mm/page_ext: move functions around for minor cleanups to page_ext
[platform/kernel/linux-starfive.git] / mm / kasan / shadow.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains KASAN runtime code that manages shadow memory for
4  * generic and software tag-based KASAN modes.
5  *
6  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8  *
9  * Some code borrowed from https://github.com/xairy/kasan-prototype by
10  *        Andrey Konovalov <andreyknvl@gmail.com>
11  */
12
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
19 #include <linux/mm.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
23
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
26
27 #include "kasan.h"
28
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 {
31         return kasan_check_range((void *)p, size, false, _RET_IP_);
32 }
33 EXPORT_SYMBOL(__kasan_check_read);
34
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 {
37         return kasan_check_range((void *)p, size, true, _RET_IP_);
38 }
39 EXPORT_SYMBOL(__kasan_check_write);
40
41 #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
42 /*
43  * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44  * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45  * for the sites they want to instrument.
46  *
47  * If we have a compiler that can instrument meminstrinsics, never override
48  * these, so that non-instrumented files can safely consider them as builtins.
49  */
50 #undef memset
51 void *memset(void *addr, int c, size_t len)
52 {
53         if (!kasan_check_range(addr, len, true, _RET_IP_))
54                 return NULL;
55
56         return __memset(addr, c, len);
57 }
58
59 #ifdef __HAVE_ARCH_MEMMOVE
60 #undef memmove
61 void *memmove(void *dest, const void *src, size_t len)
62 {
63         if (!kasan_check_range(src, len, false, _RET_IP_) ||
64             !kasan_check_range(dest, len, true, _RET_IP_))
65                 return NULL;
66
67         return __memmove(dest, src, len);
68 }
69 #endif
70
71 #undef memcpy
72 void *memcpy(void *dest, const void *src, size_t len)
73 {
74         if (!kasan_check_range(src, len, false, _RET_IP_) ||
75             !kasan_check_range(dest, len, true, _RET_IP_))
76                 return NULL;
77
78         return __memcpy(dest, src, len);
79 }
80 #endif
81
82 void *__asan_memset(void *addr, int c, ssize_t len)
83 {
84         if (!kasan_check_range(addr, len, true, _RET_IP_))
85                 return NULL;
86
87         return __memset(addr, c, len);
88 }
89 EXPORT_SYMBOL(__asan_memset);
90
91 #ifdef __HAVE_ARCH_MEMMOVE
92 void *__asan_memmove(void *dest, const void *src, ssize_t len)
93 {
94         if (!kasan_check_range(src, len, false, _RET_IP_) ||
95             !kasan_check_range(dest, len, true, _RET_IP_))
96                 return NULL;
97
98         return __memmove(dest, src, len);
99 }
100 EXPORT_SYMBOL(__asan_memmove);
101 #endif
102
103 void *__asan_memcpy(void *dest, const void *src, ssize_t len)
104 {
105         if (!kasan_check_range(src, len, false, _RET_IP_) ||
106             !kasan_check_range(dest, len, true, _RET_IP_))
107                 return NULL;
108
109         return __memcpy(dest, src, len);
110 }
111 EXPORT_SYMBOL(__asan_memcpy);
112
113 #ifdef CONFIG_KASAN_SW_TAGS
114 void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
115 EXPORT_SYMBOL(__hwasan_memset);
116 #ifdef __HAVE_ARCH_MEMMOVE
117 void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
118 EXPORT_SYMBOL(__hwasan_memmove);
119 #endif
120 void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
121 EXPORT_SYMBOL(__hwasan_memcpy);
122 #endif
123
124 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
125 {
126         void *shadow_start, *shadow_end;
127
128         if (!kasan_arch_is_ready())
129                 return;
130
131         /*
132          * Perform shadow offset calculation based on untagged address, as
133          * some of the callers (e.g. kasan_poison_object_data) pass tagged
134          * addresses to this function.
135          */
136         addr = kasan_reset_tag(addr);
137
138         /* Skip KFENCE memory if called explicitly outside of sl*b. */
139         if (is_kfence_address(addr))
140                 return;
141
142         if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
143                 return;
144         if (WARN_ON(size & KASAN_GRANULE_MASK))
145                 return;
146
147         shadow_start = kasan_mem_to_shadow(addr);
148         shadow_end = kasan_mem_to_shadow(addr + size);
149
150         __memset(shadow_start, value, shadow_end - shadow_start);
151 }
152 EXPORT_SYMBOL(kasan_poison);
153
154 #ifdef CONFIG_KASAN_GENERIC
155 void kasan_poison_last_granule(const void *addr, size_t size)
156 {
157         if (!kasan_arch_is_ready())
158                 return;
159
160         if (size & KASAN_GRANULE_MASK) {
161                 u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
162                 *shadow = size & KASAN_GRANULE_MASK;
163         }
164 }
165 #endif
166
167 void kasan_unpoison(const void *addr, size_t size, bool init)
168 {
169         u8 tag = get_tag(addr);
170
171         /*
172          * Perform shadow offset calculation based on untagged address, as
173          * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
174          * addresses to this function.
175          */
176         addr = kasan_reset_tag(addr);
177
178         /*
179          * Skip KFENCE memory if called explicitly outside of sl*b. Also note
180          * that calls to ksize(), where size is not a multiple of machine-word
181          * size, would otherwise poison the invalid portion of the word.
182          */
183         if (is_kfence_address(addr))
184                 return;
185
186         if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
187                 return;
188
189         /* Unpoison all granules that cover the object. */
190         kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
191
192         /* Partially poison the last granule for the generic mode. */
193         if (IS_ENABLED(CONFIG_KASAN_GENERIC))
194                 kasan_poison_last_granule(addr, size);
195 }
196
197 #ifdef CONFIG_MEMORY_HOTPLUG
198 static bool shadow_mapped(unsigned long addr)
199 {
200         pgd_t *pgd = pgd_offset_k(addr);
201         p4d_t *p4d;
202         pud_t *pud;
203         pmd_t *pmd;
204         pte_t *pte;
205
206         if (pgd_none(*pgd))
207                 return false;
208         p4d = p4d_offset(pgd, addr);
209         if (p4d_none(*p4d))
210                 return false;
211         pud = pud_offset(p4d, addr);
212         if (pud_none(*pud))
213                 return false;
214
215         /*
216          * We can't use pud_large() or pud_huge(), the first one is
217          * arch-specific, the last one depends on HUGETLB_PAGE.  So let's abuse
218          * pud_bad(), if pud is bad then it's bad because it's huge.
219          */
220         if (pud_bad(*pud))
221                 return true;
222         pmd = pmd_offset(pud, addr);
223         if (pmd_none(*pmd))
224                 return false;
225
226         if (pmd_bad(*pmd))
227                 return true;
228         pte = pte_offset_kernel(pmd, addr);
229         return !pte_none(ptep_get(pte));
230 }
231
232 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
233                         unsigned long action, void *data)
234 {
235         struct memory_notify *mem_data = data;
236         unsigned long nr_shadow_pages, start_kaddr, shadow_start;
237         unsigned long shadow_end, shadow_size;
238
239         nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
240         start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
241         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
242         shadow_size = nr_shadow_pages << PAGE_SHIFT;
243         shadow_end = shadow_start + shadow_size;
244
245         if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
246                 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
247                 return NOTIFY_BAD;
248
249         switch (action) {
250         case MEM_GOING_ONLINE: {
251                 void *ret;
252
253                 /*
254                  * If shadow is mapped already than it must have been mapped
255                  * during the boot. This could happen if we onlining previously
256                  * offlined memory.
257                  */
258                 if (shadow_mapped(shadow_start))
259                         return NOTIFY_OK;
260
261                 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
262                                         shadow_end, GFP_KERNEL,
263                                         PAGE_KERNEL, VM_NO_GUARD,
264                                         pfn_to_nid(mem_data->start_pfn),
265                                         __builtin_return_address(0));
266                 if (!ret)
267                         return NOTIFY_BAD;
268
269                 kmemleak_ignore(ret);
270                 return NOTIFY_OK;
271         }
272         case MEM_CANCEL_ONLINE:
273         case MEM_OFFLINE: {
274                 struct vm_struct *vm;
275
276                 /*
277                  * shadow_start was either mapped during boot by kasan_init()
278                  * or during memory online by __vmalloc_node_range().
279                  * In the latter case we can use vfree() to free shadow.
280                  * Non-NULL result of the find_vm_area() will tell us if
281                  * that was the second case.
282                  *
283                  * Currently it's not possible to free shadow mapped
284                  * during boot by kasan_init(). It's because the code
285                  * to do that hasn't been written yet. So we'll just
286                  * leak the memory.
287                  */
288                 vm = find_vm_area((void *)shadow_start);
289                 if (vm)
290                         vfree((void *)shadow_start);
291         }
292         }
293
294         return NOTIFY_OK;
295 }
296
297 static int __init kasan_memhotplug_init(void)
298 {
299         hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
300
301         return 0;
302 }
303
304 core_initcall(kasan_memhotplug_init);
305 #endif
306
307 #ifdef CONFIG_KASAN_VMALLOC
308
309 void __init __weak kasan_populate_early_vm_area_shadow(void *start,
310                                                        unsigned long size)
311 {
312 }
313
314 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
315                                       void *unused)
316 {
317         unsigned long page;
318         pte_t pte;
319
320         if (likely(!pte_none(ptep_get(ptep))))
321                 return 0;
322
323         page = __get_free_page(GFP_KERNEL);
324         if (!page)
325                 return -ENOMEM;
326
327         memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
328         pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
329
330         spin_lock(&init_mm.page_table_lock);
331         if (likely(pte_none(ptep_get(ptep)))) {
332                 set_pte_at(&init_mm, addr, ptep, pte);
333                 page = 0;
334         }
335         spin_unlock(&init_mm.page_table_lock);
336         if (page)
337                 free_page(page);
338         return 0;
339 }
340
341 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
342 {
343         unsigned long shadow_start, shadow_end;
344         int ret;
345
346         if (!kasan_arch_is_ready())
347                 return 0;
348
349         if (!is_vmalloc_or_module_addr((void *)addr))
350                 return 0;
351
352         shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
353         shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
354
355         /*
356          * User Mode Linux maps enough shadow memory for all of virtual memory
357          * at boot, so doesn't need to allocate more on vmalloc, just clear it.
358          *
359          * The remaining CONFIG_UML checks in this file exist for the same
360          * reason.
361          */
362         if (IS_ENABLED(CONFIG_UML)) {
363                 __memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
364                 return 0;
365         }
366
367         shadow_start = PAGE_ALIGN_DOWN(shadow_start);
368         shadow_end = PAGE_ALIGN(shadow_end);
369
370         ret = apply_to_page_range(&init_mm, shadow_start,
371                                   shadow_end - shadow_start,
372                                   kasan_populate_vmalloc_pte, NULL);
373         if (ret)
374                 return ret;
375
376         flush_cache_vmap(shadow_start, shadow_end);
377
378         /*
379          * We need to be careful about inter-cpu effects here. Consider:
380          *
381          *   CPU#0                                CPU#1
382          * WRITE_ONCE(p, vmalloc(100));         while (x = READ_ONCE(p)) ;
383          *                                      p[99] = 1;
384          *
385          * With compiler instrumentation, that ends up looking like this:
386          *
387          *   CPU#0                                CPU#1
388          * // vmalloc() allocates memory
389          * // let a = area->addr
390          * // we reach kasan_populate_vmalloc
391          * // and call kasan_unpoison:
392          * STORE shadow(a), unpoison_val
393          * ...
394          * STORE shadow(a+99), unpoison_val     x = LOAD p
395          * // rest of vmalloc process           <data dependency>
396          * STORE p, a                           LOAD shadow(x+99)
397          *
398          * If there is no barrier between the end of unpoisoning the shadow
399          * and the store of the result to p, the stores could be committed
400          * in a different order by CPU#0, and CPU#1 could erroneously observe
401          * poison in the shadow.
402          *
403          * We need some sort of barrier between the stores.
404          *
405          * In the vmalloc() case, this is provided by a smp_wmb() in
406          * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
407          * get_vm_area() and friends, the caller gets shadow allocated but
408          * doesn't have any pages mapped into the virtual address space that
409          * has been reserved. Mapping those pages in will involve taking and
410          * releasing a page-table lock, which will provide the barrier.
411          */
412
413         return 0;
414 }
415
416 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
417                                         void *unused)
418 {
419         unsigned long page;
420
421         page = (unsigned long)__va(pte_pfn(ptep_get(ptep)) << PAGE_SHIFT);
422
423         spin_lock(&init_mm.page_table_lock);
424
425         if (likely(!pte_none(ptep_get(ptep)))) {
426                 pte_clear(&init_mm, addr, ptep);
427                 free_page(page);
428         }
429         spin_unlock(&init_mm.page_table_lock);
430
431         return 0;
432 }
433
434 /*
435  * Release the backing for the vmalloc region [start, end), which
436  * lies within the free region [free_region_start, free_region_end).
437  *
438  * This can be run lazily, long after the region was freed. It runs
439  * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
440  * infrastructure.
441  *
442  * How does this work?
443  * -------------------
444  *
445  * We have a region that is page aligned, labeled as A.
446  * That might not map onto the shadow in a way that is page-aligned:
447  *
448  *                    start                     end
449  *                    v                         v
450  * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
451  *  -------- -------- --------          -------- --------
452  *      |        |       |                 |        |
453  *      |        |       |         /-------/        |
454  *      \-------\|/------/         |/---------------/
455  *              |||                ||
456  *             |??AAAAAA|AAAAAAAA|AA??????|                < shadow
457  *                 (1)      (2)      (3)
458  *
459  * First we align the start upwards and the end downwards, so that the
460  * shadow of the region aligns with shadow page boundaries. In the
461  * example, this gives us the shadow page (2). This is the shadow entirely
462  * covered by this allocation.
463  *
464  * Then we have the tricky bits. We want to know if we can free the
465  * partially covered shadow pages - (1) and (3) in the example. For this,
466  * we are given the start and end of the free region that contains this
467  * allocation. Extending our previous example, we could have:
468  *
469  *  free_region_start                                    free_region_end
470  *  |                 start                     end      |
471  *  v                 v                         v        v
472  * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
473  *  -------- -------- --------          -------- --------
474  *      |        |       |                 |        |
475  *      |        |       |         /-------/        |
476  *      \-------\|/------/         |/---------------/
477  *              |||                ||
478  *             |FFAAAAAA|AAAAAAAA|AAF?????|                < shadow
479  *                 (1)      (2)      (3)
480  *
481  * Once again, we align the start of the free region up, and the end of
482  * the free region down so that the shadow is page aligned. So we can free
483  * page (1) - we know no allocation currently uses anything in that page,
484  * because all of it is in the vmalloc free region. But we cannot free
485  * page (3), because we can't be sure that the rest of it is unused.
486  *
487  * We only consider pages that contain part of the original region for
488  * freeing: we don't try to free other pages from the free region or we'd
489  * end up trying to free huge chunks of virtual address space.
490  *
491  * Concurrency
492  * -----------
493  *
494  * How do we know that we're not freeing a page that is simultaneously
495  * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
496  *
497  * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
498  * at the same time. While we run under free_vmap_area_lock, the population
499  * code does not.
500  *
501  * free_vmap_area_lock instead operates to ensure that the larger range
502  * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
503  * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
504  * no space identified as free will become used while we are running. This
505  * means that so long as we are careful with alignment and only free shadow
506  * pages entirely covered by the free region, we will not run in to any
507  * trouble - any simultaneous allocations will be for disjoint regions.
508  */
509 void kasan_release_vmalloc(unsigned long start, unsigned long end,
510                            unsigned long free_region_start,
511                            unsigned long free_region_end)
512 {
513         void *shadow_start, *shadow_end;
514         unsigned long region_start, region_end;
515         unsigned long size;
516
517         if (!kasan_arch_is_ready())
518                 return;
519
520         region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
521         region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
522
523         free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
524
525         if (start != region_start &&
526             free_region_start < region_start)
527                 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
528
529         free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
530
531         if (end != region_end &&
532             free_region_end > region_end)
533                 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
534
535         shadow_start = kasan_mem_to_shadow((void *)region_start);
536         shadow_end = kasan_mem_to_shadow((void *)region_end);
537
538         if (shadow_end > shadow_start) {
539                 size = shadow_end - shadow_start;
540                 if (IS_ENABLED(CONFIG_UML)) {
541                         __memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
542                         return;
543                 }
544                 apply_to_existing_page_range(&init_mm,
545                                              (unsigned long)shadow_start,
546                                              size, kasan_depopulate_vmalloc_pte,
547                                              NULL);
548                 flush_tlb_kernel_range((unsigned long)shadow_start,
549                                        (unsigned long)shadow_end);
550         }
551 }
552
553 void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
554                                kasan_vmalloc_flags_t flags)
555 {
556         /*
557          * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
558          * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
559          * Software KASAN modes can't optimize zeroing memory by combining it
560          * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
561          */
562
563         if (!kasan_arch_is_ready())
564                 return (void *)start;
565
566         if (!is_vmalloc_or_module_addr(start))
567                 return (void *)start;
568
569         /*
570          * Don't tag executable memory with the tag-based mode.
571          * The kernel doesn't tolerate having the PC register tagged.
572          */
573         if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
574             !(flags & KASAN_VMALLOC_PROT_NORMAL))
575                 return (void *)start;
576
577         start = set_tag(start, kasan_random_tag());
578         kasan_unpoison(start, size, false);
579         return (void *)start;
580 }
581
582 /*
583  * Poison the shadow for a vmalloc region. Called as part of the
584  * freeing process at the time the region is freed.
585  */
586 void __kasan_poison_vmalloc(const void *start, unsigned long size)
587 {
588         if (!kasan_arch_is_ready())
589                 return;
590
591         if (!is_vmalloc_or_module_addr(start))
592                 return;
593
594         size = round_up(size, KASAN_GRANULE_SIZE);
595         kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
596 }
597
598 #else /* CONFIG_KASAN_VMALLOC */
599
600 int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
601 {
602         void *ret;
603         size_t scaled_size;
604         size_t shadow_size;
605         unsigned long shadow_start;
606
607         shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
608         scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
609                                 KASAN_SHADOW_SCALE_SHIFT;
610         shadow_size = round_up(scaled_size, PAGE_SIZE);
611
612         if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
613                 return -EINVAL;
614
615         if (IS_ENABLED(CONFIG_UML)) {
616                 __memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
617                 return 0;
618         }
619
620         ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
621                         shadow_start + shadow_size,
622                         GFP_KERNEL,
623                         PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
624                         __builtin_return_address(0));
625
626         if (ret) {
627                 struct vm_struct *vm = find_vm_area(addr);
628                 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
629                 vm->flags |= VM_KASAN;
630                 kmemleak_ignore(ret);
631
632                 if (vm->flags & VM_DEFER_KMEMLEAK)
633                         kmemleak_vmalloc(vm, size, gfp_mask);
634
635                 return 0;
636         }
637
638         return -ENOMEM;
639 }
640
641 void kasan_free_module_shadow(const struct vm_struct *vm)
642 {
643         if (IS_ENABLED(CONFIG_UML))
644                 return;
645
646         if (vm->flags & VM_KASAN)
647                 vfree(kasan_mem_to_shadow(vm->addr));
648 }
649
650 #endif