selftests: net: let big_tcp test cope with slow env
[platform/kernel/linux-rpi.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/seq_file.h>
30 #include <linux/slab.h>
31 #include <linux/spinlock.h>
32 #include <linux/string.h>
33
34 #include <asm/kfence.h>
35
36 #include "kfence.h"
37
38 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
39 #define KFENCE_WARN_ON(cond)                                                   \
40         ({                                                                     \
41                 const bool __cond = WARN_ON(cond);                             \
42                 if (unlikely(__cond)) {                                        \
43                         WRITE_ONCE(kfence_enabled, false);                     \
44                         disabled_by_warn = true;                               \
45                 }                                                              \
46                 __cond;                                                        \
47         })
48
49 /* === Data ================================================================= */
50
51 static bool kfence_enabled __read_mostly;
52 static bool disabled_by_warn __read_mostly;
53
54 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
55 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
56
57 #ifdef MODULE_PARAM_PREFIX
58 #undef MODULE_PARAM_PREFIX
59 #endif
60 #define MODULE_PARAM_PREFIX "kfence."
61
62 static int kfence_enable_late(void);
63 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
64 {
65         unsigned long num;
66         int ret = kstrtoul(val, 0, &num);
67
68         if (ret < 0)
69                 return ret;
70
71         /* Using 0 to indicate KFENCE is disabled. */
72         if (!num && READ_ONCE(kfence_enabled)) {
73                 pr_info("disabled\n");
74                 WRITE_ONCE(kfence_enabled, false);
75         }
76
77         *((unsigned long *)kp->arg) = num;
78
79         if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
80                 return disabled_by_warn ? -EINVAL : kfence_enable_late();
81         return 0;
82 }
83
84 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
85 {
86         if (!READ_ONCE(kfence_enabled))
87                 return sprintf(buffer, "0\n");
88
89         return param_get_ulong(buffer, kp);
90 }
91
92 static const struct kernel_param_ops sample_interval_param_ops = {
93         .set = param_set_sample_interval,
94         .get = param_get_sample_interval,
95 };
96 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
97
98 /* Pool usage% threshold when currently covered allocations are skipped. */
99 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
100 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
101
102 /* If true, use a deferrable timer. */
103 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
104 module_param_named(deferrable, kfence_deferrable, bool, 0444);
105
106 /* If true, check all canary bytes on panic. */
107 static bool kfence_check_on_panic __read_mostly;
108 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
109
110 /* The pool of pages used for guard pages and objects. */
111 char *__kfence_pool __read_mostly;
112 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
113
114 /*
115  * Per-object metadata, with one-to-one mapping of object metadata to
116  * backing pages (in __kfence_pool).
117  */
118 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
119 struct kfence_metadata *kfence_metadata __read_mostly;
120
121 /*
122  * If kfence_metadata is not NULL, it may be accessed by kfence_shutdown_cache().
123  * So introduce kfence_metadata_init to initialize metadata, and then make
124  * kfence_metadata visible after initialization is successful. This prevents
125  * potential UAF or access to uninitialized metadata.
126  */
127 static struct kfence_metadata *kfence_metadata_init __read_mostly;
128
129 /* Freelist with available objects. */
130 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
131 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
132
133 /*
134  * The static key to set up a KFENCE allocation; or if static keys are not used
135  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
136  */
137 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
138
139 /* Gates the allocation, ensuring only one succeeds in a given period. */
140 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
141
142 /*
143  * A Counting Bloom filter of allocation coverage: limits currently covered
144  * allocations of the same source filling up the pool.
145  *
146  * Assuming a range of 15%-85% unique allocations in the pool at any point in
147  * time, the below parameters provide a probablity of 0.02-0.33 for false
148  * positive hits respectively:
149  *
150  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
151  */
152 #define ALLOC_COVERED_HNUM      2
153 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
154 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
155 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
156 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
157 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
158
159 /* Stack depth used to determine uniqueness of an allocation. */
160 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
161
162 /*
163  * Randomness for stack hashes, making the same collisions across reboots and
164  * different machines less likely.
165  */
166 static u32 stack_hash_seed __ro_after_init;
167
168 /* Statistics counters for debugfs. */
169 enum kfence_counter_id {
170         KFENCE_COUNTER_ALLOCATED,
171         KFENCE_COUNTER_ALLOCS,
172         KFENCE_COUNTER_FREES,
173         KFENCE_COUNTER_ZOMBIES,
174         KFENCE_COUNTER_BUGS,
175         KFENCE_COUNTER_SKIP_INCOMPAT,
176         KFENCE_COUNTER_SKIP_CAPACITY,
177         KFENCE_COUNTER_SKIP_COVERED,
178         KFENCE_COUNTER_COUNT,
179 };
180 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
181 static const char *const counter_names[] = {
182         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
183         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
184         [KFENCE_COUNTER_FREES]          = "total frees",
185         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
186         [KFENCE_COUNTER_BUGS]           = "total bugs",
187         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
188         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
189         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
190 };
191 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
192
193 /* === Internals ============================================================ */
194
195 static inline bool should_skip_covered(void)
196 {
197         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
198
199         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
200 }
201
202 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
203 {
204         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
205         num_entries = filter_irq_stacks(stack_entries, num_entries);
206         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
207 }
208
209 /*
210  * Adds (or subtracts) count @val for allocation stack trace hash
211  * @alloc_stack_hash from Counting Bloom filter.
212  */
213 static void alloc_covered_add(u32 alloc_stack_hash, int val)
214 {
215         int i;
216
217         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
218                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
219                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
220         }
221 }
222
223 /*
224  * Returns true if the allocation stack trace hash @alloc_stack_hash is
225  * currently contained (non-zero count) in Counting Bloom filter.
226  */
227 static bool alloc_covered_contains(u32 alloc_stack_hash)
228 {
229         int i;
230
231         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
232                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
233                         return false;
234                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
235         }
236
237         return true;
238 }
239
240 static bool kfence_protect(unsigned long addr)
241 {
242         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
243 }
244
245 static bool kfence_unprotect(unsigned long addr)
246 {
247         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
248 }
249
250 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
251 {
252         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
253         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
254
255         /* The checks do not affect performance; only called from slow-paths. */
256
257         /* Only call with a pointer into kfence_metadata. */
258         if (KFENCE_WARN_ON(meta < kfence_metadata ||
259                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
260                 return 0;
261
262         /*
263          * This metadata object only ever maps to 1 page; verify that the stored
264          * address is in the expected range.
265          */
266         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
267                 return 0;
268
269         return pageaddr;
270 }
271
272 /*
273  * Update the object's metadata state, including updating the alloc/free stacks
274  * depending on the state transition.
275  */
276 static noinline void
277 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
278                       unsigned long *stack_entries, size_t num_stack_entries)
279 {
280         struct kfence_track *track =
281                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
282
283         lockdep_assert_held(&meta->lock);
284
285         if (stack_entries) {
286                 memcpy(track->stack_entries, stack_entries,
287                        num_stack_entries * sizeof(stack_entries[0]));
288         } else {
289                 /*
290                  * Skip over 1 (this) functions; noinline ensures we do not
291                  * accidentally skip over the caller by never inlining.
292                  */
293                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
294         }
295         track->num_stack_entries = num_stack_entries;
296         track->pid = task_pid_nr(current);
297         track->cpu = raw_smp_processor_id();
298         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
299
300         /*
301          * Pairs with READ_ONCE() in
302          *      kfence_shutdown_cache(),
303          *      kfence_handle_page_fault().
304          */
305         WRITE_ONCE(meta->state, next);
306 }
307
308 /* Check canary byte at @addr. */
309 static inline bool check_canary_byte(u8 *addr)
310 {
311         struct kfence_metadata *meta;
312         unsigned long flags;
313
314         if (likely(*addr == KFENCE_CANARY_PATTERN_U8(addr)))
315                 return true;
316
317         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
318
319         meta = addr_to_metadata((unsigned long)addr);
320         raw_spin_lock_irqsave(&meta->lock, flags);
321         kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
322         raw_spin_unlock_irqrestore(&meta->lock, flags);
323
324         return false;
325 }
326
327 static inline void set_canary(const struct kfence_metadata *meta)
328 {
329         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
330         unsigned long addr = pageaddr;
331
332         /*
333          * The canary may be written to part of the object memory, but it does
334          * not affect it. The user should initialize the object before using it.
335          */
336         for (; addr < meta->addr; addr += sizeof(u64))
337                 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
338
339         addr = ALIGN_DOWN(meta->addr + meta->size, sizeof(u64));
340         for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64))
341                 *((u64 *)addr) = KFENCE_CANARY_PATTERN_U64;
342 }
343
344 static inline void check_canary(const struct kfence_metadata *meta)
345 {
346         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
347         unsigned long addr = pageaddr;
348
349         /*
350          * We'll iterate over each canary byte per-side until a corrupted byte
351          * is found. However, we'll still iterate over the canary bytes to the
352          * right of the object even if there was an error in the canary bytes to
353          * the left of the object. Specifically, if check_canary_byte()
354          * generates an error, showing both sides might give more clues as to
355          * what the error is about when displaying which bytes were corrupted.
356          */
357
358         /* Apply to left of object. */
359         for (; meta->addr - addr >= sizeof(u64); addr += sizeof(u64)) {
360                 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64))
361                         break;
362         }
363
364         /*
365          * If the canary is corrupted in a certain 64 bytes, or the canary
366          * memory cannot be completely covered by multiple consecutive 64 bytes,
367          * it needs to be checked one by one.
368          */
369         for (; addr < meta->addr; addr++) {
370                 if (unlikely(!check_canary_byte((u8 *)addr)))
371                         break;
372         }
373
374         /* Apply to right of object. */
375         for (addr = meta->addr + meta->size; addr % sizeof(u64) != 0; addr++) {
376                 if (unlikely(!check_canary_byte((u8 *)addr)))
377                         return;
378         }
379         for (; addr - pageaddr < PAGE_SIZE; addr += sizeof(u64)) {
380                 if (unlikely(*((u64 *)addr) != KFENCE_CANARY_PATTERN_U64)) {
381
382                         for (; addr - pageaddr < PAGE_SIZE; addr++) {
383                                 if (!check_canary_byte((u8 *)addr))
384                                         return;
385                         }
386                 }
387         }
388 }
389
390 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
391                                   unsigned long *stack_entries, size_t num_stack_entries,
392                                   u32 alloc_stack_hash)
393 {
394         struct kfence_metadata *meta = NULL;
395         unsigned long flags;
396         struct slab *slab;
397         void *addr;
398         const bool random_right_allocate = get_random_u32_below(2);
399         const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
400                                   !get_random_u32_below(CONFIG_KFENCE_STRESS_TEST_FAULTS);
401
402         /* Try to obtain a free object. */
403         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
404         if (!list_empty(&kfence_freelist)) {
405                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
406                 list_del_init(&meta->list);
407         }
408         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
409         if (!meta) {
410                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
411                 return NULL;
412         }
413
414         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
415                 /*
416                  * This is extremely unlikely -- we are reporting on a
417                  * use-after-free, which locked meta->lock, and the reporting
418                  * code via printk calls kmalloc() which ends up in
419                  * kfence_alloc() and tries to grab the same object that we're
420                  * reporting on. While it has never been observed, lockdep does
421                  * report that there is a possibility of deadlock. Fix it by
422                  * using trylock and bailing out gracefully.
423                  */
424                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
425                 /* Put the object back on the freelist. */
426                 list_add_tail(&meta->list, &kfence_freelist);
427                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
428
429                 return NULL;
430         }
431
432         meta->addr = metadata_to_pageaddr(meta);
433         /* Unprotect if we're reusing this page. */
434         if (meta->state == KFENCE_OBJECT_FREED)
435                 kfence_unprotect(meta->addr);
436
437         /*
438          * Note: for allocations made before RNG initialization, will always
439          * return zero. We still benefit from enabling KFENCE as early as
440          * possible, even when the RNG is not yet available, as this will allow
441          * KFENCE to detect bugs due to earlier allocations. The only downside
442          * is that the out-of-bounds accesses detected are deterministic for
443          * such allocations.
444          */
445         if (random_right_allocate) {
446                 /* Allocate on the "right" side, re-calculate address. */
447                 meta->addr += PAGE_SIZE - size;
448                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
449         }
450
451         addr = (void *)meta->addr;
452
453         /* Update remaining metadata. */
454         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
455         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
456         WRITE_ONCE(meta->cache, cache);
457         meta->size = size;
458         meta->alloc_stack_hash = alloc_stack_hash;
459         raw_spin_unlock_irqrestore(&meta->lock, flags);
460
461         alloc_covered_add(alloc_stack_hash, 1);
462
463         /* Set required slab fields. */
464         slab = virt_to_slab((void *)meta->addr);
465         slab->slab_cache = cache;
466 #if defined(CONFIG_SLUB)
467         slab->objects = 1;
468 #elif defined(CONFIG_SLAB)
469         slab->s_mem = addr;
470 #endif
471
472         /* Memory initialization. */
473         set_canary(meta);
474
475         /*
476          * We check slab_want_init_on_alloc() ourselves, rather than letting
477          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
478          * redzone.
479          */
480         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
481                 memzero_explicit(addr, size);
482         if (cache->ctor)
483                 cache->ctor(addr);
484
485         if (random_fault)
486                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
487
488         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
489         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
490
491         return addr;
492 }
493
494 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
495 {
496         struct kcsan_scoped_access assert_page_exclusive;
497         unsigned long flags;
498         bool init;
499
500         raw_spin_lock_irqsave(&meta->lock, flags);
501
502         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
503                 /* Invalid or double-free, bail out. */
504                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
505                 kfence_report_error((unsigned long)addr, false, NULL, meta,
506                                     KFENCE_ERROR_INVALID_FREE);
507                 raw_spin_unlock_irqrestore(&meta->lock, flags);
508                 return;
509         }
510
511         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
512         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
513                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
514                                   &assert_page_exclusive);
515
516         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
517                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
518
519         /* Restore page protection if there was an OOB access. */
520         if (meta->unprotected_page) {
521                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
522                 kfence_protect(meta->unprotected_page);
523                 meta->unprotected_page = 0;
524         }
525
526         /* Mark the object as freed. */
527         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
528         init = slab_want_init_on_free(meta->cache);
529         raw_spin_unlock_irqrestore(&meta->lock, flags);
530
531         alloc_covered_add(meta->alloc_stack_hash, -1);
532
533         /* Check canary bytes for memory corruption. */
534         check_canary(meta);
535
536         /*
537          * Clear memory if init-on-free is set. While we protect the page, the
538          * data is still there, and after a use-after-free is detected, we
539          * unprotect the page, so the data is still accessible.
540          */
541         if (!zombie && unlikely(init))
542                 memzero_explicit(addr, meta->size);
543
544         /* Protect to detect use-after-frees. */
545         kfence_protect((unsigned long)addr);
546
547         kcsan_end_scoped_access(&assert_page_exclusive);
548         if (!zombie) {
549                 /* Add it to the tail of the freelist for reuse. */
550                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
551                 KFENCE_WARN_ON(!list_empty(&meta->list));
552                 list_add_tail(&meta->list, &kfence_freelist);
553                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
554
555                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
556                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
557         } else {
558                 /* See kfence_shutdown_cache(). */
559                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
560         }
561 }
562
563 static void rcu_guarded_free(struct rcu_head *h)
564 {
565         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
566
567         kfence_guarded_free((void *)meta->addr, meta, false);
568 }
569
570 /*
571  * Initialization of the KFENCE pool after its allocation.
572  * Returns 0 on success; otherwise returns the address up to
573  * which partial initialization succeeded.
574  */
575 static unsigned long kfence_init_pool(void)
576 {
577         unsigned long addr;
578         struct page *pages;
579         int i;
580
581         if (!arch_kfence_init_pool())
582                 return (unsigned long)__kfence_pool;
583
584         addr = (unsigned long)__kfence_pool;
585         pages = virt_to_page(__kfence_pool);
586
587         /*
588          * Set up object pages: they must have PG_slab set, to avoid freeing
589          * these as real pages.
590          *
591          * We also want to avoid inserting kfence_free() in the kfree()
592          * fast-path in SLUB, and therefore need to ensure kfree() correctly
593          * enters __slab_free() slow-path.
594          */
595         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
596                 struct slab *slab = page_slab(nth_page(pages, i));
597
598                 if (!i || (i % 2))
599                         continue;
600
601                 __folio_set_slab(slab_folio(slab));
602 #ifdef CONFIG_MEMCG
603                 slab->memcg_data = (unsigned long)&kfence_metadata_init[i / 2 - 1].objcg |
604                                    MEMCG_DATA_OBJCGS;
605 #endif
606         }
607
608         /*
609          * Protect the first 2 pages. The first page is mostly unnecessary, and
610          * merely serves as an extended guard page. However, adding one
611          * additional page in the beginning gives us an even number of pages,
612          * which simplifies the mapping of address to metadata index.
613          */
614         for (i = 0; i < 2; i++) {
615                 if (unlikely(!kfence_protect(addr)))
616                         return addr;
617
618                 addr += PAGE_SIZE;
619         }
620
621         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
622                 struct kfence_metadata *meta = &kfence_metadata_init[i];
623
624                 /* Initialize metadata. */
625                 INIT_LIST_HEAD(&meta->list);
626                 raw_spin_lock_init(&meta->lock);
627                 meta->state = KFENCE_OBJECT_UNUSED;
628                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
629                 list_add_tail(&meta->list, &kfence_freelist);
630
631                 /* Protect the right redzone. */
632                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
633                         goto reset_slab;
634
635                 addr += 2 * PAGE_SIZE;
636         }
637
638         /*
639          * Make kfence_metadata visible only when initialization is successful.
640          * Otherwise, if the initialization fails and kfence_metadata is freed,
641          * it may cause UAF in kfence_shutdown_cache().
642          */
643         smp_store_release(&kfence_metadata, kfence_metadata_init);
644         return 0;
645
646 reset_slab:
647         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
648                 struct slab *slab = page_slab(nth_page(pages, i));
649
650                 if (!i || (i % 2))
651                         continue;
652 #ifdef CONFIG_MEMCG
653                 slab->memcg_data = 0;
654 #endif
655                 __folio_clear_slab(slab_folio(slab));
656         }
657
658         return addr;
659 }
660
661 static bool __init kfence_init_pool_early(void)
662 {
663         unsigned long addr;
664
665         if (!__kfence_pool)
666                 return false;
667
668         addr = kfence_init_pool();
669
670         if (!addr) {
671                 /*
672                  * The pool is live and will never be deallocated from this point on.
673                  * Ignore the pool object from the kmemleak phys object tree, as it would
674                  * otherwise overlap with allocations returned by kfence_alloc(), which
675                  * are registered with kmemleak through the slab post-alloc hook.
676                  */
677                 kmemleak_ignore_phys(__pa(__kfence_pool));
678                 return true;
679         }
680
681         /*
682          * Only release unprotected pages, and do not try to go back and change
683          * page attributes due to risk of failing to do so as well. If changing
684          * page attributes for some pages fails, it is very likely that it also
685          * fails for the first page, and therefore expect addr==__kfence_pool in
686          * most failure cases.
687          */
688         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
689         __kfence_pool = NULL;
690
691         memblock_free_late(__pa(kfence_metadata_init), KFENCE_METADATA_SIZE);
692         kfence_metadata_init = NULL;
693
694         return false;
695 }
696
697 /* === DebugFS Interface ==================================================== */
698
699 static int stats_show(struct seq_file *seq, void *v)
700 {
701         int i;
702
703         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
704         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
705                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
706
707         return 0;
708 }
709 DEFINE_SHOW_ATTRIBUTE(stats);
710
711 /*
712  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
713  * start_object() and next_object() return the object index + 1, because NULL is used
714  * to stop iteration.
715  */
716 static void *start_object(struct seq_file *seq, loff_t *pos)
717 {
718         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
719                 return (void *)((long)*pos + 1);
720         return NULL;
721 }
722
723 static void stop_object(struct seq_file *seq, void *v)
724 {
725 }
726
727 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
728 {
729         ++*pos;
730         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
731                 return (void *)((long)*pos + 1);
732         return NULL;
733 }
734
735 static int show_object(struct seq_file *seq, void *v)
736 {
737         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
738         unsigned long flags;
739
740         raw_spin_lock_irqsave(&meta->lock, flags);
741         kfence_print_object(seq, meta);
742         raw_spin_unlock_irqrestore(&meta->lock, flags);
743         seq_puts(seq, "---------------------------------\n");
744
745         return 0;
746 }
747
748 static const struct seq_operations objects_sops = {
749         .start = start_object,
750         .next = next_object,
751         .stop = stop_object,
752         .show = show_object,
753 };
754 DEFINE_SEQ_ATTRIBUTE(objects);
755
756 static int kfence_debugfs_init(void)
757 {
758         struct dentry *kfence_dir;
759
760         if (!READ_ONCE(kfence_enabled))
761                 return 0;
762
763         kfence_dir = debugfs_create_dir("kfence", NULL);
764         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
765         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
766         return 0;
767 }
768
769 late_initcall(kfence_debugfs_init);
770
771 /* === Panic Notifier ====================================================== */
772
773 static void kfence_check_all_canary(void)
774 {
775         int i;
776
777         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
778                 struct kfence_metadata *meta = &kfence_metadata[i];
779
780                 if (meta->state == KFENCE_OBJECT_ALLOCATED)
781                         check_canary(meta);
782         }
783 }
784
785 static int kfence_check_canary_callback(struct notifier_block *nb,
786                                         unsigned long reason, void *arg)
787 {
788         kfence_check_all_canary();
789         return NOTIFY_OK;
790 }
791
792 static struct notifier_block kfence_check_canary_notifier = {
793         .notifier_call = kfence_check_canary_callback,
794 };
795
796 /* === Allocation Gate Timer ================================================ */
797
798 static struct delayed_work kfence_timer;
799
800 #ifdef CONFIG_KFENCE_STATIC_KEYS
801 /* Wait queue to wake up allocation-gate timer task. */
802 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
803
804 static void wake_up_kfence_timer(struct irq_work *work)
805 {
806         wake_up(&allocation_wait);
807 }
808 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
809 #endif
810
811 /*
812  * Set up delayed work, which will enable and disable the static key. We need to
813  * use a work queue (rather than a simple timer), since enabling and disabling a
814  * static key cannot be done from an interrupt.
815  *
816  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
817  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
818  * more aggressive sampling intervals), we could get away with a variant that
819  * avoids IPIs, at the cost of not immediately capturing allocations if the
820  * instructions remain cached.
821  */
822 static void toggle_allocation_gate(struct work_struct *work)
823 {
824         if (!READ_ONCE(kfence_enabled))
825                 return;
826
827         atomic_set(&kfence_allocation_gate, 0);
828 #ifdef CONFIG_KFENCE_STATIC_KEYS
829         /* Enable static key, and await allocation to happen. */
830         static_branch_enable(&kfence_allocation_key);
831
832         wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
833
834         /* Disable static key and reset timer. */
835         static_branch_disable(&kfence_allocation_key);
836 #endif
837         queue_delayed_work(system_unbound_wq, &kfence_timer,
838                            msecs_to_jiffies(kfence_sample_interval));
839 }
840
841 /* === Public interface ===================================================== */
842
843 void __init kfence_alloc_pool_and_metadata(void)
844 {
845         if (!kfence_sample_interval)
846                 return;
847
848         /*
849          * If the pool has already been initialized by arch, there is no need to
850          * re-allocate the memory pool.
851          */
852         if (!__kfence_pool)
853                 __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
854
855         if (!__kfence_pool) {
856                 pr_err("failed to allocate pool\n");
857                 return;
858         }
859
860         /* The memory allocated by memblock has been zeroed out. */
861         kfence_metadata_init = memblock_alloc(KFENCE_METADATA_SIZE, PAGE_SIZE);
862         if (!kfence_metadata_init) {
863                 pr_err("failed to allocate metadata\n");
864                 memblock_free(__kfence_pool, KFENCE_POOL_SIZE);
865                 __kfence_pool = NULL;
866         }
867 }
868
869 static void kfence_init_enable(void)
870 {
871         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
872                 static_branch_enable(&kfence_allocation_key);
873
874         if (kfence_deferrable)
875                 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
876         else
877                 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
878
879         if (kfence_check_on_panic)
880                 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
881
882         WRITE_ONCE(kfence_enabled, true);
883         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
884
885         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
886                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
887                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
888 }
889
890 void __init kfence_init(void)
891 {
892         stack_hash_seed = get_random_u32();
893
894         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
895         if (!kfence_sample_interval)
896                 return;
897
898         if (!kfence_init_pool_early()) {
899                 pr_err("%s failed\n", __func__);
900                 return;
901         }
902
903         kfence_init_enable();
904 }
905
906 static int kfence_init_late(void)
907 {
908         const unsigned long nr_pages_pool = KFENCE_POOL_SIZE / PAGE_SIZE;
909         const unsigned long nr_pages_meta = KFENCE_METADATA_SIZE / PAGE_SIZE;
910         unsigned long addr = (unsigned long)__kfence_pool;
911         unsigned long free_size = KFENCE_POOL_SIZE;
912         int err = -ENOMEM;
913
914 #ifdef CONFIG_CONTIG_ALLOC
915         struct page *pages;
916
917         pages = alloc_contig_pages(nr_pages_pool, GFP_KERNEL, first_online_node,
918                                    NULL);
919         if (!pages)
920                 return -ENOMEM;
921
922         __kfence_pool = page_to_virt(pages);
923         pages = alloc_contig_pages(nr_pages_meta, GFP_KERNEL, first_online_node,
924                                    NULL);
925         if (pages)
926                 kfence_metadata_init = page_to_virt(pages);
927 #else
928         if (nr_pages_pool > MAX_ORDER_NR_PAGES ||
929             nr_pages_meta > MAX_ORDER_NR_PAGES) {
930                 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
931                 return -EINVAL;
932         }
933
934         __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
935         if (!__kfence_pool)
936                 return -ENOMEM;
937
938         kfence_metadata_init = alloc_pages_exact(KFENCE_METADATA_SIZE, GFP_KERNEL);
939 #endif
940
941         if (!kfence_metadata_init)
942                 goto free_pool;
943
944         memzero_explicit(kfence_metadata_init, KFENCE_METADATA_SIZE);
945         addr = kfence_init_pool();
946         if (!addr) {
947                 kfence_init_enable();
948                 kfence_debugfs_init();
949                 return 0;
950         }
951
952         pr_err("%s failed\n", __func__);
953         free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
954         err = -EBUSY;
955
956 #ifdef CONFIG_CONTIG_ALLOC
957         free_contig_range(page_to_pfn(virt_to_page((void *)kfence_metadata_init)),
958                           nr_pages_meta);
959 free_pool:
960         free_contig_range(page_to_pfn(virt_to_page((void *)addr)),
961                           free_size / PAGE_SIZE);
962 #else
963         free_pages_exact((void *)kfence_metadata_init, KFENCE_METADATA_SIZE);
964 free_pool:
965         free_pages_exact((void *)addr, free_size);
966 #endif
967
968         kfence_metadata_init = NULL;
969         __kfence_pool = NULL;
970         return err;
971 }
972
973 static int kfence_enable_late(void)
974 {
975         if (!__kfence_pool)
976                 return kfence_init_late();
977
978         WRITE_ONCE(kfence_enabled, true);
979         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
980         pr_info("re-enabled\n");
981         return 0;
982 }
983
984 void kfence_shutdown_cache(struct kmem_cache *s)
985 {
986         unsigned long flags;
987         struct kfence_metadata *meta;
988         int i;
989
990         /* Pairs with release in kfence_init_pool(). */
991         if (!smp_load_acquire(&kfence_metadata))
992                 return;
993
994         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
995                 bool in_use;
996
997                 meta = &kfence_metadata[i];
998
999                 /*
1000                  * If we observe some inconsistent cache and state pair where we
1001                  * should have returned false here, cache destruction is racing
1002                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
1003                  * the lock will not help, as different critical section
1004                  * serialization will have the same outcome.
1005                  */
1006                 if (READ_ONCE(meta->cache) != s ||
1007                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
1008                         continue;
1009
1010                 raw_spin_lock_irqsave(&meta->lock, flags);
1011                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
1012                 raw_spin_unlock_irqrestore(&meta->lock, flags);
1013
1014                 if (in_use) {
1015                         /*
1016                          * This cache still has allocations, and we should not
1017                          * release them back into the freelist so they can still
1018                          * safely be used and retain the kernel's default
1019                          * behaviour of keeping the allocations alive (leak the
1020                          * cache); however, they effectively become "zombie
1021                          * allocations" as the KFENCE objects are the only ones
1022                          * still in use and the owning cache is being destroyed.
1023                          *
1024                          * We mark them freed, so that any subsequent use shows
1025                          * more useful error messages that will include stack
1026                          * traces of the user of the object, the original
1027                          * allocation, and caller to shutdown_cache().
1028                          */
1029                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
1030                 }
1031         }
1032
1033         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
1034                 meta = &kfence_metadata[i];
1035
1036                 /* See above. */
1037                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
1038                         continue;
1039
1040                 raw_spin_lock_irqsave(&meta->lock, flags);
1041                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
1042                         meta->cache = NULL;
1043                 raw_spin_unlock_irqrestore(&meta->lock, flags);
1044         }
1045 }
1046
1047 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
1048 {
1049         unsigned long stack_entries[KFENCE_STACK_DEPTH];
1050         size_t num_stack_entries;
1051         u32 alloc_stack_hash;
1052
1053         /*
1054          * Perform size check before switching kfence_allocation_gate, so that
1055          * we don't disable KFENCE without making an allocation.
1056          */
1057         if (size > PAGE_SIZE) {
1058                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1059                 return NULL;
1060         }
1061
1062         /*
1063          * Skip allocations from non-default zones, including DMA. We cannot
1064          * guarantee that pages in the KFENCE pool will have the requested
1065          * properties (e.g. reside in DMAable memory).
1066          */
1067         if ((flags & GFP_ZONEMASK) ||
1068             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
1069                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
1070                 return NULL;
1071         }
1072
1073         /*
1074          * Skip allocations for this slab, if KFENCE has been disabled for
1075          * this slab.
1076          */
1077         if (s->flags & SLAB_SKIP_KFENCE)
1078                 return NULL;
1079
1080         if (atomic_inc_return(&kfence_allocation_gate) > 1)
1081                 return NULL;
1082 #ifdef CONFIG_KFENCE_STATIC_KEYS
1083         /*
1084          * waitqueue_active() is fully ordered after the update of
1085          * kfence_allocation_gate per atomic_inc_return().
1086          */
1087         if (waitqueue_active(&allocation_wait)) {
1088                 /*
1089                  * Calling wake_up() here may deadlock when allocations happen
1090                  * from within timer code. Use an irq_work to defer it.
1091                  */
1092                 irq_work_queue(&wake_up_kfence_timer_work);
1093         }
1094 #endif
1095
1096         if (!READ_ONCE(kfence_enabled))
1097                 return NULL;
1098
1099         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1100
1101         /*
1102          * Do expensive check for coverage of allocation in slow-path after
1103          * allocation_gate has already become non-zero, even though it might
1104          * mean not making any allocation within a given sample interval.
1105          *
1106          * This ensures reasonable allocation coverage when the pool is almost
1107          * full, including avoiding long-lived allocations of the same source
1108          * filling up the pool (e.g. pagecache allocations).
1109          */
1110         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1111         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1112                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1113                 return NULL;
1114         }
1115
1116         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1117                                     alloc_stack_hash);
1118 }
1119
1120 size_t kfence_ksize(const void *addr)
1121 {
1122         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1123
1124         /*
1125          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1126          * either a use-after-free or invalid access.
1127          */
1128         return meta ? meta->size : 0;
1129 }
1130
1131 void *kfence_object_start(const void *addr)
1132 {
1133         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1134
1135         /*
1136          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1137          * either a use-after-free or invalid access.
1138          */
1139         return meta ? (void *)meta->addr : NULL;
1140 }
1141
1142 void __kfence_free(void *addr)
1143 {
1144         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1145
1146 #ifdef CONFIG_MEMCG
1147         KFENCE_WARN_ON(meta->objcg);
1148 #endif
1149         /*
1150          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1151          * the object, as the object page may be recycled for other-typed
1152          * objects once it has been freed. meta->cache may be NULL if the cache
1153          * was destroyed.
1154          */
1155         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1156                 call_rcu(&meta->rcu_head, rcu_guarded_free);
1157         else
1158                 kfence_guarded_free(addr, meta, false);
1159 }
1160
1161 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1162 {
1163         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1164         struct kfence_metadata *to_report = NULL;
1165         enum kfence_error_type error_type;
1166         unsigned long flags;
1167
1168         if (!is_kfence_address((void *)addr))
1169                 return false;
1170
1171         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1172                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1173
1174         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1175
1176         if (page_index % 2) {
1177                 /* This is a redzone, report a buffer overflow. */
1178                 struct kfence_metadata *meta;
1179                 int distance = 0;
1180
1181                 meta = addr_to_metadata(addr - PAGE_SIZE);
1182                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1183                         to_report = meta;
1184                         /* Data race ok; distance calculation approximate. */
1185                         distance = addr - data_race(meta->addr + meta->size);
1186                 }
1187
1188                 meta = addr_to_metadata(addr + PAGE_SIZE);
1189                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1190                         /* Data race ok; distance calculation approximate. */
1191                         if (!to_report || distance > data_race(meta->addr) - addr)
1192                                 to_report = meta;
1193                 }
1194
1195                 if (!to_report)
1196                         goto out;
1197
1198                 raw_spin_lock_irqsave(&to_report->lock, flags);
1199                 to_report->unprotected_page = addr;
1200                 error_type = KFENCE_ERROR_OOB;
1201
1202                 /*
1203                  * If the object was freed before we took the look we can still
1204                  * report this as an OOB -- the report will simply show the
1205                  * stacktrace of the free as well.
1206                  */
1207         } else {
1208                 to_report = addr_to_metadata(addr);
1209                 if (!to_report)
1210                         goto out;
1211
1212                 raw_spin_lock_irqsave(&to_report->lock, flags);
1213                 error_type = KFENCE_ERROR_UAF;
1214                 /*
1215                  * We may race with __kfence_alloc(), and it is possible that a
1216                  * freed object may be reallocated. We simply report this as a
1217                  * use-after-free, with the stack trace showing the place where
1218                  * the object was re-allocated.
1219                  */
1220         }
1221
1222 out:
1223         if (to_report) {
1224                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1225                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1226         } else {
1227                 /* This may be a UAF or OOB access, but we can't be sure. */
1228                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1229         }
1230
1231         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1232 }