blk-cgroup: pass a gendisk to blkg_destroy_all
[platform/kernel/linux-starfive.git] / mm / kmemleak.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * mm/kmemleak.c
4  *
5  * Copyright (C) 2008 ARM Limited
6  * Written by Catalin Marinas <catalin.marinas@arm.com>
7  *
8  * For more information on the algorithm and kmemleak usage, please see
9  * Documentation/dev-tools/kmemleak.rst.
10  *
11  * Notes on locking
12  * ----------------
13  *
14  * The following locks and mutexes are used by kmemleak:
15  *
16  * - kmemleak_lock (raw_spinlock_t): protects the object_list modifications and
17  *   accesses to the object_tree_root (or object_phys_tree_root). The
18  *   object_list is the main list holding the metadata (struct kmemleak_object)
19  *   for the allocated memory blocks. The object_tree_root and object_phys_tree_root
20  *   are red black trees used to look-up metadata based on a pointer to the
21  *   corresponding memory block. The object_phys_tree_root is for objects
22  *   allocated with physical address. The kmemleak_object structures are
23  *   added to the object_list and object_tree_root (or object_phys_tree_root)
24  *   in the create_object() function called from the kmemleak_alloc() (or
25  *   kmemleak_alloc_phys()) callback and removed in delete_object() called from
26  *   the kmemleak_free() callback
27  * - kmemleak_object.lock (raw_spinlock_t): protects a kmemleak_object.
28  *   Accesses to the metadata (e.g. count) are protected by this lock. Note
29  *   that some members of this structure may be protected by other means
30  *   (atomic or kmemleak_lock). This lock is also held when scanning the
31  *   corresponding memory block to avoid the kernel freeing it via the
32  *   kmemleak_free() callback. This is less heavyweight than holding a global
33  *   lock like kmemleak_lock during scanning.
34  * - scan_mutex (mutex): ensures that only one thread may scan the memory for
35  *   unreferenced objects at a time. The gray_list contains the objects which
36  *   are already referenced or marked as false positives and need to be
37  *   scanned. This list is only modified during a scanning episode when the
38  *   scan_mutex is held. At the end of a scan, the gray_list is always empty.
39  *   Note that the kmemleak_object.use_count is incremented when an object is
40  *   added to the gray_list and therefore cannot be freed. This mutex also
41  *   prevents multiple users of the "kmemleak" debugfs file together with
42  *   modifications to the memory scanning parameters including the scan_thread
43  *   pointer
44  *
45  * Locks and mutexes are acquired/nested in the following order:
46  *
47  *   scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
48  *
49  * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
50  * regions.
51  *
52  * The kmemleak_object structures have a use_count incremented or decremented
53  * using the get_object()/put_object() functions. When the use_count becomes
54  * 0, this count can no longer be incremented and put_object() schedules the
55  * kmemleak_object freeing via an RCU callback. All calls to the get_object()
56  * function must be protected by rcu_read_lock() to avoid accessing a freed
57  * structure.
58  */
59
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
61
62 #include <linux/init.h>
63 #include <linux/kernel.h>
64 #include <linux/list.h>
65 #include <linux/sched/signal.h>
66 #include <linux/sched/task.h>
67 #include <linux/sched/task_stack.h>
68 #include <linux/jiffies.h>
69 #include <linux/delay.h>
70 #include <linux/export.h>
71 #include <linux/kthread.h>
72 #include <linux/rbtree.h>
73 #include <linux/fs.h>
74 #include <linux/debugfs.h>
75 #include <linux/seq_file.h>
76 #include <linux/cpumask.h>
77 #include <linux/spinlock.h>
78 #include <linux/module.h>
79 #include <linux/mutex.h>
80 #include <linux/rcupdate.h>
81 #include <linux/stacktrace.h>
82 #include <linux/cache.h>
83 #include <linux/percpu.h>
84 #include <linux/memblock.h>
85 #include <linux/pfn.h>
86 #include <linux/mmzone.h>
87 #include <linux/slab.h>
88 #include <linux/thread_info.h>
89 #include <linux/err.h>
90 #include <linux/uaccess.h>
91 #include <linux/string.h>
92 #include <linux/nodemask.h>
93 #include <linux/mm.h>
94 #include <linux/workqueue.h>
95 #include <linux/crc32.h>
96
97 #include <asm/sections.h>
98 #include <asm/processor.h>
99 #include <linux/atomic.h>
100
101 #include <linux/kasan.h>
102 #include <linux/kfence.h>
103 #include <linux/kmemleak.h>
104 #include <linux/memory_hotplug.h>
105
106 /*
107  * Kmemleak configuration and common defines.
108  */
109 #define MAX_TRACE               16      /* stack trace length */
110 #define MSECS_MIN_AGE           5000    /* minimum object age for reporting */
111 #define SECS_FIRST_SCAN         60      /* delay before the first scan */
112 #define SECS_SCAN_WAIT          600     /* subsequent auto scanning delay */
113 #define MAX_SCAN_SIZE           4096    /* maximum size of a scanned block */
114
115 #define BYTES_PER_POINTER       sizeof(void *)
116
117 /* GFP bitmask for kmemleak internal allocations */
118 #define gfp_kmemleak_mask(gfp)  (((gfp) & (GFP_KERNEL | GFP_ATOMIC | \
119                                            __GFP_NOLOCKDEP)) | \
120                                  __GFP_NORETRY | __GFP_NOMEMALLOC | \
121                                  __GFP_NOWARN)
122
123 /* scanning area inside a memory block */
124 struct kmemleak_scan_area {
125         struct hlist_node node;
126         unsigned long start;
127         size_t size;
128 };
129
130 #define KMEMLEAK_GREY   0
131 #define KMEMLEAK_BLACK  -1
132
133 /*
134  * Structure holding the metadata for each allocated memory block.
135  * Modifications to such objects should be made while holding the
136  * object->lock. Insertions or deletions from object_list, gray_list or
137  * rb_node are already protected by the corresponding locks or mutex (see
138  * the notes on locking above). These objects are reference-counted
139  * (use_count) and freed using the RCU mechanism.
140  */
141 struct kmemleak_object {
142         raw_spinlock_t lock;
143         unsigned int flags;             /* object status flags */
144         struct list_head object_list;
145         struct list_head gray_list;
146         struct rb_node rb_node;
147         struct rcu_head rcu;            /* object_list lockless traversal */
148         /* object usage count; object freed when use_count == 0 */
149         atomic_t use_count;
150         unsigned long pointer;
151         size_t size;
152         /* pass surplus references to this pointer */
153         unsigned long excess_ref;
154         /* minimum number of a pointers found before it is considered leak */
155         int min_count;
156         /* the total number of pointers found pointing to this object */
157         int count;
158         /* checksum for detecting modified objects */
159         u32 checksum;
160         /* memory ranges to be scanned inside an object (empty for all) */
161         struct hlist_head area_list;
162         unsigned long trace[MAX_TRACE];
163         unsigned int trace_len;
164         unsigned long jiffies;          /* creation timestamp */
165         pid_t pid;                      /* pid of the current task */
166         char comm[TASK_COMM_LEN];       /* executable name */
167 };
168
169 /* flag representing the memory block allocation status */
170 #define OBJECT_ALLOCATED        (1 << 0)
171 /* flag set after the first reporting of an unreference object */
172 #define OBJECT_REPORTED         (1 << 1)
173 /* flag set to not scan the object */
174 #define OBJECT_NO_SCAN          (1 << 2)
175 /* flag set to fully scan the object when scan_area allocation failed */
176 #define OBJECT_FULL_SCAN        (1 << 3)
177 /* flag set for object allocated with physical address */
178 #define OBJECT_PHYS             (1 << 4)
179
180 #define HEX_PREFIX              "    "
181 /* number of bytes to print per line; must be 16 or 32 */
182 #define HEX_ROW_SIZE            16
183 /* number of bytes to print at a time (1, 2, 4, 8) */
184 #define HEX_GROUP_SIZE          1
185 /* include ASCII after the hex output */
186 #define HEX_ASCII               1
187 /* max number of lines to be printed */
188 #define HEX_MAX_LINES           2
189
190 /* the list of all allocated objects */
191 static LIST_HEAD(object_list);
192 /* the list of gray-colored objects (see color_gray comment below) */
193 static LIST_HEAD(gray_list);
194 /* memory pool allocation */
195 static struct kmemleak_object mem_pool[CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE];
196 static int mem_pool_free_count = ARRAY_SIZE(mem_pool);
197 static LIST_HEAD(mem_pool_free_list);
198 /* search tree for object boundaries */
199 static struct rb_root object_tree_root = RB_ROOT;
200 /* search tree for object (with OBJECT_PHYS flag) boundaries */
201 static struct rb_root object_phys_tree_root = RB_ROOT;
202 /* protecting the access to object_list, object_tree_root (or object_phys_tree_root) */
203 static DEFINE_RAW_SPINLOCK(kmemleak_lock);
204
205 /* allocation caches for kmemleak internal data */
206 static struct kmem_cache *object_cache;
207 static struct kmem_cache *scan_area_cache;
208
209 /* set if tracing memory operations is enabled */
210 static int kmemleak_enabled = 1;
211 /* same as above but only for the kmemleak_free() callback */
212 static int kmemleak_free_enabled = 1;
213 /* set in the late_initcall if there were no errors */
214 static int kmemleak_initialized;
215 /* set if a kmemleak warning was issued */
216 static int kmemleak_warning;
217 /* set if a fatal kmemleak error has occurred */
218 static int kmemleak_error;
219
220 /* minimum and maximum address that may be valid pointers */
221 static unsigned long min_addr = ULONG_MAX;
222 static unsigned long max_addr;
223
224 static struct task_struct *scan_thread;
225 /* used to avoid reporting of recently allocated objects */
226 static unsigned long jiffies_min_age;
227 static unsigned long jiffies_last_scan;
228 /* delay between automatic memory scannings */
229 static unsigned long jiffies_scan_wait;
230 /* enables or disables the task stacks scanning */
231 static int kmemleak_stack_scan = 1;
232 /* protects the memory scanning, parameters and debug/kmemleak file access */
233 static DEFINE_MUTEX(scan_mutex);
234 /* setting kmemleak=on, will set this var, skipping the disable */
235 static int kmemleak_skip_disable;
236 /* If there are leaks that can be reported */
237 static bool kmemleak_found_leaks;
238
239 static bool kmemleak_verbose;
240 module_param_named(verbose, kmemleak_verbose, bool, 0600);
241
242 static void kmemleak_disable(void);
243
244 /*
245  * Print a warning and dump the stack trace.
246  */
247 #define kmemleak_warn(x...)     do {            \
248         pr_warn(x);                             \
249         dump_stack();                           \
250         kmemleak_warning = 1;                   \
251 } while (0)
252
253 /*
254  * Macro invoked when a serious kmemleak condition occurred and cannot be
255  * recovered from. Kmemleak will be disabled and further allocation/freeing
256  * tracing no longer available.
257  */
258 #define kmemleak_stop(x...)     do {    \
259         kmemleak_warn(x);               \
260         kmemleak_disable();             \
261 } while (0)
262
263 #define warn_or_seq_printf(seq, fmt, ...)       do {    \
264         if (seq)                                        \
265                 seq_printf(seq, fmt, ##__VA_ARGS__);    \
266         else                                            \
267                 pr_warn(fmt, ##__VA_ARGS__);            \
268 } while (0)
269
270 static void warn_or_seq_hex_dump(struct seq_file *seq, int prefix_type,
271                                  int rowsize, int groupsize, const void *buf,
272                                  size_t len, bool ascii)
273 {
274         if (seq)
275                 seq_hex_dump(seq, HEX_PREFIX, prefix_type, rowsize, groupsize,
276                              buf, len, ascii);
277         else
278                 print_hex_dump(KERN_WARNING, pr_fmt(HEX_PREFIX), prefix_type,
279                                rowsize, groupsize, buf, len, ascii);
280 }
281
282 /*
283  * Printing of the objects hex dump to the seq file. The number of lines to be
284  * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
285  * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
286  * with the object->lock held.
287  */
288 static void hex_dump_object(struct seq_file *seq,
289                             struct kmemleak_object *object)
290 {
291         const u8 *ptr = (const u8 *)object->pointer;
292         size_t len;
293
294         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
295                 return;
296
297         /* limit the number of lines to HEX_MAX_LINES */
298         len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
299
300         warn_or_seq_printf(seq, "  hex dump (first %zu bytes):\n", len);
301         kasan_disable_current();
302         warn_or_seq_hex_dump(seq, DUMP_PREFIX_NONE, HEX_ROW_SIZE,
303                              HEX_GROUP_SIZE, kasan_reset_tag((void *)ptr), len, HEX_ASCII);
304         kasan_enable_current();
305 }
306
307 /*
308  * Object colors, encoded with count and min_count:
309  * - white - orphan object, not enough references to it (count < min_count)
310  * - gray  - not orphan, not marked as false positive (min_count == 0) or
311  *              sufficient references to it (count >= min_count)
312  * - black - ignore, it doesn't contain references (e.g. text section)
313  *              (min_count == -1). No function defined for this color.
314  * Newly created objects don't have any color assigned (object->count == -1)
315  * before the next memory scan when they become white.
316  */
317 static bool color_white(const struct kmemleak_object *object)
318 {
319         return object->count != KMEMLEAK_BLACK &&
320                 object->count < object->min_count;
321 }
322
323 static bool color_gray(const struct kmemleak_object *object)
324 {
325         return object->min_count != KMEMLEAK_BLACK &&
326                 object->count >= object->min_count;
327 }
328
329 /*
330  * Objects are considered unreferenced only if their color is white, they have
331  * not be deleted and have a minimum age to avoid false positives caused by
332  * pointers temporarily stored in CPU registers.
333  */
334 static bool unreferenced_object(struct kmemleak_object *object)
335 {
336         return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
337                 time_before_eq(object->jiffies + jiffies_min_age,
338                                jiffies_last_scan);
339 }
340
341 /*
342  * Printing of the unreferenced objects information to the seq file. The
343  * print_unreferenced function must be called with the object->lock held.
344  */
345 static void print_unreferenced(struct seq_file *seq,
346                                struct kmemleak_object *object)
347 {
348         int i;
349         unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
350
351         warn_or_seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
352                    object->pointer, object->size);
353         warn_or_seq_printf(seq, "  comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
354                    object->comm, object->pid, object->jiffies,
355                    msecs_age / 1000, msecs_age % 1000);
356         hex_dump_object(seq, object);
357         warn_or_seq_printf(seq, "  backtrace:\n");
358
359         for (i = 0; i < object->trace_len; i++) {
360                 void *ptr = (void *)object->trace[i];
361                 warn_or_seq_printf(seq, "    [<%p>] %pS\n", ptr, ptr);
362         }
363 }
364
365 /*
366  * Print the kmemleak_object information. This function is used mainly for
367  * debugging special cases when kmemleak operations. It must be called with
368  * the object->lock held.
369  */
370 static void dump_object_info(struct kmemleak_object *object)
371 {
372         pr_notice("Object 0x%08lx (size %zu):\n",
373                   object->pointer, object->size);
374         pr_notice("  comm \"%s\", pid %d, jiffies %lu\n",
375                   object->comm, object->pid, object->jiffies);
376         pr_notice("  min_count = %d\n", object->min_count);
377         pr_notice("  count = %d\n", object->count);
378         pr_notice("  flags = 0x%x\n", object->flags);
379         pr_notice("  checksum = %u\n", object->checksum);
380         pr_notice("  backtrace:\n");
381         stack_trace_print(object->trace, object->trace_len, 4);
382 }
383
384 /*
385  * Look-up a memory block metadata (kmemleak_object) in the object search
386  * tree based on a pointer value. If alias is 0, only values pointing to the
387  * beginning of the memory block are allowed. The kmemleak_lock must be held
388  * when calling this function.
389  */
390 static struct kmemleak_object *__lookup_object(unsigned long ptr, int alias,
391                                                bool is_phys)
392 {
393         struct rb_node *rb = is_phys ? object_phys_tree_root.rb_node :
394                              object_tree_root.rb_node;
395         unsigned long untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
396
397         while (rb) {
398                 struct kmemleak_object *object;
399                 unsigned long untagged_objp;
400
401                 object = rb_entry(rb, struct kmemleak_object, rb_node);
402                 untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
403
404                 if (untagged_ptr < untagged_objp)
405                         rb = object->rb_node.rb_left;
406                 else if (untagged_objp + object->size <= untagged_ptr)
407                         rb = object->rb_node.rb_right;
408                 else if (untagged_objp == untagged_ptr || alias)
409                         return object;
410                 else {
411                         kmemleak_warn("Found object by alias at 0x%08lx\n",
412                                       ptr);
413                         dump_object_info(object);
414                         break;
415                 }
416         }
417         return NULL;
418 }
419
420 /* Look-up a kmemleak object which allocated with virtual address. */
421 static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
422 {
423         return __lookup_object(ptr, alias, false);
424 }
425
426 /*
427  * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
428  * that once an object's use_count reached 0, the RCU freeing was already
429  * registered and the object should no longer be used. This function must be
430  * called under the protection of rcu_read_lock().
431  */
432 static int get_object(struct kmemleak_object *object)
433 {
434         return atomic_inc_not_zero(&object->use_count);
435 }
436
437 /*
438  * Memory pool allocation and freeing. kmemleak_lock must not be held.
439  */
440 static struct kmemleak_object *mem_pool_alloc(gfp_t gfp)
441 {
442         unsigned long flags;
443         struct kmemleak_object *object;
444
445         /* try the slab allocator first */
446         if (object_cache) {
447                 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
448                 if (object)
449                         return object;
450         }
451
452         /* slab allocation failed, try the memory pool */
453         raw_spin_lock_irqsave(&kmemleak_lock, flags);
454         object = list_first_entry_or_null(&mem_pool_free_list,
455                                           typeof(*object), object_list);
456         if (object)
457                 list_del(&object->object_list);
458         else if (mem_pool_free_count)
459                 object = &mem_pool[--mem_pool_free_count];
460         else
461                 pr_warn_once("Memory pool empty, consider increasing CONFIG_DEBUG_KMEMLEAK_MEM_POOL_SIZE\n");
462         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
463
464         return object;
465 }
466
467 /*
468  * Return the object to either the slab allocator or the memory pool.
469  */
470 static void mem_pool_free(struct kmemleak_object *object)
471 {
472         unsigned long flags;
473
474         if (object < mem_pool || object >= mem_pool + ARRAY_SIZE(mem_pool)) {
475                 kmem_cache_free(object_cache, object);
476                 return;
477         }
478
479         /* add the object to the memory pool free list */
480         raw_spin_lock_irqsave(&kmemleak_lock, flags);
481         list_add(&object->object_list, &mem_pool_free_list);
482         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
483 }
484
485 /*
486  * RCU callback to free a kmemleak_object.
487  */
488 static void free_object_rcu(struct rcu_head *rcu)
489 {
490         struct hlist_node *tmp;
491         struct kmemleak_scan_area *area;
492         struct kmemleak_object *object =
493                 container_of(rcu, struct kmemleak_object, rcu);
494
495         /*
496          * Once use_count is 0 (guaranteed by put_object), there is no other
497          * code accessing this object, hence no need for locking.
498          */
499         hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
500                 hlist_del(&area->node);
501                 kmem_cache_free(scan_area_cache, area);
502         }
503         mem_pool_free(object);
504 }
505
506 /*
507  * Decrement the object use_count. Once the count is 0, free the object using
508  * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
509  * delete_object() path, the delayed RCU freeing ensures that there is no
510  * recursive call to the kernel allocator. Lock-less RCU object_list traversal
511  * is also possible.
512  */
513 static void put_object(struct kmemleak_object *object)
514 {
515         if (!atomic_dec_and_test(&object->use_count))
516                 return;
517
518         /* should only get here after delete_object was called */
519         WARN_ON(object->flags & OBJECT_ALLOCATED);
520
521         /*
522          * It may be too early for the RCU callbacks, however, there is no
523          * concurrent object_list traversal when !object_cache and all objects
524          * came from the memory pool. Free the object directly.
525          */
526         if (object_cache)
527                 call_rcu(&object->rcu, free_object_rcu);
528         else
529                 free_object_rcu(&object->rcu);
530 }
531
532 /*
533  * Look up an object in the object search tree and increase its use_count.
534  */
535 static struct kmemleak_object *__find_and_get_object(unsigned long ptr, int alias,
536                                                      bool is_phys)
537 {
538         unsigned long flags;
539         struct kmemleak_object *object;
540
541         rcu_read_lock();
542         raw_spin_lock_irqsave(&kmemleak_lock, flags);
543         object = __lookup_object(ptr, alias, is_phys);
544         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
545
546         /* check whether the object is still available */
547         if (object && !get_object(object))
548                 object = NULL;
549         rcu_read_unlock();
550
551         return object;
552 }
553
554 /* Look up and get an object which allocated with virtual address. */
555 static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
556 {
557         return __find_and_get_object(ptr, alias, false);
558 }
559
560 /*
561  * Remove an object from the object_tree_root (or object_phys_tree_root)
562  * and object_list. Must be called with the kmemleak_lock held _if_ kmemleak
563  * is still enabled.
564  */
565 static void __remove_object(struct kmemleak_object *object)
566 {
567         rb_erase(&object->rb_node, object->flags & OBJECT_PHYS ?
568                                    &object_phys_tree_root :
569                                    &object_tree_root);
570         list_del_rcu(&object->object_list);
571 }
572
573 /*
574  * Look up an object in the object search tree and remove it from both
575  * object_tree_root (or object_phys_tree_root) and object_list. The
576  * returned object's use_count should be at least 1, as initially set
577  * by create_object().
578  */
579 static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias,
580                                                       bool is_phys)
581 {
582         unsigned long flags;
583         struct kmemleak_object *object;
584
585         raw_spin_lock_irqsave(&kmemleak_lock, flags);
586         object = __lookup_object(ptr, alias, is_phys);
587         if (object)
588                 __remove_object(object);
589         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
590
591         return object;
592 }
593
594 /*
595  * Save stack trace to the given array of MAX_TRACE size.
596  */
597 static int __save_stack_trace(unsigned long *trace)
598 {
599         return stack_trace_save(trace, MAX_TRACE, 2);
600 }
601
602 /*
603  * Create the metadata (struct kmemleak_object) corresponding to an allocated
604  * memory block and add it to the object_list and object_tree_root (or
605  * object_phys_tree_root).
606  */
607 static struct kmemleak_object *__create_object(unsigned long ptr, size_t size,
608                                              int min_count, gfp_t gfp,
609                                              bool is_phys)
610 {
611         unsigned long flags;
612         struct kmemleak_object *object, *parent;
613         struct rb_node **link, *rb_parent;
614         unsigned long untagged_ptr;
615         unsigned long untagged_objp;
616
617         object = mem_pool_alloc(gfp);
618         if (!object) {
619                 pr_warn("Cannot allocate a kmemleak_object structure\n");
620                 kmemleak_disable();
621                 return NULL;
622         }
623
624         INIT_LIST_HEAD(&object->object_list);
625         INIT_LIST_HEAD(&object->gray_list);
626         INIT_HLIST_HEAD(&object->area_list);
627         raw_spin_lock_init(&object->lock);
628         atomic_set(&object->use_count, 1);
629         object->flags = OBJECT_ALLOCATED | (is_phys ? OBJECT_PHYS : 0);
630         object->pointer = ptr;
631         object->size = kfence_ksize((void *)ptr) ?: size;
632         object->excess_ref = 0;
633         object->min_count = min_count;
634         object->count = 0;                      /* white color initially */
635         object->jiffies = jiffies;
636         object->checksum = 0;
637
638         /* task information */
639         if (in_hardirq()) {
640                 object->pid = 0;
641                 strncpy(object->comm, "hardirq", sizeof(object->comm));
642         } else if (in_serving_softirq()) {
643                 object->pid = 0;
644                 strncpy(object->comm, "softirq", sizeof(object->comm));
645         } else {
646                 object->pid = current->pid;
647                 /*
648                  * There is a small chance of a race with set_task_comm(),
649                  * however using get_task_comm() here may cause locking
650                  * dependency issues with current->alloc_lock. In the worst
651                  * case, the command line is not correct.
652                  */
653                 strncpy(object->comm, current->comm, sizeof(object->comm));
654         }
655
656         /* kernel backtrace */
657         object->trace_len = __save_stack_trace(object->trace);
658
659         raw_spin_lock_irqsave(&kmemleak_lock, flags);
660
661         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
662         /*
663          * Only update min_addr and max_addr with object
664          * storing virtual address.
665          */
666         if (!is_phys) {
667                 min_addr = min(min_addr, untagged_ptr);
668                 max_addr = max(max_addr, untagged_ptr + size);
669         }
670         link = is_phys ? &object_phys_tree_root.rb_node :
671                 &object_tree_root.rb_node;
672         rb_parent = NULL;
673         while (*link) {
674                 rb_parent = *link;
675                 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
676                 untagged_objp = (unsigned long)kasan_reset_tag((void *)parent->pointer);
677                 if (untagged_ptr + size <= untagged_objp)
678                         link = &parent->rb_node.rb_left;
679                 else if (untagged_objp + parent->size <= untagged_ptr)
680                         link = &parent->rb_node.rb_right;
681                 else {
682                         kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
683                                       ptr);
684                         /*
685                          * No need for parent->lock here since "parent" cannot
686                          * be freed while the kmemleak_lock is held.
687                          */
688                         dump_object_info(parent);
689                         kmem_cache_free(object_cache, object);
690                         object = NULL;
691                         goto out;
692                 }
693         }
694         rb_link_node(&object->rb_node, rb_parent, link);
695         rb_insert_color(&object->rb_node, is_phys ? &object_phys_tree_root :
696                                           &object_tree_root);
697
698         list_add_tail_rcu(&object->object_list, &object_list);
699 out:
700         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
701         return object;
702 }
703
704 /* Create kmemleak object which allocated with virtual address. */
705 static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
706                                              int min_count, gfp_t gfp)
707 {
708         return __create_object(ptr, size, min_count, gfp, false);
709 }
710
711 /* Create kmemleak object which allocated with physical address. */
712 static struct kmemleak_object *create_object_phys(unsigned long ptr, size_t size,
713                                              int min_count, gfp_t gfp)
714 {
715         return __create_object(ptr, size, min_count, gfp, true);
716 }
717
718 /*
719  * Mark the object as not allocated and schedule RCU freeing via put_object().
720  */
721 static void __delete_object(struct kmemleak_object *object)
722 {
723         unsigned long flags;
724
725         WARN_ON(!(object->flags & OBJECT_ALLOCATED));
726         WARN_ON(atomic_read(&object->use_count) < 1);
727
728         /*
729          * Locking here also ensures that the corresponding memory block
730          * cannot be freed when it is being scanned.
731          */
732         raw_spin_lock_irqsave(&object->lock, flags);
733         object->flags &= ~OBJECT_ALLOCATED;
734         raw_spin_unlock_irqrestore(&object->lock, flags);
735         put_object(object);
736 }
737
738 /*
739  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
740  * delete it.
741  */
742 static void delete_object_full(unsigned long ptr)
743 {
744         struct kmemleak_object *object;
745
746         object = find_and_remove_object(ptr, 0, false);
747         if (!object) {
748 #ifdef DEBUG
749                 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
750                               ptr);
751 #endif
752                 return;
753         }
754         __delete_object(object);
755 }
756
757 /*
758  * Look up the metadata (struct kmemleak_object) corresponding to ptr and
759  * delete it. If the memory block is partially freed, the function may create
760  * additional metadata for the remaining parts of the block.
761  */
762 static void delete_object_part(unsigned long ptr, size_t size, bool is_phys)
763 {
764         struct kmemleak_object *object;
765         unsigned long start, end;
766
767         object = find_and_remove_object(ptr, 1, is_phys);
768         if (!object) {
769 #ifdef DEBUG
770                 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
771                               ptr, size);
772 #endif
773                 return;
774         }
775
776         /*
777          * Create one or two objects that may result from the memory block
778          * split. Note that partial freeing is only done by free_bootmem() and
779          * this happens before kmemleak_init() is called.
780          */
781         start = object->pointer;
782         end = object->pointer + object->size;
783         if (ptr > start)
784                 __create_object(start, ptr - start, object->min_count,
785                               GFP_KERNEL, is_phys);
786         if (ptr + size < end)
787                 __create_object(ptr + size, end - ptr - size, object->min_count,
788                               GFP_KERNEL, is_phys);
789
790         __delete_object(object);
791 }
792
793 static void __paint_it(struct kmemleak_object *object, int color)
794 {
795         object->min_count = color;
796         if (color == KMEMLEAK_BLACK)
797                 object->flags |= OBJECT_NO_SCAN;
798 }
799
800 static void paint_it(struct kmemleak_object *object, int color)
801 {
802         unsigned long flags;
803
804         raw_spin_lock_irqsave(&object->lock, flags);
805         __paint_it(object, color);
806         raw_spin_unlock_irqrestore(&object->lock, flags);
807 }
808
809 static void paint_ptr(unsigned long ptr, int color, bool is_phys)
810 {
811         struct kmemleak_object *object;
812
813         object = __find_and_get_object(ptr, 0, is_phys);
814         if (!object) {
815                 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
816                               ptr,
817                               (color == KMEMLEAK_GREY) ? "Grey" :
818                               (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
819                 return;
820         }
821         paint_it(object, color);
822         put_object(object);
823 }
824
825 /*
826  * Mark an object permanently as gray-colored so that it can no longer be
827  * reported as a leak. This is used in general to mark a false positive.
828  */
829 static void make_gray_object(unsigned long ptr)
830 {
831         paint_ptr(ptr, KMEMLEAK_GREY, false);
832 }
833
834 /*
835  * Mark the object as black-colored so that it is ignored from scans and
836  * reporting.
837  */
838 static void make_black_object(unsigned long ptr, bool is_phys)
839 {
840         paint_ptr(ptr, KMEMLEAK_BLACK, is_phys);
841 }
842
843 /*
844  * Add a scanning area to the object. If at least one such area is added,
845  * kmemleak will only scan these ranges rather than the whole memory block.
846  */
847 static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
848 {
849         unsigned long flags;
850         struct kmemleak_object *object;
851         struct kmemleak_scan_area *area = NULL;
852         unsigned long untagged_ptr;
853         unsigned long untagged_objp;
854
855         object = find_and_get_object(ptr, 1);
856         if (!object) {
857                 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
858                               ptr);
859                 return;
860         }
861
862         untagged_ptr = (unsigned long)kasan_reset_tag((void *)ptr);
863         untagged_objp = (unsigned long)kasan_reset_tag((void *)object->pointer);
864
865         if (scan_area_cache)
866                 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
867
868         raw_spin_lock_irqsave(&object->lock, flags);
869         if (!area) {
870                 pr_warn_once("Cannot allocate a scan area, scanning the full object\n");
871                 /* mark the object for full scan to avoid false positives */
872                 object->flags |= OBJECT_FULL_SCAN;
873                 goto out_unlock;
874         }
875         if (size == SIZE_MAX) {
876                 size = untagged_objp + object->size - untagged_ptr;
877         } else if (untagged_ptr + size > untagged_objp + object->size) {
878                 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
879                 dump_object_info(object);
880                 kmem_cache_free(scan_area_cache, area);
881                 goto out_unlock;
882         }
883
884         INIT_HLIST_NODE(&area->node);
885         area->start = ptr;
886         area->size = size;
887
888         hlist_add_head(&area->node, &object->area_list);
889 out_unlock:
890         raw_spin_unlock_irqrestore(&object->lock, flags);
891         put_object(object);
892 }
893
894 /*
895  * Any surplus references (object already gray) to 'ptr' are passed to
896  * 'excess_ref'. This is used in the vmalloc() case where a pointer to
897  * vm_struct may be used as an alternative reference to the vmalloc'ed object
898  * (see free_thread_stack()).
899  */
900 static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
901 {
902         unsigned long flags;
903         struct kmemleak_object *object;
904
905         object = find_and_get_object(ptr, 0);
906         if (!object) {
907                 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
908                               ptr);
909                 return;
910         }
911
912         raw_spin_lock_irqsave(&object->lock, flags);
913         object->excess_ref = excess_ref;
914         raw_spin_unlock_irqrestore(&object->lock, flags);
915         put_object(object);
916 }
917
918 /*
919  * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
920  * pointer. Such object will not be scanned by kmemleak but references to it
921  * are searched.
922  */
923 static void object_no_scan(unsigned long ptr)
924 {
925         unsigned long flags;
926         struct kmemleak_object *object;
927
928         object = find_and_get_object(ptr, 0);
929         if (!object) {
930                 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
931                 return;
932         }
933
934         raw_spin_lock_irqsave(&object->lock, flags);
935         object->flags |= OBJECT_NO_SCAN;
936         raw_spin_unlock_irqrestore(&object->lock, flags);
937         put_object(object);
938 }
939
940 /**
941  * kmemleak_alloc - register a newly allocated object
942  * @ptr:        pointer to beginning of the object
943  * @size:       size of the object
944  * @min_count:  minimum number of references to this object. If during memory
945  *              scanning a number of references less than @min_count is found,
946  *              the object is reported as a memory leak. If @min_count is 0,
947  *              the object is never reported as a leak. If @min_count is -1,
948  *              the object is ignored (not scanned and not reported as a leak)
949  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
950  *
951  * This function is called from the kernel allocators when a new object
952  * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
953  */
954 void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
955                           gfp_t gfp)
956 {
957         pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
958
959         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
960                 create_object((unsigned long)ptr, size, min_count, gfp);
961 }
962 EXPORT_SYMBOL_GPL(kmemleak_alloc);
963
964 /**
965  * kmemleak_alloc_percpu - register a newly allocated __percpu object
966  * @ptr:        __percpu pointer to beginning of the object
967  * @size:       size of the object
968  * @gfp:        flags used for kmemleak internal memory allocations
969  *
970  * This function is called from the kernel percpu allocator when a new object
971  * (memory block) is allocated (alloc_percpu).
972  */
973 void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
974                                  gfp_t gfp)
975 {
976         unsigned int cpu;
977
978         pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
979
980         /*
981          * Percpu allocations are only scanned and not reported as leaks
982          * (min_count is set to 0).
983          */
984         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
985                 for_each_possible_cpu(cpu)
986                         create_object((unsigned long)per_cpu_ptr(ptr, cpu),
987                                       size, 0, gfp);
988 }
989 EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
990
991 /**
992  * kmemleak_vmalloc - register a newly vmalloc'ed object
993  * @area:       pointer to vm_struct
994  * @size:       size of the object
995  * @gfp:        __vmalloc() flags used for kmemleak internal memory allocations
996  *
997  * This function is called from the vmalloc() kernel allocator when a new
998  * object (memory block) is allocated.
999  */
1000 void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
1001 {
1002         pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
1003
1004         /*
1005          * A min_count = 2 is needed because vm_struct contains a reference to
1006          * the virtual address of the vmalloc'ed block.
1007          */
1008         if (kmemleak_enabled) {
1009                 create_object((unsigned long)area->addr, size, 2, gfp);
1010                 object_set_excess_ref((unsigned long)area,
1011                                       (unsigned long)area->addr);
1012         }
1013 }
1014 EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1015
1016 /**
1017  * kmemleak_free - unregister a previously registered object
1018  * @ptr:        pointer to beginning of the object
1019  *
1020  * This function is called from the kernel allocators when an object (memory
1021  * block) is freed (kmem_cache_free, kfree, vfree etc.).
1022  */
1023 void __ref kmemleak_free(const void *ptr)
1024 {
1025         pr_debug("%s(0x%p)\n", __func__, ptr);
1026
1027         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1028                 delete_object_full((unsigned long)ptr);
1029 }
1030 EXPORT_SYMBOL_GPL(kmemleak_free);
1031
1032 /**
1033  * kmemleak_free_part - partially unregister a previously registered object
1034  * @ptr:        pointer to the beginning or inside the object. This also
1035  *              represents the start of the range to be freed
1036  * @size:       size to be unregistered
1037  *
1038  * This function is called when only a part of a memory block is freed
1039  * (usually from the bootmem allocator).
1040  */
1041 void __ref kmemleak_free_part(const void *ptr, size_t size)
1042 {
1043         pr_debug("%s(0x%p)\n", __func__, ptr);
1044
1045         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1046                 delete_object_part((unsigned long)ptr, size, false);
1047 }
1048 EXPORT_SYMBOL_GPL(kmemleak_free_part);
1049
1050 /**
1051  * kmemleak_free_percpu - unregister a previously registered __percpu object
1052  * @ptr:        __percpu pointer to beginning of the object
1053  *
1054  * This function is called from the kernel percpu allocator when an object
1055  * (memory block) is freed (free_percpu).
1056  */
1057 void __ref kmemleak_free_percpu(const void __percpu *ptr)
1058 {
1059         unsigned int cpu;
1060
1061         pr_debug("%s(0x%p)\n", __func__, ptr);
1062
1063         if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
1064                 for_each_possible_cpu(cpu)
1065                         delete_object_full((unsigned long)per_cpu_ptr(ptr,
1066                                                                       cpu));
1067 }
1068 EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1069
1070 /**
1071  * kmemleak_update_trace - update object allocation stack trace
1072  * @ptr:        pointer to beginning of the object
1073  *
1074  * Override the object allocation stack trace for cases where the actual
1075  * allocation place is not always useful.
1076  */
1077 void __ref kmemleak_update_trace(const void *ptr)
1078 {
1079         struct kmemleak_object *object;
1080         unsigned long flags;
1081
1082         pr_debug("%s(0x%p)\n", __func__, ptr);
1083
1084         if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1085                 return;
1086
1087         object = find_and_get_object((unsigned long)ptr, 1);
1088         if (!object) {
1089 #ifdef DEBUG
1090                 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1091                               ptr);
1092 #endif
1093                 return;
1094         }
1095
1096         raw_spin_lock_irqsave(&object->lock, flags);
1097         object->trace_len = __save_stack_trace(object->trace);
1098         raw_spin_unlock_irqrestore(&object->lock, flags);
1099
1100         put_object(object);
1101 }
1102 EXPORT_SYMBOL(kmemleak_update_trace);
1103
1104 /**
1105  * kmemleak_not_leak - mark an allocated object as false positive
1106  * @ptr:        pointer to beginning of the object
1107  *
1108  * Calling this function on an object will cause the memory block to no longer
1109  * be reported as leak and always be scanned.
1110  */
1111 void __ref kmemleak_not_leak(const void *ptr)
1112 {
1113         pr_debug("%s(0x%p)\n", __func__, ptr);
1114
1115         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1116                 make_gray_object((unsigned long)ptr);
1117 }
1118 EXPORT_SYMBOL(kmemleak_not_leak);
1119
1120 /**
1121  * kmemleak_ignore - ignore an allocated object
1122  * @ptr:        pointer to beginning of the object
1123  *
1124  * Calling this function on an object will cause the memory block to be
1125  * ignored (not scanned and not reported as a leak). This is usually done when
1126  * it is known that the corresponding block is not a leak and does not contain
1127  * any references to other allocated memory blocks.
1128  */
1129 void __ref kmemleak_ignore(const void *ptr)
1130 {
1131         pr_debug("%s(0x%p)\n", __func__, ptr);
1132
1133         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1134                 make_black_object((unsigned long)ptr, false);
1135 }
1136 EXPORT_SYMBOL(kmemleak_ignore);
1137
1138 /**
1139  * kmemleak_scan_area - limit the range to be scanned in an allocated object
1140  * @ptr:        pointer to beginning or inside the object. This also
1141  *              represents the start of the scan area
1142  * @size:       size of the scan area
1143  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1144  *
1145  * This function is used when it is known that only certain parts of an object
1146  * contain references to other objects. Kmemleak will only scan these areas
1147  * reducing the number false negatives.
1148  */
1149 void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
1150 {
1151         pr_debug("%s(0x%p)\n", __func__, ptr);
1152
1153         if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
1154                 add_scan_area((unsigned long)ptr, size, gfp);
1155 }
1156 EXPORT_SYMBOL(kmemleak_scan_area);
1157
1158 /**
1159  * kmemleak_no_scan - do not scan an allocated object
1160  * @ptr:        pointer to beginning of the object
1161  *
1162  * This function notifies kmemleak not to scan the given memory block. Useful
1163  * in situations where it is known that the given object does not contain any
1164  * references to other objects. Kmemleak will not scan such objects reducing
1165  * the number of false negatives.
1166  */
1167 void __ref kmemleak_no_scan(const void *ptr)
1168 {
1169         pr_debug("%s(0x%p)\n", __func__, ptr);
1170
1171         if (kmemleak_enabled && ptr && !IS_ERR(ptr))
1172                 object_no_scan((unsigned long)ptr);
1173 }
1174 EXPORT_SYMBOL(kmemleak_no_scan);
1175
1176 /**
1177  * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1178  *                       address argument
1179  * @phys:       physical address of the object
1180  * @size:       size of the object
1181  * @gfp:        kmalloc() flags used for kmemleak internal memory allocations
1182  */
1183 void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, gfp_t gfp)
1184 {
1185         pr_debug("%s(0x%pa, %zu)\n", __func__, &phys, size);
1186
1187         if (kmemleak_enabled)
1188                 /*
1189                  * Create object with OBJECT_PHYS flag and
1190                  * assume min_count 0.
1191                  */
1192                 create_object_phys((unsigned long)phys, size, 0, gfp);
1193 }
1194 EXPORT_SYMBOL(kmemleak_alloc_phys);
1195
1196 /**
1197  * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1198  *                           physical address argument
1199  * @phys:       physical address if the beginning or inside an object. This
1200  *              also represents the start of the range to be freed
1201  * @size:       size to be unregistered
1202  */
1203 void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1204 {
1205         pr_debug("%s(0x%pa)\n", __func__, &phys);
1206
1207         if (kmemleak_enabled)
1208                 delete_object_part((unsigned long)phys, size, true);
1209 }
1210 EXPORT_SYMBOL(kmemleak_free_part_phys);
1211
1212 /**
1213  * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1214  *                        address argument
1215  * @phys:       physical address of the object
1216  */
1217 void __ref kmemleak_ignore_phys(phys_addr_t phys)
1218 {
1219         pr_debug("%s(0x%pa)\n", __func__, &phys);
1220
1221         if (kmemleak_enabled)
1222                 make_black_object((unsigned long)phys, true);
1223 }
1224 EXPORT_SYMBOL(kmemleak_ignore_phys);
1225
1226 /*
1227  * Update an object's checksum and return true if it was modified.
1228  */
1229 static bool update_checksum(struct kmemleak_object *object)
1230 {
1231         u32 old_csum = object->checksum;
1232
1233         if (WARN_ON_ONCE(object->flags & OBJECT_PHYS))
1234                 return false;
1235
1236         kasan_disable_current();
1237         kcsan_disable_current();
1238         object->checksum = crc32(0, kasan_reset_tag((void *)object->pointer), object->size);
1239         kasan_enable_current();
1240         kcsan_enable_current();
1241
1242         return object->checksum != old_csum;
1243 }
1244
1245 /*
1246  * Update an object's references. object->lock must be held by the caller.
1247  */
1248 static void update_refs(struct kmemleak_object *object)
1249 {
1250         if (!color_white(object)) {
1251                 /* non-orphan, ignored or new */
1252                 return;
1253         }
1254
1255         /*
1256          * Increase the object's reference count (number of pointers to the
1257          * memory block). If this count reaches the required minimum, the
1258          * object's color will become gray and it will be added to the
1259          * gray_list.
1260          */
1261         object->count++;
1262         if (color_gray(object)) {
1263                 /* put_object() called when removing from gray_list */
1264                 WARN_ON(!get_object(object));
1265                 list_add_tail(&object->gray_list, &gray_list);
1266         }
1267 }
1268
1269 /*
1270  * Memory scanning is a long process and it needs to be interruptible. This
1271  * function checks whether such interrupt condition occurred.
1272  */
1273 static int scan_should_stop(void)
1274 {
1275         if (!kmemleak_enabled)
1276                 return 1;
1277
1278         /*
1279          * This function may be called from either process or kthread context,
1280          * hence the need to check for both stop conditions.
1281          */
1282         if (current->mm)
1283                 return signal_pending(current);
1284         else
1285                 return kthread_should_stop();
1286
1287         return 0;
1288 }
1289
1290 /*
1291  * Scan a memory block (exclusive range) for valid pointers and add those
1292  * found to the gray list.
1293  */
1294 static void scan_block(void *_start, void *_end,
1295                        struct kmemleak_object *scanned)
1296 {
1297         unsigned long *ptr;
1298         unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1299         unsigned long *end = _end - (BYTES_PER_POINTER - 1);
1300         unsigned long flags;
1301         unsigned long untagged_ptr;
1302
1303         raw_spin_lock_irqsave(&kmemleak_lock, flags);
1304         for (ptr = start; ptr < end; ptr++) {
1305                 struct kmemleak_object *object;
1306                 unsigned long pointer;
1307                 unsigned long excess_ref;
1308
1309                 if (scan_should_stop())
1310                         break;
1311
1312                 kasan_disable_current();
1313                 pointer = *(unsigned long *)kasan_reset_tag((void *)ptr);
1314                 kasan_enable_current();
1315
1316                 untagged_ptr = (unsigned long)kasan_reset_tag((void *)pointer);
1317                 if (untagged_ptr < min_addr || untagged_ptr >= max_addr)
1318                         continue;
1319
1320                 /*
1321                  * No need for get_object() here since we hold kmemleak_lock.
1322                  * object->use_count cannot be dropped to 0 while the object
1323                  * is still present in object_tree_root and object_list
1324                  * (with updates protected by kmemleak_lock).
1325                  */
1326                 object = lookup_object(pointer, 1);
1327                 if (!object)
1328                         continue;
1329                 if (object == scanned)
1330                         /* self referenced, ignore */
1331                         continue;
1332
1333                 /*
1334                  * Avoid the lockdep recursive warning on object->lock being
1335                  * previously acquired in scan_object(). These locks are
1336                  * enclosed by scan_mutex.
1337                  */
1338                 raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1339                 /* only pass surplus references (object already gray) */
1340                 if (color_gray(object)) {
1341                         excess_ref = object->excess_ref;
1342                         /* no need for update_refs() if object already gray */
1343                 } else {
1344                         excess_ref = 0;
1345                         update_refs(object);
1346                 }
1347                 raw_spin_unlock(&object->lock);
1348
1349                 if (excess_ref) {
1350                         object = lookup_object(excess_ref, 0);
1351                         if (!object)
1352                                 continue;
1353                         if (object == scanned)
1354                                 /* circular reference, ignore */
1355                                 continue;
1356                         raw_spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1357                         update_refs(object);
1358                         raw_spin_unlock(&object->lock);
1359                 }
1360         }
1361         raw_spin_unlock_irqrestore(&kmemleak_lock, flags);
1362 }
1363
1364 /*
1365  * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1366  */
1367 #ifdef CONFIG_SMP
1368 static void scan_large_block(void *start, void *end)
1369 {
1370         void *next;
1371
1372         while (start < end) {
1373                 next = min(start + MAX_SCAN_SIZE, end);
1374                 scan_block(start, next, NULL);
1375                 start = next;
1376                 cond_resched();
1377         }
1378 }
1379 #endif
1380
1381 /*
1382  * Scan a memory block corresponding to a kmemleak_object. A condition is
1383  * that object->use_count >= 1.
1384  */
1385 static void scan_object(struct kmemleak_object *object)
1386 {
1387         struct kmemleak_scan_area *area;
1388         unsigned long flags;
1389         void *obj_ptr;
1390
1391         /*
1392          * Once the object->lock is acquired, the corresponding memory block
1393          * cannot be freed (the same lock is acquired in delete_object).
1394          */
1395         raw_spin_lock_irqsave(&object->lock, flags);
1396         if (object->flags & OBJECT_NO_SCAN)
1397                 goto out;
1398         if (!(object->flags & OBJECT_ALLOCATED))
1399                 /* already freed object */
1400                 goto out;
1401
1402         obj_ptr = object->flags & OBJECT_PHYS ?
1403                   __va((phys_addr_t)object->pointer) :
1404                   (void *)object->pointer;
1405
1406         if (hlist_empty(&object->area_list) ||
1407             object->flags & OBJECT_FULL_SCAN) {
1408                 void *start = obj_ptr;
1409                 void *end = obj_ptr + object->size;
1410                 void *next;
1411
1412                 do {
1413                         next = min(start + MAX_SCAN_SIZE, end);
1414                         scan_block(start, next, object);
1415
1416                         start = next;
1417                         if (start >= end)
1418                                 break;
1419
1420                         raw_spin_unlock_irqrestore(&object->lock, flags);
1421                         cond_resched();
1422                         raw_spin_lock_irqsave(&object->lock, flags);
1423                 } while (object->flags & OBJECT_ALLOCATED);
1424         } else
1425                 hlist_for_each_entry(area, &object->area_list, node)
1426                         scan_block((void *)area->start,
1427                                    (void *)(area->start + area->size),
1428                                    object);
1429 out:
1430         raw_spin_unlock_irqrestore(&object->lock, flags);
1431 }
1432
1433 /*
1434  * Scan the objects already referenced (gray objects). More objects will be
1435  * referenced and, if there are no memory leaks, all the objects are scanned.
1436  */
1437 static void scan_gray_list(void)
1438 {
1439         struct kmemleak_object *object, *tmp;
1440
1441         /*
1442          * The list traversal is safe for both tail additions and removals
1443          * from inside the loop. The kmemleak objects cannot be freed from
1444          * outside the loop because their use_count was incremented.
1445          */
1446         object = list_entry(gray_list.next, typeof(*object), gray_list);
1447         while (&object->gray_list != &gray_list) {
1448                 cond_resched();
1449
1450                 /* may add new objects to the list */
1451                 if (!scan_should_stop())
1452                         scan_object(object);
1453
1454                 tmp = list_entry(object->gray_list.next, typeof(*object),
1455                                  gray_list);
1456
1457                 /* remove the object from the list and release it */
1458                 list_del(&object->gray_list);
1459                 put_object(object);
1460
1461                 object = tmp;
1462         }
1463         WARN_ON(!list_empty(&gray_list));
1464 }
1465
1466 /*
1467  * Scan data sections and all the referenced memory blocks allocated via the
1468  * kernel's standard allocators. This function must be called with the
1469  * scan_mutex held.
1470  */
1471 static void kmemleak_scan(void)
1472 {
1473         struct kmemleak_object *object;
1474         struct zone *zone;
1475         int __maybe_unused i;
1476         int new_leaks = 0;
1477         int loop1_cnt = 0;
1478
1479         jiffies_last_scan = jiffies;
1480
1481         /* prepare the kmemleak_object's */
1482         rcu_read_lock();
1483         list_for_each_entry_rcu(object, &object_list, object_list) {
1484                 bool obj_pinned = false;
1485
1486                 loop1_cnt++;
1487                 raw_spin_lock_irq(&object->lock);
1488 #ifdef DEBUG
1489                 /*
1490                  * With a few exceptions there should be a maximum of
1491                  * 1 reference to any object at this point.
1492                  */
1493                 if (atomic_read(&object->use_count) > 1) {
1494                         pr_debug("object->use_count = %d\n",
1495                                  atomic_read(&object->use_count));
1496                         dump_object_info(object);
1497                 }
1498 #endif
1499
1500                 /* ignore objects outside lowmem (paint them black) */
1501                 if ((object->flags & OBJECT_PHYS) &&
1502                    !(object->flags & OBJECT_NO_SCAN)) {
1503                         unsigned long phys = object->pointer;
1504
1505                         if (PHYS_PFN(phys) < min_low_pfn ||
1506                             PHYS_PFN(phys + object->size) >= max_low_pfn)
1507                                 __paint_it(object, KMEMLEAK_BLACK);
1508                 }
1509
1510                 /* reset the reference count (whiten the object) */
1511                 object->count = 0;
1512                 if (color_gray(object) && get_object(object)) {
1513                         list_add_tail(&object->gray_list, &gray_list);
1514                         obj_pinned = true;
1515                 }
1516
1517                 raw_spin_unlock_irq(&object->lock);
1518
1519                 /*
1520                  * Do a cond_resched() to avoid soft lockup every 64k objects.
1521                  * Make sure a reference has been taken so that the object
1522                  * won't go away without RCU read lock.
1523                  */
1524                 if (!(loop1_cnt & 0xffff)) {
1525                         if (!obj_pinned && !get_object(object)) {
1526                                 /* Try the next object instead */
1527                                 loop1_cnt--;
1528                                 continue;
1529                         }
1530
1531                         rcu_read_unlock();
1532                         cond_resched();
1533                         rcu_read_lock();
1534
1535                         if (!obj_pinned)
1536                                 put_object(object);
1537                 }
1538         }
1539         rcu_read_unlock();
1540
1541 #ifdef CONFIG_SMP
1542         /* per-cpu sections scanning */
1543         for_each_possible_cpu(i)
1544                 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1545                                  __per_cpu_end + per_cpu_offset(i));
1546 #endif
1547
1548         /*
1549          * Struct page scanning for each node.
1550          */
1551         get_online_mems();
1552         for_each_populated_zone(zone) {
1553                 unsigned long start_pfn = zone->zone_start_pfn;
1554                 unsigned long end_pfn = zone_end_pfn(zone);
1555                 unsigned long pfn;
1556
1557                 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1558                         struct page *page = pfn_to_online_page(pfn);
1559
1560                         if (!page)
1561                                 continue;
1562
1563                         /* only scan pages belonging to this zone */
1564                         if (page_zone(page) != zone)
1565                                 continue;
1566                         /* only scan if page is in use */
1567                         if (page_count(page) == 0)
1568                                 continue;
1569                         scan_block(page, page + 1, NULL);
1570                         if (!(pfn & 63))
1571                                 cond_resched();
1572                 }
1573         }
1574         put_online_mems();
1575
1576         /*
1577          * Scanning the task stacks (may introduce false negatives).
1578          */
1579         if (kmemleak_stack_scan) {
1580                 struct task_struct *p, *g;
1581
1582                 rcu_read_lock();
1583                 for_each_process_thread(g, p) {
1584                         void *stack = try_get_task_stack(p);
1585                         if (stack) {
1586                                 scan_block(stack, stack + THREAD_SIZE, NULL);
1587                                 put_task_stack(p);
1588                         }
1589                 }
1590                 rcu_read_unlock();
1591         }
1592
1593         /*
1594          * Scan the objects already referenced from the sections scanned
1595          * above.
1596          */
1597         scan_gray_list();
1598
1599         /*
1600          * Check for new or unreferenced objects modified since the previous
1601          * scan and color them gray until the next scan.
1602          */
1603         rcu_read_lock();
1604         list_for_each_entry_rcu(object, &object_list, object_list) {
1605                 /*
1606                  * This is racy but we can save the overhead of lock/unlock
1607                  * calls. The missed objects, if any, should be caught in
1608                  * the next scan.
1609                  */
1610                 if (!color_white(object))
1611                         continue;
1612                 raw_spin_lock_irq(&object->lock);
1613                 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1614                     && update_checksum(object) && get_object(object)) {
1615                         /* color it gray temporarily */
1616                         object->count = object->min_count;
1617                         list_add_tail(&object->gray_list, &gray_list);
1618                 }
1619                 raw_spin_unlock_irq(&object->lock);
1620         }
1621         rcu_read_unlock();
1622
1623         /*
1624          * Re-scan the gray list for modified unreferenced objects.
1625          */
1626         scan_gray_list();
1627
1628         /*
1629          * If scanning was stopped do not report any new unreferenced objects.
1630          */
1631         if (scan_should_stop())
1632                 return;
1633
1634         /*
1635          * Scanning result reporting.
1636          */
1637         rcu_read_lock();
1638         list_for_each_entry_rcu(object, &object_list, object_list) {
1639                 /*
1640                  * This is racy but we can save the overhead of lock/unlock
1641                  * calls. The missed objects, if any, should be caught in
1642                  * the next scan.
1643                  */
1644                 if (!color_white(object))
1645                         continue;
1646                 raw_spin_lock_irq(&object->lock);
1647                 if (unreferenced_object(object) &&
1648                     !(object->flags & OBJECT_REPORTED)) {
1649                         object->flags |= OBJECT_REPORTED;
1650
1651                         if (kmemleak_verbose)
1652                                 print_unreferenced(NULL, object);
1653
1654                         new_leaks++;
1655                 }
1656                 raw_spin_unlock_irq(&object->lock);
1657         }
1658         rcu_read_unlock();
1659
1660         if (new_leaks) {
1661                 kmemleak_found_leaks = true;
1662
1663                 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1664                         new_leaks);
1665         }
1666
1667 }
1668
1669 /*
1670  * Thread function performing automatic memory scanning. Unreferenced objects
1671  * at the end of a memory scan are reported but only the first time.
1672  */
1673 static int kmemleak_scan_thread(void *arg)
1674 {
1675         static int first_run = IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN);
1676
1677         pr_info("Automatic memory scanning thread started\n");
1678         set_user_nice(current, 10);
1679
1680         /*
1681          * Wait before the first scan to allow the system to fully initialize.
1682          */
1683         if (first_run) {
1684                 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
1685                 first_run = 0;
1686                 while (timeout && !kthread_should_stop())
1687                         timeout = schedule_timeout_interruptible(timeout);
1688         }
1689
1690         while (!kthread_should_stop()) {
1691                 signed long timeout = READ_ONCE(jiffies_scan_wait);
1692
1693                 mutex_lock(&scan_mutex);
1694                 kmemleak_scan();
1695                 mutex_unlock(&scan_mutex);
1696
1697                 /* wait before the next scan */
1698                 while (timeout && !kthread_should_stop())
1699                         timeout = schedule_timeout_interruptible(timeout);
1700         }
1701
1702         pr_info("Automatic memory scanning thread ended\n");
1703
1704         return 0;
1705 }
1706
1707 /*
1708  * Start the automatic memory scanning thread. This function must be called
1709  * with the scan_mutex held.
1710  */
1711 static void start_scan_thread(void)
1712 {
1713         if (scan_thread)
1714                 return;
1715         scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1716         if (IS_ERR(scan_thread)) {
1717                 pr_warn("Failed to create the scan thread\n");
1718                 scan_thread = NULL;
1719         }
1720 }
1721
1722 /*
1723  * Stop the automatic memory scanning thread.
1724  */
1725 static void stop_scan_thread(void)
1726 {
1727         if (scan_thread) {
1728                 kthread_stop(scan_thread);
1729                 scan_thread = NULL;
1730         }
1731 }
1732
1733 /*
1734  * Iterate over the object_list and return the first valid object at or after
1735  * the required position with its use_count incremented. The function triggers
1736  * a memory scanning when the pos argument points to the first position.
1737  */
1738 static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1739 {
1740         struct kmemleak_object *object;
1741         loff_t n = *pos;
1742         int err;
1743
1744         err = mutex_lock_interruptible(&scan_mutex);
1745         if (err < 0)
1746                 return ERR_PTR(err);
1747
1748         rcu_read_lock();
1749         list_for_each_entry_rcu(object, &object_list, object_list) {
1750                 if (n-- > 0)
1751                         continue;
1752                 if (get_object(object))
1753                         goto out;
1754         }
1755         object = NULL;
1756 out:
1757         return object;
1758 }
1759
1760 /*
1761  * Return the next object in the object_list. The function decrements the
1762  * use_count of the previous object and increases that of the next one.
1763  */
1764 static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1765 {
1766         struct kmemleak_object *prev_obj = v;
1767         struct kmemleak_object *next_obj = NULL;
1768         struct kmemleak_object *obj = prev_obj;
1769
1770         ++(*pos);
1771
1772         list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
1773                 if (get_object(obj)) {
1774                         next_obj = obj;
1775                         break;
1776                 }
1777         }
1778
1779         put_object(prev_obj);
1780         return next_obj;
1781 }
1782
1783 /*
1784  * Decrement the use_count of the last object required, if any.
1785  */
1786 static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1787 {
1788         if (!IS_ERR(v)) {
1789                 /*
1790                  * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1791                  * waiting was interrupted, so only release it if !IS_ERR.
1792                  */
1793                 rcu_read_unlock();
1794                 mutex_unlock(&scan_mutex);
1795                 if (v)
1796                         put_object(v);
1797         }
1798 }
1799
1800 /*
1801  * Print the information for an unreferenced object to the seq file.
1802  */
1803 static int kmemleak_seq_show(struct seq_file *seq, void *v)
1804 {
1805         struct kmemleak_object *object = v;
1806         unsigned long flags;
1807
1808         raw_spin_lock_irqsave(&object->lock, flags);
1809         if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
1810                 print_unreferenced(seq, object);
1811         raw_spin_unlock_irqrestore(&object->lock, flags);
1812         return 0;
1813 }
1814
1815 static const struct seq_operations kmemleak_seq_ops = {
1816         .start = kmemleak_seq_start,
1817         .next  = kmemleak_seq_next,
1818         .stop  = kmemleak_seq_stop,
1819         .show  = kmemleak_seq_show,
1820 };
1821
1822 static int kmemleak_open(struct inode *inode, struct file *file)
1823 {
1824         return seq_open(file, &kmemleak_seq_ops);
1825 }
1826
1827 static int dump_str_object_info(const char *str)
1828 {
1829         unsigned long flags;
1830         struct kmemleak_object *object;
1831         unsigned long addr;
1832
1833         if (kstrtoul(str, 0, &addr))
1834                 return -EINVAL;
1835         object = find_and_get_object(addr, 0);
1836         if (!object) {
1837                 pr_info("Unknown object at 0x%08lx\n", addr);
1838                 return -EINVAL;
1839         }
1840
1841         raw_spin_lock_irqsave(&object->lock, flags);
1842         dump_object_info(object);
1843         raw_spin_unlock_irqrestore(&object->lock, flags);
1844
1845         put_object(object);
1846         return 0;
1847 }
1848
1849 /*
1850  * We use grey instead of black to ensure we can do future scans on the same
1851  * objects. If we did not do future scans these black objects could
1852  * potentially contain references to newly allocated objects in the future and
1853  * we'd end up with false positives.
1854  */
1855 static void kmemleak_clear(void)
1856 {
1857         struct kmemleak_object *object;
1858
1859         rcu_read_lock();
1860         list_for_each_entry_rcu(object, &object_list, object_list) {
1861                 raw_spin_lock_irq(&object->lock);
1862                 if ((object->flags & OBJECT_REPORTED) &&
1863                     unreferenced_object(object))
1864                         __paint_it(object, KMEMLEAK_GREY);
1865                 raw_spin_unlock_irq(&object->lock);
1866         }
1867         rcu_read_unlock();
1868
1869         kmemleak_found_leaks = false;
1870 }
1871
1872 static void __kmemleak_do_cleanup(void);
1873
1874 /*
1875  * File write operation to configure kmemleak at run-time. The following
1876  * commands can be written to the /sys/kernel/debug/kmemleak file:
1877  *   off        - disable kmemleak (irreversible)
1878  *   stack=on   - enable the task stacks scanning
1879  *   stack=off  - disable the tasks stacks scanning
1880  *   scan=on    - start the automatic memory scanning thread
1881  *   scan=off   - stop the automatic memory scanning thread
1882  *   scan=...   - set the automatic memory scanning period in seconds (0 to
1883  *                disable it)
1884  *   scan       - trigger a memory scan
1885  *   clear      - mark all current reported unreferenced kmemleak objects as
1886  *                grey to ignore printing them, or free all kmemleak objects
1887  *                if kmemleak has been disabled.
1888  *   dump=...   - dump information about the object found at the given address
1889  */
1890 static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1891                               size_t size, loff_t *ppos)
1892 {
1893         char buf[64];
1894         int buf_size;
1895         int ret;
1896
1897         buf_size = min(size, (sizeof(buf) - 1));
1898         if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1899                 return -EFAULT;
1900         buf[buf_size] = 0;
1901
1902         ret = mutex_lock_interruptible(&scan_mutex);
1903         if (ret < 0)
1904                 return ret;
1905
1906         if (strncmp(buf, "clear", 5) == 0) {
1907                 if (kmemleak_enabled)
1908                         kmemleak_clear();
1909                 else
1910                         __kmemleak_do_cleanup();
1911                 goto out;
1912         }
1913
1914         if (!kmemleak_enabled) {
1915                 ret = -EPERM;
1916                 goto out;
1917         }
1918
1919         if (strncmp(buf, "off", 3) == 0)
1920                 kmemleak_disable();
1921         else if (strncmp(buf, "stack=on", 8) == 0)
1922                 kmemleak_stack_scan = 1;
1923         else if (strncmp(buf, "stack=off", 9) == 0)
1924                 kmemleak_stack_scan = 0;
1925         else if (strncmp(buf, "scan=on", 7) == 0)
1926                 start_scan_thread();
1927         else if (strncmp(buf, "scan=off", 8) == 0)
1928                 stop_scan_thread();
1929         else if (strncmp(buf, "scan=", 5) == 0) {
1930                 unsigned secs;
1931                 unsigned long msecs;
1932
1933                 ret = kstrtouint(buf + 5, 0, &secs);
1934                 if (ret < 0)
1935                         goto out;
1936
1937                 msecs = secs * MSEC_PER_SEC;
1938                 if (msecs > UINT_MAX)
1939                         msecs = UINT_MAX;
1940
1941                 stop_scan_thread();
1942                 if (msecs) {
1943                         WRITE_ONCE(jiffies_scan_wait, msecs_to_jiffies(msecs));
1944                         start_scan_thread();
1945                 }
1946         } else if (strncmp(buf, "scan", 4) == 0)
1947                 kmemleak_scan();
1948         else if (strncmp(buf, "dump=", 5) == 0)
1949                 ret = dump_str_object_info(buf + 5);
1950         else
1951                 ret = -EINVAL;
1952
1953 out:
1954         mutex_unlock(&scan_mutex);
1955         if (ret < 0)
1956                 return ret;
1957
1958         /* ignore the rest of the buffer, only one command at a time */
1959         *ppos += size;
1960         return size;
1961 }
1962
1963 static const struct file_operations kmemleak_fops = {
1964         .owner          = THIS_MODULE,
1965         .open           = kmemleak_open,
1966         .read           = seq_read,
1967         .write          = kmemleak_write,
1968         .llseek         = seq_lseek,
1969         .release        = seq_release,
1970 };
1971
1972 static void __kmemleak_do_cleanup(void)
1973 {
1974         struct kmemleak_object *object, *tmp;
1975
1976         /*
1977          * Kmemleak has already been disabled, no need for RCU list traversal
1978          * or kmemleak_lock held.
1979          */
1980         list_for_each_entry_safe(object, tmp, &object_list, object_list) {
1981                 __remove_object(object);
1982                 __delete_object(object);
1983         }
1984 }
1985
1986 /*
1987  * Stop the memory scanning thread and free the kmemleak internal objects if
1988  * no previous scan thread (otherwise, kmemleak may still have some useful
1989  * information on memory leaks).
1990  */
1991 static void kmemleak_do_cleanup(struct work_struct *work)
1992 {
1993         stop_scan_thread();
1994
1995         mutex_lock(&scan_mutex);
1996         /*
1997          * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1998          * longer track object freeing. Ordering of the scan thread stopping and
1999          * the memory accesses below is guaranteed by the kthread_stop()
2000          * function.
2001          */
2002         kmemleak_free_enabled = 0;
2003         mutex_unlock(&scan_mutex);
2004
2005         if (!kmemleak_found_leaks)
2006                 __kmemleak_do_cleanup();
2007         else
2008                 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
2009 }
2010
2011 static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
2012
2013 /*
2014  * Disable kmemleak. No memory allocation/freeing will be traced once this
2015  * function is called. Disabling kmemleak is an irreversible operation.
2016  */
2017 static void kmemleak_disable(void)
2018 {
2019         /* atomically check whether it was already invoked */
2020         if (cmpxchg(&kmemleak_error, 0, 1))
2021                 return;
2022
2023         /* stop any memory operation tracing */
2024         kmemleak_enabled = 0;
2025
2026         /* check whether it is too early for a kernel thread */
2027         if (kmemleak_initialized)
2028                 schedule_work(&cleanup_work);
2029         else
2030                 kmemleak_free_enabled = 0;
2031
2032         pr_info("Kernel memory leak detector disabled\n");
2033 }
2034
2035 /*
2036  * Allow boot-time kmemleak disabling (enabled by default).
2037  */
2038 static int __init kmemleak_boot_config(char *str)
2039 {
2040         if (!str)
2041                 return -EINVAL;
2042         if (strcmp(str, "off") == 0)
2043                 kmemleak_disable();
2044         else if (strcmp(str, "on") == 0)
2045                 kmemleak_skip_disable = 1;
2046         else
2047                 return -EINVAL;
2048         return 0;
2049 }
2050 early_param("kmemleak", kmemleak_boot_config);
2051
2052 /*
2053  * Kmemleak initialization.
2054  */
2055 void __init kmemleak_init(void)
2056 {
2057 #ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2058         if (!kmemleak_skip_disable) {
2059                 kmemleak_disable();
2060                 return;
2061         }
2062 #endif
2063
2064         if (kmemleak_error)
2065                 return;
2066
2067         jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2068         jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2069
2070         object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2071         scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
2072
2073         /* register the data/bss sections */
2074         create_object((unsigned long)_sdata, _edata - _sdata,
2075                       KMEMLEAK_GREY, GFP_ATOMIC);
2076         create_object((unsigned long)__bss_start, __bss_stop - __bss_start,
2077                       KMEMLEAK_GREY, GFP_ATOMIC);
2078         /* only register .data..ro_after_init if not within .data */
2079         if (&__start_ro_after_init < &_sdata || &__end_ro_after_init > &_edata)
2080                 create_object((unsigned long)__start_ro_after_init,
2081                               __end_ro_after_init - __start_ro_after_init,
2082                               KMEMLEAK_GREY, GFP_ATOMIC);
2083 }
2084
2085 /*
2086  * Late initialization function.
2087  */
2088 static int __init kmemleak_late_init(void)
2089 {
2090         kmemleak_initialized = 1;
2091
2092         debugfs_create_file("kmemleak", 0644, NULL, NULL, &kmemleak_fops);
2093
2094         if (kmemleak_error) {
2095                 /*
2096                  * Some error occurred and kmemleak was disabled. There is a
2097                  * small chance that kmemleak_disable() was called immediately
2098                  * after setting kmemleak_initialized and we may end up with
2099                  * two clean-up threads but serialized by scan_mutex.
2100                  */
2101                 schedule_work(&cleanup_work);
2102                 return -ENOMEM;
2103         }
2104
2105         if (IS_ENABLED(CONFIG_DEBUG_KMEMLEAK_AUTO_SCAN)) {
2106                 mutex_lock(&scan_mutex);
2107                 start_scan_thread();
2108                 mutex_unlock(&scan_mutex);
2109         }
2110
2111         pr_info("Kernel memory leak detector initialized (mem pool available: %d)\n",
2112                 mem_pool_free_count);
2113
2114         return 0;
2115 }
2116 late_initcall(kmemleak_late_init);