Merge tag 'v5.18'
[platform/kernel/linux-starfive.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/random.h>
25 #include <linux/rcupdate.h>
26 #include <linux/sched/clock.h>
27 #include <linux/sched/sysctl.h>
28 #include <linux/seq_file.h>
29 #include <linux/slab.h>
30 #include <linux/spinlock.h>
31 #include <linux/string.h>
32
33 #include <asm/kfence.h>
34
35 #include "kfence.h"
36
37 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
38 #define KFENCE_WARN_ON(cond)                                                   \
39         ({                                                                     \
40                 const bool __cond = WARN_ON(cond);                             \
41                 if (unlikely(__cond)) {                                        \
42                         WRITE_ONCE(kfence_enabled, false);                     \
43                         disabled_by_warn = true;                               \
44                 }                                                              \
45                 __cond;                                                        \
46         })
47
48 /* === Data ================================================================= */
49
50 static bool kfence_enabled __read_mostly;
51 static bool disabled_by_warn __read_mostly;
52
53 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
54 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
55
56 #ifdef MODULE_PARAM_PREFIX
57 #undef MODULE_PARAM_PREFIX
58 #endif
59 #define MODULE_PARAM_PREFIX "kfence."
60
61 static int kfence_enable_late(void);
62 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
63 {
64         unsigned long num;
65         int ret = kstrtoul(val, 0, &num);
66
67         if (ret < 0)
68                 return ret;
69
70         if (!num) /* Using 0 to indicate KFENCE is disabled. */
71                 WRITE_ONCE(kfence_enabled, false);
72
73         *((unsigned long *)kp->arg) = num;
74
75         if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
76                 return disabled_by_warn ? -EINVAL : kfence_enable_late();
77         return 0;
78 }
79
80 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
81 {
82         if (!READ_ONCE(kfence_enabled))
83                 return sprintf(buffer, "0\n");
84
85         return param_get_ulong(buffer, kp);
86 }
87
88 static const struct kernel_param_ops sample_interval_param_ops = {
89         .set = param_set_sample_interval,
90         .get = param_get_sample_interval,
91 };
92 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
93
94 /* Pool usage% threshold when currently covered allocations are skipped. */
95 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
96 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
97
98 /* If true, use a deferrable timer. */
99 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
100 module_param_named(deferrable, kfence_deferrable, bool, 0444);
101
102 /* The pool of pages used for guard pages and objects. */
103 char *__kfence_pool __read_mostly;
104 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
105
106 /*
107  * Per-object metadata, with one-to-one mapping of object metadata to
108  * backing pages (in __kfence_pool).
109  */
110 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
111 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
112
113 /* Freelist with available objects. */
114 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
115 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
116
117 /*
118  * The static key to set up a KFENCE allocation; or if static keys are not used
119  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
120  */
121 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
122
123 /* Gates the allocation, ensuring only one succeeds in a given period. */
124 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
125
126 /*
127  * A Counting Bloom filter of allocation coverage: limits currently covered
128  * allocations of the same source filling up the pool.
129  *
130  * Assuming a range of 15%-85% unique allocations in the pool at any point in
131  * time, the below parameters provide a probablity of 0.02-0.33 for false
132  * positive hits respectively:
133  *
134  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
135  */
136 #define ALLOC_COVERED_HNUM      2
137 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
138 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
139 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
140 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
141 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
142
143 /* Stack depth used to determine uniqueness of an allocation. */
144 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
145
146 /*
147  * Randomness for stack hashes, making the same collisions across reboots and
148  * different machines less likely.
149  */
150 static u32 stack_hash_seed __ro_after_init;
151
152 /* Statistics counters for debugfs. */
153 enum kfence_counter_id {
154         KFENCE_COUNTER_ALLOCATED,
155         KFENCE_COUNTER_ALLOCS,
156         KFENCE_COUNTER_FREES,
157         KFENCE_COUNTER_ZOMBIES,
158         KFENCE_COUNTER_BUGS,
159         KFENCE_COUNTER_SKIP_INCOMPAT,
160         KFENCE_COUNTER_SKIP_CAPACITY,
161         KFENCE_COUNTER_SKIP_COVERED,
162         KFENCE_COUNTER_COUNT,
163 };
164 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
165 static const char *const counter_names[] = {
166         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
167         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
168         [KFENCE_COUNTER_FREES]          = "total frees",
169         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
170         [KFENCE_COUNTER_BUGS]           = "total bugs",
171         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
172         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
173         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
174 };
175 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
176
177 /* === Internals ============================================================ */
178
179 static inline bool should_skip_covered(void)
180 {
181         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
182
183         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
184 }
185
186 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
187 {
188         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
189         num_entries = filter_irq_stacks(stack_entries, num_entries);
190         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
191 }
192
193 /*
194  * Adds (or subtracts) count @val for allocation stack trace hash
195  * @alloc_stack_hash from Counting Bloom filter.
196  */
197 static void alloc_covered_add(u32 alloc_stack_hash, int val)
198 {
199         int i;
200
201         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
202                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
203                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
204         }
205 }
206
207 /*
208  * Returns true if the allocation stack trace hash @alloc_stack_hash is
209  * currently contained (non-zero count) in Counting Bloom filter.
210  */
211 static bool alloc_covered_contains(u32 alloc_stack_hash)
212 {
213         int i;
214
215         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
216                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
217                         return false;
218                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
219         }
220
221         return true;
222 }
223
224 static bool kfence_protect(unsigned long addr)
225 {
226         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
227 }
228
229 static bool kfence_unprotect(unsigned long addr)
230 {
231         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
232 }
233
234 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
235 {
236         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
237         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
238
239         /* The checks do not affect performance; only called from slow-paths. */
240
241         /* Only call with a pointer into kfence_metadata. */
242         if (KFENCE_WARN_ON(meta < kfence_metadata ||
243                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
244                 return 0;
245
246         /*
247          * This metadata object only ever maps to 1 page; verify that the stored
248          * address is in the expected range.
249          */
250         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
251                 return 0;
252
253         return pageaddr;
254 }
255
256 /*
257  * Update the object's metadata state, including updating the alloc/free stacks
258  * depending on the state transition.
259  */
260 static noinline void
261 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
262                       unsigned long *stack_entries, size_t num_stack_entries)
263 {
264         struct kfence_track *track =
265                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
266
267         lockdep_assert_held(&meta->lock);
268
269         if (stack_entries) {
270                 memcpy(track->stack_entries, stack_entries,
271                        num_stack_entries * sizeof(stack_entries[0]));
272         } else {
273                 /*
274                  * Skip over 1 (this) functions; noinline ensures we do not
275                  * accidentally skip over the caller by never inlining.
276                  */
277                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
278         }
279         track->num_stack_entries = num_stack_entries;
280         track->pid = task_pid_nr(current);
281         track->cpu = raw_smp_processor_id();
282         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
283
284         /*
285          * Pairs with READ_ONCE() in
286          *      kfence_shutdown_cache(),
287          *      kfence_handle_page_fault().
288          */
289         WRITE_ONCE(meta->state, next);
290 }
291
292 /* Write canary byte to @addr. */
293 static inline bool set_canary_byte(u8 *addr)
294 {
295         *addr = KFENCE_CANARY_PATTERN(addr);
296         return true;
297 }
298
299 /* Check canary byte at @addr. */
300 static inline bool check_canary_byte(u8 *addr)
301 {
302         struct kfence_metadata *meta;
303         unsigned long flags;
304
305         if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
306                 return true;
307
308         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
309
310         meta = addr_to_metadata((unsigned long)addr);
311         raw_spin_lock_irqsave(&meta->lock, flags);
312         kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
313         raw_spin_unlock_irqrestore(&meta->lock, flags);
314
315         return false;
316 }
317
318 /* __always_inline this to ensure we won't do an indirect call to fn. */
319 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
320 {
321         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
322         unsigned long addr;
323
324         /*
325          * We'll iterate over each canary byte per-side until fn() returns
326          * false. However, we'll still iterate over the canary bytes to the
327          * right of the object even if there was an error in the canary bytes to
328          * the left of the object. Specifically, if check_canary_byte()
329          * generates an error, showing both sides might give more clues as to
330          * what the error is about when displaying which bytes were corrupted.
331          */
332
333         /* Apply to left of object. */
334         for (addr = pageaddr; addr < meta->addr; addr++) {
335                 if (!fn((u8 *)addr))
336                         break;
337         }
338
339         /* Apply to right of object. */
340         for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
341                 if (!fn((u8 *)addr))
342                         break;
343         }
344 }
345
346 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
347                                   unsigned long *stack_entries, size_t num_stack_entries,
348                                   u32 alloc_stack_hash)
349 {
350         struct kfence_metadata *meta = NULL;
351         unsigned long flags;
352         struct slab *slab;
353         void *addr;
354
355         /* Try to obtain a free object. */
356         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
357         if (!list_empty(&kfence_freelist)) {
358                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
359                 list_del_init(&meta->list);
360         }
361         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
362         if (!meta) {
363                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
364                 return NULL;
365         }
366
367         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
368                 /*
369                  * This is extremely unlikely -- we are reporting on a
370                  * use-after-free, which locked meta->lock, and the reporting
371                  * code via printk calls kmalloc() which ends up in
372                  * kfence_alloc() and tries to grab the same object that we're
373                  * reporting on. While it has never been observed, lockdep does
374                  * report that there is a possibility of deadlock. Fix it by
375                  * using trylock and bailing out gracefully.
376                  */
377                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
378                 /* Put the object back on the freelist. */
379                 list_add_tail(&meta->list, &kfence_freelist);
380                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
381
382                 return NULL;
383         }
384
385         meta->addr = metadata_to_pageaddr(meta);
386         /* Unprotect if we're reusing this page. */
387         if (meta->state == KFENCE_OBJECT_FREED)
388                 kfence_unprotect(meta->addr);
389
390         /*
391          * Note: for allocations made before RNG initialization, will always
392          * return zero. We still benefit from enabling KFENCE as early as
393          * possible, even when the RNG is not yet available, as this will allow
394          * KFENCE to detect bugs due to earlier allocations. The only downside
395          * is that the out-of-bounds accesses detected are deterministic for
396          * such allocations.
397          */
398         if (prandom_u32_max(2)) {
399                 /* Allocate on the "right" side, re-calculate address. */
400                 meta->addr += PAGE_SIZE - size;
401                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
402         }
403
404         addr = (void *)meta->addr;
405
406         /* Update remaining metadata. */
407         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
408         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
409         WRITE_ONCE(meta->cache, cache);
410         meta->size = size;
411         meta->alloc_stack_hash = alloc_stack_hash;
412         raw_spin_unlock_irqrestore(&meta->lock, flags);
413
414         alloc_covered_add(alloc_stack_hash, 1);
415
416         /* Set required slab fields. */
417         slab = virt_to_slab((void *)meta->addr);
418         slab->slab_cache = cache;
419 #if defined(CONFIG_SLUB)
420         slab->objects = 1;
421 #elif defined(CONFIG_SLAB)
422         slab->s_mem = addr;
423 #endif
424
425         /* Memory initialization. */
426         for_each_canary(meta, set_canary_byte);
427
428         /*
429          * We check slab_want_init_on_alloc() ourselves, rather than letting
430          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
431          * redzone.
432          */
433         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
434                 memzero_explicit(addr, size);
435         if (cache->ctor)
436                 cache->ctor(addr);
437
438         if (CONFIG_KFENCE_STRESS_TEST_FAULTS && !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS))
439                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
440
441         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
442         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
443
444         return addr;
445 }
446
447 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
448 {
449         struct kcsan_scoped_access assert_page_exclusive;
450         unsigned long flags;
451         bool init;
452
453         raw_spin_lock_irqsave(&meta->lock, flags);
454
455         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
456                 /* Invalid or double-free, bail out. */
457                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
458                 kfence_report_error((unsigned long)addr, false, NULL, meta,
459                                     KFENCE_ERROR_INVALID_FREE);
460                 raw_spin_unlock_irqrestore(&meta->lock, flags);
461                 return;
462         }
463
464         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
465         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
466                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
467                                   &assert_page_exclusive);
468
469         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
470                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
471
472         /* Restore page protection if there was an OOB access. */
473         if (meta->unprotected_page) {
474                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
475                 kfence_protect(meta->unprotected_page);
476                 meta->unprotected_page = 0;
477         }
478
479         /* Mark the object as freed. */
480         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
481         init = slab_want_init_on_free(meta->cache);
482         raw_spin_unlock_irqrestore(&meta->lock, flags);
483
484         alloc_covered_add(meta->alloc_stack_hash, -1);
485
486         /* Check canary bytes for memory corruption. */
487         for_each_canary(meta, check_canary_byte);
488
489         /*
490          * Clear memory if init-on-free is set. While we protect the page, the
491          * data is still there, and after a use-after-free is detected, we
492          * unprotect the page, so the data is still accessible.
493          */
494         if (!zombie && unlikely(init))
495                 memzero_explicit(addr, meta->size);
496
497         /* Protect to detect use-after-frees. */
498         kfence_protect((unsigned long)addr);
499
500         kcsan_end_scoped_access(&assert_page_exclusive);
501         if (!zombie) {
502                 /* Add it to the tail of the freelist for reuse. */
503                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
504                 KFENCE_WARN_ON(!list_empty(&meta->list));
505                 list_add_tail(&meta->list, &kfence_freelist);
506                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
507
508                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
509                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
510         } else {
511                 /* See kfence_shutdown_cache(). */
512                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
513         }
514 }
515
516 static void rcu_guarded_free(struct rcu_head *h)
517 {
518         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
519
520         kfence_guarded_free((void *)meta->addr, meta, false);
521 }
522
523 /*
524  * Initialization of the KFENCE pool after its allocation.
525  * Returns 0 on success; otherwise returns the address up to
526  * which partial initialization succeeded.
527  */
528 static unsigned long kfence_init_pool(void)
529 {
530         unsigned long addr = (unsigned long)__kfence_pool;
531         struct page *pages;
532         int i;
533
534         if (!arch_kfence_init_pool())
535                 return addr;
536
537         pages = virt_to_page(addr);
538
539         /*
540          * Set up object pages: they must have PG_slab set, to avoid freeing
541          * these as real pages.
542          *
543          * We also want to avoid inserting kfence_free() in the kfree()
544          * fast-path in SLUB, and therefore need to ensure kfree() correctly
545          * enters __slab_free() slow-path.
546          */
547         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
548                 struct slab *slab = page_slab(&pages[i]);
549
550                 if (!i || (i % 2))
551                         continue;
552
553                 /* Verify we do not have a compound head page. */
554                 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
555                         return addr;
556
557                 __folio_set_slab(slab_folio(slab));
558 #ifdef CONFIG_MEMCG
559                 slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
560                                    MEMCG_DATA_OBJCGS;
561 #endif
562         }
563
564         /*
565          * Protect the first 2 pages. The first page is mostly unnecessary, and
566          * merely serves as an extended guard page. However, adding one
567          * additional page in the beginning gives us an even number of pages,
568          * which simplifies the mapping of address to metadata index.
569          */
570         for (i = 0; i < 2; i++) {
571                 if (unlikely(!kfence_protect(addr)))
572                         return addr;
573
574                 addr += PAGE_SIZE;
575         }
576
577         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
578                 struct kfence_metadata *meta = &kfence_metadata[i];
579
580                 /* Initialize metadata. */
581                 INIT_LIST_HEAD(&meta->list);
582                 raw_spin_lock_init(&meta->lock);
583                 meta->state = KFENCE_OBJECT_UNUSED;
584                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
585                 list_add_tail(&meta->list, &kfence_freelist);
586
587                 /* Protect the right redzone. */
588                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
589                         return addr;
590
591                 addr += 2 * PAGE_SIZE;
592         }
593
594         /*
595          * The pool is live and will never be deallocated from this point on.
596          * Remove the pool object from the kmemleak object tree, as it would
597          * otherwise overlap with allocations returned by kfence_alloc(), which
598          * are registered with kmemleak through the slab post-alloc hook.
599          */
600         kmemleak_free(__kfence_pool);
601
602         return 0;
603 }
604
605 static bool __init kfence_init_pool_early(void)
606 {
607         unsigned long addr;
608
609         if (!__kfence_pool)
610                 return false;
611
612         addr = kfence_init_pool();
613
614         if (!addr)
615                 return true;
616
617         /*
618          * Only release unprotected pages, and do not try to go back and change
619          * page attributes due to risk of failing to do so as well. If changing
620          * page attributes for some pages fails, it is very likely that it also
621          * fails for the first page, and therefore expect addr==__kfence_pool in
622          * most failure cases.
623          */
624         for (char *p = (char *)addr; p < __kfence_pool + KFENCE_POOL_SIZE; p += PAGE_SIZE) {
625                 struct slab *slab = virt_to_slab(p);
626
627                 if (!slab)
628                         continue;
629 #ifdef CONFIG_MEMCG
630                 slab->memcg_data = 0;
631 #endif
632                 __folio_clear_slab(slab_folio(slab));
633         }
634         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
635         __kfence_pool = NULL;
636         return false;
637 }
638
639 static bool kfence_init_pool_late(void)
640 {
641         unsigned long addr, free_size;
642
643         addr = kfence_init_pool();
644
645         if (!addr)
646                 return true;
647
648         /* Same as above. */
649         free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
650 #ifdef CONFIG_CONTIG_ALLOC
651         free_contig_range(page_to_pfn(virt_to_page(addr)), free_size / PAGE_SIZE);
652 #else
653         free_pages_exact((void *)addr, free_size);
654 #endif
655         __kfence_pool = NULL;
656         return false;
657 }
658
659 /* === DebugFS Interface ==================================================== */
660
661 static int stats_show(struct seq_file *seq, void *v)
662 {
663         int i;
664
665         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
666         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
667                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
668
669         return 0;
670 }
671 DEFINE_SHOW_ATTRIBUTE(stats);
672
673 /*
674  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
675  * start_object() and next_object() return the object index + 1, because NULL is used
676  * to stop iteration.
677  */
678 static void *start_object(struct seq_file *seq, loff_t *pos)
679 {
680         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
681                 return (void *)((long)*pos + 1);
682         return NULL;
683 }
684
685 static void stop_object(struct seq_file *seq, void *v)
686 {
687 }
688
689 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
690 {
691         ++*pos;
692         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
693                 return (void *)((long)*pos + 1);
694         return NULL;
695 }
696
697 static int show_object(struct seq_file *seq, void *v)
698 {
699         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
700         unsigned long flags;
701
702         raw_spin_lock_irqsave(&meta->lock, flags);
703         kfence_print_object(seq, meta);
704         raw_spin_unlock_irqrestore(&meta->lock, flags);
705         seq_puts(seq, "---------------------------------\n");
706
707         return 0;
708 }
709
710 static const struct seq_operations object_seqops = {
711         .start = start_object,
712         .next = next_object,
713         .stop = stop_object,
714         .show = show_object,
715 };
716
717 static int open_objects(struct inode *inode, struct file *file)
718 {
719         return seq_open(file, &object_seqops);
720 }
721
722 static const struct file_operations objects_fops = {
723         .open = open_objects,
724         .read = seq_read,
725         .llseek = seq_lseek,
726         .release = seq_release,
727 };
728
729 static int __init kfence_debugfs_init(void)
730 {
731         struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
732
733         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
734         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
735         return 0;
736 }
737
738 late_initcall(kfence_debugfs_init);
739
740 /* === Allocation Gate Timer ================================================ */
741
742 static struct delayed_work kfence_timer;
743
744 #ifdef CONFIG_KFENCE_STATIC_KEYS
745 /* Wait queue to wake up allocation-gate timer task. */
746 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
747
748 static void wake_up_kfence_timer(struct irq_work *work)
749 {
750         wake_up(&allocation_wait);
751 }
752 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
753 #endif
754
755 /*
756  * Set up delayed work, which will enable and disable the static key. We need to
757  * use a work queue (rather than a simple timer), since enabling and disabling a
758  * static key cannot be done from an interrupt.
759  *
760  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
761  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
762  * more aggressive sampling intervals), we could get away with a variant that
763  * avoids IPIs, at the cost of not immediately capturing allocations if the
764  * instructions remain cached.
765  */
766 static void toggle_allocation_gate(struct work_struct *work)
767 {
768         if (!READ_ONCE(kfence_enabled))
769                 return;
770
771         atomic_set(&kfence_allocation_gate, 0);
772 #ifdef CONFIG_KFENCE_STATIC_KEYS
773         /* Enable static key, and await allocation to happen. */
774         static_branch_enable(&kfence_allocation_key);
775
776         if (sysctl_hung_task_timeout_secs) {
777                 /*
778                  * During low activity with no allocations we might wait a
779                  * while; let's avoid the hung task warning.
780                  */
781                 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
782                                         sysctl_hung_task_timeout_secs * HZ / 2);
783         } else {
784                 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
785         }
786
787         /* Disable static key and reset timer. */
788         static_branch_disable(&kfence_allocation_key);
789 #endif
790         queue_delayed_work(system_unbound_wq, &kfence_timer,
791                            msecs_to_jiffies(kfence_sample_interval));
792 }
793
794 /* === Public interface ===================================================== */
795
796 void __init kfence_alloc_pool(void)
797 {
798         if (!kfence_sample_interval)
799                 return;
800
801         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
802
803         if (!__kfence_pool)
804                 pr_err("failed to allocate pool\n");
805 }
806
807 static void kfence_init_enable(void)
808 {
809         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
810                 static_branch_enable(&kfence_allocation_key);
811
812         if (kfence_deferrable)
813                 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
814         else
815                 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
816
817         WRITE_ONCE(kfence_enabled, true);
818         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
819
820         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
821                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
822                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
823 }
824
825 void __init kfence_init(void)
826 {
827         stack_hash_seed = (u32)random_get_entropy();
828
829         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
830         if (!kfence_sample_interval)
831                 return;
832
833         if (!kfence_init_pool_early()) {
834                 pr_err("%s failed\n", __func__);
835                 return;
836         }
837
838         kfence_init_enable();
839 }
840
841 static int kfence_init_late(void)
842 {
843         const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
844 #ifdef CONFIG_CONTIG_ALLOC
845         struct page *pages;
846
847         pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
848         if (!pages)
849                 return -ENOMEM;
850         __kfence_pool = page_to_virt(pages);
851 #else
852         if (nr_pages > MAX_ORDER_NR_PAGES) {
853                 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
854                 return -EINVAL;
855         }
856         __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
857         if (!__kfence_pool)
858                 return -ENOMEM;
859 #endif
860
861         if (!kfence_init_pool_late()) {
862                 pr_err("%s failed\n", __func__);
863                 return -EBUSY;
864         }
865
866         kfence_init_enable();
867         return 0;
868 }
869
870 static int kfence_enable_late(void)
871 {
872         if (!__kfence_pool)
873                 return kfence_init_late();
874
875         WRITE_ONCE(kfence_enabled, true);
876         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
877         return 0;
878 }
879
880 void kfence_shutdown_cache(struct kmem_cache *s)
881 {
882         unsigned long flags;
883         struct kfence_metadata *meta;
884         int i;
885
886         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
887                 bool in_use;
888
889                 meta = &kfence_metadata[i];
890
891                 /*
892                  * If we observe some inconsistent cache and state pair where we
893                  * should have returned false here, cache destruction is racing
894                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
895                  * the lock will not help, as different critical section
896                  * serialization will have the same outcome.
897                  */
898                 if (READ_ONCE(meta->cache) != s ||
899                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
900                         continue;
901
902                 raw_spin_lock_irqsave(&meta->lock, flags);
903                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
904                 raw_spin_unlock_irqrestore(&meta->lock, flags);
905
906                 if (in_use) {
907                         /*
908                          * This cache still has allocations, and we should not
909                          * release them back into the freelist so they can still
910                          * safely be used and retain the kernel's default
911                          * behaviour of keeping the allocations alive (leak the
912                          * cache); however, they effectively become "zombie
913                          * allocations" as the KFENCE objects are the only ones
914                          * still in use and the owning cache is being destroyed.
915                          *
916                          * We mark them freed, so that any subsequent use shows
917                          * more useful error messages that will include stack
918                          * traces of the user of the object, the original
919                          * allocation, and caller to shutdown_cache().
920                          */
921                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
922                 }
923         }
924
925         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
926                 meta = &kfence_metadata[i];
927
928                 /* See above. */
929                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
930                         continue;
931
932                 raw_spin_lock_irqsave(&meta->lock, flags);
933                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
934                         meta->cache = NULL;
935                 raw_spin_unlock_irqrestore(&meta->lock, flags);
936         }
937 }
938
939 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
940 {
941         unsigned long stack_entries[KFENCE_STACK_DEPTH];
942         size_t num_stack_entries;
943         u32 alloc_stack_hash;
944
945         /*
946          * Perform size check before switching kfence_allocation_gate, so that
947          * we don't disable KFENCE without making an allocation.
948          */
949         if (size > PAGE_SIZE) {
950                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
951                 return NULL;
952         }
953
954         /*
955          * Skip allocations from non-default zones, including DMA. We cannot
956          * guarantee that pages in the KFENCE pool will have the requested
957          * properties (e.g. reside in DMAable memory).
958          */
959         if ((flags & GFP_ZONEMASK) ||
960             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
961                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
962                 return NULL;
963         }
964
965         if (atomic_inc_return(&kfence_allocation_gate) > 1)
966                 return NULL;
967 #ifdef CONFIG_KFENCE_STATIC_KEYS
968         /*
969          * waitqueue_active() is fully ordered after the update of
970          * kfence_allocation_gate per atomic_inc_return().
971          */
972         if (waitqueue_active(&allocation_wait)) {
973                 /*
974                  * Calling wake_up() here may deadlock when allocations happen
975                  * from within timer code. Use an irq_work to defer it.
976                  */
977                 irq_work_queue(&wake_up_kfence_timer_work);
978         }
979 #endif
980
981         if (!READ_ONCE(kfence_enabled))
982                 return NULL;
983
984         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
985
986         /*
987          * Do expensive check for coverage of allocation in slow-path after
988          * allocation_gate has already become non-zero, even though it might
989          * mean not making any allocation within a given sample interval.
990          *
991          * This ensures reasonable allocation coverage when the pool is almost
992          * full, including avoiding long-lived allocations of the same source
993          * filling up the pool (e.g. pagecache allocations).
994          */
995         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
996         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
997                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
998                 return NULL;
999         }
1000
1001         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1002                                     alloc_stack_hash);
1003 }
1004
1005 size_t kfence_ksize(const void *addr)
1006 {
1007         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1008
1009         /*
1010          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1011          * either a use-after-free or invalid access.
1012          */
1013         return meta ? meta->size : 0;
1014 }
1015
1016 void *kfence_object_start(const void *addr)
1017 {
1018         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1019
1020         /*
1021          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1022          * either a use-after-free or invalid access.
1023          */
1024         return meta ? (void *)meta->addr : NULL;
1025 }
1026
1027 void __kfence_free(void *addr)
1028 {
1029         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1030
1031 #ifdef CONFIG_MEMCG
1032         KFENCE_WARN_ON(meta->objcg);
1033 #endif
1034         /*
1035          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1036          * the object, as the object page may be recycled for other-typed
1037          * objects once it has been freed. meta->cache may be NULL if the cache
1038          * was destroyed.
1039          */
1040         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1041                 call_rcu(&meta->rcu_head, rcu_guarded_free);
1042         else
1043                 kfence_guarded_free(addr, meta, false);
1044 }
1045
1046 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1047 {
1048         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1049         struct kfence_metadata *to_report = NULL;
1050         enum kfence_error_type error_type;
1051         unsigned long flags;
1052
1053         if (!is_kfence_address((void *)addr))
1054                 return false;
1055
1056         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1057                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1058
1059         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1060
1061         if (page_index % 2) {
1062                 /* This is a redzone, report a buffer overflow. */
1063                 struct kfence_metadata *meta;
1064                 int distance = 0;
1065
1066                 meta = addr_to_metadata(addr - PAGE_SIZE);
1067                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1068                         to_report = meta;
1069                         /* Data race ok; distance calculation approximate. */
1070                         distance = addr - data_race(meta->addr + meta->size);
1071                 }
1072
1073                 meta = addr_to_metadata(addr + PAGE_SIZE);
1074                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1075                         /* Data race ok; distance calculation approximate. */
1076                         if (!to_report || distance > data_race(meta->addr) - addr)
1077                                 to_report = meta;
1078                 }
1079
1080                 if (!to_report)
1081                         goto out;
1082
1083                 raw_spin_lock_irqsave(&to_report->lock, flags);
1084                 to_report->unprotected_page = addr;
1085                 error_type = KFENCE_ERROR_OOB;
1086
1087                 /*
1088                  * If the object was freed before we took the look we can still
1089                  * report this as an OOB -- the report will simply show the
1090                  * stacktrace of the free as well.
1091                  */
1092         } else {
1093                 to_report = addr_to_metadata(addr);
1094                 if (!to_report)
1095                         goto out;
1096
1097                 raw_spin_lock_irqsave(&to_report->lock, flags);
1098                 error_type = KFENCE_ERROR_UAF;
1099                 /*
1100                  * We may race with __kfence_alloc(), and it is possible that a
1101                  * freed object may be reallocated. We simply report this as a
1102                  * use-after-free, with the stack trace showing the place where
1103                  * the object was re-allocated.
1104                  */
1105         }
1106
1107 out:
1108         if (to_report) {
1109                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1110                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1111         } else {
1112                 /* This may be a UAF or OOB access, but we can't be sure. */
1113                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1114         }
1115
1116         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1117 }