1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22 #include <linux/ksm.h>
25 #include <asm/pgalloc.h>
37 SCAN_EXCEED_SHARED_PTE,
40 SCAN_PTE_MAPPED_HUGEPAGE,
42 SCAN_LACK_REFERENCED_PAGE,
55 SCAN_ALLOC_HUGE_PAGE_FAIL,
56 SCAN_CGROUP_CHARGE_FAIL,
58 SCAN_PAGE_HAS_PRIVATE,
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
67 static struct task_struct *khugepaged_thread __read_mostly;
68 static DEFINE_MUTEX(khugepaged_mutex);
70 /* default scan 8*512 pte (or vmas) every 30 second */
71 static unsigned int khugepaged_pages_to_scan __read_mostly;
72 static unsigned int khugepaged_pages_collapsed;
73 static unsigned int khugepaged_full_scans;
74 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
75 /* during fragmentation poll the hugepage allocator once every minute */
76 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
77 static unsigned long khugepaged_sleep_expire;
78 static DEFINE_SPINLOCK(khugepaged_mm_lock);
79 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
81 * default collapse hugepages if there is at least one pte mapped like
82 * it would have happened if the vma was large enough during page
85 * Note that these are only respected if collapse was initiated by khugepaged.
87 static unsigned int khugepaged_max_ptes_none __read_mostly;
88 static unsigned int khugepaged_max_ptes_swap __read_mostly;
89 static unsigned int khugepaged_max_ptes_shared __read_mostly;
91 #define MM_SLOTS_HASH_BITS 10
92 static DEFINE_READ_MOSTLY_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
94 static struct kmem_cache *mm_slot_cache __read_mostly;
96 struct collapse_control {
99 /* Num pages scanned per node */
100 u32 node_load[MAX_NUMNODES];
102 /* nodemask for allocation fallback */
103 nodemask_t alloc_nmask;
107 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
108 * @slot: hash lookup from mm to mm_slot
110 struct khugepaged_mm_slot {
115 * struct khugepaged_scan - cursor for scanning
116 * @mm_head: the head of the mm list to scan
117 * @mm_slot: the current mm_slot we are scanning
118 * @address: the next address inside that to be scanned
120 * There is only the one khugepaged_scan instance of this cursor structure.
122 struct khugepaged_scan {
123 struct list_head mm_head;
124 struct khugepaged_mm_slot *mm_slot;
125 unsigned long address;
128 static struct khugepaged_scan khugepaged_scan = {
129 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
133 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
134 struct kobj_attribute *attr,
137 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
140 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
141 struct kobj_attribute *attr,
142 const char *buf, size_t count)
147 err = kstrtouint(buf, 10, &msecs);
151 khugepaged_scan_sleep_millisecs = msecs;
152 khugepaged_sleep_expire = 0;
153 wake_up_interruptible(&khugepaged_wait);
157 static struct kobj_attribute scan_sleep_millisecs_attr =
158 __ATTR_RW(scan_sleep_millisecs);
160 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
161 struct kobj_attribute *attr,
164 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
167 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
168 struct kobj_attribute *attr,
169 const char *buf, size_t count)
174 err = kstrtouint(buf, 10, &msecs);
178 khugepaged_alloc_sleep_millisecs = msecs;
179 khugepaged_sleep_expire = 0;
180 wake_up_interruptible(&khugepaged_wait);
184 static struct kobj_attribute alloc_sleep_millisecs_attr =
185 __ATTR_RW(alloc_sleep_millisecs);
187 static ssize_t pages_to_scan_show(struct kobject *kobj,
188 struct kobj_attribute *attr,
191 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
193 static ssize_t pages_to_scan_store(struct kobject *kobj,
194 struct kobj_attribute *attr,
195 const char *buf, size_t count)
200 err = kstrtouint(buf, 10, &pages);
204 khugepaged_pages_to_scan = pages;
208 static struct kobj_attribute pages_to_scan_attr =
209 __ATTR_RW(pages_to_scan);
211 static ssize_t pages_collapsed_show(struct kobject *kobj,
212 struct kobj_attribute *attr,
215 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
217 static struct kobj_attribute pages_collapsed_attr =
218 __ATTR_RO(pages_collapsed);
220 static ssize_t full_scans_show(struct kobject *kobj,
221 struct kobj_attribute *attr,
224 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
226 static struct kobj_attribute full_scans_attr =
227 __ATTR_RO(full_scans);
229 static ssize_t defrag_show(struct kobject *kobj,
230 struct kobj_attribute *attr, char *buf)
232 return single_hugepage_flag_show(kobj, attr, buf,
233 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
235 static ssize_t defrag_store(struct kobject *kobj,
236 struct kobj_attribute *attr,
237 const char *buf, size_t count)
239 return single_hugepage_flag_store(kobj, attr, buf, count,
240 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
242 static struct kobj_attribute khugepaged_defrag_attr =
246 * max_ptes_none controls if khugepaged should collapse hugepages over
247 * any unmapped ptes in turn potentially increasing the memory
248 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
249 * reduce the available free memory in the system as it
250 * runs. Increasing max_ptes_none will instead potentially reduce the
251 * free memory in the system during the khugepaged scan.
253 static ssize_t max_ptes_none_show(struct kobject *kobj,
254 struct kobj_attribute *attr,
257 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
259 static ssize_t max_ptes_none_store(struct kobject *kobj,
260 struct kobj_attribute *attr,
261 const char *buf, size_t count)
264 unsigned long max_ptes_none;
266 err = kstrtoul(buf, 10, &max_ptes_none);
267 if (err || max_ptes_none > HPAGE_PMD_NR - 1)
270 khugepaged_max_ptes_none = max_ptes_none;
274 static struct kobj_attribute khugepaged_max_ptes_none_attr =
275 __ATTR_RW(max_ptes_none);
277 static ssize_t max_ptes_swap_show(struct kobject *kobj,
278 struct kobj_attribute *attr,
281 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
284 static ssize_t max_ptes_swap_store(struct kobject *kobj,
285 struct kobj_attribute *attr,
286 const char *buf, size_t count)
289 unsigned long max_ptes_swap;
291 err = kstrtoul(buf, 10, &max_ptes_swap);
292 if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
295 khugepaged_max_ptes_swap = max_ptes_swap;
300 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
301 __ATTR_RW(max_ptes_swap);
303 static ssize_t max_ptes_shared_show(struct kobject *kobj,
304 struct kobj_attribute *attr,
307 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
310 static ssize_t max_ptes_shared_store(struct kobject *kobj,
311 struct kobj_attribute *attr,
312 const char *buf, size_t count)
315 unsigned long max_ptes_shared;
317 err = kstrtoul(buf, 10, &max_ptes_shared);
318 if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
321 khugepaged_max_ptes_shared = max_ptes_shared;
326 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
327 __ATTR_RW(max_ptes_shared);
329 static struct attribute *khugepaged_attr[] = {
330 &khugepaged_defrag_attr.attr,
331 &khugepaged_max_ptes_none_attr.attr,
332 &khugepaged_max_ptes_swap_attr.attr,
333 &khugepaged_max_ptes_shared_attr.attr,
334 &pages_to_scan_attr.attr,
335 &pages_collapsed_attr.attr,
336 &full_scans_attr.attr,
337 &scan_sleep_millisecs_attr.attr,
338 &alloc_sleep_millisecs_attr.attr,
342 struct attribute_group khugepaged_attr_group = {
343 .attrs = khugepaged_attr,
344 .name = "khugepaged",
346 #endif /* CONFIG_SYSFS */
348 int hugepage_madvise(struct vm_area_struct *vma,
349 unsigned long *vm_flags, int advice)
355 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
356 * can't handle this properly after s390_enable_sie, so we simply
357 * ignore the madvise to prevent qemu from causing a SIGSEGV.
359 if (mm_has_pgste(vma->vm_mm))
362 *vm_flags &= ~VM_NOHUGEPAGE;
363 *vm_flags |= VM_HUGEPAGE;
365 * If the vma become good for khugepaged to scan,
366 * register it here without waiting a page fault that
367 * may not happen any time soon.
369 khugepaged_enter_vma(vma, *vm_flags);
371 case MADV_NOHUGEPAGE:
372 *vm_flags &= ~VM_HUGEPAGE;
373 *vm_flags |= VM_NOHUGEPAGE;
375 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
376 * this vma even if we leave the mm registered in khugepaged if
377 * it got registered before VM_NOHUGEPAGE was set.
385 int __init khugepaged_init(void)
387 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
388 sizeof(struct khugepaged_mm_slot),
389 __alignof__(struct khugepaged_mm_slot),
394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
402 void __init khugepaged_destroy(void)
404 kmem_cache_destroy(mm_slot_cache);
407 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
409 return atomic_read(&mm->mm_users) == 0;
412 void __khugepaged_enter(struct mm_struct *mm)
414 struct khugepaged_mm_slot *mm_slot;
415 struct mm_slot *slot;
418 /* __khugepaged_exit() must not run from under us */
419 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
420 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags)))
423 mm_slot = mm_slot_alloc(mm_slot_cache);
427 slot = &mm_slot->slot;
429 spin_lock(&khugepaged_mm_lock);
430 mm_slot_insert(mm_slots_hash, mm, slot);
432 * Insert just behind the scanning cursor, to let the area settle
435 wakeup = list_empty(&khugepaged_scan.mm_head);
436 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
437 spin_unlock(&khugepaged_mm_lock);
441 wake_up_interruptible(&khugepaged_wait);
444 void khugepaged_enter_vma(struct vm_area_struct *vma,
445 unsigned long vm_flags)
447 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
448 hugepage_flags_enabled()) {
449 if (hugepage_vma_check(vma, vm_flags, false, false, true))
450 __khugepaged_enter(vma->vm_mm);
454 void __khugepaged_exit(struct mm_struct *mm)
456 struct khugepaged_mm_slot *mm_slot;
457 struct mm_slot *slot;
460 spin_lock(&khugepaged_mm_lock);
461 slot = mm_slot_lookup(mm_slots_hash, mm);
462 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
463 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
464 hash_del(&slot->hash);
465 list_del(&slot->mm_node);
468 spin_unlock(&khugepaged_mm_lock);
471 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
472 mm_slot_free(mm_slot_cache, mm_slot);
474 } else if (mm_slot) {
476 * This is required to serialize against
477 * hpage_collapse_test_exit() (which is guaranteed to run
478 * under mmap sem read mode). Stop here (after we return all
479 * pagetables will be destroyed) until khugepaged has finished
480 * working on the pagetables under the mmap_lock.
483 mmap_write_unlock(mm);
487 static void release_pte_folio(struct folio *folio)
489 node_stat_mod_folio(folio,
490 NR_ISOLATED_ANON + folio_is_file_lru(folio),
491 -folio_nr_pages(folio));
493 folio_putback_lru(folio);
496 static void release_pte_page(struct page *page)
498 release_pte_folio(page_folio(page));
501 static void release_pte_pages(pte_t *pte, pte_t *_pte,
502 struct list_head *compound_pagelist)
504 struct folio *folio, *tmp;
506 while (--_pte >= pte) {
507 pte_t pteval = ptep_get(_pte);
510 if (pte_none(pteval))
512 pfn = pte_pfn(pteval);
513 if (is_zero_pfn(pfn))
515 folio = pfn_folio(pfn);
516 if (folio_test_large(folio))
518 release_pte_folio(folio);
521 list_for_each_entry_safe(folio, tmp, compound_pagelist, lru) {
522 list_del(&folio->lru);
523 release_pte_folio(folio);
527 static bool is_refcount_suitable(struct page *page)
529 int expected_refcount;
531 expected_refcount = total_mapcount(page);
532 if (PageSwapCache(page))
533 expected_refcount += compound_nr(page);
535 return page_count(page) == expected_refcount;
538 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
539 unsigned long address,
541 struct collapse_control *cc,
542 struct list_head *compound_pagelist)
544 struct page *page = NULL;
546 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
547 bool writable = false;
549 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
550 _pte++, address += PAGE_SIZE) {
551 pte_t pteval = ptep_get(_pte);
552 if (pte_none(pteval) || (pte_present(pteval) &&
553 is_zero_pfn(pte_pfn(pteval)))) {
555 if (!userfaultfd_armed(vma) &&
556 (!cc->is_khugepaged ||
557 none_or_zero <= khugepaged_max_ptes_none)) {
560 result = SCAN_EXCEED_NONE_PTE;
561 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
565 if (!pte_present(pteval)) {
566 result = SCAN_PTE_NON_PRESENT;
569 if (pte_uffd_wp(pteval)) {
570 result = SCAN_PTE_UFFD_WP;
573 page = vm_normal_page(vma, address, pteval);
574 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
575 result = SCAN_PAGE_NULL;
579 VM_BUG_ON_PAGE(!PageAnon(page), page);
581 if (page_mapcount(page) > 1) {
583 if (cc->is_khugepaged &&
584 shared > khugepaged_max_ptes_shared) {
585 result = SCAN_EXCEED_SHARED_PTE;
586 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
591 if (PageCompound(page)) {
593 page = compound_head(page);
596 * Check if we have dealt with the compound page
599 list_for_each_entry(p, compound_pagelist, lru) {
606 * We can do it before isolate_lru_page because the
607 * page can't be freed from under us. NOTE: PG_lock
608 * is needed to serialize against split_huge_page
609 * when invoked from the VM.
611 if (!trylock_page(page)) {
612 result = SCAN_PAGE_LOCK;
617 * Check if the page has any GUP (or other external) pins.
619 * The page table that maps the page has been already unlinked
620 * from the page table tree and this process cannot get
621 * an additional pin on the page.
623 * New pins can come later if the page is shared across fork,
624 * but not from this process. The other process cannot write to
625 * the page, only trigger CoW.
627 if (!is_refcount_suitable(page)) {
629 result = SCAN_PAGE_COUNT;
634 * Isolate the page to avoid collapsing an hugepage
635 * currently in use by the VM.
637 if (!isolate_lru_page(page)) {
639 result = SCAN_DEL_PAGE_LRU;
642 mod_node_page_state(page_pgdat(page),
643 NR_ISOLATED_ANON + page_is_file_lru(page),
645 VM_BUG_ON_PAGE(!PageLocked(page), page);
646 VM_BUG_ON_PAGE(PageLRU(page), page);
648 if (PageCompound(page))
649 list_add_tail(&page->lru, compound_pagelist);
652 * If collapse was initiated by khugepaged, check that there is
653 * enough young pte to justify collapsing the page
655 if (cc->is_khugepaged &&
656 (pte_young(pteval) || page_is_young(page) ||
657 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
661 if (pte_write(pteval))
665 if (unlikely(!writable)) {
666 result = SCAN_PAGE_RO;
667 } else if (unlikely(cc->is_khugepaged && !referenced)) {
668 result = SCAN_LACK_REFERENCED_PAGE;
670 result = SCAN_SUCCEED;
671 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
672 referenced, writable, result);
676 release_pte_pages(pte, _pte, compound_pagelist);
677 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
678 referenced, writable, result);
682 static void __collapse_huge_page_copy_succeeded(pte_t *pte,
683 struct vm_area_struct *vma,
684 unsigned long address,
686 struct list_head *compound_pagelist)
688 struct page *src_page;
693 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
694 _pte++, address += PAGE_SIZE) {
695 pteval = ptep_get(_pte);
696 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
697 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
698 if (is_zero_pfn(pte_pfn(pteval))) {
700 * ptl mostly unnecessary.
703 ptep_clear(vma->vm_mm, address, _pte);
705 ksm_might_unmap_zero_page(vma->vm_mm, pteval);
708 src_page = pte_page(pteval);
709 if (!PageCompound(src_page))
710 release_pte_page(src_page);
712 * ptl mostly unnecessary, but preempt has to
713 * be disabled to update the per-cpu stats
714 * inside page_remove_rmap().
717 ptep_clear(vma->vm_mm, address, _pte);
718 page_remove_rmap(src_page, vma, false);
720 free_page_and_swap_cache(src_page);
724 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
725 list_del(&src_page->lru);
726 mod_node_page_state(page_pgdat(src_page),
727 NR_ISOLATED_ANON + page_is_file_lru(src_page),
728 -compound_nr(src_page));
729 unlock_page(src_page);
730 free_swap_cache(src_page);
731 putback_lru_page(src_page);
735 static void __collapse_huge_page_copy_failed(pte_t *pte,
738 struct vm_area_struct *vma,
739 struct list_head *compound_pagelist)
744 * Re-establish the PMD to point to the original page table
745 * entry. Restoring PMD needs to be done prior to releasing
746 * pages. Since pages are still isolated and locked here,
747 * acquiring anon_vma_lock_write is unnecessary.
749 pmd_ptl = pmd_lock(vma->vm_mm, pmd);
750 pmd_populate(vma->vm_mm, pmd, pmd_pgtable(orig_pmd));
751 spin_unlock(pmd_ptl);
753 * Release both raw and compound pages isolated
754 * in __collapse_huge_page_isolate.
756 release_pte_pages(pte, pte + HPAGE_PMD_NR, compound_pagelist);
760 * __collapse_huge_page_copy - attempts to copy memory contents from raw
761 * pages to a hugepage. Cleans up the raw pages if copying succeeds;
762 * otherwise restores the original page table and releases isolated raw pages.
763 * Returns SCAN_SUCCEED if copying succeeds, otherwise returns SCAN_COPY_MC.
765 * @pte: starting of the PTEs to copy from
766 * @page: the new hugepage to copy contents to
767 * @pmd: pointer to the new hugepage's PMD
768 * @orig_pmd: the original raw pages' PMD
769 * @vma: the original raw pages' virtual memory area
770 * @address: starting address to copy
771 * @ptl: lock on raw pages' PTEs
772 * @compound_pagelist: list that stores compound pages
774 static int __collapse_huge_page_copy(pte_t *pte,
778 struct vm_area_struct *vma,
779 unsigned long address,
781 struct list_head *compound_pagelist)
783 struct page *src_page;
786 unsigned long _address;
787 int result = SCAN_SUCCEED;
790 * Copying pages' contents is subject to memory poison at any iteration.
792 for (_pte = pte, _address = address; _pte < pte + HPAGE_PMD_NR;
793 _pte++, page++, _address += PAGE_SIZE) {
794 pteval = ptep_get(_pte);
795 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
796 clear_user_highpage(page, _address);
799 src_page = pte_page(pteval);
800 if (copy_mc_user_highpage(page, src_page, _address, vma) > 0) {
801 result = SCAN_COPY_MC;
806 if (likely(result == SCAN_SUCCEED))
807 __collapse_huge_page_copy_succeeded(pte, vma, address, ptl,
810 __collapse_huge_page_copy_failed(pte, pmd, orig_pmd, vma,
816 static void khugepaged_alloc_sleep(void)
820 add_wait_queue(&khugepaged_wait, &wait);
821 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
822 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
823 remove_wait_queue(&khugepaged_wait, &wait);
826 struct collapse_control khugepaged_collapse_control = {
827 .is_khugepaged = true,
830 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
835 * If node_reclaim_mode is disabled, then no extra effort is made to
836 * allocate memory locally.
838 if (!node_reclaim_enabled())
841 /* If there is a count for this node already, it must be acceptable */
842 if (cc->node_load[nid])
845 for (i = 0; i < MAX_NUMNODES; i++) {
846 if (!cc->node_load[i])
848 if (node_distance(nid, i) > node_reclaim_distance)
854 #define khugepaged_defrag() \
855 (transparent_hugepage_flags & \
856 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
858 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
859 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
861 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
865 static int hpage_collapse_find_target_node(struct collapse_control *cc)
867 int nid, target_node = 0, max_value = 0;
869 /* find first node with max normal pages hit */
870 for (nid = 0; nid < MAX_NUMNODES; nid++)
871 if (cc->node_load[nid] > max_value) {
872 max_value = cc->node_load[nid];
876 for_each_online_node(nid) {
877 if (max_value == cc->node_load[nid])
878 node_set(nid, cc->alloc_nmask);
884 static int hpage_collapse_find_target_node(struct collapse_control *cc)
890 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
893 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
894 if (unlikely(!*hpage)) {
895 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
899 folio_prep_large_rmappable((struct folio *)*hpage);
900 count_vm_event(THP_COLLAPSE_ALLOC);
905 * If mmap_lock temporarily dropped, revalidate vma
906 * before taking mmap_lock.
907 * Returns enum scan_result value.
910 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
912 struct vm_area_struct **vmap,
913 struct collapse_control *cc)
915 struct vm_area_struct *vma;
917 if (unlikely(hpage_collapse_test_exit(mm)))
918 return SCAN_ANY_PROCESS;
920 *vmap = vma = find_vma(mm, address);
922 return SCAN_VMA_NULL;
924 if (!transhuge_vma_suitable(vma, address))
925 return SCAN_ADDRESS_RANGE;
926 if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
928 return SCAN_VMA_CHECK;
930 * Anon VMA expected, the address may be unmapped then
931 * remapped to file after khugepaged reaquired the mmap_lock.
933 * hugepage_vma_check may return true for qualified file
936 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
937 return SCAN_PAGE_ANON;
941 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
942 unsigned long address,
947 *pmd = mm_find_pmd(mm, address);
949 return SCAN_PMD_NULL;
951 pmde = pmdp_get_lockless(*pmd);
953 return SCAN_PMD_NONE;
954 if (!pmd_present(pmde))
955 return SCAN_PMD_NULL;
956 if (pmd_trans_huge(pmde))
957 return SCAN_PMD_MAPPED;
958 if (pmd_devmap(pmde))
959 return SCAN_PMD_NULL;
961 return SCAN_PMD_NULL;
965 static int check_pmd_still_valid(struct mm_struct *mm,
966 unsigned long address,
970 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
972 if (result != SCAN_SUCCEED)
980 * Bring missing pages in from swap, to complete THP collapse.
981 * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
983 * Called and returns without pte mapped or spinlocks held.
984 * Returns result: if not SCAN_SUCCEED, mmap_lock has been released.
986 static int __collapse_huge_page_swapin(struct mm_struct *mm,
987 struct vm_area_struct *vma,
988 unsigned long haddr, pmd_t *pmd,
993 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
998 for (address = haddr; address < end; address += PAGE_SIZE) {
999 struct vm_fault vmf = {
1002 .pgoff = linear_page_index(vma, address),
1003 .flags = FAULT_FLAG_ALLOW_RETRY,
1008 pte = pte_offset_map_nolock(mm, pmd, address, &ptl);
1010 mmap_read_unlock(mm);
1011 result = SCAN_PMD_NULL;
1016 vmf.orig_pte = ptep_get_lockless(pte);
1017 if (!is_swap_pte(vmf.orig_pte))
1022 ret = do_swap_page(&vmf);
1023 /* Which unmaps pte (after perhaps re-checking the entry) */
1027 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
1028 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
1029 * we do not retry here and swap entry will remain in pagetable
1030 * resulting in later failure.
1032 if (ret & VM_FAULT_RETRY) {
1033 /* Likely, but not guaranteed, that page lock failed */
1034 result = SCAN_PAGE_LOCK;
1037 if (ret & VM_FAULT_ERROR) {
1038 mmap_read_unlock(mm);
1048 /* Drain LRU cache to remove extra pin on the swapped in pages */
1052 result = SCAN_SUCCEED;
1054 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, result);
1058 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
1059 struct collapse_control *cc)
1061 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
1063 int node = hpage_collapse_find_target_node(cc);
1064 struct folio *folio;
1066 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
1067 return SCAN_ALLOC_HUGE_PAGE_FAIL;
1069 folio = page_folio(*hpage);
1070 if (unlikely(mem_cgroup_charge(folio, mm, gfp))) {
1073 return SCAN_CGROUP_CHARGE_FAIL;
1075 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
1077 return SCAN_SUCCEED;
1080 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
1081 int referenced, int unmapped,
1082 struct collapse_control *cc)
1084 LIST_HEAD(compound_pagelist);
1089 spinlock_t *pmd_ptl, *pte_ptl;
1090 int result = SCAN_FAIL;
1091 struct vm_area_struct *vma;
1092 struct mmu_notifier_range range;
1094 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1097 * Before allocating the hugepage, release the mmap_lock read lock.
1098 * The allocation can take potentially a long time if it involves
1099 * sync compaction, and we do not need to hold the mmap_lock during
1100 * that. We will recheck the vma after taking it again in write mode.
1102 mmap_read_unlock(mm);
1104 result = alloc_charge_hpage(&hpage, mm, cc);
1105 if (result != SCAN_SUCCEED)
1109 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1110 if (result != SCAN_SUCCEED) {
1111 mmap_read_unlock(mm);
1115 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1116 if (result != SCAN_SUCCEED) {
1117 mmap_read_unlock(mm);
1123 * __collapse_huge_page_swapin will return with mmap_lock
1124 * released when it fails. So we jump out_nolock directly in
1125 * that case. Continuing to collapse causes inconsistency.
1127 result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1129 if (result != SCAN_SUCCEED)
1133 mmap_read_unlock(mm);
1135 * Prevent all access to pagetables with the exception of
1136 * gup_fast later handled by the ptep_clear_flush and the VM
1137 * handled by the anon_vma lock + PG_lock.
1139 mmap_write_lock(mm);
1140 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1141 if (result != SCAN_SUCCEED)
1143 /* check if the pmd is still valid */
1144 result = check_pmd_still_valid(mm, address, pmd);
1145 if (result != SCAN_SUCCEED)
1148 vma_start_write(vma);
1149 anon_vma_lock_write(vma->anon_vma);
1151 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, address,
1152 address + HPAGE_PMD_SIZE);
1153 mmu_notifier_invalidate_range_start(&range);
1155 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1157 * This removes any huge TLB entry from the CPU so we won't allow
1158 * huge and small TLB entries for the same virtual address to
1159 * avoid the risk of CPU bugs in that area.
1161 * Parallel fast GUP is fine since fast GUP will back off when
1162 * it detects PMD is changed.
1164 _pmd = pmdp_collapse_flush(vma, address, pmd);
1165 spin_unlock(pmd_ptl);
1166 mmu_notifier_invalidate_range_end(&range);
1167 tlb_remove_table_sync_one();
1169 pte = pte_offset_map_lock(mm, &_pmd, address, &pte_ptl);
1171 result = __collapse_huge_page_isolate(vma, address, pte, cc,
1172 &compound_pagelist);
1173 spin_unlock(pte_ptl);
1175 result = SCAN_PMD_NULL;
1178 if (unlikely(result != SCAN_SUCCEED)) {
1182 BUG_ON(!pmd_none(*pmd));
1184 * We can only use set_pmd_at when establishing
1185 * hugepmds and never for establishing regular pmds that
1186 * points to regular pagetables. Use pmd_populate for that
1188 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1189 spin_unlock(pmd_ptl);
1190 anon_vma_unlock_write(vma->anon_vma);
1195 * All pages are isolated and locked so anon_vma rmap
1196 * can't run anymore.
1198 anon_vma_unlock_write(vma->anon_vma);
1200 result = __collapse_huge_page_copy(pte, hpage, pmd, _pmd,
1201 vma, address, pte_ptl,
1202 &compound_pagelist);
1204 if (unlikely(result != SCAN_SUCCEED))
1208 * spin_lock() below is not the equivalent of smp_wmb(), but
1209 * the smp_wmb() inside __SetPageUptodate() can be reused to
1210 * avoid the copy_huge_page writes to become visible after
1211 * the set_pmd_at() write.
1213 __SetPageUptodate(hpage);
1214 pgtable = pmd_pgtable(_pmd);
1216 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1217 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1220 BUG_ON(!pmd_none(*pmd));
1221 page_add_new_anon_rmap(hpage, vma, address);
1222 lru_cache_add_inactive_or_unevictable(hpage, vma);
1223 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1224 set_pmd_at(mm, address, pmd, _pmd);
1225 update_mmu_cache_pmd(vma, address, pmd);
1226 spin_unlock(pmd_ptl);
1230 result = SCAN_SUCCEED;
1232 mmap_write_unlock(mm);
1236 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1240 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1241 struct vm_area_struct *vma,
1242 unsigned long address, bool *mmap_locked,
1243 struct collapse_control *cc)
1247 int result = SCAN_FAIL, referenced = 0;
1248 int none_or_zero = 0, shared = 0;
1249 struct page *page = NULL;
1250 unsigned long _address;
1252 int node = NUMA_NO_NODE, unmapped = 0;
1253 bool writable = false;
1255 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1257 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1258 if (result != SCAN_SUCCEED)
1261 memset(cc->node_load, 0, sizeof(cc->node_load));
1262 nodes_clear(cc->alloc_nmask);
1263 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1265 result = SCAN_PMD_NULL;
1269 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1270 _pte++, _address += PAGE_SIZE) {
1271 pte_t pteval = ptep_get(_pte);
1272 if (is_swap_pte(pteval)) {
1274 if (!cc->is_khugepaged ||
1275 unmapped <= khugepaged_max_ptes_swap) {
1277 * Always be strict with uffd-wp
1278 * enabled swap entries. Please see
1279 * comment below for pte_uffd_wp().
1281 if (pte_swp_uffd_wp_any(pteval)) {
1282 result = SCAN_PTE_UFFD_WP;
1287 result = SCAN_EXCEED_SWAP_PTE;
1288 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1292 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1294 if (!userfaultfd_armed(vma) &&
1295 (!cc->is_khugepaged ||
1296 none_or_zero <= khugepaged_max_ptes_none)) {
1299 result = SCAN_EXCEED_NONE_PTE;
1300 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1304 if (pte_uffd_wp(pteval)) {
1306 * Don't collapse the page if any of the small
1307 * PTEs are armed with uffd write protection.
1308 * Here we can also mark the new huge pmd as
1309 * write protected if any of the small ones is
1310 * marked but that could bring unknown
1311 * userfault messages that falls outside of
1312 * the registered range. So, just be simple.
1314 result = SCAN_PTE_UFFD_WP;
1317 if (pte_write(pteval))
1320 page = vm_normal_page(vma, _address, pteval);
1321 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1322 result = SCAN_PAGE_NULL;
1326 if (page_mapcount(page) > 1) {
1328 if (cc->is_khugepaged &&
1329 shared > khugepaged_max_ptes_shared) {
1330 result = SCAN_EXCEED_SHARED_PTE;
1331 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1336 page = compound_head(page);
1339 * Record which node the original page is from and save this
1340 * information to cc->node_load[].
1341 * Khugepaged will allocate hugepage from the node has the max
1344 node = page_to_nid(page);
1345 if (hpage_collapse_scan_abort(node, cc)) {
1346 result = SCAN_SCAN_ABORT;
1349 cc->node_load[node]++;
1350 if (!PageLRU(page)) {
1351 result = SCAN_PAGE_LRU;
1354 if (PageLocked(page)) {
1355 result = SCAN_PAGE_LOCK;
1358 if (!PageAnon(page)) {
1359 result = SCAN_PAGE_ANON;
1364 * Check if the page has any GUP (or other external) pins.
1366 * Here the check may be racy:
1367 * it may see total_mapcount > refcount in some cases?
1368 * But such case is ephemeral we could always retry collapse
1369 * later. However it may report false positive if the page
1370 * has excessive GUP pins (i.e. 512). Anyway the same check
1371 * will be done again later the risk seems low.
1373 if (!is_refcount_suitable(page)) {
1374 result = SCAN_PAGE_COUNT;
1379 * If collapse was initiated by khugepaged, check that there is
1380 * enough young pte to justify collapsing the page
1382 if (cc->is_khugepaged &&
1383 (pte_young(pteval) || page_is_young(page) ||
1384 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1389 result = SCAN_PAGE_RO;
1390 } else if (cc->is_khugepaged &&
1392 (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1393 result = SCAN_LACK_REFERENCED_PAGE;
1395 result = SCAN_SUCCEED;
1398 pte_unmap_unlock(pte, ptl);
1399 if (result == SCAN_SUCCEED) {
1400 result = collapse_huge_page(mm, address, referenced,
1402 /* collapse_huge_page will return with the mmap_lock released */
1403 *mmap_locked = false;
1406 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1407 none_or_zero, result, unmapped);
1411 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1413 struct mm_slot *slot = &mm_slot->slot;
1414 struct mm_struct *mm = slot->mm;
1416 lockdep_assert_held(&khugepaged_mm_lock);
1418 if (hpage_collapse_test_exit(mm)) {
1420 hash_del(&slot->hash);
1421 list_del(&slot->mm_node);
1424 * Not strictly needed because the mm exited already.
1426 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1429 /* khugepaged_mm_lock actually not necessary for the below */
1430 mm_slot_free(mm_slot_cache, mm_slot);
1436 /* hpage must be locked, and mmap_lock must be held */
1437 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1438 pmd_t *pmdp, struct page *hpage)
1440 struct vm_fault vmf = {
1447 VM_BUG_ON(!PageTransHuge(hpage));
1448 mmap_assert_locked(vma->vm_mm);
1450 if (do_set_pmd(&vmf, hpage))
1454 return SCAN_SUCCEED;
1458 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1461 * @mm: process address space where collapse happens
1462 * @addr: THP collapse address
1463 * @install_pmd: If a huge PMD should be installed
1465 * This function checks whether all the PTEs in the PMD are pointing to the
1466 * right THP. If so, retract the page table so the THP can refault in with
1467 * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1469 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1472 struct mmu_notifier_range range;
1473 bool notified = false;
1474 unsigned long haddr = addr & HPAGE_PMD_MASK;
1475 struct vm_area_struct *vma = vma_lookup(mm, haddr);
1477 pte_t *start_pte, *pte;
1478 pmd_t *pmd, pgt_pmd;
1479 spinlock_t *pml = NULL, *ptl;
1480 int nr_ptes = 0, result = SCAN_FAIL;
1483 mmap_assert_locked(mm);
1485 /* First check VMA found, in case page tables are being torn down */
1486 if (!vma || !vma->vm_file ||
1487 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1488 return SCAN_VMA_CHECK;
1490 /* Fast check before locking page if already PMD-mapped */
1491 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1492 if (result == SCAN_PMD_MAPPED)
1496 * If we are here, we've succeeded in replacing all the native pages
1497 * in the page cache with a single hugepage. If a mm were to fault-in
1498 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1499 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1500 * analogously elide sysfs THP settings here.
1502 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1503 return SCAN_VMA_CHECK;
1505 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1506 if (userfaultfd_wp(vma))
1507 return SCAN_PTE_UFFD_WP;
1509 hpage = find_lock_page(vma->vm_file->f_mapping,
1510 linear_page_index(vma, haddr));
1512 return SCAN_PAGE_NULL;
1514 if (!PageHead(hpage)) {
1519 if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1520 result = SCAN_PAGE_COMPOUND;
1524 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1530 * All pte entries have been removed and pmd cleared.
1531 * Skip all the pte checks and just update the pmd mapping.
1533 goto maybe_install_pmd;
1539 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1540 if (!start_pte) /* mmap_lock + page lock should prevent this */
1543 /* step 1: check all mapped PTEs are to the right huge page */
1544 for (i = 0, addr = haddr, pte = start_pte;
1545 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1547 pte_t ptent = ptep_get(pte);
1549 /* empty pte, skip */
1550 if (pte_none(ptent))
1553 /* page swapped out, abort */
1554 if (!pte_present(ptent)) {
1555 result = SCAN_PTE_NON_PRESENT;
1559 page = vm_normal_page(vma, addr, ptent);
1560 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1563 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1564 * page table, but the new page will not be a subpage of hpage.
1566 if (hpage + i != page)
1570 pte_unmap_unlock(start_pte, ptl);
1571 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1572 haddr, haddr + HPAGE_PMD_SIZE);
1573 mmu_notifier_invalidate_range_start(&range);
1577 * pmd_lock covers a wider range than ptl, and (if split from mm's
1578 * page_table_lock) ptl nests inside pml. The less time we hold pml,
1579 * the better; but userfaultfd's mfill_atomic_pte() on a private VMA
1580 * inserts a valid as-if-COWed PTE without even looking up page cache.
1581 * So page lock of hpage does not protect from it, so we must not drop
1582 * ptl before pgt_pmd is removed, so uffd private needs pml taken now.
1584 if (userfaultfd_armed(vma) && !(vma->vm_flags & VM_SHARED))
1585 pml = pmd_lock(mm, pmd);
1587 start_pte = pte_offset_map_nolock(mm, pmd, haddr, &ptl);
1588 if (!start_pte) /* mmap_lock + page lock should prevent this */
1592 else if (ptl != pml)
1593 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1595 /* step 2: clear page table and adjust rmap */
1596 for (i = 0, addr = haddr, pte = start_pte;
1597 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1599 pte_t ptent = ptep_get(pte);
1601 if (pte_none(ptent))
1604 * We dropped ptl after the first scan, to do the mmu_notifier:
1605 * page lock stops more PTEs of the hpage being faulted in, but
1606 * does not stop write faults COWing anon copies from existing
1607 * PTEs; and does not stop those being swapped out or migrated.
1609 if (!pte_present(ptent)) {
1610 result = SCAN_PTE_NON_PRESENT;
1613 page = vm_normal_page(vma, addr, ptent);
1614 if (hpage + i != page)
1618 * Must clear entry, or a racing truncate may re-remove it.
1619 * TLB flush can be left until pmdp_collapse_flush() does it.
1620 * PTE dirty? Shmem page is already dirty; file is read-only.
1622 ptep_clear(mm, addr, pte);
1623 page_remove_rmap(page, vma, false);
1627 pte_unmap(start_pte);
1631 /* step 3: set proper refcount and mm_counters. */
1633 page_ref_sub(hpage, nr_ptes);
1634 add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes);
1637 /* step 4: remove empty page table */
1639 pml = pmd_lock(mm, pmd);
1641 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1643 pgt_pmd = pmdp_collapse_flush(vma, haddr, pmd);
1644 pmdp_get_lockless_sync();
1649 mmu_notifier_invalidate_range_end(&range);
1652 page_table_check_pte_clear_range(mm, haddr, pgt_pmd);
1653 pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1656 /* step 5: install pmd entry */
1657 result = install_pmd
1658 ? set_huge_pmd(vma, haddr, pmd, hpage)
1664 page_ref_sub(hpage, nr_ptes);
1665 add_mm_counter(mm, mm_counter_file(hpage), -nr_ptes);
1668 pte_unmap_unlock(start_pte, ptl);
1669 if (pml && pml != ptl)
1672 mmu_notifier_invalidate_range_end(&range);
1679 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1681 struct vm_area_struct *vma;
1683 i_mmap_lock_read(mapping);
1684 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1685 struct mmu_notifier_range range;
1686 struct mm_struct *mm;
1688 pmd_t *pmd, pgt_pmd;
1691 bool skipped_uffd = false;
1694 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1695 * got written to. These VMAs are likely not worth removing
1696 * page tables from, as PMD-mapping is likely to be split later.
1698 if (READ_ONCE(vma->anon_vma))
1701 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1702 if (addr & ~HPAGE_PMD_MASK ||
1703 vma->vm_end < addr + HPAGE_PMD_SIZE)
1707 if (find_pmd_or_thp_or_none(mm, addr, &pmd) != SCAN_SUCCEED)
1710 if (hpage_collapse_test_exit(mm))
1713 * When a vma is registered with uffd-wp, we cannot recycle
1714 * the page table because there may be pte markers installed.
1715 * Other vmas can still have the same file mapped hugely, but
1716 * skip this one: it will always be mapped in small page size
1717 * for uffd-wp registered ranges.
1719 if (userfaultfd_wp(vma))
1722 /* PTEs were notified when unmapped; but now for the PMD? */
1723 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
1724 addr, addr + HPAGE_PMD_SIZE);
1725 mmu_notifier_invalidate_range_start(&range);
1727 pml = pmd_lock(mm, pmd);
1728 ptl = pte_lockptr(mm, pmd);
1730 spin_lock_nested(ptl, SINGLE_DEPTH_NESTING);
1733 * Huge page lock is still held, so normally the page table
1734 * must remain empty; and we have already skipped anon_vma
1735 * and userfaultfd_wp() vmas. But since the mmap_lock is not
1736 * held, it is still possible for a racing userfaultfd_ioctl()
1737 * to have inserted ptes or markers. Now that we hold ptlock,
1738 * repeating the anon_vma check protects from one category,
1739 * and repeating the userfaultfd_wp() check from another.
1741 if (unlikely(vma->anon_vma || userfaultfd_wp(vma))) {
1742 skipped_uffd = true;
1744 pgt_pmd = pmdp_collapse_flush(vma, addr, pmd);
1745 pmdp_get_lockless_sync();
1752 mmu_notifier_invalidate_range_end(&range);
1754 if (!skipped_uffd) {
1756 page_table_check_pte_clear_range(mm, addr, pgt_pmd);
1757 pte_free_defer(mm, pmd_pgtable(pgt_pmd));
1760 i_mmap_unlock_read(mapping);
1764 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1766 * @mm: process address space where collapse happens
1767 * @addr: virtual collapse start address
1768 * @file: file that collapse on
1769 * @start: collapse start address
1770 * @cc: collapse context and scratchpad
1772 * Basic scheme is simple, details are more complex:
1773 * - allocate and lock a new huge page;
1774 * - scan page cache, locking old pages
1775 * + swap/gup in pages if necessary;
1776 * - copy data to new page
1777 * - handle shmem holes
1778 * + re-validate that holes weren't filled by someone else
1779 * + check for userfaultfd
1780 * - finalize updates to the page cache;
1781 * - if replacing succeeds:
1782 * + unlock huge page;
1784 * - if replacing failed;
1785 * + unlock old pages
1786 * + unlock and free huge page;
1788 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1789 struct file *file, pgoff_t start,
1790 struct collapse_control *cc)
1792 struct address_space *mapping = file->f_mapping;
1796 struct folio *folio;
1797 pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1798 LIST_HEAD(pagelist);
1799 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1800 int nr_none = 0, result = SCAN_SUCCEED;
1801 bool is_shmem = shmem_file(file);
1804 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1805 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1807 result = alloc_charge_hpage(&hpage, mm, cc);
1808 if (result != SCAN_SUCCEED)
1811 __SetPageLocked(hpage);
1813 __SetPageSwapBacked(hpage);
1814 hpage->index = start;
1815 hpage->mapping = mapping;
1818 * Ensure we have slots for all the pages in the range. This is
1819 * almost certainly a no-op because most of the pages must be present
1823 xas_create_range(&xas);
1824 if (!xas_error(&xas))
1826 xas_unlock_irq(&xas);
1827 if (!xas_nomem(&xas, GFP_KERNEL)) {
1833 for (index = start; index < end; index++) {
1834 xas_set(&xas, index);
1835 page = xas_load(&xas);
1837 VM_BUG_ON(index != xas.xa_index);
1841 * Stop if extent has been truncated or
1842 * hole-punched, and is now completely
1845 if (index == start) {
1846 if (!xas_next_entry(&xas, end - 1)) {
1847 result = SCAN_TRUNCATED;
1855 if (xa_is_value(page) || !PageUptodate(page)) {
1856 xas_unlock_irq(&xas);
1857 /* swap in or instantiate fallocated page */
1858 if (shmem_get_folio(mapping->host, index,
1859 &folio, SGP_NOALLOC)) {
1863 /* drain lru cache to help isolate_lru_page() */
1865 page = folio_file_page(folio, index);
1866 } else if (trylock_page(page)) {
1868 xas_unlock_irq(&xas);
1870 result = SCAN_PAGE_LOCK;
1873 } else { /* !is_shmem */
1874 if (!page || xa_is_value(page)) {
1875 xas_unlock_irq(&xas);
1876 page_cache_sync_readahead(mapping, &file->f_ra,
1879 /* drain lru cache to help isolate_lru_page() */
1881 page = find_lock_page(mapping, index);
1882 if (unlikely(page == NULL)) {
1886 } else if (PageDirty(page)) {
1888 * khugepaged only works on read-only fd,
1889 * so this page is dirty because it hasn't
1890 * been flushed since first write. There
1891 * won't be new dirty pages.
1893 * Trigger async flush here and hope the
1894 * writeback is done when khugepaged
1895 * revisits this page.
1897 * This is a one-off situation. We are not
1898 * forcing writeback in loop.
1900 xas_unlock_irq(&xas);
1901 filemap_flush(mapping);
1904 } else if (PageWriteback(page)) {
1905 xas_unlock_irq(&xas);
1908 } else if (trylock_page(page)) {
1910 xas_unlock_irq(&xas);
1912 result = SCAN_PAGE_LOCK;
1918 * The page must be locked, so we can drop the i_pages lock
1919 * without racing with truncate.
1921 VM_BUG_ON_PAGE(!PageLocked(page), page);
1923 /* make sure the page is up to date */
1924 if (unlikely(!PageUptodate(page))) {
1930 * If file was truncated then extended, or hole-punched, before
1931 * we locked the first page, then a THP might be there already.
1932 * This will be discovered on the first iteration.
1934 if (PageTransCompound(page)) {
1935 struct page *head = compound_head(page);
1937 result = compound_order(head) == HPAGE_PMD_ORDER &&
1938 head->index == start
1939 /* Maybe PMD-mapped */
1940 ? SCAN_PTE_MAPPED_HUGEPAGE
1941 : SCAN_PAGE_COMPOUND;
1945 folio = page_folio(page);
1947 if (folio_mapping(folio) != mapping) {
1948 result = SCAN_TRUNCATED;
1952 if (!is_shmem && (folio_test_dirty(folio) ||
1953 folio_test_writeback(folio))) {
1955 * khugepaged only works on read-only fd, so this
1956 * page is dirty because it hasn't been flushed
1957 * since first write.
1963 if (!folio_isolate_lru(folio)) {
1964 result = SCAN_DEL_PAGE_LRU;
1968 if (!filemap_release_folio(folio, GFP_KERNEL)) {
1969 result = SCAN_PAGE_HAS_PRIVATE;
1970 folio_putback_lru(folio);
1974 if (folio_mapped(folio))
1976 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1980 VM_BUG_ON_PAGE(page != xa_load(xas.xa, index), page);
1983 * We control three references to the page:
1984 * - we hold a pin on it;
1985 * - one reference from page cache;
1986 * - one from isolate_lru_page;
1987 * If those are the only references, then any new usage of the
1988 * page will have to fetch it from the page cache. That requires
1989 * locking the page to handle truncate, so any new usage will be
1990 * blocked until we unlock page after collapse/during rollback.
1992 if (page_count(page) != 3) {
1993 result = SCAN_PAGE_COUNT;
1994 xas_unlock_irq(&xas);
1995 putback_lru_page(page);
2000 * Accumulate the pages that are being collapsed.
2002 list_add_tail(&page->lru, &pagelist);
2011 filemap_nr_thps_inc(mapping);
2013 * Paired with smp_mb() in do_dentry_open() to ensure
2014 * i_writecount is up to date and the update to nr_thps is
2015 * visible. Ensures the page cache will be truncated if the
2016 * file is opened writable.
2019 if (inode_is_open_for_write(mapping->host)) {
2021 filemap_nr_thps_dec(mapping);
2026 xas_unlock_irq(&xas);
2030 * If collapse is successful, flush must be done now before copying.
2031 * If collapse is unsuccessful, does flush actually need to be done?
2032 * Do it anyway, to clear the state.
2034 try_to_unmap_flush();
2036 if (result == SCAN_SUCCEED && nr_none &&
2037 !shmem_charge(mapping->host, nr_none))
2039 if (result != SCAN_SUCCEED) {
2045 * The old pages are locked, so they won't change anymore.
2048 list_for_each_entry(page, &pagelist, lru) {
2049 while (index < page->index) {
2050 clear_highpage(hpage + (index % HPAGE_PMD_NR));
2053 if (copy_mc_highpage(hpage + (page->index % HPAGE_PMD_NR), page) > 0) {
2054 result = SCAN_COPY_MC;
2059 while (index < end) {
2060 clear_highpage(hpage + (index % HPAGE_PMD_NR));
2065 struct vm_area_struct *vma;
2066 int nr_none_check = 0;
2068 i_mmap_lock_read(mapping);
2071 xas_set(&xas, start);
2072 for (index = start; index < end; index++) {
2073 if (!xas_next(&xas)) {
2074 xas_store(&xas, XA_RETRY_ENTRY);
2075 if (xas_error(&xas)) {
2076 result = SCAN_STORE_FAILED;
2083 if (nr_none != nr_none_check) {
2084 result = SCAN_PAGE_FILLED;
2089 * If userspace observed a missing page in a VMA with a MODE_MISSING
2090 * userfaultfd, then it might expect a UFFD_EVENT_PAGEFAULT for that
2091 * page. If so, we need to roll back to avoid suppressing such an
2092 * event. Since wp/minor userfaultfds don't give userspace any
2093 * guarantees that the kernel doesn't fill a missing page with a zero
2094 * page, so they don't matter here.
2096 * Any userfaultfds registered after this point will not be able to
2097 * observe any missing pages due to the previously inserted retry
2100 vma_interval_tree_foreach(vma, &mapping->i_mmap, start, end) {
2101 if (userfaultfd_missing(vma)) {
2102 result = SCAN_EXCEED_NONE_PTE;
2108 i_mmap_unlock_read(mapping);
2109 if (result != SCAN_SUCCEED) {
2110 xas_set(&xas, start);
2111 for (index = start; index < end; index++) {
2112 if (xas_next(&xas) == XA_RETRY_ENTRY)
2113 xas_store(&xas, NULL);
2116 xas_unlock_irq(&xas);
2123 nr = thp_nr_pages(hpage);
2125 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
2127 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
2130 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
2131 /* nr_none is always 0 for non-shmem. */
2132 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
2136 * Mark hpage as uptodate before inserting it into the page cache so
2137 * that it isn't mistaken for an fallocated but unwritten page.
2139 folio = page_folio(hpage);
2140 folio_mark_uptodate(folio);
2141 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2144 folio_mark_dirty(folio);
2145 folio_add_lru(folio);
2147 /* Join all the small entries into a single multi-index entry. */
2148 xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2149 xas_store(&xas, hpage);
2150 WARN_ON_ONCE(xas_error(&xas));
2151 xas_unlock_irq(&xas);
2154 * Remove pte page tables, so we can re-fault the page as huge.
2155 * If MADV_COLLAPSE, adjust result to call collapse_pte_mapped_thp().
2157 retract_page_tables(mapping, start);
2158 if (cc && !cc->is_khugepaged)
2159 result = SCAN_PTE_MAPPED_HUGEPAGE;
2163 * The collapse has succeeded, so free the old pages.
2165 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2166 list_del(&page->lru);
2167 page->mapping = NULL;
2168 ClearPageActive(page);
2169 ClearPageUnevictable(page);
2171 folio_put_refs(page_folio(page), 3);
2177 /* Something went wrong: roll back page cache changes */
2180 mapping->nrpages -= nr_none;
2181 xas_unlock_irq(&xas);
2182 shmem_uncharge(mapping->host, nr_none);
2185 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2186 list_del(&page->lru);
2188 putback_lru_page(page);
2192 * Undo the updates of filemap_nr_thps_inc for non-SHMEM
2193 * file only. This undo is not needed unless failure is
2194 * due to SCAN_COPY_MC.
2196 if (!is_shmem && result == SCAN_COPY_MC) {
2197 filemap_nr_thps_dec(mapping);
2199 * Paired with smp_mb() in do_dentry_open() to
2200 * ensure the update to nr_thps is visible.
2205 hpage->mapping = NULL;
2210 VM_BUG_ON(!list_empty(&pagelist));
2211 trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
2215 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2216 struct file *file, pgoff_t start,
2217 struct collapse_control *cc)
2219 struct page *page = NULL;
2220 struct address_space *mapping = file->f_mapping;
2221 XA_STATE(xas, &mapping->i_pages, start);
2223 int node = NUMA_NO_NODE;
2224 int result = SCAN_SUCCEED;
2228 memset(cc->node_load, 0, sizeof(cc->node_load));
2229 nodes_clear(cc->alloc_nmask);
2231 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2232 if (xas_retry(&xas, page))
2235 if (xa_is_value(page)) {
2237 if (cc->is_khugepaged &&
2238 swap > khugepaged_max_ptes_swap) {
2239 result = SCAN_EXCEED_SWAP_PTE;
2240 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2247 * TODO: khugepaged should compact smaller compound pages
2248 * into a PMD sized page
2250 if (PageTransCompound(page)) {
2251 struct page *head = compound_head(page);
2253 result = compound_order(head) == HPAGE_PMD_ORDER &&
2254 head->index == start
2255 /* Maybe PMD-mapped */
2256 ? SCAN_PTE_MAPPED_HUGEPAGE
2257 : SCAN_PAGE_COMPOUND;
2259 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2260 * by the caller won't touch the page cache, and so
2261 * it's safe to skip LRU and refcount checks before
2267 node = page_to_nid(page);
2268 if (hpage_collapse_scan_abort(node, cc)) {
2269 result = SCAN_SCAN_ABORT;
2272 cc->node_load[node]++;
2274 if (!PageLRU(page)) {
2275 result = SCAN_PAGE_LRU;
2279 if (page_count(page) !=
2280 1 + page_mapcount(page) + page_has_private(page)) {
2281 result = SCAN_PAGE_COUNT;
2286 * We probably should check if the page is referenced here, but
2287 * nobody would transfer pte_young() to PageReferenced() for us.
2288 * And rmap walk here is just too costly...
2293 if (need_resched()) {
2300 if (result == SCAN_SUCCEED) {
2301 if (cc->is_khugepaged &&
2302 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2303 result = SCAN_EXCEED_NONE_PTE;
2304 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2306 result = collapse_file(mm, addr, file, start, cc);
2310 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2314 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2315 struct file *file, pgoff_t start,
2316 struct collapse_control *cc)
2322 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2323 struct collapse_control *cc)
2324 __releases(&khugepaged_mm_lock)
2325 __acquires(&khugepaged_mm_lock)
2327 struct vma_iterator vmi;
2328 struct khugepaged_mm_slot *mm_slot;
2329 struct mm_slot *slot;
2330 struct mm_struct *mm;
2331 struct vm_area_struct *vma;
2335 lockdep_assert_held(&khugepaged_mm_lock);
2336 *result = SCAN_FAIL;
2338 if (khugepaged_scan.mm_slot) {
2339 mm_slot = khugepaged_scan.mm_slot;
2340 slot = &mm_slot->slot;
2342 slot = list_entry(khugepaged_scan.mm_head.next,
2343 struct mm_slot, mm_node);
2344 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2345 khugepaged_scan.address = 0;
2346 khugepaged_scan.mm_slot = mm_slot;
2348 spin_unlock(&khugepaged_mm_lock);
2352 * Don't wait for semaphore (to avoid long wait times). Just move to
2353 * the next mm on the list.
2356 if (unlikely(!mmap_read_trylock(mm)))
2357 goto breakouterloop_mmap_lock;
2360 if (unlikely(hpage_collapse_test_exit(mm)))
2361 goto breakouterloop;
2363 vma_iter_init(&vmi, mm, khugepaged_scan.address);
2364 for_each_vma(vmi, vma) {
2365 unsigned long hstart, hend;
2368 if (unlikely(hpage_collapse_test_exit(mm))) {
2372 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2377 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2378 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2379 if (khugepaged_scan.address > hend)
2381 if (khugepaged_scan.address < hstart)
2382 khugepaged_scan.address = hstart;
2383 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2385 while (khugepaged_scan.address < hend) {
2386 bool mmap_locked = true;
2389 if (unlikely(hpage_collapse_test_exit(mm)))
2390 goto breakouterloop;
2392 VM_BUG_ON(khugepaged_scan.address < hstart ||
2393 khugepaged_scan.address + HPAGE_PMD_SIZE >
2395 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2396 struct file *file = get_file(vma->vm_file);
2397 pgoff_t pgoff = linear_page_index(vma,
2398 khugepaged_scan.address);
2400 mmap_read_unlock(mm);
2401 mmap_locked = false;
2402 *result = hpage_collapse_scan_file(mm,
2403 khugepaged_scan.address, file, pgoff, cc);
2405 if (*result == SCAN_PTE_MAPPED_HUGEPAGE) {
2407 if (hpage_collapse_test_exit(mm))
2408 goto breakouterloop;
2409 *result = collapse_pte_mapped_thp(mm,
2410 khugepaged_scan.address, false);
2411 if (*result == SCAN_PMD_MAPPED)
2412 *result = SCAN_SUCCEED;
2413 mmap_read_unlock(mm);
2416 *result = hpage_collapse_scan_pmd(mm, vma,
2417 khugepaged_scan.address, &mmap_locked, cc);
2420 if (*result == SCAN_SUCCEED)
2421 ++khugepaged_pages_collapsed;
2423 /* move to next address */
2424 khugepaged_scan.address += HPAGE_PMD_SIZE;
2425 progress += HPAGE_PMD_NR;
2428 * We released mmap_lock so break loop. Note
2429 * that we drop mmap_lock before all hugepage
2430 * allocations, so if allocation fails, we are
2431 * guaranteed to break here and report the
2432 * correct result back to caller.
2434 goto breakouterloop_mmap_lock;
2435 if (progress >= pages)
2436 goto breakouterloop;
2440 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2441 breakouterloop_mmap_lock:
2443 spin_lock(&khugepaged_mm_lock);
2444 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2446 * Release the current mm_slot if this mm is about to die, or
2447 * if we scanned all vmas of this mm.
2449 if (hpage_collapse_test_exit(mm) || !vma) {
2451 * Make sure that if mm_users is reaching zero while
2452 * khugepaged runs here, khugepaged_exit will find
2453 * mm_slot not pointing to the exiting mm.
2455 if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2456 slot = list_entry(slot->mm_node.next,
2457 struct mm_slot, mm_node);
2458 khugepaged_scan.mm_slot =
2459 mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2460 khugepaged_scan.address = 0;
2462 khugepaged_scan.mm_slot = NULL;
2463 khugepaged_full_scans++;
2466 collect_mm_slot(mm_slot);
2472 static int khugepaged_has_work(void)
2474 return !list_empty(&khugepaged_scan.mm_head) &&
2475 hugepage_flags_enabled();
2478 static int khugepaged_wait_event(void)
2480 return !list_empty(&khugepaged_scan.mm_head) ||
2481 kthread_should_stop();
2484 static void khugepaged_do_scan(struct collapse_control *cc)
2486 unsigned int progress = 0, pass_through_head = 0;
2487 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2489 int result = SCAN_SUCCEED;
2491 lru_add_drain_all();
2496 if (unlikely(kthread_should_stop() || try_to_freeze()))
2499 spin_lock(&khugepaged_mm_lock);
2500 if (!khugepaged_scan.mm_slot)
2501 pass_through_head++;
2502 if (khugepaged_has_work() &&
2503 pass_through_head < 2)
2504 progress += khugepaged_scan_mm_slot(pages - progress,
2508 spin_unlock(&khugepaged_mm_lock);
2510 if (progress >= pages)
2513 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2515 * If fail to allocate the first time, try to sleep for
2516 * a while. When hit again, cancel the scan.
2521 khugepaged_alloc_sleep();
2526 static bool khugepaged_should_wakeup(void)
2528 return kthread_should_stop() ||
2529 time_after_eq(jiffies, khugepaged_sleep_expire);
2532 static void khugepaged_wait_work(void)
2534 if (khugepaged_has_work()) {
2535 const unsigned long scan_sleep_jiffies =
2536 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2538 if (!scan_sleep_jiffies)
2541 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2542 wait_event_freezable_timeout(khugepaged_wait,
2543 khugepaged_should_wakeup(),
2544 scan_sleep_jiffies);
2548 if (hugepage_flags_enabled())
2549 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2552 static int khugepaged(void *none)
2554 struct khugepaged_mm_slot *mm_slot;
2557 set_user_nice(current, MAX_NICE);
2559 while (!kthread_should_stop()) {
2560 khugepaged_do_scan(&khugepaged_collapse_control);
2561 khugepaged_wait_work();
2564 spin_lock(&khugepaged_mm_lock);
2565 mm_slot = khugepaged_scan.mm_slot;
2566 khugepaged_scan.mm_slot = NULL;
2568 collect_mm_slot(mm_slot);
2569 spin_unlock(&khugepaged_mm_lock);
2573 static void set_recommended_min_free_kbytes(void)
2577 unsigned long recommended_min;
2579 if (!hugepage_flags_enabled()) {
2580 calculate_min_free_kbytes();
2584 for_each_populated_zone(zone) {
2586 * We don't need to worry about fragmentation of
2587 * ZONE_MOVABLE since it only has movable pages.
2589 if (zone_idx(zone) > gfp_zone(GFP_USER))
2595 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2596 recommended_min = pageblock_nr_pages * nr_zones * 2;
2599 * Make sure that on average at least two pageblocks are almost free
2600 * of another type, one for a migratetype to fall back to and a
2601 * second to avoid subsequent fallbacks of other types There are 3
2602 * MIGRATE_TYPES we care about.
2604 recommended_min += pageblock_nr_pages * nr_zones *
2605 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2607 /* don't ever allow to reserve more than 5% of the lowmem */
2608 recommended_min = min(recommended_min,
2609 (unsigned long) nr_free_buffer_pages() / 20);
2610 recommended_min <<= (PAGE_SHIFT-10);
2612 if (recommended_min > min_free_kbytes) {
2613 if (user_min_free_kbytes >= 0)
2614 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2615 min_free_kbytes, recommended_min);
2617 min_free_kbytes = recommended_min;
2621 setup_per_zone_wmarks();
2624 int start_stop_khugepaged(void)
2628 mutex_lock(&khugepaged_mutex);
2629 if (hugepage_flags_enabled()) {
2630 if (!khugepaged_thread)
2631 khugepaged_thread = kthread_run(khugepaged, NULL,
2633 if (IS_ERR(khugepaged_thread)) {
2634 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2635 err = PTR_ERR(khugepaged_thread);
2636 khugepaged_thread = NULL;
2640 if (!list_empty(&khugepaged_scan.mm_head))
2641 wake_up_interruptible(&khugepaged_wait);
2642 } else if (khugepaged_thread) {
2643 kthread_stop(khugepaged_thread);
2644 khugepaged_thread = NULL;
2646 set_recommended_min_free_kbytes();
2648 mutex_unlock(&khugepaged_mutex);
2652 void khugepaged_min_free_kbytes_update(void)
2654 mutex_lock(&khugepaged_mutex);
2655 if (hugepage_flags_enabled() && khugepaged_thread)
2656 set_recommended_min_free_kbytes();
2657 mutex_unlock(&khugepaged_mutex);
2660 bool current_is_khugepaged(void)
2662 return kthread_func(current) == khugepaged;
2665 static int madvise_collapse_errno(enum scan_result r)
2668 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2669 * actionable feedback to caller, so they may take an appropriate
2670 * fallback measure depending on the nature of the failure.
2673 case SCAN_ALLOC_HUGE_PAGE_FAIL:
2675 case SCAN_CGROUP_CHARGE_FAIL:
2676 case SCAN_EXCEED_NONE_PTE:
2678 /* Resource temporary unavailable - trying again might succeed */
2679 case SCAN_PAGE_COUNT:
2680 case SCAN_PAGE_LOCK:
2682 case SCAN_DEL_PAGE_LRU:
2683 case SCAN_PAGE_FILLED:
2686 * Other: Trying again likely not to succeed / error intrinsic to
2687 * specified memory range. khugepaged likely won't be able to collapse
2695 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2696 unsigned long start, unsigned long end)
2698 struct collapse_control *cc;
2699 struct mm_struct *mm = vma->vm_mm;
2700 unsigned long hstart, hend, addr;
2701 int thps = 0, last_fail = SCAN_FAIL;
2702 bool mmap_locked = true;
2704 BUG_ON(vma->vm_start > start);
2705 BUG_ON(vma->vm_end < end);
2709 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2712 cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2715 cc->is_khugepaged = false;
2718 lru_add_drain_all();
2720 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2721 hend = end & HPAGE_PMD_MASK;
2723 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2724 int result = SCAN_FAIL;
2730 result = hugepage_vma_revalidate(mm, addr, false, &vma,
2732 if (result != SCAN_SUCCEED) {
2737 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2739 mmap_assert_locked(mm);
2740 memset(cc->node_load, 0, sizeof(cc->node_load));
2741 nodes_clear(cc->alloc_nmask);
2742 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2743 struct file *file = get_file(vma->vm_file);
2744 pgoff_t pgoff = linear_page_index(vma, addr);
2746 mmap_read_unlock(mm);
2747 mmap_locked = false;
2748 result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2752 result = hpage_collapse_scan_pmd(mm, vma, addr,
2756 *prev = NULL; /* Tell caller we dropped mmap_lock */
2761 case SCAN_PMD_MAPPED:
2764 case SCAN_PTE_MAPPED_HUGEPAGE:
2765 BUG_ON(mmap_locked);
2768 result = collapse_pte_mapped_thp(mm, addr, true);
2769 mmap_read_unlock(mm);
2771 /* Whitelisted set of results where continuing OK */
2773 case SCAN_PTE_NON_PRESENT:
2774 case SCAN_PTE_UFFD_WP:
2776 case SCAN_LACK_REFERENCED_PAGE:
2777 case SCAN_PAGE_NULL:
2778 case SCAN_PAGE_COUNT:
2779 case SCAN_PAGE_LOCK:
2780 case SCAN_PAGE_COMPOUND:
2782 case SCAN_DEL_PAGE_LRU:
2787 /* Other error, exit */
2793 /* Caller expects us to hold mmap_lock on return */
2797 mmap_assert_locked(mm);
2801 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2802 : madvise_collapse_errno(last_fail);