Merge tag 'riscv-for-linus-6.1-rc8' of git://git.kernel.org/pub/scm/linux/kernel...
[platform/kernel/linux-starfive.git] / mm / kfence / core.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * KFENCE guarded object allocator and fault handling.
4  *
5  * Copyright (C) 2020, Google LLC.
6  */
7
8 #define pr_fmt(fmt) "kfence: " fmt
9
10 #include <linux/atomic.h>
11 #include <linux/bug.h>
12 #include <linux/debugfs.h>
13 #include <linux/hash.h>
14 #include <linux/irq_work.h>
15 #include <linux/jhash.h>
16 #include <linux/kcsan-checks.h>
17 #include <linux/kfence.h>
18 #include <linux/kmemleak.h>
19 #include <linux/list.h>
20 #include <linux/lockdep.h>
21 #include <linux/log2.h>
22 #include <linux/memblock.h>
23 #include <linux/moduleparam.h>
24 #include <linux/notifier.h>
25 #include <linux/panic_notifier.h>
26 #include <linux/random.h>
27 #include <linux/rcupdate.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/sysctl.h>
30 #include <linux/seq_file.h>
31 #include <linux/slab.h>
32 #include <linux/spinlock.h>
33 #include <linux/string.h>
34
35 #include <asm/kfence.h>
36
37 #include "kfence.h"
38
39 /* Disables KFENCE on the first warning assuming an irrecoverable error. */
40 #define KFENCE_WARN_ON(cond)                                                   \
41         ({                                                                     \
42                 const bool __cond = WARN_ON(cond);                             \
43                 if (unlikely(__cond)) {                                        \
44                         WRITE_ONCE(kfence_enabled, false);                     \
45                         disabled_by_warn = true;                               \
46                 }                                                              \
47                 __cond;                                                        \
48         })
49
50 /* === Data ================================================================= */
51
52 static bool kfence_enabled __read_mostly;
53 static bool disabled_by_warn __read_mostly;
54
55 unsigned long kfence_sample_interval __read_mostly = CONFIG_KFENCE_SAMPLE_INTERVAL;
56 EXPORT_SYMBOL_GPL(kfence_sample_interval); /* Export for test modules. */
57
58 #ifdef MODULE_PARAM_PREFIX
59 #undef MODULE_PARAM_PREFIX
60 #endif
61 #define MODULE_PARAM_PREFIX "kfence."
62
63 static int kfence_enable_late(void);
64 static int param_set_sample_interval(const char *val, const struct kernel_param *kp)
65 {
66         unsigned long num;
67         int ret = kstrtoul(val, 0, &num);
68
69         if (ret < 0)
70                 return ret;
71
72         /* Using 0 to indicate KFENCE is disabled. */
73         if (!num && READ_ONCE(kfence_enabled)) {
74                 pr_info("disabled\n");
75                 WRITE_ONCE(kfence_enabled, false);
76         }
77
78         *((unsigned long *)kp->arg) = num;
79
80         if (num && !READ_ONCE(kfence_enabled) && system_state != SYSTEM_BOOTING)
81                 return disabled_by_warn ? -EINVAL : kfence_enable_late();
82         return 0;
83 }
84
85 static int param_get_sample_interval(char *buffer, const struct kernel_param *kp)
86 {
87         if (!READ_ONCE(kfence_enabled))
88                 return sprintf(buffer, "0\n");
89
90         return param_get_ulong(buffer, kp);
91 }
92
93 static const struct kernel_param_ops sample_interval_param_ops = {
94         .set = param_set_sample_interval,
95         .get = param_get_sample_interval,
96 };
97 module_param_cb(sample_interval, &sample_interval_param_ops, &kfence_sample_interval, 0600);
98
99 /* Pool usage% threshold when currently covered allocations are skipped. */
100 static unsigned long kfence_skip_covered_thresh __read_mostly = 75;
101 module_param_named(skip_covered_thresh, kfence_skip_covered_thresh, ulong, 0644);
102
103 /* If true, use a deferrable timer. */
104 static bool kfence_deferrable __read_mostly = IS_ENABLED(CONFIG_KFENCE_DEFERRABLE);
105 module_param_named(deferrable, kfence_deferrable, bool, 0444);
106
107 /* If true, check all canary bytes on panic. */
108 static bool kfence_check_on_panic __read_mostly;
109 module_param_named(check_on_panic, kfence_check_on_panic, bool, 0444);
110
111 /* The pool of pages used for guard pages and objects. */
112 char *__kfence_pool __read_mostly;
113 EXPORT_SYMBOL(__kfence_pool); /* Export for test modules. */
114
115 /*
116  * Per-object metadata, with one-to-one mapping of object metadata to
117  * backing pages (in __kfence_pool).
118  */
119 static_assert(CONFIG_KFENCE_NUM_OBJECTS > 0);
120 struct kfence_metadata kfence_metadata[CONFIG_KFENCE_NUM_OBJECTS];
121
122 /* Freelist with available objects. */
123 static struct list_head kfence_freelist = LIST_HEAD_INIT(kfence_freelist);
124 static DEFINE_RAW_SPINLOCK(kfence_freelist_lock); /* Lock protecting freelist. */
125
126 /*
127  * The static key to set up a KFENCE allocation; or if static keys are not used
128  * to gate allocations, to avoid a load and compare if KFENCE is disabled.
129  */
130 DEFINE_STATIC_KEY_FALSE(kfence_allocation_key);
131
132 /* Gates the allocation, ensuring only one succeeds in a given period. */
133 atomic_t kfence_allocation_gate = ATOMIC_INIT(1);
134
135 /*
136  * A Counting Bloom filter of allocation coverage: limits currently covered
137  * allocations of the same source filling up the pool.
138  *
139  * Assuming a range of 15%-85% unique allocations in the pool at any point in
140  * time, the below parameters provide a probablity of 0.02-0.33 for false
141  * positive hits respectively:
142  *
143  *      P(alloc_traces) = (1 - e^(-HNUM * (alloc_traces / SIZE)) ^ HNUM
144  */
145 #define ALLOC_COVERED_HNUM      2
146 #define ALLOC_COVERED_ORDER     (const_ilog2(CONFIG_KFENCE_NUM_OBJECTS) + 2)
147 #define ALLOC_COVERED_SIZE      (1 << ALLOC_COVERED_ORDER)
148 #define ALLOC_COVERED_HNEXT(h)  hash_32(h, ALLOC_COVERED_ORDER)
149 #define ALLOC_COVERED_MASK      (ALLOC_COVERED_SIZE - 1)
150 static atomic_t alloc_covered[ALLOC_COVERED_SIZE];
151
152 /* Stack depth used to determine uniqueness of an allocation. */
153 #define UNIQUE_ALLOC_STACK_DEPTH ((size_t)8)
154
155 /*
156  * Randomness for stack hashes, making the same collisions across reboots and
157  * different machines less likely.
158  */
159 static u32 stack_hash_seed __ro_after_init;
160
161 /* Statistics counters for debugfs. */
162 enum kfence_counter_id {
163         KFENCE_COUNTER_ALLOCATED,
164         KFENCE_COUNTER_ALLOCS,
165         KFENCE_COUNTER_FREES,
166         KFENCE_COUNTER_ZOMBIES,
167         KFENCE_COUNTER_BUGS,
168         KFENCE_COUNTER_SKIP_INCOMPAT,
169         KFENCE_COUNTER_SKIP_CAPACITY,
170         KFENCE_COUNTER_SKIP_COVERED,
171         KFENCE_COUNTER_COUNT,
172 };
173 static atomic_long_t counters[KFENCE_COUNTER_COUNT];
174 static const char *const counter_names[] = {
175         [KFENCE_COUNTER_ALLOCATED]      = "currently allocated",
176         [KFENCE_COUNTER_ALLOCS]         = "total allocations",
177         [KFENCE_COUNTER_FREES]          = "total frees",
178         [KFENCE_COUNTER_ZOMBIES]        = "zombie allocations",
179         [KFENCE_COUNTER_BUGS]           = "total bugs",
180         [KFENCE_COUNTER_SKIP_INCOMPAT]  = "skipped allocations (incompatible)",
181         [KFENCE_COUNTER_SKIP_CAPACITY]  = "skipped allocations (capacity)",
182         [KFENCE_COUNTER_SKIP_COVERED]   = "skipped allocations (covered)",
183 };
184 static_assert(ARRAY_SIZE(counter_names) == KFENCE_COUNTER_COUNT);
185
186 /* === Internals ============================================================ */
187
188 static inline bool should_skip_covered(void)
189 {
190         unsigned long thresh = (CONFIG_KFENCE_NUM_OBJECTS * kfence_skip_covered_thresh) / 100;
191
192         return atomic_long_read(&counters[KFENCE_COUNTER_ALLOCATED]) > thresh;
193 }
194
195 static u32 get_alloc_stack_hash(unsigned long *stack_entries, size_t num_entries)
196 {
197         num_entries = min(num_entries, UNIQUE_ALLOC_STACK_DEPTH);
198         num_entries = filter_irq_stacks(stack_entries, num_entries);
199         return jhash(stack_entries, num_entries * sizeof(stack_entries[0]), stack_hash_seed);
200 }
201
202 /*
203  * Adds (or subtracts) count @val for allocation stack trace hash
204  * @alloc_stack_hash from Counting Bloom filter.
205  */
206 static void alloc_covered_add(u32 alloc_stack_hash, int val)
207 {
208         int i;
209
210         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
211                 atomic_add(val, &alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]);
212                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
213         }
214 }
215
216 /*
217  * Returns true if the allocation stack trace hash @alloc_stack_hash is
218  * currently contained (non-zero count) in Counting Bloom filter.
219  */
220 static bool alloc_covered_contains(u32 alloc_stack_hash)
221 {
222         int i;
223
224         for (i = 0; i < ALLOC_COVERED_HNUM; i++) {
225                 if (!atomic_read(&alloc_covered[alloc_stack_hash & ALLOC_COVERED_MASK]))
226                         return false;
227                 alloc_stack_hash = ALLOC_COVERED_HNEXT(alloc_stack_hash);
228         }
229
230         return true;
231 }
232
233 static bool kfence_protect(unsigned long addr)
234 {
235         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), true));
236 }
237
238 static bool kfence_unprotect(unsigned long addr)
239 {
240         return !KFENCE_WARN_ON(!kfence_protect_page(ALIGN_DOWN(addr, PAGE_SIZE), false));
241 }
242
243 static inline unsigned long metadata_to_pageaddr(const struct kfence_metadata *meta)
244 {
245         unsigned long offset = (meta - kfence_metadata + 1) * PAGE_SIZE * 2;
246         unsigned long pageaddr = (unsigned long)&__kfence_pool[offset];
247
248         /* The checks do not affect performance; only called from slow-paths. */
249
250         /* Only call with a pointer into kfence_metadata. */
251         if (KFENCE_WARN_ON(meta < kfence_metadata ||
252                            meta >= kfence_metadata + CONFIG_KFENCE_NUM_OBJECTS))
253                 return 0;
254
255         /*
256          * This metadata object only ever maps to 1 page; verify that the stored
257          * address is in the expected range.
258          */
259         if (KFENCE_WARN_ON(ALIGN_DOWN(meta->addr, PAGE_SIZE) != pageaddr))
260                 return 0;
261
262         return pageaddr;
263 }
264
265 /*
266  * Update the object's metadata state, including updating the alloc/free stacks
267  * depending on the state transition.
268  */
269 static noinline void
270 metadata_update_state(struct kfence_metadata *meta, enum kfence_object_state next,
271                       unsigned long *stack_entries, size_t num_stack_entries)
272 {
273         struct kfence_track *track =
274                 next == KFENCE_OBJECT_FREED ? &meta->free_track : &meta->alloc_track;
275
276         lockdep_assert_held(&meta->lock);
277
278         if (stack_entries) {
279                 memcpy(track->stack_entries, stack_entries,
280                        num_stack_entries * sizeof(stack_entries[0]));
281         } else {
282                 /*
283                  * Skip over 1 (this) functions; noinline ensures we do not
284                  * accidentally skip over the caller by never inlining.
285                  */
286                 num_stack_entries = stack_trace_save(track->stack_entries, KFENCE_STACK_DEPTH, 1);
287         }
288         track->num_stack_entries = num_stack_entries;
289         track->pid = task_pid_nr(current);
290         track->cpu = raw_smp_processor_id();
291         track->ts_nsec = local_clock(); /* Same source as printk timestamps. */
292
293         /*
294          * Pairs with READ_ONCE() in
295          *      kfence_shutdown_cache(),
296          *      kfence_handle_page_fault().
297          */
298         WRITE_ONCE(meta->state, next);
299 }
300
301 /* Write canary byte to @addr. */
302 static inline bool set_canary_byte(u8 *addr)
303 {
304         *addr = KFENCE_CANARY_PATTERN(addr);
305         return true;
306 }
307
308 /* Check canary byte at @addr. */
309 static inline bool check_canary_byte(u8 *addr)
310 {
311         struct kfence_metadata *meta;
312         unsigned long flags;
313
314         if (likely(*addr == KFENCE_CANARY_PATTERN(addr)))
315                 return true;
316
317         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
318
319         meta = addr_to_metadata((unsigned long)addr);
320         raw_spin_lock_irqsave(&meta->lock, flags);
321         kfence_report_error((unsigned long)addr, false, NULL, meta, KFENCE_ERROR_CORRUPTION);
322         raw_spin_unlock_irqrestore(&meta->lock, flags);
323
324         return false;
325 }
326
327 /* __always_inline this to ensure we won't do an indirect call to fn. */
328 static __always_inline void for_each_canary(const struct kfence_metadata *meta, bool (*fn)(u8 *))
329 {
330         const unsigned long pageaddr = ALIGN_DOWN(meta->addr, PAGE_SIZE);
331         unsigned long addr;
332
333         /*
334          * We'll iterate over each canary byte per-side until fn() returns
335          * false. However, we'll still iterate over the canary bytes to the
336          * right of the object even if there was an error in the canary bytes to
337          * the left of the object. Specifically, if check_canary_byte()
338          * generates an error, showing both sides might give more clues as to
339          * what the error is about when displaying which bytes were corrupted.
340          */
341
342         /* Apply to left of object. */
343         for (addr = pageaddr; addr < meta->addr; addr++) {
344                 if (!fn((u8 *)addr))
345                         break;
346         }
347
348         /* Apply to right of object. */
349         for (addr = meta->addr + meta->size; addr < pageaddr + PAGE_SIZE; addr++) {
350                 if (!fn((u8 *)addr))
351                         break;
352         }
353 }
354
355 static void *kfence_guarded_alloc(struct kmem_cache *cache, size_t size, gfp_t gfp,
356                                   unsigned long *stack_entries, size_t num_stack_entries,
357                                   u32 alloc_stack_hash)
358 {
359         struct kfence_metadata *meta = NULL;
360         unsigned long flags;
361         struct slab *slab;
362         void *addr;
363         const bool random_right_allocate = prandom_u32_max(2);
364         const bool random_fault = CONFIG_KFENCE_STRESS_TEST_FAULTS &&
365                                   !prandom_u32_max(CONFIG_KFENCE_STRESS_TEST_FAULTS);
366
367         /* Try to obtain a free object. */
368         raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
369         if (!list_empty(&kfence_freelist)) {
370                 meta = list_entry(kfence_freelist.next, struct kfence_metadata, list);
371                 list_del_init(&meta->list);
372         }
373         raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
374         if (!meta) {
375                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_CAPACITY]);
376                 return NULL;
377         }
378
379         if (unlikely(!raw_spin_trylock_irqsave(&meta->lock, flags))) {
380                 /*
381                  * This is extremely unlikely -- we are reporting on a
382                  * use-after-free, which locked meta->lock, and the reporting
383                  * code via printk calls kmalloc() which ends up in
384                  * kfence_alloc() and tries to grab the same object that we're
385                  * reporting on. While it has never been observed, lockdep does
386                  * report that there is a possibility of deadlock. Fix it by
387                  * using trylock and bailing out gracefully.
388                  */
389                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
390                 /* Put the object back on the freelist. */
391                 list_add_tail(&meta->list, &kfence_freelist);
392                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
393
394                 return NULL;
395         }
396
397         meta->addr = metadata_to_pageaddr(meta);
398         /* Unprotect if we're reusing this page. */
399         if (meta->state == KFENCE_OBJECT_FREED)
400                 kfence_unprotect(meta->addr);
401
402         /*
403          * Note: for allocations made before RNG initialization, will always
404          * return zero. We still benefit from enabling KFENCE as early as
405          * possible, even when the RNG is not yet available, as this will allow
406          * KFENCE to detect bugs due to earlier allocations. The only downside
407          * is that the out-of-bounds accesses detected are deterministic for
408          * such allocations.
409          */
410         if (random_right_allocate) {
411                 /* Allocate on the "right" side, re-calculate address. */
412                 meta->addr += PAGE_SIZE - size;
413                 meta->addr = ALIGN_DOWN(meta->addr, cache->align);
414         }
415
416         addr = (void *)meta->addr;
417
418         /* Update remaining metadata. */
419         metadata_update_state(meta, KFENCE_OBJECT_ALLOCATED, stack_entries, num_stack_entries);
420         /* Pairs with READ_ONCE() in kfence_shutdown_cache(). */
421         WRITE_ONCE(meta->cache, cache);
422         meta->size = size;
423         meta->alloc_stack_hash = alloc_stack_hash;
424         raw_spin_unlock_irqrestore(&meta->lock, flags);
425
426         alloc_covered_add(alloc_stack_hash, 1);
427
428         /* Set required slab fields. */
429         slab = virt_to_slab((void *)meta->addr);
430         slab->slab_cache = cache;
431 #if defined(CONFIG_SLUB)
432         slab->objects = 1;
433 #elif defined(CONFIG_SLAB)
434         slab->s_mem = addr;
435 #endif
436
437         /* Memory initialization. */
438         for_each_canary(meta, set_canary_byte);
439
440         /*
441          * We check slab_want_init_on_alloc() ourselves, rather than letting
442          * SL*B do the initialization, as otherwise we might overwrite KFENCE's
443          * redzone.
444          */
445         if (unlikely(slab_want_init_on_alloc(gfp, cache)))
446                 memzero_explicit(addr, size);
447         if (cache->ctor)
448                 cache->ctor(addr);
449
450         if (random_fault)
451                 kfence_protect(meta->addr); /* Random "faults" by protecting the object. */
452
453         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCATED]);
454         atomic_long_inc(&counters[KFENCE_COUNTER_ALLOCS]);
455
456         return addr;
457 }
458
459 static void kfence_guarded_free(void *addr, struct kfence_metadata *meta, bool zombie)
460 {
461         struct kcsan_scoped_access assert_page_exclusive;
462         unsigned long flags;
463         bool init;
464
465         raw_spin_lock_irqsave(&meta->lock, flags);
466
467         if (meta->state != KFENCE_OBJECT_ALLOCATED || meta->addr != (unsigned long)addr) {
468                 /* Invalid or double-free, bail out. */
469                 atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
470                 kfence_report_error((unsigned long)addr, false, NULL, meta,
471                                     KFENCE_ERROR_INVALID_FREE);
472                 raw_spin_unlock_irqrestore(&meta->lock, flags);
473                 return;
474         }
475
476         /* Detect racy use-after-free, or incorrect reallocation of this page by KFENCE. */
477         kcsan_begin_scoped_access((void *)ALIGN_DOWN((unsigned long)addr, PAGE_SIZE), PAGE_SIZE,
478                                   KCSAN_ACCESS_SCOPED | KCSAN_ACCESS_WRITE | KCSAN_ACCESS_ASSERT,
479                                   &assert_page_exclusive);
480
481         if (CONFIG_KFENCE_STRESS_TEST_FAULTS)
482                 kfence_unprotect((unsigned long)addr); /* To check canary bytes. */
483
484         /* Restore page protection if there was an OOB access. */
485         if (meta->unprotected_page) {
486                 memzero_explicit((void *)ALIGN_DOWN(meta->unprotected_page, PAGE_SIZE), PAGE_SIZE);
487                 kfence_protect(meta->unprotected_page);
488                 meta->unprotected_page = 0;
489         }
490
491         /* Mark the object as freed. */
492         metadata_update_state(meta, KFENCE_OBJECT_FREED, NULL, 0);
493         init = slab_want_init_on_free(meta->cache);
494         raw_spin_unlock_irqrestore(&meta->lock, flags);
495
496         alloc_covered_add(meta->alloc_stack_hash, -1);
497
498         /* Check canary bytes for memory corruption. */
499         for_each_canary(meta, check_canary_byte);
500
501         /*
502          * Clear memory if init-on-free is set. While we protect the page, the
503          * data is still there, and after a use-after-free is detected, we
504          * unprotect the page, so the data is still accessible.
505          */
506         if (!zombie && unlikely(init))
507                 memzero_explicit(addr, meta->size);
508
509         /* Protect to detect use-after-frees. */
510         kfence_protect((unsigned long)addr);
511
512         kcsan_end_scoped_access(&assert_page_exclusive);
513         if (!zombie) {
514                 /* Add it to the tail of the freelist for reuse. */
515                 raw_spin_lock_irqsave(&kfence_freelist_lock, flags);
516                 KFENCE_WARN_ON(!list_empty(&meta->list));
517                 list_add_tail(&meta->list, &kfence_freelist);
518                 raw_spin_unlock_irqrestore(&kfence_freelist_lock, flags);
519
520                 atomic_long_dec(&counters[KFENCE_COUNTER_ALLOCATED]);
521                 atomic_long_inc(&counters[KFENCE_COUNTER_FREES]);
522         } else {
523                 /* See kfence_shutdown_cache(). */
524                 atomic_long_inc(&counters[KFENCE_COUNTER_ZOMBIES]);
525         }
526 }
527
528 static void rcu_guarded_free(struct rcu_head *h)
529 {
530         struct kfence_metadata *meta = container_of(h, struct kfence_metadata, rcu_head);
531
532         kfence_guarded_free((void *)meta->addr, meta, false);
533 }
534
535 /*
536  * Initialization of the KFENCE pool after its allocation.
537  * Returns 0 on success; otherwise returns the address up to
538  * which partial initialization succeeded.
539  */
540 static unsigned long kfence_init_pool(void)
541 {
542         unsigned long addr = (unsigned long)__kfence_pool;
543         struct page *pages;
544         int i;
545
546         if (!arch_kfence_init_pool())
547                 return addr;
548
549         pages = virt_to_page(__kfence_pool);
550
551         /*
552          * Set up object pages: they must have PG_slab set, to avoid freeing
553          * these as real pages.
554          *
555          * We also want to avoid inserting kfence_free() in the kfree()
556          * fast-path in SLUB, and therefore need to ensure kfree() correctly
557          * enters __slab_free() slow-path.
558          */
559         for (i = 0; i < KFENCE_POOL_SIZE / PAGE_SIZE; i++) {
560                 struct slab *slab = page_slab(&pages[i]);
561
562                 if (!i || (i % 2))
563                         continue;
564
565                 /* Verify we do not have a compound head page. */
566                 if (WARN_ON(compound_head(&pages[i]) != &pages[i]))
567                         return addr;
568
569                 __folio_set_slab(slab_folio(slab));
570 #ifdef CONFIG_MEMCG
571                 slab->memcg_data = (unsigned long)&kfence_metadata[i / 2 - 1].objcg |
572                                    MEMCG_DATA_OBJCGS;
573 #endif
574         }
575
576         /*
577          * Protect the first 2 pages. The first page is mostly unnecessary, and
578          * merely serves as an extended guard page. However, adding one
579          * additional page in the beginning gives us an even number of pages,
580          * which simplifies the mapping of address to metadata index.
581          */
582         for (i = 0; i < 2; i++) {
583                 if (unlikely(!kfence_protect(addr)))
584                         return addr;
585
586                 addr += PAGE_SIZE;
587         }
588
589         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
590                 struct kfence_metadata *meta = &kfence_metadata[i];
591
592                 /* Initialize metadata. */
593                 INIT_LIST_HEAD(&meta->list);
594                 raw_spin_lock_init(&meta->lock);
595                 meta->state = KFENCE_OBJECT_UNUSED;
596                 meta->addr = addr; /* Initialize for validation in metadata_to_pageaddr(). */
597                 list_add_tail(&meta->list, &kfence_freelist);
598
599                 /* Protect the right redzone. */
600                 if (unlikely(!kfence_protect(addr + PAGE_SIZE)))
601                         return addr;
602
603                 addr += 2 * PAGE_SIZE;
604         }
605
606         return 0;
607 }
608
609 static bool __init kfence_init_pool_early(void)
610 {
611         unsigned long addr;
612
613         if (!__kfence_pool)
614                 return false;
615
616         addr = kfence_init_pool();
617
618         if (!addr) {
619                 /*
620                  * The pool is live and will never be deallocated from this point on.
621                  * Ignore the pool object from the kmemleak phys object tree, as it would
622                  * otherwise overlap with allocations returned by kfence_alloc(), which
623                  * are registered with kmemleak through the slab post-alloc hook.
624                  */
625                 kmemleak_ignore_phys(__pa(__kfence_pool));
626                 return true;
627         }
628
629         /*
630          * Only release unprotected pages, and do not try to go back and change
631          * page attributes due to risk of failing to do so as well. If changing
632          * page attributes for some pages fails, it is very likely that it also
633          * fails for the first page, and therefore expect addr==__kfence_pool in
634          * most failure cases.
635          */
636         for (char *p = (char *)addr; p < __kfence_pool + KFENCE_POOL_SIZE; p += PAGE_SIZE) {
637                 struct slab *slab = virt_to_slab(p);
638
639                 if (!slab)
640                         continue;
641 #ifdef CONFIG_MEMCG
642                 slab->memcg_data = 0;
643 #endif
644                 __folio_clear_slab(slab_folio(slab));
645         }
646         memblock_free_late(__pa(addr), KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool));
647         __kfence_pool = NULL;
648         return false;
649 }
650
651 static bool kfence_init_pool_late(void)
652 {
653         unsigned long addr, free_size;
654
655         addr = kfence_init_pool();
656
657         if (!addr)
658                 return true;
659
660         /* Same as above. */
661         free_size = KFENCE_POOL_SIZE - (addr - (unsigned long)__kfence_pool);
662 #ifdef CONFIG_CONTIG_ALLOC
663         free_contig_range(page_to_pfn(virt_to_page((void *)addr)), free_size / PAGE_SIZE);
664 #else
665         free_pages_exact((void *)addr, free_size);
666 #endif
667         __kfence_pool = NULL;
668         return false;
669 }
670
671 /* === DebugFS Interface ==================================================== */
672
673 static int stats_show(struct seq_file *seq, void *v)
674 {
675         int i;
676
677         seq_printf(seq, "enabled: %i\n", READ_ONCE(kfence_enabled));
678         for (i = 0; i < KFENCE_COUNTER_COUNT; i++)
679                 seq_printf(seq, "%s: %ld\n", counter_names[i], atomic_long_read(&counters[i]));
680
681         return 0;
682 }
683 DEFINE_SHOW_ATTRIBUTE(stats);
684
685 /*
686  * debugfs seq_file operations for /sys/kernel/debug/kfence/objects.
687  * start_object() and next_object() return the object index + 1, because NULL is used
688  * to stop iteration.
689  */
690 static void *start_object(struct seq_file *seq, loff_t *pos)
691 {
692         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
693                 return (void *)((long)*pos + 1);
694         return NULL;
695 }
696
697 static void stop_object(struct seq_file *seq, void *v)
698 {
699 }
700
701 static void *next_object(struct seq_file *seq, void *v, loff_t *pos)
702 {
703         ++*pos;
704         if (*pos < CONFIG_KFENCE_NUM_OBJECTS)
705                 return (void *)((long)*pos + 1);
706         return NULL;
707 }
708
709 static int show_object(struct seq_file *seq, void *v)
710 {
711         struct kfence_metadata *meta = &kfence_metadata[(long)v - 1];
712         unsigned long flags;
713
714         raw_spin_lock_irqsave(&meta->lock, flags);
715         kfence_print_object(seq, meta);
716         raw_spin_unlock_irqrestore(&meta->lock, flags);
717         seq_puts(seq, "---------------------------------\n");
718
719         return 0;
720 }
721
722 static const struct seq_operations objects_sops = {
723         .start = start_object,
724         .next = next_object,
725         .stop = stop_object,
726         .show = show_object,
727 };
728 DEFINE_SEQ_ATTRIBUTE(objects);
729
730 static int __init kfence_debugfs_init(void)
731 {
732         struct dentry *kfence_dir = debugfs_create_dir("kfence", NULL);
733
734         debugfs_create_file("stats", 0444, kfence_dir, NULL, &stats_fops);
735         debugfs_create_file("objects", 0400, kfence_dir, NULL, &objects_fops);
736         return 0;
737 }
738
739 late_initcall(kfence_debugfs_init);
740
741 /* === Panic Notifier ====================================================== */
742
743 static void kfence_check_all_canary(void)
744 {
745         int i;
746
747         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
748                 struct kfence_metadata *meta = &kfence_metadata[i];
749
750                 if (meta->state == KFENCE_OBJECT_ALLOCATED)
751                         for_each_canary(meta, check_canary_byte);
752         }
753 }
754
755 static int kfence_check_canary_callback(struct notifier_block *nb,
756                                         unsigned long reason, void *arg)
757 {
758         kfence_check_all_canary();
759         return NOTIFY_OK;
760 }
761
762 static struct notifier_block kfence_check_canary_notifier = {
763         .notifier_call = kfence_check_canary_callback,
764 };
765
766 /* === Allocation Gate Timer ================================================ */
767
768 static struct delayed_work kfence_timer;
769
770 #ifdef CONFIG_KFENCE_STATIC_KEYS
771 /* Wait queue to wake up allocation-gate timer task. */
772 static DECLARE_WAIT_QUEUE_HEAD(allocation_wait);
773
774 static void wake_up_kfence_timer(struct irq_work *work)
775 {
776         wake_up(&allocation_wait);
777 }
778 static DEFINE_IRQ_WORK(wake_up_kfence_timer_work, wake_up_kfence_timer);
779 #endif
780
781 /*
782  * Set up delayed work, which will enable and disable the static key. We need to
783  * use a work queue (rather than a simple timer), since enabling and disabling a
784  * static key cannot be done from an interrupt.
785  *
786  * Note: Toggling a static branch currently causes IPIs, and here we'll end up
787  * with a total of 2 IPIs to all CPUs. If this ends up a problem in future (with
788  * more aggressive sampling intervals), we could get away with a variant that
789  * avoids IPIs, at the cost of not immediately capturing allocations if the
790  * instructions remain cached.
791  */
792 static void toggle_allocation_gate(struct work_struct *work)
793 {
794         if (!READ_ONCE(kfence_enabled))
795                 return;
796
797         atomic_set(&kfence_allocation_gate, 0);
798 #ifdef CONFIG_KFENCE_STATIC_KEYS
799         /* Enable static key, and await allocation to happen. */
800         static_branch_enable(&kfence_allocation_key);
801
802         if (sysctl_hung_task_timeout_secs) {
803                 /*
804                  * During low activity with no allocations we might wait a
805                  * while; let's avoid the hung task warning.
806                  */
807                 wait_event_idle_timeout(allocation_wait, atomic_read(&kfence_allocation_gate),
808                                         sysctl_hung_task_timeout_secs * HZ / 2);
809         } else {
810                 wait_event_idle(allocation_wait, atomic_read(&kfence_allocation_gate));
811         }
812
813         /* Disable static key and reset timer. */
814         static_branch_disable(&kfence_allocation_key);
815 #endif
816         queue_delayed_work(system_unbound_wq, &kfence_timer,
817                            msecs_to_jiffies(kfence_sample_interval));
818 }
819
820 /* === Public interface ===================================================== */
821
822 void __init kfence_alloc_pool(void)
823 {
824         if (!kfence_sample_interval)
825                 return;
826
827         __kfence_pool = memblock_alloc(KFENCE_POOL_SIZE, PAGE_SIZE);
828
829         if (!__kfence_pool)
830                 pr_err("failed to allocate pool\n");
831 }
832
833 static void kfence_init_enable(void)
834 {
835         if (!IS_ENABLED(CONFIG_KFENCE_STATIC_KEYS))
836                 static_branch_enable(&kfence_allocation_key);
837
838         if (kfence_deferrable)
839                 INIT_DEFERRABLE_WORK(&kfence_timer, toggle_allocation_gate);
840         else
841                 INIT_DELAYED_WORK(&kfence_timer, toggle_allocation_gate);
842
843         if (kfence_check_on_panic)
844                 atomic_notifier_chain_register(&panic_notifier_list, &kfence_check_canary_notifier);
845
846         WRITE_ONCE(kfence_enabled, true);
847         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
848
849         pr_info("initialized - using %lu bytes for %d objects at 0x%p-0x%p\n", KFENCE_POOL_SIZE,
850                 CONFIG_KFENCE_NUM_OBJECTS, (void *)__kfence_pool,
851                 (void *)(__kfence_pool + KFENCE_POOL_SIZE));
852 }
853
854 void __init kfence_init(void)
855 {
856         stack_hash_seed = get_random_u32();
857
858         /* Setting kfence_sample_interval to 0 on boot disables KFENCE. */
859         if (!kfence_sample_interval)
860                 return;
861
862         if (!kfence_init_pool_early()) {
863                 pr_err("%s failed\n", __func__);
864                 return;
865         }
866
867         kfence_init_enable();
868 }
869
870 static int kfence_init_late(void)
871 {
872         const unsigned long nr_pages = KFENCE_POOL_SIZE / PAGE_SIZE;
873 #ifdef CONFIG_CONTIG_ALLOC
874         struct page *pages;
875
876         pages = alloc_contig_pages(nr_pages, GFP_KERNEL, first_online_node, NULL);
877         if (!pages)
878                 return -ENOMEM;
879         __kfence_pool = page_to_virt(pages);
880 #else
881         if (nr_pages > MAX_ORDER_NR_PAGES) {
882                 pr_warn("KFENCE_NUM_OBJECTS too large for buddy allocator\n");
883                 return -EINVAL;
884         }
885         __kfence_pool = alloc_pages_exact(KFENCE_POOL_SIZE, GFP_KERNEL);
886         if (!__kfence_pool)
887                 return -ENOMEM;
888 #endif
889
890         if (!kfence_init_pool_late()) {
891                 pr_err("%s failed\n", __func__);
892                 return -EBUSY;
893         }
894
895         kfence_init_enable();
896         return 0;
897 }
898
899 static int kfence_enable_late(void)
900 {
901         if (!__kfence_pool)
902                 return kfence_init_late();
903
904         WRITE_ONCE(kfence_enabled, true);
905         queue_delayed_work(system_unbound_wq, &kfence_timer, 0);
906         pr_info("re-enabled\n");
907         return 0;
908 }
909
910 void kfence_shutdown_cache(struct kmem_cache *s)
911 {
912         unsigned long flags;
913         struct kfence_metadata *meta;
914         int i;
915
916         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
917                 bool in_use;
918
919                 meta = &kfence_metadata[i];
920
921                 /*
922                  * If we observe some inconsistent cache and state pair where we
923                  * should have returned false here, cache destruction is racing
924                  * with either kmem_cache_alloc() or kmem_cache_free(). Taking
925                  * the lock will not help, as different critical section
926                  * serialization will have the same outcome.
927                  */
928                 if (READ_ONCE(meta->cache) != s ||
929                     READ_ONCE(meta->state) != KFENCE_OBJECT_ALLOCATED)
930                         continue;
931
932                 raw_spin_lock_irqsave(&meta->lock, flags);
933                 in_use = meta->cache == s && meta->state == KFENCE_OBJECT_ALLOCATED;
934                 raw_spin_unlock_irqrestore(&meta->lock, flags);
935
936                 if (in_use) {
937                         /*
938                          * This cache still has allocations, and we should not
939                          * release them back into the freelist so they can still
940                          * safely be used and retain the kernel's default
941                          * behaviour of keeping the allocations alive (leak the
942                          * cache); however, they effectively become "zombie
943                          * allocations" as the KFENCE objects are the only ones
944                          * still in use and the owning cache is being destroyed.
945                          *
946                          * We mark them freed, so that any subsequent use shows
947                          * more useful error messages that will include stack
948                          * traces of the user of the object, the original
949                          * allocation, and caller to shutdown_cache().
950                          */
951                         kfence_guarded_free((void *)meta->addr, meta, /*zombie=*/true);
952                 }
953         }
954
955         for (i = 0; i < CONFIG_KFENCE_NUM_OBJECTS; i++) {
956                 meta = &kfence_metadata[i];
957
958                 /* See above. */
959                 if (READ_ONCE(meta->cache) != s || READ_ONCE(meta->state) != KFENCE_OBJECT_FREED)
960                         continue;
961
962                 raw_spin_lock_irqsave(&meta->lock, flags);
963                 if (meta->cache == s && meta->state == KFENCE_OBJECT_FREED)
964                         meta->cache = NULL;
965                 raw_spin_unlock_irqrestore(&meta->lock, flags);
966         }
967 }
968
969 void *__kfence_alloc(struct kmem_cache *s, size_t size, gfp_t flags)
970 {
971         unsigned long stack_entries[KFENCE_STACK_DEPTH];
972         size_t num_stack_entries;
973         u32 alloc_stack_hash;
974
975         /*
976          * Perform size check before switching kfence_allocation_gate, so that
977          * we don't disable KFENCE without making an allocation.
978          */
979         if (size > PAGE_SIZE) {
980                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
981                 return NULL;
982         }
983
984         /*
985          * Skip allocations from non-default zones, including DMA. We cannot
986          * guarantee that pages in the KFENCE pool will have the requested
987          * properties (e.g. reside in DMAable memory).
988          */
989         if ((flags & GFP_ZONEMASK) ||
990             (s->flags & (SLAB_CACHE_DMA | SLAB_CACHE_DMA32))) {
991                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_INCOMPAT]);
992                 return NULL;
993         }
994
995         /*
996          * Skip allocations for this slab, if KFENCE has been disabled for
997          * this slab.
998          */
999         if (s->flags & SLAB_SKIP_KFENCE)
1000                 return NULL;
1001
1002         if (atomic_inc_return(&kfence_allocation_gate) > 1)
1003                 return NULL;
1004 #ifdef CONFIG_KFENCE_STATIC_KEYS
1005         /*
1006          * waitqueue_active() is fully ordered after the update of
1007          * kfence_allocation_gate per atomic_inc_return().
1008          */
1009         if (waitqueue_active(&allocation_wait)) {
1010                 /*
1011                  * Calling wake_up() here may deadlock when allocations happen
1012                  * from within timer code. Use an irq_work to defer it.
1013                  */
1014                 irq_work_queue(&wake_up_kfence_timer_work);
1015         }
1016 #endif
1017
1018         if (!READ_ONCE(kfence_enabled))
1019                 return NULL;
1020
1021         num_stack_entries = stack_trace_save(stack_entries, KFENCE_STACK_DEPTH, 0);
1022
1023         /*
1024          * Do expensive check for coverage of allocation in slow-path after
1025          * allocation_gate has already become non-zero, even though it might
1026          * mean not making any allocation within a given sample interval.
1027          *
1028          * This ensures reasonable allocation coverage when the pool is almost
1029          * full, including avoiding long-lived allocations of the same source
1030          * filling up the pool (e.g. pagecache allocations).
1031          */
1032         alloc_stack_hash = get_alloc_stack_hash(stack_entries, num_stack_entries);
1033         if (should_skip_covered() && alloc_covered_contains(alloc_stack_hash)) {
1034                 atomic_long_inc(&counters[KFENCE_COUNTER_SKIP_COVERED]);
1035                 return NULL;
1036         }
1037
1038         return kfence_guarded_alloc(s, size, flags, stack_entries, num_stack_entries,
1039                                     alloc_stack_hash);
1040 }
1041
1042 size_t kfence_ksize(const void *addr)
1043 {
1044         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1045
1046         /*
1047          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1048          * either a use-after-free or invalid access.
1049          */
1050         return meta ? meta->size : 0;
1051 }
1052
1053 void *kfence_object_start(const void *addr)
1054 {
1055         const struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1056
1057         /*
1058          * Read locklessly -- if there is a race with __kfence_alloc(), this is
1059          * either a use-after-free or invalid access.
1060          */
1061         return meta ? (void *)meta->addr : NULL;
1062 }
1063
1064 void __kfence_free(void *addr)
1065 {
1066         struct kfence_metadata *meta = addr_to_metadata((unsigned long)addr);
1067
1068 #ifdef CONFIG_MEMCG
1069         KFENCE_WARN_ON(meta->objcg);
1070 #endif
1071         /*
1072          * If the objects of the cache are SLAB_TYPESAFE_BY_RCU, defer freeing
1073          * the object, as the object page may be recycled for other-typed
1074          * objects once it has been freed. meta->cache may be NULL if the cache
1075          * was destroyed.
1076          */
1077         if (unlikely(meta->cache && (meta->cache->flags & SLAB_TYPESAFE_BY_RCU)))
1078                 call_rcu(&meta->rcu_head, rcu_guarded_free);
1079         else
1080                 kfence_guarded_free(addr, meta, false);
1081 }
1082
1083 bool kfence_handle_page_fault(unsigned long addr, bool is_write, struct pt_regs *regs)
1084 {
1085         const int page_index = (addr - (unsigned long)__kfence_pool) / PAGE_SIZE;
1086         struct kfence_metadata *to_report = NULL;
1087         enum kfence_error_type error_type;
1088         unsigned long flags;
1089
1090         if (!is_kfence_address((void *)addr))
1091                 return false;
1092
1093         if (!READ_ONCE(kfence_enabled)) /* If disabled at runtime ... */
1094                 return kfence_unprotect(addr); /* ... unprotect and proceed. */
1095
1096         atomic_long_inc(&counters[KFENCE_COUNTER_BUGS]);
1097
1098         if (page_index % 2) {
1099                 /* This is a redzone, report a buffer overflow. */
1100                 struct kfence_metadata *meta;
1101                 int distance = 0;
1102
1103                 meta = addr_to_metadata(addr - PAGE_SIZE);
1104                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1105                         to_report = meta;
1106                         /* Data race ok; distance calculation approximate. */
1107                         distance = addr - data_race(meta->addr + meta->size);
1108                 }
1109
1110                 meta = addr_to_metadata(addr + PAGE_SIZE);
1111                 if (meta && READ_ONCE(meta->state) == KFENCE_OBJECT_ALLOCATED) {
1112                         /* Data race ok; distance calculation approximate. */
1113                         if (!to_report || distance > data_race(meta->addr) - addr)
1114                                 to_report = meta;
1115                 }
1116
1117                 if (!to_report)
1118                         goto out;
1119
1120                 raw_spin_lock_irqsave(&to_report->lock, flags);
1121                 to_report->unprotected_page = addr;
1122                 error_type = KFENCE_ERROR_OOB;
1123
1124                 /*
1125                  * If the object was freed before we took the look we can still
1126                  * report this as an OOB -- the report will simply show the
1127                  * stacktrace of the free as well.
1128                  */
1129         } else {
1130                 to_report = addr_to_metadata(addr);
1131                 if (!to_report)
1132                         goto out;
1133
1134                 raw_spin_lock_irqsave(&to_report->lock, flags);
1135                 error_type = KFENCE_ERROR_UAF;
1136                 /*
1137                  * We may race with __kfence_alloc(), and it is possible that a
1138                  * freed object may be reallocated. We simply report this as a
1139                  * use-after-free, with the stack trace showing the place where
1140                  * the object was re-allocated.
1141                  */
1142         }
1143
1144 out:
1145         if (to_report) {
1146                 kfence_report_error(addr, is_write, regs, to_report, error_type);
1147                 raw_spin_unlock_irqrestore(&to_report->lock, flags);
1148         } else {
1149                 /* This may be a UAF or OOB access, but we can't be sure. */
1150                 kfence_report_error(addr, is_write, regs, NULL, KFENCE_ERROR_INVALID);
1151         }
1152
1153         return kfence_unprotect(addr); /* Unprotect and let access proceed. */
1154 }