997         .llseek         = seq_lseek,
1998         .release        = seq_release,
1999 };
2000
2001 static void __kmemleak_do_cleanup(void)
2002 {
2003         struct kmemleak_object *object, *tmp;
2004
2005         /*
2006          * Kmemleak has already been disabled, no need for RCU list traversal
2007          * or kmemleak_lock held.
2008          */
2009         list_for_each_entry_safe(object, tmp, &object_list, object_list) {
2010                 __remove_object(object);
2011                 __delete_object(object);
2012         }
2013 }
2014
2015 /*
2016  * Stop the memory scanning thread and free the kmemleak internal objects if
2017  * no previous scan thread (otherwise, kmemleak may still have some useful
2018  * information on memory leaks).
2019  */
2020 static void kmemleak_do_cleanup(struct work_struct *work)
2021 {
2022         stop_scan_thread();
2023
2024         mutex_lock(&scan_mutex);
2025         /*
2026          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
2027          * longer track object freeing. Ordering of the scan thread stopping and
2028          * the memory accesses below is guaranteed by the kthread_stop()
2029          * function.
2030          */
2031         kmemleak_free_enabled = 0;
2032         mutex_unlock(&scan_mutex);
2033
2034         if (!kmemleak_found_leaks)
2035                 __kmemleak_do_cleanup();
2036         else
2037                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2038 }
2039
2040 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2041
2042 /*
2043  * Disable kmemleak. No memory allocation/freeing will be traced once this
2044  * function is called. Disabling kmemleak is an irreversible operation.
2045  */
2046 static void kmemleak_disable(void)
2047 {
2048         /* atomically check whether it was already invoked */
2049         if (cmpxchg(&kmemleak_error, 0, 1))
2050                 return;
2051
2052         /* stop any memory operation tracing */
2053         kmemleak_enabled = 0;
2054
2055         /* check whether it is too early for a kernel thread */
2056         if (kmemleak_initialized)
2057                 schedule_work(&cleanup_work);
2058         else
2059                 kmemleak_free_enabled = 0;
2060
2061         pr_info("Kernel memory leak detector disabled\n");
2062 }
2063
2064 /*
2065  * Allow boot-time kmemleak disabling (enabled by default).
2066  */
2067 static int __init kmemleak_boot_config(char *str)
2068 {
2069         if (!str)
2070                 return -EINVAL;
2071         if (strcmp(str, "off") == 0)
2072                 kmemleak_disable();
2073         else if (strcmp(str, "on") == 0)
2074                 kmemleak_skip_disable = 1;
2075         else
2076                 return -EINVAL;
2077         return 0;
2078 }
2079 early_param("kmemleak", kmemleak_boot_config);
2080
2081 /*
2082  * Kmemleak initialization.
2083  */
2084 void __init kmemleak_init(void)
2085 {
2086 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2087         if (!kmemleak_skip_disable) {
2088                 kmemleak_disable();
2089                 return;
2090         }
2091 #endif
2092
2093         if (kmemleak_error)
2094                 return;
2095
2096         stack_depot_init();
2097         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2098         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2099
2100         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2101         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2102
2103         /* register the data/bss sections */
2104         create_object((unsigned long)_sdata, _edata - _sdata,
2105                       KMEMLEAK_GREY, GFP_ATOMIC);
2106         create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2107                       KMEMLEAK_GREY, GFP_ATOMIC);
2108         /* only register .data..ro_after_init if not within .data */
2109         if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2110                 create_object((unsigned long)__start_ro_after_init,
2111                               __end_ro_after_init - __start_ro_after_init,
2112                               KMEMLEAK_GREY, GFP_ATOMIC);
2113 }
2114
2115 /*
2116  * Late initialization function.
2117  */
2118 static int __init kmemleak_late_init(void)
2119 {
2120         kmemleak_initialized = 1;
2121
2122         debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2123
2124         if (kmemleak_error) {
2125                 /*
2126                  * Some error occurred and kmemleak was disabled. There is a
2127                  * small chance that kmemleak_disable() was called immediately
2128                  * after setting kmemleak_initialized and we may end up with
2129                  * two clean-up threads but serialized by scan_mutex.
2130                  */
2131                 schedule_work(&cleanup_work);
2132                 return -ENOMEM;
2133         }
2134
2135         if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2136                 mutex_lock(&scan_mutex);
2137                 start_scan_thread();
2138                 mutex_unlock(&scan_mutex);
2139         }
2140
2141         pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2142                 mem_pool_free_count);
2143
2144         return 0;
2145 }
2146 late_initcall(kmemleak_late_init);