1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
4 #include <linux/sched.h>
5 #include <linux/mmu_notifier.h>
6 #include <linux/rmap.h>
7 #include <linux/swap.h>
8 #include <linux/mm_inline.h>
9 #include <linux/kthread.h>
10 #include <linux/khugepaged.h>
11 #include <linux/freezer.h>
12 #include <linux/mman.h>
13 #include <linux/hashtable.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/page_idle.h>
16 #include <linux/swapops.h>
17 #include <linux/shmem_fs.h>
20 #include <asm/pgalloc.h>
30 SCAN_LACK_REFERENCED_PAGE,
44 SCAN_ALLOC_HUGE_PAGE_FAIL,
45 SCAN_CGROUP_CHARGE_FAIL,
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/huge_memory.h>
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static unsigned long khugepaged_sleep_expire;
61 static DEFINE_SPINLOCK(khugepaged_mm_lock);
62 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
64 * default collapse hugepages if there is at least one pte mapped like
65 * it would have happened if the vma was large enough during page
68 static unsigned int khugepaged_max_ptes_none __read_mostly;
69 static unsigned int khugepaged_max_ptes_swap __read_mostly;
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
74 static struct kmem_cache *mm_slot_cache __read_mostly;
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
83 struct hlist_node hash;
84 struct list_head mm_node;
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
94 * There is only the one khugepaged_scan instance of this cursor structure.
96 struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
102 static struct khugepaged_scan khugepaged_scan = {
103 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
106 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
107 struct kobj_attribute *attr,
110 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
113 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
114 struct kobj_attribute *attr,
115 const char *buf, size_t count)
120 err = kstrtoul(buf, 10, &msecs);
121 if (err || msecs > UINT_MAX)
124 khugepaged_scan_sleep_millisecs = msecs;
125 khugepaged_sleep_expire = 0;
126 wake_up_interruptible(&khugepaged_wait);
130 static struct kobj_attribute scan_sleep_millisecs_attr =
131 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
132 scan_sleep_millisecs_store);
134 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
135 struct kobj_attribute *attr,
138 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
141 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
142 struct kobj_attribute *attr,
143 const char *buf, size_t count)
148 err = kstrtoul(buf, 10, &msecs);
149 if (err || msecs > UINT_MAX)
152 khugepaged_alloc_sleep_millisecs = msecs;
153 khugepaged_sleep_expire = 0;
154 wake_up_interruptible(&khugepaged_wait);
158 static struct kobj_attribute alloc_sleep_millisecs_attr =
159 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
160 alloc_sleep_millisecs_store);
162 static ssize_t pages_to_scan_show(struct kobject *kobj,
163 struct kobj_attribute *attr,
166 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
168 static ssize_t pages_to_scan_store(struct kobject *kobj,
169 struct kobj_attribute *attr,
170 const char *buf, size_t count)
175 err = kstrtoul(buf, 10, &pages);
176 if (err || !pages || pages > UINT_MAX)
179 khugepaged_pages_to_scan = pages;
183 static struct kobj_attribute pages_to_scan_attr =
184 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
185 pages_to_scan_store);
187 static ssize_t pages_collapsed_show(struct kobject *kobj,
188 struct kobj_attribute *attr,
191 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
193 static struct kobj_attribute pages_collapsed_attr =
194 __ATTR_RO(pages_collapsed);
196 static ssize_t full_scans_show(struct kobject *kobj,
197 struct kobj_attribute *attr,
200 return sprintf(buf, "%u\n", khugepaged_full_scans);
202 static struct kobj_attribute full_scans_attr =
203 __ATTR_RO(full_scans);
205 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
206 struct kobj_attribute *attr, char *buf)
208 return single_hugepage_flag_show(kobj, attr, buf,
209 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
211 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
212 struct kobj_attribute *attr,
213 const char *buf, size_t count)
215 return single_hugepage_flag_store(kobj, attr, buf, count,
216 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
218 static struct kobj_attribute khugepaged_defrag_attr =
219 __ATTR(defrag, 0644, khugepaged_defrag_show,
220 khugepaged_defrag_store);
223 * max_ptes_none controls if khugepaged should collapse hugepages over
224 * any unmapped ptes in turn potentially increasing the memory
225 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
226 * reduce the available free memory in the system as it
227 * runs. Increasing max_ptes_none will instead potentially reduce the
228 * free memory in the system during the khugepaged scan.
230 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
231 struct kobj_attribute *attr,
234 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
236 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
237 struct kobj_attribute *attr,
238 const char *buf, size_t count)
241 unsigned long max_ptes_none;
243 err = kstrtoul(buf, 10, &max_ptes_none);
244 if (err || max_ptes_none > HPAGE_PMD_NR-1)
247 khugepaged_max_ptes_none = max_ptes_none;
251 static struct kobj_attribute khugepaged_max_ptes_none_attr =
252 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
253 khugepaged_max_ptes_none_store);
255 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
256 struct kobj_attribute *attr,
259 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
262 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
267 unsigned long max_ptes_swap;
269 err = kstrtoul(buf, 10, &max_ptes_swap);
270 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
273 khugepaged_max_ptes_swap = max_ptes_swap;
278 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
279 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
280 khugepaged_max_ptes_swap_store);
282 static struct attribute *khugepaged_attr[] = {
283 &khugepaged_defrag_attr.attr,
284 &khugepaged_max_ptes_none_attr.attr,
285 &pages_to_scan_attr.attr,
286 &pages_collapsed_attr.attr,
287 &full_scans_attr.attr,
288 &scan_sleep_millisecs_attr.attr,
289 &alloc_sleep_millisecs_attr.attr,
290 &khugepaged_max_ptes_swap_attr.attr,
294 struct attribute_group khugepaged_attr_group = {
295 .attrs = khugepaged_attr,
296 .name = "khugepaged",
299 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
301 int hugepage_madvise(struct vm_area_struct *vma,
302 unsigned long *vm_flags, int advice)
308 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
309 * can't handle this properly after s390_enable_sie, so we simply
310 * ignore the madvise to prevent qemu from causing a SIGSEGV.
312 if (mm_has_pgste(vma->vm_mm))
315 *vm_flags &= ~VM_NOHUGEPAGE;
316 *vm_flags |= VM_HUGEPAGE;
318 * If the vma become good for khugepaged to scan,
319 * register it here without waiting a page fault that
320 * may not happen any time soon.
322 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
323 khugepaged_enter_vma_merge(vma, *vm_flags))
326 case MADV_NOHUGEPAGE:
327 *vm_flags &= ~VM_HUGEPAGE;
328 *vm_flags |= VM_NOHUGEPAGE;
330 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
331 * this vma even if we leave the mm registered in khugepaged if
332 * it got registered before VM_NOHUGEPAGE was set.
340 int __init khugepaged_init(void)
342 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
343 sizeof(struct mm_slot),
344 __alignof__(struct mm_slot), 0, NULL);
348 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
349 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
350 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
355 void __init khugepaged_destroy(void)
357 kmem_cache_destroy(mm_slot_cache);
360 static inline struct mm_slot *alloc_mm_slot(void)
362 if (!mm_slot_cache) /* initialization failed */
364 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
367 static inline void free_mm_slot(struct mm_slot *mm_slot)
369 kmem_cache_free(mm_slot_cache, mm_slot);
372 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
374 struct mm_slot *mm_slot;
376 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
377 if (mm == mm_slot->mm)
383 static void insert_to_mm_slots_hash(struct mm_struct *mm,
384 struct mm_slot *mm_slot)
387 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
390 static inline int khugepaged_test_exit(struct mm_struct *mm)
392 return atomic_read(&mm->mm_users) == 0;
395 int __khugepaged_enter(struct mm_struct *mm)
397 struct mm_slot *mm_slot;
400 mm_slot = alloc_mm_slot();
404 /* __khugepaged_exit() must not run from under us */
405 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
406 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
407 free_mm_slot(mm_slot);
411 spin_lock(&khugepaged_mm_lock);
412 insert_to_mm_slots_hash(mm, mm_slot);
414 * Insert just behind the scanning cursor, to let the area settle
417 wakeup = list_empty(&khugepaged_scan.mm_head);
418 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
419 spin_unlock(&khugepaged_mm_lock);
421 atomic_inc(&mm->mm_count);
423 wake_up_interruptible(&khugepaged_wait);
428 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
429 unsigned long vm_flags)
431 unsigned long hstart, hend;
434 * Not yet faulted in so we will register later in the
435 * page fault if needed.
438 if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
439 /* khugepaged not yet working on file or special mappings */
441 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
442 hend = vma->vm_end & HPAGE_PMD_MASK;
444 return khugepaged_enter(vma, vm_flags);
448 void __khugepaged_exit(struct mm_struct *mm)
450 struct mm_slot *mm_slot;
453 spin_lock(&khugepaged_mm_lock);
454 mm_slot = get_mm_slot(mm);
455 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
456 hash_del(&mm_slot->hash);
457 list_del(&mm_slot->mm_node);
460 spin_unlock(&khugepaged_mm_lock);
463 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
464 free_mm_slot(mm_slot);
466 } else if (mm_slot) {
468 * This is required to serialize against
469 * khugepaged_test_exit() (which is guaranteed to run
470 * under mmap sem read mode). Stop here (after we
471 * return all pagetables will be destroyed) until
472 * khugepaged has finished working on the pagetables
473 * under the mmap_sem.
475 down_write(&mm->mmap_sem);
476 up_write(&mm->mmap_sem);
480 static void release_pte_page(struct page *page)
482 /* 0 stands for page_is_file_cache(page) == false */
483 dec_node_page_state(page, NR_ISOLATED_ANON + 0);
485 putback_lru_page(page);
488 static void release_pte_pages(pte_t *pte, pte_t *_pte)
490 while (--_pte >= pte) {
491 pte_t pteval = *_pte;
492 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
493 release_pte_page(pte_page(pteval));
497 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
498 unsigned long address,
501 struct page *page = NULL;
503 int none_or_zero = 0, result = 0, referenced = 0;
504 bool writable = false;
506 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
507 _pte++, address += PAGE_SIZE) {
508 pte_t pteval = *_pte;
509 if (pte_none(pteval) || (pte_present(pteval) &&
510 is_zero_pfn(pte_pfn(pteval)))) {
511 if (!userfaultfd_armed(vma) &&
512 ++none_or_zero <= khugepaged_max_ptes_none) {
515 result = SCAN_EXCEED_NONE_PTE;
519 if (!pte_present(pteval)) {
520 result = SCAN_PTE_NON_PRESENT;
523 page = vm_normal_page(vma, address, pteval);
524 if (unlikely(!page)) {
525 result = SCAN_PAGE_NULL;
529 VM_BUG_ON_PAGE(PageCompound(page), page);
530 VM_BUG_ON_PAGE(!PageAnon(page), page);
531 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
534 * We can do it before isolate_lru_page because the
535 * page can't be freed from under us. NOTE: PG_lock
536 * is needed to serialize against split_huge_page
537 * when invoked from the VM.
539 if (!trylock_page(page)) {
540 result = SCAN_PAGE_LOCK;
545 * cannot use mapcount: can't collapse if there's a gup pin.
546 * The page must only be referenced by the scanned process
547 * and page swap cache.
549 if (page_count(page) != 1 + !!PageSwapCache(page)) {
551 result = SCAN_PAGE_COUNT;
554 if (pte_write(pteval)) {
557 if (PageSwapCache(page) &&
558 !reuse_swap_page(page, NULL)) {
560 result = SCAN_SWAP_CACHE_PAGE;
564 * Page is not in the swap cache. It can be collapsed
570 * Isolate the page to avoid collapsing an hugepage
571 * currently in use by the VM.
573 if (isolate_lru_page(page)) {
575 result = SCAN_DEL_PAGE_LRU;
578 /* 0 stands for page_is_file_cache(page) == false */
579 inc_node_page_state(page, NR_ISOLATED_ANON + 0);
580 VM_BUG_ON_PAGE(!PageLocked(page), page);
581 VM_BUG_ON_PAGE(PageLRU(page), page);
583 /* There should be enough young pte to collapse the page */
584 if (pte_young(pteval) ||
585 page_is_young(page) || PageReferenced(page) ||
586 mmu_notifier_test_young(vma->vm_mm, address))
589 if (likely(writable)) {
590 if (likely(referenced)) {
591 result = SCAN_SUCCEED;
592 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
593 referenced, writable, result);
597 result = SCAN_PAGE_RO;
601 release_pte_pages(pte, _pte);
602 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
603 referenced, writable, result);
607 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
608 struct vm_area_struct *vma,
609 unsigned long address,
613 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
614 pte_t pteval = *_pte;
615 struct page *src_page;
617 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
618 clear_user_highpage(page, address);
619 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
620 if (is_zero_pfn(pte_pfn(pteval))) {
622 * ptl mostly unnecessary.
626 * paravirt calls inside pte_clear here are
629 pte_clear(vma->vm_mm, address, _pte);
633 src_page = pte_page(pteval);
634 copy_user_highpage(page, src_page, address, vma);
635 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
636 release_pte_page(src_page);
638 * ptl mostly unnecessary, but preempt has to
639 * be disabled to update the per-cpu stats
640 * inside page_remove_rmap().
644 * paravirt calls inside pte_clear here are
647 pte_clear(vma->vm_mm, address, _pte);
648 page_remove_rmap(src_page, false);
650 free_page_and_swap_cache(src_page);
653 address += PAGE_SIZE;
658 static void khugepaged_alloc_sleep(void)
662 add_wait_queue(&khugepaged_wait, &wait);
663 freezable_schedule_timeout_interruptible(
664 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
665 remove_wait_queue(&khugepaged_wait, &wait);
668 static int khugepaged_node_load[MAX_NUMNODES];
670 static bool khugepaged_scan_abort(int nid)
675 * If node_reclaim_mode is disabled, then no extra effort is made to
676 * allocate memory locally.
678 if (!node_reclaim_mode)
681 /* If there is a count for this node already, it must be acceptable */
682 if (khugepaged_node_load[nid])
685 for (i = 0; i < MAX_NUMNODES; i++) {
686 if (!khugepaged_node_load[i])
688 if (node_distance(nid, i) > RECLAIM_DISTANCE)
694 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
695 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
697 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
701 static int khugepaged_find_target_node(void)
703 static int last_khugepaged_target_node = NUMA_NO_NODE;
704 int nid, target_node = 0, max_value = 0;
706 /* find first node with max normal pages hit */
707 for (nid = 0; nid < MAX_NUMNODES; nid++)
708 if (khugepaged_node_load[nid] > max_value) {
709 max_value = khugepaged_node_load[nid];
713 /* do some balance if several nodes have the same hit record */
714 if (target_node <= last_khugepaged_target_node)
715 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
717 if (max_value == khugepaged_node_load[nid]) {
722 last_khugepaged_target_node = target_node;
726 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
728 if (IS_ERR(*hpage)) {
734 khugepaged_alloc_sleep();
744 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
746 VM_BUG_ON_PAGE(*hpage, *hpage);
748 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
749 if (unlikely(!*hpage)) {
750 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
751 *hpage = ERR_PTR(-ENOMEM);
755 prep_transhuge_page(*hpage);
756 count_vm_event(THP_COLLAPSE_ALLOC);
760 static int khugepaged_find_target_node(void)
765 static inline struct page *alloc_khugepaged_hugepage(void)
769 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
772 prep_transhuge_page(page);
776 static struct page *khugepaged_alloc_hugepage(bool *wait)
781 hpage = alloc_khugepaged_hugepage();
783 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
788 khugepaged_alloc_sleep();
790 count_vm_event(THP_COLLAPSE_ALLOC);
791 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
796 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
799 *hpage = khugepaged_alloc_hugepage(wait);
801 if (unlikely(!*hpage))
808 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
816 static bool hugepage_vma_check(struct vm_area_struct *vma)
818 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
819 (vma->vm_flags & VM_NOHUGEPAGE))
821 if (shmem_file(vma->vm_file)) {
822 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
824 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
827 if (!vma->anon_vma || vma->vm_ops)
829 if (is_vma_temporary_stack(vma))
831 return !(vma->vm_flags & VM_NO_KHUGEPAGED);
835 * If mmap_sem temporarily dropped, revalidate vma
836 * before taking mmap_sem.
837 * Return 0 if succeeds, otherwise return none-zero
841 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
842 struct vm_area_struct **vmap)
844 struct vm_area_struct *vma;
845 unsigned long hstart, hend;
847 if (unlikely(khugepaged_test_exit(mm)))
848 return SCAN_ANY_PROCESS;
850 *vmap = vma = find_vma(mm, address);
852 return SCAN_VMA_NULL;
854 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
855 hend = vma->vm_end & HPAGE_PMD_MASK;
856 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
857 return SCAN_ADDRESS_RANGE;
858 if (!hugepage_vma_check(vma))
859 return SCAN_VMA_CHECK;
864 * Bring missing pages in from swap, to complete THP collapse.
865 * Only done if khugepaged_scan_pmd believes it is worthwhile.
867 * Called and returns without pte mapped or spinlocks held,
868 * but with mmap_sem held to protect against vma changes.
871 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
872 struct vm_area_struct *vma,
873 unsigned long address, pmd_t *pmd,
877 int swapped_in = 0, ret = 0;
878 struct fault_env fe = {
881 .flags = FAULT_FLAG_ALLOW_RETRY,
885 /* we only decide to swapin, if there is enough young ptes */
886 if (referenced < HPAGE_PMD_NR/2) {
887 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
890 fe.pte = pte_offset_map(pmd, address);
891 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
892 fe.pte++, fe.address += PAGE_SIZE) {
894 if (!is_swap_pte(pteval))
897 ret = do_swap_page(&fe, pteval);
899 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
900 if (ret & VM_FAULT_RETRY) {
901 down_read(&mm->mmap_sem);
902 if (hugepage_vma_revalidate(mm, address, &fe.vma)) {
903 /* vma is no longer available, don't continue to swapin */
904 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
907 /* check if the pmd is still valid */
908 if (mm_find_pmd(mm, address) != pmd)
911 if (ret & VM_FAULT_ERROR) {
912 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
915 /* pte is unmapped now, we need to map it */
916 fe.pte = pte_offset_map(pmd, fe.address);
920 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
924 static void collapse_huge_page(struct mm_struct *mm,
925 unsigned long address,
927 int node, int referenced)
932 struct page *new_page;
933 spinlock_t *pmd_ptl, *pte_ptl;
934 int isolated = 0, result = 0;
935 struct mem_cgroup *memcg;
936 struct vm_area_struct *vma;
937 unsigned long mmun_start; /* For mmu_notifiers */
938 unsigned long mmun_end; /* For mmu_notifiers */
941 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
943 /* Only allocate from the target node */
944 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
947 * Before allocating the hugepage, release the mmap_sem read lock.
948 * The allocation can take potentially a long time if it involves
949 * sync compaction, and we do not need to hold the mmap_sem during
950 * that. We will recheck the vma after taking it again in write mode.
952 up_read(&mm->mmap_sem);
953 new_page = khugepaged_alloc_page(hpage, gfp, node);
955 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
959 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
960 result = SCAN_CGROUP_CHARGE_FAIL;
964 down_read(&mm->mmap_sem);
965 result = hugepage_vma_revalidate(mm, address, &vma);
967 mem_cgroup_cancel_charge(new_page, memcg, true);
968 up_read(&mm->mmap_sem);
972 pmd = mm_find_pmd(mm, address);
974 result = SCAN_PMD_NULL;
975 mem_cgroup_cancel_charge(new_page, memcg, true);
976 up_read(&mm->mmap_sem);
981 * __collapse_huge_page_swapin always returns with mmap_sem locked.
982 * If it fails, we release mmap_sem and jump out_nolock.
983 * Continuing to collapse causes inconsistency.
985 if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
986 mem_cgroup_cancel_charge(new_page, memcg, true);
987 up_read(&mm->mmap_sem);
991 up_read(&mm->mmap_sem);
993 * Prevent all access to pagetables with the exception of
994 * gup_fast later handled by the ptep_clear_flush and the VM
995 * handled by the anon_vma lock + PG_lock.
997 down_write(&mm->mmap_sem);
998 result = hugepage_vma_revalidate(mm, address, &vma);
1001 /* check if the pmd is still valid */
1002 if (mm_find_pmd(mm, address) != pmd)
1005 anon_vma_lock_write(vma->anon_vma);
1007 pte = pte_offset_map(pmd, address);
1008 pte_ptl = pte_lockptr(mm, pmd);
1010 mmun_start = address;
1011 mmun_end = address + HPAGE_PMD_SIZE;
1012 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1013 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1015 * After this gup_fast can't run anymore. This also removes
1016 * any huge TLB entry from the CPU so we won't allow
1017 * huge and small TLB entries for the same virtual address
1018 * to avoid the risk of CPU bugs in that area.
1020 _pmd = pmdp_collapse_flush(vma, address, pmd);
1021 spin_unlock(pmd_ptl);
1022 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1025 isolated = __collapse_huge_page_isolate(vma, address, pte);
1026 spin_unlock(pte_ptl);
1028 if (unlikely(!isolated)) {
1031 BUG_ON(!pmd_none(*pmd));
1033 * We can only use set_pmd_at when establishing
1034 * hugepmds and never for establishing regular pmds that
1035 * points to regular pagetables. Use pmd_populate for that
1037 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1038 spin_unlock(pmd_ptl);
1039 anon_vma_unlock_write(vma->anon_vma);
1045 * All pages are isolated and locked so anon_vma rmap
1046 * can't run anymore.
1048 anon_vma_unlock_write(vma->anon_vma);
1050 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1052 __SetPageUptodate(new_page);
1053 pgtable = pmd_pgtable(_pmd);
1055 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1056 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1059 * spin_lock() below is not the equivalent of smp_wmb(), so
1060 * this is needed to avoid the copy_huge_page writes to become
1061 * visible after the set_pmd_at() write.
1066 BUG_ON(!pmd_none(*pmd));
1067 page_add_new_anon_rmap(new_page, vma, address, true);
1068 mem_cgroup_commit_charge(new_page, memcg, false, true);
1069 lru_cache_add_active_or_unevictable(new_page, vma);
1070 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1071 set_pmd_at(mm, address, pmd, _pmd);
1072 update_mmu_cache_pmd(vma, address, pmd);
1073 spin_unlock(pmd_ptl);
1077 khugepaged_pages_collapsed++;
1078 result = SCAN_SUCCEED;
1080 up_write(&mm->mmap_sem);
1082 trace_mm_collapse_huge_page(mm, isolated, result);
1085 mem_cgroup_cancel_charge(new_page, memcg, true);
1089 static int khugepaged_scan_pmd(struct mm_struct *mm,
1090 struct vm_area_struct *vma,
1091 unsigned long address,
1092 struct page **hpage)
1096 int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1097 struct page *page = NULL;
1098 unsigned long _address;
1100 int node = NUMA_NO_NODE, unmapped = 0;
1101 bool writable = false;
1103 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1105 pmd = mm_find_pmd(mm, address);
1107 result = SCAN_PMD_NULL;
1111 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1112 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1113 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1114 _pte++, _address += PAGE_SIZE) {
1115 pte_t pteval = *_pte;
1116 if (is_swap_pte(pteval)) {
1117 if (++unmapped <= khugepaged_max_ptes_swap) {
1120 result = SCAN_EXCEED_SWAP_PTE;
1124 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1125 if (!userfaultfd_armed(vma) &&
1126 ++none_or_zero <= khugepaged_max_ptes_none) {
1129 result = SCAN_EXCEED_NONE_PTE;
1133 if (!pte_present(pteval)) {
1134 result = SCAN_PTE_NON_PRESENT;
1137 if (pte_write(pteval))
1140 page = vm_normal_page(vma, _address, pteval);
1141 if (unlikely(!page)) {
1142 result = SCAN_PAGE_NULL;
1146 /* TODO: teach khugepaged to collapse THP mapped with pte */
1147 if (PageCompound(page)) {
1148 result = SCAN_PAGE_COMPOUND;
1153 * Record which node the original page is from and save this
1154 * information to khugepaged_node_load[].
1155 * Khupaged will allocate hugepage from the node has the max
1158 node = page_to_nid(page);
1159 if (khugepaged_scan_abort(node)) {
1160 result = SCAN_SCAN_ABORT;
1163 khugepaged_node_load[node]++;
1164 if (!PageLRU(page)) {
1165 result = SCAN_PAGE_LRU;
1168 if (PageLocked(page)) {
1169 result = SCAN_PAGE_LOCK;
1172 if (!PageAnon(page)) {
1173 result = SCAN_PAGE_ANON;
1178 * cannot use mapcount: can't collapse if there's a gup pin.
1179 * The page must only be referenced by the scanned process
1180 * and page swap cache.
1182 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1183 result = SCAN_PAGE_COUNT;
1186 if (pte_young(pteval) ||
1187 page_is_young(page) || PageReferenced(page) ||
1188 mmu_notifier_test_young(vma->vm_mm, address))
1193 result = SCAN_SUCCEED;
1196 result = SCAN_LACK_REFERENCED_PAGE;
1199 result = SCAN_PAGE_RO;
1202 pte_unmap_unlock(pte, ptl);
1204 node = khugepaged_find_target_node();
1205 /* collapse_huge_page will return with the mmap_sem released */
1206 collapse_huge_page(mm, address, hpage, node, referenced);
1209 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1210 none_or_zero, result, unmapped);
1214 static void collect_mm_slot(struct mm_slot *mm_slot)
1216 struct mm_struct *mm = mm_slot->mm;
1218 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1220 if (khugepaged_test_exit(mm)) {
1222 hash_del(&mm_slot->hash);
1223 list_del(&mm_slot->mm_node);
1226 * Not strictly needed because the mm exited already.
1228 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1231 /* khugepaged_mm_lock actually not necessary for the below */
1232 free_mm_slot(mm_slot);
1237 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1238 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1240 struct vm_area_struct *vma;
1244 i_mmap_lock_write(mapping);
1245 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1246 /* probably overkill */
1249 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1250 if (addr & ~HPAGE_PMD_MASK)
1252 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1254 pmd = mm_find_pmd(vma->vm_mm, addr);
1258 * We need exclusive mmap_sem to retract page table.
1259 * If trylock fails we would end up with pte-mapped THP after
1260 * re-fault. Not ideal, but it's more important to not disturb
1261 * the system too much.
1263 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1264 spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1265 /* assume page table is clear */
1266 _pmd = pmdp_collapse_flush(vma, addr, pmd);
1268 up_write(&vma->vm_mm->mmap_sem);
1269 atomic_long_dec(&vma->vm_mm->nr_ptes);
1270 pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1273 i_mmap_unlock_write(mapping);
1277 * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1279 * Basic scheme is simple, details are more complex:
1280 * - allocate and freeze a new huge page;
1281 * - scan over radix tree replacing old pages the new one
1282 * + swap in pages if necessary;
1284 * + keep old pages around in case if rollback is required;
1285 * - if replacing succeed:
1288 * + unfreeze huge page;
1289 * - if replacing failed;
1290 * + put all pages back and unfreeze them;
1291 * + restore gaps in the radix-tree;
1294 static void collapse_shmem(struct mm_struct *mm,
1295 struct address_space *mapping, pgoff_t start,
1296 struct page **hpage, int node)
1299 struct page *page, *new_page, *tmp;
1300 struct mem_cgroup *memcg;
1301 pgoff_t index, end = start + HPAGE_PMD_NR;
1302 LIST_HEAD(pagelist);
1303 struct radix_tree_iter iter;
1305 int nr_none = 0, result = SCAN_SUCCEED;
1307 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1309 /* Only allocate from the target node */
1310 gfp = alloc_hugepage_khugepaged_gfpmask() |
1311 __GFP_OTHER_NODE | __GFP_THISNODE;
1313 new_page = khugepaged_alloc_page(hpage, gfp, node);
1315 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1319 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1320 result = SCAN_CGROUP_CHARGE_FAIL;
1324 new_page->index = start;
1325 new_page->mapping = mapping;
1326 __SetPageSwapBacked(new_page);
1327 __SetPageLocked(new_page);
1328 BUG_ON(!page_ref_freeze(new_page, 1));
1332 * At this point the new_page is 'frozen' (page_count() is zero), locked
1333 * and not up-to-date. It's safe to insert it into radix tree, because
1334 * nobody would be able to map it or use it in other way until we
1339 spin_lock_irq(&mapping->tree_lock);
1340 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1341 int n = min(iter.index, end) - index;
1344 * Handle holes in the radix tree: charge it from shmem and
1345 * insert relevant subpage of new_page into the radix-tree.
1347 if (n && !shmem_charge(mapping->host, n)) {
1352 for (; index < min(iter.index, end); index++) {
1353 radix_tree_insert(&mapping->page_tree, index,
1354 new_page + (index % HPAGE_PMD_NR));
1361 page = radix_tree_deref_slot_protected(slot,
1362 &mapping->tree_lock);
1363 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1364 spin_unlock_irq(&mapping->tree_lock);
1365 /* swap in or instantiate fallocated page */
1366 if (shmem_getpage(mapping->host, index, &page,
1371 spin_lock_irq(&mapping->tree_lock);
1372 } else if (trylock_page(page)) {
1375 result = SCAN_PAGE_LOCK;
1380 * The page must be locked, so we can drop the tree_lock
1381 * without racing with truncate.
1383 VM_BUG_ON_PAGE(!PageLocked(page), page);
1384 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1385 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1387 if (page_mapping(page) != mapping) {
1388 result = SCAN_TRUNCATED;
1391 spin_unlock_irq(&mapping->tree_lock);
1393 if (isolate_lru_page(page)) {
1394 result = SCAN_DEL_PAGE_LRU;
1395 goto out_isolate_failed;
1398 if (page_mapped(page))
1399 unmap_mapping_range(mapping, index << PAGE_SHIFT,
1402 spin_lock_irq(&mapping->tree_lock);
1404 VM_BUG_ON_PAGE(page_mapped(page), page);
1407 * The page is expected to have page_count() == 3:
1408 * - we hold a pin on it;
1409 * - one reference from radix tree;
1410 * - one from isolate_lru_page;
1412 if (!page_ref_freeze(page, 3)) {
1413 result = SCAN_PAGE_COUNT;
1418 * Add the page to the list to be able to undo the collapse if
1419 * something go wrong.
1421 list_add_tail(&page->lru, &pagelist);
1423 /* Finally, replace with the new page. */
1424 radix_tree_replace_slot(slot,
1425 new_page + (index % HPAGE_PMD_NR));
1430 spin_unlock_irq(&mapping->tree_lock);
1431 putback_lru_page(page);
1443 * Handle hole in radix tree at the end of the range.
1444 * This code only triggers if there's nothing in radix tree
1447 if (result == SCAN_SUCCEED && index < end) {
1448 int n = end - index;
1450 if (!shmem_charge(mapping->host, n)) {
1455 for (; index < end; index++) {
1456 radix_tree_insert(&mapping->page_tree, index,
1457 new_page + (index % HPAGE_PMD_NR));
1463 spin_unlock_irq(&mapping->tree_lock);
1466 if (result == SCAN_SUCCEED) {
1467 unsigned long flags;
1468 struct zone *zone = page_zone(new_page);
1471 * Replacing old pages with new one has succeed, now we need to
1472 * copy the content and free old pages.
1474 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1475 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1477 list_del(&page->lru);
1479 page_ref_unfreeze(page, 1);
1480 page->mapping = NULL;
1481 ClearPageActive(page);
1482 ClearPageUnevictable(page);
1486 local_irq_save(flags);
1487 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1489 __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1490 __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1492 local_irq_restore(flags);
1495 * Remove pte page tables, so we can re-faulti
1498 retract_page_tables(mapping, start);
1500 /* Everything is ready, let's unfreeze the new_page */
1501 set_page_dirty(new_page);
1502 SetPageUptodate(new_page);
1503 page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1504 mem_cgroup_commit_charge(new_page, memcg, false, true);
1505 lru_cache_add_anon(new_page);
1506 unlock_page(new_page);
1510 /* Something went wrong: rollback changes to the radix-tree */
1511 shmem_uncharge(mapping->host, nr_none);
1512 spin_lock_irq(&mapping->tree_lock);
1513 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1515 if (iter.index >= end)
1517 page = list_first_entry_or_null(&pagelist,
1519 if (!page || iter.index < page->index) {
1522 /* Put holes back where they were */
1523 radix_tree_replace_slot(slot, NULL);
1528 VM_BUG_ON_PAGE(page->index != iter.index, page);
1530 /* Unfreeze the page. */
1531 list_del(&page->lru);
1532 page_ref_unfreeze(page, 2);
1533 radix_tree_replace_slot(slot, page);
1534 spin_unlock_irq(&mapping->tree_lock);
1535 putback_lru_page(page);
1537 spin_lock_irq(&mapping->tree_lock);
1540 spin_unlock_irq(&mapping->tree_lock);
1542 /* Unfreeze new_page, caller would take care about freeing it */
1543 page_ref_unfreeze(new_page, 1);
1544 mem_cgroup_cancel_charge(new_page, memcg, true);
1545 unlock_page(new_page);
1546 new_page->mapping = NULL;
1549 VM_BUG_ON(!list_empty(&pagelist));
1550 /* TODO: tracepoints */
1553 static void khugepaged_scan_shmem(struct mm_struct *mm,
1554 struct address_space *mapping,
1555 pgoff_t start, struct page **hpage)
1557 struct page *page = NULL;
1558 struct radix_tree_iter iter;
1561 int node = NUMA_NO_NODE;
1562 int result = SCAN_SUCCEED;
1566 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1568 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1569 if (iter.index >= start + HPAGE_PMD_NR)
1572 page = radix_tree_deref_slot(slot);
1573 if (radix_tree_deref_retry(page)) {
1574 slot = radix_tree_iter_retry(&iter);
1578 if (radix_tree_exception(page)) {
1579 if (++swap > khugepaged_max_ptes_swap) {
1580 result = SCAN_EXCEED_SWAP_PTE;
1586 if (PageTransCompound(page)) {
1587 result = SCAN_PAGE_COMPOUND;
1591 node = page_to_nid(page);
1592 if (khugepaged_scan_abort(node)) {
1593 result = SCAN_SCAN_ABORT;
1596 khugepaged_node_load[node]++;
1598 if (!PageLRU(page)) {
1599 result = SCAN_PAGE_LRU;
1603 if (page_count(page) != 1 + page_mapcount(page)) {
1604 result = SCAN_PAGE_COUNT;
1609 * We probably should check if the page is referenced here, but
1610 * nobody would transfer pte_young() to PageReferenced() for us.
1611 * And rmap walk here is just too costly...
1616 if (need_resched()) {
1618 slot = radix_tree_iter_next(&iter);
1623 if (result == SCAN_SUCCEED) {
1624 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1625 result = SCAN_EXCEED_NONE_PTE;
1627 node = khugepaged_find_target_node();
1628 collapse_shmem(mm, mapping, start, hpage, node);
1632 /* TODO: tracepoints */
1635 static void khugepaged_scan_shmem(struct mm_struct *mm,
1636 struct address_space *mapping,
1637 pgoff_t start, struct page **hpage)
1643 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1644 struct page **hpage)
1645 __releases(&khugepaged_mm_lock)
1646 __acquires(&khugepaged_mm_lock)
1648 struct mm_slot *mm_slot;
1649 struct mm_struct *mm;
1650 struct vm_area_struct *vma;
1654 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1656 if (khugepaged_scan.mm_slot)
1657 mm_slot = khugepaged_scan.mm_slot;
1659 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1660 struct mm_slot, mm_node);
1661 khugepaged_scan.address = 0;
1662 khugepaged_scan.mm_slot = mm_slot;
1664 spin_unlock(&khugepaged_mm_lock);
1667 down_read(&mm->mmap_sem);
1668 if (unlikely(khugepaged_test_exit(mm)))
1671 vma = find_vma(mm, khugepaged_scan.address);
1674 for (; vma; vma = vma->vm_next) {
1675 unsigned long hstart, hend;
1678 if (unlikely(khugepaged_test_exit(mm))) {
1682 if (!hugepage_vma_check(vma)) {
1687 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1688 hend = vma->vm_end & HPAGE_PMD_MASK;
1691 if (khugepaged_scan.address > hend)
1693 if (khugepaged_scan.address < hstart)
1694 khugepaged_scan.address = hstart;
1695 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1697 while (khugepaged_scan.address < hend) {
1700 if (unlikely(khugepaged_test_exit(mm)))
1701 goto breakouterloop;
1703 VM_BUG_ON(khugepaged_scan.address < hstart ||
1704 khugepaged_scan.address + HPAGE_PMD_SIZE >
1706 if (shmem_file(vma->vm_file)) {
1708 pgoff_t pgoff = linear_page_index(vma,
1709 khugepaged_scan.address);
1710 if (!shmem_huge_enabled(vma))
1712 file = get_file(vma->vm_file);
1713 up_read(&mm->mmap_sem);
1715 khugepaged_scan_shmem(mm, file->f_mapping,
1719 ret = khugepaged_scan_pmd(mm, vma,
1720 khugepaged_scan.address,
1723 /* move to next address */
1724 khugepaged_scan.address += HPAGE_PMD_SIZE;
1725 progress += HPAGE_PMD_NR;
1727 /* we released mmap_sem so break loop */
1728 goto breakouterloop_mmap_sem;
1729 if (progress >= pages)
1730 goto breakouterloop;
1734 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1735 breakouterloop_mmap_sem:
1737 spin_lock(&khugepaged_mm_lock);
1738 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1740 * Release the current mm_slot if this mm is about to die, or
1741 * if we scanned all vmas of this mm.
1743 if (khugepaged_test_exit(mm) || !vma) {
1745 * Make sure that if mm_users is reaching zero while
1746 * khugepaged runs here, khugepaged_exit will find
1747 * mm_slot not pointing to the exiting mm.
1749 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1750 khugepaged_scan.mm_slot = list_entry(
1751 mm_slot->mm_node.next,
1752 struct mm_slot, mm_node);
1753 khugepaged_scan.address = 0;
1755 khugepaged_scan.mm_slot = NULL;
1756 khugepaged_full_scans++;
1759 collect_mm_slot(mm_slot);
1765 static int khugepaged_has_work(void)
1767 return !list_empty(&khugepaged_scan.mm_head) &&
1768 khugepaged_enabled();
1771 static int khugepaged_wait_event(void)
1773 return !list_empty(&khugepaged_scan.mm_head) ||
1774 kthread_should_stop();
1777 static void khugepaged_do_scan(void)
1779 struct page *hpage = NULL;
1780 unsigned int progress = 0, pass_through_head = 0;
1781 unsigned int pages = khugepaged_pages_to_scan;
1784 barrier(); /* write khugepaged_pages_to_scan to local stack */
1786 while (progress < pages) {
1787 if (!khugepaged_prealloc_page(&hpage, &wait))
1792 if (unlikely(kthread_should_stop() || try_to_freeze()))
1795 spin_lock(&khugepaged_mm_lock);
1796 if (!khugepaged_scan.mm_slot)
1797 pass_through_head++;
1798 if (khugepaged_has_work() &&
1799 pass_through_head < 2)
1800 progress += khugepaged_scan_mm_slot(pages - progress,
1804 spin_unlock(&khugepaged_mm_lock);
1807 if (!IS_ERR_OR_NULL(hpage))
1811 static bool khugepaged_should_wakeup(void)
1813 return kthread_should_stop() ||
1814 time_after_eq(jiffies, khugepaged_sleep_expire);
1817 static void khugepaged_wait_work(void)
1819 if (khugepaged_has_work()) {
1820 const unsigned long scan_sleep_jiffies =
1821 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1823 if (!scan_sleep_jiffies)
1826 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1827 wait_event_freezable_timeout(khugepaged_wait,
1828 khugepaged_should_wakeup(),
1829 scan_sleep_jiffies);
1833 if (khugepaged_enabled())
1834 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1837 static int khugepaged(void *none)
1839 struct mm_slot *mm_slot;
1842 set_user_nice(current, MAX_NICE);
1844 while (!kthread_should_stop()) {
1845 khugepaged_do_scan();
1846 khugepaged_wait_work();
1849 spin_lock(&khugepaged_mm_lock);
1850 mm_slot = khugepaged_scan.mm_slot;
1851 khugepaged_scan.mm_slot = NULL;
1853 collect_mm_slot(mm_slot);
1854 spin_unlock(&khugepaged_mm_lock);
1858 static void set_recommended_min_free_kbytes(void)
1862 unsigned long recommended_min;
1864 for_each_populated_zone(zone)
1867 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1868 recommended_min = pageblock_nr_pages * nr_zones * 2;
1871 * Make sure that on average at least two pageblocks are almost free
1872 * of another type, one for a migratetype to fall back to and a
1873 * second to avoid subsequent fallbacks of other types There are 3
1874 * MIGRATE_TYPES we care about.
1876 recommended_min += pageblock_nr_pages * nr_zones *
1877 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1879 /* don't ever allow to reserve more than 5% of the lowmem */
1880 recommended_min = min(recommended_min,
1881 (unsigned long) nr_free_buffer_pages() / 20);
1882 recommended_min <<= (PAGE_SHIFT-10);
1884 if (recommended_min > min_free_kbytes) {
1885 if (user_min_free_kbytes >= 0)
1886 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1887 min_free_kbytes, recommended_min);
1889 min_free_kbytes = recommended_min;
1891 setup_per_zone_wmarks();
1894 int start_stop_khugepaged(void)
1896 static struct task_struct *khugepaged_thread __read_mostly;
1897 static DEFINE_MUTEX(khugepaged_mutex);
1900 mutex_lock(&khugepaged_mutex);
1901 if (khugepaged_enabled()) {
1902 if (!khugepaged_thread)
1903 khugepaged_thread = kthread_run(khugepaged, NULL,
1905 if (IS_ERR(khugepaged_thread)) {
1906 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1907 err = PTR_ERR(khugepaged_thread);
1908 khugepaged_thread = NULL;
1912 if (!list_empty(&khugepaged_scan.mm_head))
1913 wake_up_interruptible(&khugepaged_wait);
1915 set_recommended_min_free_kbytes();
1916 } else if (khugepaged_thread) {
1917 kthread_stop(khugepaged_thread);
1918 khugepaged_thread = NULL;
1921 mutex_unlock(&khugepaged_mutex);