Merge tag 'mm-hotfixes-stable-2022-12-22-14-34' of git://git.kernel.org/pub/scm/linux...
[platform/kernel/linux-starfive.git] / mm / khugepaged.c
1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
3
4 #include <linux/mm.h>
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
22
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26 #include "mm_slot.h"
27
28 enum scan_result {
29         SCAN_FAIL,
30         SCAN_SUCCEED,
31         SCAN_PMD_NULL,
32         SCAN_PMD_NONE,
33         SCAN_PMD_MAPPED,
34         SCAN_EXCEED_NONE_PTE,
35         SCAN_EXCEED_SWAP_PTE,
36         SCAN_EXCEED_SHARED_PTE,
37         SCAN_PTE_NON_PRESENT,
38         SCAN_PTE_UFFD_WP,
39         SCAN_PTE_MAPPED_HUGEPAGE,
40         SCAN_PAGE_RO,
41         SCAN_LACK_REFERENCED_PAGE,
42         SCAN_PAGE_NULL,
43         SCAN_SCAN_ABORT,
44         SCAN_PAGE_COUNT,
45         SCAN_PAGE_LRU,
46         SCAN_PAGE_LOCK,
47         SCAN_PAGE_ANON,
48         SCAN_PAGE_COMPOUND,
49         SCAN_ANY_PROCESS,
50         SCAN_VMA_NULL,
51         SCAN_VMA_CHECK,
52         SCAN_ADDRESS_RANGE,
53         SCAN_DEL_PAGE_LRU,
54         SCAN_ALLOC_HUGE_PAGE_FAIL,
55         SCAN_CGROUP_CHARGE_FAIL,
56         SCAN_TRUNCATED,
57         SCAN_PAGE_HAS_PRIVATE,
58 };
59
60 #define CREATE_TRACE_POINTS
61 #include <trace/events/huge_memory.h>
62
63 static struct task_struct *khugepaged_thread __read_mostly;
64 static DEFINE_MUTEX(khugepaged_mutex);
65
66 /* default scan 8*512 pte (or vmas) every 30 second */
67 static unsigned int khugepaged_pages_to_scan __read_mostly;
68 static unsigned int khugepaged_pages_collapsed;
69 static unsigned int khugepaged_full_scans;
70 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
71 /* during fragmentation poll the hugepage allocator once every minute */
72 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
73 static unsigned long khugepaged_sleep_expire;
74 static DEFINE_SPINLOCK(khugepaged_mm_lock);
75 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
76 /*
77  * default collapse hugepages if there is at least one pte mapped like
78  * it would have happened if the vma was large enough during page
79  * fault.
80  *
81  * Note that these are only respected if collapse was initiated by khugepaged.
82  */
83 static unsigned int khugepaged_max_ptes_none __read_mostly;
84 static unsigned int khugepaged_max_ptes_swap __read_mostly;
85 static unsigned int khugepaged_max_ptes_shared __read_mostly;
86
87 #define MM_SLOTS_HASH_BITS 10
88 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
89
90 static struct kmem_cache *mm_slot_cache __read_mostly;
91
92 #define MAX_PTE_MAPPED_THP 8
93
94 struct collapse_control {
95         bool is_khugepaged;
96
97         /* Num pages scanned per node */
98         u32 node_load[MAX_NUMNODES];
99
100         /* nodemask for allocation fallback */
101         nodemask_t alloc_nmask;
102 };
103
104 /**
105  * struct khugepaged_mm_slot - khugepaged information per mm that is being scanned
106  * @slot: hash lookup from mm to mm_slot
107  * @nr_pte_mapped_thp: number of pte mapped THP
108  * @pte_mapped_thp: address array corresponding pte mapped THP
109  */
110 struct khugepaged_mm_slot {
111         struct mm_slot slot;
112
113         /* pte-mapped THP in this mm */
114         int nr_pte_mapped_thp;
115         unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
116 };
117
118 /**
119  * struct khugepaged_scan - cursor for scanning
120  * @mm_head: the head of the mm list to scan
121  * @mm_slot: the current mm_slot we are scanning
122  * @address: the next address inside that to be scanned
123  *
124  * There is only the one khugepaged_scan instance of this cursor structure.
125  */
126 struct khugepaged_scan {
127         struct list_head mm_head;
128         struct khugepaged_mm_slot *mm_slot;
129         unsigned long address;
130 };
131
132 static struct khugepaged_scan khugepaged_scan = {
133         .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
134 };
135
136 #ifdef CONFIG_SYSFS
137 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
138                                          struct kobj_attribute *attr,
139                                          char *buf)
140 {
141         return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
142 }
143
144 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
145                                           struct kobj_attribute *attr,
146                                           const char *buf, size_t count)
147 {
148         unsigned int msecs;
149         int err;
150
151         err = kstrtouint(buf, 10, &msecs);
152         if (err)
153                 return -EINVAL;
154
155         khugepaged_scan_sleep_millisecs = msecs;
156         khugepaged_sleep_expire = 0;
157         wake_up_interruptible(&khugepaged_wait);
158
159         return count;
160 }
161 static struct kobj_attribute scan_sleep_millisecs_attr =
162         __ATTR_RW(scan_sleep_millisecs);
163
164 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
165                                           struct kobj_attribute *attr,
166                                           char *buf)
167 {
168         return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
169 }
170
171 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
172                                            struct kobj_attribute *attr,
173                                            const char *buf, size_t count)
174 {
175         unsigned int msecs;
176         int err;
177
178         err = kstrtouint(buf, 10, &msecs);
179         if (err)
180                 return -EINVAL;
181
182         khugepaged_alloc_sleep_millisecs = msecs;
183         khugepaged_sleep_expire = 0;
184         wake_up_interruptible(&khugepaged_wait);
185
186         return count;
187 }
188 static struct kobj_attribute alloc_sleep_millisecs_attr =
189         __ATTR_RW(alloc_sleep_millisecs);
190
191 static ssize_t pages_to_scan_show(struct kobject *kobj,
192                                   struct kobj_attribute *attr,
193                                   char *buf)
194 {
195         return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
196 }
197 static ssize_t pages_to_scan_store(struct kobject *kobj,
198                                    struct kobj_attribute *attr,
199                                    const char *buf, size_t count)
200 {
201         unsigned int pages;
202         int err;
203
204         err = kstrtouint(buf, 10, &pages);
205         if (err || !pages)
206                 return -EINVAL;
207
208         khugepaged_pages_to_scan = pages;
209
210         return count;
211 }
212 static struct kobj_attribute pages_to_scan_attr =
213         __ATTR_RW(pages_to_scan);
214
215 static ssize_t pages_collapsed_show(struct kobject *kobj,
216                                     struct kobj_attribute *attr,
217                                     char *buf)
218 {
219         return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
220 }
221 static struct kobj_attribute pages_collapsed_attr =
222         __ATTR_RO(pages_collapsed);
223
224 static ssize_t full_scans_show(struct kobject *kobj,
225                                struct kobj_attribute *attr,
226                                char *buf)
227 {
228         return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
229 }
230 static struct kobj_attribute full_scans_attr =
231         __ATTR_RO(full_scans);
232
233 static ssize_t defrag_show(struct kobject *kobj,
234                            struct kobj_attribute *attr, char *buf)
235 {
236         return single_hugepage_flag_show(kobj, attr, buf,
237                                          TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
238 }
239 static ssize_t defrag_store(struct kobject *kobj,
240                             struct kobj_attribute *attr,
241                             const char *buf, size_t count)
242 {
243         return single_hugepage_flag_store(kobj, attr, buf, count,
244                                  TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
245 }
246 static struct kobj_attribute khugepaged_defrag_attr =
247         __ATTR_RW(defrag);
248
249 /*
250  * max_ptes_none controls if khugepaged should collapse hugepages over
251  * any unmapped ptes in turn potentially increasing the memory
252  * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
253  * reduce the available free memory in the system as it
254  * runs. Increasing max_ptes_none will instead potentially reduce the
255  * free memory in the system during the khugepaged scan.
256  */
257 static ssize_t max_ptes_none_show(struct kobject *kobj,
258                                   struct kobj_attribute *attr,
259                                   char *buf)
260 {
261         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
262 }
263 static ssize_t max_ptes_none_store(struct kobject *kobj,
264                                    struct kobj_attribute *attr,
265                                    const char *buf, size_t count)
266 {
267         int err;
268         unsigned long max_ptes_none;
269
270         err = kstrtoul(buf, 10, &max_ptes_none);
271         if (err || max_ptes_none > HPAGE_PMD_NR - 1)
272                 return -EINVAL;
273
274         khugepaged_max_ptes_none = max_ptes_none;
275
276         return count;
277 }
278 static struct kobj_attribute khugepaged_max_ptes_none_attr =
279         __ATTR_RW(max_ptes_none);
280
281 static ssize_t max_ptes_swap_show(struct kobject *kobj,
282                                   struct kobj_attribute *attr,
283                                   char *buf)
284 {
285         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
286 }
287
288 static ssize_t max_ptes_swap_store(struct kobject *kobj,
289                                    struct kobj_attribute *attr,
290                                    const char *buf, size_t count)
291 {
292         int err;
293         unsigned long max_ptes_swap;
294
295         err  = kstrtoul(buf, 10, &max_ptes_swap);
296         if (err || max_ptes_swap > HPAGE_PMD_NR - 1)
297                 return -EINVAL;
298
299         khugepaged_max_ptes_swap = max_ptes_swap;
300
301         return count;
302 }
303
304 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
305         __ATTR_RW(max_ptes_swap);
306
307 static ssize_t max_ptes_shared_show(struct kobject *kobj,
308                                     struct kobj_attribute *attr,
309                                     char *buf)
310 {
311         return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
312 }
313
314 static ssize_t max_ptes_shared_store(struct kobject *kobj,
315                                      struct kobj_attribute *attr,
316                                      const char *buf, size_t count)
317 {
318         int err;
319         unsigned long max_ptes_shared;
320
321         err  = kstrtoul(buf, 10, &max_ptes_shared);
322         if (err || max_ptes_shared > HPAGE_PMD_NR - 1)
323                 return -EINVAL;
324
325         khugepaged_max_ptes_shared = max_ptes_shared;
326
327         return count;
328 }
329
330 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
331         __ATTR_RW(max_ptes_shared);
332
333 static struct attribute *khugepaged_attr[] = {
334         &khugepaged_defrag_attr.attr,
335         &khugepaged_max_ptes_none_attr.attr,
336         &khugepaged_max_ptes_swap_attr.attr,
337         &khugepaged_max_ptes_shared_attr.attr,
338         &pages_to_scan_attr.attr,
339         &pages_collapsed_attr.attr,
340         &full_scans_attr.attr,
341         &scan_sleep_millisecs_attr.attr,
342         &alloc_sleep_millisecs_attr.attr,
343         NULL,
344 };
345
346 struct attribute_group khugepaged_attr_group = {
347         .attrs = khugepaged_attr,
348         .name = "khugepaged",
349 };
350 #endif /* CONFIG_SYSFS */
351
352 int hugepage_madvise(struct vm_area_struct *vma,
353                      unsigned long *vm_flags, int advice)
354 {
355         switch (advice) {
356         case MADV_HUGEPAGE:
357 #ifdef CONFIG_S390
358                 /*
359                  * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
360                  * can't handle this properly after s390_enable_sie, so we simply
361                  * ignore the madvise to prevent qemu from causing a SIGSEGV.
362                  */
363                 if (mm_has_pgste(vma->vm_mm))
364                         return 0;
365 #endif
366                 *vm_flags &= ~VM_NOHUGEPAGE;
367                 *vm_flags |= VM_HUGEPAGE;
368                 /*
369                  * If the vma become good for khugepaged to scan,
370                  * register it here without waiting a page fault that
371                  * may not happen any time soon.
372                  */
373                 khugepaged_enter_vma(vma, *vm_flags);
374                 break;
375         case MADV_NOHUGEPAGE:
376                 *vm_flags &= ~VM_HUGEPAGE;
377                 *vm_flags |= VM_NOHUGEPAGE;
378                 /*
379                  * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
380                  * this vma even if we leave the mm registered in khugepaged if
381                  * it got registered before VM_NOHUGEPAGE was set.
382                  */
383                 break;
384         }
385
386         return 0;
387 }
388
389 int __init khugepaged_init(void)
390 {
391         mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
392                                           sizeof(struct khugepaged_mm_slot),
393                                           __alignof__(struct khugepaged_mm_slot),
394                                           0, NULL);
395         if (!mm_slot_cache)
396                 return -ENOMEM;
397
398         khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
399         khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
400         khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
401         khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
402
403         return 0;
404 }
405
406 void __init khugepaged_destroy(void)
407 {
408         kmem_cache_destroy(mm_slot_cache);
409 }
410
411 static inline int hpage_collapse_test_exit(struct mm_struct *mm)
412 {
413         return atomic_read(&mm->mm_users) == 0;
414 }
415
416 void __khugepaged_enter(struct mm_struct *mm)
417 {
418         struct khugepaged_mm_slot *mm_slot;
419         struct mm_slot *slot;
420         int wakeup;
421
422         mm_slot = mm_slot_alloc(mm_slot_cache);
423         if (!mm_slot)
424                 return;
425
426         slot = &mm_slot->slot;
427
428         /* __khugepaged_exit() must not run from under us */
429         VM_BUG_ON_MM(hpage_collapse_test_exit(mm), mm);
430         if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
431                 mm_slot_free(mm_slot_cache, mm_slot);
432                 return;
433         }
434
435         spin_lock(&khugepaged_mm_lock);
436         mm_slot_insert(mm_slots_hash, mm, slot);
437         /*
438          * Insert just behind the scanning cursor, to let the area settle
439          * down a little.
440          */
441         wakeup = list_empty(&khugepaged_scan.mm_head);
442         list_add_tail(&slot->mm_node, &khugepaged_scan.mm_head);
443         spin_unlock(&khugepaged_mm_lock);
444
445         mmgrab(mm);
446         if (wakeup)
447                 wake_up_interruptible(&khugepaged_wait);
448 }
449
450 void khugepaged_enter_vma(struct vm_area_struct *vma,
451                           unsigned long vm_flags)
452 {
453         if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
454             hugepage_flags_enabled()) {
455                 if (hugepage_vma_check(vma, vm_flags, false, false, true))
456                         __khugepaged_enter(vma->vm_mm);
457         }
458 }
459
460 void __khugepaged_exit(struct mm_struct *mm)
461 {
462         struct khugepaged_mm_slot *mm_slot;
463         struct mm_slot *slot;
464         int free = 0;
465
466         spin_lock(&khugepaged_mm_lock);
467         slot = mm_slot_lookup(mm_slots_hash, mm);
468         mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
469         if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
470                 hash_del(&slot->hash);
471                 list_del(&slot->mm_node);
472                 free = 1;
473         }
474         spin_unlock(&khugepaged_mm_lock);
475
476         if (free) {
477                 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
478                 mm_slot_free(mm_slot_cache, mm_slot);
479                 mmdrop(mm);
480         } else if (mm_slot) {
481                 /*
482                  * This is required to serialize against
483                  * hpage_collapse_test_exit() (which is guaranteed to run
484                  * under mmap sem read mode). Stop here (after we return all
485                  * pagetables will be destroyed) until khugepaged has finished
486                  * working on the pagetables under the mmap_lock.
487                  */
488                 mmap_write_lock(mm);
489                 mmap_write_unlock(mm);
490         }
491 }
492
493 static void release_pte_page(struct page *page)
494 {
495         mod_node_page_state(page_pgdat(page),
496                         NR_ISOLATED_ANON + page_is_file_lru(page),
497                         -compound_nr(page));
498         unlock_page(page);
499         putback_lru_page(page);
500 }
501
502 static void release_pte_pages(pte_t *pte, pte_t *_pte,
503                 struct list_head *compound_pagelist)
504 {
505         struct page *page, *tmp;
506
507         while (--_pte >= pte) {
508                 pte_t pteval = *_pte;
509
510                 page = pte_page(pteval);
511                 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
512                                 !PageCompound(page))
513                         release_pte_page(page);
514         }
515
516         list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
517                 list_del(&page->lru);
518                 release_pte_page(page);
519         }
520 }
521
522 static bool is_refcount_suitable(struct page *page)
523 {
524         int expected_refcount;
525
526         expected_refcount = total_mapcount(page);
527         if (PageSwapCache(page))
528                 expected_refcount += compound_nr(page);
529
530         return page_count(page) == expected_refcount;
531 }
532
533 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
534                                         unsigned long address,
535                                         pte_t *pte,
536                                         struct collapse_control *cc,
537                                         struct list_head *compound_pagelist)
538 {
539         struct page *page = NULL;
540         pte_t *_pte;
541         int none_or_zero = 0, shared = 0, result = SCAN_FAIL, referenced = 0;
542         bool writable = false;
543
544         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
545              _pte++, address += PAGE_SIZE) {
546                 pte_t pteval = *_pte;
547                 if (pte_none(pteval) || (pte_present(pteval) &&
548                                 is_zero_pfn(pte_pfn(pteval)))) {
549                         ++none_or_zero;
550                         if (!userfaultfd_armed(vma) &&
551                             (!cc->is_khugepaged ||
552                              none_or_zero <= khugepaged_max_ptes_none)) {
553                                 continue;
554                         } else {
555                                 result = SCAN_EXCEED_NONE_PTE;
556                                 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
557                                 goto out;
558                         }
559                 }
560                 if (!pte_present(pteval)) {
561                         result = SCAN_PTE_NON_PRESENT;
562                         goto out;
563                 }
564                 page = vm_normal_page(vma, address, pteval);
565                 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
566                         result = SCAN_PAGE_NULL;
567                         goto out;
568                 }
569
570                 VM_BUG_ON_PAGE(!PageAnon(page), page);
571
572                 if (page_mapcount(page) > 1) {
573                         ++shared;
574                         if (cc->is_khugepaged &&
575                             shared > khugepaged_max_ptes_shared) {
576                                 result = SCAN_EXCEED_SHARED_PTE;
577                                 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
578                                 goto out;
579                         }
580                 }
581
582                 if (PageCompound(page)) {
583                         struct page *p;
584                         page = compound_head(page);
585
586                         /*
587                          * Check if we have dealt with the compound page
588                          * already
589                          */
590                         list_for_each_entry(p, compound_pagelist, lru) {
591                                 if (page == p)
592                                         goto next;
593                         }
594                 }
595
596                 /*
597                  * We can do it before isolate_lru_page because the
598                  * page can't be freed from under us. NOTE: PG_lock
599                  * is needed to serialize against split_huge_page
600                  * when invoked from the VM.
601                  */
602                 if (!trylock_page(page)) {
603                         result = SCAN_PAGE_LOCK;
604                         goto out;
605                 }
606
607                 /*
608                  * Check if the page has any GUP (or other external) pins.
609                  *
610                  * The page table that maps the page has been already unlinked
611                  * from the page table tree and this process cannot get
612                  * an additional pin on the page.
613                  *
614                  * New pins can come later if the page is shared across fork,
615                  * but not from this process. The other process cannot write to
616                  * the page, only trigger CoW.
617                  */
618                 if (!is_refcount_suitable(page)) {
619                         unlock_page(page);
620                         result = SCAN_PAGE_COUNT;
621                         goto out;
622                 }
623
624                 /*
625                  * Isolate the page to avoid collapsing an hugepage
626                  * currently in use by the VM.
627                  */
628                 if (isolate_lru_page(page)) {
629                         unlock_page(page);
630                         result = SCAN_DEL_PAGE_LRU;
631                         goto out;
632                 }
633                 mod_node_page_state(page_pgdat(page),
634                                 NR_ISOLATED_ANON + page_is_file_lru(page),
635                                 compound_nr(page));
636                 VM_BUG_ON_PAGE(!PageLocked(page), page);
637                 VM_BUG_ON_PAGE(PageLRU(page), page);
638
639                 if (PageCompound(page))
640                         list_add_tail(&page->lru, compound_pagelist);
641 next:
642                 /*
643                  * If collapse was initiated by khugepaged, check that there is
644                  * enough young pte to justify collapsing the page
645                  */
646                 if (cc->is_khugepaged &&
647                     (pte_young(pteval) || page_is_young(page) ||
648                      PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
649                                                                      address)))
650                         referenced++;
651
652                 if (pte_write(pteval))
653                         writable = true;
654         }
655
656         if (unlikely(!writable)) {
657                 result = SCAN_PAGE_RO;
658         } else if (unlikely(cc->is_khugepaged && !referenced)) {
659                 result = SCAN_LACK_REFERENCED_PAGE;
660         } else {
661                 result = SCAN_SUCCEED;
662                 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
663                                                     referenced, writable, result);
664                 return result;
665         }
666 out:
667         release_pte_pages(pte, _pte, compound_pagelist);
668         trace_mm_collapse_huge_page_isolate(page, none_or_zero,
669                                             referenced, writable, result);
670         return result;
671 }
672
673 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
674                                       struct vm_area_struct *vma,
675                                       unsigned long address,
676                                       spinlock_t *ptl,
677                                       struct list_head *compound_pagelist)
678 {
679         struct page *src_page, *tmp;
680         pte_t *_pte;
681         for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
682                                 _pte++, page++, address += PAGE_SIZE) {
683                 pte_t pteval = *_pte;
684
685                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
686                         clear_user_highpage(page, address);
687                         add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
688                         if (is_zero_pfn(pte_pfn(pteval))) {
689                                 /*
690                                  * ptl mostly unnecessary.
691                                  */
692                                 spin_lock(ptl);
693                                 ptep_clear(vma->vm_mm, address, _pte);
694                                 spin_unlock(ptl);
695                         }
696                 } else {
697                         src_page = pte_page(pteval);
698                         copy_user_highpage(page, src_page, address, vma);
699                         if (!PageCompound(src_page))
700                                 release_pte_page(src_page);
701                         /*
702                          * ptl mostly unnecessary, but preempt has to
703                          * be disabled to update the per-cpu stats
704                          * inside page_remove_rmap().
705                          */
706                         spin_lock(ptl);
707                         ptep_clear(vma->vm_mm, address, _pte);
708                         page_remove_rmap(src_page, vma, false);
709                         spin_unlock(ptl);
710                         free_page_and_swap_cache(src_page);
711                 }
712         }
713
714         list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
715                 list_del(&src_page->lru);
716                 mod_node_page_state(page_pgdat(src_page),
717                                     NR_ISOLATED_ANON + page_is_file_lru(src_page),
718                                     -compound_nr(src_page));
719                 unlock_page(src_page);
720                 free_swap_cache(src_page);
721                 putback_lru_page(src_page);
722         }
723 }
724
725 static void khugepaged_alloc_sleep(void)
726 {
727         DEFINE_WAIT(wait);
728
729         add_wait_queue(&khugepaged_wait, &wait);
730         __set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE);
731         schedule_timeout(msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
732         remove_wait_queue(&khugepaged_wait, &wait);
733 }
734
735 struct collapse_control khugepaged_collapse_control = {
736         .is_khugepaged = true,
737 };
738
739 static bool hpage_collapse_scan_abort(int nid, struct collapse_control *cc)
740 {
741         int i;
742
743         /*
744          * If node_reclaim_mode is disabled, then no extra effort is made to
745          * allocate memory locally.
746          */
747         if (!node_reclaim_enabled())
748                 return false;
749
750         /* If there is a count for this node already, it must be acceptable */
751         if (cc->node_load[nid])
752                 return false;
753
754         for (i = 0; i < MAX_NUMNODES; i++) {
755                 if (!cc->node_load[i])
756                         continue;
757                 if (node_distance(nid, i) > node_reclaim_distance)
758                         return true;
759         }
760         return false;
761 }
762
763 #define khugepaged_defrag()                                     \
764         (transparent_hugepage_flags &                           \
765          (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG))
766
767 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
768 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
769 {
770         return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
771 }
772
773 #ifdef CONFIG_NUMA
774 static int hpage_collapse_find_target_node(struct collapse_control *cc)
775 {
776         int nid, target_node = 0, max_value = 0;
777
778         /* find first node with max normal pages hit */
779         for (nid = 0; nid < MAX_NUMNODES; nid++)
780                 if (cc->node_load[nid] > max_value) {
781                         max_value = cc->node_load[nid];
782                         target_node = nid;
783                 }
784
785         for_each_online_node(nid) {
786                 if (max_value == cc->node_load[nid])
787                         node_set(nid, cc->alloc_nmask);
788         }
789
790         return target_node;
791 }
792 #else
793 static int hpage_collapse_find_target_node(struct collapse_control *cc)
794 {
795         return 0;
796 }
797 #endif
798
799 static bool hpage_collapse_alloc_page(struct page **hpage, gfp_t gfp, int node,
800                                       nodemask_t *nmask)
801 {
802         *hpage = __alloc_pages(gfp, HPAGE_PMD_ORDER, node, nmask);
803         if (unlikely(!*hpage)) {
804                 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
805                 return false;
806         }
807
808         prep_transhuge_page(*hpage);
809         count_vm_event(THP_COLLAPSE_ALLOC);
810         return true;
811 }
812
813 /*
814  * If mmap_lock temporarily dropped, revalidate vma
815  * before taking mmap_lock.
816  * Returns enum scan_result value.
817  */
818
819 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
820                                    bool expect_anon,
821                                    struct vm_area_struct **vmap,
822                                    struct collapse_control *cc)
823 {
824         struct vm_area_struct *vma;
825
826         if (unlikely(hpage_collapse_test_exit(mm)))
827                 return SCAN_ANY_PROCESS;
828
829         *vmap = vma = find_vma(mm, address);
830         if (!vma)
831                 return SCAN_VMA_NULL;
832
833         if (!transhuge_vma_suitable(vma, address))
834                 return SCAN_ADDRESS_RANGE;
835         if (!hugepage_vma_check(vma, vma->vm_flags, false, false,
836                                 cc->is_khugepaged))
837                 return SCAN_VMA_CHECK;
838         /*
839          * Anon VMA expected, the address may be unmapped then
840          * remapped to file after khugepaged reaquired the mmap_lock.
841          *
842          * hugepage_vma_check may return true for qualified file
843          * vmas.
844          */
845         if (expect_anon && (!(*vmap)->anon_vma || !vma_is_anonymous(*vmap)))
846                 return SCAN_PAGE_ANON;
847         return SCAN_SUCCEED;
848 }
849
850 static int find_pmd_or_thp_or_none(struct mm_struct *mm,
851                                    unsigned long address,
852                                    pmd_t **pmd)
853 {
854         pmd_t pmde;
855
856         *pmd = mm_find_pmd(mm, address);
857         if (!*pmd)
858                 return SCAN_PMD_NULL;
859
860         pmde = pmdp_get_lockless(*pmd);
861
862 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
863         /* See comments in pmd_none_or_trans_huge_or_clear_bad() */
864         barrier();
865 #endif
866         if (pmd_none(pmde))
867                 return SCAN_PMD_NONE;
868         if (pmd_trans_huge(pmde))
869                 return SCAN_PMD_MAPPED;
870         if (pmd_bad(pmde))
871                 return SCAN_PMD_NULL;
872         return SCAN_SUCCEED;
873 }
874
875 static int check_pmd_still_valid(struct mm_struct *mm,
876                                  unsigned long address,
877                                  pmd_t *pmd)
878 {
879         pmd_t *new_pmd;
880         int result = find_pmd_or_thp_or_none(mm, address, &new_pmd);
881
882         if (result != SCAN_SUCCEED)
883                 return result;
884         if (new_pmd != pmd)
885                 return SCAN_FAIL;
886         return SCAN_SUCCEED;
887 }
888
889 /*
890  * Bring missing pages in from swap, to complete THP collapse.
891  * Only done if hpage_collapse_scan_pmd believes it is worthwhile.
892  *
893  * Called and returns without pte mapped or spinlocks held.
894  * Note that if false is returned, mmap_lock will be released.
895  */
896
897 static int __collapse_huge_page_swapin(struct mm_struct *mm,
898                                        struct vm_area_struct *vma,
899                                        unsigned long haddr, pmd_t *pmd,
900                                        int referenced)
901 {
902         int swapped_in = 0;
903         vm_fault_t ret = 0;
904         unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
905
906         for (address = haddr; address < end; address += PAGE_SIZE) {
907                 struct vm_fault vmf = {
908                         .vma = vma,
909                         .address = address,
910                         .pgoff = linear_page_index(vma, haddr),
911                         .flags = FAULT_FLAG_ALLOW_RETRY,
912                         .pmd = pmd,
913                 };
914
915                 vmf.pte = pte_offset_map(pmd, address);
916                 vmf.orig_pte = *vmf.pte;
917                 if (!is_swap_pte(vmf.orig_pte)) {
918                         pte_unmap(vmf.pte);
919                         continue;
920                 }
921                 ret = do_swap_page(&vmf);
922
923                 /*
924                  * do_swap_page returns VM_FAULT_RETRY with released mmap_lock.
925                  * Note we treat VM_FAULT_RETRY as VM_FAULT_ERROR here because
926                  * we do not retry here and swap entry will remain in pagetable
927                  * resulting in later failure.
928                  */
929                 if (ret & VM_FAULT_RETRY) {
930                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
931                         /* Likely, but not guaranteed, that page lock failed */
932                         return SCAN_PAGE_LOCK;
933                 }
934                 if (ret & VM_FAULT_ERROR) {
935                         mmap_read_unlock(mm);
936                         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
937                         return SCAN_FAIL;
938                 }
939                 swapped_in++;
940         }
941
942         /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
943         if (swapped_in)
944                 lru_add_drain();
945
946         trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
947         return SCAN_SUCCEED;
948 }
949
950 static int alloc_charge_hpage(struct page **hpage, struct mm_struct *mm,
951                               struct collapse_control *cc)
952 {
953         gfp_t gfp = (cc->is_khugepaged ? alloc_hugepage_khugepaged_gfpmask() :
954                      GFP_TRANSHUGE);
955         int node = hpage_collapse_find_target_node(cc);
956
957         if (!hpage_collapse_alloc_page(hpage, gfp, node, &cc->alloc_nmask))
958                 return SCAN_ALLOC_HUGE_PAGE_FAIL;
959         if (unlikely(mem_cgroup_charge(page_folio(*hpage), mm, gfp)))
960                 return SCAN_CGROUP_CHARGE_FAIL;
961         count_memcg_page_event(*hpage, THP_COLLAPSE_ALLOC);
962         return SCAN_SUCCEED;
963 }
964
965 static int collapse_huge_page(struct mm_struct *mm, unsigned long address,
966                               int referenced, int unmapped,
967                               struct collapse_control *cc)
968 {
969         LIST_HEAD(compound_pagelist);
970         pmd_t *pmd, _pmd;
971         pte_t *pte;
972         pgtable_t pgtable;
973         struct page *hpage;
974         spinlock_t *pmd_ptl, *pte_ptl;
975         int result = SCAN_FAIL;
976         struct vm_area_struct *vma;
977         struct mmu_notifier_range range;
978
979         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
980
981         /*
982          * Before allocating the hugepage, release the mmap_lock read lock.
983          * The allocation can take potentially a long time if it involves
984          * sync compaction, and we do not need to hold the mmap_lock during
985          * that. We will recheck the vma after taking it again in write mode.
986          */
987         mmap_read_unlock(mm);
988
989         result = alloc_charge_hpage(&hpage, mm, cc);
990         if (result != SCAN_SUCCEED)
991                 goto out_nolock;
992
993         mmap_read_lock(mm);
994         result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
995         if (result != SCAN_SUCCEED) {
996                 mmap_read_unlock(mm);
997                 goto out_nolock;
998         }
999
1000         result = find_pmd_or_thp_or_none(mm, address, &pmd);
1001         if (result != SCAN_SUCCEED) {
1002                 mmap_read_unlock(mm);
1003                 goto out_nolock;
1004         }
1005
1006         if (unmapped) {
1007                 /*
1008                  * __collapse_huge_page_swapin will return with mmap_lock
1009                  * released when it fails. So we jump out_nolock directly in
1010                  * that case.  Continuing to collapse causes inconsistency.
1011                  */
1012                 result = __collapse_huge_page_swapin(mm, vma, address, pmd,
1013                                                      referenced);
1014                 if (result != SCAN_SUCCEED)
1015                         goto out_nolock;
1016         }
1017
1018         mmap_read_unlock(mm);
1019         /*
1020          * Prevent all access to pagetables with the exception of
1021          * gup_fast later handled by the ptep_clear_flush and the VM
1022          * handled by the anon_vma lock + PG_lock.
1023          */
1024         mmap_write_lock(mm);
1025         result = hugepage_vma_revalidate(mm, address, true, &vma, cc);
1026         if (result != SCAN_SUCCEED)
1027                 goto out_up_write;
1028         /* check if the pmd is still valid */
1029         result = check_pmd_still_valid(mm, address, pmd);
1030         if (result != SCAN_SUCCEED)
1031                 goto out_up_write;
1032
1033         anon_vma_lock_write(vma->anon_vma);
1034
1035         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1036                                 address, address + HPAGE_PMD_SIZE);
1037         mmu_notifier_invalidate_range_start(&range);
1038
1039         pte = pte_offset_map(pmd, address);
1040         pte_ptl = pte_lockptr(mm, pmd);
1041
1042         pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1043         /*
1044          * This removes any huge TLB entry from the CPU so we won't allow
1045          * huge and small TLB entries for the same virtual address to
1046          * avoid the risk of CPU bugs in that area.
1047          *
1048          * Parallel fast GUP is fine since fast GUP will back off when
1049          * it detects PMD is changed.
1050          */
1051         _pmd = pmdp_collapse_flush(vma, address, pmd);
1052         spin_unlock(pmd_ptl);
1053         mmu_notifier_invalidate_range_end(&range);
1054         tlb_remove_table_sync_one();
1055
1056         spin_lock(pte_ptl);
1057         result =  __collapse_huge_page_isolate(vma, address, pte, cc,
1058                                                &compound_pagelist);
1059         spin_unlock(pte_ptl);
1060
1061         if (unlikely(result != SCAN_SUCCEED)) {
1062                 pte_unmap(pte);
1063                 spin_lock(pmd_ptl);
1064                 BUG_ON(!pmd_none(*pmd));
1065                 /*
1066                  * We can only use set_pmd_at when establishing
1067                  * hugepmds and never for establishing regular pmds that
1068                  * points to regular pagetables. Use pmd_populate for that
1069                  */
1070                 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1071                 spin_unlock(pmd_ptl);
1072                 anon_vma_unlock_write(vma->anon_vma);
1073                 goto out_up_write;
1074         }
1075
1076         /*
1077          * All pages are isolated and locked so anon_vma rmap
1078          * can't run anymore.
1079          */
1080         anon_vma_unlock_write(vma->anon_vma);
1081
1082         __collapse_huge_page_copy(pte, hpage, vma, address, pte_ptl,
1083                                   &compound_pagelist);
1084         pte_unmap(pte);
1085         /*
1086          * spin_lock() below is not the equivalent of smp_wmb(), but
1087          * the smp_wmb() inside __SetPageUptodate() can be reused to
1088          * avoid the copy_huge_page writes to become visible after
1089          * the set_pmd_at() write.
1090          */
1091         __SetPageUptodate(hpage);
1092         pgtable = pmd_pgtable(_pmd);
1093
1094         _pmd = mk_huge_pmd(hpage, vma->vm_page_prot);
1095         _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1096
1097         spin_lock(pmd_ptl);
1098         BUG_ON(!pmd_none(*pmd));
1099         page_add_new_anon_rmap(hpage, vma, address);
1100         lru_cache_add_inactive_or_unevictable(hpage, vma);
1101         pgtable_trans_huge_deposit(mm, pmd, pgtable);
1102         set_pmd_at(mm, address, pmd, _pmd);
1103         update_mmu_cache_pmd(vma, address, pmd);
1104         spin_unlock(pmd_ptl);
1105
1106         hpage = NULL;
1107
1108         result = SCAN_SUCCEED;
1109 out_up_write:
1110         mmap_write_unlock(mm);
1111 out_nolock:
1112         if (hpage) {
1113                 mem_cgroup_uncharge(page_folio(hpage));
1114                 put_page(hpage);
1115         }
1116         trace_mm_collapse_huge_page(mm, result == SCAN_SUCCEED, result);
1117         return result;
1118 }
1119
1120 static int hpage_collapse_scan_pmd(struct mm_struct *mm,
1121                                    struct vm_area_struct *vma,
1122                                    unsigned long address, bool *mmap_locked,
1123                                    struct collapse_control *cc)
1124 {
1125         pmd_t *pmd;
1126         pte_t *pte, *_pte;
1127         int result = SCAN_FAIL, referenced = 0;
1128         int none_or_zero = 0, shared = 0;
1129         struct page *page = NULL;
1130         unsigned long _address;
1131         spinlock_t *ptl;
1132         int node = NUMA_NO_NODE, unmapped = 0;
1133         bool writable = false;
1134
1135         VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1136
1137         result = find_pmd_or_thp_or_none(mm, address, &pmd);
1138         if (result != SCAN_SUCCEED)
1139                 goto out;
1140
1141         memset(cc->node_load, 0, sizeof(cc->node_load));
1142         nodes_clear(cc->alloc_nmask);
1143         pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1144         for (_address = address, _pte = pte; _pte < pte + HPAGE_PMD_NR;
1145              _pte++, _address += PAGE_SIZE) {
1146                 pte_t pteval = *_pte;
1147                 if (is_swap_pte(pteval)) {
1148                         ++unmapped;
1149                         if (!cc->is_khugepaged ||
1150                             unmapped <= khugepaged_max_ptes_swap) {
1151                                 /*
1152                                  * Always be strict with uffd-wp
1153                                  * enabled swap entries.  Please see
1154                                  * comment below for pte_uffd_wp().
1155                                  */
1156                                 if (pte_swp_uffd_wp(pteval)) {
1157                                         result = SCAN_PTE_UFFD_WP;
1158                                         goto out_unmap;
1159                                 }
1160                                 continue;
1161                         } else {
1162                                 result = SCAN_EXCEED_SWAP_PTE;
1163                                 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1164                                 goto out_unmap;
1165                         }
1166                 }
1167                 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1168                         ++none_or_zero;
1169                         if (!userfaultfd_armed(vma) &&
1170                             (!cc->is_khugepaged ||
1171                              none_or_zero <= khugepaged_max_ptes_none)) {
1172                                 continue;
1173                         } else {
1174                                 result = SCAN_EXCEED_NONE_PTE;
1175                                 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1176                                 goto out_unmap;
1177                         }
1178                 }
1179                 if (pte_uffd_wp(pteval)) {
1180                         /*
1181                          * Don't collapse the page if any of the small
1182                          * PTEs are armed with uffd write protection.
1183                          * Here we can also mark the new huge pmd as
1184                          * write protected if any of the small ones is
1185                          * marked but that could bring unknown
1186                          * userfault messages that falls outside of
1187                          * the registered range.  So, just be simple.
1188                          */
1189                         result = SCAN_PTE_UFFD_WP;
1190                         goto out_unmap;
1191                 }
1192                 if (pte_write(pteval))
1193                         writable = true;
1194
1195                 page = vm_normal_page(vma, _address, pteval);
1196                 if (unlikely(!page) || unlikely(is_zone_device_page(page))) {
1197                         result = SCAN_PAGE_NULL;
1198                         goto out_unmap;
1199                 }
1200
1201                 if (page_mapcount(page) > 1) {
1202                         ++shared;
1203                         if (cc->is_khugepaged &&
1204                             shared > khugepaged_max_ptes_shared) {
1205                                 result = SCAN_EXCEED_SHARED_PTE;
1206                                 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1207                                 goto out_unmap;
1208                         }
1209                 }
1210
1211                 page = compound_head(page);
1212
1213                 /*
1214                  * Record which node the original page is from and save this
1215                  * information to cc->node_load[].
1216                  * Khugepaged will allocate hugepage from the node has the max
1217                  * hit record.
1218                  */
1219                 node = page_to_nid(page);
1220                 if (hpage_collapse_scan_abort(node, cc)) {
1221                         result = SCAN_SCAN_ABORT;
1222                         goto out_unmap;
1223                 }
1224                 cc->node_load[node]++;
1225                 if (!PageLRU(page)) {
1226                         result = SCAN_PAGE_LRU;
1227                         goto out_unmap;
1228                 }
1229                 if (PageLocked(page)) {
1230                         result = SCAN_PAGE_LOCK;
1231                         goto out_unmap;
1232                 }
1233                 if (!PageAnon(page)) {
1234                         result = SCAN_PAGE_ANON;
1235                         goto out_unmap;
1236                 }
1237
1238                 /*
1239                  * Check if the page has any GUP (or other external) pins.
1240                  *
1241                  * Here the check may be racy:
1242                  * it may see total_mapcount > refcount in some cases?
1243                  * But such case is ephemeral we could always retry collapse
1244                  * later.  However it may report false positive if the page
1245                  * has excessive GUP pins (i.e. 512).  Anyway the same check
1246                  * will be done again later the risk seems low.
1247                  */
1248                 if (!is_refcount_suitable(page)) {
1249                         result = SCAN_PAGE_COUNT;
1250                         goto out_unmap;
1251                 }
1252
1253                 /*
1254                  * If collapse was initiated by khugepaged, check that there is
1255                  * enough young pte to justify collapsing the page
1256                  */
1257                 if (cc->is_khugepaged &&
1258                     (pte_young(pteval) || page_is_young(page) ||
1259                      PageReferenced(page) || mmu_notifier_test_young(vma->vm_mm,
1260                                                                      address)))
1261                         referenced++;
1262         }
1263         if (!writable) {
1264                 result = SCAN_PAGE_RO;
1265         } else if (cc->is_khugepaged &&
1266                    (!referenced ||
1267                     (unmapped && referenced < HPAGE_PMD_NR / 2))) {
1268                 result = SCAN_LACK_REFERENCED_PAGE;
1269         } else {
1270                 result = SCAN_SUCCEED;
1271         }
1272 out_unmap:
1273         pte_unmap_unlock(pte, ptl);
1274         if (result == SCAN_SUCCEED) {
1275                 result = collapse_huge_page(mm, address, referenced,
1276                                             unmapped, cc);
1277                 /* collapse_huge_page will return with the mmap_lock released */
1278                 *mmap_locked = false;
1279         }
1280 out:
1281         trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1282                                      none_or_zero, result, unmapped);
1283         return result;
1284 }
1285
1286 static void collect_mm_slot(struct khugepaged_mm_slot *mm_slot)
1287 {
1288         struct mm_slot *slot = &mm_slot->slot;
1289         struct mm_struct *mm = slot->mm;
1290
1291         lockdep_assert_held(&khugepaged_mm_lock);
1292
1293         if (hpage_collapse_test_exit(mm)) {
1294                 /* free mm_slot */
1295                 hash_del(&slot->hash);
1296                 list_del(&slot->mm_node);
1297
1298                 /*
1299                  * Not strictly needed because the mm exited already.
1300                  *
1301                  * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1302                  */
1303
1304                 /* khugepaged_mm_lock actually not necessary for the below */
1305                 mm_slot_free(mm_slot_cache, mm_slot);
1306                 mmdrop(mm);
1307         }
1308 }
1309
1310 #ifdef CONFIG_SHMEM
1311 /*
1312  * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1313  * khugepaged should try to collapse the page table.
1314  *
1315  * Note that following race exists:
1316  * (1) khugepaged calls khugepaged_collapse_pte_mapped_thps() for mm_struct A,
1317  *     emptying the A's ->pte_mapped_thp[] array.
1318  * (2) MADV_COLLAPSE collapses some file extent with target mm_struct B, and
1319  *     retract_page_tables() finds a VMA in mm_struct A mapping the same extent
1320  *     (at virtual address X) and adds an entry (for X) into mm_struct A's
1321  *     ->pte-mapped_thp[] array.
1322  * (3) khugepaged calls khugepaged_collapse_scan_file() for mm_struct A at X,
1323  *     sees a pte-mapped THP (SCAN_PTE_MAPPED_HUGEPAGE) and adds an entry
1324  *     (for X) into mm_struct A's ->pte-mapped_thp[] array.
1325  * Thus, it's possible the same address is added multiple times for the same
1326  * mm_struct.  Should this happen, we'll simply attempt
1327  * collapse_pte_mapped_thp() multiple times for the same address, under the same
1328  * exclusive mmap_lock, and assuming the first call is successful, subsequent
1329  * attempts will return quickly (without grabbing any additional locks) when
1330  * a huge pmd is found in find_pmd_or_thp_or_none().  Since this is a cheap
1331  * check, and since this is a rare occurrence, the cost of preventing this
1332  * "multiple-add" is thought to be more expensive than just handling it, should
1333  * it occur.
1334  */
1335 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1336                                           unsigned long addr)
1337 {
1338         struct khugepaged_mm_slot *mm_slot;
1339         struct mm_slot *slot;
1340         bool ret = false;
1341
1342         VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1343
1344         spin_lock(&khugepaged_mm_lock);
1345         slot = mm_slot_lookup(mm_slots_hash, mm);
1346         mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
1347         if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP)) {
1348                 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1349                 ret = true;
1350         }
1351         spin_unlock(&khugepaged_mm_lock);
1352         return ret;
1353 }
1354
1355 /* hpage must be locked, and mmap_lock must be held in write */
1356 static int set_huge_pmd(struct vm_area_struct *vma, unsigned long addr,
1357                         pmd_t *pmdp, struct page *hpage)
1358 {
1359         struct vm_fault vmf = {
1360                 .vma = vma,
1361                 .address = addr,
1362                 .flags = 0,
1363                 .pmd = pmdp,
1364         };
1365
1366         VM_BUG_ON(!PageTransHuge(hpage));
1367         mmap_assert_write_locked(vma->vm_mm);
1368
1369         if (do_set_pmd(&vmf, hpage))
1370                 return SCAN_FAIL;
1371
1372         get_page(hpage);
1373         return SCAN_SUCCEED;
1374 }
1375
1376 /*
1377  * A note about locking:
1378  * Trying to take the page table spinlocks would be useless here because those
1379  * are only used to synchronize:
1380  *
1381  *  - modifying terminal entries (ones that point to a data page, not to another
1382  *    page table)
1383  *  - installing *new* non-terminal entries
1384  *
1385  * Instead, we need roughly the same kind of protection as free_pgtables() or
1386  * mm_take_all_locks() (but only for a single VMA):
1387  * The mmap lock together with this VMA's rmap locks covers all paths towards
1388  * the page table entries we're messing with here, except for hardware page
1389  * table walks and lockless_pages_from_mm().
1390  */
1391 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1392                                   unsigned long addr, pmd_t *pmdp)
1393 {
1394         pmd_t pmd;
1395         struct mmu_notifier_range range;
1396
1397         mmap_assert_write_locked(mm);
1398         if (vma->vm_file)
1399                 lockdep_assert_held_write(&vma->vm_file->f_mapping->i_mmap_rwsem);
1400         /*
1401          * All anon_vmas attached to the VMA have the same root and are
1402          * therefore locked by the same lock.
1403          */
1404         if (vma->anon_vma)
1405                 lockdep_assert_held_write(&vma->anon_vma->root->rwsem);
1406
1407         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm, addr,
1408                                 addr + HPAGE_PMD_SIZE);
1409         mmu_notifier_invalidate_range_start(&range);
1410         pmd = pmdp_collapse_flush(vma, addr, pmdp);
1411         tlb_remove_table_sync_one();
1412         mmu_notifier_invalidate_range_end(&range);
1413         mm_dec_nr_ptes(mm);
1414         page_table_check_pte_clear_range(mm, addr, pmd);
1415         pte_free(mm, pmd_pgtable(pmd));
1416 }
1417
1418 /**
1419  * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1420  * address haddr.
1421  *
1422  * @mm: process address space where collapse happens
1423  * @addr: THP collapse address
1424  * @install_pmd: If a huge PMD should be installed
1425  *
1426  * This function checks whether all the PTEs in the PMD are pointing to the
1427  * right THP. If so, retract the page table so the THP can refault in with
1428  * as pmd-mapped. Possibly install a huge PMD mapping the THP.
1429  */
1430 int collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr,
1431                             bool install_pmd)
1432 {
1433         unsigned long haddr = addr & HPAGE_PMD_MASK;
1434         struct vm_area_struct *vma = vma_lookup(mm, haddr);
1435         struct page *hpage;
1436         pte_t *start_pte, *pte;
1437         pmd_t *pmd;
1438         spinlock_t *ptl;
1439         int count = 0, result = SCAN_FAIL;
1440         int i;
1441
1442         mmap_assert_write_locked(mm);
1443
1444         /* Fast check before locking page if already PMD-mapped */
1445         result = find_pmd_or_thp_or_none(mm, haddr, &pmd);
1446         if (result == SCAN_PMD_MAPPED)
1447                 return result;
1448
1449         if (!vma || !vma->vm_file ||
1450             !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1451                 return SCAN_VMA_CHECK;
1452
1453         /*
1454          * If we are here, we've succeeded in replacing all the native pages
1455          * in the page cache with a single hugepage. If a mm were to fault-in
1456          * this memory (mapped by a suitably aligned VMA), we'd get the hugepage
1457          * and map it by a PMD, regardless of sysfs THP settings. As such, let's
1458          * analogously elide sysfs THP settings here.
1459          */
1460         if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
1461                 return SCAN_VMA_CHECK;
1462
1463         /*
1464          * Symmetry with retract_page_tables(): Exclude MAP_PRIVATE mappings
1465          * that got written to. Without this, we'd have to also lock the
1466          * anon_vma if one exists.
1467          */
1468         if (vma->anon_vma)
1469                 return SCAN_VMA_CHECK;
1470
1471         /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1472         if (userfaultfd_wp(vma))
1473                 return SCAN_PTE_UFFD_WP;
1474
1475         hpage = find_lock_page(vma->vm_file->f_mapping,
1476                                linear_page_index(vma, haddr));
1477         if (!hpage)
1478                 return SCAN_PAGE_NULL;
1479
1480         if (!PageHead(hpage)) {
1481                 result = SCAN_FAIL;
1482                 goto drop_hpage;
1483         }
1484
1485         if (compound_order(hpage) != HPAGE_PMD_ORDER) {
1486                 result = SCAN_PAGE_COMPOUND;
1487                 goto drop_hpage;
1488         }
1489
1490         switch (result) {
1491         case SCAN_SUCCEED:
1492                 break;
1493         case SCAN_PMD_NONE:
1494                 /*
1495                  * In MADV_COLLAPSE path, possible race with khugepaged where
1496                  * all pte entries have been removed and pmd cleared.  If so,
1497                  * skip all the pte checks and just update the pmd mapping.
1498                  */
1499                 goto maybe_install_pmd;
1500         default:
1501                 goto drop_hpage;
1502         }
1503
1504         /*
1505          * We need to lock the mapping so that from here on, only GUP-fast and
1506          * hardware page walks can access the parts of the page tables that
1507          * we're operating on.
1508          * See collapse_and_free_pmd().
1509          */
1510         i_mmap_lock_write(vma->vm_file->f_mapping);
1511
1512         /*
1513          * This spinlock should be unnecessary: Nobody else should be accessing
1514          * the page tables under spinlock protection here, only
1515          * lockless_pages_from_mm() and the hardware page walker can access page
1516          * tables while all the high-level locks are held in write mode.
1517          */
1518         start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1519         result = SCAN_FAIL;
1520
1521         /* step 1: check all mapped PTEs are to the right huge page */
1522         for (i = 0, addr = haddr, pte = start_pte;
1523              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1524                 struct page *page;
1525
1526                 /* empty pte, skip */
1527                 if (pte_none(*pte))
1528                         continue;
1529
1530                 /* page swapped out, abort */
1531                 if (!pte_present(*pte)) {
1532                         result = SCAN_PTE_NON_PRESENT;
1533                         goto abort;
1534                 }
1535
1536                 page = vm_normal_page(vma, addr, *pte);
1537                 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1538                         page = NULL;
1539                 /*
1540                  * Note that uprobe, debugger, or MAP_PRIVATE may change the
1541                  * page table, but the new page will not be a subpage of hpage.
1542                  */
1543                 if (hpage + i != page)
1544                         goto abort;
1545                 count++;
1546         }
1547
1548         /* step 2: adjust rmap */
1549         for (i = 0, addr = haddr, pte = start_pte;
1550              i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1551                 struct page *page;
1552
1553                 if (pte_none(*pte))
1554                         continue;
1555                 page = vm_normal_page(vma, addr, *pte);
1556                 if (WARN_ON_ONCE(page && is_zone_device_page(page)))
1557                         goto abort;
1558                 page_remove_rmap(page, vma, false);
1559         }
1560
1561         pte_unmap_unlock(start_pte, ptl);
1562
1563         /* step 3: set proper refcount and mm_counters. */
1564         if (count) {
1565                 page_ref_sub(hpage, count);
1566                 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1567         }
1568
1569         /* step 4: remove pte entries */
1570         collapse_and_free_pmd(mm, vma, haddr, pmd);
1571
1572         i_mmap_unlock_write(vma->vm_file->f_mapping);
1573
1574 maybe_install_pmd:
1575         /* step 5: install pmd entry */
1576         result = install_pmd
1577                         ? set_huge_pmd(vma, haddr, pmd, hpage)
1578                         : SCAN_SUCCEED;
1579
1580 drop_hpage:
1581         unlock_page(hpage);
1582         put_page(hpage);
1583         return result;
1584
1585 abort:
1586         pte_unmap_unlock(start_pte, ptl);
1587         i_mmap_unlock_write(vma->vm_file->f_mapping);
1588         goto drop_hpage;
1589 }
1590
1591 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
1592 {
1593         struct mm_slot *slot = &mm_slot->slot;
1594         struct mm_struct *mm = slot->mm;
1595         int i;
1596
1597         if (likely(mm_slot->nr_pte_mapped_thp == 0))
1598                 return;
1599
1600         if (!mmap_write_trylock(mm))
1601                 return;
1602
1603         if (unlikely(hpage_collapse_test_exit(mm)))
1604                 goto out;
1605
1606         for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1607                 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i], false);
1608
1609 out:
1610         mm_slot->nr_pte_mapped_thp = 0;
1611         mmap_write_unlock(mm);
1612 }
1613
1614 static int retract_page_tables(struct address_space *mapping, pgoff_t pgoff,
1615                                struct mm_struct *target_mm,
1616                                unsigned long target_addr, struct page *hpage,
1617                                struct collapse_control *cc)
1618 {
1619         struct vm_area_struct *vma;
1620         int target_result = SCAN_FAIL;
1621
1622         i_mmap_lock_write(mapping);
1623         vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1624                 int result = SCAN_FAIL;
1625                 struct mm_struct *mm = NULL;
1626                 unsigned long addr = 0;
1627                 pmd_t *pmd;
1628                 bool is_target = false;
1629
1630                 /*
1631                  * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1632                  * got written to. These VMAs are likely not worth investing
1633                  * mmap_write_lock(mm) as PMD-mapping is likely to be split
1634                  * later.
1635                  *
1636                  * Note that vma->anon_vma check is racy: it can be set up after
1637                  * the check but before we took mmap_lock by the fault path.
1638                  * But page lock would prevent establishing any new ptes of the
1639                  * page, so we are safe.
1640                  *
1641                  * An alternative would be drop the check, but check that page
1642                  * table is clear before calling pmdp_collapse_flush() under
1643                  * ptl. It has higher chance to recover THP for the VMA, but
1644                  * has higher cost too. It would also probably require locking
1645                  * the anon_vma.
1646                  */
1647                 if (vma->anon_vma) {
1648                         result = SCAN_PAGE_ANON;
1649                         goto next;
1650                 }
1651                 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1652                 if (addr & ~HPAGE_PMD_MASK ||
1653                     vma->vm_end < addr + HPAGE_PMD_SIZE) {
1654                         result = SCAN_VMA_CHECK;
1655                         goto next;
1656                 }
1657                 mm = vma->vm_mm;
1658                 is_target = mm == target_mm && addr == target_addr;
1659                 result = find_pmd_or_thp_or_none(mm, addr, &pmd);
1660                 if (result != SCAN_SUCCEED)
1661                         goto next;
1662                 /*
1663                  * We need exclusive mmap_lock to retract page table.
1664                  *
1665                  * We use trylock due to lock inversion: we need to acquire
1666                  * mmap_lock while holding page lock. Fault path does it in
1667                  * reverse order. Trylock is a way to avoid deadlock.
1668                  *
1669                  * Also, it's not MADV_COLLAPSE's job to collapse other
1670                  * mappings - let khugepaged take care of them later.
1671                  */
1672                 result = SCAN_PTE_MAPPED_HUGEPAGE;
1673                 if ((cc->is_khugepaged || is_target) &&
1674                     mmap_write_trylock(mm)) {
1675                         /*
1676                          * When a vma is registered with uffd-wp, we can't
1677                          * recycle the pmd pgtable because there can be pte
1678                          * markers installed.  Skip it only, so the rest mm/vma
1679                          * can still have the same file mapped hugely, however
1680                          * it'll always mapped in small page size for uffd-wp
1681                          * registered ranges.
1682                          */
1683                         if (hpage_collapse_test_exit(mm)) {
1684                                 result = SCAN_ANY_PROCESS;
1685                                 goto unlock_next;
1686                         }
1687                         if (userfaultfd_wp(vma)) {
1688                                 result = SCAN_PTE_UFFD_WP;
1689                                 goto unlock_next;
1690                         }
1691                         collapse_and_free_pmd(mm, vma, addr, pmd);
1692                         if (!cc->is_khugepaged && is_target)
1693                                 result = set_huge_pmd(vma, addr, pmd, hpage);
1694                         else
1695                                 result = SCAN_SUCCEED;
1696
1697 unlock_next:
1698                         mmap_write_unlock(mm);
1699                         goto next;
1700                 }
1701                 /*
1702                  * Calling context will handle target mm/addr. Otherwise, let
1703                  * khugepaged try again later.
1704                  */
1705                 if (!is_target) {
1706                         khugepaged_add_pte_mapped_thp(mm, addr);
1707                         continue;
1708                 }
1709 next:
1710                 if (is_target)
1711                         target_result = result;
1712         }
1713         i_mmap_unlock_write(mapping);
1714         return target_result;
1715 }
1716
1717 /**
1718  * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1719  *
1720  * @mm: process address space where collapse happens
1721  * @addr: virtual collapse start address
1722  * @file: file that collapse on
1723  * @start: collapse start address
1724  * @cc: collapse context and scratchpad
1725  *
1726  * Basic scheme is simple, details are more complex:
1727  *  - allocate and lock a new huge page;
1728  *  - scan page cache replacing old pages with the new one
1729  *    + swap/gup in pages if necessary;
1730  *    + fill in gaps;
1731  *    + keep old pages around in case rollback is required;
1732  *  - if replacing succeeds:
1733  *    + copy data over;
1734  *    + free old pages;
1735  *    + unlock huge page;
1736  *  - if replacing failed;
1737  *    + put all pages back and unfreeze them;
1738  *    + restore gaps in the page cache;
1739  *    + unlock and free huge page;
1740  */
1741 static int collapse_file(struct mm_struct *mm, unsigned long addr,
1742                          struct file *file, pgoff_t start,
1743                          struct collapse_control *cc)
1744 {
1745         struct address_space *mapping = file->f_mapping;
1746         struct page *hpage;
1747         pgoff_t index = 0, end = start + HPAGE_PMD_NR;
1748         LIST_HEAD(pagelist);
1749         XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1750         int nr_none = 0, result = SCAN_SUCCEED;
1751         bool is_shmem = shmem_file(file);
1752         int nr = 0;
1753
1754         VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1755         VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1756
1757         result = alloc_charge_hpage(&hpage, mm, cc);
1758         if (result != SCAN_SUCCEED)
1759                 goto out;
1760
1761         /*
1762          * Ensure we have slots for all the pages in the range.  This is
1763          * almost certainly a no-op because most of the pages must be present
1764          */
1765         do {
1766                 xas_lock_irq(&xas);
1767                 xas_create_range(&xas);
1768                 if (!xas_error(&xas))
1769                         break;
1770                 xas_unlock_irq(&xas);
1771                 if (!xas_nomem(&xas, GFP_KERNEL)) {
1772                         result = SCAN_FAIL;
1773                         goto out;
1774                 }
1775         } while (1);
1776
1777         __SetPageLocked(hpage);
1778         if (is_shmem)
1779                 __SetPageSwapBacked(hpage);
1780         hpage->index = start;
1781         hpage->mapping = mapping;
1782
1783         /*
1784          * At this point the hpage is locked and not up-to-date.
1785          * It's safe to insert it into the page cache, because nobody would
1786          * be able to map it or use it in another way until we unlock it.
1787          */
1788
1789         xas_set(&xas, start);
1790         for (index = start; index < end; index++) {
1791                 struct page *page = xas_next(&xas);
1792                 struct folio *folio;
1793
1794                 VM_BUG_ON(index != xas.xa_index);
1795                 if (is_shmem) {
1796                         if (!page) {
1797                                 /*
1798                                  * Stop if extent has been truncated or
1799                                  * hole-punched, and is now completely
1800                                  * empty.
1801                                  */
1802                                 if (index == start) {
1803                                         if (!xas_next_entry(&xas, end - 1)) {
1804                                                 result = SCAN_TRUNCATED;
1805                                                 goto xa_locked;
1806                                         }
1807                                         xas_set(&xas, index);
1808                                 }
1809                                 if (!shmem_charge(mapping->host, 1)) {
1810                                         result = SCAN_FAIL;
1811                                         goto xa_locked;
1812                                 }
1813                                 xas_store(&xas, hpage);
1814                                 nr_none++;
1815                                 continue;
1816                         }
1817
1818                         if (xa_is_value(page) || !PageUptodate(page)) {
1819                                 xas_unlock_irq(&xas);
1820                                 /* swap in or instantiate fallocated page */
1821                                 if (shmem_get_folio(mapping->host, index,
1822                                                 &folio, SGP_NOALLOC)) {
1823                                         result = SCAN_FAIL;
1824                                         goto xa_unlocked;
1825                                 }
1826                                 page = folio_file_page(folio, index);
1827                         } else if (trylock_page(page)) {
1828                                 get_page(page);
1829                                 xas_unlock_irq(&xas);
1830                         } else {
1831                                 result = SCAN_PAGE_LOCK;
1832                                 goto xa_locked;
1833                         }
1834                 } else {        /* !is_shmem */
1835                         if (!page || xa_is_value(page)) {
1836                                 xas_unlock_irq(&xas);
1837                                 page_cache_sync_readahead(mapping, &file->f_ra,
1838                                                           file, index,
1839                                                           end - index);
1840                                 /* drain pagevecs to help isolate_lru_page() */
1841                                 lru_add_drain();
1842                                 page = find_lock_page(mapping, index);
1843                                 if (unlikely(page == NULL)) {
1844                                         result = SCAN_FAIL;
1845                                         goto xa_unlocked;
1846                                 }
1847                         } else if (PageDirty(page)) {
1848                                 /*
1849                                  * khugepaged only works on read-only fd,
1850                                  * so this page is dirty because it hasn't
1851                                  * been flushed since first write. There
1852                                  * won't be new dirty pages.
1853                                  *
1854                                  * Trigger async flush here and hope the
1855                                  * writeback is done when khugepaged
1856                                  * revisits this page.
1857                                  *
1858                                  * This is a one-off situation. We are not
1859                                  * forcing writeback in loop.
1860                                  */
1861                                 xas_unlock_irq(&xas);
1862                                 filemap_flush(mapping);
1863                                 result = SCAN_FAIL;
1864                                 goto xa_unlocked;
1865                         } else if (PageWriteback(page)) {
1866                                 xas_unlock_irq(&xas);
1867                                 result = SCAN_FAIL;
1868                                 goto xa_unlocked;
1869                         } else if (trylock_page(page)) {
1870                                 get_page(page);
1871                                 xas_unlock_irq(&xas);
1872                         } else {
1873                                 result = SCAN_PAGE_LOCK;
1874                                 goto xa_locked;
1875                         }
1876                 }
1877
1878                 /*
1879                  * The page must be locked, so we can drop the i_pages lock
1880                  * without racing with truncate.
1881                  */
1882                 VM_BUG_ON_PAGE(!PageLocked(page), page);
1883
1884                 /* make sure the page is up to date */
1885                 if (unlikely(!PageUptodate(page))) {
1886                         result = SCAN_FAIL;
1887                         goto out_unlock;
1888                 }
1889
1890                 /*
1891                  * If file was truncated then extended, or hole-punched, before
1892                  * we locked the first page, then a THP might be there already.
1893                  * This will be discovered on the first iteration.
1894                  */
1895                 if (PageTransCompound(page)) {
1896                         struct page *head = compound_head(page);
1897
1898                         result = compound_order(head) == HPAGE_PMD_ORDER &&
1899                                         head->index == start
1900                                         /* Maybe PMD-mapped */
1901                                         ? SCAN_PTE_MAPPED_HUGEPAGE
1902                                         : SCAN_PAGE_COMPOUND;
1903                         goto out_unlock;
1904                 }
1905
1906                 folio = page_folio(page);
1907
1908                 if (folio_mapping(folio) != mapping) {
1909                         result = SCAN_TRUNCATED;
1910                         goto out_unlock;
1911                 }
1912
1913                 if (!is_shmem && (folio_test_dirty(folio) ||
1914                                   folio_test_writeback(folio))) {
1915                         /*
1916                          * khugepaged only works on read-only fd, so this
1917                          * page is dirty because it hasn't been flushed
1918                          * since first write.
1919                          */
1920                         result = SCAN_FAIL;
1921                         goto out_unlock;
1922                 }
1923
1924                 if (folio_isolate_lru(folio)) {
1925                         result = SCAN_DEL_PAGE_LRU;
1926                         goto out_unlock;
1927                 }
1928
1929                 if (folio_has_private(folio) &&
1930                     !filemap_release_folio(folio, GFP_KERNEL)) {
1931                         result = SCAN_PAGE_HAS_PRIVATE;
1932                         folio_putback_lru(folio);
1933                         goto out_unlock;
1934                 }
1935
1936                 if (folio_mapped(folio))
1937                         try_to_unmap(folio,
1938                                         TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1939
1940                 xas_lock_irq(&xas);
1941                 xas_set(&xas, index);
1942
1943                 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1944
1945                 /*
1946                  * The page is expected to have page_count() == 3:
1947                  *  - we hold a pin on it;
1948                  *  - one reference from page cache;
1949                  *  - one from isolate_lru_page;
1950                  */
1951                 if (!page_ref_freeze(page, 3)) {
1952                         result = SCAN_PAGE_COUNT;
1953                         xas_unlock_irq(&xas);
1954                         putback_lru_page(page);
1955                         goto out_unlock;
1956                 }
1957
1958                 /*
1959                  * Add the page to the list to be able to undo the collapse if
1960                  * something go wrong.
1961                  */
1962                 list_add_tail(&page->lru, &pagelist);
1963
1964                 /* Finally, replace with the new page. */
1965                 xas_store(&xas, hpage);
1966                 continue;
1967 out_unlock:
1968                 unlock_page(page);
1969                 put_page(page);
1970                 goto xa_unlocked;
1971         }
1972         nr = thp_nr_pages(hpage);
1973
1974         if (is_shmem)
1975                 __mod_lruvec_page_state(hpage, NR_SHMEM_THPS, nr);
1976         else {
1977                 __mod_lruvec_page_state(hpage, NR_FILE_THPS, nr);
1978                 filemap_nr_thps_inc(mapping);
1979                 /*
1980                  * Paired with smp_mb() in do_dentry_open() to ensure
1981                  * i_writecount is up to date and the update to nr_thps is
1982                  * visible. Ensures the page cache will be truncated if the
1983                  * file is opened writable.
1984                  */
1985                 smp_mb();
1986                 if (inode_is_open_for_write(mapping->host)) {
1987                         result = SCAN_FAIL;
1988                         __mod_lruvec_page_state(hpage, NR_FILE_THPS, -nr);
1989                         filemap_nr_thps_dec(mapping);
1990                         goto xa_locked;
1991                 }
1992         }
1993
1994         if (nr_none) {
1995                 __mod_lruvec_page_state(hpage, NR_FILE_PAGES, nr_none);
1996                 /* nr_none is always 0 for non-shmem. */
1997                 __mod_lruvec_page_state(hpage, NR_SHMEM, nr_none);
1998         }
1999
2000         /* Join all the small entries into a single multi-index entry */
2001         xas_set_order(&xas, start, HPAGE_PMD_ORDER);
2002         xas_store(&xas, hpage);
2003 xa_locked:
2004         xas_unlock_irq(&xas);
2005 xa_unlocked:
2006
2007         /*
2008          * If collapse is successful, flush must be done now before copying.
2009          * If collapse is unsuccessful, does flush actually need to be done?
2010          * Do it anyway, to clear the state.
2011          */
2012         try_to_unmap_flush();
2013
2014         if (result == SCAN_SUCCEED) {
2015                 struct page *page, *tmp;
2016                 struct folio *folio;
2017
2018                 /*
2019                  * Replacing old pages with new one has succeeded, now we
2020                  * need to copy the content and free the old pages.
2021                  */
2022                 index = start;
2023                 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
2024                         while (index < page->index) {
2025                                 clear_highpage(hpage + (index % HPAGE_PMD_NR));
2026                                 index++;
2027                         }
2028                         copy_highpage(hpage + (page->index % HPAGE_PMD_NR),
2029                                       page);
2030                         list_del(&page->lru);
2031                         page->mapping = NULL;
2032                         page_ref_unfreeze(page, 1);
2033                         ClearPageActive(page);
2034                         ClearPageUnevictable(page);
2035                         unlock_page(page);
2036                         put_page(page);
2037                         index++;
2038                 }
2039                 while (index < end) {
2040                         clear_highpage(hpage + (index % HPAGE_PMD_NR));
2041                         index++;
2042                 }
2043
2044                 folio = page_folio(hpage);
2045                 folio_mark_uptodate(folio);
2046                 folio_ref_add(folio, HPAGE_PMD_NR - 1);
2047
2048                 if (is_shmem)
2049                         folio_mark_dirty(folio);
2050                 folio_add_lru(folio);
2051
2052                 /*
2053                  * Remove pte page tables, so we can re-fault the page as huge.
2054                  */
2055                 result = retract_page_tables(mapping, start, mm, addr, hpage,
2056                                              cc);
2057                 unlock_page(hpage);
2058                 hpage = NULL;
2059         } else {
2060                 struct page *page;
2061
2062                 /* Something went wrong: roll back page cache changes */
2063                 xas_lock_irq(&xas);
2064                 if (nr_none) {
2065                         mapping->nrpages -= nr_none;
2066                         shmem_uncharge(mapping->host, nr_none);
2067                 }
2068
2069                 xas_set(&xas, start);
2070                 xas_for_each(&xas, page, end - 1) {
2071                         page = list_first_entry_or_null(&pagelist,
2072                                         struct page, lru);
2073                         if (!page || xas.xa_index < page->index) {
2074                                 if (!nr_none)
2075                                         break;
2076                                 nr_none--;
2077                                 /* Put holes back where they were */
2078                                 xas_store(&xas, NULL);
2079                                 continue;
2080                         }
2081
2082                         VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
2083
2084                         /* Unfreeze the page. */
2085                         list_del(&page->lru);
2086                         page_ref_unfreeze(page, 2);
2087                         xas_store(&xas, page);
2088                         xas_pause(&xas);
2089                         xas_unlock_irq(&xas);
2090                         unlock_page(page);
2091                         putback_lru_page(page);
2092                         xas_lock_irq(&xas);
2093                 }
2094                 VM_BUG_ON(nr_none);
2095                 xas_unlock_irq(&xas);
2096
2097                 hpage->mapping = NULL;
2098         }
2099
2100         if (hpage)
2101                 unlock_page(hpage);
2102 out:
2103         VM_BUG_ON(!list_empty(&pagelist));
2104         if (hpage) {
2105                 mem_cgroup_uncharge(page_folio(hpage));
2106                 put_page(hpage);
2107         }
2108
2109         trace_mm_khugepaged_collapse_file(mm, hpage, index, is_shmem, addr, file, nr, result);
2110         return result;
2111 }
2112
2113 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2114                                     struct file *file, pgoff_t start,
2115                                     struct collapse_control *cc)
2116 {
2117         struct page *page = NULL;
2118         struct address_space *mapping = file->f_mapping;
2119         XA_STATE(xas, &mapping->i_pages, start);
2120         int present, swap;
2121         int node = NUMA_NO_NODE;
2122         int result = SCAN_SUCCEED;
2123
2124         present = 0;
2125         swap = 0;
2126         memset(cc->node_load, 0, sizeof(cc->node_load));
2127         nodes_clear(cc->alloc_nmask);
2128         rcu_read_lock();
2129         xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2130                 if (xas_retry(&xas, page))
2131                         continue;
2132
2133                 if (xa_is_value(page)) {
2134                         ++swap;
2135                         if (cc->is_khugepaged &&
2136                             swap > khugepaged_max_ptes_swap) {
2137                                 result = SCAN_EXCEED_SWAP_PTE;
2138                                 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2139                                 break;
2140                         }
2141                         continue;
2142                 }
2143
2144                 /*
2145                  * TODO: khugepaged should compact smaller compound pages
2146                  * into a PMD sized page
2147                  */
2148                 if (PageTransCompound(page)) {
2149                         struct page *head = compound_head(page);
2150
2151                         result = compound_order(head) == HPAGE_PMD_ORDER &&
2152                                         head->index == start
2153                                         /* Maybe PMD-mapped */
2154                                         ? SCAN_PTE_MAPPED_HUGEPAGE
2155                                         : SCAN_PAGE_COMPOUND;
2156                         /*
2157                          * For SCAN_PTE_MAPPED_HUGEPAGE, further processing
2158                          * by the caller won't touch the page cache, and so
2159                          * it's safe to skip LRU and refcount checks before
2160                          * returning.
2161                          */
2162                         break;
2163                 }
2164
2165                 node = page_to_nid(page);
2166                 if (hpage_collapse_scan_abort(node, cc)) {
2167                         result = SCAN_SCAN_ABORT;
2168                         break;
2169                 }
2170                 cc->node_load[node]++;
2171
2172                 if (!PageLRU(page)) {
2173                         result = SCAN_PAGE_LRU;
2174                         break;
2175                 }
2176
2177                 if (page_count(page) !=
2178                     1 + page_mapcount(page) + page_has_private(page)) {
2179                         result = SCAN_PAGE_COUNT;
2180                         break;
2181                 }
2182
2183                 /*
2184                  * We probably should check if the page is referenced here, but
2185                  * nobody would transfer pte_young() to PageReferenced() for us.
2186                  * And rmap walk here is just too costly...
2187                  */
2188
2189                 present++;
2190
2191                 if (need_resched()) {
2192                         xas_pause(&xas);
2193                         cond_resched_rcu();
2194                 }
2195         }
2196         rcu_read_unlock();
2197
2198         if (result == SCAN_SUCCEED) {
2199                 if (cc->is_khugepaged &&
2200                     present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2201                         result = SCAN_EXCEED_NONE_PTE;
2202                         count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2203                 } else {
2204                         result = collapse_file(mm, addr, file, start, cc);
2205                 }
2206         }
2207
2208         trace_mm_khugepaged_scan_file(mm, page, file, present, swap, result);
2209         return result;
2210 }
2211 #else
2212 static int hpage_collapse_scan_file(struct mm_struct *mm, unsigned long addr,
2213                                     struct file *file, pgoff_t start,
2214                                     struct collapse_control *cc)
2215 {
2216         BUILD_BUG();
2217 }
2218
2219 static void khugepaged_collapse_pte_mapped_thps(struct khugepaged_mm_slot *mm_slot)
2220 {
2221 }
2222
2223 static bool khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
2224                                           unsigned long addr)
2225 {
2226         return false;
2227 }
2228 #endif
2229
2230 static unsigned int khugepaged_scan_mm_slot(unsigned int pages, int *result,
2231                                             struct collapse_control *cc)
2232         __releases(&khugepaged_mm_lock)
2233         __acquires(&khugepaged_mm_lock)
2234 {
2235         struct vma_iterator vmi;
2236         struct khugepaged_mm_slot *mm_slot;
2237         struct mm_slot *slot;
2238         struct mm_struct *mm;
2239         struct vm_area_struct *vma;
2240         int progress = 0;
2241
2242         VM_BUG_ON(!pages);
2243         lockdep_assert_held(&khugepaged_mm_lock);
2244         *result = SCAN_FAIL;
2245
2246         if (khugepaged_scan.mm_slot) {
2247                 mm_slot = khugepaged_scan.mm_slot;
2248                 slot = &mm_slot->slot;
2249         } else {
2250                 slot = list_entry(khugepaged_scan.mm_head.next,
2251                                      struct mm_slot, mm_node);
2252                 mm_slot = mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2253                 khugepaged_scan.address = 0;
2254                 khugepaged_scan.mm_slot = mm_slot;
2255         }
2256         spin_unlock(&khugepaged_mm_lock);
2257         khugepaged_collapse_pte_mapped_thps(mm_slot);
2258
2259         mm = slot->mm;
2260         /*
2261          * Don't wait for semaphore (to avoid long wait times).  Just move to
2262          * the next mm on the list.
2263          */
2264         vma = NULL;
2265         if (unlikely(!mmap_read_trylock(mm)))
2266                 goto breakouterloop_mmap_lock;
2267
2268         progress++;
2269         if (unlikely(hpage_collapse_test_exit(mm)))
2270                 goto breakouterloop;
2271
2272         vma_iter_init(&vmi, mm, khugepaged_scan.address);
2273         for_each_vma(vmi, vma) {
2274                 unsigned long hstart, hend;
2275
2276                 cond_resched();
2277                 if (unlikely(hpage_collapse_test_exit(mm))) {
2278                         progress++;
2279                         break;
2280                 }
2281                 if (!hugepage_vma_check(vma, vma->vm_flags, false, false, true)) {
2282 skip:
2283                         progress++;
2284                         continue;
2285                 }
2286                 hstart = round_up(vma->vm_start, HPAGE_PMD_SIZE);
2287                 hend = round_down(vma->vm_end, HPAGE_PMD_SIZE);
2288                 if (khugepaged_scan.address > hend)
2289                         goto skip;
2290                 if (khugepaged_scan.address < hstart)
2291                         khugepaged_scan.address = hstart;
2292                 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2293
2294                 while (khugepaged_scan.address < hend) {
2295                         bool mmap_locked = true;
2296
2297                         cond_resched();
2298                         if (unlikely(hpage_collapse_test_exit(mm)))
2299                                 goto breakouterloop;
2300
2301                         VM_BUG_ON(khugepaged_scan.address < hstart ||
2302                                   khugepaged_scan.address + HPAGE_PMD_SIZE >
2303                                   hend);
2304                         if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2305                                 struct file *file = get_file(vma->vm_file);
2306                                 pgoff_t pgoff = linear_page_index(vma,
2307                                                 khugepaged_scan.address);
2308
2309                                 mmap_read_unlock(mm);
2310                                 *result = hpage_collapse_scan_file(mm,
2311                                                                    khugepaged_scan.address,
2312                                                                    file, pgoff, cc);
2313                                 mmap_locked = false;
2314                                 fput(file);
2315                         } else {
2316                                 *result = hpage_collapse_scan_pmd(mm, vma,
2317                                                                   khugepaged_scan.address,
2318                                                                   &mmap_locked,
2319                                                                   cc);
2320                         }
2321                         switch (*result) {
2322                         case SCAN_PTE_MAPPED_HUGEPAGE: {
2323                                 pmd_t *pmd;
2324
2325                                 *result = find_pmd_or_thp_or_none(mm,
2326                                                                   khugepaged_scan.address,
2327                                                                   &pmd);
2328                                 if (*result != SCAN_SUCCEED)
2329                                         break;
2330                                 if (!khugepaged_add_pte_mapped_thp(mm,
2331                                                                    khugepaged_scan.address))
2332                                         break;
2333                         } fallthrough;
2334                         case SCAN_SUCCEED:
2335                                 ++khugepaged_pages_collapsed;
2336                                 break;
2337                         default:
2338                                 break;
2339                         }
2340
2341                         /* move to next address */
2342                         khugepaged_scan.address += HPAGE_PMD_SIZE;
2343                         progress += HPAGE_PMD_NR;
2344                         if (!mmap_locked)
2345                                 /*
2346                                  * We released mmap_lock so break loop.  Note
2347                                  * that we drop mmap_lock before all hugepage
2348                                  * allocations, so if allocation fails, we are
2349                                  * guaranteed to break here and report the
2350                                  * correct result back to caller.
2351                                  */
2352                                 goto breakouterloop_mmap_lock;
2353                         if (progress >= pages)
2354                                 goto breakouterloop;
2355                 }
2356         }
2357 breakouterloop:
2358         mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2359 breakouterloop_mmap_lock:
2360
2361         spin_lock(&khugepaged_mm_lock);
2362         VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2363         /*
2364          * Release the current mm_slot if this mm is about to die, or
2365          * if we scanned all vmas of this mm.
2366          */
2367         if (hpage_collapse_test_exit(mm) || !vma) {
2368                 /*
2369                  * Make sure that if mm_users is reaching zero while
2370                  * khugepaged runs here, khugepaged_exit will find
2371                  * mm_slot not pointing to the exiting mm.
2372                  */
2373                 if (slot->mm_node.next != &khugepaged_scan.mm_head) {
2374                         slot = list_entry(slot->mm_node.next,
2375                                           struct mm_slot, mm_node);
2376                         khugepaged_scan.mm_slot =
2377                                 mm_slot_entry(slot, struct khugepaged_mm_slot, slot);
2378                         khugepaged_scan.address = 0;
2379                 } else {
2380                         khugepaged_scan.mm_slot = NULL;
2381                         khugepaged_full_scans++;
2382                 }
2383
2384                 collect_mm_slot(mm_slot);
2385         }
2386
2387         return progress;
2388 }
2389
2390 static int khugepaged_has_work(void)
2391 {
2392         return !list_empty(&khugepaged_scan.mm_head) &&
2393                 hugepage_flags_enabled();
2394 }
2395
2396 static int khugepaged_wait_event(void)
2397 {
2398         return !list_empty(&khugepaged_scan.mm_head) ||
2399                 kthread_should_stop();
2400 }
2401
2402 static void khugepaged_do_scan(struct collapse_control *cc)
2403 {
2404         unsigned int progress = 0, pass_through_head = 0;
2405         unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2406         bool wait = true;
2407         int result = SCAN_SUCCEED;
2408
2409         lru_add_drain_all();
2410
2411         while (true) {
2412                 cond_resched();
2413
2414                 if (unlikely(kthread_should_stop() || try_to_freeze()))
2415                         break;
2416
2417                 spin_lock(&khugepaged_mm_lock);
2418                 if (!khugepaged_scan.mm_slot)
2419                         pass_through_head++;
2420                 if (khugepaged_has_work() &&
2421                     pass_through_head < 2)
2422                         progress += khugepaged_scan_mm_slot(pages - progress,
2423                                                             &result, cc);
2424                 else
2425                         progress = pages;
2426                 spin_unlock(&khugepaged_mm_lock);
2427
2428                 if (progress >= pages)
2429                         break;
2430
2431                 if (result == SCAN_ALLOC_HUGE_PAGE_FAIL) {
2432                         /*
2433                          * If fail to allocate the first time, try to sleep for
2434                          * a while.  When hit again, cancel the scan.
2435                          */
2436                         if (!wait)
2437                                 break;
2438                         wait = false;
2439                         khugepaged_alloc_sleep();
2440                 }
2441         }
2442 }
2443
2444 static bool khugepaged_should_wakeup(void)
2445 {
2446         return kthread_should_stop() ||
2447                time_after_eq(jiffies, khugepaged_sleep_expire);
2448 }
2449
2450 static void khugepaged_wait_work(void)
2451 {
2452         if (khugepaged_has_work()) {
2453                 const unsigned long scan_sleep_jiffies =
2454                         msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2455
2456                 if (!scan_sleep_jiffies)
2457                         return;
2458
2459                 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2460                 wait_event_freezable_timeout(khugepaged_wait,
2461                                              khugepaged_should_wakeup(),
2462                                              scan_sleep_jiffies);
2463                 return;
2464         }
2465
2466         if (hugepage_flags_enabled())
2467                 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2468 }
2469
2470 static int khugepaged(void *none)
2471 {
2472         struct khugepaged_mm_slot *mm_slot;
2473
2474         set_freezable();
2475         set_user_nice(current, MAX_NICE);
2476
2477         while (!kthread_should_stop()) {
2478                 khugepaged_do_scan(&khugepaged_collapse_control);
2479                 khugepaged_wait_work();
2480         }
2481
2482         spin_lock(&khugepaged_mm_lock);
2483         mm_slot = khugepaged_scan.mm_slot;
2484         khugepaged_scan.mm_slot = NULL;
2485         if (mm_slot)
2486                 collect_mm_slot(mm_slot);
2487         spin_unlock(&khugepaged_mm_lock);
2488         return 0;
2489 }
2490
2491 static void set_recommended_min_free_kbytes(void)
2492 {
2493         struct zone *zone;
2494         int nr_zones = 0;
2495         unsigned long recommended_min;
2496
2497         if (!hugepage_flags_enabled()) {
2498                 calculate_min_free_kbytes();
2499                 goto update_wmarks;
2500         }
2501
2502         for_each_populated_zone(zone) {
2503                 /*
2504                  * We don't need to worry about fragmentation of
2505                  * ZONE_MOVABLE since it only has movable pages.
2506                  */
2507                 if (zone_idx(zone) > gfp_zone(GFP_USER))
2508                         continue;
2509
2510                 nr_zones++;
2511         }
2512
2513         /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2514         recommended_min = pageblock_nr_pages * nr_zones * 2;
2515
2516         /*
2517          * Make sure that on average at least two pageblocks are almost free
2518          * of another type, one for a migratetype to fall back to and a
2519          * second to avoid subsequent fallbacks of other types There are 3
2520          * MIGRATE_TYPES we care about.
2521          */
2522         recommended_min += pageblock_nr_pages * nr_zones *
2523                            MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2524
2525         /* don't ever allow to reserve more than 5% of the lowmem */
2526         recommended_min = min(recommended_min,
2527                               (unsigned long) nr_free_buffer_pages() / 20);
2528         recommended_min <<= (PAGE_SHIFT-10);
2529
2530         if (recommended_min > min_free_kbytes) {
2531                 if (user_min_free_kbytes >= 0)
2532                         pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2533                                 min_free_kbytes, recommended_min);
2534
2535                 min_free_kbytes = recommended_min;
2536         }
2537
2538 update_wmarks:
2539         setup_per_zone_wmarks();
2540 }
2541
2542 int start_stop_khugepaged(void)
2543 {
2544         int err = 0;
2545
2546         mutex_lock(&khugepaged_mutex);
2547         if (hugepage_flags_enabled()) {
2548                 if (!khugepaged_thread)
2549                         khugepaged_thread = kthread_run(khugepaged, NULL,
2550                                                         "khugepaged");
2551                 if (IS_ERR(khugepaged_thread)) {
2552                         pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2553                         err = PTR_ERR(khugepaged_thread);
2554                         khugepaged_thread = NULL;
2555                         goto fail;
2556                 }
2557
2558                 if (!list_empty(&khugepaged_scan.mm_head))
2559                         wake_up_interruptible(&khugepaged_wait);
2560         } else if (khugepaged_thread) {
2561                 kthread_stop(khugepaged_thread);
2562                 khugepaged_thread = NULL;
2563         }
2564         set_recommended_min_free_kbytes();
2565 fail:
2566         mutex_unlock(&khugepaged_mutex);
2567         return err;
2568 }
2569
2570 void khugepaged_min_free_kbytes_update(void)
2571 {
2572         mutex_lock(&khugepaged_mutex);
2573         if (hugepage_flags_enabled() && khugepaged_thread)
2574                 set_recommended_min_free_kbytes();
2575         mutex_unlock(&khugepaged_mutex);
2576 }
2577
2578 bool current_is_khugepaged(void)
2579 {
2580         return kthread_func(current) == khugepaged;
2581 }
2582
2583 static int madvise_collapse_errno(enum scan_result r)
2584 {
2585         /*
2586          * MADV_COLLAPSE breaks from existing madvise(2) conventions to provide
2587          * actionable feedback to caller, so they may take an appropriate
2588          * fallback measure depending on the nature of the failure.
2589          */
2590         switch (r) {
2591         case SCAN_ALLOC_HUGE_PAGE_FAIL:
2592                 return -ENOMEM;
2593         case SCAN_CGROUP_CHARGE_FAIL:
2594                 return -EBUSY;
2595         /* Resource temporary unavailable - trying again might succeed */
2596         case SCAN_PAGE_LOCK:
2597         case SCAN_PAGE_LRU:
2598         case SCAN_DEL_PAGE_LRU:
2599                 return -EAGAIN;
2600         /*
2601          * Other: Trying again likely not to succeed / error intrinsic to
2602          * specified memory range. khugepaged likely won't be able to collapse
2603          * either.
2604          */
2605         default:
2606                 return -EINVAL;
2607         }
2608 }
2609
2610 int madvise_collapse(struct vm_area_struct *vma, struct vm_area_struct **prev,
2611                      unsigned long start, unsigned long end)
2612 {
2613         struct collapse_control *cc;
2614         struct mm_struct *mm = vma->vm_mm;
2615         unsigned long hstart, hend, addr;
2616         int thps = 0, last_fail = SCAN_FAIL;
2617         bool mmap_locked = true;
2618
2619         BUG_ON(vma->vm_start > start);
2620         BUG_ON(vma->vm_end < end);
2621
2622         *prev = vma;
2623
2624         if (!hugepage_vma_check(vma, vma->vm_flags, false, false, false))
2625                 return -EINVAL;
2626
2627         cc = kmalloc(sizeof(*cc), GFP_KERNEL);
2628         if (!cc)
2629                 return -ENOMEM;
2630         cc->is_khugepaged = false;
2631
2632         mmgrab(mm);
2633         lru_add_drain_all();
2634
2635         hstart = (start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2636         hend = end & HPAGE_PMD_MASK;
2637
2638         for (addr = hstart; addr < hend; addr += HPAGE_PMD_SIZE) {
2639                 int result = SCAN_FAIL;
2640
2641                 if (!mmap_locked) {
2642                         cond_resched();
2643                         mmap_read_lock(mm);
2644                         mmap_locked = true;
2645                         result = hugepage_vma_revalidate(mm, addr, false, &vma,
2646                                                          cc);
2647                         if (result  != SCAN_SUCCEED) {
2648                                 last_fail = result;
2649                                 goto out_nolock;
2650                         }
2651
2652                         hend = vma->vm_end & HPAGE_PMD_MASK;
2653                 }
2654                 mmap_assert_locked(mm);
2655                 memset(cc->node_load, 0, sizeof(cc->node_load));
2656                 nodes_clear(cc->alloc_nmask);
2657                 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2658                         struct file *file = get_file(vma->vm_file);
2659                         pgoff_t pgoff = linear_page_index(vma, addr);
2660
2661                         mmap_read_unlock(mm);
2662                         mmap_locked = false;
2663                         result = hpage_collapse_scan_file(mm, addr, file, pgoff,
2664                                                           cc);
2665                         fput(file);
2666                 } else {
2667                         result = hpage_collapse_scan_pmd(mm, vma, addr,
2668                                                          &mmap_locked, cc);
2669                 }
2670                 if (!mmap_locked)
2671                         *prev = NULL;  /* Tell caller we dropped mmap_lock */
2672
2673 handle_result:
2674                 switch (result) {
2675                 case SCAN_SUCCEED:
2676                 case SCAN_PMD_MAPPED:
2677                         ++thps;
2678                         break;
2679                 case SCAN_PTE_MAPPED_HUGEPAGE:
2680                         BUG_ON(mmap_locked);
2681                         BUG_ON(*prev);
2682                         mmap_write_lock(mm);
2683                         result = collapse_pte_mapped_thp(mm, addr, true);
2684                         mmap_write_unlock(mm);
2685                         goto handle_result;
2686                 /* Whitelisted set of results where continuing OK */
2687                 case SCAN_PMD_NULL:
2688                 case SCAN_PTE_NON_PRESENT:
2689                 case SCAN_PTE_UFFD_WP:
2690                 case SCAN_PAGE_RO:
2691                 case SCAN_LACK_REFERENCED_PAGE:
2692                 case SCAN_PAGE_NULL:
2693                 case SCAN_PAGE_COUNT:
2694                 case SCAN_PAGE_LOCK:
2695                 case SCAN_PAGE_COMPOUND:
2696                 case SCAN_PAGE_LRU:
2697                 case SCAN_DEL_PAGE_LRU:
2698                         last_fail = result;
2699                         break;
2700                 default:
2701                         last_fail = result;
2702                         /* Other error, exit */
2703                         goto out_maybelock;
2704                 }
2705         }
2706
2707 out_maybelock:
2708         /* Caller expects us to hold mmap_lock on return */
2709         if (!mmap_locked)
2710                 mmap_read_lock(mm);
2711 out_nolock:
2712         mmap_assert_locked(mm);
2713         mmdrop(mm);
2714         kfree(cc);
2715
2716         return thps == ((hend - hstart) >> HPAGE_PMD_SHIFT) ? 0
2717                         : madvise_collapse_errno(last_fail);
2718 }