packaging: Upgrade build required openssl version from 1.1 to 3
[platform/kernel/linux-rpi.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_EXCEED_SWAP_PTE,
32         SCAN_EXCEED_SHARED_PTE,
33         SCAN_PTE_NON_PRESENT,
34         SCAN_PTE_UFFD_WP,
35         SCAN_PAGE_RO,
36         SCAN_LACK_REFERENCED_PAGE,
37         SCAN_PAGE_NULL,
38         SCAN_SCAN_ABORT,
39         SCAN_PAGE_COUNT,
40         SCAN_PAGE_LRU,
41         SCAN_PAGE_LOCK,
42         SCAN_PAGE_ANON,
43         SCAN_PAGE_COMPOUND,
44         SCAN_ANY_PROCESS,
45         SCAN_VMA_NULL,
46         SCAN_VMA_CHECK,
47         SCAN_ADDRESS_RANGE,
48         SCAN_SWAP_CACHE_PAGE,
49         SCAN_DEL_PAGE_LRU,
50         SCAN_ALLOC_HUGE_PAGE_FAIL,
51         SCAN_CGROUP_CHARGE_FAIL,
52         SCAN_TRUNCATED,
53         SCAN_PAGE_HAS_PRIVATE,
54 };
55
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
58
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
61
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
72 /*
73  * default collapse hugepages if there is at least one pte mapped like
74  * it would have happened if the vma was large enough during page
75  * fault.
76  */
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
80
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
83
84 static struct kmem_cache *mm_slot_cache __read_mostly;
85
86 #define MAX_PTE_MAPPED_THP 8
87
88 /**
89  * struct mm_slot - hash lookup from mm to mm_slot
90  * @hash: hash collision list
91  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92  * @mm: the mm that this information is valid for
93  * @nr_pte_mapped_thp: number of pte mapped THP
94  * @pte_mapped_thp: address array corresponding pte mapped THP
95  */
96 struct mm_slot {
97         struct hlist_node hash;
98         struct list_head mm_node;
99         struct mm_struct *mm;
100
101         /* pte-mapped THP in this mm */
102         int nr_pte_mapped_thp;
103         unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
104 };
105
106 /**
107  * struct khugepaged_scan - cursor for scanning
108  * @mm_head: the head of the mm list to scan
109  * @mm_slot: the current mm_slot we are scanning
110  * @address: the next address inside that to be scanned
111  *
112  * There is only the one khugepaged_scan instance of this cursor structure.
113  */
114 struct khugepaged_scan {
115         struct list_head mm_head;
116         struct mm_slot *mm_slot;
117         unsigned long address;
118 };
119
120 static struct khugepaged_scan khugepaged_scan = {
121         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
122 };
123
124 #ifdef CONFIG_SYSFS
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126                                          struct kobj_attribute *attr,
127                                          char *buf)
128 {
129         return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
130 }
131
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133                                           struct kobj_attribute *attr,
134                                           const char *buf, size_t count)
135 {
136         unsigned int msecs;
137         int err;
138
139         err = kstrtouint(buf, 10, &msecs);
140         if (err)
141                 return -EINVAL;
142
143         khugepaged_scan_sleep_millisecs = msecs;
144         khugepaged_sleep_expire = 0;
145         wake_up_interruptible(&khugepaged_wait);
146
147         return count;
148 }
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151                scan_sleep_millisecs_store);
152
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154                                           struct kobj_attribute *attr,
155                                           char *buf)
156 {
157         return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
158 }
159
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161                                            struct kobj_attribute *attr,
162                                            const char *buf, size_t count)
163 {
164         unsigned int msecs;
165         int err;
166
167         err = kstrtouint(buf, 10, &msecs);
168         if (err)
169                 return -EINVAL;
170
171         khugepaged_alloc_sleep_millisecs = msecs;
172         khugepaged_sleep_expire = 0;
173         wake_up_interruptible(&khugepaged_wait);
174
175         return count;
176 }
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179                alloc_sleep_millisecs_store);
180
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182                                   struct kobj_attribute *attr,
183                                   char *buf)
184 {
185         return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
186 }
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188                                    struct kobj_attribute *attr,
189                                    const char *buf, size_t count)
190 {
191         unsigned int pages;
192         int err;
193
194         err = kstrtouint(buf, 10, &pages);
195         if (err || !pages)
196                 return -EINVAL;
197
198         khugepaged_pages_to_scan = pages;
199
200         return count;
201 }
202 static struct kobj_attribute pages_to_scan_attr =
203         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
204                pages_to_scan_store);
205
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207                                     struct kobj_attribute *attr,
208                                     char *buf)
209 {
210         return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
211 }
212 static struct kobj_attribute pages_collapsed_attr =
213         __ATTR_RO(pages_collapsed);
214
215 static ssize_t full_scans_show(struct kobject *kobj,
216                                struct kobj_attribute *attr,
217                                char *buf)
218 {
219         return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
220 }
221 static struct kobj_attribute full_scans_attr =
222         __ATTR_RO(full_scans);
223
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225                                       struct kobj_attribute *attr, char *buf)
226 {
227         return single_hugepage_flag_show(kobj, attr, buf,
228                                          TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 }
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231                                        struct kobj_attribute *attr,
232                                        const char *buf, size_t count)
233 {
234         return single_hugepage_flag_store(kobj, attr, buf, count,
235                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
236 }
237 static struct kobj_attribute khugepaged_defrag_attr =
238         __ATTR(defrag, 0644, khugepaged_defrag_show,
239                khugepaged_defrag_store);
240
241 /*
242  * max_ptes_none controls if khugepaged should collapse hugepages over
243  * any unmapped ptes in turn potentially increasing the memory
244  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245  * reduce the available free memory in the system as it
246  * runs. Increasing max_ptes_none will instead potentially reduce the
247  * free memory in the system during the khugepaged scan.
248  */
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250                                              struct kobj_attribute *attr,
251                                              char *buf)
252 {
253         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
254 }
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256                                               struct kobj_attribute *attr,
257                                               const char *buf, size_t count)
258 {
259         int err;
260         unsigned long max_ptes_none;
261
262         err = kstrtoul(buf, 10, &max_ptes_none);
263         if (err || max_ptes_none > HPAGE_PMD_NR-1)
264                 return -EINVAL;
265
266         khugepaged_max_ptes_none = max_ptes_none;
267
268         return count;
269 }
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272                khugepaged_max_ptes_none_store);
273
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275                                              struct kobj_attribute *attr,
276                                              char *buf)
277 {
278         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
279 }
280
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282                                               struct kobj_attribute *attr,
283                                               const char *buf, size_t count)
284 {
285         int err;
286         unsigned long max_ptes_swap;
287
288         err  = kstrtoul(buf, 10, &max_ptes_swap);
289         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
290                 return -EINVAL;
291
292         khugepaged_max_ptes_swap = max_ptes_swap;
293
294         return count;
295 }
296
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299                khugepaged_max_ptes_swap_store);
300
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302                                                struct kobj_attribute *attr,
303                                                char *buf)
304 {
305         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
306 }
307
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309                                               struct kobj_attribute *attr,
310                                               const char *buf, size_t count)
311 {
312         int err;
313         unsigned long max_ptes_shared;
314
315         err  = kstrtoul(buf, 10, &max_ptes_shared);
316         if (err || max_ptes_shared > HPAGE_PMD_NR-1)
317                 return -EINVAL;
318
319         khugepaged_max_ptes_shared = max_ptes_shared;
320
321         return count;
322 }
323
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325         __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326                khugepaged_max_ptes_shared_store);
327
328 static struct attribute *khugepaged_attr[] = {
329         &khugepaged_defrag_attr.attr,
330         &khugepaged_max_ptes_none_attr.attr,
331         &khugepaged_max_ptes_swap_attr.attr,
332         &khugepaged_max_ptes_shared_attr.attr,
333         &pages_to_scan_attr.attr,
334         &pages_collapsed_attr.attr,
335         &full_scans_attr.attr,
336         &scan_sleep_millisecs_attr.attr,
337         &alloc_sleep_millisecs_attr.attr,
338         NULL,
339 };
340
341 struct attribute_group khugepaged_attr_group = {
342         .attrs = khugepaged_attr,
343         .name = "khugepaged",
344 };
345 #endif /* CONFIG_SYSFS */
346
347 int hugepage_madvise(struct vm_area_struct *vma,
348                      unsigned long *vm_flags, int advice)
349 {
350         switch (advice) {
351         case MADV_HUGEPAGE:
352 #ifdef CONFIG_S390
353                 /*
354                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355                  * can't handle this properly after s390_enable_sie, so we simply
356                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
357                  */
358                 if (mm_has_pgste(vma->vm_mm))
359                         return 0;
360 #endif
361                 *vm_flags &= ~VM_NOHUGEPAGE;
362                 *vm_flags |= VM_HUGEPAGE;
363                 /*
364                  * If the vma become good for khugepaged to scan,
365                  * register it here without waiting a page fault that
366                  * may not happen any time soon.
367                  */
368                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369                                 khugepaged_enter_vma_merge(vma, *vm_flags))
370                         return -ENOMEM;
371                 break;
372         case MADV_NOHUGEPAGE:
373                 *vm_flags &= ~VM_HUGEPAGE;
374                 *vm_flags |= VM_NOHUGEPAGE;
375                 /*
376                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377                  * this vma even if we leave the mm registered in khugepaged if
378                  * it got registered before VM_NOHUGEPAGE was set.
379                  */
380                 break;
381         }
382
383         return 0;
384 }
385
386 int __init khugepaged_init(void)
387 {
388         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389                                           sizeof(struct mm_slot),
390                                           __alignof__(struct mm_slot), 0, NULL);
391         if (!mm_slot_cache)
392                 return -ENOMEM;
393
394         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397         khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
398
399         return 0;
400 }
401
402 void __init khugepaged_destroy(void)
403 {
404         kmem_cache_destroy(mm_slot_cache);
405 }
406
407 static inline struct mm_slot *alloc_mm_slot(void)
408 {
409         if (!mm_slot_cache)     /* initialization failed */
410                 return NULL;
411         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 }
413
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
415 {
416         kmem_cache_free(mm_slot_cache, mm_slot);
417 }
418
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
420 {
421         struct mm_slot *mm_slot;
422
423         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424                 if (mm == mm_slot->mm)
425                         return mm_slot;
426
427         return NULL;
428 }
429
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431                                     struct mm_slot *mm_slot)
432 {
433         mm_slot->mm = mm;
434         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 }
436
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
438 {
439         return atomic_read(&mm->mm_users) == 0;
440 }
441
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443                                unsigned long vm_flags)
444 {
445         if (!transhuge_vma_enabled(vma, vm_flags))
446                 return false;
447
448         if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
449                                 vma->vm_pgoff, HPAGE_PMD_NR))
450                 return false;
451
452         /* Enabled via shmem mount options or sysfs settings. */
453         if (shmem_file(vma->vm_file))
454                 return shmem_huge_enabled(vma);
455
456         /* THP settings require madvise. */
457         if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
458                 return false;
459
460         /* Only regular file is valid */
461         if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
462             (vm_flags & VM_EXEC)) {
463                 struct inode *inode = vma->vm_file->f_inode;
464
465                 return !inode_is_open_for_write(inode) &&
466                         S_ISREG(inode->i_mode);
467         }
468
469         if (!vma->anon_vma || vma->vm_ops)
470                 return false;
471         if (vma_is_temporary_stack(vma))
472                 return false;
473         return !(vm_flags & VM_NO_KHUGEPAGED);
474 }
475
476 int __khugepaged_enter(struct mm_struct *mm)
477 {
478         struct mm_slot *mm_slot;
479         int wakeup;
480
481         mm_slot = alloc_mm_slot();
482         if (!mm_slot)
483                 return -ENOMEM;
484
485         /* __khugepaged_exit() must not run from under us */
486         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
487         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
488                 free_mm_slot(mm_slot);
489                 return 0;
490         }
491
492         spin_lock(&khugepaged_mm_lock);
493         insert_to_mm_slots_hash(mm, mm_slot);
494         /*
495          * Insert just behind the scanning cursor, to let the area settle
496          * down a little.
497          */
498         wakeup = list_empty(&khugepaged_scan.mm_head);
499         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
500         spin_unlock(&khugepaged_mm_lock);
501
502         mmgrab(mm);
503         if (wakeup)
504                 wake_up_interruptible(&khugepaged_wait);
505
506         return 0;
507 }
508
509 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
510                                unsigned long vm_flags)
511 {
512         unsigned long hstart, hend;
513
514         /*
515          * khugepaged only supports read-only files for non-shmem files.
516          * khugepaged does not yet work on special mappings. And
517          * file-private shmem THP is not supported.
518          */
519         if (!hugepage_vma_check(vma, vm_flags))
520                 return 0;
521
522         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
523         hend = vma->vm_end & HPAGE_PMD_MASK;
524         if (hstart < hend)
525                 return khugepaged_enter(vma, vm_flags);
526         return 0;
527 }
528
529 void __khugepaged_exit(struct mm_struct *mm)
530 {
531         struct mm_slot *mm_slot;
532         int free = 0;
533
534         spin_lock(&khugepaged_mm_lock);
535         mm_slot = get_mm_slot(mm);
536         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
537                 hash_del(&mm_slot->hash);
538                 list_del(&mm_slot->mm_node);
539                 free = 1;
540         }
541         spin_unlock(&khugepaged_mm_lock);
542
543         if (free) {
544                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
545                 free_mm_slot(mm_slot);
546                 mmdrop(mm);
547         } else if (mm_slot) {
548                 /*
549                  * This is required to serialize against
550                  * khugepaged_test_exit() (which is guaranteed to run
551                  * under mmap sem read mode). Stop here (after we
552                  * return all pagetables will be destroyed) until
553                  * khugepaged has finished working on the pagetables
554                  * under the mmap_lock.
555                  */
556                 mmap_write_lock(mm);
557                 mmap_write_unlock(mm);
558         }
559 }
560
561 static void release_pte_page(struct page *page)
562 {
563         mod_node_page_state(page_pgdat(page),
564                         NR_ISOLATED_ANON + page_is_file_lru(page),
565                         -compound_nr(page));
566         unlock_page(page);
567         putback_lru_page(page);
568 }
569
570 static void release_pte_pages(pte_t *pte, pte_t *_pte,
571                 struct list_head *compound_pagelist)
572 {
573         struct page *page, *tmp;
574
575         while (--_pte >= pte) {
576                 pte_t pteval = *_pte;
577
578                 page = pte_page(pteval);
579                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
580                                 !PageCompound(page))
581                         release_pte_page(page);
582         }
583
584         list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
585                 list_del(&page->lru);
586                 release_pte_page(page);
587         }
588 }
589
590 static bool is_refcount_suitable(struct page *page)
591 {
592         int expected_refcount;
593
594         expected_refcount = total_mapcount(page);
595         if (PageSwapCache(page))
596                 expected_refcount += compound_nr(page);
597
598         return page_count(page) == expected_refcount;
599 }
600
601 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
602                                         unsigned long address,
603                                         pte_t *pte,
604                                         struct list_head *compound_pagelist)
605 {
606         struct page *page = NULL;
607         pte_t *_pte;
608         int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
609         bool writable = false;
610
611         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
612              _pte++, address += PAGE_SIZE) {
613                 pte_t pteval = *_pte;
614                 if (pte_none(pteval) || (pte_present(pteval) &&
615                                 is_zero_pfn(pte_pfn(pteval)))) {
616                         if (!userfaultfd_armed(vma) &&
617                             ++none_or_zero <= khugepaged_max_ptes_none) {
618                                 continue;
619                         } else {
620                                 result = SCAN_EXCEED_NONE_PTE;
621                                 goto out;
622                         }
623                 }
624                 if (!pte_present(pteval)) {
625                         result = SCAN_PTE_NON_PRESENT;
626                         goto out;
627                 }
628                 page = vm_normal_page(vma, address, pteval);
629                 if (unlikely(!page)) {
630                         result = SCAN_PAGE_NULL;
631                         goto out;
632                 }
633
634                 VM_BUG_ON_PAGE(!PageAnon(page), page);
635
636                 if (page_mapcount(page) > 1 &&
637                                 ++shared > khugepaged_max_ptes_shared) {
638                         result = SCAN_EXCEED_SHARED_PTE;
639                         goto out;
640                 }
641
642                 if (PageCompound(page)) {
643                         struct page *p;
644                         page = compound_head(page);
645
646                         /*
647                          * Check if we have dealt with the compound page
648                          * already
649                          */
650                         list_for_each_entry(p, compound_pagelist, lru) {
651                                 if (page == p)
652                                         goto next;
653                         }
654                 }
655
656                 /*
657                  * We can do it before isolate_lru_page because the
658                  * page can't be freed from under us. NOTE: PG_lock
659                  * is needed to serialize against split_huge_page
660                  * when invoked from the VM.
661                  */
662                 if (!trylock_page(page)) {
663                         result = SCAN_PAGE_LOCK;
664                         goto out;
665                 }
666
667                 /*
668                  * Check if the page has any GUP (or other external) pins.
669                  *
670                  * The page table that maps the page has been already unlinked
671                  * from the page table tree and this process cannot get
672                  * an additional pin on the page.
673                  *
674                  * New pins can come later if the page is shared across fork,
675                  * but not from this process. The other process cannot write to
676                  * the page, only trigger CoW.
677                  */
678                 if (!is_refcount_suitable(page)) {
679                         unlock_page(page);
680                         result = SCAN_PAGE_COUNT;
681                         goto out;
682                 }
683                 if (!pte_write(pteval) && PageSwapCache(page) &&
684                                 !reuse_swap_page(page, NULL)) {
685                         /*
686                          * Page is in the swap cache and cannot be re-used.
687                          * It cannot be collapsed into a THP.
688                          */
689                         unlock_page(page);
690                         result = SCAN_SWAP_CACHE_PAGE;
691                         goto out;
692                 }
693
694                 /*
695                  * Isolate the page to avoid collapsing an hugepage
696                  * currently in use by the VM.
697                  */
698                 if (isolate_lru_page(page)) {
699                         unlock_page(page);
700                         result = SCAN_DEL_PAGE_LRU;
701                         goto out;
702                 }
703                 mod_node_page_state(page_pgdat(page),
704                                 NR_ISOLATED_ANON + page_is_file_lru(page),
705                                 compound_nr(page));
706                 VM_BUG_ON_PAGE(!PageLocked(page), page);
707                 VM_BUG_ON_PAGE(PageLRU(page), page);
708
709                 if (PageCompound(page))
710                         list_add_tail(&page->lru, compound_pagelist);
711 next:
712                 /* There should be enough young pte to collapse the page */
713                 if (pte_young(pteval) ||
714                     page_is_young(page) || PageReferenced(page) ||
715                     mmu_notifier_test_young(vma->vm_mm, address))
716                         referenced++;
717
718                 if (pte_write(pteval))
719                         writable = true;
720         }
721
722         if (unlikely(!writable)) {
723                 result = SCAN_PAGE_RO;
724         } else if (unlikely(!referenced)) {
725                 result = SCAN_LACK_REFERENCED_PAGE;
726         } else {
727                 result = SCAN_SUCCEED;
728                 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
729                                                     referenced, writable, result);
730                 return 1;
731         }
732 out:
733         release_pte_pages(pte, _pte, compound_pagelist);
734         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
735                                             referenced, writable, result);
736         return 0;
737 }
738
739 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
740                                       struct vm_area_struct *vma,
741                                       unsigned long address,
742                                       spinlock_t *ptl,
743                                       struct list_head *compound_pagelist)
744 {
745         struct page *src_page, *tmp;
746         pte_t *_pte;
747         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
748                                 _pte++, page++, address += PAGE_SIZE) {
749                 pte_t pteval = *_pte;
750
751                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
752                         clear_user_highpage(page, address);
753                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
754                         if (is_zero_pfn(pte_pfn(pteval))) {
755                                 /*
756                                  * ptl mostly unnecessary.
757                                  */
758                                 spin_lock(ptl);
759                                 /*
760                                  * paravirt calls inside pte_clear here are
761                                  * superfluous.
762                                  */
763                                 pte_clear(vma->vm_mm, address, _pte);
764                                 spin_unlock(ptl);
765                         }
766                 } else {
767                         src_page = pte_page(pteval);
768                         copy_user_highpage(page, src_page, address, vma);
769                         if (!PageCompound(src_page))
770                                 release_pte_page(src_page);
771                         /*
772                          * ptl mostly unnecessary, but preempt has to
773                          * be disabled to update the per-cpu stats
774                          * inside page_remove_rmap().
775                          */
776                         spin_lock(ptl);
777                         /*
778                          * paravirt calls inside pte_clear here are
779                          * superfluous.
780                          */
781                         pte_clear(vma->vm_mm, address, _pte);
782                         page_remove_rmap(src_page, false);
783                         spin_unlock(ptl);
784                         free_page_and_swap_cache(src_page);
785                 }
786         }
787
788         list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
789                 list_del(&src_page->lru);
790                 release_pte_page(src_page);
791         }
792 }
793
794 static void khugepaged_alloc_sleep(void)
795 {
796         DEFINE_WAIT(wait);
797
798         add_wait_queue(&khugepaged_wait, &wait);
799         freezable_schedule_timeout_interruptible(
800                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
801         remove_wait_queue(&khugepaged_wait, &wait);
802 }
803
804 static int khugepaged_node_load[MAX_NUMNODES];
805
806 static bool khugepaged_scan_abort(int nid)
807 {
808         int i;
809
810         /*
811          * If node_reclaim_mode is disabled, then no extra effort is made to
812          * allocate memory locally.
813          */
814         if (!node_reclaim_enabled())
815                 return false;
816
817         /* If there is a count for this node already, it must be acceptable */
818         if (khugepaged_node_load[nid])
819                 return false;
820
821         for (i = 0; i < MAX_NUMNODES; i++) {
822                 if (!khugepaged_node_load[i])
823                         continue;
824                 if (node_distance(nid, i) > node_reclaim_distance)
825                         return true;
826         }
827         return false;
828 }
829
830 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
831 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
832 {
833         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
834 }
835
836 #ifdef CONFIG_NUMA
837 static int khugepaged_find_target_node(void)
838 {
839         static int last_khugepaged_target_node = NUMA_NO_NODE;
840         int nid, target_node = 0, max_value = 0;
841
842         /* find first node with max normal pages hit */
843         for (nid = 0; nid < MAX_NUMNODES; nid++)
844                 if (khugepaged_node_load[nid] > max_value) {
845                         max_value = khugepaged_node_load[nid];
846                         target_node = nid;
847                 }
848
849         /* do some balance if several nodes have the same hit record */
850         if (target_node <= last_khugepaged_target_node)
851                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
852                                 nid++)
853                         if (max_value == khugepaged_node_load[nid]) {
854                                 target_node = nid;
855                                 break;
856                         }
857
858         last_khugepaged_target_node = target_node;
859         return target_node;
860 }
861
862 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
863 {
864         if (IS_ERR(*hpage)) {
865                 if (!*wait)
866                         return false;
867
868                 *wait = false;
869                 *hpage = NULL;
870                 khugepaged_alloc_sleep();
871         } else if (*hpage) {
872                 put_page(*hpage);
873                 *hpage = NULL;
874         }
875
876         return true;
877 }
878
879 static struct page *
880 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
881 {
882         VM_BUG_ON_PAGE(*hpage, *hpage);
883
884         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
885         if (unlikely(!*hpage)) {
886                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
887                 *hpage = ERR_PTR(-ENOMEM);
888                 return NULL;
889         }
890
891         prep_transhuge_page(*hpage);
892         count_vm_event(THP_COLLAPSE_ALLOC);
893         return *hpage;
894 }
895 #else
896 static int khugepaged_find_target_node(void)
897 {
898         return 0;
899 }
900
901 static inline struct page *alloc_khugepaged_hugepage(void)
902 {
903         struct page *page;
904
905         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
906                            HPAGE_PMD_ORDER);
907         if (page)
908                 prep_transhuge_page(page);
909         return page;
910 }
911
912 static struct page *khugepaged_alloc_hugepage(bool *wait)
913 {
914         struct page *hpage;
915
916         do {
917                 hpage = alloc_khugepaged_hugepage();
918                 if (!hpage) {
919                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
920                         if (!*wait)
921                                 return NULL;
922
923                         *wait = false;
924                         khugepaged_alloc_sleep();
925                 } else
926                         count_vm_event(THP_COLLAPSE_ALLOC);
927         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
928
929         return hpage;
930 }
931
932 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
933 {
934         /*
935          * If the hpage allocated earlier was briefly exposed in page cache
936          * before collapse_file() failed, it is possible that racing lookups
937          * have not yet completed, and would then be unpleasantly surprised by
938          * finding the hpage reused for the same mapping at a different offset.
939          * Just release the previous allocation if there is any danger of that.
940          */
941         if (*hpage && page_count(*hpage) > 1) {
942                 put_page(*hpage);
943                 *hpage = NULL;
944         }
945
946         if (!*hpage)
947                 *hpage = khugepaged_alloc_hugepage(wait);
948
949         if (unlikely(!*hpage))
950                 return false;
951
952         return true;
953 }
954
955 static struct page *
956 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
957 {
958         VM_BUG_ON(!*hpage);
959
960         return  *hpage;
961 }
962 #endif
963
964 /*
965  * If mmap_lock temporarily dropped, revalidate vma
966  * before taking mmap_lock.
967  * Return 0 if succeeds, otherwise return none-zero
968  * value (scan code).
969  */
970
971 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
972                 struct vm_area_struct **vmap)
973 {
974         struct vm_area_struct *vma;
975         unsigned long hstart, hend;
976
977         if (unlikely(khugepaged_test_exit(mm)))
978                 return SCAN_ANY_PROCESS;
979
980         *vmap = vma = find_vma(mm, address);
981         if (!vma)
982                 return SCAN_VMA_NULL;
983
984         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
985         hend = vma->vm_end & HPAGE_PMD_MASK;
986         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
987                 return SCAN_ADDRESS_RANGE;
988         if (!hugepage_vma_check(vma, vma->vm_flags))
989                 return SCAN_VMA_CHECK;
990         /* Anon VMA expected */
991         if (!vma->anon_vma || vma->vm_ops)
992                 return SCAN_VMA_CHECK;
993         return 0;
994 }
995
996 /*
997  * Bring missing pages in from swap, to complete THP collapse.
998  * Only done if khugepaged_scan_pmd believes it is worthwhile.
999  *
1000  * Called and returns without pte mapped or spinlocks held,
1001  * but with mmap_lock held to protect against vma changes.
1002  */
1003
1004 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
1005                                         struct vm_area_struct *vma,
1006                                         unsigned long haddr, pmd_t *pmd,
1007                                         int referenced)
1008 {
1009         int swapped_in = 0;
1010         vm_fault_t ret = 0;
1011         unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
1012
1013         for (address = haddr; address < end; address += PAGE_SIZE) {
1014                 struct vm_fault vmf = {
1015                         .vma = vma,
1016                         .address = address,
1017                         .pgoff = linear_page_index(vma, haddr),
1018                         .flags = FAULT_FLAG_ALLOW_RETRY,
1019                         .pmd = pmd,
1020                 };
1021
1022                 vmf.pte = pte_offset_map(pmd, address);
1023                 vmf.orig_pte = *vmf.pte;
1024                 if (!is_swap_pte(vmf.orig_pte)) {
1025                         pte_unmap(vmf.pte);
1026                         continue;
1027                 }
1028                 swapped_in++;
1029                 ret = do_swap_page(&vmf);
1030
1031                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1032                 if (ret & VM_FAULT_RETRY) {
1033                         mmap_read_lock(mm);
1034                         if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1035                                 /* vma is no longer available, don't continue to swapin */
1036                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1037                                 return false;
1038                         }
1039                         /* check if the pmd is still valid */
1040                         if (mm_find_pmd(mm, haddr) != pmd) {
1041                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1042                                 return false;
1043                         }
1044                 }
1045                 if (ret & VM_FAULT_ERROR) {
1046                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1047                         return false;
1048                 }
1049         }
1050
1051         /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1052         if (swapped_in)
1053                 lru_add_drain();
1054
1055         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1056         return true;
1057 }
1058
1059 static void collapse_huge_page(struct mm_struct *mm,
1060                                    unsigned long address,
1061                                    struct page **hpage,
1062                                    int node, int referenced, int unmapped)
1063 {
1064         LIST_HEAD(compound_pagelist);
1065         pmd_t *pmd, _pmd;
1066         pte_t *pte;
1067         pgtable_t pgtable;
1068         struct page *new_page;
1069         spinlock_t *pmd_ptl, *pte_ptl;
1070         int isolated = 0, result = 0;
1071         struct vm_area_struct *vma;
1072         struct mmu_notifier_range range;
1073         gfp_t gfp;
1074
1075         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1076
1077         /* Only allocate from the target node */
1078         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1079
1080         /*
1081          * Before allocating the hugepage, release the mmap_lock read lock.
1082          * The allocation can take potentially a long time if it involves
1083          * sync compaction, and we do not need to hold the mmap_lock during
1084          * that. We will recheck the vma after taking it again in write mode.
1085          */
1086         mmap_read_unlock(mm);
1087         new_page = khugepaged_alloc_page(hpage, gfp, node);
1088         if (!new_page) {
1089                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1090                 goto out_nolock;
1091         }
1092
1093         if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1094                 result = SCAN_CGROUP_CHARGE_FAIL;
1095                 goto out_nolock;
1096         }
1097         count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1098
1099         mmap_read_lock(mm);
1100         result = hugepage_vma_revalidate(mm, address, &vma);
1101         if (result) {
1102                 mmap_read_unlock(mm);
1103                 goto out_nolock;
1104         }
1105
1106         pmd = mm_find_pmd(mm, address);
1107         if (!pmd) {
1108                 result = SCAN_PMD_NULL;
1109                 mmap_read_unlock(mm);
1110                 goto out_nolock;
1111         }
1112
1113         /*
1114          * __collapse_huge_page_swapin always returns with mmap_lock locked.
1115          * If it fails, we release mmap_lock and jump out_nolock.
1116          * Continuing to collapse causes inconsistency.
1117          */
1118         if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1119                                                      pmd, referenced)) {
1120                 mmap_read_unlock(mm);
1121                 goto out_nolock;
1122         }
1123
1124         mmap_read_unlock(mm);
1125         /*
1126          * Prevent all access to pagetables with the exception of
1127          * gup_fast later handled by the ptep_clear_flush and the VM
1128          * handled by the anon_vma lock + PG_lock.
1129          */
1130         mmap_write_lock(mm);
1131         result = hugepage_vma_revalidate(mm, address, &vma);
1132         if (result)
1133                 goto out_up_write;
1134         /* check if the pmd is still valid */
1135         if (mm_find_pmd(mm, address) != pmd)
1136                 goto out_up_write;
1137
1138         anon_vma_lock_write(vma->anon_vma);
1139
1140         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1141                                 address, address + HPAGE_PMD_SIZE);
1142         mmu_notifier_invalidate_range_start(&range);
1143
1144         pte = pte_offset_map(pmd, address);
1145         pte_ptl = pte_lockptr(mm, pmd);
1146
1147         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1148         /*
1149          * This removes any huge TLB entry from the CPU so we won't allow
1150          * huge and small TLB entries for the same virtual address to
1151          * avoid the risk of CPU bugs in that area.
1152          *
1153          * Parallel fast GUP is fine since fast GUP will back off when
1154          * it detects PMD is changed.
1155          */
1156         _pmd = pmdp_collapse_flush(vma, address, pmd);
1157         spin_unlock(pmd_ptl);
1158         mmu_notifier_invalidate_range_end(&range);
1159
1160         spin_lock(pte_ptl);
1161         isolated = __collapse_huge_page_isolate(vma, address, pte,
1162                         &compound_pagelist);
1163         spin_unlock(pte_ptl);
1164
1165         if (unlikely(!isolated)) {
1166                 pte_unmap(pte);
1167                 spin_lock(pmd_ptl);
1168                 BUG_ON(!pmd_none(*pmd));
1169                 /*
1170                  * We can only use set_pmd_at when establishing
1171                  * hugepmds and never for establishing regular pmds that
1172                  * points to regular pagetables. Use pmd_populate for that
1173                  */
1174                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1175                 spin_unlock(pmd_ptl);
1176                 anon_vma_unlock_write(vma->anon_vma);
1177                 result = SCAN_FAIL;
1178                 goto out_up_write;
1179         }
1180
1181         /*
1182          * All pages are isolated and locked so anon_vma rmap
1183          * can't run anymore.
1184          */
1185         anon_vma_unlock_write(vma->anon_vma);
1186
1187         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1188                         &compound_pagelist);
1189         pte_unmap(pte);
1190         /*
1191          * spin_lock() below is not the equivalent of smp_wmb(), but
1192          * the smp_wmb() inside __SetPageUptodate() can be reused to
1193          * avoid the copy_huge_page writes to become visible after
1194          * the set_pmd_at() write.
1195          */
1196         __SetPageUptodate(new_page);
1197         pgtable = pmd_pgtable(_pmd);
1198
1199         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1200         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1201
1202         spin_lock(pmd_ptl);
1203         BUG_ON(!pmd_none(*pmd));
1204         page_add_new_anon_rmap(new_page, vma, address, true);
1205         lru_cache_add_inactive_or_unevictable(new_page, vma);
1206         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1207         set_pmd_at(mm, address, pmd, _pmd);
1208         update_mmu_cache_pmd(vma, address, pmd);
1209         spin_unlock(pmd_ptl);
1210
1211         *hpage = NULL;
1212
1213         khugepaged_pages_collapsed++;
1214         result = SCAN_SUCCEED;
1215 out_up_write:
1216         mmap_write_unlock(mm);
1217 out_nolock:
1218         if (!IS_ERR_OR_NULL(*hpage))
1219                 mem_cgroup_uncharge(*hpage);
1220         trace_mm_collapse_huge_page(mm, isolated, result);
1221         return;
1222 }
1223
1224 static int khugepaged_scan_pmd(struct mm_struct *mm,
1225                                struct vm_area_struct *vma,
1226                                unsigned long address,
1227                                struct page **hpage)
1228 {
1229         pmd_t *pmd;
1230         pte_t *pte, *_pte;
1231         int ret = 0, result = 0, referenced = 0;
1232         int none_or_zero = 0, shared = 0;
1233         struct page *page = NULL;
1234         unsigned long _address;
1235         spinlock_t *ptl;
1236         int node = NUMA_NO_NODE, unmapped = 0;
1237         bool writable = false;
1238
1239         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1240
1241         pmd = mm_find_pmd(mm, address);
1242         if (!pmd) {
1243                 result = SCAN_PMD_NULL;
1244                 goto out;
1245         }
1246
1247         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1248         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1249         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1250              _pte++, _address += PAGE_SIZE) {
1251                 pte_t pteval = *_pte;
1252                 if (is_swap_pte(pteval)) {
1253                         if (++unmapped <= khugepaged_max_ptes_swap) {
1254                                 /*
1255                                  * Always be strict with uffd-wp
1256                                  * enabled swap entries.  Please see
1257                                  * comment below for pte_uffd_wp().
1258                                  */
1259                                 if (pte_swp_uffd_wp(pteval)) {
1260                                         result = SCAN_PTE_UFFD_WP;
1261                                         goto out_unmap;
1262                                 }
1263                                 continue;
1264                         } else {
1265                                 result = SCAN_EXCEED_SWAP_PTE;
1266                                 goto out_unmap;
1267                         }
1268                 }
1269                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1270                         if (!userfaultfd_armed(vma) &&
1271                             ++none_or_zero <= khugepaged_max_ptes_none) {
1272                                 continue;
1273                         } else {
1274                                 result = SCAN_EXCEED_NONE_PTE;
1275                                 goto out_unmap;
1276                         }
1277                 }
1278                 if (pte_uffd_wp(pteval)) {
1279                         /*
1280                          * Don't collapse the page if any of the small
1281                          * PTEs are armed with uffd write protection.
1282                          * Here we can also mark the new huge pmd as
1283                          * write protected if any of the small ones is
1284                          * marked but that could bring unknown
1285                          * userfault messages that falls outside of
1286                          * the registered range.  So, just be simple.
1287                          */
1288                         result = SCAN_PTE_UFFD_WP;
1289                         goto out_unmap;
1290                 }
1291                 if (pte_write(pteval))
1292                         writable = true;
1293
1294                 page = vm_normal_page(vma, _address, pteval);
1295                 if (unlikely(!page)) {
1296                         result = SCAN_PAGE_NULL;
1297                         goto out_unmap;
1298                 }
1299
1300                 if (page_mapcount(page) > 1 &&
1301                                 ++shared > khugepaged_max_ptes_shared) {
1302                         result = SCAN_EXCEED_SHARED_PTE;
1303                         goto out_unmap;
1304                 }
1305
1306                 page = compound_head(page);
1307
1308                 /*
1309                  * Record which node the original page is from and save this
1310                  * information to khugepaged_node_load[].
1311                  * Khupaged will allocate hugepage from the node has the max
1312                  * hit record.
1313                  */
1314                 node = page_to_nid(page);
1315                 if (khugepaged_scan_abort(node)) {
1316                         result = SCAN_SCAN_ABORT;
1317                         goto out_unmap;
1318                 }
1319                 khugepaged_node_load[node]++;
1320                 if (!PageLRU(page)) {
1321                         result = SCAN_PAGE_LRU;
1322                         goto out_unmap;
1323                 }
1324                 if (PageLocked(page)) {
1325                         result = SCAN_PAGE_LOCK;
1326                         goto out_unmap;
1327                 }
1328                 if (!PageAnon(page)) {
1329                         result = SCAN_PAGE_ANON;
1330                         goto out_unmap;
1331                 }
1332
1333                 /*
1334                  * Check if the page has any GUP (or other external) pins.
1335                  *
1336                  * Here the check is racy it may see totmal_mapcount > refcount
1337                  * in some cases.
1338                  * For example, one process with one forked child process.
1339                  * The parent has the PMD split due to MADV_DONTNEED, then
1340                  * the child is trying unmap the whole PMD, but khugepaged
1341                  * may be scanning the parent between the child has
1342                  * PageDoubleMap flag cleared and dec the mapcount.  So
1343                  * khugepaged may see total_mapcount > refcount.
1344                  *
1345                  * But such case is ephemeral we could always retry collapse
1346                  * later.  However it may report false positive if the page
1347                  * has excessive GUP pins (i.e. 512).  Anyway the same check
1348                  * will be done again later the risk seems low.
1349                  */
1350                 if (!is_refcount_suitable(page)) {
1351                         result = SCAN_PAGE_COUNT;
1352                         goto out_unmap;
1353                 }
1354                 if (pte_young(pteval) ||
1355                     page_is_young(page) || PageReferenced(page) ||
1356                     mmu_notifier_test_young(vma->vm_mm, address))
1357                         referenced++;
1358         }
1359         if (!writable) {
1360                 result = SCAN_PAGE_RO;
1361         } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1362                 result = SCAN_LACK_REFERENCED_PAGE;
1363         } else {
1364                 result = SCAN_SUCCEED;
1365                 ret = 1;
1366         }
1367 out_unmap:
1368         pte_unmap_unlock(pte, ptl);
1369         if (ret) {
1370                 node = khugepaged_find_target_node();
1371                 /* collapse_huge_page will return with the mmap_lock released */
1372                 collapse_huge_page(mm, address, hpage, node,
1373                                 referenced, unmapped);
1374         }
1375 out:
1376         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1377                                      none_or_zero, result, unmapped);
1378         return ret;
1379 }
1380
1381 static void collect_mm_slot(struct mm_slot *mm_slot)
1382 {
1383         struct mm_struct *mm = mm_slot->mm;
1384
1385         lockdep_assert_held(&khugepaged_mm_lock);
1386
1387         if (khugepaged_test_exit(mm)) {
1388                 /* free mm_slot */
1389                 hash_del(&mm_slot->hash);
1390                 list_del(&mm_slot->mm_node);
1391
1392                 /*
1393                  * Not strictly needed because the mm exited already.
1394                  *
1395                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1396                  */
1397
1398                 /* khugepaged_mm_lock actually not necessary for the below */
1399                 free_mm_slot(mm_slot);
1400                 mmdrop(mm);
1401         }
1402 }
1403
1404 #ifdef CONFIG_SHMEM
1405 /*
1406  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1407  * khugepaged should try to collapse the page table.
1408  */
1409 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1410                                          unsigned long addr)
1411 {
1412         struct mm_slot *mm_slot;
1413
1414         VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1415
1416         spin_lock(&khugepaged_mm_lock);
1417         mm_slot = get_mm_slot(mm);
1418         if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1419                 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1420         spin_unlock(&khugepaged_mm_lock);
1421         return 0;
1422 }
1423
1424 /**
1425  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1426  * address haddr.
1427  *
1428  * @mm: process address space where collapse happens
1429  * @addr: THP collapse address
1430  *
1431  * This function checks whether all the PTEs in the PMD are pointing to the
1432  * right THP. If so, retract the page table so the THP can refault in with
1433  * as pmd-mapped.
1434  */
1435 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1436 {
1437         unsigned long haddr = addr & HPAGE_PMD_MASK;
1438         struct vm_area_struct *vma = find_vma(mm, haddr);
1439         struct page *hpage;
1440         pte_t *start_pte, *pte;
1441         pmd_t *pmd, _pmd;
1442         spinlock_t *ptl;
1443         int count = 0;
1444         int i;
1445
1446         if (!vma || !vma->vm_file ||
1447             !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1448                 return;
1449
1450         /*
1451          * This vm_flags may not have VM_HUGEPAGE if the page was not
1452          * collapsed by this mm. But we can still collapse if the page is
1453          * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1454          * will not fail the vma for missing VM_HUGEPAGE
1455          */
1456         if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1457                 return;
1458
1459         hpage = find_lock_page(vma->vm_file->f_mapping,
1460                                linear_page_index(vma, haddr));
1461         if (!hpage)
1462                 return;
1463
1464         if (!PageHead(hpage))
1465                 goto drop_hpage;
1466
1467         pmd = mm_find_pmd(mm, haddr);
1468         if (!pmd)
1469                 goto drop_hpage;
1470
1471         start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1472
1473         /* step 1: check all mapped PTEs are to the right huge page */
1474         for (i = 0, addr = haddr, pte = start_pte;
1475              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1476                 struct page *page;
1477
1478                 /* empty pte, skip */
1479                 if (pte_none(*pte))
1480                         continue;
1481
1482                 /* page swapped out, abort */
1483                 if (!pte_present(*pte))
1484                         goto abort;
1485
1486                 page = vm_normal_page(vma, addr, *pte);
1487
1488                 /*
1489                  * Note that uprobe, debugger, or MAP_PRIVATE may change the
1490                  * page table, but the new page will not be a subpage of hpage.
1491                  */
1492                 if (hpage + i != page)
1493                         goto abort;
1494                 count++;
1495         }
1496
1497         /* step 2: adjust rmap */
1498         for (i = 0, addr = haddr, pte = start_pte;
1499              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1500                 struct page *page;
1501
1502                 if (pte_none(*pte))
1503                         continue;
1504                 page = vm_normal_page(vma, addr, *pte);
1505                 page_remove_rmap(page, false);
1506         }
1507
1508         pte_unmap_unlock(start_pte, ptl);
1509
1510         /* step 3: set proper refcount and mm_counters. */
1511         if (count) {
1512                 page_ref_sub(hpage, count);
1513                 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1514         }
1515
1516         /* step 4: collapse pmd */
1517         ptl = pmd_lock(vma->vm_mm, pmd);
1518         _pmd = pmdp_collapse_flush(vma, haddr, pmd);
1519         spin_unlock(ptl);
1520         mm_dec_nr_ptes(mm);
1521         pte_free(mm, pmd_pgtable(_pmd));
1522
1523 drop_hpage:
1524         unlock_page(hpage);
1525         put_page(hpage);
1526         return;
1527
1528 abort:
1529         pte_unmap_unlock(start_pte, ptl);
1530         goto drop_hpage;
1531 }
1532
1533 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1534 {
1535         struct mm_struct *mm = mm_slot->mm;
1536         int i;
1537
1538         if (likely(mm_slot->nr_pte_mapped_thp == 0))
1539                 return;
1540
1541         if (!mmap_write_trylock(mm))
1542                 return;
1543
1544         if (unlikely(khugepaged_test_exit(mm)))
1545                 goto out;
1546
1547         for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1548                 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1549
1550 out:
1551         mm_slot->nr_pte_mapped_thp = 0;
1552         mmap_write_unlock(mm);
1553 }
1554
1555 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1556 {
1557         struct vm_area_struct *vma;
1558         struct mm_struct *mm;
1559         unsigned long addr;
1560         pmd_t *pmd, _pmd;
1561
1562         i_mmap_lock_write(mapping);
1563         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1564                 /*
1565                  * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1566                  * got written to. These VMAs are likely not worth investing
1567                  * mmap_write_lock(mm) as PMD-mapping is likely to be split
1568                  * later.
1569                  *
1570                  * Not that vma->anon_vma check is racy: it can be set up after
1571                  * the check but before we took mmap_lock by the fault path.
1572                  * But page lock would prevent establishing any new ptes of the
1573                  * page, so we are safe.
1574                  *
1575                  * An alternative would be drop the check, but check that page
1576                  * table is clear before calling pmdp_collapse_flush() under
1577                  * ptl. It has higher chance to recover THP for the VMA, but
1578                  * has higher cost too.
1579                  */
1580                 if (vma->anon_vma)
1581                         continue;
1582                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1583                 if (addr & ~HPAGE_PMD_MASK)
1584                         continue;
1585                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1586                         continue;
1587                 mm = vma->vm_mm;
1588                 pmd = mm_find_pmd(mm, addr);
1589                 if (!pmd)
1590                         continue;
1591                 /*
1592                  * We need exclusive mmap_lock to retract page table.
1593                  *
1594                  * We use trylock due to lock inversion: we need to acquire
1595                  * mmap_lock while holding page lock. Fault path does it in
1596                  * reverse order. Trylock is a way to avoid deadlock.
1597                  */
1598                 if (mmap_write_trylock(mm)) {
1599                         if (!khugepaged_test_exit(mm)) {
1600                                 spinlock_t *ptl = pmd_lock(mm, pmd);
1601                                 /* assume page table is clear */
1602                                 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1603                                 spin_unlock(ptl);
1604                                 mm_dec_nr_ptes(mm);
1605                                 pte_free(mm, pmd_pgtable(_pmd));
1606                         }
1607                         mmap_write_unlock(mm);
1608                 } else {
1609                         /* Try again later */
1610                         khugepaged_add_pte_mapped_thp(mm, addr);
1611                 }
1612         }
1613         i_mmap_unlock_write(mapping);
1614 }
1615
1616 /**
1617  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1618  *
1619  * @mm: process address space where collapse happens
1620  * @file: file that collapse on
1621  * @start: collapse start address
1622  * @hpage: new allocated huge page for collapse
1623  * @node: appointed node the new huge page allocate from
1624  *
1625  * Basic scheme is simple, details are more complex:
1626  *  - allocate and lock a new huge page;
1627  *  - scan page cache replacing old pages with the new one
1628  *    + swap/gup in pages if necessary;
1629  *    + fill in gaps;
1630  *    + keep old pages around in case rollback is required;
1631  *  - if replacing succeeds:
1632  *    + copy data over;
1633  *    + free old pages;
1634  *    + unlock huge page;
1635  *  - if replacing failed;
1636  *    + put all pages back and unfreeze them;
1637  *    + restore gaps in the page cache;
1638  *    + unlock and free huge page;
1639  */
1640 static void collapse_file(struct mm_struct *mm,
1641                 struct file *file, pgoff_t start,
1642                 struct page **hpage, int node)
1643 {
1644         struct address_space *mapping = file->f_mapping;
1645         gfp_t gfp;
1646         struct page *new_page;
1647         pgoff_t index, end = start + HPAGE_PMD_NR;
1648         LIST_HEAD(pagelist);
1649         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1650         int nr_none = 0, result = SCAN_SUCCEED;
1651         bool is_shmem = shmem_file(file);
1652         int nr;
1653
1654         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1655         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1656
1657         /* Only allocate from the target node */
1658         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1659
1660         new_page = khugepaged_alloc_page(hpage, gfp, node);
1661         if (!new_page) {
1662                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1663                 goto out;
1664         }
1665
1666         if (unlikely(mem_cgroup_charge(new_page, mm, gfp))) {
1667                 result = SCAN_CGROUP_CHARGE_FAIL;
1668                 goto out;
1669         }
1670         count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1671
1672         /* This will be less messy when we use multi-index entries */
1673         do {
1674                 xas_lock_irq(&xas);
1675                 xas_create_range(&xas);
1676                 if (!xas_error(&xas))
1677                         break;
1678                 xas_unlock_irq(&xas);
1679                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1680                         result = SCAN_FAIL;
1681                         goto out;
1682                 }
1683         } while (1);
1684
1685         __SetPageLocked(new_page);
1686         if (is_shmem)
1687                 __SetPageSwapBacked(new_page);
1688         new_page->index = start;
1689         new_page->mapping = mapping;
1690
1691         /*
1692          * At this point the new_page is locked and not up-to-date.
1693          * It's safe to insert it into the page cache, because nobody would
1694          * be able to map it or use it in another way until we unlock it.
1695          */
1696
1697         xas_set(&xas, start);
1698         for (index = start; index < end; index++) {
1699                 struct page *page = xas_next(&xas);
1700
1701                 VM_BUG_ON(index != xas.xa_index);
1702                 if (is_shmem) {
1703                         if (!page) {
1704                                 /*
1705                                  * Stop if extent has been truncated or
1706                                  * hole-punched, and is now completely
1707                                  * empty.
1708                                  */
1709                                 if (index == start) {
1710                                         if (!xas_next_entry(&xas, end - 1)) {
1711                                                 result = SCAN_TRUNCATED;
1712                                                 goto xa_locked;
1713                                         }
1714                                         xas_set(&xas, index);
1715                                 }
1716                                 if (!shmem_charge(mapping->host, 1)) {
1717                                         result = SCAN_FAIL;
1718                                         goto xa_locked;
1719                                 }
1720                                 xas_store(&xas, new_page);
1721                                 nr_none++;
1722                                 continue;
1723                         }
1724
1725                         if (xa_is_value(page) || !PageUptodate(page)) {
1726                                 xas_unlock_irq(&xas);
1727                                 /* swap in or instantiate fallocated page */
1728                                 if (shmem_getpage(mapping->host, index, &page,
1729                                                   SGP_NOALLOC)) {
1730                                         result = SCAN_FAIL;
1731                                         goto xa_unlocked;
1732                                 }
1733                         } else if (trylock_page(page)) {
1734                                 get_page(page);
1735                                 xas_unlock_irq(&xas);
1736                         } else {
1737                                 result = SCAN_PAGE_LOCK;
1738                                 goto xa_locked;
1739                         }
1740                 } else {        /* !is_shmem */
1741                         if (!page || xa_is_value(page)) {
1742                                 xas_unlock_irq(&xas);
1743                                 page_cache_sync_readahead(mapping, &file->f_ra,
1744                                                           file, index,
1745                                                           end - index);
1746                                 /* drain pagevecs to help isolate_lru_page() */
1747                                 lru_add_drain();
1748                                 page = find_lock_page(mapping, index);
1749                                 if (unlikely(page == NULL)) {
1750                                         result = SCAN_FAIL;
1751                                         goto xa_unlocked;
1752                                 }
1753                         } else if (PageDirty(page)) {
1754                                 /*
1755                                  * khugepaged only works on read-only fd,
1756                                  * so this page is dirty because it hasn't
1757                                  * been flushed since first write. There
1758                                  * won't be new dirty pages.
1759                                  *
1760                                  * Trigger async flush here and hope the
1761                                  * writeback is done when khugepaged
1762                                  * revisits this page.
1763                                  *
1764                                  * This is a one-off situation. We are not
1765                                  * forcing writeback in loop.
1766                                  */
1767                                 xas_unlock_irq(&xas);
1768                                 filemap_flush(mapping);
1769                                 result = SCAN_FAIL;
1770                                 goto xa_unlocked;
1771                         } else if (PageWriteback(page)) {
1772                                 xas_unlock_irq(&xas);
1773                                 result = SCAN_FAIL;
1774                                 goto xa_unlocked;
1775                         } else if (trylock_page(page)) {
1776                                 get_page(page);
1777                                 xas_unlock_irq(&xas);
1778                         } else {
1779                                 result = SCAN_PAGE_LOCK;
1780                                 goto xa_locked;
1781                         }
1782                 }
1783
1784                 /*
1785                  * The page must be locked, so we can drop the i_pages lock
1786                  * without racing with truncate.
1787                  */
1788                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1789
1790                 /* make sure the page is up to date */
1791                 if (unlikely(!PageUptodate(page))) {
1792                         result = SCAN_FAIL;
1793                         goto out_unlock;
1794                 }
1795
1796                 /*
1797                  * If file was truncated then extended, or hole-punched, before
1798                  * we locked the first page, then a THP might be there already.
1799                  */
1800                 if (PageTransCompound(page)) {
1801                         result = SCAN_PAGE_COMPOUND;
1802                         goto out_unlock;
1803                 }
1804
1805                 if (page_mapping(page) != mapping) {
1806                         result = SCAN_TRUNCATED;
1807                         goto out_unlock;
1808                 }
1809
1810                 if (!is_shmem && (PageDirty(page) ||
1811                                   PageWriteback(page))) {
1812                         /*
1813                          * khugepaged only works on read-only fd, so this
1814                          * page is dirty because it hasn't been flushed
1815                          * since first write.
1816                          */
1817                         result = SCAN_FAIL;
1818                         goto out_unlock;
1819                 }
1820
1821                 if (isolate_lru_page(page)) {
1822                         result = SCAN_DEL_PAGE_LRU;
1823                         goto out_unlock;
1824                 }
1825
1826                 if (page_has_private(page) &&
1827                     !try_to_release_page(page, GFP_KERNEL)) {
1828                         result = SCAN_PAGE_HAS_PRIVATE;
1829                         putback_lru_page(page);
1830                         goto out_unlock;
1831                 }
1832
1833                 if (page_mapped(page))
1834                         unmap_mapping_pages(mapping, index, 1, false);
1835
1836                 xas_lock_irq(&xas);
1837                 xas_set(&xas, index);
1838
1839                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1840                 VM_BUG_ON_PAGE(page_mapped(page), page);
1841
1842                 /*
1843                  * The page is expected to have page_count() == 3:
1844                  *  - we hold a pin on it;
1845                  *  - one reference from page cache;
1846                  *  - one from isolate_lru_page;
1847                  */
1848                 if (!page_ref_freeze(page, 3)) {
1849                         result = SCAN_PAGE_COUNT;
1850                         xas_unlock_irq(&xas);
1851                         putback_lru_page(page);
1852                         goto out_unlock;
1853                 }
1854
1855                 /*
1856                  * Add the page to the list to be able to undo the collapse if
1857                  * something go wrong.
1858                  */
1859                 list_add_tail(&page->lru, &pagelist);
1860
1861                 /* Finally, replace with the new page. */
1862                 xas_store(&xas, new_page);
1863                 continue;
1864 out_unlock:
1865                 unlock_page(page);
1866                 put_page(page);
1867                 goto xa_unlocked;
1868         }
1869         nr = thp_nr_pages(new_page);
1870
1871         if (is_shmem)
1872                 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1873         else {
1874                 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1875                 filemap_nr_thps_inc(mapping);
1876                 /*
1877                  * Paired with smp_mb() in do_dentry_open() to ensure
1878                  * i_writecount is up to date and the update to nr_thps is
1879                  * visible. Ensures the page cache will be truncated if the
1880                  * file is opened writable.
1881                  */
1882                 smp_mb();
1883                 if (inode_is_open_for_write(mapping->host)) {
1884                         result = SCAN_FAIL;
1885                         __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1886                         filemap_nr_thps_dec(mapping);
1887                         goto xa_locked;
1888                 }
1889         }
1890
1891         if (nr_none) {
1892                 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1893                 if (is_shmem)
1894                         __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1895         }
1896
1897 xa_locked:
1898         xas_unlock_irq(&xas);
1899 xa_unlocked:
1900
1901         if (result == SCAN_SUCCEED) {
1902                 struct page *page, *tmp;
1903
1904                 /*
1905                  * Replacing old pages with new one has succeeded, now we
1906                  * need to copy the content and free the old pages.
1907                  */
1908                 index = start;
1909                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1910                         while (index < page->index) {
1911                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1912                                 index++;
1913                         }
1914                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1915                                         page);
1916                         list_del(&page->lru);
1917                         page->mapping = NULL;
1918                         page_ref_unfreeze(page, 1);
1919                         ClearPageActive(page);
1920                         ClearPageUnevictable(page);
1921                         unlock_page(page);
1922                         put_page(page);
1923                         index++;
1924                 }
1925                 while (index < end) {
1926                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1927                         index++;
1928                 }
1929
1930                 SetPageUptodate(new_page);
1931                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1932                 if (is_shmem)
1933                         set_page_dirty(new_page);
1934                 lru_cache_add(new_page);
1935
1936                 /*
1937                  * Remove pte page tables, so we can re-fault the page as huge.
1938                  */
1939                 retract_page_tables(mapping, start);
1940                 *hpage = NULL;
1941
1942                 khugepaged_pages_collapsed++;
1943         } else {
1944                 struct page *page;
1945
1946                 /* Something went wrong: roll back page cache changes */
1947                 xas_lock_irq(&xas);
1948                 mapping->nrpages -= nr_none;
1949
1950                 if (is_shmem)
1951                         shmem_uncharge(mapping->host, nr_none);
1952
1953                 xas_set(&xas, start);
1954                 xas_for_each(&xas, page, end - 1) {
1955                         page = list_first_entry_or_null(&pagelist,
1956                                         struct page, lru);
1957                         if (!page || xas.xa_index < page->index) {
1958                                 if (!nr_none)
1959                                         break;
1960                                 nr_none--;
1961                                 /* Put holes back where they were */
1962                                 xas_store(&xas, NULL);
1963                                 continue;
1964                         }
1965
1966                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1967
1968                         /* Unfreeze the page. */
1969                         list_del(&page->lru);
1970                         page_ref_unfreeze(page, 2);
1971                         xas_store(&xas, page);
1972                         xas_pause(&xas);
1973                         xas_unlock_irq(&xas);
1974                         unlock_page(page);
1975                         putback_lru_page(page);
1976                         xas_lock_irq(&xas);
1977                 }
1978                 VM_BUG_ON(nr_none);
1979                 xas_unlock_irq(&xas);
1980
1981                 new_page->mapping = NULL;
1982         }
1983
1984         unlock_page(new_page);
1985 out:
1986         VM_BUG_ON(!list_empty(&pagelist));
1987         if (!IS_ERR_OR_NULL(*hpage))
1988                 mem_cgroup_uncharge(*hpage);
1989         /* TODO: tracepoints */
1990 }
1991
1992 static void khugepaged_scan_file(struct mm_struct *mm,
1993                 struct file *file, pgoff_t start, struct page **hpage)
1994 {
1995         struct page *page = NULL;
1996         struct address_space *mapping = file->f_mapping;
1997         XA_STATE(xas, &mapping->i_pages, start);
1998         int present, swap;
1999         int node = NUMA_NO_NODE;
2000         int result = SCAN_SUCCEED;
2001
2002         present = 0;
2003         swap = 0;
2004         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2005         rcu_read_lock();
2006         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2007                 if (xas_retry(&xas, page))
2008                         continue;
2009
2010                 if (xa_is_value(page)) {
2011                         if (++swap > khugepaged_max_ptes_swap) {
2012                                 result = SCAN_EXCEED_SWAP_PTE;
2013                                 break;
2014                         }
2015                         continue;
2016                 }
2017
2018                 if (PageTransCompound(page)) {
2019                         result = SCAN_PAGE_COMPOUND;
2020                         break;
2021                 }
2022
2023                 node = page_to_nid(page);
2024                 if (khugepaged_scan_abort(node)) {
2025                         result = SCAN_SCAN_ABORT;
2026                         break;
2027                 }
2028                 khugepaged_node_load[node]++;
2029
2030                 if (!PageLRU(page)) {
2031                         result = SCAN_PAGE_LRU;
2032                         break;
2033                 }
2034
2035                 if (page_count(page) !=
2036                     1 + page_mapcount(page) + page_has_private(page)) {
2037                         result = SCAN_PAGE_COUNT;
2038                         break;
2039                 }
2040
2041                 /*
2042                  * We probably should check if the page is referenced here, but
2043                  * nobody would transfer pte_young() to PageReferenced() for us.
2044                  * And rmap walk here is just too costly...
2045                  */
2046
2047                 present++;
2048
2049                 if (need_resched()) {
2050                         xas_pause(&xas);
2051                         cond_resched_rcu();
2052                 }
2053         }
2054         rcu_read_unlock();
2055
2056         if (result == SCAN_SUCCEED) {
2057                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2058                         result = SCAN_EXCEED_NONE_PTE;
2059                 } else {
2060                         node = khugepaged_find_target_node();
2061                         collapse_file(mm, file, start, hpage, node);
2062                 }
2063         }
2064
2065         /* TODO: tracepoints */
2066 }
2067 #else
2068 static void khugepaged_scan_file(struct mm_struct *mm,
2069                 struct file *file, pgoff_t start, struct page **hpage)
2070 {
2071         BUILD_BUG();
2072 }
2073
2074 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2075 {
2076 }
2077 #endif
2078
2079 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2080                                             struct page **hpage)
2081         __releases(&khugepaged_mm_lock)
2082         __acquires(&khugepaged_mm_lock)
2083 {
2084         struct mm_slot *mm_slot;
2085         struct mm_struct *mm;
2086         struct vm_area_struct *vma;
2087         int progress = 0;
2088
2089         VM_BUG_ON(!pages);
2090         lockdep_assert_held(&khugepaged_mm_lock);
2091
2092         if (khugepaged_scan.mm_slot)
2093                 mm_slot = khugepaged_scan.mm_slot;
2094         else {
2095                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2096                                      struct mm_slot, mm_node);
2097                 khugepaged_scan.address = 0;
2098                 khugepaged_scan.mm_slot = mm_slot;
2099         }
2100         spin_unlock(&khugepaged_mm_lock);
2101         khugepaged_collapse_pte_mapped_thps(mm_slot);
2102
2103         mm = mm_slot->mm;
2104         /*
2105          * Don't wait for semaphore (to avoid long wait times).  Just move to
2106          * the next mm on the list.
2107          */
2108         vma = NULL;
2109         if (unlikely(!mmap_read_trylock(mm)))
2110                 goto breakouterloop_mmap_lock;
2111         if (likely(!khugepaged_test_exit(mm)))
2112                 vma = find_vma(mm, khugepaged_scan.address);
2113
2114         progress++;
2115         for (; vma; vma = vma->vm_next) {
2116                 unsigned long hstart, hend;
2117
2118                 cond_resched();
2119                 if (unlikely(khugepaged_test_exit(mm))) {
2120                         progress++;
2121                         break;
2122                 }
2123                 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2124 skip:
2125                         progress++;
2126                         continue;
2127                 }
2128                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2129                 hend = vma->vm_end & HPAGE_PMD_MASK;
2130                 if (hstart >= hend)
2131                         goto skip;
2132                 if (khugepaged_scan.address > hend)
2133                         goto skip;
2134                 if (khugepaged_scan.address < hstart)
2135                         khugepaged_scan.address = hstart;
2136                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2137                 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2138                         goto skip;
2139
2140                 while (khugepaged_scan.address < hend) {
2141                         int ret;
2142                         cond_resched();
2143                         if (unlikely(khugepaged_test_exit(mm)))
2144                                 goto breakouterloop;
2145
2146                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2147                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2148                                   hend);
2149                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2150                                 struct file *file = get_file(vma->vm_file);
2151                                 pgoff_t pgoff = linear_page_index(vma,
2152                                                 khugepaged_scan.address);
2153
2154                                 mmap_read_unlock(mm);
2155                                 ret = 1;
2156                                 khugepaged_scan_file(mm, file, pgoff, hpage);
2157                                 fput(file);
2158                         } else {
2159                                 ret = khugepaged_scan_pmd(mm, vma,
2160                                                 khugepaged_scan.address,
2161                                                 hpage);
2162                         }
2163                         /* move to next address */
2164                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2165                         progress += HPAGE_PMD_NR;
2166                         if (ret)
2167                                 /* we released mmap_lock so break loop */
2168                                 goto breakouterloop_mmap_lock;
2169                         if (progress >= pages)
2170                                 goto breakouterloop;
2171                 }
2172         }
2173 breakouterloop:
2174         mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2175 breakouterloop_mmap_lock:
2176
2177         spin_lock(&khugepaged_mm_lock);
2178         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2179         /*
2180          * Release the current mm_slot if this mm is about to die, or
2181          * if we scanned all vmas of this mm.
2182          */
2183         if (khugepaged_test_exit(mm) || !vma) {
2184                 /*
2185                  * Make sure that if mm_users is reaching zero while
2186                  * khugepaged runs here, khugepaged_exit will find
2187                  * mm_slot not pointing to the exiting mm.
2188                  */
2189                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2190                         khugepaged_scan.mm_slot = list_entry(
2191                                 mm_slot->mm_node.next,
2192                                 struct mm_slot, mm_node);
2193                         khugepaged_scan.address = 0;
2194                 } else {
2195                         khugepaged_scan.mm_slot = NULL;
2196                         khugepaged_full_scans++;
2197                 }
2198
2199                 collect_mm_slot(mm_slot);
2200         }
2201
2202         return progress;
2203 }
2204
2205 static int khugepaged_has_work(void)
2206 {
2207         return !list_empty(&khugepaged_scan.mm_head) &&
2208                 khugepaged_enabled();
2209 }
2210
2211 static int khugepaged_wait_event(void)
2212 {
2213         return !list_empty(&khugepaged_scan.mm_head) ||
2214                 kthread_should_stop();
2215 }
2216
2217 static void khugepaged_do_scan(void)
2218 {
2219         struct page *hpage = NULL;
2220         unsigned int progress = 0, pass_through_head = 0;
2221         unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2222         bool wait = true;
2223
2224         lru_add_drain_all();
2225
2226         while (progress < pages) {
2227                 if (!khugepaged_prealloc_page(&hpage, &wait))
2228                         break;
2229
2230                 cond_resched();
2231
2232                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2233                         break;
2234
2235                 spin_lock(&khugepaged_mm_lock);
2236                 if (!khugepaged_scan.mm_slot)
2237                         pass_through_head++;
2238                 if (khugepaged_has_work() &&
2239                     pass_through_head < 2)
2240                         progress += khugepaged_scan_mm_slot(pages - progress,
2241                                                             &hpage);
2242                 else
2243                         progress = pages;
2244                 spin_unlock(&khugepaged_mm_lock);
2245         }
2246
2247         if (!IS_ERR_OR_NULL(hpage))
2248                 put_page(hpage);
2249 }
2250
2251 static bool khugepaged_should_wakeup(void)
2252 {
2253         return kthread_should_stop() ||
2254                time_after_eq(jiffies, khugepaged_sleep_expire);
2255 }
2256
2257 static void khugepaged_wait_work(void)
2258 {
2259         if (khugepaged_has_work()) {
2260                 const unsigned long scan_sleep_jiffies =
2261                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2262
2263                 if (!scan_sleep_jiffies)
2264                         return;
2265
2266                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2267                 wait_event_freezable_timeout(khugepaged_wait,
2268                                              khugepaged_should_wakeup(),
2269                                              scan_sleep_jiffies);
2270                 return;
2271         }
2272
2273         if (khugepaged_enabled())
2274                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2275 }
2276
2277 static int khugepaged(void *none)
2278 {
2279         struct mm_slot *mm_slot;
2280
2281         set_freezable();
2282         set_user_nice(current, MAX_NICE);
2283
2284         while (!kthread_should_stop()) {
2285                 khugepaged_do_scan();
2286                 khugepaged_wait_work();
2287         }
2288
2289         spin_lock(&khugepaged_mm_lock);
2290         mm_slot = khugepaged_scan.mm_slot;
2291         khugepaged_scan.mm_slot = NULL;
2292         if (mm_slot)
2293                 collect_mm_slot(mm_slot);
2294         spin_unlock(&khugepaged_mm_lock);
2295         return 0;
2296 }
2297
2298 static void set_recommended_min_free_kbytes(void)
2299 {
2300         struct zone *zone;
2301         int nr_zones = 0;
2302         unsigned long recommended_min;
2303
2304         for_each_populated_zone(zone) {
2305                 /*
2306                  * We don't need to worry about fragmentation of
2307                  * ZONE_MOVABLE since it only has movable pages.
2308                  */
2309                 if (zone_idx(zone) > gfp_zone(GFP_USER))
2310                         continue;
2311
2312                 nr_zones++;
2313         }
2314
2315         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2316         recommended_min = pageblock_nr_pages * nr_zones * 2;
2317
2318         /*
2319          * Make sure that on average at least two pageblocks are almost free
2320          * of another type, one for a migratetype to fall back to and a
2321          * second to avoid subsequent fallbacks of other types There are 3
2322          * MIGRATE_TYPES we care about.
2323          */
2324         recommended_min += pageblock_nr_pages * nr_zones *
2325                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2326
2327         /* don't ever allow to reserve more than 5% of the lowmem */
2328         recommended_min = min(recommended_min,
2329                               (unsigned long) nr_free_buffer_pages() / 20);
2330         recommended_min <<= (PAGE_SHIFT-10);
2331
2332         if (recommended_min > min_free_kbytes) {
2333                 if (user_min_free_kbytes >= 0)
2334                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2335                                 min_free_kbytes, recommended_min);
2336
2337                 min_free_kbytes = recommended_min;
2338         }
2339         setup_per_zone_wmarks();
2340 }
2341
2342 int start_stop_khugepaged(void)
2343 {
2344         int err = 0;
2345
2346         mutex_lock(&khugepaged_mutex);
2347         if (khugepaged_enabled()) {
2348                 if (!khugepaged_thread)
2349                         khugepaged_thread = kthread_run(khugepaged, NULL,
2350                                                         "khugepaged");
2351                 if (IS_ERR(khugepaged_thread)) {
2352                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2353                         err = PTR_ERR(khugepaged_thread);
2354                         khugepaged_thread = NULL;
2355                         goto fail;
2356                 }
2357
2358                 if (!list_empty(&khugepaged_scan.mm_head))
2359                         wake_up_interruptible(&khugepaged_wait);
2360
2361                 set_recommended_min_free_kbytes();
2362         } else if (khugepaged_thread) {
2363                 kthread_stop(khugepaged_thread);
2364                 khugepaged_thread = NULL;
2365         }
2366 fail:
2367         mutex_unlock(&khugepaged_mutex);
2368         return err;
2369 }
2370
2371 void khugepaged_min_free_kbytes_update(void)
2372 {
2373         mutex_lock(&khugepaged_mutex);
2374         if (khugepaged_enabled() && khugepaged_thread)
2375                 set_recommended_min_free_kbytes();
2376         mutex_unlock(&khugepaged_mutex);
2377 }