1 // SPDX-License-Identifier: GPL-2.0
3 * KFENCE guarded object allocator and fault handling.
5 * Copyright (C) 2020, Google LLC.
8 #define pr_fmt(fmt) "kfence: " fmt
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/sysctl.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
35 #include <asm/kfence.h>
39 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
40 #define KFENCE_WARN_ON(cond) \
42 const bool __cond = WARN_ON(cond); \
43 if (unlikely(__cond)) { \
44 WRITE_ONCE(kfence_enabled, false); \
45 disabled_by_warn = true; \
50 /* === Data ================================================================= */
52 static bool kfence_enabled __read_mostly;
53 static bool disabled_by_warn __read_mostly;
55 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
61 #define MODULE_PARAM_PREFIX "kfence."
63 static int kfence_enable_late(void);
64 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
67 int ret = kstrtoul(val, 0, &num);
72 /* Using 0 to indicate KFENCE is disabled. */
73 if (!num && READ_ONCE(kfence_enabled)) {
74 pr_info("disabled\n");
75 WRITE_ONCE(kfence_enabled, false);
78 *((unsigned long *)kp->arg) = num;
80 if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81 return disabled_by_warn ? -EINVAL : kfence_enable_late();
85 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
87 if (!READ_ONCE(kfence_enabled))
88 return sprintf(buffer, "0\n");
90 return param_get_ulong(buffer, kp);
93 static const struct kernel_param_ops sample_interval_param_ops = {
94 .set = param_set_sample_interval,
95 .get = param_get_sample_interval,
97 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
99 /* Pool usage% threshold when currently covered allocations are skipped. */
100 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
103 /* If true, use a deferrable timer. */
104 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
105 module_param_named(deferrable, kfence_deferrable, bool, 0444);
107 /* If true, check all canary bytes on panic. */
108 static bool kfence_check_on_panic __read_mostly;
109 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
111 /* The pool of pages used for guard pages and objects. */
112 char *__kfence_pool __read_mostly;
113 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
116 * Per-object metadata, with one-to-one mapping of object metadata to
117 * backing pages (in __kfence_pool).
119 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
120 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
122 /* Freelist with available objects. */
123 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
124 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
127 * The static key to set up a KFENCE allocation; or if static keys are not used
128 * to gate allocations, to avoid a load and compare if KFENCE is disabled.
130 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
132 /* Gates the allocation, ensuring only one succeeds in a given period. */
133 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
136 * A Counting Bloom filter of allocation coverage: limits currently covered
137 * allocations of the same source filling up the pool.
139 * Assuming a range of 15%-85% unique allocations in the pool at any point in
140 * time, the below parameters provide a probablity of 0.02-0.33 for false
141 * positive hits respectively:
143 * P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
145 #define ALLOC_COVERED_HNUM 2
146 #define ALLOC_COVERED_ORDER (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
147 #define ALLOC_COVERED_SIZE (1 << ALLOC_COVERED_ORDER)
148 #define ALLOC_COVERED_HNEXT(h) hash_32(h, ALLOC_COVERED_ORDER)
149 #define ALLOC_COVERED_MASK (ALLOC_COVERED_SIZE - 1)
150 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
152 /* Stack depth used to determine uniqueness of an allocation. */
153 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
156 * Randomness for stack hashes, making the same collisions across reboots and
157 * different machines less likely.
159 static u32 stack_hash_seed __ro_after_init;
161 /* Statistics counters for debugfs. */
162 enum kfence_counter_id {
163 KFENCE_COUNTER_ALLOCATED,
164 KFENCE_COUNTER_ALLOCS,
165 KFENCE_COUNTER_FREES,
166 KFENCE_COUNTER_ZOMBIES,
168 KFENCE_COUNTER_SKIP_INCOMPAT,
169 KFENCE_COUNTER_SKIP_CAPACITY,
170 KFENCE_COUNTER_SKIP_COVERED,
171 KFENCE_COUNTER_COUNT,
173 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
174 static const char *const counter_names[] = {
175 [KFENCE_COUNTER_ALLOCATED] = "currently allocated",
176 [KFENCE_COUNTER_ALLOCS] = "total allocations",
177 [KFENCE_COUNTER_FREES] = "total frees",
178 [KFENCE_COUNTER_ZOMBIES] = "zombie allocations",
179 [KFENCE_COUNTER_BUGS] = "total bugs",
180 [KFENCE_COUNTER_SKIP_INCOMPAT] = "skipped allocations (incompatible)",
181 [KFENCE_COUNTER_SKIP_CAPACITY] = "skipped allocations (capacity)",
182 [KFENCE_COUNTER_SKIP_COVERED] = "skipped allocations (covered)",
184 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
186 /* === Internals ============================================================ */
188 static inline bool should_skip_covered(void)
190 unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
192 return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
195 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
197 num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
198 num_entries = filter_irq_stacks(stack_entries, num_entries);
199 return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
203 * Adds (or subtracts) count @val for allocation stack trace hash
204 * @alloc_stack_hash from Counting Bloom filter.
206 static void alloc_covered_add(u32 alloc_stack_hash, int val)
210 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
211 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
212 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
217 * Returns true if the allocation stack trace hash @alloc_stack_hash is
218 * currently contained (non-zero count) in Counting Bloom filter.
220 static bool alloc_covered_contains(u32 alloc_stack_hash)
224 for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
225 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
227 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
233 static bool kfence_protect(unsigned long addr)
235 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
238 static bool kfence_unprotect(unsigned long addr)
240 return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
243 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
245 unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
246 unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
248 /* The checks do not affect performance; only called from slow-paths. */
250 /* Only call with a pointer into kfence_metadata. */
251 if (KFENCE_WARN_ON(meta < kfence_metadata ||
252 meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
256 * This metadata object only ever maps to 1 page; verify that the stored
257 * address is in the expected range.
259 if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
266 * Update the object's metadata state, including updating the alloc/free stacks
267 * depending on the state transition.
270 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
271 unsigned long *stack_entries, size_t num_stack_entries)
273 struct kfence_track *track =
274 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
276 lockdep_assert_held(&meta->lock);
279 memcpy(track->stack_entries, stack_entries,
280 num_stack_entries * sizeof(stack_entries[0]));
283 * Skip over 1 (this) functions; noinline ensures we do not
284 * accidentally skip over the caller by never inlining.
286 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
288 track->num_stack_entries = num_stack_entries;
289 track->pid = task_pid_nr(current);
290 track->cpu = raw_smp_processor_id();
291 track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
294 * Pairs with READ_ONCE() in
295 * kfence_shutdown_cache(),
296 * kfence_handle_page_fault().
298 WRITE_ONCE(meta->state, next);
301 /* Write canary byte to @addr. */
302 static inline bool set_canary_byte(u8 *addr)
304 *addr = KFENCE_CANARY_PATTERN(addr);
308 /* Check canary byte at @addr. */
309 static inline bool check_canary_byte(u8 *addr)
311 struct kfence_metadata *meta;
314 if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
317 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
319 meta = addr_to_metadata((unsigned long)addr);
320 raw_spin_lock_irqsave(&meta->lock, flags);
321 kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
322 raw_spin_unlock_irqrestore(&meta->lock, flags);
327 /* __always_inline this to ensure we won't do an indirect call to fn. */
328 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
330 const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
334 * We'll iterate over each canary byte per-side until fn() returns
335 * false. However, we'll still iterate over the canary bytes to the
336 * right of the object even if there was an error in the canary bytes to
337 * the left of the object. Specifically, if check_canary_byte()
338 * generates an error, showing both sides might give more clues as to
339 * what the error is about when displaying which bytes were corrupted.
342 /* Apply to left of object. */
343 for (addr = pageaddr; addr < meta->addr; addr++) {
348 /* Apply to right of object. */
349 for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
355 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
356 unsigned long *stack_entries, size_t num_stack_entries,
357 u32 alloc_stack_hash)
359 struct kfence_metadata *meta = NULL;
364 /* Try to obtain a free object. */
365 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
366 if (!list_empty(&kfence_freelist)) {
367 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
368 list_del_init(&meta->list);
370 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
372 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
376 if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
378 * This is extremely unlikely -- we are reporting on a
379 * use-after-free, which locked meta->lock, and the reporting
380 * code via printk calls kmalloc() which ends up in
381 * kfence_alloc() and tries to grab the same object that we're
382 * reporting on. While it has never been observed, lockdep does
383 * report that there is a possibility of deadlock. Fix it by
384 * using trylock and bailing out gracefully.
386 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
387 /* Put the object back on the freelist. */
388 list_add_tail(&meta->list, &kfence_freelist);
389 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
394 meta->addr = metadata_to_pageaddr(meta);
395 /* Unprotect if we're reusing this page. */
396 if (meta->state == KFENCE_OBJECT_FREED)
397 kfence_unprotect(meta->addr);
400 * Note: for allocations made before RNG initialization, will always
401 * return zero. We still benefit from enabling KFENCE as early as
402 * possible, even when the RNG is not yet available, as this will allow
403 * KFENCE to detect bugs due to earlier allocations. The only downside
404 * is that the out-of-bounds accesses detected are deterministic for
407 if (prandom_u32_max(2)) {
408 /* Allocate on the "right" side, re-calculate address. */
409 meta->addr += PAGE_SIZE - size;
410 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
413 addr = (void *)meta->addr;
415 /* Update remaining metadata. */
416 metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
417 /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
418 WRITE_ONCE(meta->cache, cache);
420 meta->alloc_stack_hash = alloc_stack_hash;
421 raw_spin_unlock_irqrestore(&meta->lock, flags);
423 alloc_covered_add(alloc_stack_hash, 1);
425 /* Set required slab fields. */
426 slab = virt_to_slab((void *)meta->addr);
427 slab->slab_cache = cache;
428 #if defined(CONFIG_SLUB)
430 #elif defined(CONFIG_SLAB)
434 /* Memory initialization. */
435 for_each_canary(meta, set_canary_byte);
438 * We check slab_want_init_on_alloc() ourselves, rather than letting
439 * SL*B do the initialization, as otherwise we might overwrite KFENCE's
442 if (unlikely(slab_want_init_on_alloc(gfp, cache)))
443 memzero_explicit(addr, size);
447 if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
448 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
450 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
451 atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
456 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
458 struct kcsan_scoped_access assert_page_exclusive;
462 raw_spin_lock_irqsave(&meta->lock, flags);
464 if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
465 /* Invalid or double-free, bail out. */
466 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
467 kfence_report_error((unsigned long)addr, false, NULL, meta,
468 KFENCE_ERROR_INVALID_FREE);
469 raw_spin_unlock_irqrestore(&meta->lock, flags);
473 /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
474 kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
475 KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
476 &assert_page_exclusive);
478 if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
479 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
481 /* Restore page protection if there was an OOB access. */
482 if (meta->unprotected_page) {
483 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
484 kfence_protect(meta->unprotected_page);
485 meta->unprotected_page = 0;
488 /* Mark the object as freed. */
489 metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
490 init = slab_want_init_on_free(meta->cache);
491 raw_spin_unlock_irqrestore(&meta->lock, flags);
493 alloc_covered_add(meta->alloc_stack_hash, -1);
495 /* Check canary bytes for memory corruption. */
496 for_each_canary(meta, check_canary_byte);
499 * Clear memory if init-on-free is set. While we protect the page, the
500 * data is still there, and after a use-after-free is detected, we
501 * unprotect the page, so the data is still accessible.
503 if (!zombie && unlikely(init))
504 memzero_explicit(addr, meta->size);
506 /* Protect to detect use-after-frees. */
507 kfence_protect((unsigned long)addr);
509 kcsan_end_scoped_access(&assert_page_exclusive);
511 /* Add it to the tail of the freelist for reuse. */
512 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
513 KFENCE_WARN_ON(!list_empty(&meta->list));
514 list_add_tail(&meta->list, &kfence_freelist);
515 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
517 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
518 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
520 /* See kfence_shutdown_cache(). */
521 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
525 static void rcu_guarded_free(struct rcu_head *h)
527 struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
529 kfence_guarded_free((void *)meta->addr, meta, false);
533 * Initialization of the KFENCE pool after its allocation.
534 * Returns 0 on success; otherwise returns the address up to
535 * which partial initialization succeeded.
537 static unsigned long kfence_init_pool(void)
539 unsigned long addr = (unsigned long)__kfence_pool;
543 if (!arch_kfence_init_pool())
546 pages = virt_to_page(addr);
549 * Set up object pages: they must have PG_slab set, to avoid freeing
550 * these as real pages.
552 * We also want to avoid inserting kfence_free() in the kfree()
553 * fast-path in SLUB, and therefore need to ensure kfree() correctly
554 * enters __slab_free() slow-path.
556 for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
557 struct slab *slab = page_slab(&pages[i]);
562 /* Verify we do not have a compound head page. */
563 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
566 __folio_set_slab(slab_folio(slab));
568 slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
574 * Protect the first 2 pages. The first page is mostly unnecessary, and
575 * merely serves as an extended guard page. However, adding one
576 * additional page in the beginning gives us an even number of pages,
577 * which simplifies the mapping of address to metadata index.
579 for (i = 0; i < 2; i++) {
580 if (unlikely(!kfence_protect(addr)))
586 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
587 struct kfence_metadata *meta = &kfence_metadata[i];
589 /* Initialize metadata. */
590 INIT_LIST_HEAD(&meta->list);
591 raw_spin_lock_init(&meta->lock);
592 meta->state = KFENCE_OBJECT_UNUSED;
593 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
594 list_add_tail(&meta->list, &kfence_freelist);
596 /* Protect the right redzone. */
597 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
600 addr += 2 * PAGE_SIZE;
604 * The pool is live and will never be deallocated from this point on.
605 * Remove the pool object from the kmemleak object tree, as it would
606 * otherwise overlap with allocations returned by kfence_alloc(), which
607 * are registered with kmemleak through the slab post-alloc hook.
609 kmemleak_free(__kfence_pool);
614 static bool __init kfence_init_pool_early(void)
621 addr = kfence_init_pool();
627 * Only release unprotected pages, and do not try to go back and change
628 * page attributes due to risk of failing to do so as well. If changing
629 * page attributes for some pages fails, it is very likely that it also
630 * fails for the first page, and therefore expect addr==__kfence_pool in
631 * most failure cases.
633 for (char *p = (char *)addr; p < __kfence_pool + KFENCE_POOL_SIZE; p += PAGE_SIZE) {
634 struct slab *slab = virt_to_slab(p);
639 slab->memcg_data = 0;
641 __folio_clear_slab(slab_folio(slab));
643 memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
644 __kfence_pool = NULL;
648 static bool kfence_init_pool_late(void)
650 unsigned long addr, free_size;
652 addr = kfence_init_pool();
658 free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
659 #ifdef CONFIG_CONTIG_ALLOC
660 free_contig_range(page_to_pfn(virt_to_page(addr)), free_size / PAGE_SIZE);
662 free_pages_exact((void *)addr, free_size);
664 __kfence_pool = NULL;
668 /* === DebugFS Interface ==================================================== */
670 static int stats_show(struct seq_file *seq, void *v)
674 seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
675 for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
676 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
680 DEFINE_SHOW_ATTRIBUTE(stats);
683 * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
684 * start_object() and next_object() return the object index + 1, because NULL is used
687 static void *start_object(struct seq_file *seq, loff_t *pos)
689 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
690 return (void *)((long)*pos + 1);
694 static void stop_object(struct seq_file *seq, void *v)
698 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
701 if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
702 return (void *)((long)*pos + 1);
706 static int show_object(struct seq_file *seq, void *v)
708 struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
711 raw_spin_lock_irqsave(&meta->lock, flags);
712 kfence_print_object(seq, meta);
713 raw_spin_unlock_irqrestore(&meta->lock, flags);
714 seq_puts(seq, "---------------------------------\n");
719 static const struct seq_operations object_seqops = {
720 .start = start_object,
726 static int open_objects(struct inode *inode, struct file *file)
728 return seq_open(file, &object_seqops);
731 static const struct file_operations objects_fops = {
732 .open = open_objects,
735 .release = seq_release,
738 static int __init kfence_debugfs_init(void)
740 struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
742 debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
743 debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
747 late_initcall(kfence_debugfs_init);
749 /* === Panic Notifier ====================================================== */
751 static void kfence_check_all_canary(void)
755 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
756 struct kfence_metadata *meta = &kfence_metadata[i];
758 if (meta->state == KFENCE_OBJECT_ALLOCATED)
759 for_each_canary(meta, check_canary_byte);
763 static int kfence_check_canary_callback(struct notifier_block *nb,
764 unsigned long reason, void *arg)
766 kfence_check_all_canary();
770 static struct notifier_block kfence_check_canary_notifier = {
771 .notifier_call = kfence_check_canary_callback,
774 /* === Allocation Gate Timer ================================================ */
776 static struct delayed_work kfence_timer;
778 #ifdef CONFIG_KFENCE_STATIC_KEYS
779 /* Wait queue to wake up allocation-gate timer task. */
780 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
782 static void wake_up_kfence_timer(struct irq_work *work)
784 wake_up(&allocation_wait);
786 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
790 * Set up delayed work, which will enable and disable the static key. We need to
791 * use a work queue (rather than a simple timer), since enabling and disabling a
792 * static key cannot be done from an interrupt.
794 * Note: Toggling a static branch currently causes IPIs, and here we'll end up
795 * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
796 * more aggressive sampling intervals), we could get away with a variant that
797 * avoids IPIs, at the cost of not immediately capturing allocations if the
798 * instructions remain cached.
800 static void toggle_allocation_gate(struct work_struct *work)
802 if (!READ_ONCE(kfence_enabled))
805 atomic_set(&kfence_allocation_gate, 0);
806 #ifdef CONFIG_KFENCE_STATIC_KEYS
807 /* Enable static key, and await allocation to happen. */
808 static_branch_enable(&kfence_allocation_key);
810 if (sysctl_hung_task_timeout_secs) {
812 * During low activity with no allocations we might wait a
813 * while; let's avoid the hung task warning.
815 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
816 sysctl_hung_task_timeout_secs * HZ / 2);
818 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
821 /* Disable static key and reset timer. */
822 static_branch_disable(&kfence_allocation_key);
824 queue_delayed_work(system_unbound_wq, &kfence_timer,
825 msecs_to_jiffies(kfence_sample_interval));
828 /* === Public interface ===================================================== */
830 void __init kfence_alloc_pool(void)
832 if (!kfence_sample_interval)
835 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
838 pr_err("failed to allocate pool\n");
841 static void kfence_init_enable(void)
843 if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
844 static_branch_enable(&kfence_allocation_key);
846 if (kfence_deferrable)
847 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
849 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
851 if (kfence_check_on_panic)
852 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
854 WRITE_ONCE(kfence_enabled, true);
855 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
857 pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
858 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
859 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
862 void __init kfence_init(void)
864 stack_hash_seed = (u32)random_get_entropy();
866 /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
867 if (!kfence_sample_interval)
870 if (!kfence_init_pool_early()) {
871 pr_err("%s failed\n", __func__);
875 kfence_init_enable();
878 static int kfence_init_late(void)
880 const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
881 #ifdef CONFIG_CONTIG_ALLOC
884 pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
887 __kfence_pool = page_to_virt(pages);
889 if (nr_pages > MAX_ORDER_NR_PAGES) {
890 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
893 __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
898 if (!kfence_init_pool_late()) {
899 pr_err("%s failed\n", __func__);
903 kfence_init_enable();
907 static int kfence_enable_late(void)
910 return kfence_init_late();
912 WRITE_ONCE(kfence_enabled, true);
913 queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
914 pr_info("re-enabled\n");
918 void kfence_shutdown_cache(struct kmem_cache *s)
921 struct kfence_metadata *meta;
924 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
927 meta = &kfence_metadata[i];
930 * If we observe some inconsistent cache and state pair where we
931 * should have returned false here, cache destruction is racing
932 * with either kmem_cache_alloc() or kmem_cache_free(). Taking
933 * the lock will not help, as different critical section
934 * serialization will have the same outcome.
936 if (READ_ONCE(meta->cache) != s ||
937 READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
940 raw_spin_lock_irqsave(&meta->lock, flags);
941 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
942 raw_spin_unlock_irqrestore(&meta->lock, flags);
946 * This cache still has allocations, and we should not
947 * release them back into the freelist so they can still
948 * safely be used and retain the kernel's default
949 * behaviour of keeping the allocations alive (leak the
950 * cache); however, they effectively become "zombie
951 * allocations" as the KFENCE objects are the only ones
952 * still in use and the owning cache is being destroyed.
954 * We mark them freed, so that any subsequent use shows
955 * more useful error messages that will include stack
956 * traces of the user of the object, the original
957 * allocation, and caller to shutdown_cache().
959 kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
963 for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
964 meta = &kfence_metadata[i];
967 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
970 raw_spin_lock_irqsave(&meta->lock, flags);
971 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
973 raw_spin_unlock_irqrestore(&meta->lock, flags);
977 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
979 unsigned long stack_entries[KFENCE_STACK_DEPTH];
980 size_t num_stack_entries;
981 u32 alloc_stack_hash;
984 * Perform size check before switching kfence_allocation_gate, so that
985 * we don't disable KFENCE without making an allocation.
987 if (size > PAGE_SIZE) {
988 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
993 * Skip allocations from non-default zones, including DMA. We cannot
994 * guarantee that pages in the KFENCE pool will have the requested
995 * properties (e.g. reside in DMAable memory).
997 if ((flags & GFP_ZONEMASK) ||
998 (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
999 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1003 if (atomic_inc_return(&kfence_allocation_gate) > 1)
1005 #ifdef CONFIG_KFENCE_STATIC_KEYS
1007 * waitqueue_active() is fully ordered after the update of
1008 * kfence_allocation_gate per atomic_inc_return().
1010 if (waitqueue_active(&allocation_wait)) {
1012 * Calling wake_up() here may deadlock when allocations happen
1013 * from within timer code. Use an irq_work to defer it.
1015 irq_work_queue(&wake_up_kfence_timer_work);
1019 if (!READ_ONCE(kfence_enabled))
1022 num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1025 * Do expensive check for coverage of allocation in slow-path after
1026 * allocation_gate has already become non-zero, even though it might
1027 * mean not making any allocation within a given sample interval.
1029 * This ensures reasonable allocation coverage when the pool is almost
1030 * full, including avoiding long-lived allocations of the same source
1031 * filling up the pool (e.g. pagecache allocations).
1033 alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1034 if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1035 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1039 return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1043 size_t kfence_ksize(const void *addr)
1045 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1048 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1049 * either a use-after-free or invalid access.
1051 return meta ? meta->size : 0;
1054 void *kfence_object_start(const void *addr)
1056 const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1059 * Read locklessly -- if there is a race with __kfence_alloc(), this is
1060 * either a use-after-free or invalid access.
1062 return meta ? (void *)meta->addr : NULL;
1065 void __kfence_free(void *addr)
1067 struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1070 KFENCE_WARN_ON(meta->objcg);
1073 * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1074 * the object, as the object page may be recycled for other-typed
1075 * objects once it has been freed. meta->cache may be NULL if the cache
1078 if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1079 call_rcu(&meta->rcu_head, rcu_guarded_free);
1081 kfence_guarded_free(addr, meta, false);
1084 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1086 const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1087 struct kfence_metadata *to_report = NULL;
1088 enum kfence_error_type error_type;
1089 unsigned long flags;
1091 if (!is_kfence_address((void *)addr))
1094 if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1095 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1097 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1099 if (page_index % 2) {
1100 /* This is a redzone, report a buffer overflow. */
1101 struct kfence_metadata *meta;
1104 meta = addr_to_metadata(addr - PAGE_SIZE);
1105 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1107 /* Data race ok; distance calculation approximate. */
1108 distance = addr - data_race(meta->addr + meta->size);
1111 meta = addr_to_metadata(addr + PAGE_SIZE);
1112 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1113 /* Data race ok; distance calculation approximate. */
1114 if (!to_report || distance > data_race(meta->addr) - addr)
1121 raw_spin_lock_irqsave(&to_report->lock, flags);
1122 to_report->unprotected_page = addr;
1123 error_type = KFENCE_ERROR_OOB;
1126 * If the object was freed before we took the look we can still
1127 * report this as an OOB -- the report will simply show the
1128 * stacktrace of the free as well.
1131 to_report = addr_to_metadata(addr);
1135 raw_spin_lock_irqsave(&to_report->lock, flags);
1136 error_type = KFENCE_ERROR_UAF;
1138 * We may race with __kfence_alloc(), and it is possible that a
1139 * freed object may be reallocated. We simply report this as a
1140 * use-after-free, with the stack trace showing the place where
1141 * the object was re-allocated.
1147 kfence_report_error(addr, is_write, regs, to_report, error_type);
1148 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1150 /* This may be a UAF or OOB access, but we can't be sure. */
1151 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1154 return kfence_unprotect(addr); /* Unprotect and let access proceed. */