ipvs: DH scheduler does not need GFP_ATOMIC allocation
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / kmemleak.c
1 /*
2  * mm/kmemleak.c
3  *
4  * Copyright (C) 2008 ARM Limited
5  * Written by Catalin Marinas <catalin.marinas@arm.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, write to the Free Software
18  * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19  *
20  *
21  * For more information on the algorithm and kmemleak usage, please see
22  * Documentation/kmemleak.txt.
23  *
24  * Notes on locking
25  * ----------------
26  *
27  * The following locks and mutexes are used by kmemleak:
28  *
29  * - kmemleak_lock (rwlock): protects the object_list modifications and
30  *   accesses to the object_tree_root. The object_list is the main list
31  *   holding the metadata (struct kmemleak_object) for the allocated memory
32  *   blocks. The object_tree_root is a priority search tree used to look-up
33  *   metadata based on a pointer to the corresponding memory block.  The
34  *   kmemleak_object structures are added to the object_list and
35  *   object_tree_root in the create_object() function called from the
36  *   kmemleak_alloc() callback and removed in delete_object() called from the
37  *   kmemleak_free() callback
38  * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39  *   the metadata (e.g. count) are protected by this lock. Note that some
40  *   members of this structure may be protected by other means (atomic or
41  *   kmemleak_lock). This lock is also held when scanning the corresponding
42  *   memory block to avoid the kernel freeing it via the kmemleak_free()
43  *   callback. This is less heavyweight than holding a global lock like
44  *   kmemleak_lock during scanning
45  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46  *   unreferenced objects at a time. The gray_list contains the objects which
47  *   are already referenced or marked as false positives and need to be
48  *   scanned. This list is only modified during a scanning episode when the
49  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
50  *   Note that the kmemleak_object.use_count is incremented when an object is
51  *   added to the gray_list and therefore cannot be freed. This mutex also
52  *   prevents multiple users of the "kmemleak" debugfs file together with
53  *   modifications to the memory scanning parameters including the scan_thread
54  *   pointer
55  *
56  * The kmemleak_object structures have a use_count incremented or decremented
57  * using the get_object()/put_object() functions. When the use_count becomes
58  * 0, this count can no longer be incremented and put_object() schedules the
59  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
60  * function must be protected by rcu_read_lock() to avoid accessing a freed
61  * structure.
62  */
63
64 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
65
66 #include <linux/init.h>
67 #include <linux/kernel.h>
68 #include <linux/list.h>
69 #include <linux/sched.h>
70 #include <linux/jiffies.h>
71 #include <linux/delay.h>
72 #include <linux/export.h>
73 #include <linux/kthread.h>
74 #include <linux/prio_tree.h>
75 #include <linux/fs.h>
76 #include <linux/debugfs.h>
77 #include <linux/seq_file.h>
78 #include <linux/cpumask.h>
79 #include <linux/spinlock.h>
80 #include <linux/mutex.h>
81 #include <linux/rcupdate.h>
82 #include <linux/stacktrace.h>
83 #include <linux/cache.h>
84 #include <linux/percpu.h>
85 #include <linux/hardirq.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kmemcheck.h>
102 #include <linux/kmemleak.h>
103 #include <linux/memory_hotplug.h>
104
105 /*
106  * Kmemleak configuration and common defines.
107  */
108 #define MAX_TRACE               16      /* stack trace length */
109 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
110 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
111 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
112 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
113
114 #define BYTES_PER_POINTER       sizeof(void *)
115
116 /* GFP bitmask for kmemleak internal allocations */
117 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
118                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
119                                  __GFP_NOWARN)
120
121 /* scanning area inside a memory block */
122 struct kmemleak_scan_area {
123         struct hlist_node node;
124         unsigned long start;
125         size_t size;
126 };
127
128 #define KMEMLEAK_GREY   0
129 #define KMEMLEAK_BLACK  -1
130
131 /*
132  * Structure holding the metadata for each allocated memory block.
133  * Modifications to such objects should be made while holding the
134  * object->lock. Insertions or deletions from object_list, gray_list or
135  * tree_node are already protected by the corresponding locks or mutex (see
136  * the notes on locking above). These objects are reference-counted
137  * (use_count) and freed using the RCU mechanism.
138  */
139 struct kmemleak_object {
140         spinlock_t lock;
141         unsigned long flags;            /* object status flags */
142         struct list_head object_list;
143         struct list_head gray_list;
144         struct prio_tree_node tree_node;
145         struct rcu_head rcu;            /* object_list lockless traversal */
146         /* object usage count; object freed when use_count == 0 */
147         atomic_t use_count;
148         unsigned long pointer;
149         size_t size;
150         /* minimum number of a pointers found before it is considered leak */
151         int min_count;
152         /* the total number of pointers found pointing to this object */
153         int count;
154         /* checksum for detecting modified objects */
155         u32 checksum;
156         /* memory ranges to be scanned inside an object (empty for all) */
157         struct hlist_head area_list;
158         unsigned long trace[MAX_TRACE];
159         unsigned int trace_len;
160         unsigned long jiffies;          /* creation timestamp */
161         pid_t pid;                      /* pid of the current task */
162         char comm[TASK_COMM_LEN];       /* executable name */
163 };
164
165 /* flag representing the memory block allocation status */
166 #define OBJECT_ALLOCATED        (1 << 0)
167 /* flag set after the first reporting of an unreference object */
168 #define OBJECT_REPORTED         (1 << 1)
169 /* flag set to not scan the object */
170 #define OBJECT_NO_SCAN          (1 << 2)
171
172 /* number of bytes to print per line; must be 16 or 32 */
173 #define HEX_ROW_SIZE            16
174 /* number of bytes to print at a time (1, 2, 4, 8) */
175 #define HEX_GROUP_SIZE          1
176 /* include ASCII after the hex output */
177 #define HEX_ASCII               1
178 /* max number of lines to be printed */
179 #define HEX_MAX_LINES           2
180
181 /* the list of all allocated objects */
182 static LIST_HEAD(object_list);
183 /* the list of gray-colored objects (see color_gray comment below) */
184 static LIST_HEAD(gray_list);
185 /* prio search tree for object boundaries */
186 static struct prio_tree_root object_tree_root;
187 /* rw_lock protecting the access to object_list and prio_tree_root */
188 static DEFINE_RWLOCK(kmemleak_lock);
189
190 /* allocation caches for kmemleak internal data */
191 static struct kmem_cache *object_cache;
192 static struct kmem_cache *scan_area_cache;
193
194 /* set if tracing memory operations is enabled */
195 static atomic_t kmemleak_enabled = ATOMIC_INIT(0);
196 /* set in the late_initcall if there were no errors */
197 static atomic_t kmemleak_initialized = ATOMIC_INIT(0);
198 /* enables or disables early logging of the memory operations */
199 static atomic_t kmemleak_early_log = ATOMIC_INIT(1);
200 /* set if a kmemleak warning was issued */
201 static atomic_t kmemleak_warning = ATOMIC_INIT(0);
202 /* set if a fatal kmemleak error has occurred */
203 static atomic_t kmemleak_error = ATOMIC_INIT(0);
204
205 /* minimum and maximum address that may be valid pointers */
206 static unsigned long min_addr = ULONG_MAX;
207 static unsigned long max_addr;
208
209 static struct task_struct *scan_thread;
210 /* used to avoid reporting of recently allocated objects */
211 static unsigned long jiffies_min_age;
212 static unsigned long jiffies_last_scan;
213 /* delay between automatic memory scannings */
214 static signed long jiffies_scan_wait;
215 /* enables or disables the task stacks scanning */
216 static int kmemleak_stack_scan = 1;
217 /* protects the memory scanning, parameters and debug/kmemleak file access */
218 static DEFINE_MUTEX(scan_mutex);
219 /* setting kmemleak=on, will set this var, skipping the disable */
220 static int kmemleak_skip_disable;
221
222
223 /*
224  * Early object allocation/freeing logging. Kmemleak is initialized after the
225  * kernel allocator. However, both the kernel allocator and kmemleak may
226  * allocate memory blocks which need to be tracked. Kmemleak defines an
227  * arbitrary buffer to hold the allocation/freeing information before it is
228  * fully initialized.
229  */
230
231 /* kmemleak operation type for early logging */
232 enum {
233         KMEMLEAK_ALLOC,
234         KMEMLEAK_ALLOC_PERCPU,
235         KMEMLEAK_FREE,
236         KMEMLEAK_FREE_PART,
237         KMEMLEAK_FREE_PERCPU,
238         KMEMLEAK_NOT_LEAK,
239         KMEMLEAK_IGNORE,
240         KMEMLEAK_SCAN_AREA,
241         KMEMLEAK_NO_SCAN
242 };
243
244 /*
245  * Structure holding the information passed to kmemleak callbacks during the
246  * early logging.
247  */
248 struct early_log {
249         int op_type;                    /* kmemleak operation type */
250         const void *ptr;                /* allocated/freed memory block */
251         size_t size;                    /* memory block size */
252         int min_count;                  /* minimum reference count */
253         unsigned long trace[MAX_TRACE]; /* stack trace */
254         unsigned int trace_len;         /* stack trace length */
255 };
256
257 /* early logging buffer and current position */
258 static struct early_log
259         early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
260 static int crt_early_log __initdata;
261
262 static void kmemleak_disable(void);
263
264 /*
265  * Print a warning and dump the stack trace.
266  */
267 #define kmemleak_warn(x...)     do {            \
268         pr_warning(x);                          \
269         dump_stack();                           \
270         atomic_set(&kmemleak_warning, 1);       \
271 } while (0)
272
273 /*
274  * Macro invoked when a serious kmemleak condition occurred and cannot be
275  * recovered from. Kmemleak will be disabled and further allocation/freeing
276  * tracing no longer available.
277  */
278 #define kmemleak_stop(x...)     do {    \
279         kmemleak_warn(x);               \
280         kmemleak_disable();             \
281 } while (0)
282
283 /*
284  * Printing of the objects hex dump to the seq file. The number of lines to be
285  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
286  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
287  * with the object->lock held.
288  */
289 static void hex_dump_object(struct seq_file *seq,
290                             struct kmemleak_object *object)
291 {
292         const u8 *ptr = (const u8 *)object->pointer;
293         int i, len, remaining;
294         unsigned char linebuf[HEX_ROW_SIZE * 5];
295
296         /* limit the number of lines to HEX_MAX_LINES */
297         remaining = len =
298                 min(object->size, (size_t)(HEX_MAX_LINES * HEX_ROW_SIZE));
299
300         seq_printf(seq, "  hex dump (first %d bytes):\n", len);
301         for (i = 0; i < len; i += HEX_ROW_SIZE) {
302                 int linelen = min(remaining, HEX_ROW_SIZE);
303
304                 remaining -= HEX_ROW_SIZE;
305                 hex_dump_to_buffer(ptr + i, linelen, HEX_ROW_SIZE,
306                                    HEX_GROUP_SIZE, linebuf, sizeof(linebuf),
307                                    HEX_ASCII);
308                 seq_printf(seq, "    %s\n", linebuf);
309         }
310 }
311
312 /*
313  * Object colors, encoded with count and min_count:
314  * - white - orphan object, not enough references to it (count < min_count)
315  * - gray  - not orphan, not marked as false positive (min_count == 0) or
316  *              sufficient references to it (count >= min_count)
317  * - black - ignore, it doesn't contain references (e.g. text section)
318  *              (min_count == -1). No function defined for this color.
319  * Newly created objects don't have any color assigned (object->count == -1)
320  * before the next memory scan when they become white.
321  */
322 static bool color_white(const struct kmemleak_object *object)
323 {
324         return object->count != KMEMLEAK_BLACK &&
325                 object->count < object->min_count;
326 }
327
328 static bool color_gray(const struct kmemleak_object *object)
329 {
330         return object->min_count != KMEMLEAK_BLACK &&
331                 object->count >= object->min_count;
332 }
333
334 /*
335  * Objects are considered unreferenced only if their color is white, they have
336  * not be deleted and have a minimum age to avoid false positives caused by
337  * pointers temporarily stored in CPU registers.
338  */
339 static bool unreferenced_object(struct kmemleak_object *object)
340 {
341         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
342                 time_before_eq(object->jiffies + jiffies_min_age,
343                                jiffies_last_scan);
344 }
345
346 /*
347  * Printing of the unreferenced objects information to the seq file. The
348  * print_unreferenced function must be called with the object->lock held.
349  */
350 static void print_unreferenced(struct seq_file *seq,
351                                struct kmemleak_object *object)
352 {
353         int i;
354         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
355
356         seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
357                    object->pointer, object->size);
358         seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
359                    object->comm, object->pid, object->jiffies,
360                    msecs_age / 1000, msecs_age % 1000);
361         hex_dump_object(seq, object);
362         seq_printf(seq, "  backtrace:\n");
363
364         for (i = 0; i < object->trace_len; i++) {
365                 void *ptr = (void *)object->trace[i];
366                 seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
367         }
368 }
369
370 /*
371  * Print the kmemleak_object information. This function is used mainly for
372  * debugging special cases when kmemleak operations. It must be called with
373  * the object->lock held.
374  */
375 static void dump_object_info(struct kmemleak_object *object)
376 {
377         struct stack_trace trace;
378
379         trace.nr_entries = object->trace_len;
380         trace.entries = object->trace;
381
382         pr_notice("Object 0x%08lx (size %zu):\n",
383                   object->tree_node.start, object->size);
384         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
385                   object->comm, object->pid, object->jiffies);
386         pr_notice("  min_count = %d\n", object->min_count);
387         pr_notice("  count = %d\n", object->count);
388         pr_notice("  flags = 0x%lx\n", object->flags);
389         pr_notice("  checksum = %d\n", object->checksum);
390         pr_notice("  backtrace:\n");
391         print_stack_trace(&trace, 4);
392 }
393
394 /*
395  * Look-up a memory block metadata (kmemleak_object) in the priority search
396  * tree based on a pointer value. If alias is 0, only values pointing to the
397  * beginning of the memory block are allowed. The kmemleak_lock must be held
398  * when calling this function.
399  */
400 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
401 {
402         struct prio_tree_node *node;
403         struct prio_tree_iter iter;
404         struct kmemleak_object *object;
405
406         prio_tree_iter_init(&iter, &object_tree_root, ptr, ptr);
407         node = prio_tree_next(&iter);
408         if (node) {
409                 object = prio_tree_entry(node, struct kmemleak_object,
410                                          tree_node);
411                 if (!alias && object->pointer != ptr) {
412                         kmemleak_warn("Found object by alias at 0x%08lx\n",
413                                       ptr);
414                         dump_object_info(object);
415                         object = NULL;
416                 }
417         } else
418                 object = NULL;
419
420         return object;
421 }
422
423 /*
424  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
425  * that once an object's use_count reached 0, the RCU freeing was already
426  * registered and the object should no longer be used. This function must be
427  * called under the protection of rcu_read_lock().
428  */
429 static int get_object(struct kmemleak_object *object)
430 {
431         return atomic_inc_not_zero(&object->use_count);
432 }
433
434 /*
435  * RCU callback to free a kmemleak_object.
436  */
437 static void free_object_rcu(struct rcu_head *rcu)
438 {
439         struct hlist_node *elem, *tmp;
440         struct kmemleak_scan_area *area;
441         struct kmemleak_object *object =
442                 container_of(rcu, struct kmemleak_object, rcu);
443
444         /*
445          * Once use_count is 0 (guaranteed by put_object), there is no other
446          * code accessing this object, hence no need for locking.
447          */
448         hlist_for_each_entry_safe(area, elem, tmp, &object->area_list, node) {
449                 hlist_del(elem);
450                 kmem_cache_free(scan_area_cache, area);
451         }
452         kmem_cache_free(object_cache, object);
453 }
454
455 /*
456  * Decrement the object use_count. Once the count is 0, free the object using
457  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
458  * delete_object() path, the delayed RCU freeing ensures that there is no
459  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
460  * is also possible.
461  */
462 static void put_object(struct kmemleak_object *object)
463 {
464         if (!atomic_dec_and_test(&object->use_count))
465                 return;
466
467         /* should only get here after delete_object was called */
468         WARN_ON(object->flags & OBJECT_ALLOCATED);
469
470         call_rcu(&object->rcu, free_object_rcu);
471 }
472
473 /*
474  * Look up an object in the prio search tree and increase its use_count.
475  */
476 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
477 {
478         unsigned long flags;
479         struct kmemleak_object *object = NULL;
480
481         rcu_read_lock();
482         read_lock_irqsave(&kmemleak_lock, flags);
483         if (ptr >= min_addr && ptr < max_addr)
484                 object = lookup_object(ptr, alias);
485         read_unlock_irqrestore(&kmemleak_lock, flags);
486
487         /* check whether the object is still available */
488         if (object && !get_object(object))
489                 object = NULL;
490         rcu_read_unlock();
491
492         return object;
493 }
494
495 /*
496  * Save stack trace to the given array of MAX_TRACE size.
497  */
498 static int __save_stack_trace(unsigned long *trace)
499 {
500         struct stack_trace stack_trace;
501
502         stack_trace.max_entries = MAX_TRACE;
503         stack_trace.nr_entries = 0;
504         stack_trace.entries = trace;
505         stack_trace.skip = 2;
506         save_stack_trace(&stack_trace);
507
508         return stack_trace.nr_entries;
509 }
510
511 /*
512  * Create the metadata (struct kmemleak_object) corresponding to an allocated
513  * memory block and add it to the object_list and object_tree_root.
514  */
515 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
516                                              int min_count, gfp_t gfp)
517 {
518         unsigned long flags;
519         struct kmemleak_object *object;
520         struct prio_tree_node *node;
521
522         object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
523         if (!object) {
524                 pr_warning("Cannot allocate a kmemleak_object structure\n");
525                 kmemleak_disable();
526                 return NULL;
527         }
528
529         INIT_LIST_HEAD(&object->object_list);
530         INIT_LIST_HEAD(&object->gray_list);
531         INIT_HLIST_HEAD(&object->area_list);
532         spin_lock_init(&object->lock);
533         atomic_set(&object->use_count, 1);
534         object->flags = OBJECT_ALLOCATED;
535         object->pointer = ptr;
536         object->size = size;
537         object->min_count = min_count;
538         object->count = 0;                      /* white color initially */
539         object->jiffies = jiffies;
540         object->checksum = 0;
541
542         /* task information */
543         if (in_irq()) {
544                 object->pid = 0;
545                 strncpy(object->comm, "hardirq", sizeof(object->comm));
546         } else if (in_softirq()) {
547                 object->pid = 0;
548                 strncpy(object->comm, "softirq", sizeof(object->comm));
549         } else {
550                 object->pid = current->pid;
551                 /*
552                  * There is a small chance of a race with set_task_comm(),
553                  * however using get_task_comm() here may cause locking
554                  * dependency issues with current->alloc_lock. In the worst
555                  * case, the command line is not correct.
556                  */
557                 strncpy(object->comm, current->comm, sizeof(object->comm));
558         }
559
560         /* kernel backtrace */
561         object->trace_len = __save_stack_trace(object->trace);
562
563         INIT_PRIO_TREE_NODE(&object->tree_node);
564         object->tree_node.start = ptr;
565         object->tree_node.last = ptr + size - 1;
566
567         write_lock_irqsave(&kmemleak_lock, flags);
568
569         min_addr = min(min_addr, ptr);
570         max_addr = max(max_addr, ptr + size);
571         node = prio_tree_insert(&object_tree_root, &object->tree_node);
572         /*
573          * The code calling the kernel does not yet have the pointer to the
574          * memory block to be able to free it.  However, we still hold the
575          * kmemleak_lock here in case parts of the kernel started freeing
576          * random memory blocks.
577          */
578         if (node != &object->tree_node) {
579                 kmemleak_stop("Cannot insert 0x%lx into the object search tree "
580                               "(already existing)\n", ptr);
581                 object = lookup_object(ptr, 1);
582                 spin_lock(&object->lock);
583                 dump_object_info(object);
584                 spin_unlock(&object->lock);
585
586                 goto out;
587         }
588         list_add_tail_rcu(&object->object_list, &object_list);
589 out:
590         write_unlock_irqrestore(&kmemleak_lock, flags);
591         return object;
592 }
593
594 /*
595  * Remove the metadata (struct kmemleak_object) for a memory block from the
596  * object_list and object_tree_root and decrement its use_count.
597  */
598 static void __delete_object(struct kmemleak_object *object)
599 {
600         unsigned long flags;
601
602         write_lock_irqsave(&kmemleak_lock, flags);
603         prio_tree_remove(&object_tree_root, &object->tree_node);
604         list_del_rcu(&object->object_list);
605         write_unlock_irqrestore(&kmemleak_lock, flags);
606
607         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
608         WARN_ON(atomic_read(&object->use_count) < 2);
609
610         /*
611          * Locking here also ensures that the corresponding memory block
612          * cannot be freed when it is being scanned.
613          */
614         spin_lock_irqsave(&object->lock, flags);
615         object->flags &= ~OBJECT_ALLOCATED;
616         spin_unlock_irqrestore(&object->lock, flags);
617         put_object(object);
618 }
619
620 /*
621  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
622  * delete it.
623  */
624 static void delete_object_full(unsigned long ptr)
625 {
626         struct kmemleak_object *object;
627
628         object = find_and_get_object(ptr, 0);
629         if (!object) {
630 #ifdef DEBUG
631                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
632                               ptr);
633 #endif
634                 return;
635         }
636         __delete_object(object);
637         put_object(object);
638 }
639
640 /*
641  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
642  * delete it. If the memory block is partially freed, the function may create
643  * additional metadata for the remaining parts of the block.
644  */
645 static void delete_object_part(unsigned long ptr, size_t size)
646 {
647         struct kmemleak_object *object;
648         unsigned long start, end;
649
650         object = find_and_get_object(ptr, 1);
651         if (!object) {
652 #ifdef DEBUG
653                 kmemleak_warn("Partially freeing unknown object at 0x%08lx "
654                               "(size %zu)\n", ptr, size);
655 #endif
656                 return;
657         }
658         __delete_object(object);
659
660         /*
661          * Create one or two objects that may result from the memory block
662          * split. Note that partial freeing is only done by free_bootmem() and
663          * this happens before kmemleak_init() is called. The path below is
664          * only executed during early log recording in kmemleak_init(), so
665          * GFP_KERNEL is enough.
666          */
667         start = object->pointer;
668         end = object->pointer + object->size;
669         if (ptr > start)
670                 create_object(start, ptr - start, object->min_count,
671                               GFP_KERNEL);
672         if (ptr + size < end)
673                 create_object(ptr + size, end - ptr - size, object->min_count,
674                               GFP_KERNEL);
675
676         put_object(object);
677 }
678
679 static void __paint_it(struct kmemleak_object *object, int color)
680 {
681         object->min_count = color;
682         if (color == KMEMLEAK_BLACK)
683                 object->flags |= OBJECT_NO_SCAN;
684 }
685
686 static void paint_it(struct kmemleak_object *object, int color)
687 {
688         unsigned long flags;
689
690         spin_lock_irqsave(&object->lock, flags);
691         __paint_it(object, color);
692         spin_unlock_irqrestore(&object->lock, flags);
693 }
694
695 static void paint_ptr(unsigned long ptr, int color)
696 {
697         struct kmemleak_object *object;
698
699         object = find_and_get_object(ptr, 0);
700         if (!object) {
701                 kmemleak_warn("Trying to color unknown object "
702                               "at 0x%08lx as %s\n", ptr,
703                               (color == KMEMLEAK_GREY) ? "Grey" :
704                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
705                 return;
706         }
707         paint_it(object, color);
708         put_object(object);
709 }
710
711 /*
712  * Mark an object permanently as gray-colored so that it can no longer be
713  * reported as a leak. This is used in general to mark a false positive.
714  */
715 static void make_gray_object(unsigned long ptr)
716 {
717         paint_ptr(ptr, KMEMLEAK_GREY);
718 }
719
720 /*
721  * Mark the object as black-colored so that it is ignored from scans and
722  * reporting.
723  */
724 static void make_black_object(unsigned long ptr)
725 {
726         paint_ptr(ptr, KMEMLEAK_BLACK);
727 }
728
729 /*
730  * Add a scanning area to the object. If at least one such area is added,
731  * kmemleak will only scan these ranges rather than the whole memory block.
732  */
733 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
734 {
735         unsigned long flags;
736         struct kmemleak_object *object;
737         struct kmemleak_scan_area *area;
738
739         object = find_and_get_object(ptr, 1);
740         if (!object) {
741                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
742                               ptr);
743                 return;
744         }
745
746         area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
747         if (!area) {
748                 pr_warning("Cannot allocate a scan area\n");
749                 goto out;
750         }
751
752         spin_lock_irqsave(&object->lock, flags);
753         if (ptr + size > object->pointer + object->size) {
754                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
755                 dump_object_info(object);
756                 kmem_cache_free(scan_area_cache, area);
757                 goto out_unlock;
758         }
759
760         INIT_HLIST_NODE(&area->node);
761         area->start = ptr;
762         area->size = size;
763
764         hlist_add_head(&area->node, &object->area_list);
765 out_unlock:
766         spin_unlock_irqrestore(&object->lock, flags);
767 out:
768         put_object(object);
769 }
770
771 /*
772  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
773  * pointer. Such object will not be scanned by kmemleak but references to it
774  * are searched.
775  */
776 static void object_no_scan(unsigned long ptr)
777 {
778         unsigned long flags;
779         struct kmemleak_object *object;
780
781         object = find_and_get_object(ptr, 0);
782         if (!object) {
783                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
784                 return;
785         }
786
787         spin_lock_irqsave(&object->lock, flags);
788         object->flags |= OBJECT_NO_SCAN;
789         spin_unlock_irqrestore(&object->lock, flags);
790         put_object(object);
791 }
792
793 /*
794  * Log an early kmemleak_* call to the early_log buffer. These calls will be
795  * processed later once kmemleak is fully initialized.
796  */
797 static void __init log_early(int op_type, const void *ptr, size_t size,
798                              int min_count)
799 {
800         unsigned long flags;
801         struct early_log *log;
802
803         if (atomic_read(&kmemleak_error)) {
804                 /* kmemleak stopped recording, just count the requests */
805                 crt_early_log++;
806                 return;
807         }
808
809         if (crt_early_log >= ARRAY_SIZE(early_log)) {
810                 kmemleak_disable();
811                 return;
812         }
813
814         /*
815          * There is no need for locking since the kernel is still in UP mode
816          * at this stage. Disabling the IRQs is enough.
817          */
818         local_irq_save(flags);
819         log = &early_log[crt_early_log];
820         log->op_type = op_type;
821         log->ptr = ptr;
822         log->size = size;
823         log->min_count = min_count;
824         log->trace_len = __save_stack_trace(log->trace);
825         crt_early_log++;
826         local_irq_restore(flags);
827 }
828
829 /*
830  * Log an early allocated block and populate the stack trace.
831  */
832 static void early_alloc(struct early_log *log)
833 {
834         struct kmemleak_object *object;
835         unsigned long flags;
836         int i;
837
838         if (!atomic_read(&kmemleak_enabled) || !log->ptr || IS_ERR(log->ptr))
839                 return;
840
841         /*
842          * RCU locking needed to ensure object is not freed via put_object().
843          */
844         rcu_read_lock();
845         object = create_object((unsigned long)log->ptr, log->size,
846                                log->min_count, GFP_ATOMIC);
847         if (!object)
848                 goto out;
849         spin_lock_irqsave(&object->lock, flags);
850         for (i = 0; i < log->trace_len; i++)
851                 object->trace[i] = log->trace[i];
852         object->trace_len = log->trace_len;
853         spin_unlock_irqrestore(&object->lock, flags);
854 out:
855         rcu_read_unlock();
856 }
857
858 /*
859  * Log an early allocated block and populate the stack trace.
860  */
861 static void early_alloc_percpu(struct early_log *log)
862 {
863         unsigned int cpu;
864         const void __percpu *ptr = log->ptr;
865
866         for_each_possible_cpu(cpu) {
867                 log->ptr = per_cpu_ptr(ptr, cpu);
868                 early_alloc(log);
869         }
870 }
871
872 /**
873  * kmemleak_alloc - register a newly allocated object
874  * @ptr:        pointer to beginning of the object
875  * @size:       size of the object
876  * @min_count:  minimum number of references to this object. If during memory
877  *              scanning a number of references less than @min_count is found,
878  *              the object is reported as a memory leak. If @min_count is 0,
879  *              the object is never reported as a leak. If @min_count is -1,
880  *              the object is ignored (not scanned and not reported as a leak)
881  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
882  *
883  * This function is called from the kernel allocators when a new object
884  * (memory block) is allocated (kmem_cache_alloc, kmalloc, vmalloc etc.).
885  */
886 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
887                           gfp_t gfp)
888 {
889         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
890
891         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
892                 create_object((unsigned long)ptr, size, min_count, gfp);
893         else if (atomic_read(&kmemleak_early_log))
894                 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
895 }
896 EXPORT_SYMBOL_GPL(kmemleak_alloc);
897
898 /**
899  * kmemleak_alloc_percpu - register a newly allocated __percpu object
900  * @ptr:        __percpu pointer to beginning of the object
901  * @size:       size of the object
902  *
903  * This function is called from the kernel percpu allocator when a new object
904  * (memory block) is allocated (alloc_percpu). It assumes GFP_KERNEL
905  * allocation.
906  */
907 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size)
908 {
909         unsigned int cpu;
910
911         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
912
913         /*
914          * Percpu allocations are only scanned and not reported as leaks
915          * (min_count is set to 0).
916          */
917         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
918                 for_each_possible_cpu(cpu)
919                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
920                                       size, 0, GFP_KERNEL);
921         else if (atomic_read(&kmemleak_early_log))
922                 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
923 }
924 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
925
926 /**
927  * kmemleak_free - unregister a previously registered object
928  * @ptr:        pointer to beginning of the object
929  *
930  * This function is called from the kernel allocators when an object (memory
931  * block) is freed (kmem_cache_free, kfree, vfree etc.).
932  */
933 void __ref kmemleak_free(const void *ptr)
934 {
935         pr_debug("%s(0x%p)\n", __func__, ptr);
936
937         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
938                 delete_object_full((unsigned long)ptr);
939         else if (atomic_read(&kmemleak_early_log))
940                 log_early(KMEMLEAK_FREE, ptr, 0, 0);
941 }
942 EXPORT_SYMBOL_GPL(kmemleak_free);
943
944 /**
945  * kmemleak_free_part - partially unregister a previously registered object
946  * @ptr:        pointer to the beginning or inside the object. This also
947  *              represents the start of the range to be freed
948  * @size:       size to be unregistered
949  *
950  * This function is called when only a part of a memory block is freed
951  * (usually from the bootmem allocator).
952  */
953 void __ref kmemleak_free_part(const void *ptr, size_t size)
954 {
955         pr_debug("%s(0x%p)\n", __func__, ptr);
956
957         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
958                 delete_object_part((unsigned long)ptr, size);
959         else if (atomic_read(&kmemleak_early_log))
960                 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
961 }
962 EXPORT_SYMBOL_GPL(kmemleak_free_part);
963
964 /**
965  * kmemleak_free_percpu - unregister a previously registered __percpu object
966  * @ptr:        __percpu pointer to beginning of the object
967  *
968  * This function is called from the kernel percpu allocator when an object
969  * (memory block) is freed (free_percpu).
970  */
971 void __ref kmemleak_free_percpu(const void __percpu *ptr)
972 {
973         unsigned int cpu;
974
975         pr_debug("%s(0x%p)\n", __func__, ptr);
976
977         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
978                 for_each_possible_cpu(cpu)
979                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
980                                                                       cpu));
981         else if (atomic_read(&kmemleak_early_log))
982                 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
983 }
984 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
985
986 /**
987  * kmemleak_not_leak - mark an allocated object as false positive
988  * @ptr:        pointer to beginning of the object
989  *
990  * Calling this function on an object will cause the memory block to no longer
991  * be reported as leak and always be scanned.
992  */
993 void __ref kmemleak_not_leak(const void *ptr)
994 {
995         pr_debug("%s(0x%p)\n", __func__, ptr);
996
997         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
998                 make_gray_object((unsigned long)ptr);
999         else if (atomic_read(&kmemleak_early_log))
1000                 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
1001 }
1002 EXPORT_SYMBOL(kmemleak_not_leak);
1003
1004 /**
1005  * kmemleak_ignore - ignore an allocated object
1006  * @ptr:        pointer to beginning of the object
1007  *
1008  * Calling this function on an object will cause the memory block to be
1009  * ignored (not scanned and not reported as a leak). This is usually done when
1010  * it is known that the corresponding block is not a leak and does not contain
1011  * any references to other allocated memory blocks.
1012  */
1013 void __ref kmemleak_ignore(const void *ptr)
1014 {
1015         pr_debug("%s(0x%p)\n", __func__, ptr);
1016
1017         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1018                 make_black_object((unsigned long)ptr);
1019         else if (atomic_read(&kmemleak_early_log))
1020                 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
1021 }
1022 EXPORT_SYMBOL(kmemleak_ignore);
1023
1024 /**
1025  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1026  * @ptr:        pointer to beginning or inside the object. This also
1027  *              represents the start of the scan area
1028  * @size:       size of the scan area
1029  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1030  *
1031  * This function is used when it is known that only certain parts of an object
1032  * contain references to other objects. Kmemleak will only scan these areas
1033  * reducing the number false negatives.
1034  */
1035 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1036 {
1037         pr_debug("%s(0x%p)\n", __func__, ptr);
1038
1039         if (atomic_read(&kmemleak_enabled) && ptr && size && !IS_ERR(ptr))
1040                 add_scan_area((unsigned long)ptr, size, gfp);
1041         else if (atomic_read(&kmemleak_early_log))
1042                 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
1043 }
1044 EXPORT_SYMBOL(kmemleak_scan_area);
1045
1046 /**
1047  * kmemleak_no_scan - do not scan an allocated object
1048  * @ptr:        pointer to beginning of the object
1049  *
1050  * This function notifies kmemleak not to scan the given memory block. Useful
1051  * in situations where it is known that the given object does not contain any
1052  * references to other objects. Kmemleak will not scan such objects reducing
1053  * the number of false negatives.
1054  */
1055 void __ref kmemleak_no_scan(const void *ptr)
1056 {
1057         pr_debug("%s(0x%p)\n", __func__, ptr);
1058
1059         if (atomic_read(&kmemleak_enabled) && ptr && !IS_ERR(ptr))
1060                 object_no_scan((unsigned long)ptr);
1061         else if (atomic_read(&kmemleak_early_log))
1062                 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
1063 }
1064 EXPORT_SYMBOL(kmemleak_no_scan);
1065
1066 /*
1067  * Update an object's checksum and return true if it was modified.
1068  */
1069 static bool update_checksum(struct kmemleak_object *object)
1070 {
1071         u32 old_csum = object->checksum;
1072
1073         if (!kmemcheck_is_obj_initialized(object->pointer, object->size))
1074                 return false;
1075
1076         object->checksum = crc32(0, (void *)object->pointer, object->size);
1077         return object->checksum != old_csum;
1078 }
1079
1080 /*
1081  * Memory scanning is a long process and it needs to be interruptable. This
1082  * function checks whether such interrupt condition occurred.
1083  */
1084 static int scan_should_stop(void)
1085 {
1086         if (!atomic_read(&kmemleak_enabled))
1087                 return 1;
1088
1089         /*
1090          * This function may be called from either process or kthread context,
1091          * hence the need to check for both stop conditions.
1092          */
1093         if (current->mm)
1094                 return signal_pending(current);
1095         else
1096                 return kthread_should_stop();
1097
1098         return 0;
1099 }
1100
1101 /*
1102  * Scan a memory block (exclusive range) for valid pointers and add those
1103  * found to the gray list.
1104  */
1105 static void scan_block(void *_start, void *_end,
1106                        struct kmemleak_object *scanned, int allow_resched)
1107 {
1108         unsigned long *ptr;
1109         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1110         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1111
1112         for (ptr = start; ptr < end; ptr++) {
1113                 struct kmemleak_object *object;
1114                 unsigned long flags;
1115                 unsigned long pointer;
1116
1117                 if (allow_resched)
1118                         cond_resched();
1119                 if (scan_should_stop())
1120                         break;
1121
1122                 /* don't scan uninitialized memory */
1123                 if (!kmemcheck_is_obj_initialized((unsigned long)ptr,
1124                                                   BYTES_PER_POINTER))
1125                         continue;
1126
1127                 pointer = *ptr;
1128
1129                 object = find_and_get_object(pointer, 1);
1130                 if (!object)
1131                         continue;
1132                 if (object == scanned) {
1133                         /* self referenced, ignore */
1134                         put_object(object);
1135                         continue;
1136                 }
1137
1138                 /*
1139                  * Avoid the lockdep recursive warning on object->lock being
1140                  * previously acquired in scan_object(). These locks are
1141                  * enclosed by scan_mutex.
1142                  */
1143                 spin_lock_irqsave_nested(&object->lock, flags,
1144                                          SINGLE_DEPTH_NESTING);
1145                 if (!color_white(object)) {
1146                         /* non-orphan, ignored or new */
1147                         spin_unlock_irqrestore(&object->lock, flags);
1148                         put_object(object);
1149                         continue;
1150                 }
1151
1152                 /*
1153                  * Increase the object's reference count (number of pointers
1154                  * to the memory block). If this count reaches the required
1155                  * minimum, the object's color will become gray and it will be
1156                  * added to the gray_list.
1157                  */
1158                 object->count++;
1159                 if (color_gray(object)) {
1160                         list_add_tail(&object->gray_list, &gray_list);
1161                         spin_unlock_irqrestore(&object->lock, flags);
1162                         continue;
1163                 }
1164
1165                 spin_unlock_irqrestore(&object->lock, flags);
1166                 put_object(object);
1167         }
1168 }
1169
1170 /*
1171  * Scan a memory block corresponding to a kmemleak_object. A condition is
1172  * that object->use_count >= 1.
1173  */
1174 static void scan_object(struct kmemleak_object *object)
1175 {
1176         struct kmemleak_scan_area *area;
1177         struct hlist_node *elem;
1178         unsigned long flags;
1179
1180         /*
1181          * Once the object->lock is acquired, the corresponding memory block
1182          * cannot be freed (the same lock is acquired in delete_object).
1183          */
1184         spin_lock_irqsave(&object->lock, flags);
1185         if (object->flags & OBJECT_NO_SCAN)
1186                 goto out;
1187         if (!(object->flags & OBJECT_ALLOCATED))
1188                 /* already freed object */
1189                 goto out;
1190         if (hlist_empty(&object->area_list)) {
1191                 void *start = (void *)object->pointer;
1192                 void *end = (void *)(object->pointer + object->size);
1193
1194                 while (start < end && (object->flags & OBJECT_ALLOCATED) &&
1195                        !(object->flags & OBJECT_NO_SCAN)) {
1196                         scan_block(start, min(start + MAX_SCAN_SIZE, end),
1197                                    object, 0);
1198                         start += MAX_SCAN_SIZE;
1199
1200                         spin_unlock_irqrestore(&object->lock, flags);
1201                         cond_resched();
1202                         spin_lock_irqsave(&object->lock, flags);
1203                 }
1204         } else
1205                 hlist_for_each_entry(area, elem, &object->area_list, node)
1206                         scan_block((void *)area->start,
1207                                    (void *)(area->start + area->size),
1208                                    object, 0);
1209 out:
1210         spin_unlock_irqrestore(&object->lock, flags);
1211 }
1212
1213 /*
1214  * Scan the objects already referenced (gray objects). More objects will be
1215  * referenced and, if there are no memory leaks, all the objects are scanned.
1216  */
1217 static void scan_gray_list(void)
1218 {
1219         struct kmemleak_object *object, *tmp;
1220
1221         /*
1222          * The list traversal is safe for both tail additions and removals
1223          * from inside the loop. The kmemleak objects cannot be freed from
1224          * outside the loop because their use_count was incremented.
1225          */
1226         object = list_entry(gray_list.next, typeof(*object), gray_list);
1227         while (&object->gray_list != &gray_list) {
1228                 cond_resched();
1229
1230                 /* may add new objects to the list */
1231                 if (!scan_should_stop())
1232                         scan_object(object);
1233
1234                 tmp = list_entry(object->gray_list.next, typeof(*object),
1235                                  gray_list);
1236
1237                 /* remove the object from the list and release it */
1238                 list_del(&object->gray_list);
1239                 put_object(object);
1240
1241                 object = tmp;
1242         }
1243         WARN_ON(!list_empty(&gray_list));
1244 }
1245
1246 /*
1247  * Scan data sections and all the referenced memory blocks allocated via the
1248  * kernel's standard allocators. This function must be called with the
1249  * scan_mutex held.
1250  */
1251 static void kmemleak_scan(void)
1252 {
1253         unsigned long flags;
1254         struct kmemleak_object *object;
1255         int i;
1256         int new_leaks = 0;
1257
1258         jiffies_last_scan = jiffies;
1259
1260         /* prepare the kmemleak_object's */
1261         rcu_read_lock();
1262         list_for_each_entry_rcu(object, &object_list, object_list) {
1263                 spin_lock_irqsave(&object->lock, flags);
1264 #ifdef DEBUG
1265                 /*
1266                  * With a few exceptions there should be a maximum of
1267                  * 1 reference to any object at this point.
1268                  */
1269                 if (atomic_read(&object->use_count) > 1) {
1270                         pr_debug("object->use_count = %d\n",
1271                                  atomic_read(&object->use_count));
1272                         dump_object_info(object);
1273                 }
1274 #endif
1275                 /* reset the reference count (whiten the object) */
1276                 object->count = 0;
1277                 if (color_gray(object) && get_object(object))
1278                         list_add_tail(&object->gray_list, &gray_list);
1279
1280                 spin_unlock_irqrestore(&object->lock, flags);
1281         }
1282         rcu_read_unlock();
1283
1284         /* data/bss scanning */
1285         scan_block(_sdata, _edata, NULL, 1);
1286         scan_block(__bss_start, __bss_stop, NULL, 1);
1287
1288 #ifdef CONFIG_SMP
1289         /* per-cpu sections scanning */
1290         for_each_possible_cpu(i)
1291                 scan_block(__per_cpu_start + per_cpu_offset(i),
1292                            __per_cpu_end + per_cpu_offset(i), NULL, 1);
1293 #endif
1294
1295         /*
1296          * Struct page scanning for each node.
1297          */
1298         lock_memory_hotplug();
1299         for_each_online_node(i) {
1300                 pg_data_t *pgdat = NODE_DATA(i);
1301                 unsigned long start_pfn = pgdat->node_start_pfn;
1302                 unsigned long end_pfn = start_pfn + pgdat->node_spanned_pages;
1303                 unsigned long pfn;
1304
1305                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1306                         struct page *page;
1307
1308                         if (!pfn_valid(pfn))
1309                                 continue;
1310                         page = pfn_to_page(pfn);
1311                         /* only scan if page is in use */
1312                         if (page_count(page) == 0)
1313                                 continue;
1314                         scan_block(page, page + 1, NULL, 1);
1315                 }
1316         }
1317         unlock_memory_hotplug();
1318
1319         /*
1320          * Scanning the task stacks (may introduce false negatives).
1321          */
1322         if (kmemleak_stack_scan) {
1323                 struct task_struct *p, *g;
1324
1325                 read_lock(&tasklist_lock);
1326                 do_each_thread(g, p) {
1327                         scan_block(task_stack_page(p), task_stack_page(p) +
1328                                    THREAD_SIZE, NULL, 0);
1329                 } while_each_thread(g, p);
1330                 read_unlock(&tasklist_lock);
1331         }
1332
1333         /*
1334          * Scan the objects already referenced from the sections scanned
1335          * above.
1336          */
1337         scan_gray_list();
1338
1339         /*
1340          * Check for new or unreferenced objects modified since the previous
1341          * scan and color them gray until the next scan.
1342          */
1343         rcu_read_lock();
1344         list_for_each_entry_rcu(object, &object_list, object_list) {
1345                 spin_lock_irqsave(&object->lock, flags);
1346                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1347                     && update_checksum(object) && get_object(object)) {
1348                         /* color it gray temporarily */
1349                         object->count = object->min_count;
1350                         list_add_tail(&object->gray_list, &gray_list);
1351                 }
1352                 spin_unlock_irqrestore(&object->lock, flags);
1353         }
1354         rcu_read_unlock();
1355
1356         /*
1357          * Re-scan the gray list for modified unreferenced objects.
1358          */
1359         scan_gray_list();
1360
1361         /*
1362          * If scanning was stopped do not report any new unreferenced objects.
1363          */
1364         if (scan_should_stop())
1365                 return;
1366
1367         /*
1368          * Scanning result reporting.
1369          */
1370         rcu_read_lock();
1371         list_for_each_entry_rcu(object, &object_list, object_list) {
1372                 spin_lock_irqsave(&object->lock, flags);
1373                 if (unreferenced_object(object) &&
1374                     !(object->flags & OBJECT_REPORTED)) {
1375                         object->flags |= OBJECT_REPORTED;
1376                         new_leaks++;
1377                 }
1378                 spin_unlock_irqrestore(&object->lock, flags);
1379         }
1380         rcu_read_unlock();
1381
1382         if (new_leaks)
1383                 pr_info("%d new suspected memory leaks (see "
1384                         "/sys/kernel/debug/kmemleak)\n", new_leaks);
1385
1386 }
1387
1388 /*
1389  * Thread function performing automatic memory scanning. Unreferenced objects
1390  * at the end of a memory scan are reported but only the first time.
1391  */
1392 static int kmemleak_scan_thread(void *arg)
1393 {
1394         static int first_run = 1;
1395
1396         pr_info("Automatic memory scanning thread started\n");
1397         set_user_nice(current, 10);
1398
1399         /*
1400          * Wait before the first scan to allow the system to fully initialize.
1401          */
1402         if (first_run) {
1403                 first_run = 0;
1404                 ssleep(SECS_FIRST_SCAN);
1405         }
1406
1407         while (!kthread_should_stop()) {
1408                 signed long timeout = jiffies_scan_wait;
1409
1410                 mutex_lock(&scan_mutex);
1411                 kmemleak_scan();
1412                 mutex_unlock(&scan_mutex);
1413
1414                 /* wait before the next scan */
1415                 while (timeout && !kthread_should_stop())
1416                         timeout = schedule_timeout_interruptible(timeout);
1417         }
1418
1419         pr_info("Automatic memory scanning thread ended\n");
1420
1421         return 0;
1422 }
1423
1424 /*
1425  * Start the automatic memory scanning thread. This function must be called
1426  * with the scan_mutex held.
1427  */
1428 static void start_scan_thread(void)
1429 {
1430         if (scan_thread)
1431                 return;
1432         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1433         if (IS_ERR(scan_thread)) {
1434                 pr_warning("Failed to create the scan thread\n");
1435                 scan_thread = NULL;
1436         }
1437 }
1438
1439 /*
1440  * Stop the automatic memory scanning thread. This function must be called
1441  * with the scan_mutex held.
1442  */
1443 static void stop_scan_thread(void)
1444 {
1445         if (scan_thread) {
1446                 kthread_stop(scan_thread);
1447                 scan_thread = NULL;
1448         }
1449 }
1450
1451 /*
1452  * Iterate over the object_list and return the first valid object at or after
1453  * the required position with its use_count incremented. The function triggers
1454  * a memory scanning when the pos argument points to the first position.
1455  */
1456 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1457 {
1458         struct kmemleak_object *object;
1459         loff_t n = *pos;
1460         int err;
1461
1462         err = mutex_lock_interruptible(&scan_mutex);
1463         if (err < 0)
1464                 return ERR_PTR(err);
1465
1466         rcu_read_lock();
1467         list_for_each_entry_rcu(object, &object_list, object_list) {
1468                 if (n-- > 0)
1469                         continue;
1470                 if (get_object(object))
1471                         goto out;
1472         }
1473         object = NULL;
1474 out:
1475         return object;
1476 }
1477
1478 /*
1479  * Return the next object in the object_list. The function decrements the
1480  * use_count of the previous object and increases that of the next one.
1481  */
1482 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1483 {
1484         struct kmemleak_object *prev_obj = v;
1485         struct kmemleak_object *next_obj = NULL;
1486         struct list_head *n = &prev_obj->object_list;
1487
1488         ++(*pos);
1489
1490         list_for_each_continue_rcu(n, &object_list) {
1491                 struct kmemleak_object *obj =
1492                         list_entry(n, struct kmemleak_object, object_list);
1493                 if (get_object(obj)) {
1494                         next_obj = obj;
1495                         break;
1496                 }
1497         }
1498
1499         put_object(prev_obj);
1500         return next_obj;
1501 }
1502
1503 /*
1504  * Decrement the use_count of the last object required, if any.
1505  */
1506 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1507 {
1508         if (!IS_ERR(v)) {
1509                 /*
1510                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1511                  * waiting was interrupted, so only release it if !IS_ERR.
1512                  */
1513                 rcu_read_unlock();
1514                 mutex_unlock(&scan_mutex);
1515                 if (v)
1516                         put_object(v);
1517         }
1518 }
1519
1520 /*
1521  * Print the information for an unreferenced object to the seq file.
1522  */
1523 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1524 {
1525         struct kmemleak_object *object = v;
1526         unsigned long flags;
1527
1528         spin_lock_irqsave(&object->lock, flags);
1529         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1530                 print_unreferenced(seq, object);
1531         spin_unlock_irqrestore(&object->lock, flags);
1532         return 0;
1533 }
1534
1535 static const struct seq_operations kmemleak_seq_ops = {
1536         .start = kmemleak_seq_start,
1537         .next  = kmemleak_seq_next,
1538         .stop  = kmemleak_seq_stop,
1539         .show  = kmemleak_seq_show,
1540 };
1541
1542 static int kmemleak_open(struct inode *inode, struct file *file)
1543 {
1544         return seq_open(file, &kmemleak_seq_ops);
1545 }
1546
1547 static int kmemleak_release(struct inode *inode, struct file *file)
1548 {
1549         return seq_release(inode, file);
1550 }
1551
1552 static int dump_str_object_info(const char *str)
1553 {
1554         unsigned long flags;
1555         struct kmemleak_object *object;
1556         unsigned long addr;
1557
1558         addr= simple_strtoul(str, NULL, 0);
1559         object = find_and_get_object(addr, 0);
1560         if (!object) {
1561                 pr_info("Unknown object at 0x%08lx\n", addr);
1562                 return -EINVAL;
1563         }
1564
1565         spin_lock_irqsave(&object->lock, flags);
1566         dump_object_info(object);
1567         spin_unlock_irqrestore(&object->lock, flags);
1568
1569         put_object(object);
1570         return 0;
1571 }
1572
1573 /*
1574  * We use grey instead of black to ensure we can do future scans on the same
1575  * objects. If we did not do future scans these black objects could
1576  * potentially contain references to newly allocated objects in the future and
1577  * we'd end up with false positives.
1578  */
1579 static void kmemleak_clear(void)
1580 {
1581         struct kmemleak_object *object;
1582         unsigned long flags;
1583
1584         rcu_read_lock();
1585         list_for_each_entry_rcu(object, &object_list, object_list) {
1586                 spin_lock_irqsave(&object->lock, flags);
1587                 if ((object->flags & OBJECT_REPORTED) &&
1588                     unreferenced_object(object))
1589                         __paint_it(object, KMEMLEAK_GREY);
1590                 spin_unlock_irqrestore(&object->lock, flags);
1591         }
1592         rcu_read_unlock();
1593 }
1594
1595 /*
1596  * File write operation to configure kmemleak at run-time. The following
1597  * commands can be written to the /sys/kernel/debug/kmemleak file:
1598  *   off        - disable kmemleak (irreversible)
1599  *   stack=on   - enable the task stacks scanning
1600  *   stack=off  - disable the tasks stacks scanning
1601  *   scan=on    - start the automatic memory scanning thread
1602  *   scan=off   - stop the automatic memory scanning thread
1603  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1604  *                disable it)
1605  *   scan       - trigger a memory scan
1606  *   clear      - mark all current reported unreferenced kmemleak objects as
1607  *                grey to ignore printing them
1608  *   dump=...   - dump information about the object found at the given address
1609  */
1610 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1611                               size_t size, loff_t *ppos)
1612 {
1613         char buf[64];
1614         int buf_size;
1615         int ret;
1616
1617         if (!atomic_read(&kmemleak_enabled))
1618                 return -EBUSY;
1619
1620         buf_size = min(size, (sizeof(buf) - 1));
1621         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1622                 return -EFAULT;
1623         buf[buf_size] = 0;
1624
1625         ret = mutex_lock_interruptible(&scan_mutex);
1626         if (ret < 0)
1627                 return ret;
1628
1629         if (strncmp(buf, "off", 3) == 0)
1630                 kmemleak_disable();
1631         else if (strncmp(buf, "stack=on", 8) == 0)
1632                 kmemleak_stack_scan = 1;
1633         else if (strncmp(buf, "stack=off", 9) == 0)
1634                 kmemleak_stack_scan = 0;
1635         else if (strncmp(buf, "scan=on", 7) == 0)
1636                 start_scan_thread();
1637         else if (strncmp(buf, "scan=off", 8) == 0)
1638                 stop_scan_thread();
1639         else if (strncmp(buf, "scan=", 5) == 0) {
1640                 unsigned long secs;
1641
1642                 ret = strict_strtoul(buf + 5, 0, &secs);
1643                 if (ret < 0)
1644                         goto out;
1645                 stop_scan_thread();
1646                 if (secs) {
1647                         jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1648                         start_scan_thread();
1649                 }
1650         } else if (strncmp(buf, "scan", 4) == 0)
1651                 kmemleak_scan();
1652         else if (strncmp(buf, "clear", 5) == 0)
1653                 kmemleak_clear();
1654         else if (strncmp(buf, "dump=", 5) == 0)
1655                 ret = dump_str_object_info(buf + 5);
1656         else
1657                 ret = -EINVAL;
1658
1659 out:
1660         mutex_unlock(&scan_mutex);
1661         if (ret < 0)
1662                 return ret;
1663
1664         /* ignore the rest of the buffer, only one command at a time */
1665         *ppos += size;
1666         return size;
1667 }
1668
1669 static const struct file_operations kmemleak_fops = {
1670         .owner          = THIS_MODULE,
1671         .open           = kmemleak_open,
1672         .read           = seq_read,
1673         .write          = kmemleak_write,
1674         .llseek         = seq_lseek,
1675         .release        = kmemleak_release,
1676 };
1677
1678 /*
1679  * Stop the memory scanning thread and free the kmemleak internal objects if
1680  * no previous scan thread (otherwise, kmemleak may still have some useful
1681  * information on memory leaks).
1682  */
1683 static void kmemleak_do_cleanup(struct work_struct *work)
1684 {
1685         struct kmemleak_object *object;
1686         bool cleanup = scan_thread == NULL;
1687
1688         mutex_lock(&scan_mutex);
1689         stop_scan_thread();
1690
1691         if (cleanup) {
1692                 rcu_read_lock();
1693                 list_for_each_entry_rcu(object, &object_list, object_list)
1694                         delete_object_full(object->pointer);
1695                 rcu_read_unlock();
1696         }
1697         mutex_unlock(&scan_mutex);
1698 }
1699
1700 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
1701
1702 /*
1703  * Disable kmemleak. No memory allocation/freeing will be traced once this
1704  * function is called. Disabling kmemleak is an irreversible operation.
1705  */
1706 static void kmemleak_disable(void)
1707 {
1708         /* atomically check whether it was already invoked */
1709         if (atomic_cmpxchg(&kmemleak_error, 0, 1))
1710                 return;
1711
1712         /* stop any memory operation tracing */
1713         atomic_set(&kmemleak_enabled, 0);
1714
1715         /* check whether it is too early for a kernel thread */
1716         if (atomic_read(&kmemleak_initialized))
1717                 schedule_work(&cleanup_work);
1718
1719         pr_info("Kernel memory leak detector disabled\n");
1720 }
1721
1722 /*
1723  * Allow boot-time kmemleak disabling (enabled by default).
1724  */
1725 static int kmemleak_boot_config(char *str)
1726 {
1727         if (!str)
1728                 return -EINVAL;
1729         if (strcmp(str, "off") == 0)
1730                 kmemleak_disable();
1731         else if (strcmp(str, "on") == 0)
1732                 kmemleak_skip_disable = 1;
1733         else
1734                 return -EINVAL;
1735         return 0;
1736 }
1737 early_param("kmemleak", kmemleak_boot_config);
1738
1739 static void __init print_log_trace(struct early_log *log)
1740 {
1741         struct stack_trace trace;
1742
1743         trace.nr_entries = log->trace_len;
1744         trace.entries = log->trace;
1745
1746         pr_notice("Early log backtrace:\n");
1747         print_stack_trace(&trace, 2);
1748 }
1749
1750 /*
1751  * Kmemleak initialization.
1752  */
1753 void __init kmemleak_init(void)
1754 {
1755         int i;
1756         unsigned long flags;
1757
1758 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
1759         if (!kmemleak_skip_disable) {
1760                 atomic_set(&kmemleak_early_log, 0);
1761                 kmemleak_disable();
1762                 return;
1763         }
1764 #endif
1765
1766         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
1767         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
1768
1769         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
1770         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
1771         INIT_PRIO_TREE_ROOT(&object_tree_root);
1772
1773         if (crt_early_log >= ARRAY_SIZE(early_log))
1774                 pr_warning("Early log buffer exceeded (%d), please increase "
1775                            "DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n", crt_early_log);
1776
1777         /* the kernel is still in UP mode, so disabling the IRQs is enough */
1778         local_irq_save(flags);
1779         atomic_set(&kmemleak_early_log, 0);
1780         if (atomic_read(&kmemleak_error)) {
1781                 local_irq_restore(flags);
1782                 return;
1783         } else
1784                 atomic_set(&kmemleak_enabled, 1);
1785         local_irq_restore(flags);
1786
1787         /*
1788          * This is the point where tracking allocations is safe. Automatic
1789          * scanning is started during the late initcall. Add the early logged
1790          * callbacks to the kmemleak infrastructure.
1791          */
1792         for (i = 0; i < crt_early_log; i++) {
1793                 struct early_log *log = &early_log[i];
1794
1795                 switch (log->op_type) {
1796                 case KMEMLEAK_ALLOC:
1797                         early_alloc(log);
1798                         break;
1799                 case KMEMLEAK_ALLOC_PERCPU:
1800                         early_alloc_percpu(log);
1801                         break;
1802                 case KMEMLEAK_FREE:
1803                         kmemleak_free(log->ptr);
1804                         break;
1805                 case KMEMLEAK_FREE_PART:
1806                         kmemleak_free_part(log->ptr, log->size);
1807                         break;
1808                 case KMEMLEAK_FREE_PERCPU:
1809                         kmemleak_free_percpu(log->ptr);
1810                         break;
1811                 case KMEMLEAK_NOT_LEAK:
1812                         kmemleak_not_leak(log->ptr);
1813                         break;
1814                 case KMEMLEAK_IGNORE:
1815                         kmemleak_ignore(log->ptr);
1816                         break;
1817                 case KMEMLEAK_SCAN_AREA:
1818                         kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
1819                         break;
1820                 case KMEMLEAK_NO_SCAN:
1821                         kmemleak_no_scan(log->ptr);
1822                         break;
1823                 default:
1824                         kmemleak_warn("Unknown early log operation: %d\n",
1825                                       log->op_type);
1826                 }
1827
1828                 if (atomic_read(&kmemleak_warning)) {
1829                         print_log_trace(log);
1830                         atomic_set(&kmemleak_warning, 0);
1831                 }
1832         }
1833 }
1834
1835 /*
1836  * Late initialization function.
1837  */
1838 static int __init kmemleak_late_init(void)
1839 {
1840         struct dentry *dentry;
1841
1842         atomic_set(&kmemleak_initialized, 1);
1843
1844         if (atomic_read(&kmemleak_error)) {
1845                 /*
1846                  * Some error occurred and kmemleak was disabled. There is a
1847                  * small chance that kmemleak_disable() was called immediately
1848                  * after setting kmemleak_initialized and we may end up with
1849                  * two clean-up threads but serialized by scan_mutex.
1850                  */
1851                 schedule_work(&cleanup_work);
1852                 return -ENOMEM;
1853         }
1854
1855         dentry = debugfs_create_file("kmemleak", S_IRUGO, NULL, NULL,
1856                                      &kmemleak_fops);
1857         if (!dentry)
1858                 pr_warning("Failed to create the debugfs kmemleak file\n");
1859         mutex_lock(&scan_mutex);
1860         start_scan_thread();
1861         mutex_unlock(&scan_mutex);
1862
1863         pr_info("Kernel memory leak detector initialized\n");
1864
1865         return 0;
1866 }
1867 late_initcall(kmemleak_late_init);