1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
24 #include <asm/pgalloc.h>
36 SCAN_EXCEED_SHARED_PTE,
39 SCAN_PTE_MAPPED_HUGEPAGE,
41 SCAN_LACK_REFERENCED_PAGE,
54 SCAN_ALLOC_HUGE_PAGE_FAIL,
55 SCAN_CGROUP_CHARGE_FAIL,
57 SCAN_PAGE_HAS_PRIVATE,
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/huge_memory.h>
63 static struct task_struct *khugepaged_thread __read_mostly;
64 static DEFINE_MUTEX(khugepaged_mutex);
66 /* default scan 8*512 pte (or vmas) every 30 second */
67 static unsigned int khugepaged_pages_to_scan __read_mostly;
68 static unsigned int khugepaged_pages_collapsed;
69 static unsigned int khugepaged_full_scans;
70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
71 /* during fragmentation poll the hugepage allocator once every minute */
72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
73 static unsigned long khugepaged_sleep_expire;
74 static DEFINE_SPINLOCK(khugepaged_mm_lock);
75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
77 * default collapse hugepages if there is at least one pte mapped like
78 * it would have happened if the vma was large enough during page
81 * Note that these are only respected if collapse was initiated by khugepaged.
83 static unsigned int khugepaged_max_ptes_none __read_mostly;
84 static unsigned int khugepaged_max_ptes_swap __read_mostly;
85 static unsigned int khugepaged_max_ptes_shared __read_mostly;
87 #define MM_SLOTS_HASH_BITS 10
88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
90 static struct kmem_cache *mm_slot_cache __read_mostly;
92 #define MAX_PTE_MAPPED_THP 8
94 struct collapse_control {
97 /* Num pages scanned per node */
98 u32 node_load[MAX_NUMNODES];
100 /* nodemask for allocation fallback */
101 nodemask_t alloc_nmask;
105 * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
106 * @slot: hash lookup from mm to mm_slot
107 * @nr_pte_mapped_thp: number of pte mapped THP
108 * @pte_mapped_thp: address array corresponding pte mapped THP
110 struct khugepaged_mm_slot {
113 /* pte-mapped THP in this mm */
114 int nr_pte_mapped_thp;
115 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
119 * struct khugepaged_scan - cursor for scanning
120 * @mm_head: the head of the mm list to scan
121 * @mm_slot: the current mm_slot we are scanning
122 * @address: the next address inside that to be scanned
124 * There is only the one khugepaged_scan instance of this cursor structure.
126 struct khugepaged_scan {
127 struct list_head mm_head;
128 struct khugepaged_mm_slot *mm_slot;
129 unsigned long address;
132 static struct khugepaged_scan khugepaged_scan = {
133 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
138 struct kobj_attribute *attr,
141 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
145 struct kobj_attribute *attr,
146 const char *buf, size_t count)
151 err = kstrtouint(buf, 10, &msecs);
155 khugepaged_scan_sleep_millisecs = msecs;
156 khugepaged_sleep_expire = 0;
157 wake_up_interruptible(&khugepaged_wait);
161 static struct kobj_attribute scan_sleep_millisecs_attr =
162 __ATTR_RW(scan_sleep_millisecs);
164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
165 struct kobj_attribute *attr,
168 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
172 struct kobj_attribute *attr,
173 const char *buf, size_t count)
178 err = kstrtouint(buf, 10, &msecs);
182 khugepaged_alloc_sleep_millisecs = msecs;
183 khugepaged_sleep_expire = 0;
184 wake_up_interruptible(&khugepaged_wait);
188 static struct kobj_attribute alloc_sleep_millisecs_attr =
189 __ATTR_RW(alloc_sleep_millisecs);
191 static ssize_t pages_to_scan_show(struct kobject *kobj,
192 struct kobj_attribute *attr,
195 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
197 static ssize_t pages_to_scan_store(struct kobject *kobj,
198 struct kobj_attribute *attr,
199 const char *buf, size_t count)
204 err = kstrtouint(buf, 10, &pages);
208 khugepaged_pages_to_scan = pages;
212 static struct kobj_attribute pages_to_scan_attr =
213 __ATTR_RW(pages_to_scan);
215 static ssize_t pages_collapsed_show(struct kobject *kobj,
216 struct kobj_attribute *attr,
219 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
221 static struct kobj_attribute pages_collapsed_attr =
222 __ATTR_RO(pages_collapsed);
224 static ssize_t full_scans_show(struct kobject *kobj,
225 struct kobj_attribute *attr,
228 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
230 static struct kobj_attribute full_scans_attr =
231 __ATTR_RO(full_scans);
233 static ssize_t defrag_show(struct kobject *kobj,
234 struct kobj_attribute *attr, char *buf)
236 return single_hugepage_flag_show(kobj, attr, buf,
237 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
239 static ssize_t defrag_store(struct kobject *kobj,
240 struct kobj_attribute *attr,
241 const char *buf, size_t count)
243 return single_hugepage_flag_store(kobj, attr, buf, count,
244 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
246 static struct kobj_attribute khugepaged_defrag_attr =
250 * max_ptes_none controls if khugepaged should collapse hugepages over
251 * any unmapped ptes in turn potentially increasing the memory
252 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
253 * reduce the available free memory in the system as it
254 * runs. Increasing max_ptes_none will instead potentially reduce the
255 * free memory in the system during the khugepaged scan.
257 static ssize_t max_ptes_none_show(struct kobject *kobj,
258 struct kobj_attribute *attr,
261 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
263 static ssize_t max_ptes_none_store(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 const char *buf, size_t count)
268 unsigned long max_ptes_none;
270 err = kstrtoul(buf, 10, &max_ptes_none);
271 if (err || max_ptes_none > HPAGE_PMD_NR - 1)
274 khugepaged_max_ptes_none = max_ptes_none;
278 static struct kobj_attribute khugepaged_max_ptes_none_attr =
279 __ATTR_RW(max_ptes_none);
281 static ssize_t max_ptes_swap_show(struct kobject *kobj,
282 struct kobj_attribute *attr,
285 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
288 static ssize_t max_ptes_swap_store(struct kobject *kobj,
289 struct kobj_attribute *attr,
290 const char *buf, size_t count)
293 unsigned long max_ptes_swap;
295 err = kstrtoul(buf, 10, &max_ptes_swap);
296 if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
299 khugepaged_max_ptes_swap = max_ptes_swap;
304 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
305 __ATTR_RW(max_ptes_swap);
307 static ssize_t max_ptes_shared_show(struct kobject *kobj,
308 struct kobj_attribute *attr,
311 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
314 static ssize_t max_ptes_shared_store(struct kobject *kobj,
315 struct kobj_attribute *attr,
316 const char *buf, size_t count)
319 unsigned long max_ptes_shared;
321 err = kstrtoul(buf, 10, &max_ptes_shared);
322 if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
325 khugepaged_max_ptes_shared = max_ptes_shared;
330 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
331 __ATTR_RW(max_ptes_shared);
333 static struct attribute *khugepaged_attr[] = {
334 &khugepaged_defrag_attr.attr,
335 &khugepaged_max_ptes_none_attr.attr,
336 &khugepaged_max_ptes_swap_attr.attr,
337 &khugepaged_max_ptes_shared_attr.attr,
338 &pages_to_scan_attr.attr,
339 &pages_collapsed_attr.attr,
340 &full_scans_attr.attr,
341 &scan_sleep_millisecs_attr.attr,
342 &alloc_sleep_millisecs_attr.attr,
346 struct attribute_group khugepaged_attr_group = {
347 .attrs = khugepaged_attr,
348 .name = "khugepaged",
350 #endif /* CONFIG_SYSFS */
352 int hugepage_madvise(struct vm_area_struct *vma,
353 unsigned long *vm_flags, int advice)
359 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
360 * can't handle this properly after s390_enable_sie, so we simply
361 * ignore the madvise to prevent qemu from causing a SIGSEGV.
363 if (mm_has_pgste(vma->vm_mm))
366 *vm_flags &= ~VM_NOHUGEPAGE;
367 *vm_flags |= VM_HUGEPAGE;
369 * If the vma become good for khugepaged to scan,
370 * register it here without waiting a page fault that
371 * may not happen any time soon.
373 khugepaged_enter_vma(vma, *vm_flags);
375 case MADV_NOHUGEPAGE:
376 *vm_flags &= ~VM_HUGEPAGE;
377 *vm_flags |= VM_NOHUGEPAGE;
379 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
380 * this vma even if we leave the mm registered in khugepaged if
381 * it got registered before VM_NOHUGEPAGE was set.
389 int __init khugepaged_init(void)
391 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
392 sizeof(struct khugepaged_mm_slot),
393 __alignof__(struct khugepaged_mm_slot),
398 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
399 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
400 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
401 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
406 void __init khugepaged_destroy(void)
408 kmem_cache_destroy(mm_slot_cache);
411 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
413 return atomic_read(&mm->mm_users) == 0;
416 void __khugepaged_enter(struct mm_struct *mm)
418 struct khugepaged_mm_slot *mm_slot;
419 struct mm_slot *slot;
422 mm_slot = mm_slot_alloc(mm_slot_cache);
426 slot = &mm_slot->slot;
428 /* __khugepaged_exit() must not run from under us */
429 VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
430 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
431 mm_slot_free(mm_slot_cache, mm_slot);
435 spin_lock(&khugepaged_mm_lock);
436 mm_slot_insert(mm_slots_hash, mm, slot);
438 * Insert just behind the scanning cursor, to let the area settle
441 wakeup = list_empty(&khugepaged_scan.mm_head);
442 list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
443 spin_unlock(&khugepaged_mm_lock);
447 wake_up_interruptible(&khugepaged_wait);
450 void khugepaged_enter_vma(struct vm_area_struct *vma,
451 unsigned long vm_flags)
453 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
454 hugepage_flags_enabled()) {
455 if (hugepage_vma_check(vma, vm_flags, false, false, true))
456 __khugepaged_enter(vma->vm_mm);
460 void __khugepaged_exit(struct mm_struct *mm)
462 struct khugepaged_mm_slot *mm_slot;
463 struct mm_slot *slot;
466 spin_lock(&khugepaged_mm_lock);
467 slot = mm_slot_lookup(mm_slots_hash, mm);
468 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
469 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
470 hash_del(&slot->hash);
471 list_del(&slot->mm_node);
474 spin_unlock(&khugepaged_mm_lock);
477 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
478 mm_slot_free(mm_slot_cache, mm_slot);
480 } else if (mm_slot) {
482 * This is required to serialize against
483 * hpage_collapse_test_exit() (which is guaranteed to run
484 * under mmap sem read mode). Stop here (after we return all
485 * pagetables will be destroyed) until khugepaged has finished
486 * working on the pagetables under the mmap_lock.
489 mmap_write_unlock(mm);
493 static void release_pte_page(struct page *page)
495 mod_node_page_state(page_pgdat(page),
496 NR_ISOLATED_ANON + page_is_file_lru(page),
499 putback_lru_page(page);
502 static void release_pte_pages(pte_t *pte, pte_t *_pte,
503 struct list_head *compound_pagelist)
505 struct page *page, *tmp;
507 while (--_pte >= pte) {
508 pte_t pteval = *_pte;
510 page = pte_page(pteval);
511 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
513 release_pte_page(page);
516 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
517 list_del(&page->lru);
518 release_pte_page(page);
522 static bool is_refcount_suitable(struct page *page)
524 int expected_refcount;
526 expected_refcount = total_mapcount(page);
527 if (PageSwapCache(page))
528 expected_refcount += compound_nr(page);
530 return page_count(page) == expected_refcount;
533 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
534 unsigned long address,
536 struct collapse_control *cc,
537 struct list_head *compound_pagelist)
539 struct page *page = NULL;
541 int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
542 bool writable = false;
544 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
545 _pte++, address += PAGE_SIZE) {
546 pte_t pteval = *_pte;
547 if (pte_none(pteval) || (pte_present(pteval) &&
548 is_zero_pfn(pte_pfn(pteval)))) {
550 if (!userfaultfd_armed(vma) &&
551 (!cc->is_khugepaged ||
552 none_or_zero <= khugepaged_max_ptes_none)) {
555 result = SCAN_EXCEED_NONE_PTE;
556 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
560 if (!pte_present(pteval)) {
561 result = SCAN_PTE_NON_PRESENT;
564 if (pte_uffd_wp(pteval)) {
565 result = SCAN_PTE_UFFD_WP;
568 page = vm_normal_page(vma, address, pteval);
569 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
570 result = SCAN_PAGE_NULL;
574 VM_BUG_ON_PAGE(!PageAnon(page), page);
576 if (page_mapcount(page) > 1) {
578 if (cc->is_khugepaged &&
579 shared > khugepaged_max_ptes_shared) {
580 result = SCAN_EXCEED_SHARED_PTE;
581 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
586 if (PageCompound(page)) {
588 page = compound_head(page);
591 * Check if we have dealt with the compound page
594 list_for_each_entry(p, compound_pagelist, lru) {
601 * We can do it before isolate_lru_page because the
602 * page can't be freed from under us. NOTE: PG_lock
603 * is needed to serialize against split_huge_page
604 * when invoked from the VM.
606 if (!trylock_page(page)) {
607 result = SCAN_PAGE_LOCK;
612 * Check if the page has any GUP (or other external) pins.
614 * The page table that maps the page has been already unlinked
615 * from the page table tree and this process cannot get
616 * an additional pin on the page.
618 * New pins can come later if the page is shared across fork,
619 * but not from this process. The other process cannot write to
620 * the page, only trigger CoW.
622 if (!is_refcount_suitable(page)) {
624 result = SCAN_PAGE_COUNT;
629 * Isolate the page to avoid collapsing an hugepage
630 * currently in use by the VM.
632 if (isolate_lru_page(page)) {
634 result = SCAN_DEL_PAGE_LRU;
637 mod_node_page_state(page_pgdat(page),
638 NR_ISOLATED_ANON + page_is_file_lru(page),
640 VM_BUG_ON_PAGE(!PageLocked(page), page);
641 VM_BUG_ON_PAGE(PageLRU(page), page);
643 if (PageCompound(page))
644 list_add_tail(&page->lru, compound_pagelist);
647 * If collapse was initiated by khugepaged, check that there is
648 * enough young pte to justify collapsing the page
650 if (cc->is_khugepaged &&
651 (pte_young(pteval) || page_is_young(page) ||
652 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
656 if (pte_write(pteval))
660 if (unlikely(!writable)) {
661 result = SCAN_PAGE_RO;
662 } else if (unlikely(cc->is_khugepaged && !referenced)) {
663 result = SCAN_LACK_REFERENCED_PAGE;
665 result = SCAN_SUCCEED;
666 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
667 referenced, writable, result);
671 release_pte_pages(pte, _pte, compound_pagelist);
672 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
673 referenced, writable, result);
677 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
678 struct vm_area_struct *vma,
679 unsigned long address,
681 struct list_head *compound_pagelist)
683 struct page *src_page, *tmp;
685 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
686 _pte++, page++, address += PAGE_SIZE) {
687 pte_t pteval = *_pte;
689 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
690 clear_user_highpage(page, address);
691 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
692 if (is_zero_pfn(pte_pfn(pteval))) {
694 * ptl mostly unnecessary.
697 ptep_clear(vma->vm_mm, address, _pte);
701 src_page = pte_page(pteval);
702 copy_user_highpage(page, src_page, address, vma);
703 if (!PageCompound(src_page))
704 release_pte_page(src_page);
706 * ptl mostly unnecessary, but preempt has to
707 * be disabled to update the per-cpu stats
708 * inside page_remove_rmap().
711 ptep_clear(vma->vm_mm, address, _pte);
712 page_remove_rmap(src_page, vma, false);
714 free_page_and_swap_cache(src_page);
718 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
719 list_del(&src_page->lru);
720 mod_node_page_state(page_pgdat(src_page),
721 NR_ISOLATED_ANON + page_is_file_lru(src_page),
722 -compound_nr(src_page));
723 unlock_page(src_page);
724 free_swap_cache(src_page);
725 putback_lru_page(src_page);
729 static void khugepaged_alloc_sleep(void)
733 add_wait_queue(&khugepaged_wait, &wait);
734 __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
735 schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
736 remove_wait_queue(&khugepaged_wait, &wait);
739 struct collapse_control khugepaged_collapse_control = {
740 .is_khugepaged = true,
743 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
748 * If node_reclaim_mode is disabled, then no extra effort is made to
749 * allocate memory locally.
751 if (!node_reclaim_enabled())
754 /* If there is a count for this node already, it must be acceptable */
755 if (cc->node_load[nid])
758 for (i = 0; i < MAX_NUMNODES; i++) {
759 if (!cc->node_load[i])
761 if (node_distance(nid, i) > node_reclaim_distance)
767 #define khugepaged_defrag() \
768 (transparent_hugepage_flags & \
769 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
771 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
772 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
774 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
778 static int hpage_collapse_find_target_node(struct collapse_control *cc)
780 int nid, target_node = 0, max_value = 0;
782 /* find first node with max normal pages hit */
783 for (nid = 0; nid < MAX_NUMNODES; nid++)
784 if (cc->node_load[nid] > max_value) {
785 max_value = cc->node_load[nid];
789 for_each_online_node(nid) {
790 if (max_value == cc->node_load[nid])
791 node_set(nid, cc->alloc_nmask);
797 static int hpage_collapse_find_target_node(struct collapse_control *cc)
803 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
806 *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
807 if (unlikely(!*hpage)) {
808 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
812 prep_transhuge_page(*hpage);
813 count_vm_event(THP_COLLAPSE_ALLOC);
818 * If mmap_lock temporarily dropped, revalidate vma
819 * before taking mmap_lock.
820 * Returns enum scan_result value.
823 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
825 struct vm_area_struct **vmap,
826 struct collapse_control *cc)
828 struct vm_area_struct *vma;
830 if (unlikely(hpage_collapse_test_exit(mm)))
831 return SCAN_ANY_PROCESS;
833 *vmap = vma = find_vma(mm, address);
835 return SCAN_VMA_NULL;
837 if (!transhuge_vma_suitable(vma, address))
838 return SCAN_ADDRESS_RANGE;
839 if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
841 return SCAN_VMA_CHECK;
843 * Anon VMA expected, the address may be unmapped then
844 * remapped to file after khugepaged reaquired the mmap_lock.
846 * hugepage_vma_check may return true for qualified file
849 if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
850 return SCAN_PAGE_ANON;
855 * See pmd_trans_unstable() for how the result may change out from
856 * underneath us, even if we hold mmap_lock in read.
858 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
859 unsigned long address,
864 *pmd = mm_find_pmd(mm, address);
866 return SCAN_PMD_NULL;
868 pmde = pmd_read_atomic(*pmd);
870 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
871 /* See comments in pmd_none_or_trans_huge_or_clear_bad() */
875 return SCAN_PMD_NONE;
876 if (!pmd_present(pmde))
877 return SCAN_PMD_NULL;
878 if (pmd_trans_huge(pmde))
879 return SCAN_PMD_MAPPED;
880 if (pmd_devmap(pmde))
881 return SCAN_PMD_NULL;
883 return SCAN_PMD_NULL;
887 static int check_pmd_still_valid(struct mm_struct *mm,
888 unsigned long address,
892 int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
894 if (result != SCAN_SUCCEED)
902 * Bring missing pages in from swap, to complete THP collapse.
903 * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
905 * Called and returns without pte mapped or spinlocks held.
906 * Note that if false is returned, mmap_lock will be released.
909 static int __collapse_huge_page_swapin(struct mm_struct *mm,
910 struct vm_area_struct *vma,
911 unsigned long haddr, pmd_t *pmd,
916 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
918 for (address = haddr; address < end; address += PAGE_SIZE) {
919 struct vm_fault vmf = {
922 .pgoff = linear_page_index(vma, haddr),
923 .flags = FAULT_FLAG_ALLOW_RETRY,
927 vmf.pte = pte_offset_map(pmd, address);
928 vmf.orig_pte = *vmf.pte;
929 if (!is_swap_pte(vmf.orig_pte)) {
933 ret = do_swap_page(&vmf);
936 * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
937 * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
938 * we do not retry here and swap entry will remain in pagetable
939 * resulting in later failure.
941 if (ret & VM_FAULT_RETRY) {
942 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
943 /* Likely, but not guaranteed, that page lock failed */
944 return SCAN_PAGE_LOCK;
946 if (ret & VM_FAULT_ERROR) {
947 mmap_read_unlock(mm);
948 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
954 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
958 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
962 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
963 struct collapse_control *cc)
965 gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
967 int node = hpage_collapse_find_target_node(cc);
969 if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
970 return SCAN_ALLOC_HUGE_PAGE_FAIL;
971 if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp)))
972 return SCAN_CGROUP_CHARGE_FAIL;
973 count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
977 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
978 int referenced, int unmapped,
979 struct collapse_control *cc)
981 LIST_HEAD(compound_pagelist);
986 spinlock_t *pmd_ptl, *pte_ptl;
987 int result = SCAN_FAIL;
988 struct vm_area_struct *vma;
989 struct mmu_notifier_range range;
991 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
994 * Before allocating the hugepage, release the mmap_lock read lock.
995 * The allocation can take potentially a long time if it involves
996 * sync compaction, and we do not need to hold the mmap_lock during
997 * that. We will recheck the vma after taking it again in write mode.
999 mmap_read_unlock(mm);
1001 result = alloc_charge_hpage(&hpage, mm, cc);
1002 if (result != SCAN_SUCCEED)
1006 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1007 if (result != SCAN_SUCCEED) {
1008 mmap_read_unlock(mm);
1012 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1013 if (result != SCAN_SUCCEED) {
1014 mmap_read_unlock(mm);
1020 * __collapse_huge_page_swapin will return with mmap_lock
1021 * released when it fails. So we jump out_nolock directly in
1022 * that case. Continuing to collapse causes inconsistency.
1024 result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1026 if (result != SCAN_SUCCEED)
1030 mmap_read_unlock(mm);
1032 * Prevent all access to pagetables with the exception of
1033 * gup_fast later handled by the ptep_clear_flush and the VM
1034 * handled by the anon_vma lock + PG_lock.
1036 mmap_write_lock(mm);
1037 result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1038 if (result != SCAN_SUCCEED)
1040 /* check if the pmd is still valid */
1041 result = check_pmd_still_valid(mm, address, pmd);
1042 if (result != SCAN_SUCCEED)
1045 anon_vma_lock_write(vma->anon_vma);
1047 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1048 address, address + HPAGE_PMD_SIZE);
1049 mmu_notifier_invalidate_range_start(&range);
1051 pte = pte_offset_map(pmd, address);
1052 pte_ptl = pte_lockptr(mm, pmd);
1054 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1056 * This removes any huge TLB entry from the CPU so we won't allow
1057 * huge and small TLB entries for the same virtual address to
1058 * avoid the risk of CPU bugs in that area.
1060 * Parallel fast GUP is fine since fast GUP will back off when
1061 * it detects PMD is changed.
1063 _pmd = pmdp_collapse_flush(vma, address, pmd);
1064 spin_unlock(pmd_ptl);
1065 mmu_notifier_invalidate_range_end(&range);
1066 tlb_remove_table_sync_one();
1069 result = __collapse_huge_page_isolate(vma, address, pte, cc,
1070 &compound_pagelist);
1071 spin_unlock(pte_ptl);
1073 if (unlikely(result != SCAN_SUCCEED)) {
1076 BUG_ON(!pmd_none(*pmd));
1078 * We can only use set_pmd_at when establishing
1079 * hugepmds and never for establishing regular pmds that
1080 * points to regular pagetables. Use pmd_populate for that
1082 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1083 spin_unlock(pmd_ptl);
1084 anon_vma_unlock_write(vma->anon_vma);
1089 * All pages are isolated and locked so anon_vma rmap
1090 * can't run anymore.
1092 anon_vma_unlock_write(vma->anon_vma);
1094 __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl,
1095 &compound_pagelist);
1098 * spin_lock() below is not the equivalent of smp_wmb(), but
1099 * the smp_wmb() inside __SetPageUptodate() can be reused to
1100 * avoid the copy_huge_page writes to become visible after
1101 * the set_pmd_at() write.
1103 __SetPageUptodate(hpage);
1104 pgtable = pmd_pgtable(_pmd);
1106 _pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1107 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1110 BUG_ON(!pmd_none(*pmd));
1111 page_add_new_anon_rmap(hpage, vma, address);
1112 lru_cache_add_inactive_or_unevictable(hpage, vma);
1113 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1114 set_pmd_at(mm, address, pmd, _pmd);
1115 update_mmu_cache_pmd(vma, address, pmd);
1116 spin_unlock(pmd_ptl);
1120 result = SCAN_SUCCEED;
1122 mmap_write_unlock(mm);
1125 mem_cgroup_uncharge(page_folio(hpage));
1128 trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1132 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1133 struct vm_area_struct *vma,
1134 unsigned long address, bool *mmap_locked,
1135 struct collapse_control *cc)
1139 int result = SCAN_FAIL, referenced = 0;
1140 int none_or_zero = 0, shared = 0;
1141 struct page *page = NULL;
1142 unsigned long _address;
1144 int node = NUMA_NO_NODE, unmapped = 0;
1145 bool writable = false;
1147 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1149 result = find_pmd_or_thp_or_none(mm, address, &pmd);
1150 if (result != SCAN_SUCCEED)
1153 memset(cc->node_load, 0, sizeof(cc->node_load));
1154 nodes_clear(cc->alloc_nmask);
1155 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1156 for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1157 _pte++, _address += PAGE_SIZE) {
1158 pte_t pteval = *_pte;
1159 if (is_swap_pte(pteval)) {
1161 if (!cc->is_khugepaged ||
1162 unmapped <= khugepaged_max_ptes_swap) {
1164 * Always be strict with uffd-wp
1165 * enabled swap entries. Please see
1166 * comment below for pte_uffd_wp().
1168 if (pte_swp_uffd_wp(pteval)) {
1169 result = SCAN_PTE_UFFD_WP;
1174 result = SCAN_EXCEED_SWAP_PTE;
1175 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1179 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1181 if (!userfaultfd_armed(vma) &&
1182 (!cc->is_khugepaged ||
1183 none_or_zero <= khugepaged_max_ptes_none)) {
1186 result = SCAN_EXCEED_NONE_PTE;
1187 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1191 if (pte_uffd_wp(pteval)) {
1193 * Don't collapse the page if any of the small
1194 * PTEs are armed with uffd write protection.
1195 * Here we can also mark the new huge pmd as
1196 * write protected if any of the small ones is
1197 * marked but that could bring unknown
1198 * userfault messages that falls outside of
1199 * the registered range. So, just be simple.
1201 result = SCAN_PTE_UFFD_WP;
1204 if (pte_write(pteval))
1207 page = vm_normal_page(vma, _address, pteval);
1208 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1209 result = SCAN_PAGE_NULL;
1213 if (page_mapcount(page) > 1) {
1215 if (cc->is_khugepaged &&
1216 shared > khugepaged_max_ptes_shared) {
1217 result = SCAN_EXCEED_SHARED_PTE;
1218 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1223 page = compound_head(page);
1226 * Record which node the original page is from and save this
1227 * information to cc->node_load[].
1228 * Khugepaged will allocate hugepage from the node has the max
1231 node = page_to_nid(page);
1232 if (hpage_collapse_scan_abort(node, cc)) {
1233 result = SCAN_SCAN_ABORT;
1236 cc->node_load[node]++;
1237 if (!PageLRU(page)) {
1238 result = SCAN_PAGE_LRU;
1241 if (PageLocked(page)) {
1242 result = SCAN_PAGE_LOCK;
1245 if (!PageAnon(page)) {
1246 result = SCAN_PAGE_ANON;
1251 * Check if the page has any GUP (or other external) pins.
1253 * Here the check is racy it may see total_mapcount > refcount
1255 * For example, one process with one forked child process.
1256 * The parent has the PMD split due to MADV_DONTNEED, then
1257 * the child is trying unmap the whole PMD, but khugepaged
1258 * may be scanning the parent between the child has
1259 * PageDoubleMap flag cleared and dec the mapcount. So
1260 * khugepaged may see total_mapcount > refcount.
1262 * But such case is ephemeral we could always retry collapse
1263 * later. However it may report false positive if the page
1264 * has excessive GUP pins (i.e. 512). Anyway the same check
1265 * will be done again later the risk seems low.
1267 if (!is_refcount_suitable(page)) {
1268 result = SCAN_PAGE_COUNT;
1273 * If collapse was initiated by khugepaged, check that there is
1274 * enough young pte to justify collapsing the page
1276 if (cc->is_khugepaged &&
1277 (pte_young(pteval) || page_is_young(page) ||
1278 PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1283 result = SCAN_PAGE_RO;
1284 } else if (cc->is_khugepaged &&
1286 (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1287 result = SCAN_LACK_REFERENCED_PAGE;
1289 result = SCAN_SUCCEED;
1292 pte_unmap_unlock(pte, ptl);
1293 if (result == SCAN_SUCCEED) {
1294 result = collapse_huge_page(mm, address, referenced,
1296 /* collapse_huge_page will return with the mmap_lock released */
1297 *mmap_locked = false;
1300 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1301 none_or_zero, result, unmapped);
1305 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1307 struct mm_slot *slot = &mm_slot->slot;
1308 struct mm_struct *mm = slot->mm;
1310 lockdep_assert_held(&khugepaged_mm_lock);
1312 if (hpage_collapse_test_exit(mm)) {
1314 hash_del(&slot->hash);
1315 list_del(&slot->mm_node);
1318 * Not strictly needed because the mm exited already.
1320 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1323 /* khugepaged_mm_lock actually not necessary for the below */
1324 mm_slot_free(mm_slot_cache, mm_slot);
1331 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1332 * khugepaged should try to collapse the page table.
1334 * Note that following race exists:
1335 * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A,
1336 * emptying the A's ->pte_mapped_thp[] array.
1337 * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and
1338 * retract_page_tables() finds a VMA in mm_struct A mapping the same extent
1339 * (at virtual address X) and adds an entry (for X) into mm_struct A's
1340 * ->pte-mapped_thp[] array.
1341 * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X,
1342 * sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry
1343 * (for X) into mm_struct A's ->pte-mapped_thp[] array.
1344 * Thus, it's possible the same address is added multiple times for the same
1345 * mm_struct. Should this happen, we'll simply attempt
1346 * collapse_pte_mapped_thp() multiple times for the same address, under the same
1347 * exclusive mmap_lock, and assuming the first call is successful, subsequent
1348 * attempts will return quickly (without grabbing any additional locks) when
1349 * a huge pmd is found in find_pmd_or_thp_or_none(). Since this is a cheap
1350 * check, and since this is a rare occurrence, the cost of preventing this
1351 * "multiple-add" is thought to be more expensive than just handling it, should
1354 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1357 struct khugepaged_mm_slot *mm_slot;
1358 struct mm_slot *slot;
1361 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1363 spin_lock(&khugepaged_mm_lock);
1364 slot = mm_slot_lookup(mm_slots_hash, mm);
1365 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
1366 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) {
1367 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1370 spin_unlock(&khugepaged_mm_lock);
1374 /* hpage must be locked, and mmap_lock must be held in write */
1375 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1376 pmd_t *pmdp, struct page *hpage)
1378 struct vm_fault vmf = {
1385 VM_BUG_ON(!PageTransHuge(hpage));
1386 mmap_assert_write_locked(vma->vm_mm);
1388 if (do_set_pmd(&vmf, hpage))
1392 return SCAN_SUCCEED;
1396 * A note about locking:
1397 * Trying to take the page table spinlocks would be useless here because those
1398 * are only used to synchronize:
1400 * - modifying terminal entries (ones that point to a data page, not to another
1402 * - installing *new* non-terminal entries
1404 * Instead, we need roughly the same kind of protection as free_pgtables() or
1405 * mm_take_all_locks() (but only for a single VMA):
1406 * The mmap lock together with this VMA's rmap locks covers all paths towards
1407 * the page table entries we're messing with here, except for hardware page
1408 * table walks and lockless_pages_from_mm().
1410 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1411 unsigned long addr, pmd_t *pmdp)
1414 struct mmu_notifier_range range;
1416 mmap_assert_write_locked(mm);
1418 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem);
1420 * All anon_vmas attached to the VMA have the same root and are
1421 * therefore locked by the same lock.
1424 lockdep_assert_held_write(&vma->anon_vma->root->rwsem);
1426 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, addr,
1427 addr + HPAGE_PMD_SIZE);
1428 mmu_notifier_invalidate_range_start(&range);
1429 pmd = pmdp_collapse_flush(vma, addr, pmdp);
1430 tlb_remove_table_sync_one();
1431 mmu_notifier_invalidate_range_end(&range);
1433 page_table_check_pte_clear_range(mm, addr, pmd);
1434 pte_free(mm, pmd_pgtable(pmd));
1438 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1441 * @mm: process address space where collapse happens
1442 * @addr: THP collapse address
1443 * @install_pmd: If a huge PMD should be installed
1445 * This function checks whether all the PTEs in the PMD are pointing to the
1446 * right THP. If so, retract the page table so the THP can refault in with
1447 * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1449 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1452 unsigned long haddr = addr & HPAGE_PMD_MASK;
1453 struct vm_area_struct *vma = vma_lookup(mm, haddr);
1455 pte_t *start_pte, *pte;
1458 int count = 0, result = SCAN_FAIL;
1461 mmap_assert_write_locked(mm);
1463 /* Fast check before locking page if already PMD-mapped */
1464 result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1465 if (result == SCAN_PMD_MAPPED)
1468 if (!vma || !vma->vm_file ||
1469 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1470 return SCAN_VMA_CHECK;
1473 * If we are here, we've succeeded in replacing all the native pages
1474 * in the page cache with a single hugepage. If a mm were to fault-in
1475 * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1476 * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1477 * analogously elide sysfs THP settings here.
1479 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1480 return SCAN_VMA_CHECK;
1482 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1483 if (userfaultfd_wp(vma))
1484 return SCAN_PTE_UFFD_WP;
1486 hpage = find_lock_page(vma->vm_file->f_mapping,
1487 linear_page_index(vma, haddr));
1489 return SCAN_PAGE_NULL;
1491 if (!PageHead(hpage)) {
1496 if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1497 result = SCAN_PAGE_COMPOUND;
1506 * In MADV_COLLAPSE path, possible race with khugepaged where
1507 * all pte entries have been removed and pmd cleared. If so,
1508 * skip all the pte checks and just update the pmd mapping.
1510 goto maybe_install_pmd;
1516 * We need to lock the mapping so that from here on, only GUP-fast and
1517 * hardware page walks can access the parts of the page tables that
1518 * we're operating on.
1519 * See collapse_and_free_pmd().
1521 i_mmap_lock_write(vma->vm_file->f_mapping);
1524 * This spinlock should be unnecessary: Nobody else should be accessing
1525 * the page tables under spinlock protection here, only
1526 * lockless_pages_from_mm() and the hardware page walker can access page
1527 * tables while all the high-level locks are held in write mode.
1529 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1532 /* step 1: check all mapped PTEs are to the right huge page */
1533 for (i = 0, addr = haddr, pte = start_pte;
1534 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1537 /* empty pte, skip */
1541 /* page swapped out, abort */
1542 if (!pte_present(*pte)) {
1543 result = SCAN_PTE_NON_PRESENT;
1547 page = vm_normal_page(vma, addr, *pte);
1548 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1551 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1552 * page table, but the new page will not be a subpage of hpage.
1554 if (hpage + i != page)
1559 /* step 2: adjust rmap */
1560 for (i = 0, addr = haddr, pte = start_pte;
1561 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1566 page = vm_normal_page(vma, addr, *pte);
1567 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1569 page_remove_rmap(page, vma, false);
1572 pte_unmap_unlock(start_pte, ptl);
1574 /* step 3: set proper refcount and mm_counters. */
1576 page_ref_sub(hpage, count);
1577 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1580 /* step 4: remove pte entries */
1581 /* we make no change to anon, but protect concurrent anon page lookup */
1583 anon_vma_lock_write(vma->anon_vma);
1585 collapse_and_free_pmd(mm, vma, haddr, pmd);
1588 anon_vma_unlock_write(vma->anon_vma);
1589 i_mmap_unlock_write(vma->vm_file->f_mapping);
1592 /* step 5: install pmd entry */
1593 result = install_pmd
1594 ? set_huge_pmd(vma, haddr, pmd, hpage)
1603 pte_unmap_unlock(start_pte, ptl);
1604 i_mmap_unlock_write(vma->vm_file->f_mapping);
1608 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
1610 struct mm_slot *slot = &mm_slot->slot;
1611 struct mm_struct *mm = slot->mm;
1614 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1617 if (!mmap_write_trylock(mm))
1620 if (unlikely(hpage_collapse_test_exit(mm)))
1623 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1624 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false);
1627 mm_slot->nr_pte_mapped_thp = 0;
1628 mmap_write_unlock(mm);
1631 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff,
1632 struct mm_struct *target_mm,
1633 unsigned long target_addr, struct page *hpage,
1634 struct collapse_control *cc)
1636 struct vm_area_struct *vma;
1637 int target_result = SCAN_FAIL;
1639 i_mmap_lock_write(mapping);
1640 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1641 int result = SCAN_FAIL;
1642 struct mm_struct *mm = NULL;
1643 unsigned long addr = 0;
1645 bool is_target = false;
1648 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1649 * got written to. These VMAs are likely not worth investing
1650 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1653 * Note that vma->anon_vma check is racy: it can be set up after
1654 * the check but before we took mmap_lock by the fault path.
1655 * But page lock would prevent establishing any new ptes of the
1656 * page, so we are safe.
1658 * An alternative would be drop the check, but check that page
1659 * table is clear before calling pmdp_collapse_flush() under
1660 * ptl. It has higher chance to recover THP for the VMA, but
1661 * has higher cost too. It would also probably require locking
1664 if (READ_ONCE(vma->anon_vma)) {
1665 result = SCAN_PAGE_ANON;
1668 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1669 if (addr & ~HPAGE_PMD_MASK ||
1670 vma->vm_end < addr + HPAGE_PMD_SIZE) {
1671 result = SCAN_VMA_CHECK;
1675 is_target = mm == target_mm && addr == target_addr;
1676 result = find_pmd_or_thp_or_none(mm, addr, &pmd);
1677 if (result != SCAN_SUCCEED)
1680 * We need exclusive mmap_lock to retract page table.
1682 * We use trylock due to lock inversion: we need to acquire
1683 * mmap_lock while holding page lock. Fault path does it in
1684 * reverse order. Trylock is a way to avoid deadlock.
1686 * Also, it's not MADV_COLLAPSE's job to collapse other
1687 * mappings - let khugepaged take care of them later.
1689 result = SCAN_PTE_MAPPED_HUGEPAGE;
1690 if ((cc->is_khugepaged || is_target) &&
1691 mmap_write_trylock(mm)) {
1693 * Re-check whether we have an ->anon_vma, because
1694 * collapse_and_free_pmd() requires that either no
1695 * ->anon_vma exists or the anon_vma is locked.
1696 * We already checked ->anon_vma above, but that check
1697 * is racy because ->anon_vma can be populated under the
1698 * mmap lock in read mode.
1700 if (vma->anon_vma) {
1701 result = SCAN_PAGE_ANON;
1705 * When a vma is registered with uffd-wp, we can't
1706 * recycle the pmd pgtable because there can be pte
1707 * markers installed. Skip it only, so the rest mm/vma
1708 * can still have the same file mapped hugely, however
1709 * it'll always mapped in small page size for uffd-wp
1710 * registered ranges.
1712 if (hpage_collapse_test_exit(mm)) {
1713 result = SCAN_ANY_PROCESS;
1716 if (userfaultfd_wp(vma)) {
1717 result = SCAN_PTE_UFFD_WP;
1720 collapse_and_free_pmd(mm, vma, addr, pmd);
1721 if (!cc->is_khugepaged && is_target)
1722 result = set_huge_pmd(vma, addr, pmd, hpage);
1724 result = SCAN_SUCCEED;
1727 mmap_write_unlock(mm);
1731 * Calling context will handle target mm/addr. Otherwise, let
1732 * khugepaged try again later.
1735 khugepaged_add_pte_mapped_thp(mm, addr);
1740 target_result = result;
1742 i_mmap_unlock_write(mapping);
1743 return target_result;
1747 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1749 * @mm: process address space where collapse happens
1750 * @addr: virtual collapse start address
1751 * @file: file that collapse on
1752 * @start: collapse start address
1753 * @cc: collapse context and scratchpad
1755 * Basic scheme is simple, details are more complex:
1756 * - allocate and lock a new huge page;
1757 * - scan page cache replacing old pages with the new one
1758 * + swap/gup in pages if necessary;
1760 * + keep old pages around in case rollback is required;
1761 * - if replacing succeeds:
1764 * + unlock huge page;
1765 * - if replacing failed;
1766 * + put all pages back and unfreeze them;
1767 * + restore gaps in the page cache;
1768 * + unlock and free huge page;
1770 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1771 struct file *file, pgoff_t start,
1772 struct collapse_control *cc)
1774 struct address_space *mapping = file->f_mapping;
1776 pgoff_t index, end = start + HPAGE_PMD_NR;
1777 LIST_HEAD(pagelist);
1778 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1779 int nr_none = 0, result = SCAN_SUCCEED;
1780 bool is_shmem = shmem_file(file);
1783 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1784 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1786 result = alloc_charge_hpage(&hpage, mm, cc);
1787 if (result != SCAN_SUCCEED)
1791 * Ensure we have slots for all the pages in the range. This is
1792 * almost certainly a no-op because most of the pages must be present
1796 xas_create_range(&xas);
1797 if (!xas_error(&xas))
1799 xas_unlock_irq(&xas);
1800 if (!xas_nomem(&xas, GFP_KERNEL)) {
1806 __SetPageLocked(hpage);
1808 __SetPageSwapBacked(hpage);
1809 hpage->index = start;
1810 hpage->mapping = mapping;
1813 * At this point the hpage is locked and not up-to-date.
1814 * It's safe to insert it into the page cache, because nobody would
1815 * be able to map it or use it in another way until we unlock it.
1818 xas_set(&xas, start);
1819 for (index = start; index < end; index++) {
1820 struct page *page = xas_next(&xas);
1822 VM_BUG_ON(index != xas.xa_index);
1826 * Stop if extent has been truncated or
1827 * hole-punched, and is now completely
1830 if (index == start) {
1831 if (!xas_next_entry(&xas, end - 1)) {
1832 result = SCAN_TRUNCATED;
1835 xas_set(&xas, index);
1837 if (!shmem_charge(mapping->host, 1)) {
1841 xas_store(&xas, hpage);
1846 if (xa_is_value(page) || !PageUptodate(page)) {
1847 struct folio *folio;
1849 xas_unlock_irq(&xas);
1850 /* swap in or instantiate fallocated page */
1851 if (shmem_get_folio(mapping->host, index,
1852 &folio, SGP_NOALLOC)) {
1856 page = folio_file_page(folio, index);
1857 } else if (trylock_page(page)) {
1859 xas_unlock_irq(&xas);
1861 result = SCAN_PAGE_LOCK;
1864 } else { /* !is_shmem */
1865 if (!page || xa_is_value(page)) {
1866 xas_unlock_irq(&xas);
1867 page_cache_sync_readahead(mapping, &file->f_ra,
1870 /* drain pagevecs to help isolate_lru_page() */
1872 page = find_lock_page(mapping, index);
1873 if (unlikely(page == NULL)) {
1877 } else if (PageDirty(page)) {
1879 * khugepaged only works on read-only fd,
1880 * so this page is dirty because it hasn't
1881 * been flushed since first write. There
1882 * won't be new dirty pages.
1884 * Trigger async flush here and hope the
1885 * writeback is done when khugepaged
1886 * revisits this page.
1888 * This is a one-off situation. We are not
1889 * forcing writeback in loop.
1891 xas_unlock_irq(&xas);
1892 filemap_flush(mapping);
1895 } else if (PageWriteback(page)) {
1896 xas_unlock_irq(&xas);
1899 } else if (trylock_page(page)) {
1901 xas_unlock_irq(&xas);
1903 result = SCAN_PAGE_LOCK;
1909 * The page must be locked, so we can drop the i_pages lock
1910 * without racing with truncate.
1912 VM_BUG_ON_PAGE(!PageLocked(page), page);
1914 /* make sure the page is up to date */
1915 if (unlikely(!PageUptodate(page))) {
1921 * If file was truncated then extended, or hole-punched, before
1922 * we locked the first page, then a THP might be there already.
1923 * This will be discovered on the first iteration.
1925 if (PageTransCompound(page)) {
1926 struct page *head = compound_head(page);
1928 result = compound_order(head) == HPAGE_PMD_ORDER &&
1929 head->index == start
1930 /* Maybe PMD-mapped */
1931 ? SCAN_PTE_MAPPED_HUGEPAGE
1932 : SCAN_PAGE_COMPOUND;
1936 if (page_mapping(page) != mapping) {
1937 result = SCAN_TRUNCATED;
1941 if (!is_shmem && (PageDirty(page) ||
1942 PageWriteback(page))) {
1944 * khugepaged only works on read-only fd, so this
1945 * page is dirty because it hasn't been flushed
1946 * since first write.
1952 if (isolate_lru_page(page)) {
1953 result = SCAN_DEL_PAGE_LRU;
1957 if (page_has_private(page) &&
1958 !try_to_release_page(page, GFP_KERNEL)) {
1959 result = SCAN_PAGE_HAS_PRIVATE;
1960 putback_lru_page(page);
1964 if (page_mapped(page))
1965 try_to_unmap(page_folio(page),
1966 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1969 xas_set(&xas, index);
1971 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1974 * The page is expected to have page_count() == 3:
1975 * - we hold a pin on it;
1976 * - one reference from page cache;
1977 * - one from isolate_lru_page;
1979 if (!page_ref_freeze(page, 3)) {
1980 result = SCAN_PAGE_COUNT;
1981 xas_unlock_irq(&xas);
1982 putback_lru_page(page);
1987 * Add the page to the list to be able to undo the collapse if
1988 * something go wrong.
1990 list_add_tail(&page->lru, &pagelist);
1992 /* Finally, replace with the new page. */
1993 xas_store(&xas, hpage);
2000 nr = thp_nr_pages(hpage);
2003 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
2005 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
2006 filemap_nr_thps_inc(mapping);
2008 * Paired with smp_mb() in do_dentry_open() to ensure
2009 * i_writecount is up to date and the update to nr_thps is
2010 * visible. Ensures the page cache will be truncated if the
2011 * file is opened writable.
2014 if (inode_is_open_for_write(mapping->host)) {
2016 __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr);
2017 filemap_nr_thps_dec(mapping);
2023 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
2024 /* nr_none is always 0 for non-shmem. */
2025 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
2028 /* Join all the small entries into a single multi-index entry */
2029 xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2030 xas_store(&xas, hpage);
2032 xas_unlock_irq(&xas);
2036 * If collapse is successful, flush must be done now before copying.
2037 * If collapse is unsuccessful, does flush actually need to be done?
2038 * Do it anyway, to clear the state.
2040 try_to_unmap_flush();
2042 if (result == SCAN_SUCCEED) {
2043 struct page *page, *tmp;
2046 * Replacing old pages with new one has succeeded, now we
2047 * need to copy the content and free the old pages.
2050 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2051 while (index < page->index) {
2052 clear_highpage(hpage + (index % HPAGE_PMD_NR));
2055 copy_highpage(hpage + (page->index % HPAGE_PMD_NR),
2057 list_del(&page->lru);
2058 page->mapping = NULL;
2059 page_ref_unfreeze(page, 1);
2060 ClearPageActive(page);
2061 ClearPageUnevictable(page);
2066 while (index < end) {
2067 clear_highpage(hpage + (index % HPAGE_PMD_NR));
2071 SetPageUptodate(hpage);
2072 page_ref_add(hpage, HPAGE_PMD_NR - 1);
2074 set_page_dirty(hpage);
2075 lru_cache_add(hpage);
2078 * Remove pte page tables, so we can re-fault the page as huge.
2080 result = retract_page_tables(mapping, start, mm, addr, hpage,
2087 /* Something went wrong: roll back page cache changes */
2090 mapping->nrpages -= nr_none;
2091 shmem_uncharge(mapping->host, nr_none);
2094 xas_set(&xas, start);
2095 xas_for_each(&xas, page, end - 1) {
2096 page = list_first_entry_or_null(&pagelist,
2098 if (!page || xas.xa_index < page->index) {
2102 /* Put holes back where they were */
2103 xas_store(&xas, NULL);
2107 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2109 /* Unfreeze the page. */
2110 list_del(&page->lru);
2111 page_ref_unfreeze(page, 2);
2112 xas_store(&xas, page);
2114 xas_unlock_irq(&xas);
2116 putback_lru_page(page);
2120 xas_unlock_irq(&xas);
2122 hpage->mapping = NULL;
2128 VM_BUG_ON(!list_empty(&pagelist));
2130 mem_cgroup_uncharge(page_folio(hpage));
2133 /* TODO: tracepoints */
2137 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2138 struct file *file, pgoff_t start,
2139 struct collapse_control *cc)
2141 struct page *page = NULL;
2142 struct address_space *mapping = file->f_mapping;
2143 XA_STATE(xas, &mapping->i_pages, start);
2145 int node = NUMA_NO_NODE;
2146 int result = SCAN_SUCCEED;
2150 memset(cc->node_load, 0, sizeof(cc->node_load));
2151 nodes_clear(cc->alloc_nmask);
2153 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2154 if (xas_retry(&xas, page))
2157 if (xa_is_value(page)) {
2159 if (cc->is_khugepaged &&
2160 swap > khugepaged_max_ptes_swap) {
2161 result = SCAN_EXCEED_SWAP_PTE;
2162 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2169 * TODO: khugepaged should compact smaller compound pages
2170 * into a PMD sized page
2172 if (PageTransCompound(page)) {
2173 struct page *head = compound_head(page);
2175 result = compound_order(head) == HPAGE_PMD_ORDER &&
2176 head->index == start
2177 /* Maybe PMD-mapped */
2178 ? SCAN_PTE_MAPPED_HUGEPAGE
2179 : SCAN_PAGE_COMPOUND;
2181 * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2182 * by the caller won't touch the page cache, and so
2183 * it's safe to skip LRU and refcount checks before
2189 node = page_to_nid(page);
2190 if (hpage_collapse_scan_abort(node, cc)) {
2191 result = SCAN_SCAN_ABORT;
2194 cc->node_load[node]++;
2196 if (!PageLRU(page)) {
2197 result = SCAN_PAGE_LRU;
2201 if (page_count(page) !=
2202 1 + page_mapcount(page) + page_has_private(page)) {
2203 result = SCAN_PAGE_COUNT;
2208 * We probably should check if the page is referenced here, but
2209 * nobody would transfer pte_young() to PageReferenced() for us.
2210 * And rmap walk here is just too costly...
2215 if (need_resched()) {
2222 if (result == SCAN_SUCCEED) {
2223 if (cc->is_khugepaged &&
2224 present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2225 result = SCAN_EXCEED_NONE_PTE;
2226 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2228 result = collapse_file(mm, addr, file, start, cc);
2232 trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2236 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2237 struct file *file, pgoff_t start,
2238 struct collapse_control *cc)
2243 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
2247 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
2254 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2255 struct collapse_control *cc)
2256 __releases(&khugepaged_mm_lock)
2257 __acquires(&khugepaged_mm_lock)
2259 struct vma_iterator vmi;
2260 struct khugepaged_mm_slot *mm_slot;
2261 struct mm_slot *slot;
2262 struct mm_struct *mm;
2263 struct vm_area_struct *vma;
2267 lockdep_assert_held(&khugepaged_mm_lock);
2268 *result = SCAN_FAIL;
2270 if (khugepaged_scan.mm_slot) {
2271 mm_slot = khugepaged_scan.mm_slot;
2272 slot = &mm_slot->slot;
2274 slot = list_entry(khugepaged_scan.mm_head.next,
2275 struct mm_slot, mm_node);
2276 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2277 khugepaged_scan.address = 0;
2278 khugepaged_scan.mm_slot = mm_slot;
2280 spin_unlock(&khugepaged_mm_lock);
2281 khugepaged_collapse_pte_mapped_thps(mm_slot);
2285 * Don't wait for semaphore (to avoid long wait times). Just move to
2286 * the next mm on the list.
2289 if (unlikely(!mmap_read_trylock(mm)))
2290 goto breakouterloop_mmap_lock;
2293 if (unlikely(hpage_collapse_test_exit(mm)))
2294 goto breakouterloop;
2296 vma_iter_init(&vmi, mm, khugepaged_scan.address);
2297 for_each_vma(vmi, vma) {
2298 unsigned long hstart, hend;
2301 if (unlikely(hpage_collapse_test_exit(mm))) {
2305 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2310 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2311 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2312 if (khugepaged_scan.address > hend)
2314 if (khugepaged_scan.address < hstart)
2315 khugepaged_scan.address = hstart;
2316 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2318 while (khugepaged_scan.address < hend) {
2319 bool mmap_locked = true;
2322 if (unlikely(hpage_collapse_test_exit(mm)))
2323 goto breakouterloop;
2325 VM_BUG_ON(khugepaged_scan.address < hstart ||
2326 khugepaged_scan.address + HPAGE_PMD_SIZE >
2328 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2329 struct file *file = get_file(vma->vm_file);
2330 pgoff_t pgoff = linear_page_index(vma,
2331 khugepaged_scan.address);
2333 mmap_read_unlock(mm);
2334 *result = hpage_collapse_scan_file(mm,
2335 khugepaged_scan.address,
2337 mmap_locked = false;
2340 *result = hpage_collapse_scan_pmd(mm, vma,
2341 khugepaged_scan.address,
2346 case SCAN_PTE_MAPPED_HUGEPAGE: {
2349 *result = find_pmd_or_thp_or_none(mm,
2350 khugepaged_scan.address,
2352 if (*result != SCAN_SUCCEED)
2354 if (!khugepaged_add_pte_mapped_thp(mm,
2355 khugepaged_scan.address))
2359 ++khugepaged_pages_collapsed;
2365 /* move to next address */
2366 khugepaged_scan.address += HPAGE_PMD_SIZE;
2367 progress += HPAGE_PMD_NR;
2370 * We released mmap_lock so break loop. Note
2371 * that we drop mmap_lock before all hugepage
2372 * allocations, so if allocation fails, we are
2373 * guaranteed to break here and report the
2374 * correct result back to caller.
2376 goto breakouterloop_mmap_lock;
2377 if (progress >= pages)
2378 goto breakouterloop;
2382 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2383 breakouterloop_mmap_lock:
2385 spin_lock(&khugepaged_mm_lock);
2386 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2388 * Release the current mm_slot if this mm is about to die, or
2389 * if we scanned all vmas of this mm.
2391 if (hpage_collapse_test_exit(mm) || !vma) {
2393 * Make sure that if mm_users is reaching zero while
2394 * khugepaged runs here, khugepaged_exit will find
2395 * mm_slot not pointing to the exiting mm.
2397 if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2398 slot = list_entry(slot->mm_node.next,
2399 struct mm_slot, mm_node);
2400 khugepaged_scan.mm_slot =
2401 mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2402 khugepaged_scan.address = 0;
2404 khugepaged_scan.mm_slot = NULL;
2405 khugepaged_full_scans++;
2408 collect_mm_slot(mm_slot);
2414 static int khugepaged_has_work(void)
2416 return !list_empty(&khugepaged_scan.mm_head) &&
2417 hugepage_flags_enabled();
2420 static int khugepaged_wait_event(void)
2422 return !list_empty(&khugepaged_scan.mm_head) ||
2423 kthread_should_stop();
2426 static void khugepaged_do_scan(struct collapse_control *cc)
2428 unsigned int progress = 0, pass_through_head = 0;
2429 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2431 int result = SCAN_SUCCEED;
2433 lru_add_drain_all();
2438 if (unlikely(kthread_should_stop() || try_to_freeze()))
2441 spin_lock(&khugepaged_mm_lock);
2442 if (!khugepaged_scan.mm_slot)
2443 pass_through_head++;
2444 if (khugepaged_has_work() &&
2445 pass_through_head < 2)
2446 progress += khugepaged_scan_mm_slot(pages - progress,
2450 spin_unlock(&khugepaged_mm_lock);
2452 if (progress >= pages)
2455 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2457 * If fail to allocate the first time, try to sleep for
2458 * a while. When hit again, cancel the scan.
2463 khugepaged_alloc_sleep();
2468 static bool khugepaged_should_wakeup(void)
2470 return kthread_should_stop() ||
2471 time_after_eq(jiffies, khugepaged_sleep_expire);
2474 static void khugepaged_wait_work(void)
2476 if (khugepaged_has_work()) {
2477 const unsigned long scan_sleep_jiffies =
2478 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2480 if (!scan_sleep_jiffies)
2483 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2484 wait_event_freezable_timeout(khugepaged_wait,
2485 khugepaged_should_wakeup(),
2486 scan_sleep_jiffies);
2490 if (hugepage_flags_enabled())
2491 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2494 static int khugepaged(void *none)
2496 struct khugepaged_mm_slot *mm_slot;
2499 set_user_nice(current, MAX_NICE);
2501 while (!kthread_should_stop()) {
2502 khugepaged_do_scan(&khugepaged_collapse_control);
2503 khugepaged_wait_work();
2506 spin_lock(&khugepaged_mm_lock);
2507 mm_slot = khugepaged_scan.mm_slot;
2508 khugepaged_scan.mm_slot = NULL;
2510 collect_mm_slot(mm_slot);
2511 spin_unlock(&khugepaged_mm_lock);
2515 static void set_recommended_min_free_kbytes(void)
2519 unsigned long recommended_min;
2521 if (!hugepage_flags_enabled()) {
2522 calculate_min_free_kbytes();
2526 for_each_populated_zone(zone) {
2528 * We don't need to worry about fragmentation of
2529 * ZONE_MOVABLE since it only has movable pages.
2531 if (zone_idx(zone) > gfp_zone(GFP_USER))
2537 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2538 recommended_min = pageblock_nr_pages * nr_zones * 2;
2541 * Make sure that on average at least two pageblocks are almost free
2542 * of another type, one for a migratetype to fall back to and a
2543 * second to avoid subsequent fallbacks of other types There are 3
2544 * MIGRATE_TYPES we care about.
2546 recommended_min += pageblock_nr_pages * nr_zones *
2547 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2549 /* don't ever allow to reserve more than 5% of the lowmem */
2550 recommended_min = min(recommended_min,
2551 (unsigned long) nr_free_buffer_pages() / 20);
2552 recommended_min <<= (PAGE_SHIFT-10);
2554 if (recommended_min > min_free_kbytes) {
2555 if (user_min_free_kbytes >= 0)
2556 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2557 min_free_kbytes, recommended_min);
2559 min_free_kbytes = recommended_min;
2563 setup_per_zone_wmarks();
2566 int start_stop_khugepaged(void)
2570 mutex_lock(&khugepaged_mutex);
2571 if (hugepage_flags_enabled()) {
2572 if (!khugepaged_thread)
2573 khugepaged_thread = kthread_run(khugepaged, NULL,
2575 if (IS_ERR(khugepaged_thread)) {
2576 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2577 err = PTR_ERR(khugepaged_thread);
2578 khugepaged_thread = NULL;
2582 if (!list_empty(&khugepaged_scan.mm_head))
2583 wake_up_interruptible(&khugepaged_wait);
2584 } else if (khugepaged_thread) {
2585 kthread_stop(khugepaged_thread);
2586 khugepaged_thread = NULL;
2588 set_recommended_min_free_kbytes();
2590 mutex_unlock(&khugepaged_mutex);
2594 void khugepaged_min_free_kbytes_update(void)
2596 mutex_lock(&khugepaged_mutex);
2597 if (hugepage_flags_enabled() && khugepaged_thread)
2598 set_recommended_min_free_kbytes();
2599 mutex_unlock(&khugepaged_mutex);
2602 static int madvise_collapse_errno(enum scan_result r)
2605 * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2606 * actionable feedback to caller, so they may take an appropriate
2607 * fallback measure depending on the nature of the failure.
2610 case SCAN_ALLOC_HUGE_PAGE_FAIL:
2612 case SCAN_CGROUP_CHARGE_FAIL:
2614 /* Resource temporary unavailable - trying again might succeed */
2615 case SCAN_PAGE_COUNT:
2616 case SCAN_PAGE_LOCK:
2618 case SCAN_DEL_PAGE_LRU:
2621 * Other: Trying again likely not to succeed / error intrinsic to
2622 * specified memory range. khugepaged likely won't be able to collapse
2630 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2631 unsigned long start, unsigned long end)
2633 struct collapse_control *cc;
2634 struct mm_struct *mm = vma->vm_mm;
2635 unsigned long hstart, hend, addr;
2636 int thps = 0, last_fail = SCAN_FAIL;
2637 bool mmap_locked = true;
2639 BUG_ON(vma->vm_start > start);
2640 BUG_ON(vma->vm_end < end);
2644 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2647 cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2650 cc->is_khugepaged = false;
2653 lru_add_drain_all();
2655 hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2656 hend = end & HPAGE_PMD_MASK;
2658 for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2659 int result = SCAN_FAIL;
2665 result = hugepage_vma_revalidate(mm, addr, false, &vma,
2667 if (result != SCAN_SUCCEED) {
2672 hend = min(hend, vma->vm_end & HPAGE_PMD_MASK);
2674 mmap_assert_locked(mm);
2675 memset(cc->node_load, 0, sizeof(cc->node_load));
2676 nodes_clear(cc->alloc_nmask);
2677 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2678 struct file *file = get_file(vma->vm_file);
2679 pgoff_t pgoff = linear_page_index(vma, addr);
2681 mmap_read_unlock(mm);
2682 mmap_locked = false;
2683 result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2687 result = hpage_collapse_scan_pmd(mm, vma, addr,
2691 *prev = NULL; /* Tell caller we dropped mmap_lock */
2696 case SCAN_PMD_MAPPED:
2699 case SCAN_PTE_MAPPED_HUGEPAGE:
2700 BUG_ON(mmap_locked);
2702 mmap_write_lock(mm);
2703 result = collapse_pte_mapped_thp(mm, addr, true);
2704 mmap_write_unlock(mm);
2706 /* Whitelisted set of results where continuing OK */
2708 case SCAN_PTE_NON_PRESENT:
2709 case SCAN_PTE_UFFD_WP:
2711 case SCAN_LACK_REFERENCED_PAGE:
2712 case SCAN_PAGE_NULL:
2713 case SCAN_PAGE_COUNT:
2714 case SCAN_PAGE_LOCK:
2715 case SCAN_PAGE_COMPOUND:
2717 case SCAN_DEL_PAGE_LRU:
2722 /* Other error, exit */
2728 /* Caller expects us to hold mmap_lock on return */
2732 mmap_assert_locked(mm);
2736 return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2737 : madvise_collapse_errno(last_fail);