1 // SPDX-License-Identifier: GPL-2.0
2 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
5 #include <linux/sched.h>
6 #include <linux/sched/mm.h>
7 #include <linux/sched/coredump.h>
8 #include <linux/mmu_notifier.h>
9 #include <linux/rmap.h>
10 #include <linux/swap.h>
11 #include <linux/mm_inline.h>
12 #include <linux/kthread.h>
13 #include <linux/khugepaged.h>
14 #include <linux/freezer.h>
15 #include <linux/mman.h>
16 #include <linux/hashtable.h>
17 #include <linux/userfaultfd_k.h>
18 #include <linux/page_idle.h>
19 #include <linux/page_table_check.h>
20 #include <linux/swapops.h>
21 #include <linux/shmem_fs.h>
24 #include <asm/pgalloc.h>
33 SCAN_EXCEED_SHARED_PTE,
37 SCAN_LACK_REFERENCED_PAGE,
50 SCAN_ALLOC_HUGE_PAGE_FAIL,
51 SCAN_CGROUP_CHARGE_FAIL,
53 SCAN_PAGE_HAS_PRIVATE,
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/huge_memory.h>
59 static struct task_struct *khugepaged_thread __read_mostly;
60 static DEFINE_MUTEX(khugepaged_mutex);
62 /* default scan 8*512 pte (or vmas) every 30 second */
63 static unsigned int khugepaged_pages_to_scan __read_mostly;
64 static unsigned int khugepaged_pages_collapsed;
65 static unsigned int khugepaged_full_scans;
66 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
67 /* during fragmentation poll the hugepage allocator once every minute */
68 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
69 static unsigned long khugepaged_sleep_expire;
70 static DEFINE_SPINLOCK(khugepaged_mm_lock);
71 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
73 * default collapse hugepages if there is at least one pte mapped like
74 * it would have happened if the vma was large enough during page
77 static unsigned int khugepaged_max_ptes_none __read_mostly;
78 static unsigned int khugepaged_max_ptes_swap __read_mostly;
79 static unsigned int khugepaged_max_ptes_shared __read_mostly;
81 #define MM_SLOTS_HASH_BITS 10
82 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
84 static struct kmem_cache *mm_slot_cache __read_mostly;
86 #define MAX_PTE_MAPPED_THP 8
89 * struct mm_slot - hash lookup from mm to mm_slot
90 * @hash: hash collision list
91 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
92 * @mm: the mm that this information is valid for
93 * @nr_pte_mapped_thp: number of pte mapped THP
94 * @pte_mapped_thp: address array corresponding pte mapped THP
97 struct hlist_node hash;
98 struct list_head mm_node;
101 /* pte-mapped THP in this mm */
102 int nr_pte_mapped_thp;
103 unsigned long pte_mapped_thp[MAX_PTE_MAPPED_THP];
107 * struct khugepaged_scan - cursor for scanning
108 * @mm_head: the head of the mm list to scan
109 * @mm_slot: the current mm_slot we are scanning
110 * @address: the next address inside that to be scanned
112 * There is only the one khugepaged_scan instance of this cursor structure.
114 struct khugepaged_scan {
115 struct list_head mm_head;
116 struct mm_slot *mm_slot;
117 unsigned long address;
120 static struct khugepaged_scan khugepaged_scan = {
121 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
125 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
126 struct kobj_attribute *attr,
129 return sysfs_emit(buf, "%u\n", khugepaged_scan_sleep_millisecs);
132 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
133 struct kobj_attribute *attr,
134 const char *buf, size_t count)
139 err = kstrtouint(buf, 10, &msecs);
143 khugepaged_scan_sleep_millisecs = msecs;
144 khugepaged_sleep_expire = 0;
145 wake_up_interruptible(&khugepaged_wait);
149 static struct kobj_attribute scan_sleep_millisecs_attr =
150 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
151 scan_sleep_millisecs_store);
153 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
154 struct kobj_attribute *attr,
157 return sysfs_emit(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
160 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 const char *buf, size_t count)
167 err = kstrtouint(buf, 10, &msecs);
171 khugepaged_alloc_sleep_millisecs = msecs;
172 khugepaged_sleep_expire = 0;
173 wake_up_interruptible(&khugepaged_wait);
177 static struct kobj_attribute alloc_sleep_millisecs_attr =
178 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
179 alloc_sleep_millisecs_store);
181 static ssize_t pages_to_scan_show(struct kobject *kobj,
182 struct kobj_attribute *attr,
185 return sysfs_emit(buf, "%u\n", khugepaged_pages_to_scan);
187 static ssize_t pages_to_scan_store(struct kobject *kobj,
188 struct kobj_attribute *attr,
189 const char *buf, size_t count)
194 err = kstrtouint(buf, 10, &pages);
198 khugepaged_pages_to_scan = pages;
202 static struct kobj_attribute pages_to_scan_attr =
203 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
204 pages_to_scan_store);
206 static ssize_t pages_collapsed_show(struct kobject *kobj,
207 struct kobj_attribute *attr,
210 return sysfs_emit(buf, "%u\n", khugepaged_pages_collapsed);
212 static struct kobj_attribute pages_collapsed_attr =
213 __ATTR_RO(pages_collapsed);
215 static ssize_t full_scans_show(struct kobject *kobj,
216 struct kobj_attribute *attr,
219 return sysfs_emit(buf, "%u\n", khugepaged_full_scans);
221 static struct kobj_attribute full_scans_attr =
222 __ATTR_RO(full_scans);
224 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
225 struct kobj_attribute *attr, char *buf)
227 return single_hugepage_flag_show(kobj, attr, buf,
228 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
230 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
231 struct kobj_attribute *attr,
232 const char *buf, size_t count)
234 return single_hugepage_flag_store(kobj, attr, buf, count,
235 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
237 static struct kobj_attribute khugepaged_defrag_attr =
238 __ATTR(defrag, 0644, khugepaged_defrag_show,
239 khugepaged_defrag_store);
242 * max_ptes_none controls if khugepaged should collapse hugepages over
243 * any unmapped ptes in turn potentially increasing the memory
244 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
245 * reduce the available free memory in the system as it
246 * runs. Increasing max_ptes_none will instead potentially reduce the
247 * free memory in the system during the khugepaged scan.
249 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
250 struct kobj_attribute *attr,
253 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_none);
255 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count)
260 unsigned long max_ptes_none;
262 err = kstrtoul(buf, 10, &max_ptes_none);
263 if (err || max_ptes_none > HPAGE_PMD_NR-1)
266 khugepaged_max_ptes_none = max_ptes_none;
270 static struct kobj_attribute khugepaged_max_ptes_none_attr =
271 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
272 khugepaged_max_ptes_none_store);
274 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
275 struct kobj_attribute *attr,
278 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_swap);
281 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count)
286 unsigned long max_ptes_swap;
288 err = kstrtoul(buf, 10, &max_ptes_swap);
289 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
292 khugepaged_max_ptes_swap = max_ptes_swap;
297 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
298 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
299 khugepaged_max_ptes_swap_store);
301 static ssize_t khugepaged_max_ptes_shared_show(struct kobject *kobj,
302 struct kobj_attribute *attr,
305 return sysfs_emit(buf, "%u\n", khugepaged_max_ptes_shared);
308 static ssize_t khugepaged_max_ptes_shared_store(struct kobject *kobj,
309 struct kobj_attribute *attr,
310 const char *buf, size_t count)
313 unsigned long max_ptes_shared;
315 err = kstrtoul(buf, 10, &max_ptes_shared);
316 if (err || max_ptes_shared > HPAGE_PMD_NR-1)
319 khugepaged_max_ptes_shared = max_ptes_shared;
324 static struct kobj_attribute khugepaged_max_ptes_shared_attr =
325 __ATTR(max_ptes_shared, 0644, khugepaged_max_ptes_shared_show,
326 khugepaged_max_ptes_shared_store);
328 static struct attribute *khugepaged_attr[] = {
329 &khugepaged_defrag_attr.attr,
330 &khugepaged_max_ptes_none_attr.attr,
331 &khugepaged_max_ptes_swap_attr.attr,
332 &khugepaged_max_ptes_shared_attr.attr,
333 &pages_to_scan_attr.attr,
334 &pages_collapsed_attr.attr,
335 &full_scans_attr.attr,
336 &scan_sleep_millisecs_attr.attr,
337 &alloc_sleep_millisecs_attr.attr,
341 struct attribute_group khugepaged_attr_group = {
342 .attrs = khugepaged_attr,
343 .name = "khugepaged",
345 #endif /* CONFIG_SYSFS */
347 int hugepage_madvise(struct vm_area_struct *vma,
348 unsigned long *vm_flags, int advice)
354 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
355 * can't handle this properly after s390_enable_sie, so we simply
356 * ignore the madvise to prevent qemu from causing a SIGSEGV.
358 if (mm_has_pgste(vma->vm_mm))
361 *vm_flags &= ~VM_NOHUGEPAGE;
362 *vm_flags |= VM_HUGEPAGE;
364 * If the vma become good for khugepaged to scan,
365 * register it here without waiting a page fault that
366 * may not happen any time soon.
368 khugepaged_enter_vma(vma, *vm_flags);
370 case MADV_NOHUGEPAGE:
371 *vm_flags &= ~VM_HUGEPAGE;
372 *vm_flags |= VM_NOHUGEPAGE;
374 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
375 * this vma even if we leave the mm registered in khugepaged if
376 * it got registered before VM_NOHUGEPAGE was set.
384 int __init khugepaged_init(void)
386 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
387 sizeof(struct mm_slot),
388 __alignof__(struct mm_slot), 0, NULL);
392 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
393 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
394 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
395 khugepaged_max_ptes_shared = HPAGE_PMD_NR / 2;
400 void __init khugepaged_destroy(void)
402 kmem_cache_destroy(mm_slot_cache);
405 static inline struct mm_slot *alloc_mm_slot(void)
407 if (!mm_slot_cache) /* initialization failed */
409 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
412 static inline void free_mm_slot(struct mm_slot *mm_slot)
414 kmem_cache_free(mm_slot_cache, mm_slot);
417 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
419 struct mm_slot *mm_slot;
421 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
422 if (mm == mm_slot->mm)
428 static void insert_to_mm_slots_hash(struct mm_struct *mm,
429 struct mm_slot *mm_slot)
432 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
435 static inline int khugepaged_test_exit(struct mm_struct *mm)
437 return atomic_read(&mm->mm_users) == 0;
440 bool hugepage_vma_check(struct vm_area_struct *vma,
441 unsigned long vm_flags)
443 if (!transhuge_vma_enabled(vma, vm_flags))
446 if (vm_flags & VM_NO_KHUGEPAGED)
449 /* Don't run khugepaged against DAX vma */
453 if (vma->vm_file && !IS_ALIGNED((vma->vm_start >> PAGE_SHIFT) -
454 vma->vm_pgoff, HPAGE_PMD_NR))
457 /* Enabled via shmem mount options or sysfs settings. */
458 if (shmem_file(vma->vm_file))
459 return shmem_huge_enabled(vma);
461 /* THP settings require madvise. */
462 if (!(vm_flags & VM_HUGEPAGE) && !khugepaged_always())
465 /* Only regular file is valid */
466 if (file_thp_enabled(vma))
469 if (!vma->anon_vma || !vma_is_anonymous(vma))
471 if (vma_is_temporary_stack(vma))
477 void __khugepaged_enter(struct mm_struct *mm)
479 struct mm_slot *mm_slot;
482 mm_slot = alloc_mm_slot();
486 /* __khugepaged_exit() must not run from under us */
487 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
488 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
489 free_mm_slot(mm_slot);
493 spin_lock(&khugepaged_mm_lock);
494 insert_to_mm_slots_hash(mm, mm_slot);
496 * Insert just behind the scanning cursor, to let the area settle
499 wakeup = list_empty(&khugepaged_scan.mm_head);
500 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
501 spin_unlock(&khugepaged_mm_lock);
505 wake_up_interruptible(&khugepaged_wait);
508 void khugepaged_enter_vma(struct vm_area_struct *vma,
509 unsigned long vm_flags)
511 if (!test_bit(MMF_VM_HUGEPAGE, &vma->vm_mm->flags) &&
512 khugepaged_enabled() &&
513 (((vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK) <
514 (vma->vm_end & HPAGE_PMD_MASK))) {
515 if (hugepage_vma_check(vma, vm_flags))
516 __khugepaged_enter(vma->vm_mm);
520 void __khugepaged_exit(struct mm_struct *mm)
522 struct mm_slot *mm_slot;
525 spin_lock(&khugepaged_mm_lock);
526 mm_slot = get_mm_slot(mm);
527 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
528 hash_del(&mm_slot->hash);
529 list_del(&mm_slot->mm_node);
532 spin_unlock(&khugepaged_mm_lock);
535 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
536 free_mm_slot(mm_slot);
538 } else if (mm_slot) {
540 * This is required to serialize against
541 * khugepaged_test_exit() (which is guaranteed to run
542 * under mmap sem read mode). Stop here (after we
543 * return all pagetables will be destroyed) until
544 * khugepaged has finished working on the pagetables
545 * under the mmap_lock.
548 mmap_write_unlock(mm);
552 static void release_pte_page(struct page *page)
554 mod_node_page_state(page_pgdat(page),
555 NR_ISOLATED_ANON + page_is_file_lru(page),
558 putback_lru_page(page);
561 static void release_pte_pages(pte_t *pte, pte_t *_pte,
562 struct list_head *compound_pagelist)
564 struct page *page, *tmp;
566 while (--_pte >= pte) {
567 pte_t pteval = *_pte;
569 page = pte_page(pteval);
570 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)) &&
572 release_pte_page(page);
575 list_for_each_entry_safe(page, tmp, compound_pagelist, lru) {
576 list_del(&page->lru);
577 release_pte_page(page);
581 static bool is_refcount_suitable(struct page *page)
583 int expected_refcount;
585 expected_refcount = total_mapcount(page);
586 if (PageSwapCache(page))
587 expected_refcount += compound_nr(page);
589 return page_count(page) == expected_refcount;
592 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
593 unsigned long address,
595 struct list_head *compound_pagelist)
597 struct page *page = NULL;
599 int none_or_zero = 0, shared = 0, result = 0, referenced = 0;
600 bool writable = false;
602 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
603 _pte++, address += PAGE_SIZE) {
604 pte_t pteval = *_pte;
605 if (pte_none(pteval) || (pte_present(pteval) &&
606 is_zero_pfn(pte_pfn(pteval)))) {
607 if (!userfaultfd_armed(vma) &&
608 ++none_or_zero <= khugepaged_max_ptes_none) {
611 result = SCAN_EXCEED_NONE_PTE;
612 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
616 if (!pte_present(pteval)) {
617 result = SCAN_PTE_NON_PRESENT;
620 page = vm_normal_page(vma, address, pteval);
621 if (unlikely(!page)) {
622 result = SCAN_PAGE_NULL;
626 VM_BUG_ON_PAGE(!PageAnon(page), page);
628 if (page_mapcount(page) > 1 &&
629 ++shared > khugepaged_max_ptes_shared) {
630 result = SCAN_EXCEED_SHARED_PTE;
631 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
635 if (PageCompound(page)) {
637 page = compound_head(page);
640 * Check if we have dealt with the compound page
643 list_for_each_entry(p, compound_pagelist, lru) {
650 * We can do it before isolate_lru_page because the
651 * page can't be freed from under us. NOTE: PG_lock
652 * is needed to serialize against split_huge_page
653 * when invoked from the VM.
655 if (!trylock_page(page)) {
656 result = SCAN_PAGE_LOCK;
661 * Check if the page has any GUP (or other external) pins.
663 * The page table that maps the page has been already unlinked
664 * from the page table tree and this process cannot get
665 * an additional pin on the page.
667 * New pins can come later if the page is shared across fork,
668 * but not from this process. The other process cannot write to
669 * the page, only trigger CoW.
671 if (!is_refcount_suitable(page)) {
673 result = SCAN_PAGE_COUNT;
678 * Isolate the page to avoid collapsing an hugepage
679 * currently in use by the VM.
681 if (isolate_lru_page(page)) {
683 result = SCAN_DEL_PAGE_LRU;
686 mod_node_page_state(page_pgdat(page),
687 NR_ISOLATED_ANON + page_is_file_lru(page),
689 VM_BUG_ON_PAGE(!PageLocked(page), page);
690 VM_BUG_ON_PAGE(PageLRU(page), page);
692 if (PageCompound(page))
693 list_add_tail(&page->lru, compound_pagelist);
695 /* There should be enough young pte to collapse the page */
696 if (pte_young(pteval) ||
697 page_is_young(page) || PageReferenced(page) ||
698 mmu_notifier_test_young(vma->vm_mm, address))
701 if (pte_write(pteval))
705 if (unlikely(!writable)) {
706 result = SCAN_PAGE_RO;
707 } else if (unlikely(!referenced)) {
708 result = SCAN_LACK_REFERENCED_PAGE;
710 result = SCAN_SUCCEED;
711 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
712 referenced, writable, result);
716 release_pte_pages(pte, _pte, compound_pagelist);
717 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
718 referenced, writable, result);
722 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
723 struct vm_area_struct *vma,
724 unsigned long address,
726 struct list_head *compound_pagelist)
728 struct page *src_page, *tmp;
730 for (_pte = pte; _pte < pte + HPAGE_PMD_NR;
731 _pte++, page++, address += PAGE_SIZE) {
732 pte_t pteval = *_pte;
734 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
735 clear_user_highpage(page, address);
736 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
737 if (is_zero_pfn(pte_pfn(pteval))) {
739 * ptl mostly unnecessary.
742 ptep_clear(vma->vm_mm, address, _pte);
746 src_page = pte_page(pteval);
747 copy_user_highpage(page, src_page, address, vma);
748 if (!PageCompound(src_page))
749 release_pte_page(src_page);
751 * ptl mostly unnecessary, but preempt has to
752 * be disabled to update the per-cpu stats
753 * inside page_remove_rmap().
756 ptep_clear(vma->vm_mm, address, _pte);
757 page_remove_rmap(src_page, vma, false);
759 free_page_and_swap_cache(src_page);
763 list_for_each_entry_safe(src_page, tmp, compound_pagelist, lru) {
764 list_del(&src_page->lru);
765 release_pte_page(src_page);
769 static void khugepaged_alloc_sleep(void)
773 add_wait_queue(&khugepaged_wait, &wait);
774 freezable_schedule_timeout_interruptible(
775 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
776 remove_wait_queue(&khugepaged_wait, &wait);
779 static int khugepaged_node_load[MAX_NUMNODES];
781 static bool khugepaged_scan_abort(int nid)
786 * If node_reclaim_mode is disabled, then no extra effort is made to
787 * allocate memory locally.
789 if (!node_reclaim_enabled())
792 /* If there is a count for this node already, it must be acceptable */
793 if (khugepaged_node_load[nid])
796 for (i = 0; i < MAX_NUMNODES; i++) {
797 if (!khugepaged_node_load[i])
799 if (node_distance(nid, i) > node_reclaim_distance)
805 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
806 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
808 return khugepaged_defrag() ? GFP_TRANSHUGE : GFP_TRANSHUGE_LIGHT;
812 static int khugepaged_find_target_node(void)
814 static int last_khugepaged_target_node = NUMA_NO_NODE;
815 int nid, target_node = 0, max_value = 0;
817 /* find first node with max normal pages hit */
818 for (nid = 0; nid < MAX_NUMNODES; nid++)
819 if (khugepaged_node_load[nid] > max_value) {
820 max_value = khugepaged_node_load[nid];
824 /* do some balance if several nodes have the same hit record */
825 if (target_node <= last_khugepaged_target_node)
826 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
828 if (max_value == khugepaged_node_load[nid]) {
833 last_khugepaged_target_node = target_node;
837 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
839 if (IS_ERR(*hpage)) {
845 khugepaged_alloc_sleep();
855 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
857 VM_BUG_ON_PAGE(*hpage, *hpage);
859 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
860 if (unlikely(!*hpage)) {
861 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
862 *hpage = ERR_PTR(-ENOMEM);
866 prep_transhuge_page(*hpage);
867 count_vm_event(THP_COLLAPSE_ALLOC);
871 static int khugepaged_find_target_node(void)
876 static inline struct page *alloc_khugepaged_hugepage(void)
880 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
883 prep_transhuge_page(page);
887 static struct page *khugepaged_alloc_hugepage(bool *wait)
892 hpage = alloc_khugepaged_hugepage();
894 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
899 khugepaged_alloc_sleep();
901 count_vm_event(THP_COLLAPSE_ALLOC);
902 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
907 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
910 * If the hpage allocated earlier was briefly exposed in page cache
911 * before collapse_file() failed, it is possible that racing lookups
912 * have not yet completed, and would then be unpleasantly surprised by
913 * finding the hpage reused for the same mapping at a different offset.
914 * Just release the previous allocation if there is any danger of that.
916 if (*hpage && page_count(*hpage) > 1) {
922 *hpage = khugepaged_alloc_hugepage(wait);
924 if (unlikely(!*hpage))
931 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, int node)
940 * If mmap_lock temporarily dropped, revalidate vma
941 * before taking mmap_lock.
942 * Return 0 if succeeds, otherwise return none-zero
946 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address,
947 struct vm_area_struct **vmap)
949 struct vm_area_struct *vma;
950 unsigned long hstart, hend;
952 if (unlikely(khugepaged_test_exit(mm)))
953 return SCAN_ANY_PROCESS;
955 *vmap = vma = find_vma(mm, address);
957 return SCAN_VMA_NULL;
959 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
960 hend = vma->vm_end & HPAGE_PMD_MASK;
961 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
962 return SCAN_ADDRESS_RANGE;
963 if (!hugepage_vma_check(vma, vma->vm_flags))
964 return SCAN_VMA_CHECK;
965 /* Anon VMA expected */
966 if (!vma->anon_vma || !vma_is_anonymous(vma))
967 return SCAN_VMA_CHECK;
972 * Bring missing pages in from swap, to complete THP collapse.
973 * Only done if khugepaged_scan_pmd believes it is worthwhile.
975 * Called and returns without pte mapped or spinlocks held,
976 * but with mmap_lock held to protect against vma changes.
979 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
980 struct vm_area_struct *vma,
981 unsigned long haddr, pmd_t *pmd,
986 unsigned long address, end = haddr + (HPAGE_PMD_NR * PAGE_SIZE);
988 for (address = haddr; address < end; address += PAGE_SIZE) {
989 struct vm_fault vmf = {
992 .pgoff = linear_page_index(vma, haddr),
993 .flags = FAULT_FLAG_ALLOW_RETRY,
997 vmf.pte = pte_offset_map(pmd, address);
998 vmf.orig_pte = *vmf.pte;
999 if (!is_swap_pte(vmf.orig_pte)) {
1004 ret = do_swap_page(&vmf);
1006 /* do_swap_page returns VM_FAULT_RETRY with released mmap_lock */
1007 if (ret & VM_FAULT_RETRY) {
1009 if (hugepage_vma_revalidate(mm, haddr, &vma)) {
1010 /* vma is no longer available, don't continue to swapin */
1011 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1014 /* check if the pmd is still valid */
1015 if (mm_find_pmd(mm, haddr) != pmd) {
1016 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1020 if (ret & VM_FAULT_ERROR) {
1021 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 0);
1026 /* Drain LRU add pagevec to remove extra pin on the swapped in pages */
1030 trace_mm_collapse_huge_page_swapin(mm, swapped_in, referenced, 1);
1034 static void collapse_huge_page(struct mm_struct *mm,
1035 unsigned long address,
1036 struct page **hpage,
1037 int node, int referenced, int unmapped)
1039 LIST_HEAD(compound_pagelist);
1043 struct page *new_page;
1044 spinlock_t *pmd_ptl, *pte_ptl;
1045 int isolated = 0, result = 0;
1046 struct vm_area_struct *vma;
1047 struct mmu_notifier_range range;
1050 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1052 /* Only allocate from the target node */
1053 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1056 * Before allocating the hugepage, release the mmap_lock read lock.
1057 * The allocation can take potentially a long time if it involves
1058 * sync compaction, and we do not need to hold the mmap_lock during
1059 * that. We will recheck the vma after taking it again in write mode.
1061 mmap_read_unlock(mm);
1062 new_page = khugepaged_alloc_page(hpage, gfp, node);
1064 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1068 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1069 result = SCAN_CGROUP_CHARGE_FAIL;
1072 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1075 result = hugepage_vma_revalidate(mm, address, &vma);
1077 mmap_read_unlock(mm);
1081 pmd = mm_find_pmd(mm, address);
1083 result = SCAN_PMD_NULL;
1084 mmap_read_unlock(mm);
1089 * __collapse_huge_page_swapin always returns with mmap_lock locked.
1090 * If it fails, we release mmap_lock and jump out_nolock.
1091 * Continuing to collapse causes inconsistency.
1093 if (unmapped && !__collapse_huge_page_swapin(mm, vma, address,
1095 mmap_read_unlock(mm);
1099 mmap_read_unlock(mm);
1101 * Prevent all access to pagetables with the exception of
1102 * gup_fast later handled by the ptep_clear_flush and the VM
1103 * handled by the anon_vma lock + PG_lock.
1105 mmap_write_lock(mm);
1106 result = hugepage_vma_revalidate(mm, address, &vma);
1109 /* check if the pmd is still valid */
1110 if (mm_find_pmd(mm, address) != pmd)
1113 anon_vma_lock_write(vma->anon_vma);
1115 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, NULL, mm,
1116 address, address + HPAGE_PMD_SIZE);
1117 mmu_notifier_invalidate_range_start(&range);
1119 pte = pte_offset_map(pmd, address);
1120 pte_ptl = pte_lockptr(mm, pmd);
1122 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
1124 * After this gup_fast can't run anymore. This also removes
1125 * any huge TLB entry from the CPU so we won't allow
1126 * huge and small TLB entries for the same virtual address
1127 * to avoid the risk of CPU bugs in that area.
1129 _pmd = pmdp_collapse_flush(vma, address, pmd);
1130 spin_unlock(pmd_ptl);
1131 mmu_notifier_invalidate_range_end(&range);
1134 isolated = __collapse_huge_page_isolate(vma, address, pte,
1135 &compound_pagelist);
1136 spin_unlock(pte_ptl);
1138 if (unlikely(!isolated)) {
1141 BUG_ON(!pmd_none(*pmd));
1143 * We can only use set_pmd_at when establishing
1144 * hugepmds and never for establishing regular pmds that
1145 * points to regular pagetables. Use pmd_populate for that
1147 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
1148 spin_unlock(pmd_ptl);
1149 anon_vma_unlock_write(vma->anon_vma);
1155 * All pages are isolated and locked so anon_vma rmap
1156 * can't run anymore.
1158 anon_vma_unlock_write(vma->anon_vma);
1160 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl,
1161 &compound_pagelist);
1164 * spin_lock() below is not the equivalent of smp_wmb(), but
1165 * the smp_wmb() inside __SetPageUptodate() can be reused to
1166 * avoid the copy_huge_page writes to become visible after
1167 * the set_pmd_at() write.
1169 __SetPageUptodate(new_page);
1170 pgtable = pmd_pgtable(_pmd);
1172 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
1173 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1176 BUG_ON(!pmd_none(*pmd));
1177 page_add_new_anon_rmap(new_page, vma, address);
1178 lru_cache_add_inactive_or_unevictable(new_page, vma);
1179 pgtable_trans_huge_deposit(mm, pmd, pgtable);
1180 set_pmd_at(mm, address, pmd, _pmd);
1181 update_mmu_cache_pmd(vma, address, pmd);
1182 spin_unlock(pmd_ptl);
1186 khugepaged_pages_collapsed++;
1187 result = SCAN_SUCCEED;
1189 mmap_write_unlock(mm);
1191 if (!IS_ERR_OR_NULL(*hpage))
1192 mem_cgroup_uncharge(page_folio(*hpage));
1193 trace_mm_collapse_huge_page(mm, isolated, result);
1197 static int khugepaged_scan_pmd(struct mm_struct *mm,
1198 struct vm_area_struct *vma,
1199 unsigned long address,
1200 struct page **hpage)
1204 int ret = 0, result = 0, referenced = 0;
1205 int none_or_zero = 0, shared = 0;
1206 struct page *page = NULL;
1207 unsigned long _address;
1209 int node = NUMA_NO_NODE, unmapped = 0;
1210 bool writable = false;
1212 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1214 pmd = mm_find_pmd(mm, address);
1216 result = SCAN_PMD_NULL;
1220 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
1221 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1222 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1223 _pte++, _address += PAGE_SIZE) {
1224 pte_t pteval = *_pte;
1225 if (is_swap_pte(pteval)) {
1226 if (++unmapped <= khugepaged_max_ptes_swap) {
1228 * Always be strict with uffd-wp
1229 * enabled swap entries. Please see
1230 * comment below for pte_uffd_wp().
1232 if (pte_swp_uffd_wp(pteval)) {
1233 result = SCAN_PTE_UFFD_WP;
1238 result = SCAN_EXCEED_SWAP_PTE;
1239 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
1243 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
1244 if (!userfaultfd_armed(vma) &&
1245 ++none_or_zero <= khugepaged_max_ptes_none) {
1248 result = SCAN_EXCEED_NONE_PTE;
1249 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
1253 if (pte_uffd_wp(pteval)) {
1255 * Don't collapse the page if any of the small
1256 * PTEs are armed with uffd write protection.
1257 * Here we can also mark the new huge pmd as
1258 * write protected if any of the small ones is
1259 * marked but that could bring unknown
1260 * userfault messages that falls outside of
1261 * the registered range. So, just be simple.
1263 result = SCAN_PTE_UFFD_WP;
1266 if (pte_write(pteval))
1269 page = vm_normal_page(vma, _address, pteval);
1270 if (unlikely(!page)) {
1271 result = SCAN_PAGE_NULL;
1275 if (page_mapcount(page) > 1 &&
1276 ++shared > khugepaged_max_ptes_shared) {
1277 result = SCAN_EXCEED_SHARED_PTE;
1278 count_vm_event(THP_SCAN_EXCEED_SHARED_PTE);
1282 page = compound_head(page);
1285 * Record which node the original page is from and save this
1286 * information to khugepaged_node_load[].
1287 * Khugepaged will allocate hugepage from the node has the max
1290 node = page_to_nid(page);
1291 if (khugepaged_scan_abort(node)) {
1292 result = SCAN_SCAN_ABORT;
1295 khugepaged_node_load[node]++;
1296 if (!PageLRU(page)) {
1297 result = SCAN_PAGE_LRU;
1300 if (PageLocked(page)) {
1301 result = SCAN_PAGE_LOCK;
1304 if (!PageAnon(page)) {
1305 result = SCAN_PAGE_ANON;
1310 * Check if the page has any GUP (or other external) pins.
1312 * Here the check is racy it may see totmal_mapcount > refcount
1314 * For example, one process with one forked child process.
1315 * The parent has the PMD split due to MADV_DONTNEED, then
1316 * the child is trying unmap the whole PMD, but khugepaged
1317 * may be scanning the parent between the child has
1318 * PageDoubleMap flag cleared and dec the mapcount. So
1319 * khugepaged may see total_mapcount > refcount.
1321 * But such case is ephemeral we could always retry collapse
1322 * later. However it may report false positive if the page
1323 * has excessive GUP pins (i.e. 512). Anyway the same check
1324 * will be done again later the risk seems low.
1326 if (!is_refcount_suitable(page)) {
1327 result = SCAN_PAGE_COUNT;
1330 if (pte_young(pteval) ||
1331 page_is_young(page) || PageReferenced(page) ||
1332 mmu_notifier_test_young(vma->vm_mm, address))
1336 result = SCAN_PAGE_RO;
1337 } else if (!referenced || (unmapped && referenced < HPAGE_PMD_NR/2)) {
1338 result = SCAN_LACK_REFERENCED_PAGE;
1340 result = SCAN_SUCCEED;
1344 pte_unmap_unlock(pte, ptl);
1346 node = khugepaged_find_target_node();
1347 /* collapse_huge_page will return with the mmap_lock released */
1348 collapse_huge_page(mm, address, hpage, node,
1349 referenced, unmapped);
1352 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
1353 none_or_zero, result, unmapped);
1357 static void collect_mm_slot(struct mm_slot *mm_slot)
1359 struct mm_struct *mm = mm_slot->mm;
1361 lockdep_assert_held(&khugepaged_mm_lock);
1363 if (khugepaged_test_exit(mm)) {
1365 hash_del(&mm_slot->hash);
1366 list_del(&mm_slot->mm_node);
1369 * Not strictly needed because the mm exited already.
1371 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1374 /* khugepaged_mm_lock actually not necessary for the below */
1375 free_mm_slot(mm_slot);
1382 * Notify khugepaged that given addr of the mm is pte-mapped THP. Then
1383 * khugepaged should try to collapse the page table.
1385 static int khugepaged_add_pte_mapped_thp(struct mm_struct *mm,
1388 struct mm_slot *mm_slot;
1390 VM_BUG_ON(addr & ~HPAGE_PMD_MASK);
1392 spin_lock(&khugepaged_mm_lock);
1393 mm_slot = get_mm_slot(mm);
1394 if (likely(mm_slot && mm_slot->nr_pte_mapped_thp < MAX_PTE_MAPPED_THP))
1395 mm_slot->pte_mapped_thp[mm_slot->nr_pte_mapped_thp++] = addr;
1396 spin_unlock(&khugepaged_mm_lock);
1400 static void collapse_and_free_pmd(struct mm_struct *mm, struct vm_area_struct *vma,
1401 unsigned long addr, pmd_t *pmdp)
1406 mmap_assert_write_locked(mm);
1407 ptl = pmd_lock(vma->vm_mm, pmdp);
1408 pmd = pmdp_collapse_flush(vma, addr, pmdp);
1411 page_table_check_pte_clear_range(mm, addr, pmd);
1412 pte_free(mm, pmd_pgtable(pmd));
1416 * collapse_pte_mapped_thp - Try to collapse a pte-mapped THP for mm at
1419 * @mm: process address space where collapse happens
1420 * @addr: THP collapse address
1422 * This function checks whether all the PTEs in the PMD are pointing to the
1423 * right THP. If so, retract the page table so the THP can refault in with
1426 void collapse_pte_mapped_thp(struct mm_struct *mm, unsigned long addr)
1428 unsigned long haddr = addr & HPAGE_PMD_MASK;
1429 struct vm_area_struct *vma = find_vma(mm, haddr);
1431 pte_t *start_pte, *pte;
1437 if (!vma || !vma->vm_file ||
1438 !range_in_vma(vma, haddr, haddr + HPAGE_PMD_SIZE))
1442 * This vm_flags may not have VM_HUGEPAGE if the page was not
1443 * collapsed by this mm. But we can still collapse if the page is
1444 * the valid THP. Add extra VM_HUGEPAGE so hugepage_vma_check()
1445 * will not fail the vma for missing VM_HUGEPAGE
1447 if (!hugepage_vma_check(vma, vma->vm_flags | VM_HUGEPAGE))
1450 /* Keep pmd pgtable for uffd-wp; see comment in retract_page_tables() */
1451 if (userfaultfd_wp(vma))
1454 hpage = find_lock_page(vma->vm_file->f_mapping,
1455 linear_page_index(vma, haddr));
1459 if (!PageHead(hpage))
1462 pmd = mm_find_pmd(mm, haddr);
1466 start_pte = pte_offset_map_lock(mm, pmd, haddr, &ptl);
1468 /* step 1: check all mapped PTEs are to the right huge page */
1469 for (i = 0, addr = haddr, pte = start_pte;
1470 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1473 /* empty pte, skip */
1477 /* page swapped out, abort */
1478 if (!pte_present(*pte))
1481 page = vm_normal_page(vma, addr, *pte);
1484 * Note that uprobe, debugger, or MAP_PRIVATE may change the
1485 * page table, but the new page will not be a subpage of hpage.
1487 if (hpage + i != page)
1492 /* step 2: adjust rmap */
1493 for (i = 0, addr = haddr, pte = start_pte;
1494 i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE, pte++) {
1499 page = vm_normal_page(vma, addr, *pte);
1500 page_remove_rmap(page, vma, false);
1503 pte_unmap_unlock(start_pte, ptl);
1505 /* step 3: set proper refcount and mm_counters. */
1507 page_ref_sub(hpage, count);
1508 add_mm_counter(vma->vm_mm, mm_counter_file(hpage), -count);
1511 /* step 4: collapse pmd */
1512 collapse_and_free_pmd(mm, vma, haddr, pmd);
1519 pte_unmap_unlock(start_pte, ptl);
1523 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
1525 struct mm_struct *mm = mm_slot->mm;
1528 if (likely(mm_slot->nr_pte_mapped_thp == 0))
1531 if (!mmap_write_trylock(mm))
1534 if (unlikely(khugepaged_test_exit(mm)))
1537 for (i = 0; i < mm_slot->nr_pte_mapped_thp; i++)
1538 collapse_pte_mapped_thp(mm, mm_slot->pte_mapped_thp[i]);
1541 mm_slot->nr_pte_mapped_thp = 0;
1542 mmap_write_unlock(mm);
1545 static void retract_page_tables(struct address_space *mapping, pgoff_t pgoff)
1547 struct vm_area_struct *vma;
1548 struct mm_struct *mm;
1552 i_mmap_lock_write(mapping);
1553 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff, pgoff) {
1555 * Check vma->anon_vma to exclude MAP_PRIVATE mappings that
1556 * got written to. These VMAs are likely not worth investing
1557 * mmap_write_lock(mm) as PMD-mapping is likely to be split
1560 * Not that vma->anon_vma check is racy: it can be set up after
1561 * the check but before we took mmap_lock by the fault path.
1562 * But page lock would prevent establishing any new ptes of the
1563 * page, so we are safe.
1565 * An alternative would be drop the check, but check that page
1566 * table is clear before calling pmdp_collapse_flush() under
1567 * ptl. It has higher chance to recover THP for the VMA, but
1568 * has higher cost too.
1572 addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
1573 if (addr & ~HPAGE_PMD_MASK)
1575 if (vma->vm_end < addr + HPAGE_PMD_SIZE)
1578 pmd = mm_find_pmd(mm, addr);
1582 * We need exclusive mmap_lock to retract page table.
1584 * We use trylock due to lock inversion: we need to acquire
1585 * mmap_lock while holding page lock. Fault path does it in
1586 * reverse order. Trylock is a way to avoid deadlock.
1588 if (mmap_write_trylock(mm)) {
1590 * When a vma is registered with uffd-wp, we can't
1591 * recycle the pmd pgtable because there can be pte
1592 * markers installed. Skip it only, so the rest mm/vma
1593 * can still have the same file mapped hugely, however
1594 * it'll always mapped in small page size for uffd-wp
1595 * registered ranges.
1597 if (!khugepaged_test_exit(mm) && !userfaultfd_wp(vma))
1598 collapse_and_free_pmd(mm, vma, addr, pmd);
1599 mmap_write_unlock(mm);
1601 /* Try again later */
1602 khugepaged_add_pte_mapped_thp(mm, addr);
1605 i_mmap_unlock_write(mapping);
1609 * collapse_file - collapse filemap/tmpfs/shmem pages into huge one.
1611 * @mm: process address space where collapse happens
1612 * @file: file that collapse on
1613 * @start: collapse start address
1614 * @hpage: new allocated huge page for collapse
1615 * @node: appointed node the new huge page allocate from
1617 * Basic scheme is simple, details are more complex:
1618 * - allocate and lock a new huge page;
1619 * - scan page cache replacing old pages with the new one
1620 * + swap/gup in pages if necessary;
1622 * + keep old pages around in case rollback is required;
1623 * - if replacing succeeds:
1626 * + unlock huge page;
1627 * - if replacing failed;
1628 * + put all pages back and unfreeze them;
1629 * + restore gaps in the page cache;
1630 * + unlock and free huge page;
1632 static void collapse_file(struct mm_struct *mm,
1633 struct file *file, pgoff_t start,
1634 struct page **hpage, int node)
1636 struct address_space *mapping = file->f_mapping;
1638 struct page *new_page;
1639 pgoff_t index, end = start + HPAGE_PMD_NR;
1640 LIST_HEAD(pagelist);
1641 XA_STATE_ORDER(xas, &mapping->i_pages, start, HPAGE_PMD_ORDER);
1642 int nr_none = 0, result = SCAN_SUCCEED;
1643 bool is_shmem = shmem_file(file);
1646 VM_BUG_ON(!IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS) && !is_shmem);
1647 VM_BUG_ON(start & (HPAGE_PMD_NR - 1));
1649 /* Only allocate from the target node */
1650 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_THISNODE;
1652 new_page = khugepaged_alloc_page(hpage, gfp, node);
1654 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
1658 if (unlikely(mem_cgroup_charge(page_folio(new_page), mm, gfp))) {
1659 result = SCAN_CGROUP_CHARGE_FAIL;
1662 count_memcg_page_event(new_page, THP_COLLAPSE_ALLOC);
1665 * Ensure we have slots for all the pages in the range. This is
1666 * almost certainly a no-op because most of the pages must be present
1670 xas_create_range(&xas);
1671 if (!xas_error(&xas))
1673 xas_unlock_irq(&xas);
1674 if (!xas_nomem(&xas, GFP_KERNEL)) {
1680 __SetPageLocked(new_page);
1682 __SetPageSwapBacked(new_page);
1683 new_page->index = start;
1684 new_page->mapping = mapping;
1687 * At this point the new_page is locked and not up-to-date.
1688 * It's safe to insert it into the page cache, because nobody would
1689 * be able to map it or use it in another way until we unlock it.
1692 xas_set(&xas, start);
1693 for (index = start; index < end; index++) {
1694 struct page *page = xas_next(&xas);
1696 VM_BUG_ON(index != xas.xa_index);
1700 * Stop if extent has been truncated or
1701 * hole-punched, and is now completely
1704 if (index == start) {
1705 if (!xas_next_entry(&xas, end - 1)) {
1706 result = SCAN_TRUNCATED;
1709 xas_set(&xas, index);
1711 if (!shmem_charge(mapping->host, 1)) {
1715 xas_store(&xas, new_page);
1720 if (xa_is_value(page) || !PageUptodate(page)) {
1721 xas_unlock_irq(&xas);
1722 /* swap in or instantiate fallocated page */
1723 if (shmem_getpage(mapping->host, index, &page,
1728 } else if (trylock_page(page)) {
1730 xas_unlock_irq(&xas);
1732 result = SCAN_PAGE_LOCK;
1735 } else { /* !is_shmem */
1736 if (!page || xa_is_value(page)) {
1737 xas_unlock_irq(&xas);
1738 page_cache_sync_readahead(mapping, &file->f_ra,
1741 /* drain pagevecs to help isolate_lru_page() */
1743 page = find_lock_page(mapping, index);
1744 if (unlikely(page == NULL)) {
1748 } else if (PageDirty(page)) {
1750 * khugepaged only works on read-only fd,
1751 * so this page is dirty because it hasn't
1752 * been flushed since first write. There
1753 * won't be new dirty pages.
1755 * Trigger async flush here and hope the
1756 * writeback is done when khugepaged
1757 * revisits this page.
1759 * This is a one-off situation. We are not
1760 * forcing writeback in loop.
1762 xas_unlock_irq(&xas);
1763 filemap_flush(mapping);
1766 } else if (PageWriteback(page)) {
1767 xas_unlock_irq(&xas);
1770 } else if (trylock_page(page)) {
1772 xas_unlock_irq(&xas);
1774 result = SCAN_PAGE_LOCK;
1780 * The page must be locked, so we can drop the i_pages lock
1781 * without racing with truncate.
1783 VM_BUG_ON_PAGE(!PageLocked(page), page);
1785 /* make sure the page is up to date */
1786 if (unlikely(!PageUptodate(page))) {
1792 * If file was truncated then extended, or hole-punched, before
1793 * we locked the first page, then a THP might be there already.
1795 if (PageTransCompound(page)) {
1796 result = SCAN_PAGE_COMPOUND;
1800 if (page_mapping(page) != mapping) {
1801 result = SCAN_TRUNCATED;
1805 if (!is_shmem && (PageDirty(page) ||
1806 PageWriteback(page))) {
1808 * khugepaged only works on read-only fd, so this
1809 * page is dirty because it hasn't been flushed
1810 * since first write.
1816 if (isolate_lru_page(page)) {
1817 result = SCAN_DEL_PAGE_LRU;
1821 if (page_has_private(page) &&
1822 !try_to_release_page(page, GFP_KERNEL)) {
1823 result = SCAN_PAGE_HAS_PRIVATE;
1824 putback_lru_page(page);
1828 if (page_mapped(page))
1829 try_to_unmap(page_folio(page),
1830 TTU_IGNORE_MLOCK | TTU_BATCH_FLUSH);
1833 xas_set(&xas, index);
1835 VM_BUG_ON_PAGE(page != xas_load(&xas), page);
1838 * The page is expected to have page_count() == 3:
1839 * - we hold a pin on it;
1840 * - one reference from page cache;
1841 * - one from isolate_lru_page;
1843 if (!page_ref_freeze(page, 3)) {
1844 result = SCAN_PAGE_COUNT;
1845 xas_unlock_irq(&xas);
1846 putback_lru_page(page);
1851 * Add the page to the list to be able to undo the collapse if
1852 * something go wrong.
1854 list_add_tail(&page->lru, &pagelist);
1856 /* Finally, replace with the new page. */
1857 xas_store(&xas, new_page);
1864 nr = thp_nr_pages(new_page);
1867 __mod_lruvec_page_state(new_page, NR_SHMEM_THPS, nr);
1869 __mod_lruvec_page_state(new_page, NR_FILE_THPS, nr);
1870 filemap_nr_thps_inc(mapping);
1872 * Paired with smp_mb() in do_dentry_open() to ensure
1873 * i_writecount is up to date and the update to nr_thps is
1874 * visible. Ensures the page cache will be truncated if the
1875 * file is opened writable.
1878 if (inode_is_open_for_write(mapping->host)) {
1880 __mod_lruvec_page_state(new_page, NR_FILE_THPS, -nr);
1881 filemap_nr_thps_dec(mapping);
1887 __mod_lruvec_page_state(new_page, NR_FILE_PAGES, nr_none);
1889 __mod_lruvec_page_state(new_page, NR_SHMEM, nr_none);
1892 /* Join all the small entries into a single multi-index entry */
1893 xas_set_order(&xas, start, HPAGE_PMD_ORDER);
1894 xas_store(&xas, new_page);
1896 xas_unlock_irq(&xas);
1900 * If collapse is successful, flush must be done now before copying.
1901 * If collapse is unsuccessful, does flush actually need to be done?
1902 * Do it anyway, to clear the state.
1904 try_to_unmap_flush();
1906 if (result == SCAN_SUCCEED) {
1907 struct page *page, *tmp;
1910 * Replacing old pages with new one has succeeded, now we
1911 * need to copy the content and free the old pages.
1914 list_for_each_entry_safe(page, tmp, &pagelist, lru) {
1915 while (index < page->index) {
1916 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1919 copy_highpage(new_page + (page->index % HPAGE_PMD_NR),
1921 list_del(&page->lru);
1922 page->mapping = NULL;
1923 page_ref_unfreeze(page, 1);
1924 ClearPageActive(page);
1925 ClearPageUnevictable(page);
1930 while (index < end) {
1931 clear_highpage(new_page + (index % HPAGE_PMD_NR));
1935 SetPageUptodate(new_page);
1936 page_ref_add(new_page, HPAGE_PMD_NR - 1);
1938 set_page_dirty(new_page);
1939 lru_cache_add(new_page);
1942 * Remove pte page tables, so we can re-fault the page as huge.
1944 retract_page_tables(mapping, start);
1947 khugepaged_pages_collapsed++;
1951 /* Something went wrong: roll back page cache changes */
1953 mapping->nrpages -= nr_none;
1956 shmem_uncharge(mapping->host, nr_none);
1958 xas_set(&xas, start);
1959 xas_for_each(&xas, page, end - 1) {
1960 page = list_first_entry_or_null(&pagelist,
1962 if (!page || xas.xa_index < page->index) {
1966 /* Put holes back where they were */
1967 xas_store(&xas, NULL);
1971 VM_BUG_ON_PAGE(page->index != xas.xa_index, page);
1973 /* Unfreeze the page. */
1974 list_del(&page->lru);
1975 page_ref_unfreeze(page, 2);
1976 xas_store(&xas, page);
1978 xas_unlock_irq(&xas);
1980 putback_lru_page(page);
1984 xas_unlock_irq(&xas);
1986 new_page->mapping = NULL;
1989 unlock_page(new_page);
1991 VM_BUG_ON(!list_empty(&pagelist));
1992 if (!IS_ERR_OR_NULL(*hpage))
1993 mem_cgroup_uncharge(page_folio(*hpage));
1994 /* TODO: tracepoints */
1997 static void khugepaged_scan_file(struct mm_struct *mm,
1998 struct file *file, pgoff_t start, struct page **hpage)
2000 struct page *page = NULL;
2001 struct address_space *mapping = file->f_mapping;
2002 XA_STATE(xas, &mapping->i_pages, start);
2004 int node = NUMA_NO_NODE;
2005 int result = SCAN_SUCCEED;
2009 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2011 xas_for_each(&xas, page, start + HPAGE_PMD_NR - 1) {
2012 if (xas_retry(&xas, page))
2015 if (xa_is_value(page)) {
2016 if (++swap > khugepaged_max_ptes_swap) {
2017 result = SCAN_EXCEED_SWAP_PTE;
2018 count_vm_event(THP_SCAN_EXCEED_SWAP_PTE);
2025 * XXX: khugepaged should compact smaller compound pages
2026 * into a PMD sized page
2028 if (PageTransCompound(page)) {
2029 result = SCAN_PAGE_COMPOUND;
2033 node = page_to_nid(page);
2034 if (khugepaged_scan_abort(node)) {
2035 result = SCAN_SCAN_ABORT;
2038 khugepaged_node_load[node]++;
2040 if (!PageLRU(page)) {
2041 result = SCAN_PAGE_LRU;
2045 if (page_count(page) !=
2046 1 + page_mapcount(page) + page_has_private(page)) {
2047 result = SCAN_PAGE_COUNT;
2052 * We probably should check if the page is referenced here, but
2053 * nobody would transfer pte_young() to PageReferenced() for us.
2054 * And rmap walk here is just too costly...
2059 if (need_resched()) {
2066 if (result == SCAN_SUCCEED) {
2067 if (present < HPAGE_PMD_NR - khugepaged_max_ptes_none) {
2068 result = SCAN_EXCEED_NONE_PTE;
2069 count_vm_event(THP_SCAN_EXCEED_NONE_PTE);
2071 node = khugepaged_find_target_node();
2072 collapse_file(mm, file, start, hpage, node);
2076 /* TODO: tracepoints */
2079 static void khugepaged_scan_file(struct mm_struct *mm,
2080 struct file *file, pgoff_t start, struct page **hpage)
2085 static void khugepaged_collapse_pte_mapped_thps(struct mm_slot *mm_slot)
2090 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2091 struct page **hpage)
2092 __releases(&khugepaged_mm_lock)
2093 __acquires(&khugepaged_mm_lock)
2095 struct mm_slot *mm_slot;
2096 struct mm_struct *mm;
2097 struct vm_area_struct *vma;
2101 lockdep_assert_held(&khugepaged_mm_lock);
2103 if (khugepaged_scan.mm_slot)
2104 mm_slot = khugepaged_scan.mm_slot;
2106 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2107 struct mm_slot, mm_node);
2108 khugepaged_scan.address = 0;
2109 khugepaged_scan.mm_slot = mm_slot;
2111 spin_unlock(&khugepaged_mm_lock);
2112 khugepaged_collapse_pte_mapped_thps(mm_slot);
2116 * Don't wait for semaphore (to avoid long wait times). Just move to
2117 * the next mm on the list.
2120 if (unlikely(!mmap_read_trylock(mm)))
2121 goto breakouterloop_mmap_lock;
2122 if (likely(!khugepaged_test_exit(mm)))
2123 vma = find_vma(mm, khugepaged_scan.address);
2126 for (; vma; vma = vma->vm_next) {
2127 unsigned long hstart, hend;
2130 if (unlikely(khugepaged_test_exit(mm))) {
2134 if (!hugepage_vma_check(vma, vma->vm_flags)) {
2139 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2140 hend = vma->vm_end & HPAGE_PMD_MASK;
2143 if (khugepaged_scan.address > hend)
2145 if (khugepaged_scan.address < hstart)
2146 khugepaged_scan.address = hstart;
2147 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2148 if (shmem_file(vma->vm_file) && !shmem_huge_enabled(vma))
2151 while (khugepaged_scan.address < hend) {
2154 if (unlikely(khugepaged_test_exit(mm)))
2155 goto breakouterloop;
2157 VM_BUG_ON(khugepaged_scan.address < hstart ||
2158 khugepaged_scan.address + HPAGE_PMD_SIZE >
2160 if (IS_ENABLED(CONFIG_SHMEM) && vma->vm_file) {
2161 struct file *file = get_file(vma->vm_file);
2162 pgoff_t pgoff = linear_page_index(vma,
2163 khugepaged_scan.address);
2165 mmap_read_unlock(mm);
2167 khugepaged_scan_file(mm, file, pgoff, hpage);
2170 ret = khugepaged_scan_pmd(mm, vma,
2171 khugepaged_scan.address,
2174 /* move to next address */
2175 khugepaged_scan.address += HPAGE_PMD_SIZE;
2176 progress += HPAGE_PMD_NR;
2178 /* we released mmap_lock so break loop */
2179 goto breakouterloop_mmap_lock;
2180 if (progress >= pages)
2181 goto breakouterloop;
2185 mmap_read_unlock(mm); /* exit_mmap will destroy ptes after this */
2186 breakouterloop_mmap_lock:
2188 spin_lock(&khugepaged_mm_lock);
2189 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2191 * Release the current mm_slot if this mm is about to die, or
2192 * if we scanned all vmas of this mm.
2194 if (khugepaged_test_exit(mm) || !vma) {
2196 * Make sure that if mm_users is reaching zero while
2197 * khugepaged runs here, khugepaged_exit will find
2198 * mm_slot not pointing to the exiting mm.
2200 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2201 khugepaged_scan.mm_slot = list_entry(
2202 mm_slot->mm_node.next,
2203 struct mm_slot, mm_node);
2204 khugepaged_scan.address = 0;
2206 khugepaged_scan.mm_slot = NULL;
2207 khugepaged_full_scans++;
2210 collect_mm_slot(mm_slot);
2216 static int khugepaged_has_work(void)
2218 return !list_empty(&khugepaged_scan.mm_head) &&
2219 khugepaged_enabled();
2222 static int khugepaged_wait_event(void)
2224 return !list_empty(&khugepaged_scan.mm_head) ||
2225 kthread_should_stop();
2228 static void khugepaged_do_scan(void)
2230 struct page *hpage = NULL;
2231 unsigned int progress = 0, pass_through_head = 0;
2232 unsigned int pages = READ_ONCE(khugepaged_pages_to_scan);
2235 lru_add_drain_all();
2237 while (progress < pages) {
2238 if (!khugepaged_prealloc_page(&hpage, &wait))
2243 if (unlikely(kthread_should_stop() || try_to_freeze()))
2246 spin_lock(&khugepaged_mm_lock);
2247 if (!khugepaged_scan.mm_slot)
2248 pass_through_head++;
2249 if (khugepaged_has_work() &&
2250 pass_through_head < 2)
2251 progress += khugepaged_scan_mm_slot(pages - progress,
2255 spin_unlock(&khugepaged_mm_lock);
2258 if (!IS_ERR_OR_NULL(hpage))
2262 static bool khugepaged_should_wakeup(void)
2264 return kthread_should_stop() ||
2265 time_after_eq(jiffies, khugepaged_sleep_expire);
2268 static void khugepaged_wait_work(void)
2270 if (khugepaged_has_work()) {
2271 const unsigned long scan_sleep_jiffies =
2272 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2274 if (!scan_sleep_jiffies)
2277 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2278 wait_event_freezable_timeout(khugepaged_wait,
2279 khugepaged_should_wakeup(),
2280 scan_sleep_jiffies);
2284 if (khugepaged_enabled())
2285 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2288 static int khugepaged(void *none)
2290 struct mm_slot *mm_slot;
2293 set_user_nice(current, MAX_NICE);
2295 while (!kthread_should_stop()) {
2296 khugepaged_do_scan();
2297 khugepaged_wait_work();
2300 spin_lock(&khugepaged_mm_lock);
2301 mm_slot = khugepaged_scan.mm_slot;
2302 khugepaged_scan.mm_slot = NULL;
2304 collect_mm_slot(mm_slot);
2305 spin_unlock(&khugepaged_mm_lock);
2309 static void set_recommended_min_free_kbytes(void)
2313 unsigned long recommended_min;
2315 if (!khugepaged_enabled()) {
2316 calculate_min_free_kbytes();
2320 for_each_populated_zone(zone) {
2322 * We don't need to worry about fragmentation of
2323 * ZONE_MOVABLE since it only has movable pages.
2325 if (zone_idx(zone) > gfp_zone(GFP_USER))
2331 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
2332 recommended_min = pageblock_nr_pages * nr_zones * 2;
2335 * Make sure that on average at least two pageblocks are almost free
2336 * of another type, one for a migratetype to fall back to and a
2337 * second to avoid subsequent fallbacks of other types There are 3
2338 * MIGRATE_TYPES we care about.
2340 recommended_min += pageblock_nr_pages * nr_zones *
2341 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
2343 /* don't ever allow to reserve more than 5% of the lowmem */
2344 recommended_min = min(recommended_min,
2345 (unsigned long) nr_free_buffer_pages() / 20);
2346 recommended_min <<= (PAGE_SHIFT-10);
2348 if (recommended_min > min_free_kbytes) {
2349 if (user_min_free_kbytes >= 0)
2350 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
2351 min_free_kbytes, recommended_min);
2353 min_free_kbytes = recommended_min;
2357 setup_per_zone_wmarks();
2360 int start_stop_khugepaged(void)
2364 mutex_lock(&khugepaged_mutex);
2365 if (khugepaged_enabled()) {
2366 if (!khugepaged_thread)
2367 khugepaged_thread = kthread_run(khugepaged, NULL,
2369 if (IS_ERR(khugepaged_thread)) {
2370 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
2371 err = PTR_ERR(khugepaged_thread);
2372 khugepaged_thread = NULL;
2376 if (!list_empty(&khugepaged_scan.mm_head))
2377 wake_up_interruptible(&khugepaged_wait);
2378 } else if (khugepaged_thread) {
2379 kthread_stop(khugepaged_thread);
2380 khugepaged_thread = NULL;
2382 set_recommended_min_free_kbytes();
2384 mutex_unlock(&khugepaged_mutex);
2388 void khugepaged_min_free_kbytes_update(void)
2390 mutex_lock(&khugepaged_mutex);
2391 if (khugepaged_enabled() && khugepaged_thread)
2392 set_recommended_min_free_kbytes();
2393 mutex_unlock(&khugepaged_mutex);