Merge tag 'trace-v5.15-rc6-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rosted...
[platform/kernel/linux-rpi.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_EXCEED_SWAP_PTE,
32         SCAN_EXCEED_SHARED_PTE,
33         SCAN_PTE_NON_PRESENT,
34         SCAN_PTE_UFFD_WP,
35         SCAN_PAGE_RO,
36         SCAN_LACK_REFERENCED_PAGE,
37         SCAN_PAGE_NULL,
38         SCAN_SCAN_ABORT,
39         SCAN_PAGE_COUNT,
40         SCAN_PAGE_LRU,
41         SCAN_PAGE_LOCK,
42         SCAN_PAGE_ANON,
43         SCAN_PAGE_COMPOUND,
44         SCAN_ANY_PROCESS,
45         SCAN_VMA_NULL,
46         SCAN_VMA_CHECK,
47         SCAN_ADDRESS_RANGE,
48         SCAN_SWAP_CACHE_PAGE,
49         SCAN_DEL_PAGE_LRU,
50         SCAN_ALLOC_HUGE_PAGE_FAIL,
51         SCAN_CGROUP_CHARGE_FAIL,
52         SCAN_TRUNCATED,
53         SCAN_PAGE_HAS_PRIVATE,
54 };
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85
86 #define MAX_PTE_MAPPED_THP 8
87
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  * @nr_pte_mapped_thp: number of pte mapped THP
94  * @pte_mapped_thp: address array corresponding pte mapped THP
95  */
96 struct mm_slot {
97         struct hlist_node hash;
98         struct list_head mm_node;
99         struct mm_struct *mm;
100
101         /* pte-mapped THP in this mm */
102         int nr_pte_mapped_thp;
103         unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115         struct list_head mm_head;
116         struct mm_slot *mm_slot;
117         unsigned long address;
118 };
119
120 static struct khugepaged_scan khugepaged_scan = {
121         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126                                          struct kobj_attribute *attr,
127                                          char *buf)
128 {
129         return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133                                           struct kobj_attribute *attr,
134                                           const char *buf, size_t count)
135 {
136         unsigned int msecs;
137         int err;
138
139         err = kstrtouint(buf, 10, &msecs);
140         if (err)
141                 return -EINVAL;
142
143         khugepaged_scan_sleep_millisecs = msecs;
144         khugepaged_sleep_expire = 0;
145         wake_up_interruptible(&khugepaged_wait);
146
147         return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151                scan_sleep_millisecs_store);
152
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154                                           struct kobj_attribute *attr,
155                                           char *buf)
156 {
157         return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161                                            struct kobj_attribute *attr,
162                                            const char *buf, size_t count)
163 {
164         unsigned int msecs;
165         int err;
166
167         err = kstrtouint(buf, 10, &msecs);
168         if (err)
169                 return -EINVAL;
170
171         khugepaged_alloc_sleep_millisecs = msecs;
172         khugepaged_sleep_expire = 0;
173         wake_up_interruptible(&khugepaged_wait);
174
175         return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179                alloc_sleep_millisecs_store);
180
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182                                   struct kobj_attribute *attr,
183                                   char *buf)
184 {
185         return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188                                    struct kobj_attribute *attr,
189                                    const char *buf, size_t count)
190 {
191         unsigned int pages;
192         int err;
193
194         err = kstrtouint(buf, 10, &pages);
195         if (err || !pages)
196                 return -EINVAL;
197
198         khugepaged_pages_to_scan = pages;
199
200         return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
204                pages_to_scan_store);
205
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207                                     struct kobj_attribute *attr,
208                                     char *buf)
209 {
210         return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213         __ATTR_RO(pages_collapsed);
214
215 static ssize_t full_scans_show(struct kobject *kobj,
216                                struct kobj_attribute *attr,
217                                char *buf)
218 {
219         return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222         __ATTR_RO(full_scans);
223
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225                                       struct kobj_attribute *attr, char *buf)
226 {
227         return single_hugepage_flag_show(kobj, attr, buf,
228                                          TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231                                        struct kobj_attribute *attr,
232                                        const char *buf, size_t count)
233 {
234         return single_hugepage_flag_store(kobj, attr, buf, count,
235                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238         __ATTR(defrag, 0644, khugepaged_defrag_show,
239                khugepaged_defrag_store);
240
241 /*
242  * max_ptes_none controls if khugepaged should collapse hugepages over
243  * any unmapped ptes in turn potentially increasing the memory
244  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245  * reduce the available free memory in the system as it
246  * runs. Increasing max_ptes_none will instead potentially reduce the
247  * free memory in the system during the khugepaged scan.
248  */
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250                                              struct kobj_attribute *attr,
251                                              char *buf)
252 {
253         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256                                               struct kobj_attribute *attr,
257                                               const char *buf, size_t count)
258 {
259         int err;
260         unsigned long max_ptes_none;
261
262         err = kstrtoul(buf, 10, &max_ptes_none);
263         if (err || max_ptes_none > HPAGE_PMD_NR-1)
264                 return -EINVAL;
265
266         khugepaged_max_ptes_none = max_ptes_none;
267
268         return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272                khugepaged_max_ptes_none_store);
273
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275                                              struct kobj_attribute *attr,
276                                              char *buf)
277 {
278         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282                                               struct kobj_attribute *attr,
283                                               const char *buf, size_t count)
284 {
285         int err;
286         unsigned long max_ptes_swap;
287
288         err  = kstrtoul(buf, 10, &max_ptes_swap);
289         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290                 return -EINVAL;
291
292         khugepaged_max_ptes_swap = max_ptes_swap;
293
294         return count;
295 }
296
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299                khugepaged_max_ptes_swap_store);
300
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302                                                struct kobj_attribute *attr,
303                                                char *buf)
304 {
305         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309                                               struct kobj_attribute *attr,
310                                               const char *buf, size_t count)
311 {
312         int err;
313         unsigned long max_ptes_shared;
314
315         err  = kstrtoul(buf, 10, &max_ptes_shared);
316         if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317                 return -EINVAL;
318
319         khugepaged_max_ptes_shared = max_ptes_shared;
320
321         return count;
322 }
323
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325         __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326                khugepaged_max_ptes_shared_store);
327
328 static struct attribute *khugepaged_attr[] = {
329         &khugepaged_defrag_attr.attr,
330         &khugepaged_max_ptes_none_attr.attr,
331         &khugepaged_max_ptes_swap_attr.attr,
332         &khugepaged_max_ptes_shared_attr.attr,
333         &pages_to_scan_attr.attr,
334         &pages_collapsed_attr.attr,
335         &full_scans_attr.attr,
336         &scan_sleep_millisecs_attr.attr,
337         &alloc_sleep_millisecs_attr.attr,
338         NULL,
339 };
340
341 struct attribute_group khugepaged_attr_group = {
342         .attrs = khugepaged_attr,
343         .name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346
347 int hugepage_madvise(struct vm_area_struct *vma,
348                      unsigned long *vm_flags, int advice)
349 {
350         switch (advice) {
351         case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353                 /*
354                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355                  * can't handle this properly after s390_enable_sie, so we simply
356                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
357                  */
358                 if (mm_has_pgste(vma->vm_mm))
359                         return 0;
360 #endif
361                 *vm_flags &= ~VM_NOHUGEPAGE;
362                 *vm_flags |= VM_HUGEPAGE;
363                 /*
364                  * If the vma become good for khugepaged to scan,
365                  * register it here without waiting a page fault that
366                  * may not happen any time soon.
367                  */
368                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369                                 khugepaged_enter_vma_merge(vma, *vm_flags))
370                         return -ENOMEM;
371                 break;
372         case MADV_NOHUGEPAGE:
373                 *vm_flags &= ~VM_HUGEPAGE;
374                 *vm_flags |= VM_NOHUGEPAGE;
375                 /*
376                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377                  * this vma even if we leave the mm registered in khugepaged if
378                  * it got registered before VM_NOHUGEPAGE was set.
379                  */
380                 break;
381         }
382
383         return 0;
384 }
385
386 int __init khugepaged_init(void)
387 {
388         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389                                           sizeof(struct mm_slot),
390                                           __alignof__(struct mm_slot), 0, NULL);
391         if (!mm_slot_cache)
392                 return -ENOMEM;
393
394         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397         khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398
399         return 0;
400 }
401
402 void __init khugepaged_destroy(void)
403 {
404         kmem_cache_destroy(mm_slot_cache);
405 }
406
407 static inline struct mm_slot *alloc_mm_slot(void)
408 {
409         if (!mm_slot_cache)     /* initialization failed */
410                 return NULL;
411         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 }
413
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
415 {
416         kmem_cache_free(mm_slot_cache, mm_slot);
417 }
418
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
420 {
421         struct mm_slot *mm_slot;
422
423         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424                 if (mm == mm_slot->mm)
425                         return mm_slot;
426
427         return NULL;
428 }
429
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431                                     struct mm_slot *mm_slot)
432 {
433         mm_slot->mm = mm;
434         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 }
436
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
438 {
439         return atomic_read(&mm->mm_users) == 0;
440 }
441
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443                                unsigned long vm_flags)
444 {
445         if (!transhuge_vma_enabled(vma, vm_flags))
446                 return false;
447
448         if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
449                                 vma->vm_pgoff, HPAGE_PMD_NR))
450                 return false;
451
452         /* Enabled via shmem mount options or sysfs settings. */
453         if (shmem_file(vma->vm_file))
454                 return shmem_huge_enabled(vma);
455
456         /* THP settings require madvise. */
457         if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
458                 return false;
459
460         /* Only regular file is valid */
461         if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
462             (vm_flags & VM_EXEC)) {
463                 struct inode *inode = vma->vm_file->f_inode;
464
465                 return !inode_is_open_for_write(inode) &&
466                         S_ISREG(inode->i_mode);
467         }
468
469         if (!vma->anon_vma || vma->vm_ops)
470                 return false;
471         if (vma_is_temporary_stack(vma))
472                 return false;
473         return !(vm_flags & VM_NO_KHUGEPAGED);
474 }
475
476 int __khugepaged_enter(struct mm_struct *mm)
477 {
478         struct mm_slot *mm_slot;
479         int wakeup;
480
481         mm_slot = alloc_mm_slot();
482         if (!mm_slot)
483                 return -ENOMEM;
484
485         /* __khugepaged_exit() must not run from under us */
486         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
487         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
488                 free_mm_slot(mm_slot);
489                 return 0;
490         }
491
492         spin_lock(&khugepaged_mm_lock);
493         insert_to_mm_slots_hash(mm, mm_slot);
494         /*
495          * Insert just behind the scanning cursor, to let the area settle
496          * down a little.
497          */
498         wakeup = list_empty(&khugepaged_scan.mm_head);
499         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
500         spin_unlock(&khugepaged_mm_lock);
501
502         mmgrab(mm);
503         if (wakeup)
504                 wake_up_interruptible(&khugepaged_wait);
505
506         return 0;
507 }
508
509 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
510                                unsigned long vm_flags)
511 {
512         unsigned long hstart, hend;
513
514         /*
515          * khugepaged only supports read-only files for non-shmem files.
516          * khugepaged does not yet work on special mappings. And
517          * file-private shmem THP is not supported.
518          */
519         if (!hugepage_vma_check(vma, vm_flags))
520                 return 0;
521
522         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
523         hend = vma->vm_end & HPAGE_PMD_MASK;
524         if (hstart < hend)
525                 return khugepaged_enter(vma, vm_flags);
526         return 0;
527 }
528
529 void __khugepaged_exit(struct mm_struct *mm)
530 {
531         struct mm_slot *mm_slot;
532         int free = 0;
533
534         spin_lock(&khugepaged_mm_lock);
535         mm_slot = get_mm_slot(mm);
536         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
537                 hash_del(&mm_slot->hash);
538                 list_del(&mm_slot->mm_node);
539                 free = 1;
540         }
541         spin_unlock(&khugepaged_mm_lock);
542
543         if (free) {
544                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
545                 free_mm_slot(mm_slot);
546                 mmdrop(mm);
547         } else if (mm_slot) {
548                 /*
549                  * This is required to serialize against
550                  * khugepaged_test_exit() (which is guaranteed to run
551                  * under mmap sem read mode). Stop here (after we
552                  * return all pagetables will be destroyed) until
553                  * khugepaged has finished working on the pagetables
554                  * under the mmap_lock.
555                  */
556                 mmap_write_lock(mm);
557                 mmap_write_unlock(mm);
558         }
559 }
560
561 static void release_pte_page(struct page *page)
562 {
563         mod_node_page_state(page_pgdat(page),
564                         NR_ISOLATED_ANON + page_is_file_lru(page),
565                         -compound_nr(page));
566         unlock_page(page);
567         putback_lru_page(page);
568 }
569
570 static void release_pte_pages(pte_t *pte, pte_t *_pte,
571                 struct list_head *compound_pagelist)
572 {
573         struct page *page, *tmp;
574
575         while (--_pte >= pte) {
576                 pte_t pteval = *_pte;
577
578                 page = pte_page(pteval);
579                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
580                                 !PageCompound(page))
581                         release_pte_page(page);
582         }
583
584         list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
585                 list_del(&page->lru);
586                 release_pte_page(page);
587         }
588 }
589
590 static bool is_refcount_suitable(struct page *page)
591 {
592         int expected_refcount;
593
594         expected_refcount = total_mapcount(page);
595         if (PageSwapCache(page))
596                 expected_refcount += compound_nr(page);
597
598         return page_count(page) == expected_refcount;
599 }
600
601 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
602                                         unsigned long address,
603                                         pte_t *pte,
604                                         struct list_head *compound_pagelist)
605 {
606         struct page *page = NULL;
607         pte_t *_pte;
608         int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
609         bool writable = false;
610
611         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
612              _pte++, address += PAGE_SIZE) {
613                 pte_t pteval = *_pte;
614                 if (pte_none(pteval) || (pte_present(pteval) &&
615                                 is_zero_pfn(pte_pfn(pteval)))) {
616                         if (!userfaultfd_armed(vma) &&
617                             ++none_or_zero <= khugepaged_max_ptes_none) {
618                                 continue;
619                         } else {
620                                 result = SCAN_EXCEED_NONE_PTE;
621                                 goto out;
622                         }
623                 }
624                 if (!pte_present(pteval)) {
625                         result = SCAN_PTE_NON_PRESENT;
626                         goto out;
627                 }
628                 page = vm_normal_page(vma, address, pteval);
629                 if (unlikely(!page)) {
630                         result = SCAN_PAGE_NULL;
631                         goto out;
632                 }
633
634                 VM_BUG_ON_PAGE(!PageAnon(page), page);
635
636                 if (page_mapcount(page) > 1 &&
637                                 ++shared > khugepaged_max_ptes_shared) {
638                         result = SCAN_EXCEED_SHARED_PTE;
639                         goto out;
640                 }
641
642                 if (PageCompound(page)) {
643                         struct page *p;
644                         page = compound_head(page);
645
646                         /*
647                          * Check if we have dealt with the compound page
648                          * already
649                          */
650                         list_for_each_entry(p, compound_pagelist, lru) {
651                                 if (page == p)
652                                         goto next;
653                         }
654                 }
655
656                 /*
657                  * We can do it before isolate_lru_page because the
658                  * page can't be freed from under us. NOTE: PG_lock
659                  * is needed to serialize against split_huge_page
660                  * when invoked from the VM.
661                  */
662                 if (!trylock_page(page)) {
663                         result = SCAN_PAGE_LOCK;
664                         goto out;
665                 }
666
667                 /*
668                  * Check if the page has any GUP (or other external) pins.
669                  *
670                  * The page table that maps the page has been already unlinked
671                  * from the page table tree and this process cannot get
672                  * an additional pin on the page.
673                  *
674                  * New pins can come later if the page is shared across fork,
675                  * but not from this process. The other process cannot write to
676                  * the page, only trigger CoW.
677                  */
678                 if (!is_refcount_suitable(page)) {
679                         unlock_page(page);
680                         result = SCAN_PAGE_COUNT;
681                         goto out;
682                 }
683                 if (!pte_write(pteval) && PageSwapCache(page) &&
684                                 !reuse_swap_page(page, NULL)) {
685                         /*
686                          * Page is in the swap cache and cannot be re-used.
687                          * It cannot be collapsed into a THP.
688                          */
689                         unlock_page(page);
690                         result = SCAN_SWAP_CACHE_PAGE;
691                         goto out;
692                 }
693
694                 /*
695                  * Isolate the page to avoid collapsing an hugepage
696                  * currently in use by the VM.
697                  */
698                 if (isolate_lru_page(page)) {
699                         unlock_page(page);
700                         result = SCAN_DEL_PAGE_LRU;
701                         goto out;
702                 }
703                 mod_node_page_state(page_pgdat(page),
704                                 NR_ISOLATED_ANON + page_is_file_lru(page),
705                                 compound_nr(page));
706                 VM_BUG_ON_PAGE(!PageLocked(page), page);
707                 VM_BUG_ON_PAGE(PageLRU(page), page);
708
709                 if (PageCompound(page))
710                         list_add_tail(&page->lru, compound_pagelist);
711 next:
712                 /* There should be enough young pte to collapse the page */
713                 if (pte_young(pteval) ||
714                     page_is_young(page) || PageReferenced(page) ||
715                     mmu_notifier_test_young(vma->vm_mm, address))
716                         referenced++;
717
718                 if (pte_write(pteval))
719                         writable = true;
720         }
721
722         if (unlikely(!writable)) {
723                 result = SCAN_PAGE_RO;
724         } else if (unlikely(!referenced)) {
725                 result = SCAN_LACK_REFERENCED_PAGE;
726         } else {
727                 result = SCAN_SUCCEED;
728                 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
729                                                     referenced, writable, result);
730                 return 1;
731         }
732 out:
733         release_pte_pages(pte, _pte, compound_pagelist);
734         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
735                                             referenced, writable, result);
736         return 0;
737 }
738
739 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
740                                       struct vm_area_struct *vma,
741                                       unsigned long address,
742                                       spinlock_t *ptl,
743                                       struct list_head *compound_pagelist)
744 {
745         struct page *src_page, *tmp;
746         pte_t *_pte;
747         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
748                                 _pte++, page++, address += PAGE_SIZE) {
749                 pte_t pteval = *_pte;
750
751                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
752                         clear_user_highpage(page, address);
753                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
754                         if (is_zero_pfn(pte_pfn(pteval))) {
755                                 /*
756                                  * ptl mostly unnecessary.
757                                  */
758                                 spin_lock(ptl);
759                                 /*
760                                  * paravirt calls inside pte_clear here are
761                                  * superfluous.
762                                  */
763                                 pte_clear(vma->vm_mm, address, _pte);
764                                 spin_unlock(ptl);
765                         }
766                 } else {
767                         src_page = pte_page(pteval);
768                         copy_user_highpage(page, src_page, address, vma);
769                         if (!PageCompound(src_page))
770                                 release_pte_page(src_page);
771                         /*
772                          * ptl mostly unnecessary, but preempt has to
773                          * be disabled to update the per-cpu stats
774                          * inside page_remove_rmap().
775                          */
776                         spin_lock(ptl);
777                         /*
778                          * paravirt calls inside pte_clear here are
779                          * superfluous.
780                          */
781                         pte_clear(vma->vm_mm, address, _pte);
782                         page_remove_rmap(src_page, false);
783                         spin_unlock(ptl);
784                         free_page_and_swap_cache(src_page);
785                 }
786         }
787
788         list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
789                 list_del(&src_page->lru);
790                 release_pte_page(src_page);
791         }
792 }
793
794 static void khugepaged_alloc_sleep(void)
795 {
796         DEFINE_WAIT(wait);
797
798         add_wait_queue(&khugepaged_wait, &wait);
799         freezable_schedule_timeout_interruptible(
800                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
801         remove_wait_queue(&khugepaged_wait, &wait);
802 }
803
804 static int khugepaged_node_load[MAX_NUMNODES];
805
806 static bool khugepaged_scan_abort(int nid)
807 {
808         int i;
809
810         /*
811          * If node_reclaim_mode is disabled, then no extra effort is made to
812          * allocate memory locally.
813          */
814         if (!node_reclaim_enabled())
815                 return false;
816
817         /* If there is a count for this node already, it must be acceptable */
818         if (khugepaged_node_load[nid])
819                 return false;
820
821         for (i = 0; i < MAX_NUMNODES; i++) {
822                 if (!khugepaged_node_load[i])
823                         continue;
824                 if (node_distance(nid, i) > node_reclaim_distance)
825                         return true;
826         }
827         return false;
828 }
829
830 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
831 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
832 {
833         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
834 }
835
836 #ifdef CONFIG_NUMA
837 static int khugepaged_find_target_node(void)
838 {
839         static int last_khugepaged_target_node = NUMA_NO_NODE;
840         int nid, target_node = 0, max_value = 0;
841
842         /* find first node with max normal pages hit */
843         for (nid = 0; nid < MAX_NUMNODES; nid++)
844                 if (khugepaged_node_load[nid] > max_value) {
845                         max_value = khugepaged_node_load[nid];
846                         target_node = nid;
847                 }
848
849         /* do some balance if several nodes have the same hit record */
850         if (target_node <= last_khugepaged_target_node)
851                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
852                                 nid++)
853                         if (max_value == khugepaged_node_load[nid]) {
854                                 target_node = nid;
855                                 break;
856                         }
857
858         last_khugepaged_target_node = target_node;
859         return target_node;
860 }
861
862 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
863 {
864         if (IS_ERR(*hpage)) {
865                 if (!*wait)
866                         return false;
867
868                 *wait = false;
869                 *hpage = NULL;
870                 khugepaged_alloc_sleep();
871         } else if (*hpage) {
872                 put_page(*hpage);
873                 *hpage = NULL;
874         }
875
876         return true;
877 }
878
879 static struct page *
880 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
881 {
882         VM_BUG_ON_PAGE(*hpage, *hpage);
883
884         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
885         if (unlikely(!*hpage)) {
886                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
887                 *hpage = ERR_PTR(-ENOMEM);
888                 return NULL;
889         }
890
891         prep_transhuge_page(*hpage);
892         count_vm_event(THP_COLLAPSE_ALLOC);
893         return *hpage;
894 }
895 #else
896 static int khugepaged_find_target_node(void)
897 {
898         return 0;
899 }
900
901 static inline struct page *alloc_khugepaged_hugepage(void)
902 {
903         struct page *page;
904
905         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
906                            HPAGE_PMD_ORDER);
907         if (page)
908                 prep_transhuge_page(page);
909         return page;
910 }
911
912 static struct page *khugepaged_alloc_hugepage(bool *wait)
913 {
914         struct page *hpage;
915
916         do {
917                 hpage = alloc_khugepaged_hugepage();
918                 if (!hpage) {
919                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
920                         if (!*wait)
921                                 return NULL;
922
923                         *wait = false;
924                         khugepaged_alloc_sleep();
925                 } else
926                         count_vm_event(THP_COLLAPSE_ALLOC);
927         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
928
929         return hpage;
930 }
931
932 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
933 {
934         /*
935          * If the hpage allocated earlier was briefly exposed in page cache
936          * before collapse_file() failed, it is possible that racing lookups
937          * have not yet completed, and would then be unpleasantly surprised by
938          * finding the hpage reused for the same mapping at a different offset.
939          * Just release the previous allocation if there is any danger of that.
940          */
941         if (*hpage && page_count(*hpage) > 1) {
942                 put_page(*hpage);
943                 *hpage = NULL;
944         }
945
946         if (!*hpage)
947                 *hpage = khugepaged_alloc_hugepage(wait);
948
949         if (unlikely(!*hpage))
950                 return false;
951
952         return true;
953 }
954
955 static struct page *
956 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
957 {
958         VM_BUG_ON(!*hpage);
959
960         return  *hpage;
961 }
962 #endif
963
964 /*
965  * If mmap_lock temporarily dropped, revalidate vma
966  * before taking mmap_lock.
967  * Return 0 if succeeds, otherwise return none-zero
968  * value (scan code).
969  */
970
971 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
972                 struct vm_area_struct **vmap)
973 {
974         struct vm_area_struct *vma;
975         unsigned long hstart, hend;
976
977         if (unlikely(khugepaged_test_exit(mm)))
978                 return SCAN_ANY_PROCESS;
979
980         *vmap = vma = find_vma(mm, address);
981         if (!vma)
982                 return SCAN_VMA_NULL;
983
984         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
985         hend = vma->vm_end & HPAGE_PMD_MASK;
986         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
987                 return SCAN_ADDRESS_RANGE;
988         if (!hugepage_vma_check(vma, vma->vm_flags))
989                 return SCAN_VMA_CHECK;
990         /* Anon VMA expected */
991         if (!vma->anon_vma || vma->vm_ops)
992                 return SCAN_VMA_CHECK;
993         return 0;
994 }
995
996 /*
997  * Bring missing pages in from swap, to complete THP collapse.
998  * Only done if khugepaged_scan_pmd believes it is worthwhile.
999  *
1000  * Called and returns without pte mapped or spinlocks held,
1001  * but with mmap_lock held to protect against vma changes.
1002  */
1003
1004 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1005                                         struct vm_area_struct *vma,
1006                                         unsigned long haddr, pmd_t *pmd,
1007                                         int referenced)
1008 {
1009         int swapped_in = 0;
1010         vm_fault_t ret = 0;
1011         unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1012
1013         for (address = haddr; address < end; address += PAGE_SIZE) {
1014                 struct vm_fault vmf = {
1015                         .vma = vma,
1016                         .address = address,
1017                         .pgoff = linear_page_index(vma, haddr),
1018                         .flags = FAULT_FLAG_ALLOW_RETRY,
1019                         .pmd = pmd,
1020                 };
1021
1022                 vmf.pte = pte_offset_map(pmd, address);
1023                 vmf.orig_pte = *vmf.pte;
1024                 if (!is_swap_pte(vmf.orig_pte)) {
1025                         pte_unmap(vmf.pte);
1026                         continue;
1027                 }
1028                 swapped_in++;
1029                 ret = do_swap_page(&vmf);
1030
1031                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1032                 if (ret & VM_FAULT_RETRY) {
1033                         mmap_read_lock(mm);
1034                         if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1035                                 /* vma is no longer available, don't continue to swapin */
1036                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1037                                 return false;
1038                         }
1039                         /* check if the pmd is still valid */
1040                         if (mm_find_pmd(mm, haddr) != pmd) {
1041                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1042                                 return false;
1043                         }
1044                 }
1045                 if (ret & VM_FAULT_ERROR) {
1046                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1047                         return false;
1048                 }
1049         }
1050
1051         /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1052         if (swapped_in)
1053                 lru_add_drain();
1054
1055         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1056         return true;
1057 }
1058
1059 static void collapse_huge_page(struct mm_struct *mm,
1060                                    unsigned long address,
1061                                    struct page **hpage,
1062                                    int node, int referenced, int unmapped)
1063 {
1064         LIST_HEAD(compound_pagelist);
1065         pmd_t *pmd, _pmd;
1066         pte_t *pte;
1067         pgtable_t pgtable;
1068         struct page *new_page;
1069         spinlock_t *pmd_ptl, *pte_ptl;
1070         int isolated = 0, result = 0;
1071         struct vm_area_struct *vma;
1072         struct mmu_notifier_range range;
1073         gfp_t gfp;
1074
1075         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1076
1077         /* Only allocate from the target node */
1078         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1079
1080         /*
1081          * Before allocating the hugepage, release the mmap_lock read lock.
1082          * The allocation can take potentially a long time if it involves
1083          * sync compaction, and we do not need to hold the mmap_lock during
1084          * that. We will recheck the vma after taking it again in write mode.
1085          */
1086         mmap_read_unlock(mm);
1087         new_page = khugepaged_alloc_page(hpage, gfp, node);
1088         if (!new_page) {
1089                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1090                 goto out_nolock;
1091         }
1092
1093         if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1094                 result = SCAN_CGROUP_CHARGE_FAIL;
1095                 goto out_nolock;
1096         }
1097         count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1098
1099         mmap_read_lock(mm);
1100         result = hugepage_vma_revalidate(mm, address, &vma);
1101         if (result) {
1102                 mmap_read_unlock(mm);
1103                 goto out_nolock;
1104         }
1105
1106         pmd = mm_find_pmd(mm, address);
1107         if (!pmd) {
1108                 result = SCAN_PMD_NULL;
1109                 mmap_read_unlock(mm);
1110                 goto out_nolock;
1111         }
1112
1113         /*
1114          * __collapse_huge_page_swapin always returns with mmap_lock locked.
1115          * If it fails, we release mmap_lock and jump out_nolock.
1116          * Continuing to collapse causes inconsistency.
1117          */
1118         if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1119                                                      pmd, referenced)) {
1120                 mmap_read_unlock(mm);
1121                 goto out_nolock;
1122         }
1123
1124         mmap_read_unlock(mm);
1125         /*
1126          * Prevent all access to pagetables with the exception of
1127          * gup_fast later handled by the ptep_clear_flush and the VM
1128          * handled by the anon_vma lock + PG_lock.
1129          */
1130         mmap_write_lock(mm);
1131         result = hugepage_vma_revalidate(mm, address, &vma);
1132         if (result)
1133                 goto out_up_write;
1134         /* check if the pmd is still valid */
1135         if (mm_find_pmd(mm, address) != pmd)
1136                 goto out_up_write;
1137
1138         anon_vma_lock_write(vma->anon_vma);
1139
1140         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1141                                 address, address + HPAGE_PMD_SIZE);
1142         mmu_notifier_invalidate_range_start(&range);
1143
1144         pte = pte_offset_map(pmd, address);
1145         pte_ptl = pte_lockptr(mm, pmd);
1146
1147         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1148         /*
1149          * After this gup_fast can't run anymore. This also removes
1150          * any huge TLB entry from the CPU so we won't allow
1151          * huge and small TLB entries for the same virtual address
1152          * to avoid the risk of CPU bugs in that area.
1153          */
1154         _pmd = pmdp_collapse_flush(vma, address, pmd);
1155         spin_unlock(pmd_ptl);
1156         mmu_notifier_invalidate_range_end(&range);
1157
1158         spin_lock(pte_ptl);
1159         isolated = __collapse_huge_page_isolate(vma, address, pte,
1160                         &compound_pagelist);
1161         spin_unlock(pte_ptl);
1162
1163         if (unlikely(!isolated)) {
1164                 pte_unmap(pte);
1165                 spin_lock(pmd_ptl);
1166                 BUG_ON(!pmd_none(*pmd));
1167                 /*
1168                  * We can only use set_pmd_at when establishing
1169                  * hugepmds and never for establishing regular pmds that
1170                  * points to regular pagetables. Use pmd_populate for that
1171                  */
1172                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1173                 spin_unlock(pmd_ptl);
1174                 anon_vma_unlock_write(vma->anon_vma);
1175                 result = SCAN_FAIL;
1176                 goto out_up_write;
1177         }
1178
1179         /*
1180          * All pages are isolated and locked so anon_vma rmap
1181          * can't run anymore.
1182          */
1183         anon_vma_unlock_write(vma->anon_vma);
1184
1185         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1186                         &compound_pagelist);
1187         pte_unmap(pte);
1188         /*
1189          * spin_lock() below is not the equivalent of smp_wmb(), but
1190          * the smp_wmb() inside __SetPageUptodate() can be reused to
1191          * avoid the copy_huge_page writes to become visible after
1192          * the set_pmd_at() write.
1193          */
1194         __SetPageUptodate(new_page);
1195         pgtable = pmd_pgtable(_pmd);
1196
1197         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1198         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1199
1200         spin_lock(pmd_ptl);
1201         BUG_ON(!pmd_none(*pmd));
1202         page_add_new_anon_rmap(new_page, vma, address, true);
1203         lru_cache_add_inactive_or_unevictable(new_page, vma);
1204         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1205         set_pmd_at(mm, address, pmd, _pmd);
1206         update_mmu_cache_pmd(vma, address, pmd);
1207         spin_unlock(pmd_ptl);
1208
1209         *hpage = NULL;
1210
1211         khugepaged_pages_collapsed++;
1212         result = SCAN_SUCCEED;
1213 out_up_write:
1214         mmap_write_unlock(mm);
1215 out_nolock:
1216         if (!IS_ERR_OR_NULL(*hpage))
1217                 mem_cgroup_uncharge(*hpage);
1218         trace_mm_collapse_huge_page(mm, isolated, result);
1219         return;
1220 }
1221
1222 static int khugepaged_scan_pmd(struct mm_struct *mm,
1223                                struct vm_area_struct *vma,
1224                                unsigned long address,
1225                                struct page **hpage)
1226 {
1227         pmd_t *pmd;
1228         pte_t *pte, *_pte;
1229         int ret = 0, result = 0, referenced = 0;
1230         int none_or_zero = 0, shared = 0;
1231         struct page *page = NULL;
1232         unsigned long _address;
1233         spinlock_t *ptl;
1234         int node = NUMA_NO_NODE, unmapped = 0;
1235         bool writable = false;
1236
1237         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1238
1239         pmd = mm_find_pmd(mm, address);
1240         if (!pmd) {
1241                 result = SCAN_PMD_NULL;
1242                 goto out;
1243         }
1244
1245         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1246         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1247         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1248              _pte++, _address += PAGE_SIZE) {
1249                 pte_t pteval = *_pte;
1250                 if (is_swap_pte(pteval)) {
1251                         if (++unmapped <= khugepaged_max_ptes_swap) {
1252                                 /*
1253                                  * Always be strict with uffd-wp
1254                                  * enabled swap entries.  Please see
1255                                  * comment below for pte_uffd_wp().
1256                                  */
1257                                 if (pte_swp_uffd_wp(pteval)) {
1258                                         result = SCAN_PTE_UFFD_WP;
1259                                         goto out_unmap;
1260                                 }
1261                                 continue;
1262                         } else {
1263                                 result = SCAN_EXCEED_SWAP_PTE;
1264                                 goto out_unmap;
1265                         }
1266                 }
1267                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1268                         if (!userfaultfd_armed(vma) &&
1269                             ++none_or_zero <= khugepaged_max_ptes_none) {
1270                                 continue;
1271                         } else {
1272                                 result = SCAN_EXCEED_NONE_PTE;
1273                                 goto out_unmap;
1274                         }
1275                 }
1276                 if (pte_uffd_wp(pteval)) {
1277                         /*
1278                          * Don't collapse the page if any of the small
1279                          * PTEs are armed with uffd write protection.
1280                          * Here we can also mark the new huge pmd as
1281                          * write protected if any of the small ones is
1282                          * marked but that could bring unknown
1283                          * userfault messages that falls outside of
1284                          * the registered range.  So, just be simple.
1285                          */
1286                         result = SCAN_PTE_UFFD_WP;
1287                         goto out_unmap;
1288                 }
1289                 if (pte_write(pteval))
1290                         writable = true;
1291
1292                 page = vm_normal_page(vma, _address, pteval);
1293                 if (unlikely(!page)) {
1294                         result = SCAN_PAGE_NULL;
1295                         goto out_unmap;
1296                 }
1297
1298                 if (page_mapcount(page) > 1 &&
1299                                 ++shared > khugepaged_max_ptes_shared) {
1300                         result = SCAN_EXCEED_SHARED_PTE;
1301                         goto out_unmap;
1302                 }
1303
1304                 page = compound_head(page);
1305
1306                 /*
1307                  * Record which node the original page is from and save this
1308                  * information to khugepaged_node_load[].
1309                  * Khupaged will allocate hugepage from the node has the max
1310                  * hit record.
1311                  */
1312                 node = page_to_nid(page);
1313                 if (khugepaged_scan_abort(node)) {
1314                         result = SCAN_SCAN_ABORT;
1315                         goto out_unmap;
1316                 }
1317                 khugepaged_node_load[node]++;
1318                 if (!PageLRU(page)) {
1319                         result = SCAN_PAGE_LRU;
1320                         goto out_unmap;
1321                 }
1322                 if (PageLocked(page)) {
1323                         result = SCAN_PAGE_LOCK;
1324                         goto out_unmap;
1325                 }
1326                 if (!PageAnon(page)) {
1327                         result = SCAN_PAGE_ANON;
1328                         goto out_unmap;
1329                 }
1330
1331                 /*
1332                  * Check if the page has any GUP (or other external) pins.
1333                  *
1334                  * Here the check is racy it may see totmal_mapcount > refcount
1335                  * in some cases.
1336                  * For example, one process with one forked child process.
1337                  * The parent has the PMD split due to MADV_DONTNEED, then
1338                  * the child is trying unmap the whole PMD, but khugepaged
1339                  * may be scanning the parent between the child has
1340                  * PageDoubleMap flag cleared and dec the mapcount.  So
1341                  * khugepaged may see total_mapcount > refcount.
1342                  *
1343                  * But such case is ephemeral we could always retry collapse
1344                  * later.  However it may report false positive if the page
1345                  * has excessive GUP pins (i.e. 512).  Anyway the same check
1346                  * will be done again later the risk seems low.
1347                  */
1348                 if (!is_refcount_suitable(page)) {
1349                         result = SCAN_PAGE_COUNT;
1350                         goto out_unmap;
1351                 }
1352                 if (pte_young(pteval) ||
1353                     page_is_young(page) || PageReferenced(page) ||
1354                     mmu_notifier_test_young(vma->vm_mm, address))
1355                         referenced++;
1356         }
1357         if (!writable) {
1358                 result = SCAN_PAGE_RO;
1359         } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1360                 result = SCAN_LACK_REFERENCED_PAGE;
1361         } else {
1362                 result = SCAN_SUCCEED;
1363                 ret = 1;
1364         }
1365 out_unmap:
1366         pte_unmap_unlock(pte, ptl);
1367         if (ret) {
1368                 node = khugepaged_find_target_node();
1369                 /* collapse_huge_page will return with the mmap_lock released */
1370                 collapse_huge_page(mm, address, hpage, node,
1371                                 referenced, unmapped);
1372         }
1373 out:
1374         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1375                                      none_or_zero, result, unmapped);
1376         return ret;
1377 }
1378
1379 static void collect_mm_slot(struct mm_slot *mm_slot)
1380 {
1381         struct mm_struct *mm = mm_slot->mm;
1382
1383         lockdep_assert_held(&khugepaged_mm_lock);
1384
1385         if (khugepaged_test_exit(mm)) {
1386                 /* free mm_slot */
1387                 hash_del(&mm_slot->hash);
1388                 list_del(&mm_slot->mm_node);
1389
1390                 /*
1391                  * Not strictly needed because the mm exited already.
1392                  *
1393                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1394                  */
1395
1396                 /* khugepaged_mm_lock actually not necessary for the below */
1397                 free_mm_slot(mm_slot);
1398                 mmdrop(mm);
1399         }
1400 }
1401
1402 #ifdef CONFIG_SHMEM
1403 /*
1404  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1405  * khugepaged should try to collapse the page table.
1406  */
1407 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1408                                          unsigned long addr)
1409 {
1410         struct mm_slot *mm_slot;
1411
1412         VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1413
1414         spin_lock(&khugepaged_mm_lock);
1415         mm_slot = get_mm_slot(mm);
1416         if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1417                 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1418         spin_unlock(&khugepaged_mm_lock);
1419         return 0;
1420 }
1421
1422 /**
1423  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1424  * address haddr.
1425  *
1426  * @mm: process address space where collapse happens
1427  * @addr: THP collapse address
1428  *
1429  * This function checks whether all the PTEs in the PMD are pointing to the
1430  * right THP. If so, retract the page table so the THP can refault in with
1431  * as pmd-mapped.
1432  */
1433 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1434 {
1435         unsigned long haddr = addr & HPAGE_PMD_MASK;
1436         struct vm_area_struct *vma = find_vma(mm, haddr);
1437         struct page *hpage;
1438         pte_t *start_pte, *pte;
1439         pmd_t *pmd, _pmd;
1440         spinlock_t *ptl;
1441         int count = 0;
1442         int i;
1443
1444         if (!vma || !vma->vm_file ||
1445             !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1446                 return;
1447
1448         /*
1449          * This vm_flags may not have VM_HUGEPAGE if the page was not
1450          * collapsed by this mm. But we can still collapse if the page is
1451          * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1452          * will not fail the vma for missing VM_HUGEPAGE
1453          */
1454         if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1455                 return;
1456
1457         hpage = find_lock_page(vma->vm_file->f_mapping,
1458                                linear_page_index(vma, haddr));
1459         if (!hpage)
1460                 return;
1461
1462         if (!PageHead(hpage))
1463                 goto drop_hpage;
1464
1465         pmd = mm_find_pmd(mm, haddr);
1466         if (!pmd)
1467                 goto drop_hpage;
1468
1469         start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1470
1471         /* step 1: check all mapped PTEs are to the right huge page */
1472         for (i = 0, addr = haddr, pte = start_pte;
1473              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1474                 struct page *page;
1475
1476                 /* empty pte, skip */
1477                 if (pte_none(*pte))
1478                         continue;
1479
1480                 /* page swapped out, abort */
1481                 if (!pte_present(*pte))
1482                         goto abort;
1483
1484                 page = vm_normal_page(vma, addr, *pte);
1485
1486                 /*
1487                  * Note that uprobe, debugger, or MAP_PRIVATE may change the
1488                  * page table, but the new page will not be a subpage of hpage.
1489                  */
1490                 if (hpage + i != page)
1491                         goto abort;
1492                 count++;
1493         }
1494
1495         /* step 2: adjust rmap */
1496         for (i = 0, addr = haddr, pte = start_pte;
1497              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1498                 struct page *page;
1499
1500                 if (pte_none(*pte))
1501                         continue;
1502                 page = vm_normal_page(vma, addr, *pte);
1503                 page_remove_rmap(page, false);
1504         }
1505
1506         pte_unmap_unlock(start_pte, ptl);
1507
1508         /* step 3: set proper refcount and mm_counters. */
1509         if (count) {
1510                 page_ref_sub(hpage, count);
1511                 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1512         }
1513
1514         /* step 4: collapse pmd */
1515         ptl = pmd_lock(vma->vm_mm, pmd);
1516         _pmd = pmdp_collapse_flush(vma, haddr, pmd);
1517         spin_unlock(ptl);
1518         mm_dec_nr_ptes(mm);
1519         pte_free(mm, pmd_pgtable(_pmd));
1520
1521 drop_hpage:
1522         unlock_page(hpage);
1523         put_page(hpage);
1524         return;
1525
1526 abort:
1527         pte_unmap_unlock(start_pte, ptl);
1528         goto drop_hpage;
1529 }
1530
1531 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1532 {
1533         struct mm_struct *mm = mm_slot->mm;
1534         int i;
1535
1536         if (likely(mm_slot->nr_pte_mapped_thp == 0))
1537                 return;
1538
1539         if (!mmap_write_trylock(mm))
1540                 return;
1541
1542         if (unlikely(khugepaged_test_exit(mm)))
1543                 goto out;
1544
1545         for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1546                 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1547
1548 out:
1549         mm_slot->nr_pte_mapped_thp = 0;
1550         mmap_write_unlock(mm);
1551 }
1552
1553 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1554 {
1555         struct vm_area_struct *vma;
1556         struct mm_struct *mm;
1557         unsigned long addr;
1558         pmd_t *pmd, _pmd;
1559
1560         i_mmap_lock_write(mapping);
1561         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1562                 /*
1563                  * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1564                  * got written to. These VMAs are likely not worth investing
1565                  * mmap_write_lock(mm) as PMD-mapping is likely to be split
1566                  * later.
1567                  *
1568                  * Not that vma->anon_vma check is racy: it can be set up after
1569                  * the check but before we took mmap_lock by the fault path.
1570                  * But page lock would prevent establishing any new ptes of the
1571                  * page, so we are safe.
1572                  *
1573                  * An alternative would be drop the check, but check that page
1574                  * table is clear before calling pmdp_collapse_flush() under
1575                  * ptl. It has higher chance to recover THP for the VMA, but
1576                  * has higher cost too.
1577                  */
1578                 if (vma->anon_vma)
1579                         continue;
1580                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1581                 if (addr & ~HPAGE_PMD_MASK)
1582                         continue;
1583                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1584                         continue;
1585                 mm = vma->vm_mm;
1586                 pmd = mm_find_pmd(mm, addr);
1587                 if (!pmd)
1588                         continue;
1589                 /*
1590                  * We need exclusive mmap_lock to retract page table.
1591                  *
1592                  * We use trylock due to lock inversion: we need to acquire
1593                  * mmap_lock while holding page lock. Fault path does it in
1594                  * reverse order. Trylock is a way to avoid deadlock.
1595                  */
1596                 if (mmap_write_trylock(mm)) {
1597                         if (!khugepaged_test_exit(mm)) {
1598                                 spinlock_t *ptl = pmd_lock(mm, pmd);
1599                                 /* assume page table is clear */
1600                                 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1601                                 spin_unlock(ptl);
1602                                 mm_dec_nr_ptes(mm);
1603                                 pte_free(mm, pmd_pgtable(_pmd));
1604                         }
1605                         mmap_write_unlock(mm);
1606                 } else {
1607                         /* Try again later */
1608                         khugepaged_add_pte_mapped_thp(mm, addr);
1609                 }
1610         }
1611         i_mmap_unlock_write(mapping);
1612 }
1613
1614 /**
1615  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1616  *
1617  * @mm: process address space where collapse happens
1618  * @file: file that collapse on
1619  * @start: collapse start address
1620  * @hpage: new allocated huge page for collapse
1621  * @node: appointed node the new huge page allocate from
1622  *
1623  * Basic scheme is simple, details are more complex:
1624  *  - allocate and lock a new huge page;
1625  *  - scan page cache replacing old pages with the new one
1626  *    + swap/gup in pages if necessary;
1627  *    + fill in gaps;
1628  *    + keep old pages around in case rollback is required;
1629  *  - if replacing succeeds:
1630  *    + copy data over;
1631  *    + free old pages;
1632  *    + unlock huge page;
1633  *  - if replacing failed;
1634  *    + put all pages back and unfreeze them;
1635  *    + restore gaps in the page cache;
1636  *    + unlock and free huge page;
1637  */
1638 static void collapse_file(struct mm_struct *mm,
1639                 struct file *file, pgoff_t start,
1640                 struct page **hpage, int node)
1641 {
1642         struct address_space *mapping = file->f_mapping;
1643         gfp_t gfp;
1644         struct page *new_page;
1645         pgoff_t index, end = start + HPAGE_PMD_NR;
1646         LIST_HEAD(pagelist);
1647         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1648         int nr_none = 0, result = SCAN_SUCCEED;
1649         bool is_shmem = shmem_file(file);
1650         int nr;
1651
1652         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1653         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1654
1655         /* Only allocate from the target node */
1656         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1657
1658         new_page = khugepaged_alloc_page(hpage, gfp, node);
1659         if (!new_page) {
1660                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1661                 goto out;
1662         }
1663
1664         if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1665                 result = SCAN_CGROUP_CHARGE_FAIL;
1666                 goto out;
1667         }
1668         count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1669
1670         /* This will be less messy when we use multi-index entries */
1671         do {
1672                 xas_lock_irq(&xas);
1673                 xas_create_range(&xas);
1674                 if (!xas_error(&xas))
1675                         break;
1676                 xas_unlock_irq(&xas);
1677                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1678                         result = SCAN_FAIL;
1679                         goto out;
1680                 }
1681         } while (1);
1682
1683         __SetPageLocked(new_page);
1684         if (is_shmem)
1685                 __SetPageSwapBacked(new_page);
1686         new_page->index = start;
1687         new_page->mapping = mapping;
1688
1689         /*
1690          * At this point the new_page is locked and not up-to-date.
1691          * It's safe to insert it into the page cache, because nobody would
1692          * be able to map it or use it in another way until we unlock it.
1693          */
1694
1695         xas_set(&xas, start);
1696         for (index = start; index < end; index++) {
1697                 struct page *page = xas_next(&xas);
1698
1699                 VM_BUG_ON(index != xas.xa_index);
1700                 if (is_shmem) {
1701                         if (!page) {
1702                                 /*
1703                                  * Stop if extent has been truncated or
1704                                  * hole-punched, and is now completely
1705                                  * empty.
1706                                  */
1707                                 if (index == start) {
1708                                         if (!xas_next_entry(&xas, end - 1)) {
1709                                                 result = SCAN_TRUNCATED;
1710                                                 goto xa_locked;
1711                                         }
1712                                         xas_set(&xas, index);
1713                                 }
1714                                 if (!shmem_charge(mapping->host, 1)) {
1715                                         result = SCAN_FAIL;
1716                                         goto xa_locked;
1717                                 }
1718                                 xas_store(&xas, new_page);
1719                                 nr_none++;
1720                                 continue;
1721                         }
1722
1723                         if (xa_is_value(page) || !PageUptodate(page)) {
1724                                 xas_unlock_irq(&xas);
1725                                 /* swap in or instantiate fallocated page */
1726                                 if (shmem_getpage(mapping->host, index, &page,
1727                                                   SGP_NOALLOC)) {
1728                                         result = SCAN_FAIL;
1729                                         goto xa_unlocked;
1730                                 }
1731                         } else if (trylock_page(page)) {
1732                                 get_page(page);
1733                                 xas_unlock_irq(&xas);
1734                         } else {
1735                                 result = SCAN_PAGE_LOCK;
1736                                 goto xa_locked;
1737                         }
1738                 } else {        /* !is_shmem */
1739                         if (!page || xa_is_value(page)) {
1740                                 xas_unlock_irq(&xas);
1741                                 page_cache_sync_readahead(mapping, &file->f_ra,
1742                                                           file, index,
1743                                                           end - index);
1744                                 /* drain pagevecs to help isolate_lru_page() */
1745                                 lru_add_drain();
1746                                 page = find_lock_page(mapping, index);
1747                                 if (unlikely(page == NULL)) {
1748                                         result = SCAN_FAIL;
1749                                         goto xa_unlocked;
1750                                 }
1751                         } else if (PageDirty(page)) {
1752                                 /*
1753                                  * khugepaged only works on read-only fd,
1754                                  * so this page is dirty because it hasn't
1755                                  * been flushed since first write. There
1756                                  * won't be new dirty pages.
1757                                  *
1758                                  * Trigger async flush here and hope the
1759                                  * writeback is done when khugepaged
1760                                  * revisits this page.
1761                                  *
1762                                  * This is a one-off situation. We are not
1763                                  * forcing writeback in loop.
1764                                  */
1765                                 xas_unlock_irq(&xas);
1766                                 filemap_flush(mapping);
1767                                 result = SCAN_FAIL;
1768                                 goto xa_unlocked;
1769                         } else if (PageWriteback(page)) {
1770                                 xas_unlock_irq(&xas);
1771                                 result = SCAN_FAIL;
1772                                 goto xa_unlocked;
1773                         } else if (trylock_page(page)) {
1774                                 get_page(page);
1775                                 xas_unlock_irq(&xas);
1776                         } else {
1777                                 result = SCAN_PAGE_LOCK;
1778                                 goto xa_locked;
1779                         }
1780                 }
1781
1782                 /*
1783                  * The page must be locked, so we can drop the i_pages lock
1784                  * without racing with truncate.
1785                  */
1786                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1787
1788                 /* make sure the page is up to date */
1789                 if (unlikely(!PageUptodate(page))) {
1790                         result = SCAN_FAIL;
1791                         goto out_unlock;
1792                 }
1793
1794                 /*
1795                  * If file was truncated then extended, or hole-punched, before
1796                  * we locked the first page, then a THP might be there already.
1797                  */
1798                 if (PageTransCompound(page)) {
1799                         result = SCAN_PAGE_COMPOUND;
1800                         goto out_unlock;
1801                 }
1802
1803                 if (page_mapping(page) != mapping) {
1804                         result = SCAN_TRUNCATED;
1805                         goto out_unlock;
1806                 }
1807
1808                 if (!is_shmem && (PageDirty(page) ||
1809                                   PageWriteback(page))) {
1810                         /*
1811                          * khugepaged only works on read-only fd, so this
1812                          * page is dirty because it hasn't been flushed
1813                          * since first write.
1814                          */
1815                         result = SCAN_FAIL;
1816                         goto out_unlock;
1817                 }
1818
1819                 if (isolate_lru_page(page)) {
1820                         result = SCAN_DEL_PAGE_LRU;
1821                         goto out_unlock;
1822                 }
1823
1824                 if (page_has_private(page) &&
1825                     !try_to_release_page(page, GFP_KERNEL)) {
1826                         result = SCAN_PAGE_HAS_PRIVATE;
1827                         putback_lru_page(page);
1828                         goto out_unlock;
1829                 }
1830
1831                 if (page_mapped(page))
1832                         unmap_mapping_pages(mapping, index, 1, false);
1833
1834                 xas_lock_irq(&xas);
1835                 xas_set(&xas, index);
1836
1837                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1838                 VM_BUG_ON_PAGE(page_mapped(page), page);
1839
1840                 /*
1841                  * The page is expected to have page_count() == 3:
1842                  *  - we hold a pin on it;
1843                  *  - one reference from page cache;
1844                  *  - one from isolate_lru_page;
1845                  */
1846                 if (!page_ref_freeze(page, 3)) {
1847                         result = SCAN_PAGE_COUNT;
1848                         xas_unlock_irq(&xas);
1849                         putback_lru_page(page);
1850                         goto out_unlock;
1851                 }
1852
1853                 /*
1854                  * Add the page to the list to be able to undo the collapse if
1855                  * something go wrong.
1856                  */
1857                 list_add_tail(&page->lru, &pagelist);
1858
1859                 /* Finally, replace with the new page. */
1860                 xas_store(&xas, new_page);
1861                 continue;
1862 out_unlock:
1863                 unlock_page(page);
1864                 put_page(page);
1865                 goto xa_unlocked;
1866         }
1867         nr = thp_nr_pages(new_page);
1868
1869         if (is_shmem)
1870                 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1871         else {
1872                 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1873                 filemap_nr_thps_inc(mapping);
1874                 /*
1875                  * Paired with smp_mb() in do_dentry_open() to ensure
1876                  * i_writecount is up to date and the update to nr_thps is
1877                  * visible. Ensures the page cache will be truncated if the
1878                  * file is opened writable.
1879                  */
1880                 smp_mb();
1881                 if (inode_is_open_for_write(mapping->host)) {
1882                         result = SCAN_FAIL;
1883                         __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1884                         filemap_nr_thps_dec(mapping);
1885                         goto xa_locked;
1886                 }
1887         }
1888
1889         if (nr_none) {
1890                 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1891                 if (is_shmem)
1892                         __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1893         }
1894
1895 xa_locked:
1896         xas_unlock_irq(&xas);
1897 xa_unlocked:
1898
1899         if (result == SCAN_SUCCEED) {
1900                 struct page *page, *tmp;
1901
1902                 /*
1903                  * Replacing old pages with new one has succeeded, now we
1904                  * need to copy the content and free the old pages.
1905                  */
1906                 index = start;
1907                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1908                         while (index < page->index) {
1909                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1910                                 index++;
1911                         }
1912                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1913                                         page);
1914                         list_del(&page->lru);
1915                         page->mapping = NULL;
1916                         page_ref_unfreeze(page, 1);
1917                         ClearPageActive(page);
1918                         ClearPageUnevictable(page);
1919                         unlock_page(page);
1920                         put_page(page);
1921                         index++;
1922                 }
1923                 while (index < end) {
1924                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1925                         index++;
1926                 }
1927
1928                 SetPageUptodate(new_page);
1929                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1930                 if (is_shmem)
1931                         set_page_dirty(new_page);
1932                 lru_cache_add(new_page);
1933
1934                 /*
1935                  * Remove pte page tables, so we can re-fault the page as huge.
1936                  */
1937                 retract_page_tables(mapping, start);
1938                 *hpage = NULL;
1939
1940                 khugepaged_pages_collapsed++;
1941         } else {
1942                 struct page *page;
1943
1944                 /* Something went wrong: roll back page cache changes */
1945                 xas_lock_irq(&xas);
1946                 mapping->nrpages -= nr_none;
1947
1948                 if (is_shmem)
1949                         shmem_uncharge(mapping->host, nr_none);
1950
1951                 xas_set(&xas, start);
1952                 xas_for_each(&xas, page, end - 1) {
1953                         page = list_first_entry_or_null(&pagelist,
1954                                         struct page, lru);
1955                         if (!page || xas.xa_index < page->index) {
1956                                 if (!nr_none)
1957                                         break;
1958                                 nr_none--;
1959                                 /* Put holes back where they were */
1960                                 xas_store(&xas, NULL);
1961                                 continue;
1962                         }
1963
1964                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1965
1966                         /* Unfreeze the page. */
1967                         list_del(&page->lru);
1968                         page_ref_unfreeze(page, 2);
1969                         xas_store(&xas, page);
1970                         xas_pause(&xas);
1971                         xas_unlock_irq(&xas);
1972                         unlock_page(page);
1973                         putback_lru_page(page);
1974                         xas_lock_irq(&xas);
1975                 }
1976                 VM_BUG_ON(nr_none);
1977                 xas_unlock_irq(&xas);
1978
1979                 new_page->mapping = NULL;
1980         }
1981
1982         unlock_page(new_page);
1983 out:
1984         VM_BUG_ON(!list_empty(&pagelist));
1985         if (!IS_ERR_OR_NULL(*hpage))
1986                 mem_cgroup_uncharge(*hpage);
1987         /* TODO: tracepoints */
1988 }
1989
1990 static void khugepaged_scan_file(struct mm_struct *mm,
1991                 struct file *file, pgoff_t start, struct page **hpage)
1992 {
1993         struct page *page = NULL;
1994         struct address_space *mapping = file->f_mapping;
1995         XA_STATE(xas, &mapping->i_pages, start);
1996         int present, swap;
1997         int node = NUMA_NO_NODE;
1998         int result = SCAN_SUCCEED;
1999
2000         present = 0;
2001         swap = 0;
2002         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2003         rcu_read_lock();
2004         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2005                 if (xas_retry(&xas, page))
2006                         continue;
2007
2008                 if (xa_is_value(page)) {
2009                         if (++swap > khugepaged_max_ptes_swap) {
2010                                 result = SCAN_EXCEED_SWAP_PTE;
2011                                 break;
2012                         }
2013                         continue;
2014                 }
2015
2016                 if (PageTransCompound(page)) {
2017                         result = SCAN_PAGE_COMPOUND;
2018                         break;
2019                 }
2020
2021                 node = page_to_nid(page);
2022                 if (khugepaged_scan_abort(node)) {
2023                         result = SCAN_SCAN_ABORT;
2024                         break;
2025                 }
2026                 khugepaged_node_load[node]++;
2027
2028                 if (!PageLRU(page)) {
2029                         result = SCAN_PAGE_LRU;
2030                         break;
2031                 }
2032
2033                 if (page_count(page) !=
2034                     1 + page_mapcount(page) + page_has_private(page)) {
2035                         result = SCAN_PAGE_COUNT;
2036                         break;
2037                 }
2038
2039                 /*
2040                  * We probably should check if the page is referenced here, but
2041                  * nobody would transfer pte_young() to PageReferenced() for us.
2042                  * And rmap walk here is just too costly...
2043                  */
2044
2045                 present++;
2046
2047                 if (need_resched()) {
2048                         xas_pause(&xas);
2049                         cond_resched_rcu();
2050                 }
2051         }
2052         rcu_read_unlock();
2053
2054         if (result == SCAN_SUCCEED) {
2055                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2056                         result = SCAN_EXCEED_NONE_PTE;
2057                 } else {
2058                         node = khugepaged_find_target_node();
2059                         collapse_file(mm, file, start, hpage, node);
2060                 }
2061         }
2062
2063         /* TODO: tracepoints */
2064 }
2065 #else
2066 static void khugepaged_scan_file(struct mm_struct *mm,
2067                 struct file *file, pgoff_t start, struct page **hpage)
2068 {
2069         BUILD_BUG();
2070 }
2071
2072 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2073 {
2074 }
2075 #endif
2076
2077 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2078                                             struct page **hpage)
2079         __releases(&khugepaged_mm_lock)
2080         __acquires(&khugepaged_mm_lock)
2081 {
2082         struct mm_slot *mm_slot;
2083         struct mm_struct *mm;
2084         struct vm_area_struct *vma;
2085         int progress = 0;
2086
2087         VM_BUG_ON(!pages);
2088         lockdep_assert_held(&khugepaged_mm_lock);
2089
2090         if (khugepaged_scan.mm_slot)
2091                 mm_slot = khugepaged_scan.mm_slot;
2092         else {
2093                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2094                                      struct mm_slot, mm_node);
2095                 khugepaged_scan.address = 0;
2096                 khugepaged_scan.mm_slot = mm_slot;
2097         }
2098         spin_unlock(&khugepaged_mm_lock);
2099         khugepaged_collapse_pte_mapped_thps(mm_slot);
2100
2101         mm = mm_slot->mm;
2102         /*
2103          * Don't wait for semaphore (to avoid long wait times).  Just move to
2104          * the next mm on the list.
2105          */
2106         vma = NULL;
2107         if (unlikely(!mmap_read_trylock(mm)))
2108                 goto breakouterloop_mmap_lock;
2109         if (likely(!khugepaged_test_exit(mm)))
2110                 vma = find_vma(mm, khugepaged_scan.address);
2111
2112         progress++;
2113         for (; vma; vma = vma->vm_next) {
2114                 unsigned long hstart, hend;
2115
2116                 cond_resched();
2117                 if (unlikely(khugepaged_test_exit(mm))) {
2118                         progress++;
2119                         break;
2120                 }
2121                 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2122 skip:
2123                         progress++;
2124                         continue;
2125                 }
2126                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2127                 hend = vma->vm_end & HPAGE_PMD_MASK;
2128                 if (hstart >= hend)
2129                         goto skip;
2130                 if (khugepaged_scan.address > hend)
2131                         goto skip;
2132                 if (khugepaged_scan.address < hstart)
2133                         khugepaged_scan.address = hstart;
2134                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2135                 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2136                         goto skip;
2137
2138                 while (khugepaged_scan.address < hend) {
2139                         int ret;
2140                         cond_resched();
2141                         if (unlikely(khugepaged_test_exit(mm)))
2142                                 goto breakouterloop;
2143
2144                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2145                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2146                                   hend);
2147                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2148                                 struct file *file = get_file(vma->vm_file);
2149                                 pgoff_t pgoff = linear_page_index(vma,
2150                                                 khugepaged_scan.address);
2151
2152                                 mmap_read_unlock(mm);
2153                                 ret = 1;
2154                                 khugepaged_scan_file(mm, file, pgoff, hpage);
2155                                 fput(file);
2156                         } else {
2157                                 ret = khugepaged_scan_pmd(mm, vma,
2158                                                 khugepaged_scan.address,
2159                                                 hpage);
2160                         }
2161                         /* move to next address */
2162                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2163                         progress += HPAGE_PMD_NR;
2164                         if (ret)
2165                                 /* we released mmap_lock so break loop */
2166                                 goto breakouterloop_mmap_lock;
2167                         if (progress >= pages)
2168                                 goto breakouterloop;
2169                 }
2170         }
2171 breakouterloop:
2172         mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2173 breakouterloop_mmap_lock:
2174
2175         spin_lock(&khugepaged_mm_lock);
2176         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2177         /*
2178          * Release the current mm_slot if this mm is about to die, or
2179          * if we scanned all vmas of this mm.
2180          */
2181         if (khugepaged_test_exit(mm) || !vma) {
2182                 /*
2183                  * Make sure that if mm_users is reaching zero while
2184                  * khugepaged runs here, khugepaged_exit will find
2185                  * mm_slot not pointing to the exiting mm.
2186                  */
2187                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2188                         khugepaged_scan.mm_slot = list_entry(
2189                                 mm_slot->mm_node.next,
2190                                 struct mm_slot, mm_node);
2191                         khugepaged_scan.address = 0;
2192                 } else {
2193                         khugepaged_scan.mm_slot = NULL;
2194                         khugepaged_full_scans++;
2195                 }
2196
2197                 collect_mm_slot(mm_slot);
2198         }
2199
2200         return progress;
2201 }
2202
2203 static int khugepaged_has_work(void)
2204 {
2205         return !list_empty(&khugepaged_scan.mm_head) &&
2206                 khugepaged_enabled();
2207 }
2208
2209 static int khugepaged_wait_event(void)
2210 {
2211         return !list_empty(&khugepaged_scan.mm_head) ||
2212                 kthread_should_stop();
2213 }
2214
2215 static void khugepaged_do_scan(void)
2216 {
2217         struct page *hpage = NULL;
2218         unsigned int progress = 0, pass_through_head = 0;
2219         unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2220         bool wait = true;
2221
2222         lru_add_drain_all();
2223
2224         while (progress < pages) {
2225                 if (!khugepaged_prealloc_page(&hpage, &wait))
2226                         break;
2227
2228                 cond_resched();
2229
2230                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2231                         break;
2232
2233                 spin_lock(&khugepaged_mm_lock);
2234                 if (!khugepaged_scan.mm_slot)
2235                         pass_through_head++;
2236                 if (khugepaged_has_work() &&
2237                     pass_through_head < 2)
2238                         progress += khugepaged_scan_mm_slot(pages - progress,
2239                                                             &hpage);
2240                 else
2241                         progress = pages;
2242                 spin_unlock(&khugepaged_mm_lock);
2243         }
2244
2245         if (!IS_ERR_OR_NULL(hpage))
2246                 put_page(hpage);
2247 }
2248
2249 static bool khugepaged_should_wakeup(void)
2250 {
2251         return kthread_should_stop() ||
2252                time_after_eq(jiffies, khugepaged_sleep_expire);
2253 }
2254
2255 static void khugepaged_wait_work(void)
2256 {
2257         if (khugepaged_has_work()) {
2258                 const unsigned long scan_sleep_jiffies =
2259                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2260
2261                 if (!scan_sleep_jiffies)
2262                         return;
2263
2264                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2265                 wait_event_freezable_timeout(khugepaged_wait,
2266                                              khugepaged_should_wakeup(),
2267                                              scan_sleep_jiffies);
2268                 return;
2269         }
2270
2271         if (khugepaged_enabled())
2272                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2273 }
2274
2275 static int khugepaged(void *none)
2276 {
2277         struct mm_slot *mm_slot;
2278
2279         set_freezable();
2280         set_user_nice(current, MAX_NICE);
2281
2282         while (!kthread_should_stop()) {
2283                 khugepaged_do_scan();
2284                 khugepaged_wait_work();
2285         }
2286
2287         spin_lock(&khugepaged_mm_lock);
2288         mm_slot = khugepaged_scan.mm_slot;
2289         khugepaged_scan.mm_slot = NULL;
2290         if (mm_slot)
2291                 collect_mm_slot(mm_slot);
2292         spin_unlock(&khugepaged_mm_lock);
2293         return 0;
2294 }
2295
2296 static void set_recommended_min_free_kbytes(void)
2297 {
2298         struct zone *zone;
2299         int nr_zones = 0;
2300         unsigned long recommended_min;
2301
2302         for_each_populated_zone(zone) {
2303                 /*
2304                  * We don't need to worry about fragmentation of
2305                  * ZONE_MOVABLE since it only has movable pages.
2306                  */
2307                 if (zone_idx(zone) > gfp_zone(GFP_USER))
2308                         continue;
2309
2310                 nr_zones++;
2311         }
2312
2313         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2314         recommended_min = pageblock_nr_pages * nr_zones * 2;
2315
2316         /*
2317          * Make sure that on average at least two pageblocks are almost free
2318          * of another type, one for a migratetype to fall back to and a
2319          * second to avoid subsequent fallbacks of other types There are 3
2320          * MIGRATE_TYPES we care about.
2321          */
2322         recommended_min += pageblock_nr_pages * nr_zones *
2323                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2324
2325         /* don't ever allow to reserve more than 5% of the lowmem */
2326         recommended_min = min(recommended_min,
2327                               (unsigned long) nr_free_buffer_pages() / 20);
2328         recommended_min <<= (PAGE_SHIFT-10);
2329
2330         if (recommended_min > min_free_kbytes) {
2331                 if (user_min_free_kbytes >= 0)
2332                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2333                                 min_free_kbytes, recommended_min);
2334
2335                 min_free_kbytes = recommended_min;
2336         }
2337         setup_per_zone_wmarks();
2338 }
2339
2340 int start_stop_khugepaged(void)
2341 {
2342         int err = 0;
2343
2344         mutex_lock(&khugepaged_mutex);
2345         if (khugepaged_enabled()) {
2346                 if (!khugepaged_thread)
2347                         khugepaged_thread = kthread_run(khugepaged, NULL,
2348                                                         "khugepaged");
2349                 if (IS_ERR(khugepaged_thread)) {
2350                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2351                         err = PTR_ERR(khugepaged_thread);
2352                         khugepaged_thread = NULL;
2353                         goto fail;
2354                 }
2355
2356                 if (!list_empty(&khugepaged_scan.mm_head))
2357                         wake_up_interruptible(&khugepaged_wait);
2358
2359                 set_recommended_min_free_kbytes();
2360         } else if (khugepaged_thread) {
2361                 kthread_stop(khugepaged_thread);
2362                 khugepaged_thread = NULL;
2363         }
2364 fail:
2365         mutex_unlock(&khugepaged_mutex);
2366         return err;
2367 }
2368
2369 void khugepaged_min_free_kbytes_update(void)
2370 {
2371         mutex_lock(&khugepaged_mutex);
2372         if (khugepaged_enabled() && khugepaged_thread)
2373                 set_recommended_min_free_kbytes();
2374         mutex_unlock(&khugepaged_mutex);
2375 }