net: hns: fix soft lockup when there is not enough memory
[platform/kernel/linux-rpi.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/swapops.h>
20 #include <linux/shmem_fs.h>
21
22 #include <asm/tlb.h>
23 #include <asm/pgalloc.h>
24 #include "internal.h"
25
26 enum scan_result {
27         SCAN_FAIL,
28         SCAN_SUCCEED,
29         SCAN_PMD_NULL,
30         SCAN_EXCEED_NONE_PTE,
31         SCAN_PTE_NON_PRESENT,
32         SCAN_PAGE_RO,
33         SCAN_LACK_REFERENCED_PAGE,
34         SCAN_PAGE_NULL,
35         SCAN_SCAN_ABORT,
36         SCAN_PAGE_COUNT,
37         SCAN_PAGE_LRU,
38         SCAN_PAGE_LOCK,
39         SCAN_PAGE_ANON,
40         SCAN_PAGE_COMPOUND,
41         SCAN_ANY_PROCESS,
42         SCAN_VMA_NULL,
43         SCAN_VMA_CHECK,
44         SCAN_ADDRESS_RANGE,
45         SCAN_SWAP_CACHE_PAGE,
46         SCAN_DEL_PAGE_LRU,
47         SCAN_ALLOC_HUGE_PAGE_FAIL,
48         SCAN_CGROUP_CHARGE_FAIL,
49         SCAN_EXCEED_SWAP_PTE,
50         SCAN_TRUNCATED,
51         SCAN_PAGE_HAS_PRIVATE,
52 };
53
54 #define CREATE_TRACE_POINTS
55 #include <trace/events/huge_memory.h>
56
57 /* default scan 8*512 pte (or vmas) every 30 second */
58 static unsigned int khugepaged_pages_to_scan __read_mostly;
59 static unsigned int khugepaged_pages_collapsed;
60 static unsigned int khugepaged_full_scans;
61 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
62 /* during fragmentation poll the hugepage allocator once every minute */
63 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
64 static unsigned long khugepaged_sleep_expire;
65 static DEFINE_SPINLOCK(khugepaged_mm_lock);
66 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
67 /*
68  * default collapse hugepages if there is at least one pte mapped like
69  * it would have happened if the vma was large enough during page
70  * fault.
71  */
72 static unsigned int khugepaged_max_ptes_none __read_mostly;
73 static unsigned int khugepaged_max_ptes_swap __read_mostly;
74
75 #define MM_SLOTS_HASH_BITS 10
76 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
77
78 static struct kmem_cache *mm_slot_cache __read_mostly;
79
80 #define MAX_PTE_MAPPED_THP 8
81
82 /**
83  * struct mm_slot - hash lookup from mm to mm_slot
84  * @hash: hash collision list
85  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
86  * @mm: the mm that this information is valid for
87  */
88 struct mm_slot {
89         struct hlist_node hash;
90         struct list_head mm_node;
91         struct mm_struct *mm;
92
93         /* pte-mapped THP in this mm */
94         int nr_pte_mapped_thp;
95         unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
96 };
97
98 /**
99  * struct khugepaged_scan - cursor for scanning
100  * @mm_head: the head of the mm list to scan
101  * @mm_slot: the current mm_slot we are scanning
102  * @address: the next address inside that to be scanned
103  *
104  * There is only the one khugepaged_scan instance of this cursor structure.
105  */
106 struct khugepaged_scan {
107         struct list_head mm_head;
108         struct mm_slot *mm_slot;
109         unsigned long address;
110 };
111
112 static struct khugepaged_scan khugepaged_scan = {
113         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
114 };
115
116 #ifdef CONFIG_SYSFS
117 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
118                                          struct kobj_attribute *attr,
119                                          char *buf)
120 {
121         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
122 }
123
124 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
125                                           struct kobj_attribute *attr,
126                                           const char *buf, size_t count)
127 {
128         unsigned long msecs;
129         int err;
130
131         err = kstrtoul(buf, 10, &msecs);
132         if (err || msecs > UINT_MAX)
133                 return -EINVAL;
134
135         khugepaged_scan_sleep_millisecs = msecs;
136         khugepaged_sleep_expire = 0;
137         wake_up_interruptible(&khugepaged_wait);
138
139         return count;
140 }
141 static struct kobj_attribute scan_sleep_millisecs_attr =
142         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
143                scan_sleep_millisecs_store);
144
145 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
146                                           struct kobj_attribute *attr,
147                                           char *buf)
148 {
149         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
150 }
151
152 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
153                                            struct kobj_attribute *attr,
154                                            const char *buf, size_t count)
155 {
156         unsigned long msecs;
157         int err;
158
159         err = kstrtoul(buf, 10, &msecs);
160         if (err || msecs > UINT_MAX)
161                 return -EINVAL;
162
163         khugepaged_alloc_sleep_millisecs = msecs;
164         khugepaged_sleep_expire = 0;
165         wake_up_interruptible(&khugepaged_wait);
166
167         return count;
168 }
169 static struct kobj_attribute alloc_sleep_millisecs_attr =
170         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
171                alloc_sleep_millisecs_store);
172
173 static ssize_t pages_to_scan_show(struct kobject *kobj,
174                                   struct kobj_attribute *attr,
175                                   char *buf)
176 {
177         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
178 }
179 static ssize_t pages_to_scan_store(struct kobject *kobj,
180                                    struct kobj_attribute *attr,
181                                    const char *buf, size_t count)
182 {
183         int err;
184         unsigned long pages;
185
186         err = kstrtoul(buf, 10, &pages);
187         if (err || !pages || pages > UINT_MAX)
188                 return -EINVAL;
189
190         khugepaged_pages_to_scan = pages;
191
192         return count;
193 }
194 static struct kobj_attribute pages_to_scan_attr =
195         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
196                pages_to_scan_store);
197
198 static ssize_t pages_collapsed_show(struct kobject *kobj,
199                                     struct kobj_attribute *attr,
200                                     char *buf)
201 {
202         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
203 }
204 static struct kobj_attribute pages_collapsed_attr =
205         __ATTR_RO(pages_collapsed);
206
207 static ssize_t full_scans_show(struct kobject *kobj,
208                                struct kobj_attribute *attr,
209                                char *buf)
210 {
211         return sprintf(buf, "%u\n", khugepaged_full_scans);
212 }
213 static struct kobj_attribute full_scans_attr =
214         __ATTR_RO(full_scans);
215
216 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
217                                       struct kobj_attribute *attr, char *buf)
218 {
219         return single_hugepage_flag_show(kobj, attr, buf,
220                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
221 }
222 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
223                                        struct kobj_attribute *attr,
224                                        const char *buf, size_t count)
225 {
226         return single_hugepage_flag_store(kobj, attr, buf, count,
227                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
228 }
229 static struct kobj_attribute khugepaged_defrag_attr =
230         __ATTR(defrag, 0644, khugepaged_defrag_show,
231                khugepaged_defrag_store);
232
233 /*
234  * max_ptes_none controls if khugepaged should collapse hugepages over
235  * any unmapped ptes in turn potentially increasing the memory
236  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
237  * reduce the available free memory in the system as it
238  * runs. Increasing max_ptes_none will instead potentially reduce the
239  * free memory in the system during the khugepaged scan.
240  */
241 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
242                                              struct kobj_attribute *attr,
243                                              char *buf)
244 {
245         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
246 }
247 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
248                                               struct kobj_attribute *attr,
249                                               const char *buf, size_t count)
250 {
251         int err;
252         unsigned long max_ptes_none;
253
254         err = kstrtoul(buf, 10, &max_ptes_none);
255         if (err || max_ptes_none > HPAGE_PMD_NR-1)
256                 return -EINVAL;
257
258         khugepaged_max_ptes_none = max_ptes_none;
259
260         return count;
261 }
262 static struct kobj_attribute khugepaged_max_ptes_none_attr =
263         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
264                khugepaged_max_ptes_none_store);
265
266 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
267                                              struct kobj_attribute *attr,
268                                              char *buf)
269 {
270         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
271 }
272
273 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
274                                               struct kobj_attribute *attr,
275                                               const char *buf, size_t count)
276 {
277         int err;
278         unsigned long max_ptes_swap;
279
280         err  = kstrtoul(buf, 10, &max_ptes_swap);
281         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
282                 return -EINVAL;
283
284         khugepaged_max_ptes_swap = max_ptes_swap;
285
286         return count;
287 }
288
289 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
290         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
291                khugepaged_max_ptes_swap_store);
292
293 static struct attribute *khugepaged_attr[] = {
294         &khugepaged_defrag_attr.attr,
295         &khugepaged_max_ptes_none_attr.attr,
296         &pages_to_scan_attr.attr,
297         &pages_collapsed_attr.attr,
298         &full_scans_attr.attr,
299         &scan_sleep_millisecs_attr.attr,
300         &alloc_sleep_millisecs_attr.attr,
301         &khugepaged_max_ptes_swap_attr.attr,
302         NULL,
303 };
304
305 struct attribute_group khugepaged_attr_group = {
306         .attrs = khugepaged_attr,
307         .name = "khugepaged",
308 };
309 #endif /* CONFIG_SYSFS */
310
311 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
312
313 int hugepage_madvise(struct vm_area_struct *vma,
314                      unsigned long *vm_flags, int advice)
315 {
316         switch (advice) {
317         case MADV_HUGEPAGE:
318 #ifdef CONFIG_S390
319                 /*
320                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
321                  * can't handle this properly after s390_enable_sie, so we simply
322                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
323                  */
324                 if (mm_has_pgste(vma->vm_mm))
325                         return 0;
326 #endif
327                 *vm_flags &= ~VM_NOHUGEPAGE;
328                 *vm_flags |= VM_HUGEPAGE;
329                 /*
330                  * If the vma become good for khugepaged to scan,
331                  * register it here without waiting a page fault that
332                  * may not happen any time soon.
333                  */
334                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
335                                 khugepaged_enter_vma_merge(vma, *vm_flags))
336                         return -ENOMEM;
337                 break;
338         case MADV_NOHUGEPAGE:
339                 *vm_flags &= ~VM_HUGEPAGE;
340                 *vm_flags |= VM_NOHUGEPAGE;
341                 /*
342                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
343                  * this vma even if we leave the mm registered in khugepaged if
344                  * it got registered before VM_NOHUGEPAGE was set.
345                  */
346                 break;
347         }
348
349         return 0;
350 }
351
352 int __init khugepaged_init(void)
353 {
354         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
355                                           sizeof(struct mm_slot),
356                                           __alignof__(struct mm_slot), 0, NULL);
357         if (!mm_slot_cache)
358                 return -ENOMEM;
359
360         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
361         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
362         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
363
364         return 0;
365 }
366
367 void __init khugepaged_destroy(void)
368 {
369         kmem_cache_destroy(mm_slot_cache);
370 }
371
372 static inline struct mm_slot *alloc_mm_slot(void)
373 {
374         if (!mm_slot_cache)     /* initialization failed */
375                 return NULL;
376         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
377 }
378
379 static inline void free_mm_slot(struct mm_slot *mm_slot)
380 {
381         kmem_cache_free(mm_slot_cache, mm_slot);
382 }
383
384 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
385 {
386         struct mm_slot *mm_slot;
387
388         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
389                 if (mm == mm_slot->mm)
390                         return mm_slot;
391
392         return NULL;
393 }
394
395 static void insert_to_mm_slots_hash(struct mm_struct *mm,
396                                     struct mm_slot *mm_slot)
397 {
398         mm_slot->mm = mm;
399         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
400 }
401
402 static inline int khugepaged_test_exit(struct mm_struct *mm)
403 {
404         return atomic_read(&mm->mm_users) == 0;
405 }
406
407 static bool hugepage_vma_check(struct vm_area_struct *vma,
408                                unsigned long vm_flags)
409 {
410         if ((!(vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
411             (vm_flags & VM_NOHUGEPAGE) ||
412             test_bit(MMF_DISABLE_THP, &vma->vm_mm->flags))
413                 return false;
414
415         if (shmem_file(vma->vm_file) ||
416             (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) &&
417              vma->vm_file &&
418              (vm_flags & VM_DENYWRITE))) {
419                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
420                         return false;
421                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
422                                 HPAGE_PMD_NR);
423         }
424         if (!vma->anon_vma || vma->vm_ops)
425                 return false;
426         if (is_vma_temporary_stack(vma))
427                 return false;
428         return !(vm_flags & VM_NO_KHUGEPAGED);
429 }
430
431 int __khugepaged_enter(struct mm_struct *mm)
432 {
433         struct mm_slot *mm_slot;
434         int wakeup;
435
436         mm_slot = alloc_mm_slot();
437         if (!mm_slot)
438                 return -ENOMEM;
439
440         /* __khugepaged_exit() must not run from under us */
441         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
442         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
443                 free_mm_slot(mm_slot);
444                 return 0;
445         }
446
447         spin_lock(&khugepaged_mm_lock);
448         insert_to_mm_slots_hash(mm, mm_slot);
449         /*
450          * Insert just behind the scanning cursor, to let the area settle
451          * down a little.
452          */
453         wakeup = list_empty(&khugepaged_scan.mm_head);
454         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
455         spin_unlock(&khugepaged_mm_lock);
456
457         mmgrab(mm);
458         if (wakeup)
459                 wake_up_interruptible(&khugepaged_wait);
460
461         return 0;
462 }
463
464 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
465                                unsigned long vm_flags)
466 {
467         unsigned long hstart, hend;
468
469         /*
470          * khugepaged only supports read-only files for non-shmem files.
471          * khugepaged does not yet work on special mappings. And
472          * file-private shmem THP is not supported.
473          */
474         if (!hugepage_vma_check(vma, vm_flags))
475                 return 0;
476
477         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
478         hend = vma->vm_end & HPAGE_PMD_MASK;
479         if (hstart < hend)
480                 return khugepaged_enter(vma, vm_flags);
481         return 0;
482 }
483
484 void __khugepaged_exit(struct mm_struct *mm)
485 {
486         struct mm_slot *mm_slot;
487         int free = 0;
488
489         spin_lock(&khugepaged_mm_lock);
490         mm_slot = get_mm_slot(mm);
491         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
492                 hash_del(&mm_slot->hash);
493                 list_del(&mm_slot->mm_node);
494                 free = 1;
495         }
496         spin_unlock(&khugepaged_mm_lock);
497
498         if (free) {
499                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
500                 free_mm_slot(mm_slot);
501                 mmdrop(mm);
502         } else if (mm_slot) {
503                 /*
504                  * This is required to serialize against
505                  * khugepaged_test_exit() (which is guaranteed to run
506                  * under mmap sem read mode). Stop here (after we
507                  * return all pagetables will be destroyed) until
508                  * khugepaged has finished working on the pagetables
509                  * under the mmap_sem.
510                  */
511                 down_write(&mm->mmap_sem);
512                 up_write(&mm->mmap_sem);
513         }
514 }
515
516 static void release_pte_page(struct page *page)
517 {
518         dec_node_page_state(page, NR_ISOLATED_ANON + page_is_file_cache(page));
519         unlock_page(page);
520         putback_lru_page(page);
521 }
522
523 static void release_pte_pages(pte_t *pte, pte_t *_pte)
524 {
525         while (--_pte >= pte) {
526                 pte_t pteval = *_pte;
527                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
528                         release_pte_page(pte_page(pteval));
529         }
530 }
531
532 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
533                                         unsigned long address,
534                                         pte_t *pte)
535 {
536         struct page *page = NULL;
537         pte_t *_pte;
538         int none_or_zero = 0, result = 0, referenced = 0;
539         bool writable = false;
540
541         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
542              _pte++, address += PAGE_SIZE) {
543                 pte_t pteval = *_pte;
544                 if (pte_none(pteval) || (pte_present(pteval) &&
545                                 is_zero_pfn(pte_pfn(pteval)))) {
546                         if (!userfaultfd_armed(vma) &&
547                             ++none_or_zero <= khugepaged_max_ptes_none) {
548                                 continue;
549                         } else {
550                                 result = SCAN_EXCEED_NONE_PTE;
551                                 goto out;
552                         }
553                 }
554                 if (!pte_present(pteval)) {
555                         result = SCAN_PTE_NON_PRESENT;
556                         goto out;
557                 }
558                 page = vm_normal_page(vma, address, pteval);
559                 if (unlikely(!page)) {
560                         result = SCAN_PAGE_NULL;
561                         goto out;
562                 }
563
564                 /* TODO: teach khugepaged to collapse THP mapped with pte */
565                 if (PageCompound(page)) {
566                         result = SCAN_PAGE_COMPOUND;
567                         goto out;
568                 }
569
570                 VM_BUG_ON_PAGE(!PageAnon(page), page);
571
572                 /*
573                  * We can do it before isolate_lru_page because the
574                  * page can't be freed from under us. NOTE: PG_lock
575                  * is needed to serialize against split_huge_page
576                  * when invoked from the VM.
577                  */
578                 if (!trylock_page(page)) {
579                         result = SCAN_PAGE_LOCK;
580                         goto out;
581                 }
582
583                 /*
584                  * cannot use mapcount: can't collapse if there's a gup pin.
585                  * The page must only be referenced by the scanned process
586                  * and page swap cache.
587                  */
588                 if (page_count(page) != 1 + PageSwapCache(page)) {
589                         unlock_page(page);
590                         result = SCAN_PAGE_COUNT;
591                         goto out;
592                 }
593                 if (pte_write(pteval)) {
594                         writable = true;
595                 } else {
596                         if (PageSwapCache(page) &&
597                             !reuse_swap_page(page, NULL)) {
598                                 unlock_page(page);
599                                 result = SCAN_SWAP_CACHE_PAGE;
600                                 goto out;
601                         }
602                         /*
603                          * Page is not in the swap cache. It can be collapsed
604                          * into a THP.
605                          */
606                 }
607
608                 /*
609                  * Isolate the page to avoid collapsing an hugepage
610                  * currently in use by the VM.
611                  */
612                 if (isolate_lru_page(page)) {
613                         unlock_page(page);
614                         result = SCAN_DEL_PAGE_LRU;
615                         goto out;
616                 }
617                 inc_node_page_state(page,
618                                 NR_ISOLATED_ANON + page_is_file_cache(page));
619                 VM_BUG_ON_PAGE(!PageLocked(page), page);
620                 VM_BUG_ON_PAGE(PageLRU(page), page);
621
622                 /* There should be enough young pte to collapse the page */
623                 if (pte_young(pteval) ||
624                     page_is_young(page) || PageReferenced(page) ||
625                     mmu_notifier_test_young(vma->vm_mm, address))
626                         referenced++;
627         }
628         if (likely(writable)) {
629                 if (likely(referenced)) {
630                         result = SCAN_SUCCEED;
631                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
632                                                             referenced, writable, result);
633                         return 1;
634                 }
635         } else {
636                 result = SCAN_PAGE_RO;
637         }
638
639 out:
640         release_pte_pages(pte, _pte);
641         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
642                                             referenced, writable, result);
643         return 0;
644 }
645
646 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
647                                       struct vm_area_struct *vma,
648                                       unsigned long address,
649                                       spinlock_t *ptl)
650 {
651         pte_t *_pte;
652         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
653                                 _pte++, page++, address += PAGE_SIZE) {
654                 pte_t pteval = *_pte;
655                 struct page *src_page;
656
657                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
658                         clear_user_highpage(page, address);
659                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
660                         if (is_zero_pfn(pte_pfn(pteval))) {
661                                 /*
662                                  * ptl mostly unnecessary.
663                                  */
664                                 spin_lock(ptl);
665                                 /*
666                                  * paravirt calls inside pte_clear here are
667                                  * superfluous.
668                                  */
669                                 pte_clear(vma->vm_mm, address, _pte);
670                                 spin_unlock(ptl);
671                         }
672                 } else {
673                         src_page = pte_page(pteval);
674                         copy_user_highpage(page, src_page, address, vma);
675                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
676                         release_pte_page(src_page);
677                         /*
678                          * ptl mostly unnecessary, but preempt has to
679                          * be disabled to update the per-cpu stats
680                          * inside page_remove_rmap().
681                          */
682                         spin_lock(ptl);
683                         /*
684                          * paravirt calls inside pte_clear here are
685                          * superfluous.
686                          */
687                         pte_clear(vma->vm_mm, address, _pte);
688                         page_remove_rmap(src_page, false);
689                         spin_unlock(ptl);
690                         free_page_and_swap_cache(src_page);
691                 }
692         }
693 }
694
695 static void khugepaged_alloc_sleep(void)
696 {
697         DEFINE_WAIT(wait);
698
699         add_wait_queue(&khugepaged_wait, &wait);
700         freezable_schedule_timeout_interruptible(
701                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
702         remove_wait_queue(&khugepaged_wait, &wait);
703 }
704
705 static int khugepaged_node_load[MAX_NUMNODES];
706
707 static bool khugepaged_scan_abort(int nid)
708 {
709         int i;
710
711         /*
712          * If node_reclaim_mode is disabled, then no extra effort is made to
713          * allocate memory locally.
714          */
715         if (!node_reclaim_mode)
716                 return false;
717
718         /* If there is a count for this node already, it must be acceptable */
719         if (khugepaged_node_load[nid])
720                 return false;
721
722         for (i = 0; i < MAX_NUMNODES; i++) {
723                 if (!khugepaged_node_load[i])
724                         continue;
725                 if (node_distance(nid, i) > node_reclaim_distance)
726                         return true;
727         }
728         return false;
729 }
730
731 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
732 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
733 {
734         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
735 }
736
737 #ifdef CONFIG_NUMA
738 static int khugepaged_find_target_node(void)
739 {
740         static int last_khugepaged_target_node = NUMA_NO_NODE;
741         int nid, target_node = 0, max_value = 0;
742
743         /* find first node with max normal pages hit */
744         for (nid = 0; nid < MAX_NUMNODES; nid++)
745                 if (khugepaged_node_load[nid] > max_value) {
746                         max_value = khugepaged_node_load[nid];
747                         target_node = nid;
748                 }
749
750         /* do some balance if several nodes have the same hit record */
751         if (target_node <= last_khugepaged_target_node)
752                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
753                                 nid++)
754                         if (max_value == khugepaged_node_load[nid]) {
755                                 target_node = nid;
756                                 break;
757                         }
758
759         last_khugepaged_target_node = target_node;
760         return target_node;
761 }
762
763 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
764 {
765         if (IS_ERR(*hpage)) {
766                 if (!*wait)
767                         return false;
768
769                 *wait = false;
770                 *hpage = NULL;
771                 khugepaged_alloc_sleep();
772         } else if (*hpage) {
773                 put_page(*hpage);
774                 *hpage = NULL;
775         }
776
777         return true;
778 }
779
780 static struct page *
781 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
782 {
783         VM_BUG_ON_PAGE(*hpage, *hpage);
784
785         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
786         if (unlikely(!*hpage)) {
787                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
788                 *hpage = ERR_PTR(-ENOMEM);
789                 return NULL;
790         }
791
792         prep_transhuge_page(*hpage);
793         count_vm_event(THP_COLLAPSE_ALLOC);
794         return *hpage;
795 }
796 #else
797 static int khugepaged_find_target_node(void)
798 {
799         return 0;
800 }
801
802 static inline struct page *alloc_khugepaged_hugepage(void)
803 {
804         struct page *page;
805
806         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
807                            HPAGE_PMD_ORDER);
808         if (page)
809                 prep_transhuge_page(page);
810         return page;
811 }
812
813 static struct page *khugepaged_alloc_hugepage(bool *wait)
814 {
815         struct page *hpage;
816
817         do {
818                 hpage = alloc_khugepaged_hugepage();
819                 if (!hpage) {
820                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
821                         if (!*wait)
822                                 return NULL;
823
824                         *wait = false;
825                         khugepaged_alloc_sleep();
826                 } else
827                         count_vm_event(THP_COLLAPSE_ALLOC);
828         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
829
830         return hpage;
831 }
832
833 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
834 {
835         if (!*hpage)
836                 *hpage = khugepaged_alloc_hugepage(wait);
837
838         if (unlikely(!*hpage))
839                 return false;
840
841         return true;
842 }
843
844 static struct page *
845 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
846 {
847         VM_BUG_ON(!*hpage);
848
849         return  *hpage;
850 }
851 #endif
852
853 /*
854  * If mmap_sem temporarily dropped, revalidate vma
855  * before taking mmap_sem.
856  * Return 0 if succeeds, otherwise return none-zero
857  * value (scan code).
858  */
859
860 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
861                 struct vm_area_struct **vmap)
862 {
863         struct vm_area_struct *vma;
864         unsigned long hstart, hend;
865
866         if (unlikely(khugepaged_test_exit(mm)))
867                 return SCAN_ANY_PROCESS;
868
869         *vmap = vma = find_vma(mm, address);
870         if (!vma)
871                 return SCAN_VMA_NULL;
872
873         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
874         hend = vma->vm_end & HPAGE_PMD_MASK;
875         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
876                 return SCAN_ADDRESS_RANGE;
877         if (!hugepage_vma_check(vma, vma->vm_flags))
878                 return SCAN_VMA_CHECK;
879         return 0;
880 }
881
882 /*
883  * Bring missing pages in from swap, to complete THP collapse.
884  * Only done if khugepaged_scan_pmd believes it is worthwhile.
885  *
886  * Called and returns without pte mapped or spinlocks held,
887  * but with mmap_sem held to protect against vma changes.
888  */
889
890 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
891                                         struct vm_area_struct *vma,
892                                         unsigned long address, pmd_t *pmd,
893                                         int referenced)
894 {
895         int swapped_in = 0;
896         vm_fault_t ret = 0;
897         struct vm_fault vmf = {
898                 .vma = vma,
899                 .address = address,
900                 .flags = FAULT_FLAG_ALLOW_RETRY,
901                 .pmd = pmd,
902                 .pgoff = linear_page_index(vma, address),
903         };
904
905         /* we only decide to swapin, if there is enough young ptes */
906         if (referenced < HPAGE_PMD_NR/2) {
907                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
908                 return false;
909         }
910         vmf.pte = pte_offset_map(pmd, address);
911         for (; vmf.address < address + HPAGE_PMD_NR*PAGE_SIZE;
912                         vmf.pte++, vmf.address += PAGE_SIZE) {
913                 vmf.orig_pte = *vmf.pte;
914                 if (!is_swap_pte(vmf.orig_pte))
915                         continue;
916                 swapped_in++;
917                 ret = do_swap_page(&vmf);
918
919                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
920                 if (ret & VM_FAULT_RETRY) {
921                         down_read(&mm->mmap_sem);
922                         if (hugepage_vma_revalidate(mm, address, &vmf.vma)) {
923                                 /* vma is no longer available, don't continue to swapin */
924                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
925                                 return false;
926                         }
927                         /* check if the pmd is still valid */
928                         if (mm_find_pmd(mm, address) != pmd) {
929                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
930                                 return false;
931                         }
932                 }
933                 if (ret & VM_FAULT_ERROR) {
934                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
935                         return false;
936                 }
937                 /* pte is unmapped now, we need to map it */
938                 vmf.pte = pte_offset_map(pmd, vmf.address);
939         }
940         vmf.pte--;
941         pte_unmap(vmf.pte);
942         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
943         return true;
944 }
945
946 static void collapse_huge_page(struct mm_struct *mm,
947                                    unsigned long address,
948                                    struct page **hpage,
949                                    int node, int referenced)
950 {
951         pmd_t *pmd, _pmd;
952         pte_t *pte;
953         pgtable_t pgtable;
954         struct page *new_page;
955         spinlock_t *pmd_ptl, *pte_ptl;
956         int isolated = 0, result = 0;
957         struct mem_cgroup *memcg;
958         struct vm_area_struct *vma;
959         struct mmu_notifier_range range;
960         gfp_t gfp;
961
962         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
963
964         /* Only allocate from the target node */
965         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
966
967         /*
968          * Before allocating the hugepage, release the mmap_sem read lock.
969          * The allocation can take potentially a long time if it involves
970          * sync compaction, and we do not need to hold the mmap_sem during
971          * that. We will recheck the vma after taking it again in write mode.
972          */
973         up_read(&mm->mmap_sem);
974         new_page = khugepaged_alloc_page(hpage, gfp, node);
975         if (!new_page) {
976                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
977                 goto out_nolock;
978         }
979
980         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
981                 result = SCAN_CGROUP_CHARGE_FAIL;
982                 goto out_nolock;
983         }
984
985         down_read(&mm->mmap_sem);
986         result = hugepage_vma_revalidate(mm, address, &vma);
987         if (result) {
988                 mem_cgroup_cancel_charge(new_page, memcg, true);
989                 up_read(&mm->mmap_sem);
990                 goto out_nolock;
991         }
992
993         pmd = mm_find_pmd(mm, address);
994         if (!pmd) {
995                 result = SCAN_PMD_NULL;
996                 mem_cgroup_cancel_charge(new_page, memcg, true);
997                 up_read(&mm->mmap_sem);
998                 goto out_nolock;
999         }
1000
1001         /*
1002          * __collapse_huge_page_swapin always returns with mmap_sem locked.
1003          * If it fails, we release mmap_sem and jump out_nolock.
1004          * Continuing to collapse causes inconsistency.
1005          */
1006         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
1007                 mem_cgroup_cancel_charge(new_page, memcg, true);
1008                 up_read(&mm->mmap_sem);
1009                 goto out_nolock;
1010         }
1011
1012         up_read(&mm->mmap_sem);
1013         /*
1014          * Prevent all access to pagetables with the exception of
1015          * gup_fast later handled by the ptep_clear_flush and the VM
1016          * handled by the anon_vma lock + PG_lock.
1017          */
1018         down_write(&mm->mmap_sem);
1019         result = SCAN_ANY_PROCESS;
1020         if (!mmget_still_valid(mm))
1021                 goto out;
1022         result = hugepage_vma_revalidate(mm, address, &vma);
1023         if (result)
1024                 goto out;
1025         /* check if the pmd is still valid */
1026         if (mm_find_pmd(mm, address) != pmd)
1027                 goto out;
1028
1029         anon_vma_lock_write(vma->anon_vma);
1030
1031         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1032                                 address, address + HPAGE_PMD_SIZE);
1033         mmu_notifier_invalidate_range_start(&range);
1034
1035         pte = pte_offset_map(pmd, address);
1036         pte_ptl = pte_lockptr(mm, pmd);
1037
1038         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1039         /*
1040          * After this gup_fast can't run anymore. This also removes
1041          * any huge TLB entry from the CPU so we won't allow
1042          * huge and small TLB entries for the same virtual address
1043          * to avoid the risk of CPU bugs in that area.
1044          */
1045         _pmd = pmdp_collapse_flush(vma, address, pmd);
1046         spin_unlock(pmd_ptl);
1047         mmu_notifier_invalidate_range_end(&range);
1048
1049         spin_lock(pte_ptl);
1050         isolated = __collapse_huge_page_isolate(vma, address, pte);
1051         spin_unlock(pte_ptl);
1052
1053         if (unlikely(!isolated)) {
1054                 pte_unmap(pte);
1055                 spin_lock(pmd_ptl);
1056                 BUG_ON(!pmd_none(*pmd));
1057                 /*
1058                  * We can only use set_pmd_at when establishing
1059                  * hugepmds and never for establishing regular pmds that
1060                  * points to regular pagetables. Use pmd_populate for that
1061                  */
1062                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1063                 spin_unlock(pmd_ptl);
1064                 anon_vma_unlock_write(vma->anon_vma);
1065                 result = SCAN_FAIL;
1066                 goto out;
1067         }
1068
1069         /*
1070          * All pages are isolated and locked so anon_vma rmap
1071          * can't run anymore.
1072          */
1073         anon_vma_unlock_write(vma->anon_vma);
1074
1075         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1076         pte_unmap(pte);
1077         __SetPageUptodate(new_page);
1078         pgtable = pmd_pgtable(_pmd);
1079
1080         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1081         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1082
1083         /*
1084          * spin_lock() below is not the equivalent of smp_wmb(), so
1085          * this is needed to avoid the copy_huge_page writes to become
1086          * visible after the set_pmd_at() write.
1087          */
1088         smp_wmb();
1089
1090         spin_lock(pmd_ptl);
1091         BUG_ON(!pmd_none(*pmd));
1092         page_add_new_anon_rmap(new_page, vma, address, true);
1093         mem_cgroup_commit_charge(new_page, memcg, false, true);
1094         count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1095         lru_cache_add_active_or_unevictable(new_page, vma);
1096         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1097         set_pmd_at(mm, address, pmd, _pmd);
1098         update_mmu_cache_pmd(vma, address, pmd);
1099         spin_unlock(pmd_ptl);
1100
1101         *hpage = NULL;
1102
1103         khugepaged_pages_collapsed++;
1104         result = SCAN_SUCCEED;
1105 out_up_write:
1106         up_write(&mm->mmap_sem);
1107 out_nolock:
1108         trace_mm_collapse_huge_page(mm, isolated, result);
1109         return;
1110 out:
1111         mem_cgroup_cancel_charge(new_page, memcg, true);
1112         goto out_up_write;
1113 }
1114
1115 static int khugepaged_scan_pmd(struct mm_struct *mm,
1116                                struct vm_area_struct *vma,
1117                                unsigned long address,
1118                                struct page **hpage)
1119 {
1120         pmd_t *pmd;
1121         pte_t *pte, *_pte;
1122         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1123         struct page *page = NULL;
1124         unsigned long _address;
1125         spinlock_t *ptl;
1126         int node = NUMA_NO_NODE, unmapped = 0;
1127         bool writable = false;
1128
1129         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1130
1131         pmd = mm_find_pmd(mm, address);
1132         if (!pmd) {
1133                 result = SCAN_PMD_NULL;
1134                 goto out;
1135         }
1136
1137         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1138         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1139         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1140              _pte++, _address += PAGE_SIZE) {
1141                 pte_t pteval = *_pte;
1142                 if (is_swap_pte(pteval)) {
1143                         if (++unmapped <= khugepaged_max_ptes_swap) {
1144                                 continue;
1145                         } else {
1146                                 result = SCAN_EXCEED_SWAP_PTE;
1147                                 goto out_unmap;
1148                         }
1149                 }
1150                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1151                         if (!userfaultfd_armed(vma) &&
1152                             ++none_or_zero <= khugepaged_max_ptes_none) {
1153                                 continue;
1154                         } else {
1155                                 result = SCAN_EXCEED_NONE_PTE;
1156                                 goto out_unmap;
1157                         }
1158                 }
1159                 if (!pte_present(pteval)) {
1160                         result = SCAN_PTE_NON_PRESENT;
1161                         goto out_unmap;
1162                 }
1163                 if (pte_write(pteval))
1164                         writable = true;
1165
1166                 page = vm_normal_page(vma, _address, pteval);
1167                 if (unlikely(!page)) {
1168                         result = SCAN_PAGE_NULL;
1169                         goto out_unmap;
1170                 }
1171
1172                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1173                 if (PageCompound(page)) {
1174                         result = SCAN_PAGE_COMPOUND;
1175                         goto out_unmap;
1176                 }
1177
1178                 /*
1179                  * Record which node the original page is from and save this
1180                  * information to khugepaged_node_load[].
1181                  * Khupaged will allocate hugepage from the node has the max
1182                  * hit record.
1183                  */
1184                 node = page_to_nid(page);
1185                 if (khugepaged_scan_abort(node)) {
1186                         result = SCAN_SCAN_ABORT;
1187                         goto out_unmap;
1188                 }
1189                 khugepaged_node_load[node]++;
1190                 if (!PageLRU(page)) {
1191                         result = SCAN_PAGE_LRU;
1192                         goto out_unmap;
1193                 }
1194                 if (PageLocked(page)) {
1195                         result = SCAN_PAGE_LOCK;
1196                         goto out_unmap;
1197                 }
1198                 if (!PageAnon(page)) {
1199                         result = SCAN_PAGE_ANON;
1200                         goto out_unmap;
1201                 }
1202
1203                 /*
1204                  * cannot use mapcount: can't collapse if there's a gup pin.
1205                  * The page must only be referenced by the scanned process
1206                  * and page swap cache.
1207                  */
1208                 if (page_count(page) != 1 + PageSwapCache(page)) {
1209                         result = SCAN_PAGE_COUNT;
1210                         goto out_unmap;
1211                 }
1212                 if (pte_young(pteval) ||
1213                     page_is_young(page) || PageReferenced(page) ||
1214                     mmu_notifier_test_young(vma->vm_mm, address))
1215                         referenced++;
1216         }
1217         if (writable) {
1218                 if (referenced) {
1219                         result = SCAN_SUCCEED;
1220                         ret = 1;
1221                 } else {
1222                         result = SCAN_LACK_REFERENCED_PAGE;
1223                 }
1224         } else {
1225                 result = SCAN_PAGE_RO;
1226         }
1227 out_unmap:
1228         pte_unmap_unlock(pte, ptl);
1229         if (ret) {
1230                 node = khugepaged_find_target_node();
1231                 /* collapse_huge_page will return with the mmap_sem released */
1232                 collapse_huge_page(mm, address, hpage, node, referenced);
1233         }
1234 out:
1235         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1236                                      none_or_zero, result, unmapped);
1237         return ret;
1238 }
1239
1240 static void collect_mm_slot(struct mm_slot *mm_slot)
1241 {
1242         struct mm_struct *mm = mm_slot->mm;
1243
1244         lockdep_assert_held(&khugepaged_mm_lock);
1245
1246         if (khugepaged_test_exit(mm)) {
1247                 /* free mm_slot */
1248                 hash_del(&mm_slot->hash);
1249                 list_del(&mm_slot->mm_node);
1250
1251                 /*
1252                  * Not strictly needed because the mm exited already.
1253                  *
1254                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1255                  */
1256
1257                 /* khugepaged_mm_lock actually not necessary for the below */
1258                 free_mm_slot(mm_slot);
1259                 mmdrop(mm);
1260         }
1261 }
1262
1263 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1264 /*
1265  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1266  * khugepaged should try to collapse the page table.
1267  */
1268 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1269                                          unsigned long addr)
1270 {
1271         struct mm_slot *mm_slot;
1272
1273         VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1274
1275         spin_lock(&khugepaged_mm_lock);
1276         mm_slot = get_mm_slot(mm);
1277         if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1278                 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1279         spin_unlock(&khugepaged_mm_lock);
1280         return 0;
1281 }
1282
1283 /**
1284  * Try to collapse a pte-mapped THP for mm at address haddr.
1285  *
1286  * This function checks whether all the PTEs in the PMD are pointing to the
1287  * right THP. If so, retract the page table so the THP can refault in with
1288  * as pmd-mapped.
1289  */
1290 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1291 {
1292         unsigned long haddr = addr & HPAGE_PMD_MASK;
1293         struct vm_area_struct *vma = find_vma(mm, haddr);
1294         struct page *hpage = NULL;
1295         pte_t *start_pte, *pte;
1296         pmd_t *pmd, _pmd;
1297         spinlock_t *ptl;
1298         int count = 0;
1299         int i;
1300
1301         if (!vma || !vma->vm_file ||
1302             vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE)
1303                 return;
1304
1305         /*
1306          * This vm_flags may not have VM_HUGEPAGE if the page was not
1307          * collapsed by this mm. But we can still collapse if the page is
1308          * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1309          * will not fail the vma for missing VM_HUGEPAGE
1310          */
1311         if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1312                 return;
1313
1314         pmd = mm_find_pmd(mm, haddr);
1315         if (!pmd)
1316                 return;
1317
1318         start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1319
1320         /* step 1: check all mapped PTEs are to the right huge page */
1321         for (i = 0, addr = haddr, pte = start_pte;
1322              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1323                 struct page *page;
1324
1325                 /* empty pte, skip */
1326                 if (pte_none(*pte))
1327                         continue;
1328
1329                 /* page swapped out, abort */
1330                 if (!pte_present(*pte))
1331                         goto abort;
1332
1333                 page = vm_normal_page(vma, addr, *pte);
1334
1335                 if (!page || !PageCompound(page))
1336                         goto abort;
1337
1338                 if (!hpage) {
1339                         hpage = compound_head(page);
1340                         /*
1341                          * The mapping of the THP should not change.
1342                          *
1343                          * Note that uprobe, debugger, or MAP_PRIVATE may
1344                          * change the page table, but the new page will
1345                          * not pass PageCompound() check.
1346                          */
1347                         if (WARN_ON(hpage->mapping != vma->vm_file->f_mapping))
1348                                 goto abort;
1349                 }
1350
1351                 /*
1352                  * Confirm the page maps to the correct subpage.
1353                  *
1354                  * Note that uprobe, debugger, or MAP_PRIVATE may change
1355                  * the page table, but the new page will not pass
1356                  * PageCompound() check.
1357                  */
1358                 if (WARN_ON(hpage + i != page))
1359                         goto abort;
1360                 count++;
1361         }
1362
1363         /* step 2: adjust rmap */
1364         for (i = 0, addr = haddr, pte = start_pte;
1365              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1366                 struct page *page;
1367
1368                 if (pte_none(*pte))
1369                         continue;
1370                 page = vm_normal_page(vma, addr, *pte);
1371                 page_remove_rmap(page, false);
1372         }
1373
1374         pte_unmap_unlock(start_pte, ptl);
1375
1376         /* step 3: set proper refcount and mm_counters. */
1377         if (hpage) {
1378                 page_ref_sub(hpage, count);
1379                 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1380         }
1381
1382         /* step 4: collapse pmd */
1383         ptl = pmd_lock(vma->vm_mm, pmd);
1384         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1385         spin_unlock(ptl);
1386         mm_dec_nr_ptes(mm);
1387         pte_free(mm, pmd_pgtable(_pmd));
1388         return;
1389
1390 abort:
1391         pte_unmap_unlock(start_pte, ptl);
1392 }
1393
1394 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1395 {
1396         struct mm_struct *mm = mm_slot->mm;
1397         int i;
1398
1399         if (likely(mm_slot->nr_pte_mapped_thp == 0))
1400                 return 0;
1401
1402         if (!down_write_trylock(&mm->mmap_sem))
1403                 return -EBUSY;
1404
1405         if (unlikely(khugepaged_test_exit(mm)))
1406                 goto out;
1407
1408         for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1409                 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1410
1411 out:
1412         mm_slot->nr_pte_mapped_thp = 0;
1413         up_write(&mm->mmap_sem);
1414         return 0;
1415 }
1416
1417 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1418 {
1419         struct vm_area_struct *vma;
1420         unsigned long addr;
1421         pmd_t *pmd, _pmd;
1422
1423         i_mmap_lock_write(mapping);
1424         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1425                 /*
1426                  * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1427                  * got written to. These VMAs are likely not worth investing
1428                  * down_write(mmap_sem) as PMD-mapping is likely to be split
1429                  * later.
1430                  *
1431                  * Not that vma->anon_vma check is racy: it can be set up after
1432                  * the check but before we took mmap_sem by the fault path.
1433                  * But page lock would prevent establishing any new ptes of the
1434                  * page, so we are safe.
1435                  *
1436                  * An alternative would be drop the check, but check that page
1437                  * table is clear before calling pmdp_collapse_flush() under
1438                  * ptl. It has higher chance to recover THP for the VMA, but
1439                  * has higher cost too.
1440                  */
1441                 if (vma->anon_vma)
1442                         continue;
1443                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1444                 if (addr & ~HPAGE_PMD_MASK)
1445                         continue;
1446                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1447                         continue;
1448                 pmd = mm_find_pmd(vma->vm_mm, addr);
1449                 if (!pmd)
1450                         continue;
1451                 /*
1452                  * We need exclusive mmap_sem to retract page table.
1453                  *
1454                  * We use trylock due to lock inversion: we need to acquire
1455                  * mmap_sem while holding page lock. Fault path does it in
1456                  * reverse order. Trylock is a way to avoid deadlock.
1457                  */
1458                 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1459                         spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1460                         /* assume page table is clear */
1461                         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1462                         spin_unlock(ptl);
1463                         up_write(&vma->vm_mm->mmap_sem);
1464                         mm_dec_nr_ptes(vma->vm_mm);
1465                         pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1466                 } else {
1467                         /* Try again later */
1468                         khugepaged_add_pte_mapped_thp(vma->vm_mm, addr);
1469                 }
1470         }
1471         i_mmap_unlock_write(mapping);
1472 }
1473
1474 /**
1475  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1476  *
1477  * Basic scheme is simple, details are more complex:
1478  *  - allocate and lock a new huge page;
1479  *  - scan page cache replacing old pages with the new one
1480  *    + swap/gup in pages if necessary;
1481  *    + fill in gaps;
1482  *    + keep old pages around in case rollback is required;
1483  *  - if replacing succeeds:
1484  *    + copy data over;
1485  *    + free old pages;
1486  *    + unlock huge page;
1487  *  - if replacing failed;
1488  *    + put all pages back and unfreeze them;
1489  *    + restore gaps in the page cache;
1490  *    + unlock and free huge page;
1491  */
1492 static void collapse_file(struct mm_struct *mm,
1493                 struct file *file, pgoff_t start,
1494                 struct page **hpage, int node)
1495 {
1496         struct address_space *mapping = file->f_mapping;
1497         gfp_t gfp;
1498         struct page *new_page;
1499         struct mem_cgroup *memcg;
1500         pgoff_t index, end = start + HPAGE_PMD_NR;
1501         LIST_HEAD(pagelist);
1502         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1503         int nr_none = 0, result = SCAN_SUCCEED;
1504         bool is_shmem = shmem_file(file);
1505
1506         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1507         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1508
1509         /* Only allocate from the target node */
1510         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1511
1512         new_page = khugepaged_alloc_page(hpage, gfp, node);
1513         if (!new_page) {
1514                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1515                 goto out;
1516         }
1517
1518         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1519                 result = SCAN_CGROUP_CHARGE_FAIL;
1520                 goto out;
1521         }
1522
1523         /* This will be less messy when we use multi-index entries */
1524         do {
1525                 xas_lock_irq(&xas);
1526                 xas_create_range(&xas);
1527                 if (!xas_error(&xas))
1528                         break;
1529                 xas_unlock_irq(&xas);
1530                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1531                         mem_cgroup_cancel_charge(new_page, memcg, true);
1532                         result = SCAN_FAIL;
1533                         goto out;
1534                 }
1535         } while (1);
1536
1537         __SetPageLocked(new_page);
1538         if (is_shmem)
1539                 __SetPageSwapBacked(new_page);
1540         new_page->index = start;
1541         new_page->mapping = mapping;
1542
1543         /*
1544          * At this point the new_page is locked and not up-to-date.
1545          * It's safe to insert it into the page cache, because nobody would
1546          * be able to map it or use it in another way until we unlock it.
1547          */
1548
1549         xas_set(&xas, start);
1550         for (index = start; index < end; index++) {
1551                 struct page *page = xas_next(&xas);
1552
1553                 VM_BUG_ON(index != xas.xa_index);
1554                 if (is_shmem) {
1555                         if (!page) {
1556                                 /*
1557                                  * Stop if extent has been truncated or
1558                                  * hole-punched, and is now completely
1559                                  * empty.
1560                                  */
1561                                 if (index == start) {
1562                                         if (!xas_next_entry(&xas, end - 1)) {
1563                                                 result = SCAN_TRUNCATED;
1564                                                 goto xa_locked;
1565                                         }
1566                                         xas_set(&xas, index);
1567                                 }
1568                                 if (!shmem_charge(mapping->host, 1)) {
1569                                         result = SCAN_FAIL;
1570                                         goto xa_locked;
1571                                 }
1572                                 xas_store(&xas, new_page);
1573                                 nr_none++;
1574                                 continue;
1575                         }
1576
1577                         if (xa_is_value(page) || !PageUptodate(page)) {
1578                                 xas_unlock_irq(&xas);
1579                                 /* swap in or instantiate fallocated page */
1580                                 if (shmem_getpage(mapping->host, index, &page,
1581                                                   SGP_NOHUGE)) {
1582                                         result = SCAN_FAIL;
1583                                         goto xa_unlocked;
1584                                 }
1585                         } else if (trylock_page(page)) {
1586                                 get_page(page);
1587                                 xas_unlock_irq(&xas);
1588                         } else {
1589                                 result = SCAN_PAGE_LOCK;
1590                                 goto xa_locked;
1591                         }
1592                 } else {        /* !is_shmem */
1593                         if (!page || xa_is_value(page)) {
1594                                 xas_unlock_irq(&xas);
1595                                 page_cache_sync_readahead(mapping, &file->f_ra,
1596                                                           file, index,
1597                                                           PAGE_SIZE);
1598                                 /* drain pagevecs to help isolate_lru_page() */
1599                                 lru_add_drain();
1600                                 page = find_lock_page(mapping, index);
1601                                 if (unlikely(page == NULL)) {
1602                                         result = SCAN_FAIL;
1603                                         goto xa_unlocked;
1604                                 }
1605                         } else if (trylock_page(page)) {
1606                                 get_page(page);
1607                                 xas_unlock_irq(&xas);
1608                         } else {
1609                                 result = SCAN_PAGE_LOCK;
1610                                 goto xa_locked;
1611                         }
1612                 }
1613
1614                 /*
1615                  * The page must be locked, so we can drop the i_pages lock
1616                  * without racing with truncate.
1617                  */
1618                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1619
1620                 /* make sure the page is up to date */
1621                 if (unlikely(!PageUptodate(page))) {
1622                         result = SCAN_FAIL;
1623                         goto out_unlock;
1624                 }
1625
1626                 /*
1627                  * If file was truncated then extended, or hole-punched, before
1628                  * we locked the first page, then a THP might be there already.
1629                  */
1630                 if (PageTransCompound(page)) {
1631                         result = SCAN_PAGE_COMPOUND;
1632                         goto out_unlock;
1633                 }
1634
1635                 if (page_mapping(page) != mapping) {
1636                         result = SCAN_TRUNCATED;
1637                         goto out_unlock;
1638                 }
1639
1640                 if (!is_shmem && PageDirty(page)) {
1641                         /*
1642                          * khugepaged only works on read-only fd, so this
1643                          * page is dirty because it hasn't been flushed
1644                          * since first write.
1645                          */
1646                         result = SCAN_FAIL;
1647                         goto out_unlock;
1648                 }
1649
1650                 if (isolate_lru_page(page)) {
1651                         result = SCAN_DEL_PAGE_LRU;
1652                         goto out_unlock;
1653                 }
1654
1655                 if (page_has_private(page) &&
1656                     !try_to_release_page(page, GFP_KERNEL)) {
1657                         result = SCAN_PAGE_HAS_PRIVATE;
1658                         goto out_unlock;
1659                 }
1660
1661                 if (page_mapped(page))
1662                         unmap_mapping_pages(mapping, index, 1, false);
1663
1664                 xas_lock_irq(&xas);
1665                 xas_set(&xas, index);
1666
1667                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1668                 VM_BUG_ON_PAGE(page_mapped(page), page);
1669
1670                 /*
1671                  * The page is expected to have page_count() == 3:
1672                  *  - we hold a pin on it;
1673                  *  - one reference from page cache;
1674                  *  - one from isolate_lru_page;
1675                  */
1676                 if (!page_ref_freeze(page, 3)) {
1677                         result = SCAN_PAGE_COUNT;
1678                         xas_unlock_irq(&xas);
1679                         putback_lru_page(page);
1680                         goto out_unlock;
1681                 }
1682
1683                 /*
1684                  * Add the page to the list to be able to undo the collapse if
1685                  * something go wrong.
1686                  */
1687                 list_add_tail(&page->lru, &pagelist);
1688
1689                 /* Finally, replace with the new page. */
1690                 xas_store(&xas, new_page);
1691                 continue;
1692 out_unlock:
1693                 unlock_page(page);
1694                 put_page(page);
1695                 goto xa_unlocked;
1696         }
1697
1698         if (is_shmem)
1699                 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1700         else {
1701                 __inc_node_page_state(new_page, NR_FILE_THPS);
1702                 filemap_nr_thps_inc(mapping);
1703         }
1704
1705         if (nr_none) {
1706                 struct zone *zone = page_zone(new_page);
1707
1708                 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1709                 if (is_shmem)
1710                         __mod_node_page_state(zone->zone_pgdat,
1711                                               NR_SHMEM, nr_none);
1712         }
1713
1714 xa_locked:
1715         xas_unlock_irq(&xas);
1716 xa_unlocked:
1717
1718         if (result == SCAN_SUCCEED) {
1719                 struct page *page, *tmp;
1720
1721                 /*
1722                  * Replacing old pages with new one has succeeded, now we
1723                  * need to copy the content and free the old pages.
1724                  */
1725                 index = start;
1726                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1727                         while (index < page->index) {
1728                                 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1729                                 index++;
1730                         }
1731                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1732                                         page);
1733                         list_del(&page->lru);
1734                         page->mapping = NULL;
1735                         page_ref_unfreeze(page, 1);
1736                         ClearPageActive(page);
1737                         ClearPageUnevictable(page);
1738                         unlock_page(page);
1739                         put_page(page);
1740                         index++;
1741                 }
1742                 while (index < end) {
1743                         clear_highpage(new_page + (index % HPAGE_PMD_NR));
1744                         index++;
1745                 }
1746
1747                 SetPageUptodate(new_page);
1748                 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1749                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1750
1751                 if (is_shmem) {
1752                         set_page_dirty(new_page);
1753                         lru_cache_add_anon(new_page);
1754                 } else {
1755                         lru_cache_add_file(new_page);
1756                 }
1757                 count_memcg_events(memcg, THP_COLLAPSE_ALLOC, 1);
1758
1759                 /*
1760                  * Remove pte page tables, so we can re-fault the page as huge.
1761                  */
1762                 retract_page_tables(mapping, start);
1763                 *hpage = NULL;
1764
1765                 khugepaged_pages_collapsed++;
1766         } else {
1767                 struct page *page;
1768
1769                 /* Something went wrong: roll back page cache changes */
1770                 xas_lock_irq(&xas);
1771                 mapping->nrpages -= nr_none;
1772
1773                 if (is_shmem)
1774                         shmem_uncharge(mapping->host, nr_none);
1775
1776                 xas_set(&xas, start);
1777                 xas_for_each(&xas, page, end - 1) {
1778                         page = list_first_entry_or_null(&pagelist,
1779                                         struct page, lru);
1780                         if (!page || xas.xa_index < page->index) {
1781                                 if (!nr_none)
1782                                         break;
1783                                 nr_none--;
1784                                 /* Put holes back where they were */
1785                                 xas_store(&xas, NULL);
1786                                 continue;
1787                         }
1788
1789                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1790
1791                         /* Unfreeze the page. */
1792                         list_del(&page->lru);
1793                         page_ref_unfreeze(page, 2);
1794                         xas_store(&xas, page);
1795                         xas_pause(&xas);
1796                         xas_unlock_irq(&xas);
1797                         unlock_page(page);
1798                         putback_lru_page(page);
1799                         xas_lock_irq(&xas);
1800                 }
1801                 VM_BUG_ON(nr_none);
1802                 xas_unlock_irq(&xas);
1803
1804                 mem_cgroup_cancel_charge(new_page, memcg, true);
1805                 new_page->mapping = NULL;
1806         }
1807
1808         unlock_page(new_page);
1809 out:
1810         VM_BUG_ON(!list_empty(&pagelist));
1811         /* TODO: tracepoints */
1812 }
1813
1814 static void khugepaged_scan_file(struct mm_struct *mm,
1815                 struct file *file, pgoff_t start, struct page **hpage)
1816 {
1817         struct page *page = NULL;
1818         struct address_space *mapping = file->f_mapping;
1819         XA_STATE(xas, &mapping->i_pages, start);
1820         int present, swap;
1821         int node = NUMA_NO_NODE;
1822         int result = SCAN_SUCCEED;
1823
1824         present = 0;
1825         swap = 0;
1826         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1827         rcu_read_lock();
1828         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
1829                 if (xas_retry(&xas, page))
1830                         continue;
1831
1832                 if (xa_is_value(page)) {
1833                         if (++swap > khugepaged_max_ptes_swap) {
1834                                 result = SCAN_EXCEED_SWAP_PTE;
1835                                 break;
1836                         }
1837                         continue;
1838                 }
1839
1840                 if (PageTransCompound(page)) {
1841                         result = SCAN_PAGE_COMPOUND;
1842                         break;
1843                 }
1844
1845                 node = page_to_nid(page);
1846                 if (khugepaged_scan_abort(node)) {
1847                         result = SCAN_SCAN_ABORT;
1848                         break;
1849                 }
1850                 khugepaged_node_load[node]++;
1851
1852                 if (!PageLRU(page)) {
1853                         result = SCAN_PAGE_LRU;
1854                         break;
1855                 }
1856
1857                 if (page_count(page) !=
1858                     1 + page_mapcount(page) + page_has_private(page)) {
1859                         result = SCAN_PAGE_COUNT;
1860                         break;
1861                 }
1862
1863                 /*
1864                  * We probably should check if the page is referenced here, but
1865                  * nobody would transfer pte_young() to PageReferenced() for us.
1866                  * And rmap walk here is just too costly...
1867                  */
1868
1869                 present++;
1870
1871                 if (need_resched()) {
1872                         xas_pause(&xas);
1873                         cond_resched_rcu();
1874                 }
1875         }
1876         rcu_read_unlock();
1877
1878         if (result == SCAN_SUCCEED) {
1879                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1880                         result = SCAN_EXCEED_NONE_PTE;
1881                 } else {
1882                         node = khugepaged_find_target_node();
1883                         collapse_file(mm, file, start, hpage, node);
1884                 }
1885         }
1886
1887         /* TODO: tracepoints */
1888 }
1889 #else
1890 static void khugepaged_scan_file(struct mm_struct *mm,
1891                 struct file *file, pgoff_t start, struct page **hpage)
1892 {
1893         BUILD_BUG();
1894 }
1895
1896 static int khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1897 {
1898         return 0;
1899 }
1900 #endif
1901
1902 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1903                                             struct page **hpage)
1904         __releases(&khugepaged_mm_lock)
1905         __acquires(&khugepaged_mm_lock)
1906 {
1907         struct mm_slot *mm_slot;
1908         struct mm_struct *mm;
1909         struct vm_area_struct *vma;
1910         int progress = 0;
1911
1912         VM_BUG_ON(!pages);
1913         lockdep_assert_held(&khugepaged_mm_lock);
1914
1915         if (khugepaged_scan.mm_slot)
1916                 mm_slot = khugepaged_scan.mm_slot;
1917         else {
1918                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1919                                      struct mm_slot, mm_node);
1920                 khugepaged_scan.address = 0;
1921                 khugepaged_scan.mm_slot = mm_slot;
1922         }
1923         spin_unlock(&khugepaged_mm_lock);
1924         khugepaged_collapse_pte_mapped_thps(mm_slot);
1925
1926         mm = mm_slot->mm;
1927         /*
1928          * Don't wait for semaphore (to avoid long wait times).  Just move to
1929          * the next mm on the list.
1930          */
1931         vma = NULL;
1932         if (unlikely(!down_read_trylock(&mm->mmap_sem)))
1933                 goto breakouterloop_mmap_sem;
1934         if (likely(!khugepaged_test_exit(mm)))
1935                 vma = find_vma(mm, khugepaged_scan.address);
1936
1937         progress++;
1938         for (; vma; vma = vma->vm_next) {
1939                 unsigned long hstart, hend;
1940
1941                 cond_resched();
1942                 if (unlikely(khugepaged_test_exit(mm))) {
1943                         progress++;
1944                         break;
1945                 }
1946                 if (!hugepage_vma_check(vma, vma->vm_flags)) {
1947 skip:
1948                         progress++;
1949                         continue;
1950                 }
1951                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1952                 hend = vma->vm_end & HPAGE_PMD_MASK;
1953                 if (hstart >= hend)
1954                         goto skip;
1955                 if (khugepaged_scan.address > hend)
1956                         goto skip;
1957                 if (khugepaged_scan.address < hstart)
1958                         khugepaged_scan.address = hstart;
1959                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1960
1961                 while (khugepaged_scan.address < hend) {
1962                         int ret;
1963                         cond_resched();
1964                         if (unlikely(khugepaged_test_exit(mm)))
1965                                 goto breakouterloop;
1966
1967                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1968                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1969                                   hend);
1970                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
1971                                 struct file *file;
1972                                 pgoff_t pgoff = linear_page_index(vma,
1973                                                 khugepaged_scan.address);
1974
1975                                 if (shmem_file(vma->vm_file)
1976                                     && !shmem_huge_enabled(vma))
1977                                         goto skip;
1978                                 file = get_file(vma->vm_file);
1979                                 up_read(&mm->mmap_sem);
1980                                 ret = 1;
1981                                 khugepaged_scan_file(mm, file, pgoff, hpage);
1982                                 fput(file);
1983                         } else {
1984                                 ret = khugepaged_scan_pmd(mm, vma,
1985                                                 khugepaged_scan.address,
1986                                                 hpage);
1987                         }
1988                         /* move to next address */
1989                         khugepaged_scan.address += HPAGE_PMD_SIZE;
1990                         progress += HPAGE_PMD_NR;
1991                         if (ret)
1992                                 /* we released mmap_sem so break loop */
1993                                 goto breakouterloop_mmap_sem;
1994                         if (progress >= pages)
1995                                 goto breakouterloop;
1996                 }
1997         }
1998 breakouterloop:
1999         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2000 breakouterloop_mmap_sem:
2001
2002         spin_lock(&khugepaged_mm_lock);
2003         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2004         /*
2005          * Release the current mm_slot if this mm is about to die, or
2006          * if we scanned all vmas of this mm.
2007          */
2008         if (khugepaged_test_exit(mm) || !vma) {
2009                 /*
2010                  * Make sure that if mm_users is reaching zero while
2011                  * khugepaged runs here, khugepaged_exit will find
2012                  * mm_slot not pointing to the exiting mm.
2013                  */
2014                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2015                         khugepaged_scan.mm_slot = list_entry(
2016                                 mm_slot->mm_node.next,
2017                                 struct mm_slot, mm_node);
2018                         khugepaged_scan.address = 0;
2019                 } else {
2020                         khugepaged_scan.mm_slot = NULL;
2021                         khugepaged_full_scans++;
2022                 }
2023
2024                 collect_mm_slot(mm_slot);
2025         }
2026
2027         return progress;
2028 }
2029
2030 static int khugepaged_has_work(void)
2031 {
2032         return !list_empty(&khugepaged_scan.mm_head) &&
2033                 khugepaged_enabled();
2034 }
2035
2036 static int khugepaged_wait_event(void)
2037 {
2038         return !list_empty(&khugepaged_scan.mm_head) ||
2039                 kthread_should_stop();
2040 }
2041
2042 static void khugepaged_do_scan(void)
2043 {
2044         struct page *hpage = NULL;
2045         unsigned int progress = 0, pass_through_head = 0;
2046         unsigned int pages = khugepaged_pages_to_scan;
2047         bool wait = true;
2048
2049         barrier(); /* write khugepaged_pages_to_scan to local stack */
2050
2051         while (progress < pages) {
2052                 if (!khugepaged_prealloc_page(&hpage, &wait))
2053                         break;
2054
2055                 cond_resched();
2056
2057                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2058                         break;
2059
2060                 spin_lock(&khugepaged_mm_lock);
2061                 if (!khugepaged_scan.mm_slot)
2062                         pass_through_head++;
2063                 if (khugepaged_has_work() &&
2064                     pass_through_head < 2)
2065                         progress += khugepaged_scan_mm_slot(pages - progress,
2066                                                             &hpage);
2067                 else
2068                         progress = pages;
2069                 spin_unlock(&khugepaged_mm_lock);
2070         }
2071
2072         if (!IS_ERR_OR_NULL(hpage))
2073                 put_page(hpage);
2074 }
2075
2076 static bool khugepaged_should_wakeup(void)
2077 {
2078         return kthread_should_stop() ||
2079                time_after_eq(jiffies, khugepaged_sleep_expire);
2080 }
2081
2082 static void khugepaged_wait_work(void)
2083 {
2084         if (khugepaged_has_work()) {
2085                 const unsigned long scan_sleep_jiffies =
2086                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2087
2088                 if (!scan_sleep_jiffies)
2089                         return;
2090
2091                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2092                 wait_event_freezable_timeout(khugepaged_wait,
2093                                              khugepaged_should_wakeup(),
2094                                              scan_sleep_jiffies);
2095                 return;
2096         }
2097
2098         if (khugepaged_enabled())
2099                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2100 }
2101
2102 static int khugepaged(void *none)
2103 {
2104         struct mm_slot *mm_slot;
2105
2106         set_freezable();
2107         set_user_nice(current, MAX_NICE);
2108
2109         while (!kthread_should_stop()) {
2110                 khugepaged_do_scan();
2111                 khugepaged_wait_work();
2112         }
2113
2114         spin_lock(&khugepaged_mm_lock);
2115         mm_slot = khugepaged_scan.mm_slot;
2116         khugepaged_scan.mm_slot = NULL;
2117         if (mm_slot)
2118                 collect_mm_slot(mm_slot);
2119         spin_unlock(&khugepaged_mm_lock);
2120         return 0;
2121 }
2122
2123 static void set_recommended_min_free_kbytes(void)
2124 {
2125         struct zone *zone;
2126         int nr_zones = 0;
2127         unsigned long recommended_min;
2128
2129         for_each_populated_zone(zone) {
2130                 /*
2131                  * We don't need to worry about fragmentation of
2132                  * ZONE_MOVABLE since it only has movable pages.
2133                  */
2134                 if (zone_idx(zone) > gfp_zone(GFP_USER))
2135                         continue;
2136
2137                 nr_zones++;
2138         }
2139
2140         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2141         recommended_min = pageblock_nr_pages * nr_zones * 2;
2142
2143         /*
2144          * Make sure that on average at least two pageblocks are almost free
2145          * of another type, one for a migratetype to fall back to and a
2146          * second to avoid subsequent fallbacks of other types There are 3
2147          * MIGRATE_TYPES we care about.
2148          */
2149         recommended_min += pageblock_nr_pages * nr_zones *
2150                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2151
2152         /* don't ever allow to reserve more than 5% of the lowmem */
2153         recommended_min = min(recommended_min,
2154                               (unsigned long) nr_free_buffer_pages() / 20);
2155         recommended_min <<= (PAGE_SHIFT-10);
2156
2157         if (recommended_min > min_free_kbytes) {
2158                 if (user_min_free_kbytes >= 0)
2159                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2160                                 min_free_kbytes, recommended_min);
2161
2162                 min_free_kbytes = recommended_min;
2163         }
2164         setup_per_zone_wmarks();
2165 }
2166
2167 int start_stop_khugepaged(void)
2168 {
2169         static struct task_struct *khugepaged_thread __read_mostly;
2170         static DEFINE_MUTEX(khugepaged_mutex);
2171         int err = 0;
2172
2173         mutex_lock(&khugepaged_mutex);
2174         if (khugepaged_enabled()) {
2175                 if (!khugepaged_thread)
2176                         khugepaged_thread = kthread_run(khugepaged, NULL,
2177                                                         "khugepaged");
2178                 if (IS_ERR(khugepaged_thread)) {
2179                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2180                         err = PTR_ERR(khugepaged_thread);
2181                         khugepaged_thread = NULL;
2182                         goto fail;
2183                 }
2184
2185                 if (!list_empty(&khugepaged_scan.mm_head))
2186                         wake_up_interruptible(&khugepaged_wait);
2187
2188                 set_recommended_min_free_kbytes();
2189         } else if (khugepaged_thread) {
2190                 kthread_stop(khugepaged_thread);
2191                 khugepaged_thread = NULL;
2192         }
2193 fail:
2194         mutex_unlock(&khugepaged_mutex);
2195         return err;
2196 }