1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
24 #include <asm/pgalloc.h>
33 SCAN_EXCEED_SHARED_PTE,
37 SCAN_LACK_REFERENCED_PAGE,
50 SCAN_ALLOC_HUGE_PAGE_FAIL,
51 SCAN_CGROUP_CHARGE_FAIL,
53 SCAN_PAGE_HAS_PRIVATE,
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
73 * default collapse hugepages if there is at least one pte mapped like
74 * it would have happened if the vma was large enough during page
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
84 static struct kmem_cache *mm_slot_cache __read_mostly;
86 #define MAX_PTE_MAPPED_THP 8
89 * struct mm_slot - hash lookup from mm to mm_slot
90 * @hash: hash collision list
91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92 * @mm: the mm that this information is valid for
93 * @nr_pte_mapped_thp: number of pte mapped THP
94 * @pte_mapped_thp: address array corresponding pte mapped THP
97 struct hlist_node hash;
98 struct list_head mm_node;
101 /* pte-mapped THP in this mm */
102 int nr_pte_mapped_thp;
103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
107 * struct khugepaged_scan - cursor for scanning
108 * @mm_head: the head of the mm list to scan
109 * @mm_slot: the current mm_slot we are scanning
110 * @address: the next address inside that to be scanned
112 * There is only the one khugepaged_scan instance of this cursor structure.
114 struct khugepaged_scan {
115 struct list_head mm_head;
116 struct mm_slot *mm_slot;
117 unsigned long address;
120 static struct khugepaged_scan khugepaged_scan = {
121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 struct kobj_attribute *attr,
129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 struct kobj_attribute *attr,
134 const char *buf, size_t count)
139 err = kstrtouint(buf, 10, &msecs);
143 khugepaged_scan_sleep_millisecs = msecs;
144 khugepaged_sleep_expire = 0;
145 wake_up_interruptible(&khugepaged_wait);
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151 scan_sleep_millisecs_store);
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154 struct kobj_attribute *attr,
157 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 const char *buf, size_t count)
167 err = kstrtouint(buf, 10, &msecs);
171 khugepaged_alloc_sleep_millisecs = msecs;
172 khugepaged_sleep_expire = 0;
173 wake_up_interruptible(&khugepaged_wait);
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179 alloc_sleep_millisecs_store);
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182 struct kobj_attribute *attr,
185 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188 struct kobj_attribute *attr,
189 const char *buf, size_t count)
194 err = kstrtouint(buf, 10, &pages);
198 khugepaged_pages_to_scan = pages;
202 static struct kobj_attribute pages_to_scan_attr =
203 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
204 pages_to_scan_store);
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207 struct kobj_attribute *attr,
210 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
212 static struct kobj_attribute pages_collapsed_attr =
213 __ATTR_RO(pages_collapsed);
215 static ssize_t full_scans_show(struct kobject *kobj,
216 struct kobj_attribute *attr,
219 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
221 static struct kobj_attribute full_scans_attr =
222 __ATTR_RO(full_scans);
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225 struct kobj_attribute *attr, char *buf)
227 return single_hugepage_flag_show(kobj, attr, buf,
228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231 struct kobj_attribute *attr,
232 const char *buf, size_t count)
234 return single_hugepage_flag_store(kobj, attr, buf, count,
235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
237 static struct kobj_attribute khugepaged_defrag_attr =
238 __ATTR(defrag, 0644, khugepaged_defrag_show,
239 khugepaged_defrag_store);
242 * max_ptes_none controls if khugepaged should collapse hugepages over
243 * any unmapped ptes in turn potentially increasing the memory
244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245 * reduce the available free memory in the system as it
246 * runs. Increasing max_ptes_none will instead potentially reduce the
247 * free memory in the system during the khugepaged scan.
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250 struct kobj_attribute *attr,
253 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
260 unsigned long max_ptes_none;
262 err = kstrtoul(buf, 10, &max_ptes_none);
263 if (err || max_ptes_none > HPAGE_PMD_NR-1)
266 khugepaged_max_ptes_none = max_ptes_none;
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272 khugepaged_max_ptes_none_store);
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275 struct kobj_attribute *attr,
278 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count)
286 unsigned long max_ptes_swap;
288 err = kstrtoul(buf, 10, &max_ptes_swap);
289 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
292 khugepaged_max_ptes_swap = max_ptes_swap;
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299 khugepaged_max_ptes_swap_store);
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302 struct kobj_attribute *attr,
305 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309 struct kobj_attribute *attr,
310 const char *buf, size_t count)
313 unsigned long max_ptes_shared;
315 err = kstrtoul(buf, 10, &max_ptes_shared);
316 if (err || max_ptes_shared > HPAGE_PMD_NR-1)
319 khugepaged_max_ptes_shared = max_ptes_shared;
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326 khugepaged_max_ptes_shared_store);
328 static struct attribute *khugepaged_attr[] = {
329 &khugepaged_defrag_attr.attr,
330 &khugepaged_max_ptes_none_attr.attr,
331 &khugepaged_max_ptes_swap_attr.attr,
332 &khugepaged_max_ptes_shared_attr.attr,
333 &pages_to_scan_attr.attr,
334 &pages_collapsed_attr.attr,
335 &full_scans_attr.attr,
336 &scan_sleep_millisecs_attr.attr,
337 &alloc_sleep_millisecs_attr.attr,
341 struct attribute_group khugepaged_attr_group = {
342 .attrs = khugepaged_attr,
343 .name = "khugepaged",
345 #endif /* CONFIG_SYSFS */
347 int hugepage_madvise(struct vm_area_struct *vma,
348 unsigned long *vm_flags, int advice)
354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 * can't handle this properly after s390_enable_sie, so we simply
356 * ignore the madvise to prevent qemu from causing a SIGSEGV.
358 if (mm_has_pgste(vma->vm_mm))
361 *vm_flags &= ~VM_NOHUGEPAGE;
362 *vm_flags |= VM_HUGEPAGE;
364 * If the vma become good for khugepaged to scan,
365 * register it here without waiting a page fault that
366 * may not happen any time soon.
368 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
369 khugepaged_enter_vma_merge(vma, *vm_flags))
372 case MADV_NOHUGEPAGE:
373 *vm_flags &= ~VM_HUGEPAGE;
374 *vm_flags |= VM_NOHUGEPAGE;
376 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
377 * this vma even if we leave the mm registered in khugepaged if
378 * it got registered before VM_NOHUGEPAGE was set.
386 int __init khugepaged_init(void)
388 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
389 sizeof(struct mm_slot),
390 __alignof__(struct mm_slot), 0, NULL);
394 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
395 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
396 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
397 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
402 void __init khugepaged_destroy(void)
404 kmem_cache_destroy(mm_slot_cache);
407 static inline struct mm_slot *alloc_mm_slot(void)
409 if (!mm_slot_cache) /* initialization failed */
411 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
414 static inline void free_mm_slot(struct mm_slot *mm_slot)
416 kmem_cache_free(mm_slot_cache, mm_slot);
419 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
421 struct mm_slot *mm_slot;
423 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
424 if (mm == mm_slot->mm)
430 static void insert_to_mm_slots_hash(struct mm_struct *mm,
431 struct mm_slot *mm_slot)
434 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
437 static inline int khugepaged_test_exit(struct mm_struct *mm)
439 return atomic_read(&mm->mm_users) == 0;
442 static bool hugepage_vma_check(struct vm_area_struct *vma,
443 unsigned long vm_flags)
445 if (!transhuge_vma_enabled(vma, vm_flags))
448 if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
449 vma->vm_pgoff, HPAGE_PMD_NR))
452 /* Enabled via shmem mount options or sysfs settings. */
453 if (shmem_file(vma->vm_file))
454 return shmem_huge_enabled(vma);
456 /* THP settings require madvise. */
457 if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
460 /* Only regular file is valid */
461 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && vma->vm_file &&
462 (vm_flags & VM_EXEC)) {
463 struct inode *inode = vma->vm_file->f_inode;
465 return !inode_is_open_for_write(inode) &&
466 S_ISREG(inode->i_mode);
469 if (!vma->anon_vma || vma->vm_ops)
471 if (vma_is_temporary_stack(vma))
473 return !(vm_flags & VM_NO_KHUGEPAGED);
476 int __khugepaged_enter(struct mm_struct *mm)
478 struct mm_slot *mm_slot;
481 mm_slot = alloc_mm_slot();
485 /* __khugepaged_exit() must not run from under us */
486 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
487 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
488 free_mm_slot(mm_slot);
492 spin_lock(&khugepaged_mm_lock);
493 insert_to_mm_slots_hash(mm, mm_slot);
495 * Insert just behind the scanning cursor, to let the area settle
498 wakeup = list_empty(&khugepaged_scan.mm_head);
499 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
500 spin_unlock(&khugepaged_mm_lock);
504 wake_up_interruptible(&khugepaged_wait);
509 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
510 unsigned long vm_flags)
512 unsigned long hstart, hend;
515 * khugepaged only supports read-only files for non-shmem files.
516 * khugepaged does not yet work on special mappings. And
517 * file-private shmem THP is not supported.
519 if (!hugepage_vma_check(vma, vm_flags))
522 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
523 hend = vma->vm_end & HPAGE_PMD_MASK;
525 return khugepaged_enter(vma, vm_flags);
529 void __khugepaged_exit(struct mm_struct *mm)
531 struct mm_slot *mm_slot;
534 spin_lock(&khugepaged_mm_lock);
535 mm_slot = get_mm_slot(mm);
536 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
537 hash_del(&mm_slot->hash);
538 list_del(&mm_slot->mm_node);
541 spin_unlock(&khugepaged_mm_lock);
544 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
545 free_mm_slot(mm_slot);
547 } else if (mm_slot) {
549 * This is required to serialize against
550 * khugepaged_test_exit() (which is guaranteed to run
551 * under mmap sem read mode). Stop here (after we
552 * return all pagetables will be destroyed) until
553 * khugepaged has finished working on the pagetables
554 * under the mmap_lock.
557 mmap_write_unlock(mm);
561 static void release_pte_page(struct page *page)
563 mod_node_page_state(page_pgdat(page),
564 NR_ISOLATED_ANON + page_is_file_lru(page),
567 putback_lru_page(page);
570 static void release_pte_pages(pte_t *pte, pte_t *_pte,
571 struct list_head *compound_pagelist)
573 struct page *page, *tmp;
575 while (--_pte >= pte) {
576 pte_t pteval = *_pte;
578 page = pte_page(pteval);
579 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
581 release_pte_page(page);
584 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
585 list_del(&page->lru);
586 release_pte_page(page);
590 static bool is_refcount_suitable(struct page *page)
592 int expected_refcount;
594 expected_refcount = total_mapcount(page);
595 if (PageSwapCache(page))
596 expected_refcount += compound_nr(page);
598 return page_count(page) == expected_refcount;
601 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
602 unsigned long address,
604 struct list_head *compound_pagelist)
606 struct page *page = NULL;
608 int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
609 bool writable = false;
611 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
612 _pte++, address += PAGE_SIZE) {
613 pte_t pteval = *_pte;
614 if (pte_none(pteval) || (pte_present(pteval) &&
615 is_zero_pfn(pte_pfn(pteval)))) {
616 if (!userfaultfd_armed(vma) &&
617 ++none_or_zero <= khugepaged_max_ptes_none) {
620 result = SCAN_EXCEED_NONE_PTE;
621 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
625 if (!pte_present(pteval)) {
626 result = SCAN_PTE_NON_PRESENT;
629 page = vm_normal_page(vma, address, pteval);
630 if (unlikely(!page)) {
631 result = SCAN_PAGE_NULL;
635 VM_BUG_ON_PAGE(!PageAnon(page), page);
637 if (page_mapcount(page) > 1 &&
638 ++shared > khugepaged_max_ptes_shared) {
639 result = SCAN_EXCEED_SHARED_PTE;
640 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
644 if (PageCompound(page)) {
646 page = compound_head(page);
649 * Check if we have dealt with the compound page
652 list_for_each_entry(p, compound_pagelist, lru) {
659 * We can do it before isolate_lru_page because the
660 * page can't be freed from under us. NOTE: PG_lock
661 * is needed to serialize against split_huge_page
662 * when invoked from the VM.
664 if (!trylock_page(page)) {
665 result = SCAN_PAGE_LOCK;
670 * Check if the page has any GUP (or other external) pins.
672 * The page table that maps the page has been already unlinked
673 * from the page table tree and this process cannot get
674 * an additional pin on the page.
676 * New pins can come later if the page is shared across fork,
677 * but not from this process. The other process cannot write to
678 * the page, only trigger CoW.
680 if (!is_refcount_suitable(page)) {
682 result = SCAN_PAGE_COUNT;
687 * Isolate the page to avoid collapsing an hugepage
688 * currently in use by the VM.
690 if (isolate_lru_page(page)) {
692 result = SCAN_DEL_PAGE_LRU;
695 mod_node_page_state(page_pgdat(page),
696 NR_ISOLATED_ANON + page_is_file_lru(page),
698 VM_BUG_ON_PAGE(!PageLocked(page), page);
699 VM_BUG_ON_PAGE(PageLRU(page), page);
701 if (PageCompound(page))
702 list_add_tail(&page->lru, compound_pagelist);
704 /* There should be enough young pte to collapse the page */
705 if (pte_young(pteval) ||
706 page_is_young(page) || PageReferenced(page) ||
707 mmu_notifier_test_young(vma->vm_mm, address))
710 if (pte_write(pteval))
714 if (unlikely(!writable)) {
715 result = SCAN_PAGE_RO;
716 } else if (unlikely(!referenced)) {
717 result = SCAN_LACK_REFERENCED_PAGE;
719 result = SCAN_SUCCEED;
720 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
721 referenced, writable, result);
725 release_pte_pages(pte, _pte, compound_pagelist);
726 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
727 referenced, writable, result);
731 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
732 struct vm_area_struct *vma,
733 unsigned long address,
735 struct list_head *compound_pagelist)
737 struct page *src_page, *tmp;
739 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
740 _pte++, page++, address += PAGE_SIZE) {
741 pte_t pteval = *_pte;
743 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
744 clear_user_highpage(page, address);
745 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
746 if (is_zero_pfn(pte_pfn(pteval))) {
748 * ptl mostly unnecessary.
751 ptep_clear(vma->vm_mm, address, _pte);
755 src_page = pte_page(pteval);
756 copy_user_highpage(page, src_page, address, vma);
757 if (!PageCompound(src_page))
758 release_pte_page(src_page);
760 * ptl mostly unnecessary, but preempt has to
761 * be disabled to update the per-cpu stats
762 * inside page_remove_rmap().
765 ptep_clear(vma->vm_mm, address, _pte);
766 page_remove_rmap(src_page, vma, false);
768 free_page_and_swap_cache(src_page);
772 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
773 list_del(&src_page->lru);
774 release_pte_page(src_page);
778 static void khugepaged_alloc_sleep(void)
782 add_wait_queue(&khugepaged_wait, &wait);
783 freezable_schedule_timeout_interruptible(
784 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
785 remove_wait_queue(&khugepaged_wait, &wait);
788 static int khugepaged_node_load[MAX_NUMNODES];
790 static bool khugepaged_scan_abort(int nid)
795 * If node_reclaim_mode is disabled, then no extra effort is made to
796 * allocate memory locally.
798 if (!node_reclaim_enabled())
801 /* If there is a count for this node already, it must be acceptable */
802 if (khugepaged_node_load[nid])
805 for (i = 0; i < MAX_NUMNODES; i++) {
806 if (!khugepaged_node_load[i])
808 if (node_distance(nid, i) > node_reclaim_distance)
814 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
815 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
817 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
821 static int khugepaged_find_target_node(void)
823 static int last_khugepaged_target_node = NUMA_NO_NODE;
824 int nid, target_node = 0, max_value = 0;
826 /* find first node with max normal pages hit */
827 for (nid = 0; nid < MAX_NUMNODES; nid++)
828 if (khugepaged_node_load[nid] > max_value) {
829 max_value = khugepaged_node_load[nid];
833 /* do some balance if several nodes have the same hit record */
834 if (target_node <= last_khugepaged_target_node)
835 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
837 if (max_value == khugepaged_node_load[nid]) {
842 last_khugepaged_target_node = target_node;
846 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
848 if (IS_ERR(*hpage)) {
854 khugepaged_alloc_sleep();
864 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
866 VM_BUG_ON_PAGE(*hpage, *hpage);
868 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
869 if (unlikely(!*hpage)) {
870 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
871 *hpage = ERR_PTR(-ENOMEM);
875 prep_transhuge_page(*hpage);
876 count_vm_event(THP_COLLAPSE_ALLOC);
880 static int khugepaged_find_target_node(void)
885 static inline struct page *alloc_khugepaged_hugepage(void)
889 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
892 prep_transhuge_page(page);
896 static struct page *khugepaged_alloc_hugepage(bool *wait)
901 hpage = alloc_khugepaged_hugepage();
903 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
908 khugepaged_alloc_sleep();
910 count_vm_event(THP_COLLAPSE_ALLOC);
911 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
916 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
919 * If the hpage allocated earlier was briefly exposed in page cache
920 * before collapse_file() failed, it is possible that racing lookups
921 * have not yet completed, and would then be unpleasantly surprised by
922 * finding the hpage reused for the same mapping at a different offset.
923 * Just release the previous allocation if there is any danger of that.
925 if (*hpage && page_count(*hpage) > 1) {
931 *hpage = khugepaged_alloc_hugepage(wait);
933 if (unlikely(!*hpage))
940 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
949 * If mmap_lock temporarily dropped, revalidate vma
950 * before taking mmap_lock.
951 * Return 0 if succeeds, otherwise return none-zero
955 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
956 struct vm_area_struct **vmap)
958 struct vm_area_struct *vma;
959 unsigned long hstart, hend;
961 if (unlikely(khugepaged_test_exit(mm)))
962 return SCAN_ANY_PROCESS;
964 *vmap = vma = find_vma(mm, address);
966 return SCAN_VMA_NULL;
968 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
969 hend = vma->vm_end & HPAGE_PMD_MASK;
970 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
971 return SCAN_ADDRESS_RANGE;
972 if (!hugepage_vma_check(vma, vma->vm_flags))
973 return SCAN_VMA_CHECK;
974 /* Anon VMA expected */
975 if (!vma->anon_vma || vma->vm_ops)
976 return SCAN_VMA_CHECK;
981 * Bring missing pages in from swap, to complete THP collapse.
982 * Only done if khugepaged_scan_pmd believes it is worthwhile.
984 * Called and returns without pte mapped or spinlocks held,
985 * but with mmap_lock held to protect against vma changes.
988 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
989 struct vm_area_struct *vma,
990 unsigned long haddr, pmd_t *pmd,
995 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
997 for (address = haddr; address < end; address += PAGE_SIZE) {
998 struct vm_fault vmf = {
1001 .pgoff = linear_page_index(vma, haddr),
1002 .flags = FAULT_FLAG_ALLOW_RETRY,
1006 vmf.pte = pte_offset_map(pmd, address);
1007 vmf.orig_pte = *vmf.pte;
1008 if (!is_swap_pte(vmf.orig_pte)) {
1013 ret = do_swap_page(&vmf);
1015 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1016 if (ret & VM_FAULT_RETRY) {
1018 if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1019 /* vma is no longer available, don't continue to swapin */
1020 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1023 /* check if the pmd is still valid */
1024 if (mm_find_pmd(mm, haddr) != pmd) {
1025 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1029 if (ret & VM_FAULT_ERROR) {
1030 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1035 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1039 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1043 static void collapse_huge_page(struct mm_struct *mm,
1044 unsigned long address,
1045 struct page **hpage,
1046 int node, int referenced, int unmapped)
1048 LIST_HEAD(compound_pagelist);
1052 struct page *new_page;
1053 spinlock_t *pmd_ptl, *pte_ptl;
1054 int isolated = 0, result = 0;
1055 struct vm_area_struct *vma;
1056 struct mmu_notifier_range range;
1059 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1061 /* Only allocate from the target node */
1062 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1065 * Before allocating the hugepage, release the mmap_lock read lock.
1066 * The allocation can take potentially a long time if it involves
1067 * sync compaction, and we do not need to hold the mmap_lock during
1068 * that. We will recheck the vma after taking it again in write mode.
1070 mmap_read_unlock(mm);
1071 new_page = khugepaged_alloc_page(hpage, gfp, node);
1073 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1077 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1078 result = SCAN_CGROUP_CHARGE_FAIL;
1081 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1084 result = hugepage_vma_revalidate(mm, address, &vma);
1086 mmap_read_unlock(mm);
1090 pmd = mm_find_pmd(mm, address);
1092 result = SCAN_PMD_NULL;
1093 mmap_read_unlock(mm);
1098 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1099 * If it fails, we release mmap_lock and jump out_nolock.
1100 * Continuing to collapse causes inconsistency.
1102 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1104 mmap_read_unlock(mm);
1108 mmap_read_unlock(mm);
1110 * Prevent all access to pagetables with the exception of
1111 * gup_fast later handled by the ptep_clear_flush and the VM
1112 * handled by the anon_vma lock + PG_lock.
1114 mmap_write_lock(mm);
1115 result = hugepage_vma_revalidate(mm, address, &vma);
1118 /* check if the pmd is still valid */
1119 if (mm_find_pmd(mm, address) != pmd)
1122 anon_vma_lock_write(vma->anon_vma);
1124 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1125 address, address + HPAGE_PMD_SIZE);
1126 mmu_notifier_invalidate_range_start(&range);
1128 pte = pte_offset_map(pmd, address);
1129 pte_ptl = pte_lockptr(mm, pmd);
1131 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1133 * After this gup_fast can't run anymore. This also removes
1134 * any huge TLB entry from the CPU so we won't allow
1135 * huge and small TLB entries for the same virtual address
1136 * to avoid the risk of CPU bugs in that area.
1138 _pmd = pmdp_collapse_flush(vma, address, pmd);
1139 spin_unlock(pmd_ptl);
1140 mmu_notifier_invalidate_range_end(&range);
1143 isolated = __collapse_huge_page_isolate(vma, address, pte,
1144 &compound_pagelist);
1145 spin_unlock(pte_ptl);
1147 if (unlikely(!isolated)) {
1150 BUG_ON(!pmd_none(*pmd));
1152 * We can only use set_pmd_at when establishing
1153 * hugepmds and never for establishing regular pmds that
1154 * points to regular pagetables. Use pmd_populate for that
1156 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1157 spin_unlock(pmd_ptl);
1158 anon_vma_unlock_write(vma->anon_vma);
1164 * All pages are isolated and locked so anon_vma rmap
1165 * can't run anymore.
1167 anon_vma_unlock_write(vma->anon_vma);
1169 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1170 &compound_pagelist);
1173 * spin_lock() below is not the equivalent of smp_wmb(), but
1174 * the smp_wmb() inside __SetPageUptodate() can be reused to
1175 * avoid the copy_huge_page writes to become visible after
1176 * the set_pmd_at() write.
1178 __SetPageUptodate(new_page);
1179 pgtable = pmd_pgtable(_pmd);
1181 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1182 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1185 BUG_ON(!pmd_none(*pmd));
1186 page_add_new_anon_rmap(new_page, vma, address, true);
1187 lru_cache_add_inactive_or_unevictable(new_page, vma);
1188 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1189 set_pmd_at(mm, address, pmd, _pmd);
1190 update_mmu_cache_pmd(vma, address, pmd);
1191 spin_unlock(pmd_ptl);
1195 khugepaged_pages_collapsed++;
1196 result = SCAN_SUCCEED;
1198 mmap_write_unlock(mm);
1200 if (!IS_ERR_OR_NULL(*hpage))
1201 mem_cgroup_uncharge(page_folio(*hpage));
1202 trace_mm_collapse_huge_page(mm, isolated, result);
1206 static int khugepaged_scan_pmd(struct mm_struct *mm,
1207 struct vm_area_struct *vma,
1208 unsigned long address,
1209 struct page **hpage)
1213 int ret = 0, result = 0, referenced = 0;
1214 int none_or_zero = 0, shared = 0;
1215 struct page *page = NULL;
1216 unsigned long _address;
1218 int node = NUMA_NO_NODE, unmapped = 0;
1219 bool writable = false;
1221 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1223 pmd = mm_find_pmd(mm, address);
1225 result = SCAN_PMD_NULL;
1229 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1230 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1231 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1232 _pte++, _address += PAGE_SIZE) {
1233 pte_t pteval = *_pte;
1234 if (is_swap_pte(pteval)) {
1235 if (++unmapped <= khugepaged_max_ptes_swap) {
1237 * Always be strict with uffd-wp
1238 * enabled swap entries. Please see
1239 * comment below for pte_uffd_wp().
1241 if (pte_swp_uffd_wp(pteval)) {
1242 result = SCAN_PTE_UFFD_WP;
1247 result = SCAN_EXCEED_SWAP_PTE;
1248 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1252 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1253 if (!userfaultfd_armed(vma) &&
1254 ++none_or_zero <= khugepaged_max_ptes_none) {
1257 result = SCAN_EXCEED_NONE_PTE;
1258 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1262 if (pte_uffd_wp(pteval)) {
1264 * Don't collapse the page if any of the small
1265 * PTEs are armed with uffd write protection.
1266 * Here we can also mark the new huge pmd as
1267 * write protected if any of the small ones is
1268 * marked but that could bring unknown
1269 * userfault messages that falls outside of
1270 * the registered range. So, just be simple.
1272 result = SCAN_PTE_UFFD_WP;
1275 if (pte_write(pteval))
1278 page = vm_normal_page(vma, _address, pteval);
1279 if (unlikely(!page)) {
1280 result = SCAN_PAGE_NULL;
1284 if (page_mapcount(page) > 1 &&
1285 ++shared > khugepaged_max_ptes_shared) {
1286 result = SCAN_EXCEED_SHARED_PTE;
1287 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1291 page = compound_head(page);
1294 * Record which node the original page is from and save this
1295 * information to khugepaged_node_load[].
1296 * Khugepaged will allocate hugepage from the node has the max
1299 node = page_to_nid(page);
1300 if (khugepaged_scan_abort(node)) {
1301 result = SCAN_SCAN_ABORT;
1304 khugepaged_node_load[node]++;
1305 if (!PageLRU(page)) {
1306 result = SCAN_PAGE_LRU;
1309 if (PageLocked(page)) {
1310 result = SCAN_PAGE_LOCK;
1313 if (!PageAnon(page)) {
1314 result = SCAN_PAGE_ANON;
1319 * Check if the page has any GUP (or other external) pins.
1321 * Here the check is racy it may see totmal_mapcount > refcount
1323 * For example, one process with one forked child process.
1324 * The parent has the PMD split due to MADV_DONTNEED, then
1325 * the child is trying unmap the whole PMD, but khugepaged
1326 * may be scanning the parent between the child has
1327 * PageDoubleMap flag cleared and dec the mapcount. So
1328 * khugepaged may see total_mapcount > refcount.
1330 * But such case is ephemeral we could always retry collapse
1331 * later. However it may report false positive if the page
1332 * has excessive GUP pins (i.e. 512). Anyway the same check
1333 * will be done again later the risk seems low.
1335 if (!is_refcount_suitable(page)) {
1336 result = SCAN_PAGE_COUNT;
1339 if (pte_young(pteval) ||
1340 page_is_young(page) || PageReferenced(page) ||
1341 mmu_notifier_test_young(vma->vm_mm, address))
1345 result = SCAN_PAGE_RO;
1346 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1347 result = SCAN_LACK_REFERENCED_PAGE;
1349 result = SCAN_SUCCEED;
1353 pte_unmap_unlock(pte, ptl);
1355 node = khugepaged_find_target_node();
1356 /* collapse_huge_page will return with the mmap_lock released */
1357 collapse_huge_page(mm, address, hpage, node,
1358 referenced, unmapped);
1361 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1362 none_or_zero, result, unmapped);
1366 static void collect_mm_slot(struct mm_slot *mm_slot)
1368 struct mm_struct *mm = mm_slot->mm;
1370 lockdep_assert_held(&khugepaged_mm_lock);
1372 if (khugepaged_test_exit(mm)) {
1374 hash_del(&mm_slot->hash);
1375 list_del(&mm_slot->mm_node);
1378 * Not strictly needed because the mm exited already.
1380 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1383 /* khugepaged_mm_lock actually not necessary for the below */
1384 free_mm_slot(mm_slot);
1391 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1392 * khugepaged should try to collapse the page table.
1394 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1397 struct mm_slot *mm_slot;
1399 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1401 spin_lock(&khugepaged_mm_lock);
1402 mm_slot = get_mm_slot(mm);
1403 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1404 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1405 spin_unlock(&khugepaged_mm_lock);
1409 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1410 unsigned long addr, pmd_t *pmdp)
1415 mmap_assert_write_locked(mm);
1416 ptl = pmd_lock(vma->vm_mm, pmdp);
1417 pmd = pmdp_collapse_flush(vma, addr, pmdp);
1420 page_table_check_pte_clear_range(mm, addr, pmd);
1421 pte_free(mm, pmd_pgtable(pmd));
1425 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1428 * @mm: process address space where collapse happens
1429 * @addr: THP collapse address
1431 * This function checks whether all the PTEs in the PMD are pointing to the
1432 * right THP. If so, retract the page table so the THP can refault in with
1435 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1437 unsigned long haddr = addr & HPAGE_PMD_MASK;
1438 struct vm_area_struct *vma = find_vma(mm, haddr);
1440 pte_t *start_pte, *pte;
1446 if (!vma || !vma->vm_file ||
1447 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1451 * This vm_flags may not have VM_HUGEPAGE if the page was not
1452 * collapsed by this mm. But we can still collapse if the page is
1453 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1454 * will not fail the vma for missing VM_HUGEPAGE
1456 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1459 hpage = find_lock_page(vma->vm_file->f_mapping,
1460 linear_page_index(vma, haddr));
1464 if (!PageHead(hpage))
1467 pmd = mm_find_pmd(mm, haddr);
1471 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1473 /* step 1: check all mapped PTEs are to the right huge page */
1474 for (i = 0, addr = haddr, pte = start_pte;
1475 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1478 /* empty pte, skip */
1482 /* page swapped out, abort */
1483 if (!pte_present(*pte))
1486 page = vm_normal_page(vma, addr, *pte);
1489 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1490 * page table, but the new page will not be a subpage of hpage.
1492 if (hpage + i != page)
1497 /* step 2: adjust rmap */
1498 for (i = 0, addr = haddr, pte = start_pte;
1499 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1504 page = vm_normal_page(vma, addr, *pte);
1505 page_remove_rmap(page, vma, false);
1508 pte_unmap_unlock(start_pte, ptl);
1510 /* step 3: set proper refcount and mm_counters. */
1512 page_ref_sub(hpage, count);
1513 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1516 /* step 4: collapse pmd */
1517 collapse_and_free_pmd(mm, vma, haddr, pmd);
1524 pte_unmap_unlock(start_pte, ptl);
1528 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1530 struct mm_struct *mm = mm_slot->mm;
1533 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1536 if (!mmap_write_trylock(mm))
1539 if (unlikely(khugepaged_test_exit(mm)))
1542 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1543 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1546 mm_slot->nr_pte_mapped_thp = 0;
1547 mmap_write_unlock(mm);
1550 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1552 struct vm_area_struct *vma;
1553 struct mm_struct *mm;
1557 i_mmap_lock_write(mapping);
1558 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1560 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1561 * got written to. These VMAs are likely not worth investing
1562 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1565 * Not that vma->anon_vma check is racy: it can be set up after
1566 * the check but before we took mmap_lock by the fault path.
1567 * But page lock would prevent establishing any new ptes of the
1568 * page, so we are safe.
1570 * An alternative would be drop the check, but check that page
1571 * table is clear before calling pmdp_collapse_flush() under
1572 * ptl. It has higher chance to recover THP for the VMA, but
1573 * has higher cost too.
1577 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1578 if (addr & ~HPAGE_PMD_MASK)
1580 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1583 pmd = mm_find_pmd(mm, addr);
1587 * We need exclusive mmap_lock to retract page table.
1589 * We use trylock due to lock inversion: we need to acquire
1590 * mmap_lock while holding page lock. Fault path does it in
1591 * reverse order. Trylock is a way to avoid deadlock.
1593 if (mmap_write_trylock(mm)) {
1594 if (!khugepaged_test_exit(mm))
1595 collapse_and_free_pmd(mm, vma, addr, pmd);
1596 mmap_write_unlock(mm);
1598 /* Try again later */
1599 khugepaged_add_pte_mapped_thp(mm, addr);
1602 i_mmap_unlock_write(mapping);
1606 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1608 * @mm: process address space where collapse happens
1609 * @file: file that collapse on
1610 * @start: collapse start address
1611 * @hpage: new allocated huge page for collapse
1612 * @node: appointed node the new huge page allocate from
1614 * Basic scheme is simple, details are more complex:
1615 * - allocate and lock a new huge page;
1616 * - scan page cache replacing old pages with the new one
1617 * + swap/gup in pages if necessary;
1619 * + keep old pages around in case rollback is required;
1620 * - if replacing succeeds:
1623 * + unlock huge page;
1624 * - if replacing failed;
1625 * + put all pages back and unfreeze them;
1626 * + restore gaps in the page cache;
1627 * + unlock and free huge page;
1629 static void collapse_file(struct mm_struct *mm,
1630 struct file *file, pgoff_t start,
1631 struct page **hpage, int node)
1633 struct address_space *mapping = file->f_mapping;
1635 struct page *new_page;
1636 pgoff_t index, end = start + HPAGE_PMD_NR;
1637 LIST_HEAD(pagelist);
1638 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1639 int nr_none = 0, result = SCAN_SUCCEED;
1640 bool is_shmem = shmem_file(file);
1643 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1644 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1646 /* Only allocate from the target node */
1647 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1649 new_page = khugepaged_alloc_page(hpage, gfp, node);
1651 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1655 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1656 result = SCAN_CGROUP_CHARGE_FAIL;
1659 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1662 * Ensure we have slots for all the pages in the range. This is
1663 * almost certainly a no-op because most of the pages must be present
1667 xas_create_range(&xas);
1668 if (!xas_error(&xas))
1670 xas_unlock_irq(&xas);
1671 if (!xas_nomem(&xas, GFP_KERNEL)) {
1677 __SetPageLocked(new_page);
1679 __SetPageSwapBacked(new_page);
1680 new_page->index = start;
1681 new_page->mapping = mapping;
1684 * At this point the new_page is locked and not up-to-date.
1685 * It's safe to insert it into the page cache, because nobody would
1686 * be able to map it or use it in another way until we unlock it.
1689 xas_set(&xas, start);
1690 for (index = start; index < end; index++) {
1691 struct page *page = xas_next(&xas);
1693 VM_BUG_ON(index != xas.xa_index);
1697 * Stop if extent has been truncated or
1698 * hole-punched, and is now completely
1701 if (index == start) {
1702 if (!xas_next_entry(&xas, end - 1)) {
1703 result = SCAN_TRUNCATED;
1706 xas_set(&xas, index);
1708 if (!shmem_charge(mapping->host, 1)) {
1712 xas_store(&xas, new_page);
1717 if (xa_is_value(page) || !PageUptodate(page)) {
1718 xas_unlock_irq(&xas);
1719 /* swap in or instantiate fallocated page */
1720 if (shmem_getpage(mapping->host, index, &page,
1725 } else if (trylock_page(page)) {
1727 xas_unlock_irq(&xas);
1729 result = SCAN_PAGE_LOCK;
1732 } else { /* !is_shmem */
1733 if (!page || xa_is_value(page)) {
1734 xas_unlock_irq(&xas);
1735 page_cache_sync_readahead(mapping, &file->f_ra,
1738 /* drain pagevecs to help isolate_lru_page() */
1740 page = find_lock_page(mapping, index);
1741 if (unlikely(page == NULL)) {
1745 } else if (PageDirty(page)) {
1747 * khugepaged only works on read-only fd,
1748 * so this page is dirty because it hasn't
1749 * been flushed since first write. There
1750 * won't be new dirty pages.
1752 * Trigger async flush here and hope the
1753 * writeback is done when khugepaged
1754 * revisits this page.
1756 * This is a one-off situation. We are not
1757 * forcing writeback in loop.
1759 xas_unlock_irq(&xas);
1760 filemap_flush(mapping);
1763 } else if (PageWriteback(page)) {
1764 xas_unlock_irq(&xas);
1767 } else if (trylock_page(page)) {
1769 xas_unlock_irq(&xas);
1771 result = SCAN_PAGE_LOCK;
1777 * The page must be locked, so we can drop the i_pages lock
1778 * without racing with truncate.
1780 VM_BUG_ON_PAGE(!PageLocked(page), page);
1782 /* make sure the page is up to date */
1783 if (unlikely(!PageUptodate(page))) {
1789 * If file was truncated then extended, or hole-punched, before
1790 * we locked the first page, then a THP might be there already.
1792 if (PageTransCompound(page)) {
1793 result = SCAN_PAGE_COMPOUND;
1797 if (page_mapping(page) != mapping) {
1798 result = SCAN_TRUNCATED;
1802 if (!is_shmem && (PageDirty(page) ||
1803 PageWriteback(page))) {
1805 * khugepaged only works on read-only fd, so this
1806 * page is dirty because it hasn't been flushed
1807 * since first write.
1813 if (isolate_lru_page(page)) {
1814 result = SCAN_DEL_PAGE_LRU;
1818 if (page_has_private(page) &&
1819 !try_to_release_page(page, GFP_KERNEL)) {
1820 result = SCAN_PAGE_HAS_PRIVATE;
1821 putback_lru_page(page);
1825 if (page_mapped(page))
1826 try_to_unmap(page_folio(page),
1827 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1830 xas_set(&xas, index);
1832 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1835 * The page is expected to have page_count() == 3:
1836 * - we hold a pin on it;
1837 * - one reference from page cache;
1838 * - one from isolate_lru_page;
1840 if (!page_ref_freeze(page, 3)) {
1841 result = SCAN_PAGE_COUNT;
1842 xas_unlock_irq(&xas);
1843 putback_lru_page(page);
1848 * Add the page to the list to be able to undo the collapse if
1849 * something go wrong.
1851 list_add_tail(&page->lru, &pagelist);
1853 /* Finally, replace with the new page. */
1854 xas_store(&xas, new_page);
1861 nr = thp_nr_pages(new_page);
1864 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1866 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1867 filemap_nr_thps_inc(mapping);
1869 * Paired with smp_mb() in do_dentry_open() to ensure
1870 * i_writecount is up to date and the update to nr_thps is
1871 * visible. Ensures the page cache will be truncated if the
1872 * file is opened writable.
1875 if (inode_is_open_for_write(mapping->host)) {
1877 __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1878 filemap_nr_thps_dec(mapping);
1884 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1886 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1889 /* Join all the small entries into a single multi-index entry */
1890 xas_set_order(&xas, start, HPAGE_PMD_ORDER);
1891 xas_store(&xas, new_page);
1893 xas_unlock_irq(&xas);
1897 * If collapse is successful, flush must be done now before copying.
1898 * If collapse is unsuccessful, does flush actually need to be done?
1899 * Do it anyway, to clear the state.
1901 try_to_unmap_flush();
1903 if (result == SCAN_SUCCEED) {
1904 struct page *page, *tmp;
1907 * Replacing old pages with new one has succeeded, now we
1908 * need to copy the content and free the old pages.
1911 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1912 while (index < page->index) {
1913 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1916 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1918 list_del(&page->lru);
1919 page->mapping = NULL;
1920 page_ref_unfreeze(page, 1);
1921 ClearPageActive(page);
1922 ClearPageUnevictable(page);
1927 while (index < end) {
1928 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1932 SetPageUptodate(new_page);
1933 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1935 set_page_dirty(new_page);
1936 lru_cache_add(new_page);
1939 * Remove pte page tables, so we can re-fault the page as huge.
1941 retract_page_tables(mapping, start);
1944 khugepaged_pages_collapsed++;
1948 /* Something went wrong: roll back page cache changes */
1950 mapping->nrpages -= nr_none;
1953 shmem_uncharge(mapping->host, nr_none);
1955 xas_set(&xas, start);
1956 xas_for_each(&xas, page, end - 1) {
1957 page = list_first_entry_or_null(&pagelist,
1959 if (!page || xas.xa_index < page->index) {
1963 /* Put holes back where they were */
1964 xas_store(&xas, NULL);
1968 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1970 /* Unfreeze the page. */
1971 list_del(&page->lru);
1972 page_ref_unfreeze(page, 2);
1973 xas_store(&xas, page);
1975 xas_unlock_irq(&xas);
1977 putback_lru_page(page);
1981 xas_unlock_irq(&xas);
1983 new_page->mapping = NULL;
1986 unlock_page(new_page);
1988 VM_BUG_ON(!list_empty(&pagelist));
1989 if (!IS_ERR_OR_NULL(*hpage))
1990 mem_cgroup_uncharge(page_folio(*hpage));
1991 /* TODO: tracepoints */
1994 static void khugepaged_scan_file(struct mm_struct *mm,
1995 struct file *file, pgoff_t start, struct page **hpage)
1997 struct page *page = NULL;
1998 struct address_space *mapping = file->f_mapping;
1999 XA_STATE(xas, &mapping->i_pages, start);
2001 int node = NUMA_NO_NODE;
2002 int result = SCAN_SUCCEED;
2006 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2008 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2009 if (xas_retry(&xas, page))
2012 if (xa_is_value(page)) {
2013 if (++swap > khugepaged_max_ptes_swap) {
2014 result = SCAN_EXCEED_SWAP_PTE;
2015 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2022 * XXX: khugepaged should compact smaller compound pages
2023 * into a PMD sized page
2025 if (PageTransCompound(page)) {
2026 result = SCAN_PAGE_COMPOUND;
2030 node = page_to_nid(page);
2031 if (khugepaged_scan_abort(node)) {
2032 result = SCAN_SCAN_ABORT;
2035 khugepaged_node_load[node]++;
2037 if (!PageLRU(page)) {
2038 result = SCAN_PAGE_LRU;
2042 if (page_count(page) !=
2043 1 + page_mapcount(page) + page_has_private(page)) {
2044 result = SCAN_PAGE_COUNT;
2049 * We probably should check if the page is referenced here, but
2050 * nobody would transfer pte_young() to PageReferenced() for us.
2051 * And rmap walk here is just too costly...
2056 if (need_resched()) {
2063 if (result == SCAN_SUCCEED) {
2064 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2065 result = SCAN_EXCEED_NONE_PTE;
2066 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2068 node = khugepaged_find_target_node();
2069 collapse_file(mm, file, start, hpage, node);
2073 /* TODO: tracepoints */
2076 static void khugepaged_scan_file(struct mm_struct *mm,
2077 struct file *file, pgoff_t start, struct page **hpage)
2082 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2087 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2088 struct page **hpage)
2089 __releases(&khugepaged_mm_lock)
2090 __acquires(&khugepaged_mm_lock)
2092 struct mm_slot *mm_slot;
2093 struct mm_struct *mm;
2094 struct vm_area_struct *vma;
2098 lockdep_assert_held(&khugepaged_mm_lock);
2100 if (khugepaged_scan.mm_slot)
2101 mm_slot = khugepaged_scan.mm_slot;
2103 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2104 struct mm_slot, mm_node);
2105 khugepaged_scan.address = 0;
2106 khugepaged_scan.mm_slot = mm_slot;
2108 spin_unlock(&khugepaged_mm_lock);
2109 khugepaged_collapse_pte_mapped_thps(mm_slot);
2113 * Don't wait for semaphore (to avoid long wait times). Just move to
2114 * the next mm on the list.
2117 if (unlikely(!mmap_read_trylock(mm)))
2118 goto breakouterloop_mmap_lock;
2119 if (likely(!khugepaged_test_exit(mm)))
2120 vma = find_vma(mm, khugepaged_scan.address);
2123 for (; vma; vma = vma->vm_next) {
2124 unsigned long hstart, hend;
2127 if (unlikely(khugepaged_test_exit(mm))) {
2131 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2136 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2137 hend = vma->vm_end & HPAGE_PMD_MASK;
2140 if (khugepaged_scan.address > hend)
2142 if (khugepaged_scan.address < hstart)
2143 khugepaged_scan.address = hstart;
2144 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2145 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2148 while (khugepaged_scan.address < hend) {
2151 if (unlikely(khugepaged_test_exit(mm)))
2152 goto breakouterloop;
2154 VM_BUG_ON(khugepaged_scan.address < hstart ||
2155 khugepaged_scan.address + HPAGE_PMD_SIZE >
2157 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2158 struct file *file = get_file(vma->vm_file);
2159 pgoff_t pgoff = linear_page_index(vma,
2160 khugepaged_scan.address);
2162 mmap_read_unlock(mm);
2164 khugepaged_scan_file(mm, file, pgoff, hpage);
2167 ret = khugepaged_scan_pmd(mm, vma,
2168 khugepaged_scan.address,
2171 /* move to next address */
2172 khugepaged_scan.address += HPAGE_PMD_SIZE;
2173 progress += HPAGE_PMD_NR;
2175 /* we released mmap_lock so break loop */
2176 goto breakouterloop_mmap_lock;
2177 if (progress >= pages)
2178 goto breakouterloop;
2182 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2183 breakouterloop_mmap_lock:
2185 spin_lock(&khugepaged_mm_lock);
2186 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2188 * Release the current mm_slot if this mm is about to die, or
2189 * if we scanned all vmas of this mm.
2191 if (khugepaged_test_exit(mm) || !vma) {
2193 * Make sure that if mm_users is reaching zero while
2194 * khugepaged runs here, khugepaged_exit will find
2195 * mm_slot not pointing to the exiting mm.
2197 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2198 khugepaged_scan.mm_slot = list_entry(
2199 mm_slot->mm_node.next,
2200 struct mm_slot, mm_node);
2201 khugepaged_scan.address = 0;
2203 khugepaged_scan.mm_slot = NULL;
2204 khugepaged_full_scans++;
2207 collect_mm_slot(mm_slot);
2213 static int khugepaged_has_work(void)
2215 return !list_empty(&khugepaged_scan.mm_head) &&
2216 khugepaged_enabled();
2219 static int khugepaged_wait_event(void)
2221 return !list_empty(&khugepaged_scan.mm_head) ||
2222 kthread_should_stop();
2225 static void khugepaged_do_scan(void)
2227 struct page *hpage = NULL;
2228 unsigned int progress = 0, pass_through_head = 0;
2229 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2232 lru_add_drain_all();
2234 while (progress < pages) {
2235 if (!khugepaged_prealloc_page(&hpage, &wait))
2240 if (unlikely(kthread_should_stop() || try_to_freeze()))
2243 spin_lock(&khugepaged_mm_lock);
2244 if (!khugepaged_scan.mm_slot)
2245 pass_through_head++;
2246 if (khugepaged_has_work() &&
2247 pass_through_head < 2)
2248 progress += khugepaged_scan_mm_slot(pages - progress,
2252 spin_unlock(&khugepaged_mm_lock);
2255 if (!IS_ERR_OR_NULL(hpage))
2259 static bool khugepaged_should_wakeup(void)
2261 return kthread_should_stop() ||
2262 time_after_eq(jiffies, khugepaged_sleep_expire);
2265 static void khugepaged_wait_work(void)
2267 if (khugepaged_has_work()) {
2268 const unsigned long scan_sleep_jiffies =
2269 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2271 if (!scan_sleep_jiffies)
2274 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2275 wait_event_freezable_timeout(khugepaged_wait,
2276 khugepaged_should_wakeup(),
2277 scan_sleep_jiffies);
2281 if (khugepaged_enabled())
2282 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2285 static int khugepaged(void *none)
2287 struct mm_slot *mm_slot;
2290 set_user_nice(current, MAX_NICE);
2292 while (!kthread_should_stop()) {
2293 khugepaged_do_scan();
2294 khugepaged_wait_work();
2297 spin_lock(&khugepaged_mm_lock);
2298 mm_slot = khugepaged_scan.mm_slot;
2299 khugepaged_scan.mm_slot = NULL;
2301 collect_mm_slot(mm_slot);
2302 spin_unlock(&khugepaged_mm_lock);
2306 static void set_recommended_min_free_kbytes(void)
2310 unsigned long recommended_min;
2312 if (!khugepaged_enabled()) {
2313 calculate_min_free_kbytes();
2317 for_each_populated_zone(zone) {
2319 * We don't need to worry about fragmentation of
2320 * ZONE_MOVABLE since it only has movable pages.
2322 if (zone_idx(zone) > gfp_zone(GFP_USER))
2328 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2329 recommended_min = pageblock_nr_pages * nr_zones * 2;
2332 * Make sure that on average at least two pageblocks are almost free
2333 * of another type, one for a migratetype to fall back to and a
2334 * second to avoid subsequent fallbacks of other types There are 3
2335 * MIGRATE_TYPES we care about.
2337 recommended_min += pageblock_nr_pages * nr_zones *
2338 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2340 /* don't ever allow to reserve more than 5% of the lowmem */
2341 recommended_min = min(recommended_min,
2342 (unsigned long) nr_free_buffer_pages() / 20);
2343 recommended_min <<= (PAGE_SHIFT-10);
2345 if (recommended_min > min_free_kbytes) {
2346 if (user_min_free_kbytes >= 0)
2347 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2348 min_free_kbytes, recommended_min);
2350 min_free_kbytes = recommended_min;
2354 setup_per_zone_wmarks();
2357 int start_stop_khugepaged(void)
2361 mutex_lock(&khugepaged_mutex);
2362 if (khugepaged_enabled()) {
2363 if (!khugepaged_thread)
2364 khugepaged_thread = kthread_run(khugepaged, NULL,
2366 if (IS_ERR(khugepaged_thread)) {
2367 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2368 err = PTR_ERR(khugepaged_thread);
2369 khugepaged_thread = NULL;
2373 if (!list_empty(&khugepaged_scan.mm_head))
2374 wake_up_interruptible(&khugepaged_wait);
2375 } else if (khugepaged_thread) {
2376 kthread_stop(khugepaged_thread);
2377 khugepaged_thread = NULL;
2379 set_recommended_min_free_kbytes();
2381 mutex_unlock(&khugepaged_mutex);
2385 void khugepaged_min_free_kbytes_update(void)
2387 mutex_lock(&khugepaged_mutex);
2388 if (khugepaged_enabled() && khugepaged_thread)
2389 set_recommended_min_free_kbytes();
2390 mutex_unlock(&khugepaged_mutex);