thp, dax: add thp_get_unmapped_area for pmd mappings
[platform/kernel/linux-exynos.git] / mm / khugepaged.c
1 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
3 #include <linux/mm.h>
4 #include <linux/sched.h>
5 #include <linux/mmu_notifier.h>
6 #include <linux/rmap.h>
7 #include <linux/swap.h>
8 #include <linux/mm_inline.h>
9 #include <linux/kthread.h>
10 #include <linux/khugepaged.h>
11 #include <linux/freezer.h>
12 #include <linux/mman.h>
13 #include <linux/hashtable.h>
14 #include <linux/userfaultfd_k.h>
15 #include <linux/page_idle.h>
16 #include <linux/swapops.h>
17 #include <linux/shmem_fs.h>
18
19 #include <asm/tlb.h>
20 #include <asm/pgalloc.h>
21 #include "internal.h"
22
23 enum scan_result {
24         SCAN_FAIL,
25         SCAN_SUCCEED,
26         SCAN_PMD_NULL,
27         SCAN_EXCEED_NONE_PTE,
28         SCAN_PTE_NON_PRESENT,
29         SCAN_PAGE_RO,
30         SCAN_LACK_REFERENCED_PAGE,
31         SCAN_PAGE_NULL,
32         SCAN_SCAN_ABORT,
33         SCAN_PAGE_COUNT,
34         SCAN_PAGE_LRU,
35         SCAN_PAGE_LOCK,
36         SCAN_PAGE_ANON,
37         SCAN_PAGE_COMPOUND,
38         SCAN_ANY_PROCESS,
39         SCAN_VMA_NULL,
40         SCAN_VMA_CHECK,
41         SCAN_ADDRESS_RANGE,
42         SCAN_SWAP_CACHE_PAGE,
43         SCAN_DEL_PAGE_LRU,
44         SCAN_ALLOC_HUGE_PAGE_FAIL,
45         SCAN_CGROUP_CHARGE_FAIL,
46         SCAN_EXCEED_SWAP_PTE,
47         SCAN_TRUNCATED,
48 };
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/huge_memory.h>
52
53 /* default scan 8*512 pte (or vmas) every 30 second */
54 static unsigned int khugepaged_pages_to_scan __read_mostly;
55 static unsigned int khugepaged_pages_collapsed;
56 static unsigned int khugepaged_full_scans;
57 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
58 /* during fragmentation poll the hugepage allocator once every minute */
59 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
60 static unsigned long khugepaged_sleep_expire;
61 static DEFINE_SPINLOCK(khugepaged_mm_lock);
62 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
63 /*
64  * default collapse hugepages if there is at least one pte mapped like
65  * it would have happened if the vma was large enough during page
66  * fault.
67  */
68 static unsigned int khugepaged_max_ptes_none __read_mostly;
69 static unsigned int khugepaged_max_ptes_swap __read_mostly;
70
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75
76 /**
77  * struct mm_slot - hash lookup from mm to mm_slot
78  * @hash: hash collision list
79  * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80  * @mm: the mm that this information is valid for
81  */
82 struct mm_slot {
83         struct hlist_node hash;
84         struct list_head mm_node;
85         struct mm_struct *mm;
86 };
87
88 /**
89  * struct khugepaged_scan - cursor for scanning
90  * @mm_head: the head of the mm list to scan
91  * @mm_slot: the current mm_slot we are scanning
92  * @address: the next address inside that to be scanned
93  *
94  * There is only the one khugepaged_scan instance of this cursor structure.
95  */
96 struct khugepaged_scan {
97         struct list_head mm_head;
98         struct mm_slot *mm_slot;
99         unsigned long address;
100 };
101
102 static struct khugepaged_scan khugepaged_scan = {
103         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 };
105
106 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
107                                          struct kobj_attribute *attr,
108                                          char *buf)
109 {
110         return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
111 }
112
113 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
114                                           struct kobj_attribute *attr,
115                                           const char *buf, size_t count)
116 {
117         unsigned long msecs;
118         int err;
119
120         err = kstrtoul(buf, 10, &msecs);
121         if (err || msecs > UINT_MAX)
122                 return -EINVAL;
123
124         khugepaged_scan_sleep_millisecs = msecs;
125         khugepaged_sleep_expire = 0;
126         wake_up_interruptible(&khugepaged_wait);
127
128         return count;
129 }
130 static struct kobj_attribute scan_sleep_millisecs_attr =
131         __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
132                scan_sleep_millisecs_store);
133
134 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
135                                           struct kobj_attribute *attr,
136                                           char *buf)
137 {
138         return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
139 }
140
141 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
142                                            struct kobj_attribute *attr,
143                                            const char *buf, size_t count)
144 {
145         unsigned long msecs;
146         int err;
147
148         err = kstrtoul(buf, 10, &msecs);
149         if (err || msecs > UINT_MAX)
150                 return -EINVAL;
151
152         khugepaged_alloc_sleep_millisecs = msecs;
153         khugepaged_sleep_expire = 0;
154         wake_up_interruptible(&khugepaged_wait);
155
156         return count;
157 }
158 static struct kobj_attribute alloc_sleep_millisecs_attr =
159         __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
160                alloc_sleep_millisecs_store);
161
162 static ssize_t pages_to_scan_show(struct kobject *kobj,
163                                   struct kobj_attribute *attr,
164                                   char *buf)
165 {
166         return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
167 }
168 static ssize_t pages_to_scan_store(struct kobject *kobj,
169                                    struct kobj_attribute *attr,
170                                    const char *buf, size_t count)
171 {
172         int err;
173         unsigned long pages;
174
175         err = kstrtoul(buf, 10, &pages);
176         if (err || !pages || pages > UINT_MAX)
177                 return -EINVAL;
178
179         khugepaged_pages_to_scan = pages;
180
181         return count;
182 }
183 static struct kobj_attribute pages_to_scan_attr =
184         __ATTR(pages_to_scan, 0644, pages_to_scan_show,
185                pages_to_scan_store);
186
187 static ssize_t pages_collapsed_show(struct kobject *kobj,
188                                     struct kobj_attribute *attr,
189                                     char *buf)
190 {
191         return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
192 }
193 static struct kobj_attribute pages_collapsed_attr =
194         __ATTR_RO(pages_collapsed);
195
196 static ssize_t full_scans_show(struct kobject *kobj,
197                                struct kobj_attribute *attr,
198                                char *buf)
199 {
200         return sprintf(buf, "%u\n", khugepaged_full_scans);
201 }
202 static struct kobj_attribute full_scans_attr =
203         __ATTR_RO(full_scans);
204
205 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
206                                       struct kobj_attribute *attr, char *buf)
207 {
208         return single_hugepage_flag_show(kobj, attr, buf,
209                                 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
210 }
211 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
212                                        struct kobj_attribute *attr,
213                                        const char *buf, size_t count)
214 {
215         return single_hugepage_flag_store(kobj, attr, buf, count,
216                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
217 }
218 static struct kobj_attribute khugepaged_defrag_attr =
219         __ATTR(defrag, 0644, khugepaged_defrag_show,
220                khugepaged_defrag_store);
221
222 /*
223  * max_ptes_none controls if khugepaged should collapse hugepages over
224  * any unmapped ptes in turn potentially increasing the memory
225  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
226  * reduce the available free memory in the system as it
227  * runs. Increasing max_ptes_none will instead potentially reduce the
228  * free memory in the system during the khugepaged scan.
229  */
230 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
231                                              struct kobj_attribute *attr,
232                                              char *buf)
233 {
234         return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
235 }
236 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
237                                               struct kobj_attribute *attr,
238                                               const char *buf, size_t count)
239 {
240         int err;
241         unsigned long max_ptes_none;
242
243         err = kstrtoul(buf, 10, &max_ptes_none);
244         if (err || max_ptes_none > HPAGE_PMD_NR-1)
245                 return -EINVAL;
246
247         khugepaged_max_ptes_none = max_ptes_none;
248
249         return count;
250 }
251 static struct kobj_attribute khugepaged_max_ptes_none_attr =
252         __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
253                khugepaged_max_ptes_none_store);
254
255 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
256                                              struct kobj_attribute *attr,
257                                              char *buf)
258 {
259         return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
260 }
261
262 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
263                                               struct kobj_attribute *attr,
264                                               const char *buf, size_t count)
265 {
266         int err;
267         unsigned long max_ptes_swap;
268
269         err  = kstrtoul(buf, 10, &max_ptes_swap);
270         if (err || max_ptes_swap > HPAGE_PMD_NR-1)
271                 return -EINVAL;
272
273         khugepaged_max_ptes_swap = max_ptes_swap;
274
275         return count;
276 }
277
278 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
279         __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
280                khugepaged_max_ptes_swap_store);
281
282 static struct attribute *khugepaged_attr[] = {
283         &khugepaged_defrag_attr.attr,
284         &khugepaged_max_ptes_none_attr.attr,
285         &pages_to_scan_attr.attr,
286         &pages_collapsed_attr.attr,
287         &full_scans_attr.attr,
288         &scan_sleep_millisecs_attr.attr,
289         &alloc_sleep_millisecs_attr.attr,
290         &khugepaged_max_ptes_swap_attr.attr,
291         NULL,
292 };
293
294 struct attribute_group khugepaged_attr_group = {
295         .attrs = khugepaged_attr,
296         .name = "khugepaged",
297 };
298
299 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB)
300
301 int hugepage_madvise(struct vm_area_struct *vma,
302                      unsigned long *vm_flags, int advice)
303 {
304         switch (advice) {
305         case MADV_HUGEPAGE:
306 #ifdef CONFIG_S390
307                 /*
308                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
309                  * can't handle this properly after s390_enable_sie, so we simply
310                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
311                  */
312                 if (mm_has_pgste(vma->vm_mm))
313                         return 0;
314 #endif
315                 *vm_flags &= ~VM_NOHUGEPAGE;
316                 *vm_flags |= VM_HUGEPAGE;
317                 /*
318                  * If the vma become good for khugepaged to scan,
319                  * register it here without waiting a page fault that
320                  * may not happen any time soon.
321                  */
322                 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
323                                 khugepaged_enter_vma_merge(vma, *vm_flags))
324                         return -ENOMEM;
325                 break;
326         case MADV_NOHUGEPAGE:
327                 *vm_flags &= ~VM_HUGEPAGE;
328                 *vm_flags |= VM_NOHUGEPAGE;
329                 /*
330                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
331                  * this vma even if we leave the mm registered in khugepaged if
332                  * it got registered before VM_NOHUGEPAGE was set.
333                  */
334                 break;
335         }
336
337         return 0;
338 }
339
340 int __init khugepaged_init(void)
341 {
342         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
343                                           sizeof(struct mm_slot),
344                                           __alignof__(struct mm_slot), 0, NULL);
345         if (!mm_slot_cache)
346                 return -ENOMEM;
347
348         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
349         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
350         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
351
352         return 0;
353 }
354
355 void __init khugepaged_destroy(void)
356 {
357         kmem_cache_destroy(mm_slot_cache);
358 }
359
360 static inline struct mm_slot *alloc_mm_slot(void)
361 {
362         if (!mm_slot_cache)     /* initialization failed */
363                 return NULL;
364         return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
365 }
366
367 static inline void free_mm_slot(struct mm_slot *mm_slot)
368 {
369         kmem_cache_free(mm_slot_cache, mm_slot);
370 }
371
372 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
373 {
374         struct mm_slot *mm_slot;
375
376         hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
377                 if (mm == mm_slot->mm)
378                         return mm_slot;
379
380         return NULL;
381 }
382
383 static void insert_to_mm_slots_hash(struct mm_struct *mm,
384                                     struct mm_slot *mm_slot)
385 {
386         mm_slot->mm = mm;
387         hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
388 }
389
390 static inline int khugepaged_test_exit(struct mm_struct *mm)
391 {
392         return atomic_read(&mm->mm_users) == 0;
393 }
394
395 int __khugepaged_enter(struct mm_struct *mm)
396 {
397         struct mm_slot *mm_slot;
398         int wakeup;
399
400         mm_slot = alloc_mm_slot();
401         if (!mm_slot)
402                 return -ENOMEM;
403
404         /* __khugepaged_exit() must not run from under us */
405         VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
406         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
407                 free_mm_slot(mm_slot);
408                 return 0;
409         }
410
411         spin_lock(&khugepaged_mm_lock);
412         insert_to_mm_slots_hash(mm, mm_slot);
413         /*
414          * Insert just behind the scanning cursor, to let the area settle
415          * down a little.
416          */
417         wakeup = list_empty(&khugepaged_scan.mm_head);
418         list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
419         spin_unlock(&khugepaged_mm_lock);
420
421         atomic_inc(&mm->mm_count);
422         if (wakeup)
423                 wake_up_interruptible(&khugepaged_wait);
424
425         return 0;
426 }
427
428 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
429                                unsigned long vm_flags)
430 {
431         unsigned long hstart, hend;
432         if (!vma->anon_vma)
433                 /*
434                  * Not yet faulted in so we will register later in the
435                  * page fault if needed.
436                  */
437                 return 0;
438         if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
439                 /* khugepaged not yet working on file or special mappings */
440                 return 0;
441         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
442         hend = vma->vm_end & HPAGE_PMD_MASK;
443         if (hstart < hend)
444                 return khugepaged_enter(vma, vm_flags);
445         return 0;
446 }
447
448 void __khugepaged_exit(struct mm_struct *mm)
449 {
450         struct mm_slot *mm_slot;
451         int free = 0;
452
453         spin_lock(&khugepaged_mm_lock);
454         mm_slot = get_mm_slot(mm);
455         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
456                 hash_del(&mm_slot->hash);
457                 list_del(&mm_slot->mm_node);
458                 free = 1;
459         }
460         spin_unlock(&khugepaged_mm_lock);
461
462         if (free) {
463                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
464                 free_mm_slot(mm_slot);
465                 mmdrop(mm);
466         } else if (mm_slot) {
467                 /*
468                  * This is required to serialize against
469                  * khugepaged_test_exit() (which is guaranteed to run
470                  * under mmap sem read mode). Stop here (after we
471                  * return all pagetables will be destroyed) until
472                  * khugepaged has finished working on the pagetables
473                  * under the mmap_sem.
474                  */
475                 down_write(&mm->mmap_sem);
476                 up_write(&mm->mmap_sem);
477         }
478 }
479
480 static void release_pte_page(struct page *page)
481 {
482         /* 0 stands for page_is_file_cache(page) == false */
483         dec_node_page_state(page, NR_ISOLATED_ANON + 0);
484         unlock_page(page);
485         putback_lru_page(page);
486 }
487
488 static void release_pte_pages(pte_t *pte, pte_t *_pte)
489 {
490         while (--_pte >= pte) {
491                 pte_t pteval = *_pte;
492                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
493                         release_pte_page(pte_page(pteval));
494         }
495 }
496
497 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
498                                         unsigned long address,
499                                         pte_t *pte)
500 {
501         struct page *page = NULL;
502         pte_t *_pte;
503         int none_or_zero = 0, result = 0, referenced = 0;
504         bool writable = false;
505
506         for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
507              _pte++, address += PAGE_SIZE) {
508                 pte_t pteval = *_pte;
509                 if (pte_none(pteval) || (pte_present(pteval) &&
510                                 is_zero_pfn(pte_pfn(pteval)))) {
511                         if (!userfaultfd_armed(vma) &&
512                             ++none_or_zero <= khugepaged_max_ptes_none) {
513                                 continue;
514                         } else {
515                                 result = SCAN_EXCEED_NONE_PTE;
516                                 goto out;
517                         }
518                 }
519                 if (!pte_present(pteval)) {
520                         result = SCAN_PTE_NON_PRESENT;
521                         goto out;
522                 }
523                 page = vm_normal_page(vma, address, pteval);
524                 if (unlikely(!page)) {
525                         result = SCAN_PAGE_NULL;
526                         goto out;
527                 }
528
529                 VM_BUG_ON_PAGE(PageCompound(page), page);
530                 VM_BUG_ON_PAGE(!PageAnon(page), page);
531                 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
532
533                 /*
534                  * We can do it before isolate_lru_page because the
535                  * page can't be freed from under us. NOTE: PG_lock
536                  * is needed to serialize against split_huge_page
537                  * when invoked from the VM.
538                  */
539                 if (!trylock_page(page)) {
540                         result = SCAN_PAGE_LOCK;
541                         goto out;
542                 }
543
544                 /*
545                  * cannot use mapcount: can't collapse if there's a gup pin.
546                  * The page must only be referenced by the scanned process
547                  * and page swap cache.
548                  */
549                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
550                         unlock_page(page);
551                         result = SCAN_PAGE_COUNT;
552                         goto out;
553                 }
554                 if (pte_write(pteval)) {
555                         writable = true;
556                 } else {
557                         if (PageSwapCache(page) &&
558                             !reuse_swap_page(page, NULL)) {
559                                 unlock_page(page);
560                                 result = SCAN_SWAP_CACHE_PAGE;
561                                 goto out;
562                         }
563                         /*
564                          * Page is not in the swap cache. It can be collapsed
565                          * into a THP.
566                          */
567                 }
568
569                 /*
570                  * Isolate the page to avoid collapsing an hugepage
571                  * currently in use by the VM.
572                  */
573                 if (isolate_lru_page(page)) {
574                         unlock_page(page);
575                         result = SCAN_DEL_PAGE_LRU;
576                         goto out;
577                 }
578                 /* 0 stands for page_is_file_cache(page) == false */
579                 inc_node_page_state(page, NR_ISOLATED_ANON + 0);
580                 VM_BUG_ON_PAGE(!PageLocked(page), page);
581                 VM_BUG_ON_PAGE(PageLRU(page), page);
582
583                 /* There should be enough young pte to collapse the page */
584                 if (pte_young(pteval) ||
585                     page_is_young(page) || PageReferenced(page) ||
586                     mmu_notifier_test_young(vma->vm_mm, address))
587                         referenced++;
588         }
589         if (likely(writable)) {
590                 if (likely(referenced)) {
591                         result = SCAN_SUCCEED;
592                         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
593                                                             referenced, writable, result);
594                         return 1;
595                 }
596         } else {
597                 result = SCAN_PAGE_RO;
598         }
599
600 out:
601         release_pte_pages(pte, _pte);
602         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
603                                             referenced, writable, result);
604         return 0;
605 }
606
607 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
608                                       struct vm_area_struct *vma,
609                                       unsigned long address,
610                                       spinlock_t *ptl)
611 {
612         pte_t *_pte;
613         for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
614                 pte_t pteval = *_pte;
615                 struct page *src_page;
616
617                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
618                         clear_user_highpage(page, address);
619                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
620                         if (is_zero_pfn(pte_pfn(pteval))) {
621                                 /*
622                                  * ptl mostly unnecessary.
623                                  */
624                                 spin_lock(ptl);
625                                 /*
626                                  * paravirt calls inside pte_clear here are
627                                  * superfluous.
628                                  */
629                                 pte_clear(vma->vm_mm, address, _pte);
630                                 spin_unlock(ptl);
631                         }
632                 } else {
633                         src_page = pte_page(pteval);
634                         copy_user_highpage(page, src_page, address, vma);
635                         VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
636                         release_pte_page(src_page);
637                         /*
638                          * ptl mostly unnecessary, but preempt has to
639                          * be disabled to update the per-cpu stats
640                          * inside page_remove_rmap().
641                          */
642                         spin_lock(ptl);
643                         /*
644                          * paravirt calls inside pte_clear here are
645                          * superfluous.
646                          */
647                         pte_clear(vma->vm_mm, address, _pte);
648                         page_remove_rmap(src_page, false);
649                         spin_unlock(ptl);
650                         free_page_and_swap_cache(src_page);
651                 }
652
653                 address += PAGE_SIZE;
654                 page++;
655         }
656 }
657
658 static void khugepaged_alloc_sleep(void)
659 {
660         DEFINE_WAIT(wait);
661
662         add_wait_queue(&khugepaged_wait, &wait);
663         freezable_schedule_timeout_interruptible(
664                 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
665         remove_wait_queue(&khugepaged_wait, &wait);
666 }
667
668 static int khugepaged_node_load[MAX_NUMNODES];
669
670 static bool khugepaged_scan_abort(int nid)
671 {
672         int i;
673
674         /*
675          * If node_reclaim_mode is disabled, then no extra effort is made to
676          * allocate memory locally.
677          */
678         if (!node_reclaim_mode)
679                 return false;
680
681         /* If there is a count for this node already, it must be acceptable */
682         if (khugepaged_node_load[nid])
683                 return false;
684
685         for (i = 0; i < MAX_NUMNODES; i++) {
686                 if (!khugepaged_node_load[i])
687                         continue;
688                 if (node_distance(nid, i) > RECLAIM_DISTANCE)
689                         return true;
690         }
691         return false;
692 }
693
694 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
695 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
696 {
697         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
698 }
699
700 #ifdef CONFIG_NUMA
701 static int khugepaged_find_target_node(void)
702 {
703         static int last_khugepaged_target_node = NUMA_NO_NODE;
704         int nid, target_node = 0, max_value = 0;
705
706         /* find first node with max normal pages hit */
707         for (nid = 0; nid < MAX_NUMNODES; nid++)
708                 if (khugepaged_node_load[nid] > max_value) {
709                         max_value = khugepaged_node_load[nid];
710                         target_node = nid;
711                 }
712
713         /* do some balance if several nodes have the same hit record */
714         if (target_node <= last_khugepaged_target_node)
715                 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
716                                 nid++)
717                         if (max_value == khugepaged_node_load[nid]) {
718                                 target_node = nid;
719                                 break;
720                         }
721
722         last_khugepaged_target_node = target_node;
723         return target_node;
724 }
725
726 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
727 {
728         if (IS_ERR(*hpage)) {
729                 if (!*wait)
730                         return false;
731
732                 *wait = false;
733                 *hpage = NULL;
734                 khugepaged_alloc_sleep();
735         } else if (*hpage) {
736                 put_page(*hpage);
737                 *hpage = NULL;
738         }
739
740         return true;
741 }
742
743 static struct page *
744 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
745 {
746         VM_BUG_ON_PAGE(*hpage, *hpage);
747
748         *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
749         if (unlikely(!*hpage)) {
750                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
751                 *hpage = ERR_PTR(-ENOMEM);
752                 return NULL;
753         }
754
755         prep_transhuge_page(*hpage);
756         count_vm_event(THP_COLLAPSE_ALLOC);
757         return *hpage;
758 }
759 #else
760 static int khugepaged_find_target_node(void)
761 {
762         return 0;
763 }
764
765 static inline struct page *alloc_khugepaged_hugepage(void)
766 {
767         struct page *page;
768
769         page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
770                            HPAGE_PMD_ORDER);
771         if (page)
772                 prep_transhuge_page(page);
773         return page;
774 }
775
776 static struct page *khugepaged_alloc_hugepage(bool *wait)
777 {
778         struct page *hpage;
779
780         do {
781                 hpage = alloc_khugepaged_hugepage();
782                 if (!hpage) {
783                         count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
784                         if (!*wait)
785                                 return NULL;
786
787                         *wait = false;
788                         khugepaged_alloc_sleep();
789                 } else
790                         count_vm_event(THP_COLLAPSE_ALLOC);
791         } while (unlikely(!hpage) && likely(khugepaged_enabled()));
792
793         return hpage;
794 }
795
796 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
797 {
798         if (!*hpage)
799                 *hpage = khugepaged_alloc_hugepage(wait);
800
801         if (unlikely(!*hpage))
802                 return false;
803
804         return true;
805 }
806
807 static struct page *
808 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
809 {
810         VM_BUG_ON(!*hpage);
811
812         return  *hpage;
813 }
814 #endif
815
816 static bool hugepage_vma_check(struct vm_area_struct *vma)
817 {
818         if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
819             (vma->vm_flags & VM_NOHUGEPAGE))
820                 return false;
821         if (shmem_file(vma->vm_file)) {
822                 if (!IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE))
823                         return false;
824                 return IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) - vma->vm_pgoff,
825                                 HPAGE_PMD_NR);
826         }
827         if (!vma->anon_vma || vma->vm_ops)
828                 return false;
829         if (is_vma_temporary_stack(vma))
830                 return false;
831         return !(vma->vm_flags & VM_NO_KHUGEPAGED);
832 }
833
834 /*
835  * If mmap_sem temporarily dropped, revalidate vma
836  * before taking mmap_sem.
837  * Return 0 if succeeds, otherwise return none-zero
838  * value (scan code).
839  */
840
841 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
842                 struct vm_area_struct **vmap)
843 {
844         struct vm_area_struct *vma;
845         unsigned long hstart, hend;
846
847         if (unlikely(khugepaged_test_exit(mm)))
848                 return SCAN_ANY_PROCESS;
849
850         *vmap = vma = find_vma(mm, address);
851         if (!vma)
852                 return SCAN_VMA_NULL;
853
854         hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
855         hend = vma->vm_end & HPAGE_PMD_MASK;
856         if (address < hstart || address + HPAGE_PMD_SIZE > hend)
857                 return SCAN_ADDRESS_RANGE;
858         if (!hugepage_vma_check(vma))
859                 return SCAN_VMA_CHECK;
860         return 0;
861 }
862
863 /*
864  * Bring missing pages in from swap, to complete THP collapse.
865  * Only done if khugepaged_scan_pmd believes it is worthwhile.
866  *
867  * Called and returns without pte mapped or spinlocks held,
868  * but with mmap_sem held to protect against vma changes.
869  */
870
871 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
872                                         struct vm_area_struct *vma,
873                                         unsigned long address, pmd_t *pmd,
874                                         int referenced)
875 {
876         pte_t pteval;
877         int swapped_in = 0, ret = 0;
878         struct fault_env fe = {
879                 .vma = vma,
880                 .address = address,
881                 .flags = FAULT_FLAG_ALLOW_RETRY,
882                 .pmd = pmd,
883         };
884
885         /* we only decide to swapin, if there is enough young ptes */
886         if (referenced < HPAGE_PMD_NR/2) {
887                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
888                 return false;
889         }
890         fe.pte = pte_offset_map(pmd, address);
891         for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
892                         fe.pte++, fe.address += PAGE_SIZE) {
893                 pteval = *fe.pte;
894                 if (!is_swap_pte(pteval))
895                         continue;
896                 swapped_in++;
897                 ret = do_swap_page(&fe, pteval);
898
899                 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
900                 if (ret & VM_FAULT_RETRY) {
901                         down_read(&mm->mmap_sem);
902                         if (hugepage_vma_revalidate(mm, address, &fe.vma)) {
903                                 /* vma is no longer available, don't continue to swapin */
904                                 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
905                                 return false;
906                         }
907                         /* check if the pmd is still valid */
908                         if (mm_find_pmd(mm, address) != pmd)
909                                 return false;
910                 }
911                 if (ret & VM_FAULT_ERROR) {
912                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
913                         return false;
914                 }
915                 /* pte is unmapped now, we need to map it */
916                 fe.pte = pte_offset_map(pmd, fe.address);
917         }
918         fe.pte--;
919         pte_unmap(fe.pte);
920         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
921         return true;
922 }
923
924 static void collapse_huge_page(struct mm_struct *mm,
925                                    unsigned long address,
926                                    struct page **hpage,
927                                    int node, int referenced)
928 {
929         pmd_t *pmd, _pmd;
930         pte_t *pte;
931         pgtable_t pgtable;
932         struct page *new_page;
933         spinlock_t *pmd_ptl, *pte_ptl;
934         int isolated = 0, result = 0;
935         struct mem_cgroup *memcg;
936         struct vm_area_struct *vma;
937         unsigned long mmun_start;       /* For mmu_notifiers */
938         unsigned long mmun_end;         /* For mmu_notifiers */
939         gfp_t gfp;
940
941         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
942
943         /* Only allocate from the target node */
944         gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
945
946         /*
947          * Before allocating the hugepage, release the mmap_sem read lock.
948          * The allocation can take potentially a long time if it involves
949          * sync compaction, and we do not need to hold the mmap_sem during
950          * that. We will recheck the vma after taking it again in write mode.
951          */
952         up_read(&mm->mmap_sem);
953         new_page = khugepaged_alloc_page(hpage, gfp, node);
954         if (!new_page) {
955                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
956                 goto out_nolock;
957         }
958
959         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
960                 result = SCAN_CGROUP_CHARGE_FAIL;
961                 goto out_nolock;
962         }
963
964         down_read(&mm->mmap_sem);
965         result = hugepage_vma_revalidate(mm, address, &vma);
966         if (result) {
967                 mem_cgroup_cancel_charge(new_page, memcg, true);
968                 up_read(&mm->mmap_sem);
969                 goto out_nolock;
970         }
971
972         pmd = mm_find_pmd(mm, address);
973         if (!pmd) {
974                 result = SCAN_PMD_NULL;
975                 mem_cgroup_cancel_charge(new_page, memcg, true);
976                 up_read(&mm->mmap_sem);
977                 goto out_nolock;
978         }
979
980         /*
981          * __collapse_huge_page_swapin always returns with mmap_sem locked.
982          * If it fails, we release mmap_sem and jump out_nolock.
983          * Continuing to collapse causes inconsistency.
984          */
985         if (!__collapse_huge_page_swapin(mm, vma, address, pmd, referenced)) {
986                 mem_cgroup_cancel_charge(new_page, memcg, true);
987                 up_read(&mm->mmap_sem);
988                 goto out_nolock;
989         }
990
991         up_read(&mm->mmap_sem);
992         /*
993          * Prevent all access to pagetables with the exception of
994          * gup_fast later handled by the ptep_clear_flush and the VM
995          * handled by the anon_vma lock + PG_lock.
996          */
997         down_write(&mm->mmap_sem);
998         result = hugepage_vma_revalidate(mm, address, &vma);
999         if (result)
1000                 goto out;
1001         /* check if the pmd is still valid */
1002         if (mm_find_pmd(mm, address) != pmd)
1003                 goto out;
1004
1005         anon_vma_lock_write(vma->anon_vma);
1006
1007         pte = pte_offset_map(pmd, address);
1008         pte_ptl = pte_lockptr(mm, pmd);
1009
1010         mmun_start = address;
1011         mmun_end   = address + HPAGE_PMD_SIZE;
1012         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1013         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1014         /*
1015          * After this gup_fast can't run anymore. This also removes
1016          * any huge TLB entry from the CPU so we won't allow
1017          * huge and small TLB entries for the same virtual address
1018          * to avoid the risk of CPU bugs in that area.
1019          */
1020         _pmd = pmdp_collapse_flush(vma, address, pmd);
1021         spin_unlock(pmd_ptl);
1022         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1023
1024         spin_lock(pte_ptl);
1025         isolated = __collapse_huge_page_isolate(vma, address, pte);
1026         spin_unlock(pte_ptl);
1027
1028         if (unlikely(!isolated)) {
1029                 pte_unmap(pte);
1030                 spin_lock(pmd_ptl);
1031                 BUG_ON(!pmd_none(*pmd));
1032                 /*
1033                  * We can only use set_pmd_at when establishing
1034                  * hugepmds and never for establishing regular pmds that
1035                  * points to regular pagetables. Use pmd_populate for that
1036                  */
1037                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1038                 spin_unlock(pmd_ptl);
1039                 anon_vma_unlock_write(vma->anon_vma);
1040                 result = SCAN_FAIL;
1041                 goto out;
1042         }
1043
1044         /*
1045          * All pages are isolated and locked so anon_vma rmap
1046          * can't run anymore.
1047          */
1048         anon_vma_unlock_write(vma->anon_vma);
1049
1050         __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
1051         pte_unmap(pte);
1052         __SetPageUptodate(new_page);
1053         pgtable = pmd_pgtable(_pmd);
1054
1055         _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1056         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1057
1058         /*
1059          * spin_lock() below is not the equivalent of smp_wmb(), so
1060          * this is needed to avoid the copy_huge_page writes to become
1061          * visible after the set_pmd_at() write.
1062          */
1063         smp_wmb();
1064
1065         spin_lock(pmd_ptl);
1066         BUG_ON(!pmd_none(*pmd));
1067         page_add_new_anon_rmap(new_page, vma, address, true);
1068         mem_cgroup_commit_charge(new_page, memcg, false, true);
1069         lru_cache_add_active_or_unevictable(new_page, vma);
1070         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1071         set_pmd_at(mm, address, pmd, _pmd);
1072         update_mmu_cache_pmd(vma, address, pmd);
1073         spin_unlock(pmd_ptl);
1074
1075         *hpage = NULL;
1076
1077         khugepaged_pages_collapsed++;
1078         result = SCAN_SUCCEED;
1079 out_up_write:
1080         up_write(&mm->mmap_sem);
1081 out_nolock:
1082         trace_mm_collapse_huge_page(mm, isolated, result);
1083         return;
1084 out:
1085         mem_cgroup_cancel_charge(new_page, memcg, true);
1086         goto out_up_write;
1087 }
1088
1089 static int khugepaged_scan_pmd(struct mm_struct *mm,
1090                                struct vm_area_struct *vma,
1091                                unsigned long address,
1092                                struct page **hpage)
1093 {
1094         pmd_t *pmd;
1095         pte_t *pte, *_pte;
1096         int ret = 0, none_or_zero = 0, result = 0, referenced = 0;
1097         struct page *page = NULL;
1098         unsigned long _address;
1099         spinlock_t *ptl;
1100         int node = NUMA_NO_NODE, unmapped = 0;
1101         bool writable = false;
1102
1103         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1104
1105         pmd = mm_find_pmd(mm, address);
1106         if (!pmd) {
1107                 result = SCAN_PMD_NULL;
1108                 goto out;
1109         }
1110
1111         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1112         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1113         for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1114              _pte++, _address += PAGE_SIZE) {
1115                 pte_t pteval = *_pte;
1116                 if (is_swap_pte(pteval)) {
1117                         if (++unmapped <= khugepaged_max_ptes_swap) {
1118                                 continue;
1119                         } else {
1120                                 result = SCAN_EXCEED_SWAP_PTE;
1121                                 goto out_unmap;
1122                         }
1123                 }
1124                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1125                         if (!userfaultfd_armed(vma) &&
1126                             ++none_or_zero <= khugepaged_max_ptes_none) {
1127                                 continue;
1128                         } else {
1129                                 result = SCAN_EXCEED_NONE_PTE;
1130                                 goto out_unmap;
1131                         }
1132                 }
1133                 if (!pte_present(pteval)) {
1134                         result = SCAN_PTE_NON_PRESENT;
1135                         goto out_unmap;
1136                 }
1137                 if (pte_write(pteval))
1138                         writable = true;
1139
1140                 page = vm_normal_page(vma, _address, pteval);
1141                 if (unlikely(!page)) {
1142                         result = SCAN_PAGE_NULL;
1143                         goto out_unmap;
1144                 }
1145
1146                 /* TODO: teach khugepaged to collapse THP mapped with pte */
1147                 if (PageCompound(page)) {
1148                         result = SCAN_PAGE_COMPOUND;
1149                         goto out_unmap;
1150                 }
1151
1152                 /*
1153                  * Record which node the original page is from and save this
1154                  * information to khugepaged_node_load[].
1155                  * Khupaged will allocate hugepage from the node has the max
1156                  * hit record.
1157                  */
1158                 node = page_to_nid(page);
1159                 if (khugepaged_scan_abort(node)) {
1160                         result = SCAN_SCAN_ABORT;
1161                         goto out_unmap;
1162                 }
1163                 khugepaged_node_load[node]++;
1164                 if (!PageLRU(page)) {
1165                         result = SCAN_PAGE_LRU;
1166                         goto out_unmap;
1167                 }
1168                 if (PageLocked(page)) {
1169                         result = SCAN_PAGE_LOCK;
1170                         goto out_unmap;
1171                 }
1172                 if (!PageAnon(page)) {
1173                         result = SCAN_PAGE_ANON;
1174                         goto out_unmap;
1175                 }
1176
1177                 /*
1178                  * cannot use mapcount: can't collapse if there's a gup pin.
1179                  * The page must only be referenced by the scanned process
1180                  * and page swap cache.
1181                  */
1182                 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1183                         result = SCAN_PAGE_COUNT;
1184                         goto out_unmap;
1185                 }
1186                 if (pte_young(pteval) ||
1187                     page_is_young(page) || PageReferenced(page) ||
1188                     mmu_notifier_test_young(vma->vm_mm, address))
1189                         referenced++;
1190         }
1191         if (writable) {
1192                 if (referenced) {
1193                         result = SCAN_SUCCEED;
1194                         ret = 1;
1195                 } else {
1196                         result = SCAN_LACK_REFERENCED_PAGE;
1197                 }
1198         } else {
1199                 result = SCAN_PAGE_RO;
1200         }
1201 out_unmap:
1202         pte_unmap_unlock(pte, ptl);
1203         if (ret) {
1204                 node = khugepaged_find_target_node();
1205                 /* collapse_huge_page will return with the mmap_sem released */
1206                 collapse_huge_page(mm, address, hpage, node, referenced);
1207         }
1208 out:
1209         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1210                                      none_or_zero, result, unmapped);
1211         return ret;
1212 }
1213
1214 static void collect_mm_slot(struct mm_slot *mm_slot)
1215 {
1216         struct mm_struct *mm = mm_slot->mm;
1217
1218         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1219
1220         if (khugepaged_test_exit(mm)) {
1221                 /* free mm_slot */
1222                 hash_del(&mm_slot->hash);
1223                 list_del(&mm_slot->mm_node);
1224
1225                 /*
1226                  * Not strictly needed because the mm exited already.
1227                  *
1228                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1229                  */
1230
1231                 /* khugepaged_mm_lock actually not necessary for the below */
1232                 free_mm_slot(mm_slot);
1233                 mmdrop(mm);
1234         }
1235 }
1236
1237 #if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
1238 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1239 {
1240         struct vm_area_struct *vma;
1241         unsigned long addr;
1242         pmd_t *pmd, _pmd;
1243
1244         i_mmap_lock_write(mapping);
1245         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1246                 /* probably overkill */
1247                 if (vma->anon_vma)
1248                         continue;
1249                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1250                 if (addr & ~HPAGE_PMD_MASK)
1251                         continue;
1252                 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1253                         continue;
1254                 pmd = mm_find_pmd(vma->vm_mm, addr);
1255                 if (!pmd)
1256                         continue;
1257                 /*
1258                  * We need exclusive mmap_sem to retract page table.
1259                  * If trylock fails we would end up with pte-mapped THP after
1260                  * re-fault. Not ideal, but it's more important to not disturb
1261                  * the system too much.
1262                  */
1263                 if (down_write_trylock(&vma->vm_mm->mmap_sem)) {
1264                         spinlock_t *ptl = pmd_lock(vma->vm_mm, pmd);
1265                         /* assume page table is clear */
1266                         _pmd = pmdp_collapse_flush(vma, addr, pmd);
1267                         spin_unlock(ptl);
1268                         up_write(&vma->vm_mm->mmap_sem);
1269                         atomic_long_dec(&vma->vm_mm->nr_ptes);
1270                         pte_free(vma->vm_mm, pmd_pgtable(_pmd));
1271                 }
1272         }
1273         i_mmap_unlock_write(mapping);
1274 }
1275
1276 /**
1277  * collapse_shmem - collapse small tmpfs/shmem pages into huge one.
1278  *
1279  * Basic scheme is simple, details are more complex:
1280  *  - allocate and freeze a new huge page;
1281  *  - scan over radix tree replacing old pages the new one
1282  *    + swap in pages if necessary;
1283  *    + fill in gaps;
1284  *    + keep old pages around in case if rollback is required;
1285  *  - if replacing succeed:
1286  *    + copy data over;
1287  *    + free old pages;
1288  *    + unfreeze huge page;
1289  *  - if replacing failed;
1290  *    + put all pages back and unfreeze them;
1291  *    + restore gaps in the radix-tree;
1292  *    + free huge page;
1293  */
1294 static void collapse_shmem(struct mm_struct *mm,
1295                 struct address_space *mapping, pgoff_t start,
1296                 struct page **hpage, int node)
1297 {
1298         gfp_t gfp;
1299         struct page *page, *new_page, *tmp;
1300         struct mem_cgroup *memcg;
1301         pgoff_t index, end = start + HPAGE_PMD_NR;
1302         LIST_HEAD(pagelist);
1303         struct radix_tree_iter iter;
1304         void **slot;
1305         int nr_none = 0, result = SCAN_SUCCEED;
1306
1307         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1308
1309         /* Only allocate from the target node */
1310         gfp = alloc_hugepage_khugepaged_gfpmask() |
1311                 __GFP_OTHER_NODE | __GFP_THISNODE;
1312
1313         new_page = khugepaged_alloc_page(hpage, gfp, node);
1314         if (!new_page) {
1315                 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1316                 goto out;
1317         }
1318
1319         if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
1320                 result = SCAN_CGROUP_CHARGE_FAIL;
1321                 goto out;
1322         }
1323
1324         new_page->index = start;
1325         new_page->mapping = mapping;
1326         __SetPageSwapBacked(new_page);
1327         __SetPageLocked(new_page);
1328         BUG_ON(!page_ref_freeze(new_page, 1));
1329
1330
1331         /*
1332          * At this point the new_page is 'frozen' (page_count() is zero), locked
1333          * and not up-to-date. It's safe to insert it into radix tree, because
1334          * nobody would be able to map it or use it in other way until we
1335          * unfreeze it.
1336          */
1337
1338         index = start;
1339         spin_lock_irq(&mapping->tree_lock);
1340         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1341                 int n = min(iter.index, end) - index;
1342
1343                 /*
1344                  * Handle holes in the radix tree: charge it from shmem and
1345                  * insert relevant subpage of new_page into the radix-tree.
1346                  */
1347                 if (n && !shmem_charge(mapping->host, n)) {
1348                         result = SCAN_FAIL;
1349                         break;
1350                 }
1351                 nr_none += n;
1352                 for (; index < min(iter.index, end); index++) {
1353                         radix_tree_insert(&mapping->page_tree, index,
1354                                         new_page + (index % HPAGE_PMD_NR));
1355                 }
1356
1357                 /* We are done. */
1358                 if (index >= end)
1359                         break;
1360
1361                 page = radix_tree_deref_slot_protected(slot,
1362                                 &mapping->tree_lock);
1363                 if (radix_tree_exceptional_entry(page) || !PageUptodate(page)) {
1364                         spin_unlock_irq(&mapping->tree_lock);
1365                         /* swap in or instantiate fallocated page */
1366                         if (shmem_getpage(mapping->host, index, &page,
1367                                                 SGP_NOHUGE)) {
1368                                 result = SCAN_FAIL;
1369                                 goto tree_unlocked;
1370                         }
1371                         spin_lock_irq(&mapping->tree_lock);
1372                 } else if (trylock_page(page)) {
1373                         get_page(page);
1374                 } else {
1375                         result = SCAN_PAGE_LOCK;
1376                         break;
1377                 }
1378
1379                 /*
1380                  * The page must be locked, so we can drop the tree_lock
1381                  * without racing with truncate.
1382                  */
1383                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1384                 VM_BUG_ON_PAGE(!PageUptodate(page), page);
1385                 VM_BUG_ON_PAGE(PageTransCompound(page), page);
1386
1387                 if (page_mapping(page) != mapping) {
1388                         result = SCAN_TRUNCATED;
1389                         goto out_unlock;
1390                 }
1391                 spin_unlock_irq(&mapping->tree_lock);
1392
1393                 if (isolate_lru_page(page)) {
1394                         result = SCAN_DEL_PAGE_LRU;
1395                         goto out_isolate_failed;
1396                 }
1397
1398                 if (page_mapped(page))
1399                         unmap_mapping_range(mapping, index << PAGE_SHIFT,
1400                                         PAGE_SIZE, 0);
1401
1402                 spin_lock_irq(&mapping->tree_lock);
1403
1404                 VM_BUG_ON_PAGE(page_mapped(page), page);
1405
1406                 /*
1407                  * The page is expected to have page_count() == 3:
1408                  *  - we hold a pin on it;
1409                  *  - one reference from radix tree;
1410                  *  - one from isolate_lru_page;
1411                  */
1412                 if (!page_ref_freeze(page, 3)) {
1413                         result = SCAN_PAGE_COUNT;
1414                         goto out_lru;
1415                 }
1416
1417                 /*
1418                  * Add the page to the list to be able to undo the collapse if
1419                  * something go wrong.
1420                  */
1421                 list_add_tail(&page->lru, &pagelist);
1422
1423                 /* Finally, replace with the new page. */
1424                 radix_tree_replace_slot(slot,
1425                                 new_page + (index % HPAGE_PMD_NR));
1426
1427                 index++;
1428                 continue;
1429 out_lru:
1430                 spin_unlock_irq(&mapping->tree_lock);
1431                 putback_lru_page(page);
1432 out_isolate_failed:
1433                 unlock_page(page);
1434                 put_page(page);
1435                 goto tree_unlocked;
1436 out_unlock:
1437                 unlock_page(page);
1438                 put_page(page);
1439                 break;
1440         }
1441
1442         /*
1443          * Handle hole in radix tree at the end of the range.
1444          * This code only triggers if there's nothing in radix tree
1445          * beyond 'end'.
1446          */
1447         if (result == SCAN_SUCCEED && index < end) {
1448                 int n = end - index;
1449
1450                 if (!shmem_charge(mapping->host, n)) {
1451                         result = SCAN_FAIL;
1452                         goto tree_locked;
1453                 }
1454
1455                 for (; index < end; index++) {
1456                         radix_tree_insert(&mapping->page_tree, index,
1457                                         new_page + (index % HPAGE_PMD_NR));
1458                 }
1459                 nr_none += n;
1460         }
1461
1462 tree_locked:
1463         spin_unlock_irq(&mapping->tree_lock);
1464 tree_unlocked:
1465
1466         if (result == SCAN_SUCCEED) {
1467                 unsigned long flags;
1468                 struct zone *zone = page_zone(new_page);
1469
1470                 /*
1471                  * Replacing old pages with new one has succeed, now we need to
1472                  * copy the content and free old pages.
1473                  */
1474                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1475                         copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1476                                         page);
1477                         list_del(&page->lru);
1478                         unlock_page(page);
1479                         page_ref_unfreeze(page, 1);
1480                         page->mapping = NULL;
1481                         ClearPageActive(page);
1482                         ClearPageUnevictable(page);
1483                         put_page(page);
1484                 }
1485
1486                 local_irq_save(flags);
1487                 __inc_node_page_state(new_page, NR_SHMEM_THPS);
1488                 if (nr_none) {
1489                         __mod_node_page_state(zone->zone_pgdat, NR_FILE_PAGES, nr_none);
1490                         __mod_node_page_state(zone->zone_pgdat, NR_SHMEM, nr_none);
1491                 }
1492                 local_irq_restore(flags);
1493
1494                 /*
1495                  * Remove pte page tables, so we can re-faulti
1496                  * the page as huge.
1497                  */
1498                 retract_page_tables(mapping, start);
1499
1500                 /* Everything is ready, let's unfreeze the new_page */
1501                 set_page_dirty(new_page);
1502                 SetPageUptodate(new_page);
1503                 page_ref_unfreeze(new_page, HPAGE_PMD_NR);
1504                 mem_cgroup_commit_charge(new_page, memcg, false, true);
1505                 lru_cache_add_anon(new_page);
1506                 unlock_page(new_page);
1507
1508                 *hpage = NULL;
1509         } else {
1510                 /* Something went wrong: rollback changes to the radix-tree */
1511                 shmem_uncharge(mapping->host, nr_none);
1512                 spin_lock_irq(&mapping->tree_lock);
1513                 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
1514                                 start) {
1515                         if (iter.index >= end)
1516                                 break;
1517                         page = list_first_entry_or_null(&pagelist,
1518                                         struct page, lru);
1519                         if (!page || iter.index < page->index) {
1520                                 if (!nr_none)
1521                                         break;
1522                                 /* Put holes back where they were */
1523                                 radix_tree_replace_slot(slot, NULL);
1524                                 nr_none--;
1525                                 continue;
1526                         }
1527
1528                         VM_BUG_ON_PAGE(page->index != iter.index, page);
1529
1530                         /* Unfreeze the page. */
1531                         list_del(&page->lru);
1532                         page_ref_unfreeze(page, 2);
1533                         radix_tree_replace_slot(slot, page);
1534                         spin_unlock_irq(&mapping->tree_lock);
1535                         putback_lru_page(page);
1536                         unlock_page(page);
1537                         spin_lock_irq(&mapping->tree_lock);
1538                 }
1539                 VM_BUG_ON(nr_none);
1540                 spin_unlock_irq(&mapping->tree_lock);
1541
1542                 /* Unfreeze new_page, caller would take care about freeing it */
1543                 page_ref_unfreeze(new_page, 1);
1544                 mem_cgroup_cancel_charge(new_page, memcg, true);
1545                 unlock_page(new_page);
1546                 new_page->mapping = NULL;
1547         }
1548 out:
1549         VM_BUG_ON(!list_empty(&pagelist));
1550         /* TODO: tracepoints */
1551 }
1552
1553 static void khugepaged_scan_shmem(struct mm_struct *mm,
1554                 struct address_space *mapping,
1555                 pgoff_t start, struct page **hpage)
1556 {
1557         struct page *page = NULL;
1558         struct radix_tree_iter iter;
1559         void **slot;
1560         int present, swap;
1561         int node = NUMA_NO_NODE;
1562         int result = SCAN_SUCCEED;
1563
1564         present = 0;
1565         swap = 0;
1566         memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1567         rcu_read_lock();
1568         radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1569                 if (iter.index >= start + HPAGE_PMD_NR)
1570                         break;
1571
1572                 page = radix_tree_deref_slot(slot);
1573                 if (radix_tree_deref_retry(page)) {
1574                         slot = radix_tree_iter_retry(&iter);
1575                         continue;
1576                 }
1577
1578                 if (radix_tree_exception(page)) {
1579                         if (++swap > khugepaged_max_ptes_swap) {
1580                                 result = SCAN_EXCEED_SWAP_PTE;
1581                                 break;
1582                         }
1583                         continue;
1584                 }
1585
1586                 if (PageTransCompound(page)) {
1587                         result = SCAN_PAGE_COMPOUND;
1588                         break;
1589                 }
1590
1591                 node = page_to_nid(page);
1592                 if (khugepaged_scan_abort(node)) {
1593                         result = SCAN_SCAN_ABORT;
1594                         break;
1595                 }
1596                 khugepaged_node_load[node]++;
1597
1598                 if (!PageLRU(page)) {
1599                         result = SCAN_PAGE_LRU;
1600                         break;
1601                 }
1602
1603                 if (page_count(page) != 1 + page_mapcount(page)) {
1604                         result = SCAN_PAGE_COUNT;
1605                         break;
1606                 }
1607
1608                 /*
1609                  * We probably should check if the page is referenced here, but
1610                  * nobody would transfer pte_young() to PageReferenced() for us.
1611                  * And rmap walk here is just too costly...
1612                  */
1613
1614                 present++;
1615
1616                 if (need_resched()) {
1617                         cond_resched_rcu();
1618                         slot = radix_tree_iter_next(&iter);
1619                 }
1620         }
1621         rcu_read_unlock();
1622
1623         if (result == SCAN_SUCCEED) {
1624                 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
1625                         result = SCAN_EXCEED_NONE_PTE;
1626                 } else {
1627                         node = khugepaged_find_target_node();
1628                         collapse_shmem(mm, mapping, start, hpage, node);
1629                 }
1630         }
1631
1632         /* TODO: tracepoints */
1633 }
1634 #else
1635 static void khugepaged_scan_shmem(struct mm_struct *mm,
1636                 struct address_space *mapping,
1637                 pgoff_t start, struct page **hpage)
1638 {
1639         BUILD_BUG();
1640 }
1641 #endif
1642
1643 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1644                                             struct page **hpage)
1645         __releases(&khugepaged_mm_lock)
1646         __acquires(&khugepaged_mm_lock)
1647 {
1648         struct mm_slot *mm_slot;
1649         struct mm_struct *mm;
1650         struct vm_area_struct *vma;
1651         int progress = 0;
1652
1653         VM_BUG_ON(!pages);
1654         VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
1655
1656         if (khugepaged_scan.mm_slot)
1657                 mm_slot = khugepaged_scan.mm_slot;
1658         else {
1659                 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1660                                      struct mm_slot, mm_node);
1661                 khugepaged_scan.address = 0;
1662                 khugepaged_scan.mm_slot = mm_slot;
1663         }
1664         spin_unlock(&khugepaged_mm_lock);
1665
1666         mm = mm_slot->mm;
1667         down_read(&mm->mmap_sem);
1668         if (unlikely(khugepaged_test_exit(mm)))
1669                 vma = NULL;
1670         else
1671                 vma = find_vma(mm, khugepaged_scan.address);
1672
1673         progress++;
1674         for (; vma; vma = vma->vm_next) {
1675                 unsigned long hstart, hend;
1676
1677                 cond_resched();
1678                 if (unlikely(khugepaged_test_exit(mm))) {
1679                         progress++;
1680                         break;
1681                 }
1682                 if (!hugepage_vma_check(vma)) {
1683 skip:
1684                         progress++;
1685                         continue;
1686                 }
1687                 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1688                 hend = vma->vm_end & HPAGE_PMD_MASK;
1689                 if (hstart >= hend)
1690                         goto skip;
1691                 if (khugepaged_scan.address > hend)
1692                         goto skip;
1693                 if (khugepaged_scan.address < hstart)
1694                         khugepaged_scan.address = hstart;
1695                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
1696
1697                 while (khugepaged_scan.address < hend) {
1698                         int ret;
1699                         cond_resched();
1700                         if (unlikely(khugepaged_test_exit(mm)))
1701                                 goto breakouterloop;
1702
1703                         VM_BUG_ON(khugepaged_scan.address < hstart ||
1704                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
1705                                   hend);
1706                         if (shmem_file(vma->vm_file)) {
1707                                 struct file *file;
1708                                 pgoff_t pgoff = linear_page_index(vma,
1709                                                 khugepaged_scan.address);
1710                                 if (!shmem_huge_enabled(vma))
1711                                         goto skip;
1712                                 file = get_file(vma->vm_file);
1713                                 up_read(&mm->mmap_sem);
1714                                 ret = 1;
1715                                 khugepaged_scan_shmem(mm, file->f_mapping,
1716                                                 pgoff, hpage);
1717                                 fput(file);
1718                         } else {
1719                                 ret = khugepaged_scan_pmd(mm, vma,
1720                                                 khugepaged_scan.address,
1721                                                 hpage);
1722                         }
1723                         /* move to next address */
1724                         khugepaged_scan.address += HPAGE_PMD_SIZE;
1725                         progress += HPAGE_PMD_NR;
1726                         if (ret)
1727                                 /* we released mmap_sem so break loop */
1728                                 goto breakouterloop_mmap_sem;
1729                         if (progress >= pages)
1730                                 goto breakouterloop;
1731                 }
1732         }
1733 breakouterloop:
1734         up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
1735 breakouterloop_mmap_sem:
1736
1737         spin_lock(&khugepaged_mm_lock);
1738         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
1739         /*
1740          * Release the current mm_slot if this mm is about to die, or
1741          * if we scanned all vmas of this mm.
1742          */
1743         if (khugepaged_test_exit(mm) || !vma) {
1744                 /*
1745                  * Make sure that if mm_users is reaching zero while
1746                  * khugepaged runs here, khugepaged_exit will find
1747                  * mm_slot not pointing to the exiting mm.
1748                  */
1749                 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
1750                         khugepaged_scan.mm_slot = list_entry(
1751                                 mm_slot->mm_node.next,
1752                                 struct mm_slot, mm_node);
1753                         khugepaged_scan.address = 0;
1754                 } else {
1755                         khugepaged_scan.mm_slot = NULL;
1756                         khugepaged_full_scans++;
1757                 }
1758
1759                 collect_mm_slot(mm_slot);
1760         }
1761
1762         return progress;
1763 }
1764
1765 static int khugepaged_has_work(void)
1766 {
1767         return !list_empty(&khugepaged_scan.mm_head) &&
1768                 khugepaged_enabled();
1769 }
1770
1771 static int khugepaged_wait_event(void)
1772 {
1773         return !list_empty(&khugepaged_scan.mm_head) ||
1774                 kthread_should_stop();
1775 }
1776
1777 static void khugepaged_do_scan(void)
1778 {
1779         struct page *hpage = NULL;
1780         unsigned int progress = 0, pass_through_head = 0;
1781         unsigned int pages = khugepaged_pages_to_scan;
1782         bool wait = true;
1783
1784         barrier(); /* write khugepaged_pages_to_scan to local stack */
1785
1786         while (progress < pages) {
1787                 if (!khugepaged_prealloc_page(&hpage, &wait))
1788                         break;
1789
1790                 cond_resched();
1791
1792                 if (unlikely(kthread_should_stop() || try_to_freeze()))
1793                         break;
1794
1795                 spin_lock(&khugepaged_mm_lock);
1796                 if (!khugepaged_scan.mm_slot)
1797                         pass_through_head++;
1798                 if (khugepaged_has_work() &&
1799                     pass_through_head < 2)
1800                         progress += khugepaged_scan_mm_slot(pages - progress,
1801                                                             &hpage);
1802                 else
1803                         progress = pages;
1804                 spin_unlock(&khugepaged_mm_lock);
1805         }
1806
1807         if (!IS_ERR_OR_NULL(hpage))
1808                 put_page(hpage);
1809 }
1810
1811 static bool khugepaged_should_wakeup(void)
1812 {
1813         return kthread_should_stop() ||
1814                time_after_eq(jiffies, khugepaged_sleep_expire);
1815 }
1816
1817 static void khugepaged_wait_work(void)
1818 {
1819         if (khugepaged_has_work()) {
1820                 const unsigned long scan_sleep_jiffies =
1821                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
1822
1823                 if (!scan_sleep_jiffies)
1824                         return;
1825
1826                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
1827                 wait_event_freezable_timeout(khugepaged_wait,
1828                                              khugepaged_should_wakeup(),
1829                                              scan_sleep_jiffies);
1830                 return;
1831         }
1832
1833         if (khugepaged_enabled())
1834                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
1835 }
1836
1837 static int khugepaged(void *none)
1838 {
1839         struct mm_slot *mm_slot;
1840
1841         set_freezable();
1842         set_user_nice(current, MAX_NICE);
1843
1844         while (!kthread_should_stop()) {
1845                 khugepaged_do_scan();
1846                 khugepaged_wait_work();
1847         }
1848
1849         spin_lock(&khugepaged_mm_lock);
1850         mm_slot = khugepaged_scan.mm_slot;
1851         khugepaged_scan.mm_slot = NULL;
1852         if (mm_slot)
1853                 collect_mm_slot(mm_slot);
1854         spin_unlock(&khugepaged_mm_lock);
1855         return 0;
1856 }
1857
1858 static void set_recommended_min_free_kbytes(void)
1859 {
1860         struct zone *zone;
1861         int nr_zones = 0;
1862         unsigned long recommended_min;
1863
1864         for_each_populated_zone(zone)
1865                 nr_zones++;
1866
1867         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
1868         recommended_min = pageblock_nr_pages * nr_zones * 2;
1869
1870         /*
1871          * Make sure that on average at least two pageblocks are almost free
1872          * of another type, one for a migratetype to fall back to and a
1873          * second to avoid subsequent fallbacks of other types There are 3
1874          * MIGRATE_TYPES we care about.
1875          */
1876         recommended_min += pageblock_nr_pages * nr_zones *
1877                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
1878
1879         /* don't ever allow to reserve more than 5% of the lowmem */
1880         recommended_min = min(recommended_min,
1881                               (unsigned long) nr_free_buffer_pages() / 20);
1882         recommended_min <<= (PAGE_SHIFT-10);
1883
1884         if (recommended_min > min_free_kbytes) {
1885                 if (user_min_free_kbytes >= 0)
1886                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
1887                                 min_free_kbytes, recommended_min);
1888
1889                 min_free_kbytes = recommended_min;
1890         }
1891         setup_per_zone_wmarks();
1892 }
1893
1894 int start_stop_khugepaged(void)
1895 {
1896         static struct task_struct *khugepaged_thread __read_mostly;
1897         static DEFINE_MUTEX(khugepaged_mutex);
1898         int err = 0;
1899
1900         mutex_lock(&khugepaged_mutex);
1901         if (khugepaged_enabled()) {
1902                 if (!khugepaged_thread)
1903                         khugepaged_thread = kthread_run(khugepaged, NULL,
1904                                                         "khugepaged");
1905                 if (IS_ERR(khugepaged_thread)) {
1906                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
1907                         err = PTR_ERR(khugepaged_thread);
1908                         khugepaged_thread = NULL;
1909                         goto fail;
1910                 }
1911
1912                 if (!list_empty(&khugepaged_scan.mm_head))
1913                         wake_up_interruptible(&khugepaged_wait);
1914
1915                 set_recommended_min_free_kbytes();
1916         } else if (khugepaged_thread) {
1917                 kthread_stop(khugepaged_thread);
1918                 khugepaged_thread = NULL;
1919         }
1920 fail:
1921         mutex_unlock(&khugepaged_mutex);
1922         return err;
1923 }