1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
23 #include <asm/pgalloc.h>
33 SCAN_LACK_REFERENCED_PAGE,
47 SCAN_ALLOC_HUGE_PAGE_FAIL,
48 SCAN_CGROUP_CHARGE_FAIL,
51 SCAN_PAGE_HAS_PRIVATE,
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/huge_memory.h>
57 /* default scan 8*512 pte (or vmas) every 30 second */
58 static unsigned int khugepaged_pages_to_scan __read_mostly;
59 static unsigned int khugepaged_pages_collapsed;
60 static unsigned int khugepaged_full_scans;
61 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
62 /* during fragmentation poll the hugepage allocator once every minute */
63 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
64 static unsigned long khugepaged_sleep_expire;
65 static DEFINE_SPINLOCK(khugepaged_mm_lock);
66 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
68 * default collapse hugepages if there is at least one pte mapped like
69 * it would have happened if the vma was large enough during page
72 static unsigned int khugepaged_max_ptes_none __read_mostly;
73 static unsigned int khugepaged_max_ptes_swap __read_mostly;
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
78 static struct kmem_cache *mm_slot_cache __read_mostly;
80 #define MAX_PTE_MAPPED_THP 8
83 * struct mm_slot - hash lookup from mm to mm_slot
84 * @hash: hash collision list
85 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
86 * @mm: the mm that this information is valid for
89 struct hlist_node hash;
90 struct list_head mm_node;
93 /* pte-mapped THP in this mm */
94 int nr_pte_mapped_thp;
95 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
99 * struct khugepaged_scan - cursor for scanning
100 * @mm_head: the head of the mm list to scan
101 * @mm_slot: the current mm_slot we are scanning
102 * @address: the next address inside that to be scanned
104 * There is only the one khugepaged_scan instance of this cursor structure.
106 struct khugepaged_scan {
107 struct list_head mm_head;
108 struct mm_slot *mm_slot;
109 unsigned long address;
112 static struct khugepaged_scan khugepaged_scan = {
113 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
117 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
118 struct kobj_attribute *attr,
121 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
124 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
125 struct kobj_attribute *attr,
126 const char *buf, size_t count)
131 err = kstrtoul(buf, 10, &msecs);
132 if (err || msecs > UINT_MAX)
135 khugepaged_scan_sleep_millisecs = msecs;
136 khugepaged_sleep_expire = 0;
137 wake_up_interruptible(&khugepaged_wait);
141 static struct kobj_attribute scan_sleep_millisecs_attr =
142 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
143 scan_sleep_millisecs_store);
145 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
146 struct kobj_attribute *attr,
149 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
152 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
153 struct kobj_attribute *attr,
154 const char *buf, size_t count)
159 err = kstrtoul(buf, 10, &msecs);
160 if (err || msecs > UINT_MAX)
163 khugepaged_alloc_sleep_millisecs = msecs;
164 khugepaged_sleep_expire = 0;
165 wake_up_interruptible(&khugepaged_wait);
169 static struct kobj_attribute alloc_sleep_millisecs_attr =
170 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
171 alloc_sleep_millisecs_store);
173 static ssize_t pages_to_scan_show(struct kobject *kobj,
174 struct kobj_attribute *attr,
177 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
179 static ssize_t pages_to_scan_store(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 const char *buf, size_t count)
186 err = kstrtoul(buf, 10, &pages);
187 if (err || !pages || pages > UINT_MAX)
190 khugepaged_pages_to_scan = pages;
194 static struct kobj_attribute pages_to_scan_attr =
195 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
196 pages_to_scan_store);
198 static ssize_t pages_collapsed_show(struct kobject *kobj,
199 struct kobj_attribute *attr,
202 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
204 static struct kobj_attribute pages_collapsed_attr =
205 __ATTR_RO(pages_collapsed);
207 static ssize_t full_scans_show(struct kobject *kobj,
208 struct kobj_attribute *attr,
211 return sprintf(buf, "%u\n", khugepaged_full_scans);
213 static struct kobj_attribute full_scans_attr =
214 __ATTR_RO(full_scans);
216 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
217 struct kobj_attribute *attr, char *buf)
219 return single_hugepage_flag_show(kobj, attr, buf,
220 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
222 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
223 struct kobj_attribute *attr,
224 const char *buf, size_t count)
226 return single_hugepage_flag_store(kobj, attr, buf, count,
227 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
229 static struct kobj_attribute khugepaged_defrag_attr =
230 __ATTR(defrag, 0644, khugepaged_defrag_show,
231 khugepaged_defrag_store);
234 * max_ptes_none controls if khugepaged should collapse hugepages over
235 * any unmapped ptes in turn potentially increasing the memory
236 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
237 * reduce the available free memory in the system as it
238 * runs. Increasing max_ptes_none will instead potentially reduce the
239 * free memory in the system during the khugepaged scan.
241 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
242 struct kobj_attribute *attr,
245 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
247 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
248 struct kobj_attribute *attr,
249 const char *buf, size_t count)
252 unsigned long max_ptes_none;
254 err = kstrtoul(buf, 10, &max_ptes_none);
255 if (err || max_ptes_none > HPAGE_PMD_NR-1)
258 khugepaged_max_ptes_none = max_ptes_none;
262 static struct kobj_attribute khugepaged_max_ptes_none_attr =
263 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
264 khugepaged_max_ptes_none_store);
266 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
267 struct kobj_attribute *attr,
270 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
273 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
274 struct kobj_attribute *attr,
275 const char *buf, size_t count)
278 unsigned long max_ptes_swap;
280 err = kstrtoul(buf, 10, &max_ptes_swap);
281 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
284 khugepaged_max_ptes_swap = max_ptes_swap;
289 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
290 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
291 khugepaged_max_ptes_swap_store);
293 static struct attribute *khugepaged_attr[] = {
294 &khugepaged_defrag_attr.attr,
295 &khugepaged_max_ptes_none_attr.attr,
296 &pages_to_scan_attr.attr,
297 &pages_collapsed_attr.attr,
298 &full_scans_attr.attr,
299 &scan_sleep_millisecs_attr.attr,
300 &alloc_sleep_millisecs_attr.attr,
301 &khugepaged_max_ptes_swap_attr.attr,
305 struct attribute_group khugepaged_attr_group = {
306 .attrs = khugepaged_attr,
307 .name = "khugepaged",
309 #endif /* CONFIG_SYSFS */
311 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
313 int hugepage_madvise(struct vm_area_struct *vma,
314 unsigned long *vm_flags, int advice)
320 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
321 * can't handle this properly after s390_enable_sie, so we simply
322 * ignore the madvise to prevent qemu from causing a SIGSEGV.
324 if (mm_has_pgste(vma->vm_mm))
327 *vm_flags &= ~VM_NOHUGEPAGE;
328 *vm_flags |= VM_HUGEPAGE;
330 * If the vma become good for khugepaged to scan,
331 * register it here without waiting a page fault that
332 * may not happen any time soon.
334 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
335 khugepaged_enter_vma_merge(vma, *vm_flags))
338 case MADV_NOHUGEPAGE:
339 *vm_flags &= ~VM_HUGEPAGE;
340 *vm_flags |= VM_NOHUGEPAGE;
342 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
343 * this vma even if we leave the mm registered in khugepaged if
344 * it got registered before VM_NOHUGEPAGE was set.
352 int __init khugepaged_init(void)
354 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
355 sizeof(struct mm_slot),
356 __alignof__(struct mm_slot), 0, NULL);
360 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
361 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
362 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
367 void __init khugepaged_destroy(void)
369 kmem_cache_destroy(mm_slot_cache);
372 static inline struct mm_slot *alloc_mm_slot(void)
374 if (!mm_slot_cache) /* initialization failed */
376 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
379 static inline void free_mm_slot(struct mm_slot *mm_slot)
381 kmem_cache_free(mm_slot_cache, mm_slot);
384 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
386 struct mm_slot *mm_slot;
388 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
389 if (mm == mm_slot->mm)
395 static void insert_to_mm_slots_hash(struct mm_struct *mm,
396 struct mm_slot *mm_slot)
399 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
402 static inline int khugepaged_test_exit(struct mm_struct *mm)
404 return atomic_read(&mm->mm_users) == 0;
407 static bool hugepage_vma_check(struct vm_area_struct *vma,
408 unsigned long vm_flags)
410 if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
411 (vm_flags & VM_NOHUGEPAGE) ||
412 test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
415 if (shmem_file(vma->vm_file) ||
416 (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
418 (vm_flags & VM_DENYWRITE))) {
419 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
421 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
424 if (!vma->anon_vma || vma->vm_ops)
426 if (is_vma_temporary_stack(vma))
428 return !(vm_flags & VM_NO_KHUGEPAGED);
431 int __khugepaged_enter(struct mm_struct *mm)
433 struct mm_slot *mm_slot;
436 mm_slot = alloc_mm_slot();
440 /* __khugepaged_exit() must not run from under us */
441 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
442 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
443 free_mm_slot(mm_slot);
447 spin_lock(&khugepaged_mm_lock);
448 insert_to_mm_slots_hash(mm, mm_slot);
450 * Insert just behind the scanning cursor, to let the area settle
453 wakeup = list_empty(&khugepaged_scan.mm_head);
454 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
455 spin_unlock(&khugepaged_mm_lock);
459 wake_up_interruptible(&khugepaged_wait);
464 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
465 unsigned long vm_flags)
467 unsigned long hstart, hend;
470 * khugepaged only supports read-only files for non-shmem files.
471 * khugepaged does not yet work on special mappings. And
472 * file-private shmem THP is not supported.
474 if (!hugepage_vma_check(vma, vm_flags))
477 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
478 hend = vma->vm_end & HPAGE_PMD_MASK;
480 return khugepaged_enter(vma, vm_flags);
484 void __khugepaged_exit(struct mm_struct *mm)
486 struct mm_slot *mm_slot;
489 spin_lock(&khugepaged_mm_lock);
490 mm_slot = get_mm_slot(mm);
491 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
492 hash_del(&mm_slot->hash);
493 list_del(&mm_slot->mm_node);
496 spin_unlock(&khugepaged_mm_lock);
499 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
500 free_mm_slot(mm_slot);
502 } else if (mm_slot) {
504 * This is required to serialize against
505 * khugepaged_test_exit() (which is guaranteed to run
506 * under mmap sem read mode). Stop here (after we
507 * return all pagetables will be destroyed) until
508 * khugepaged has finished working on the pagetables
509 * under the mmap_sem.
511 down_write(&mm->mmap_sem);
512 up_write(&mm->mmap_sem);
516 static void release_pte_page(struct page *page)
518 dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
520 putback_lru_page(page);
523 static void release_pte_pages(pte_t *pte, pte_t *_pte)
525 while (--_pte >= pte) {
526 pte_t pteval = *_pte;
527 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
528 release_pte_page(pte_page(pteval));
532 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
533 unsigned long address,
536 struct page *page = NULL;
538 int none_or_zero = 0, result = 0, referenced = 0;
539 bool writable = false;
541 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
542 _pte++, address += PAGE_SIZE) {
543 pte_t pteval = *_pte;
544 if (pte_none(pteval) || (pte_present(pteval) &&
545 is_zero_pfn(pte_pfn(pteval)))) {
546 if (!userfaultfd_armed(vma) &&
547 ++none_or_zero <= khugepaged_max_ptes_none) {
550 result = SCAN_EXCEED_NONE_PTE;
554 if (!pte_present(pteval)) {
555 result = SCAN_PTE_NON_PRESENT;
558 page = vm_normal_page(vma, address, pteval);
559 if (unlikely(!page)) {
560 result = SCAN_PAGE_NULL;
564 /* TODO: teach khugepaged to collapse THP mapped with pte */
565 if (PageCompound(page)) {
566 result = SCAN_PAGE_COMPOUND;
570 VM_BUG_ON_PAGE(!PageAnon(page), page);
573 * We can do it before isolate_lru_page because the
574 * page can't be freed from under us. NOTE: PG_lock
575 * is needed to serialize against split_huge_page
576 * when invoked from the VM.
578 if (!trylock_page(page)) {
579 result = SCAN_PAGE_LOCK;
584 * cannot use mapcount: can't collapse if there's a gup pin.
585 * The page must only be referenced by the scanned process
586 * and page swap cache.
588 if (page_count(page) != 1 + PageSwapCache(page)) {
590 result = SCAN_PAGE_COUNT;
593 if (pte_write(pteval)) {
596 if (PageSwapCache(page) &&
597 !reuse_swap_page(page, NULL)) {
599 result = SCAN_SWAP_CACHE_PAGE;
603 * Page is not in the swap cache. It can be collapsed
609 * Isolate the page to avoid collapsing an hugepage
610 * currently in use by the VM.
612 if (isolate_lru_page(page)) {
614 result = SCAN_DEL_PAGE_LRU;
617 inc_node_page_state(page,
618 NR_ISOLATED_ANON + page_is_file_cache(page));
619 VM_BUG_ON_PAGE(!PageLocked(page), page);
620 VM_BUG_ON_PAGE(PageLRU(page), page);
622 /* There should be enough young pte to collapse the page */
623 if (pte_young(pteval) ||
624 page_is_young(page) || PageReferenced(page) ||
625 mmu_notifier_test_young(vma->vm_mm, address))
628 if (likely(writable)) {
629 if (likely(referenced)) {
630 result = SCAN_SUCCEED;
631 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
632 referenced, writable, result);
636 result = SCAN_PAGE_RO;
640 release_pte_pages(pte, _pte);
641 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
642 referenced, writable, result);
646 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
647 struct vm_area_struct *vma,
648 unsigned long address,
652 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
653 _pte++, page++, address += PAGE_SIZE) {
654 pte_t pteval = *_pte;
655 struct page *src_page;
657 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
658 clear_user_highpage(page, address);
659 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
660 if (is_zero_pfn(pte_pfn(pteval))) {
662 * ptl mostly unnecessary.
666 * paravirt calls inside pte_clear here are
669 pte_clear(vma->vm_mm, address, _pte);
673 src_page = pte_page(pteval);
674 copy_user_highpage(page, src_page, address, vma);
675 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
676 release_pte_page(src_page);
678 * ptl mostly unnecessary, but preempt has to
679 * be disabled to update the per-cpu stats
680 * inside page_remove_rmap().
684 * paravirt calls inside pte_clear here are
687 pte_clear(vma->vm_mm, address, _pte);
688 page_remove_rmap(src_page, false);
690 free_page_and_swap_cache(src_page);
695 static void khugepaged_alloc_sleep(void)
699 add_wait_queue(&khugepaged_wait, &wait);
700 freezable_schedule_timeout_interruptible(
701 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
702 remove_wait_queue(&khugepaged_wait, &wait);
705 static int khugepaged_node_load[MAX_NUMNODES];
707 static bool khugepaged_scan_abort(int nid)
712 * If node_reclaim_mode is disabled, then no extra effort is made to
713 * allocate memory locally.
715 if (!node_reclaim_mode)
718 /* If there is a count for this node already, it must be acceptable */
719 if (khugepaged_node_load[nid])
722 for (i = 0; i < MAX_NUMNODES; i++) {
723 if (!khugepaged_node_load[i])
725 if (node_distance(nid, i) > node_reclaim_distance)
731 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
732 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
734 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
738 static int khugepaged_find_target_node(void)
740 static int last_khugepaged_target_node = NUMA_NO_NODE;
741 int nid, target_node = 0, max_value = 0;
743 /* find first node with max normal pages hit */
744 for (nid = 0; nid < MAX_NUMNODES; nid++)
745 if (khugepaged_node_load[nid] > max_value) {
746 max_value = khugepaged_node_load[nid];
750 /* do some balance if several nodes have the same hit record */
751 if (target_node <= last_khugepaged_target_node)
752 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
754 if (max_value == khugepaged_node_load[nid]) {
759 last_khugepaged_target_node = target_node;
763 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
765 if (IS_ERR(*hpage)) {
771 khugepaged_alloc_sleep();
781 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
783 VM_BUG_ON_PAGE(*hpage, *hpage);
785 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
786 if (unlikely(!*hpage)) {
787 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
788 *hpage = ERR_PTR(-ENOMEM);
792 prep_transhuge_page(*hpage);
793 count_vm_event(THP_COLLAPSE_ALLOC);
797 static int khugepaged_find_target_node(void)
802 static inline struct page *alloc_khugepaged_hugepage(void)
806 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
809 prep_transhuge_page(page);
813 static struct page *khugepaged_alloc_hugepage(bool *wait)
818 hpage = alloc_khugepaged_hugepage();
820 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
825 khugepaged_alloc_sleep();
827 count_vm_event(THP_COLLAPSE_ALLOC);
828 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
833 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
836 *hpage = khugepaged_alloc_hugepage(wait);
838 if (unlikely(!*hpage))
845 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
854 * If mmap_sem temporarily dropped, revalidate vma
855 * before taking mmap_sem.
856 * Return 0 if succeeds, otherwise return none-zero
860 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
861 struct vm_area_struct **vmap)
863 struct vm_area_struct *vma;
864 unsigned long hstart, hend;
866 if (unlikely(khugepaged_test_exit(mm)))
867 return SCAN_ANY_PROCESS;
869 *vmap = vma = find_vma(mm, address);
871 return SCAN_VMA_NULL;
873 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
874 hend = vma->vm_end & HPAGE_PMD_MASK;
875 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
876 return SCAN_ADDRESS_RANGE;
877 if (!hugepage_vma_check(vma, vma->vm_flags))
878 return SCAN_VMA_CHECK;
883 * Bring missing pages in from swap, to complete THP collapse.
884 * Only done if khugepaged_scan_pmd believes it is worthwhile.
886 * Called and returns without pte mapped or spinlocks held,
887 * but with mmap_sem held to protect against vma changes.
890 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
891 struct vm_area_struct *vma,
892 unsigned long address, pmd_t *pmd,
897 struct vm_fault vmf = {
900 .flags = FAULT_FLAG_ALLOW_RETRY,
902 .pgoff = linear_page_index(vma, address),
905 /* we only decide to swapin, if there is enough young ptes */
906 if (referenced < HPAGE_PMD_NR/2) {
907 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
910 vmf.pte = pte_offset_map(pmd, address);
911 for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
912 vmf.pte++, vmf.address += PAGE_SIZE) {
913 vmf.orig_pte = *vmf.pte;
914 if (!is_swap_pte(vmf.orig_pte))
917 ret = do_swap_page(&vmf);
919 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
920 if (ret & VM_FAULT_RETRY) {
921 down_read(&mm->mmap_sem);
922 if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
923 /* vma is no longer available, don't continue to swapin */
924 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
927 /* check if the pmd is still valid */
928 if (mm_find_pmd(mm, address) != pmd) {
929 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
933 if (ret & VM_FAULT_ERROR) {
934 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
937 /* pte is unmapped now, we need to map it */
938 vmf.pte = pte_offset_map(pmd, vmf.address);
942 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
946 static void collapse_huge_page(struct mm_struct *mm,
947 unsigned long address,
949 int node, int referenced)
954 struct page *new_page;
955 spinlock_t *pmd_ptl, *pte_ptl;
956 int isolated = 0, result = 0;
957 struct mem_cgroup *memcg;
958 struct vm_area_struct *vma;
959 struct mmu_notifier_range range;
962 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
964 /* Only allocate from the target node */
965 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
968 * Before allocating the hugepage, release the mmap_sem read lock.
969 * The allocation can take potentially a long time if it involves
970 * sync compaction, and we do not need to hold the mmap_sem during
971 * that. We will recheck the vma after taking it again in write mode.
973 up_read(&mm->mmap_sem);
974 new_page = khugepaged_alloc_page(hpage, gfp, node);
976 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
980 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
981 result = SCAN_CGROUP_CHARGE_FAIL;
985 down_read(&mm->mmap_sem);
986 result = hugepage_vma_revalidate(mm, address, &vma);
988 mem_cgroup_cancel_charge(new_page, memcg, true);
989 up_read(&mm->mmap_sem);
993 pmd = mm_find_pmd(mm, address);
995 result = SCAN_PMD_NULL;
996 mem_cgroup_cancel_charge(new_page, memcg, true);
997 up_read(&mm->mmap_sem);
1002 * __collapse_huge_page_swapin always returns with mmap_sem locked.
1003 * If it fails, we release mmap_sem and jump out_nolock.
1004 * Continuing to collapse causes inconsistency.
1006 if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1007 mem_cgroup_cancel_charge(new_page, memcg, true);
1008 up_read(&mm->mmap_sem);
1012 up_read(&mm->mmap_sem);
1014 * Prevent all access to pagetables with the exception of
1015 * gup_fast later handled by the ptep_clear_flush and the VM
1016 * handled by the anon_vma lock + PG_lock.
1018 down_write(&mm->mmap_sem);
1019 result = SCAN_ANY_PROCESS;
1020 if (!mmget_still_valid(mm))
1022 result = hugepage_vma_revalidate(mm, address, &vma);
1025 /* check if the pmd is still valid */
1026 if (mm_find_pmd(mm, address) != pmd)
1029 anon_vma_lock_write(vma->anon_vma);
1031 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1032 address, address + HPAGE_PMD_SIZE);
1033 mmu_notifier_invalidate_range_start(&range);
1035 pte = pte_offset_map(pmd, address);
1036 pte_ptl = pte_lockptr(mm, pmd);
1038 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1040 * After this gup_fast can't run anymore. This also removes
1041 * any huge TLB entry from the CPU so we won't allow
1042 * huge and small TLB entries for the same virtual address
1043 * to avoid the risk of CPU bugs in that area.
1045 _pmd = pmdp_collapse_flush(vma, address, pmd);
1046 spin_unlock(pmd_ptl);
1047 mmu_notifier_invalidate_range_end(&range);
1050 isolated = __collapse_huge_page_isolate(vma, address, pte);
1051 spin_unlock(pte_ptl);
1053 if (unlikely(!isolated)) {
1056 BUG_ON(!pmd_none(*pmd));
1058 * We can only use set_pmd_at when establishing
1059 * hugepmds and never for establishing regular pmds that
1060 * points to regular pagetables. Use pmd_populate for that
1062 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1063 spin_unlock(pmd_ptl);
1064 anon_vma_unlock_write(vma->anon_vma);
1070 * All pages are isolated and locked so anon_vma rmap
1071 * can't run anymore.
1073 anon_vma_unlock_write(vma->anon_vma);
1075 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1077 __SetPageUptodate(new_page);
1078 pgtable = pmd_pgtable(_pmd);
1080 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1081 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1084 * spin_lock() below is not the equivalent of smp_wmb(), so
1085 * this is needed to avoid the copy_huge_page writes to become
1086 * visible after the set_pmd_at() write.
1091 BUG_ON(!pmd_none(*pmd));
1092 page_add_new_anon_rmap(new_page, vma, address, true);
1093 mem_cgroup_commit_charge(new_page, memcg, false, true);
1094 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1095 lru_cache_add_active_or_unevictable(new_page, vma);
1096 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1097 set_pmd_at(mm, address, pmd, _pmd);
1098 update_mmu_cache_pmd(vma, address, pmd);
1099 spin_unlock(pmd_ptl);
1103 khugepaged_pages_collapsed++;
1104 result = SCAN_SUCCEED;
1106 up_write(&mm->mmap_sem);
1108 trace_mm_collapse_huge_page(mm, isolated, result);
1111 mem_cgroup_cancel_charge(new_page, memcg, true);
1115 static int khugepaged_scan_pmd(struct mm_struct *mm,
1116 struct vm_area_struct *vma,
1117 unsigned long address,
1118 struct page **hpage)
1122 int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1123 struct page *page = NULL;
1124 unsigned long _address;
1126 int node = NUMA_NO_NODE, unmapped = 0;
1127 bool writable = false;
1129 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1131 pmd = mm_find_pmd(mm, address);
1133 result = SCAN_PMD_NULL;
1137 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1138 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1139 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1140 _pte++, _address += PAGE_SIZE) {
1141 pte_t pteval = *_pte;
1142 if (is_swap_pte(pteval)) {
1143 if (++unmapped <= khugepaged_max_ptes_swap) {
1146 result = SCAN_EXCEED_SWAP_PTE;
1150 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1151 if (!userfaultfd_armed(vma) &&
1152 ++none_or_zero <= khugepaged_max_ptes_none) {
1155 result = SCAN_EXCEED_NONE_PTE;
1159 if (!pte_present(pteval)) {
1160 result = SCAN_PTE_NON_PRESENT;
1163 if (pte_write(pteval))
1166 page = vm_normal_page(vma, _address, pteval);
1167 if (unlikely(!page)) {
1168 result = SCAN_PAGE_NULL;
1172 /* TODO: teach khugepaged to collapse THP mapped with pte */
1173 if (PageCompound(page)) {
1174 result = SCAN_PAGE_COMPOUND;
1179 * Record which node the original page is from and save this
1180 * information to khugepaged_node_load[].
1181 * Khupaged will allocate hugepage from the node has the max
1184 node = page_to_nid(page);
1185 if (khugepaged_scan_abort(node)) {
1186 result = SCAN_SCAN_ABORT;
1189 khugepaged_node_load[node]++;
1190 if (!PageLRU(page)) {
1191 result = SCAN_PAGE_LRU;
1194 if (PageLocked(page)) {
1195 result = SCAN_PAGE_LOCK;
1198 if (!PageAnon(page)) {
1199 result = SCAN_PAGE_ANON;
1204 * cannot use mapcount: can't collapse if there's a gup pin.
1205 * The page must only be referenced by the scanned process
1206 * and page swap cache.
1208 if (page_count(page) != 1 + PageSwapCache(page)) {
1209 result = SCAN_PAGE_COUNT;
1212 if (pte_young(pteval) ||
1213 page_is_young(page) || PageReferenced(page) ||
1214 mmu_notifier_test_young(vma->vm_mm, address))
1219 result = SCAN_SUCCEED;
1222 result = SCAN_LACK_REFERENCED_PAGE;
1225 result = SCAN_PAGE_RO;
1228 pte_unmap_unlock(pte, ptl);
1230 node = khugepaged_find_target_node();
1231 /* collapse_huge_page will return with the mmap_sem released */
1232 collapse_huge_page(mm, address, hpage, node, referenced);
1235 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1236 none_or_zero, result, unmapped);
1240 static void collect_mm_slot(struct mm_slot *mm_slot)
1242 struct mm_struct *mm = mm_slot->mm;
1244 lockdep_assert_held(&khugepaged_mm_lock);
1246 if (khugepaged_test_exit(mm)) {
1248 hash_del(&mm_slot->hash);
1249 list_del(&mm_slot->mm_node);
1252 * Not strictly needed because the mm exited already.
1254 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1257 /* khugepaged_mm_lock actually not necessary for the below */
1258 free_mm_slot(mm_slot);
1263 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1265 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1266 * khugepaged should try to collapse the page table.
1268 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1271 struct mm_slot *mm_slot;
1273 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1275 spin_lock(&khugepaged_mm_lock);
1276 mm_slot = get_mm_slot(mm);
1277 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1278 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1279 spin_unlock(&khugepaged_mm_lock);
1284 * Try to collapse a pte-mapped THP for mm at address haddr.
1286 * This function checks whether all the PTEs in the PMD are pointing to the
1287 * right THP. If so, retract the page table so the THP can refault in with
1290 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1292 unsigned long haddr = addr & HPAGE_PMD_MASK;
1293 struct vm_area_struct *vma = find_vma(mm, haddr);
1294 struct page *hpage = NULL;
1295 pte_t *start_pte, *pte;
1301 if (!vma || !vma->vm_file ||
1302 vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1306 * This vm_flags may not have VM_HUGEPAGE if the page was not
1307 * collapsed by this mm. But we can still collapse if the page is
1308 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1309 * will not fail the vma for missing VM_HUGEPAGE
1311 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1314 pmd = mm_find_pmd(mm, haddr);
1318 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1320 /* step 1: check all mapped PTEs are to the right huge page */
1321 for (i = 0, addr = haddr, pte = start_pte;
1322 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1325 /* empty pte, skip */
1329 /* page swapped out, abort */
1330 if (!pte_present(*pte))
1333 page = vm_normal_page(vma, addr, *pte);
1335 if (!page || !PageCompound(page))
1339 hpage = compound_head(page);
1341 * The mapping of the THP should not change.
1343 * Note that uprobe, debugger, or MAP_PRIVATE may
1344 * change the page table, but the new page will
1345 * not pass PageCompound() check.
1347 if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping))
1352 * Confirm the page maps to the correct subpage.
1354 * Note that uprobe, debugger, or MAP_PRIVATE may change
1355 * the page table, but the new page will not pass
1356 * PageCompound() check.
1358 if (WARN_ON(hpage + i != page))
1363 /* step 2: adjust rmap */
1364 for (i = 0, addr = haddr, pte = start_pte;
1365 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1370 page = vm_normal_page(vma, addr, *pte);
1371 page_remove_rmap(page, false);
1374 pte_unmap_unlock(start_pte, ptl);
1376 /* step 3: set proper refcount and mm_counters. */
1378 page_ref_sub(hpage, count);
1379 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1382 /* step 4: collapse pmd */
1383 ptl = pmd_lock(vma->vm_mm, pmd);
1384 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1387 pte_free(mm, pmd_pgtable(_pmd));
1391 pte_unmap_unlock(start_pte, ptl);
1394 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1396 struct mm_struct *mm = mm_slot->mm;
1399 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1402 if (!down_write_trylock(&mm->mmap_sem))
1405 if (unlikely(khugepaged_test_exit(mm)))
1408 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1409 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1412 mm_slot->nr_pte_mapped_thp = 0;
1413 up_write(&mm->mmap_sem);
1417 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1419 struct vm_area_struct *vma;
1423 i_mmap_lock_write(mapping);
1424 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1426 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1427 * got written to. These VMAs are likely not worth investing
1428 * down_write(mmap_sem) as PMD-mapping is likely to be split
1431 * Not that vma->anon_vma check is racy: it can be set up after
1432 * the check but before we took mmap_sem by the fault path.
1433 * But page lock would prevent establishing any new ptes of the
1434 * page, so we are safe.
1436 * An alternative would be drop the check, but check that page
1437 * table is clear before calling pmdp_collapse_flush() under
1438 * ptl. It has higher chance to recover THP for the VMA, but
1439 * has higher cost too.
1443 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1444 if (addr & ~HPAGE_PMD_MASK)
1446 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1448 pmd = mm_find_pmd(vma->vm_mm, addr);
1452 * We need exclusive mmap_sem to retract page table.
1454 * We use trylock due to lock inversion: we need to acquire
1455 * mmap_sem while holding page lock. Fault path does it in
1456 * reverse order. Trylock is a way to avoid deadlock.
1458 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1459 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1460 /* assume page table is clear */
1461 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1463 up_write(&vma->vm_mm->mmap_sem);
1464 mm_dec_nr_ptes(vma->vm_mm);
1465 pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1467 /* Try again later */
1468 khugepaged_add_pte_mapped_thp(vma->vm_mm, addr);
1471 i_mmap_unlock_write(mapping);
1475 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1477 * Basic scheme is simple, details are more complex:
1478 * - allocate and lock a new huge page;
1479 * - scan page cache replacing old pages with the new one
1480 * + swap/gup in pages if necessary;
1482 * + keep old pages around in case rollback is required;
1483 * - if replacing succeeds:
1486 * + unlock huge page;
1487 * - if replacing failed;
1488 * + put all pages back and unfreeze them;
1489 * + restore gaps in the page cache;
1490 * + unlock and free huge page;
1492 static void collapse_file(struct mm_struct *mm,
1493 struct file *file, pgoff_t start,
1494 struct page **hpage, int node)
1496 struct address_space *mapping = file->f_mapping;
1498 struct page *new_page;
1499 struct mem_cgroup *memcg;
1500 pgoff_t index, end = start + HPAGE_PMD_NR;
1501 LIST_HEAD(pagelist);
1502 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1503 int nr_none = 0, result = SCAN_SUCCEED;
1504 bool is_shmem = shmem_file(file);
1506 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1507 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1509 /* Only allocate from the target node */
1510 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1512 new_page = khugepaged_alloc_page(hpage, gfp, node);
1514 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1518 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1519 result = SCAN_CGROUP_CHARGE_FAIL;
1523 /* This will be less messy when we use multi-index entries */
1526 xas_create_range(&xas);
1527 if (!xas_error(&xas))
1529 xas_unlock_irq(&xas);
1530 if (!xas_nomem(&xas, GFP_KERNEL)) {
1531 mem_cgroup_cancel_charge(new_page, memcg, true);
1537 __SetPageLocked(new_page);
1539 __SetPageSwapBacked(new_page);
1540 new_page->index = start;
1541 new_page->mapping = mapping;
1544 * At this point the new_page is locked and not up-to-date.
1545 * It's safe to insert it into the page cache, because nobody would
1546 * be able to map it or use it in another way until we unlock it.
1549 xas_set(&xas, start);
1550 for (index = start; index < end; index++) {
1551 struct page *page = xas_next(&xas);
1553 VM_BUG_ON(index != xas.xa_index);
1557 * Stop if extent has been truncated or
1558 * hole-punched, and is now completely
1561 if (index == start) {
1562 if (!xas_next_entry(&xas, end - 1)) {
1563 result = SCAN_TRUNCATED;
1566 xas_set(&xas, index);
1568 if (!shmem_charge(mapping->host, 1)) {
1572 xas_store(&xas, new_page);
1577 if (xa_is_value(page) || !PageUptodate(page)) {
1578 xas_unlock_irq(&xas);
1579 /* swap in or instantiate fallocated page */
1580 if (shmem_getpage(mapping->host, index, &page,
1585 } else if (trylock_page(page)) {
1587 xas_unlock_irq(&xas);
1589 result = SCAN_PAGE_LOCK;
1592 } else { /* !is_shmem */
1593 if (!page || xa_is_value(page)) {
1594 xas_unlock_irq(&xas);
1595 page_cache_sync_readahead(mapping, &file->f_ra,
1598 /* drain pagevecs to help isolate_lru_page() */
1600 page = find_lock_page(mapping, index);
1601 if (unlikely(page == NULL)) {
1605 } else if (PageDirty(page)) {
1607 * khugepaged only works on read-only fd,
1608 * so this page is dirty because it hasn't
1609 * been flushed since first write. There
1610 * won't be new dirty pages.
1612 * Trigger async flush here and hope the
1613 * writeback is done when khugepaged
1614 * revisits this page.
1616 * This is a one-off situation. We are not
1617 * forcing writeback in loop.
1619 xas_unlock_irq(&xas);
1620 filemap_flush(mapping);
1623 } else if (trylock_page(page)) {
1625 xas_unlock_irq(&xas);
1627 result = SCAN_PAGE_LOCK;
1633 * The page must be locked, so we can drop the i_pages lock
1634 * without racing with truncate.
1636 VM_BUG_ON_PAGE(!PageLocked(page), page);
1638 /* make sure the page is up to date */
1639 if (unlikely(!PageUptodate(page))) {
1645 * If file was truncated then extended, or hole-punched, before
1646 * we locked the first page, then a THP might be there already.
1648 if (PageTransCompound(page)) {
1649 result = SCAN_PAGE_COMPOUND;
1653 if (page_mapping(page) != mapping) {
1654 result = SCAN_TRUNCATED;
1658 if (!is_shmem && PageDirty(page)) {
1660 * khugepaged only works on read-only fd, so this
1661 * page is dirty because it hasn't been flushed
1662 * since first write.
1668 if (isolate_lru_page(page)) {
1669 result = SCAN_DEL_PAGE_LRU;
1673 if (page_has_private(page) &&
1674 !try_to_release_page(page, GFP_KERNEL)) {
1675 result = SCAN_PAGE_HAS_PRIVATE;
1679 if (page_mapped(page))
1680 unmap_mapping_pages(mapping, index, 1, false);
1683 xas_set(&xas, index);
1685 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1686 VM_BUG_ON_PAGE(page_mapped(page), page);
1689 * The page is expected to have page_count() == 3:
1690 * - we hold a pin on it;
1691 * - one reference from page cache;
1692 * - one from isolate_lru_page;
1694 if (!page_ref_freeze(page, 3)) {
1695 result = SCAN_PAGE_COUNT;
1696 xas_unlock_irq(&xas);
1697 putback_lru_page(page);
1702 * Add the page to the list to be able to undo the collapse if
1703 * something go wrong.
1705 list_add_tail(&page->lru, &pagelist);
1707 /* Finally, replace with the new page. */
1708 xas_store(&xas, new_page);
1717 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1719 __inc_node_page_state(new_page, NR_FILE_THPS);
1720 filemap_nr_thps_inc(mapping);
1724 struct zone *zone = page_zone(new_page);
1726 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1728 __mod_node_page_state(zone->zone_pgdat,
1733 xas_unlock_irq(&xas);
1736 if (result == SCAN_SUCCEED) {
1737 struct page *page, *tmp;
1740 * Replacing old pages with new one has succeeded, now we
1741 * need to copy the content and free the old pages.
1744 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1745 while (index < page->index) {
1746 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1749 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1751 list_del(&page->lru);
1752 page->mapping = NULL;
1753 page_ref_unfreeze(page, 1);
1754 ClearPageActive(page);
1755 ClearPageUnevictable(page);
1760 while (index < end) {
1761 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1765 SetPageUptodate(new_page);
1766 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1767 mem_cgroup_commit_charge(new_page, memcg, false, true);
1770 set_page_dirty(new_page);
1771 lru_cache_add_anon(new_page);
1773 lru_cache_add_file(new_page);
1775 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1778 * Remove pte page tables, so we can re-fault the page as huge.
1780 retract_page_tables(mapping, start);
1783 khugepaged_pages_collapsed++;
1787 /* Something went wrong: roll back page cache changes */
1789 mapping->nrpages -= nr_none;
1792 shmem_uncharge(mapping->host, nr_none);
1794 xas_set(&xas, start);
1795 xas_for_each(&xas, page, end - 1) {
1796 page = list_first_entry_or_null(&pagelist,
1798 if (!page || xas.xa_index < page->index) {
1802 /* Put holes back where they were */
1803 xas_store(&xas, NULL);
1807 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1809 /* Unfreeze the page. */
1810 list_del(&page->lru);
1811 page_ref_unfreeze(page, 2);
1812 xas_store(&xas, page);
1814 xas_unlock_irq(&xas);
1816 putback_lru_page(page);
1820 xas_unlock_irq(&xas);
1822 mem_cgroup_cancel_charge(new_page, memcg, true);
1823 new_page->mapping = NULL;
1826 unlock_page(new_page);
1828 VM_BUG_ON(!list_empty(&pagelist));
1829 /* TODO: tracepoints */
1832 static void khugepaged_scan_file(struct mm_struct *mm,
1833 struct file *file, pgoff_t start, struct page **hpage)
1835 struct page *page = NULL;
1836 struct address_space *mapping = file->f_mapping;
1837 XA_STATE(xas, &mapping->i_pages, start);
1839 int node = NUMA_NO_NODE;
1840 int result = SCAN_SUCCEED;
1844 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1846 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1847 if (xas_retry(&xas, page))
1850 if (xa_is_value(page)) {
1851 if (++swap > khugepaged_max_ptes_swap) {
1852 result = SCAN_EXCEED_SWAP_PTE;
1858 if (PageTransCompound(page)) {
1859 result = SCAN_PAGE_COMPOUND;
1863 node = page_to_nid(page);
1864 if (khugepaged_scan_abort(node)) {
1865 result = SCAN_SCAN_ABORT;
1868 khugepaged_node_load[node]++;
1870 if (!PageLRU(page)) {
1871 result = SCAN_PAGE_LRU;
1875 if (page_count(page) !=
1876 1 + page_mapcount(page) + page_has_private(page)) {
1877 result = SCAN_PAGE_COUNT;
1882 * We probably should check if the page is referenced here, but
1883 * nobody would transfer pte_young() to PageReferenced() for us.
1884 * And rmap walk here is just too costly...
1889 if (need_resched()) {
1896 if (result == SCAN_SUCCEED) {
1897 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1898 result = SCAN_EXCEED_NONE_PTE;
1900 node = khugepaged_find_target_node();
1901 collapse_file(mm, file, start, hpage, node);
1905 /* TODO: tracepoints */
1908 static void khugepaged_scan_file(struct mm_struct *mm,
1909 struct file *file, pgoff_t start, struct page **hpage)
1914 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1920 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1921 struct page **hpage)
1922 __releases(&khugepaged_mm_lock)
1923 __acquires(&khugepaged_mm_lock)
1925 struct mm_slot *mm_slot;
1926 struct mm_struct *mm;
1927 struct vm_area_struct *vma;
1931 lockdep_assert_held(&khugepaged_mm_lock);
1933 if (khugepaged_scan.mm_slot)
1934 mm_slot = khugepaged_scan.mm_slot;
1936 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1937 struct mm_slot, mm_node);
1938 khugepaged_scan.address = 0;
1939 khugepaged_scan.mm_slot = mm_slot;
1941 spin_unlock(&khugepaged_mm_lock);
1942 khugepaged_collapse_pte_mapped_thps(mm_slot);
1946 * Don't wait for semaphore (to avoid long wait times). Just move to
1947 * the next mm on the list.
1950 if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1951 goto breakouterloop_mmap_sem;
1952 if (likely(!khugepaged_test_exit(mm)))
1953 vma = find_vma(mm, khugepaged_scan.address);
1956 for (; vma; vma = vma->vm_next) {
1957 unsigned long hstart, hend;
1960 if (unlikely(khugepaged_test_exit(mm))) {
1964 if (!hugepage_vma_check(vma, vma->vm_flags)) {
1969 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1970 hend = vma->vm_end & HPAGE_PMD_MASK;
1973 if (khugepaged_scan.address > hend)
1975 if (khugepaged_scan.address < hstart)
1976 khugepaged_scan.address = hstart;
1977 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1979 while (khugepaged_scan.address < hend) {
1982 if (unlikely(khugepaged_test_exit(mm)))
1983 goto breakouterloop;
1985 VM_BUG_ON(khugepaged_scan.address < hstart ||
1986 khugepaged_scan.address + HPAGE_PMD_SIZE >
1988 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
1990 pgoff_t pgoff = linear_page_index(vma,
1991 khugepaged_scan.address);
1993 if (shmem_file(vma->vm_file)
1994 && !shmem_huge_enabled(vma))
1996 file = get_file(vma->vm_file);
1997 up_read(&mm->mmap_sem);
1999 khugepaged_scan_file(mm, file, pgoff, hpage);
2002 ret = khugepaged_scan_pmd(mm, vma,
2003 khugepaged_scan.address,
2006 /* move to next address */
2007 khugepaged_scan.address += HPAGE_PMD_SIZE;
2008 progress += HPAGE_PMD_NR;
2010 /* we released mmap_sem so break loop */
2011 goto breakouterloop_mmap_sem;
2012 if (progress >= pages)
2013 goto breakouterloop;
2017 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2018 breakouterloop_mmap_sem:
2020 spin_lock(&khugepaged_mm_lock);
2021 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2023 * Release the current mm_slot if this mm is about to die, or
2024 * if we scanned all vmas of this mm.
2026 if (khugepaged_test_exit(mm) || !vma) {
2028 * Make sure that if mm_users is reaching zero while
2029 * khugepaged runs here, khugepaged_exit will find
2030 * mm_slot not pointing to the exiting mm.
2032 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2033 khugepaged_scan.mm_slot = list_entry(
2034 mm_slot->mm_node.next,
2035 struct mm_slot, mm_node);
2036 khugepaged_scan.address = 0;
2038 khugepaged_scan.mm_slot = NULL;
2039 khugepaged_full_scans++;
2042 collect_mm_slot(mm_slot);
2048 static int khugepaged_has_work(void)
2050 return !list_empty(&khugepaged_scan.mm_head) &&
2051 khugepaged_enabled();
2054 static int khugepaged_wait_event(void)
2056 return !list_empty(&khugepaged_scan.mm_head) ||
2057 kthread_should_stop();
2060 static void khugepaged_do_scan(void)
2062 struct page *hpage = NULL;
2063 unsigned int progress = 0, pass_through_head = 0;
2064 unsigned int pages = khugepaged_pages_to_scan;
2067 barrier(); /* write khugepaged_pages_to_scan to local stack */
2069 while (progress < pages) {
2070 if (!khugepaged_prealloc_page(&hpage, &wait))
2075 if (unlikely(kthread_should_stop() || try_to_freeze()))
2078 spin_lock(&khugepaged_mm_lock);
2079 if (!khugepaged_scan.mm_slot)
2080 pass_through_head++;
2081 if (khugepaged_has_work() &&
2082 pass_through_head < 2)
2083 progress += khugepaged_scan_mm_slot(pages - progress,
2087 spin_unlock(&khugepaged_mm_lock);
2090 if (!IS_ERR_OR_NULL(hpage))
2094 static bool khugepaged_should_wakeup(void)
2096 return kthread_should_stop() ||
2097 time_after_eq(jiffies, khugepaged_sleep_expire);
2100 static void khugepaged_wait_work(void)
2102 if (khugepaged_has_work()) {
2103 const unsigned long scan_sleep_jiffies =
2104 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2106 if (!scan_sleep_jiffies)
2109 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2110 wait_event_freezable_timeout(khugepaged_wait,
2111 khugepaged_should_wakeup(),
2112 scan_sleep_jiffies);
2116 if (khugepaged_enabled())
2117 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2120 static int khugepaged(void *none)
2122 struct mm_slot *mm_slot;
2125 set_user_nice(current, MAX_NICE);
2127 while (!kthread_should_stop()) {
2128 khugepaged_do_scan();
2129 khugepaged_wait_work();
2132 spin_lock(&khugepaged_mm_lock);
2133 mm_slot = khugepaged_scan.mm_slot;
2134 khugepaged_scan.mm_slot = NULL;
2136 collect_mm_slot(mm_slot);
2137 spin_unlock(&khugepaged_mm_lock);
2141 static void set_recommended_min_free_kbytes(void)
2145 unsigned long recommended_min;
2147 for_each_populated_zone(zone) {
2149 * We don't need to worry about fragmentation of
2150 * ZONE_MOVABLE since it only has movable pages.
2152 if (zone_idx(zone) > gfp_zone(GFP_USER))
2158 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2159 recommended_min = pageblock_nr_pages * nr_zones * 2;
2162 * Make sure that on average at least two pageblocks are almost free
2163 * of another type, one for a migratetype to fall back to and a
2164 * second to avoid subsequent fallbacks of other types There are 3
2165 * MIGRATE_TYPES we care about.
2167 recommended_min += pageblock_nr_pages * nr_zones *
2168 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2170 /* don't ever allow to reserve more than 5% of the lowmem */
2171 recommended_min = min(recommended_min,
2172 (unsigned long) nr_free_buffer_pages() / 20);
2173 recommended_min <<= (PAGE_SHIFT-10);
2175 if (recommended_min > min_free_kbytes) {
2176 if (user_min_free_kbytes >= 0)
2177 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2178 min_free_kbytes, recommended_min);
2180 min_free_kbytes = recommended_min;
2182 setup_per_zone_wmarks();
2185 int start_stop_khugepaged(void)
2187 static struct task_struct *khugepaged_thread __read_mostly;
2188 static DEFINE_MUTEX(khugepaged_mutex);
2191 mutex_lock(&khugepaged_mutex);
2192 if (khugepaged_enabled()) {
2193 if (!khugepaged_thread)
2194 khugepaged_thread = kthread_run(khugepaged, NULL,
2196 if (IS_ERR(khugepaged_thread)) {
2197 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2198 err = PTR_ERR(khugepaged_thread);
2199 khugepaged_thread = NULL;
2203 if (!list_empty(&khugepaged_scan.mm_head))
2204 wake_up_interruptible(&khugepaged_wait);
2206 set_recommended_min_free_kbytes();
2207 } else if (khugepaged_thread) {
2208 kthread_stop(khugepaged_thread);
2209 khugepaged_thread = NULL;
2212 mutex_unlock(&khugepaged_mutex);