1 // SPDX-License-Identifier: GPL-2.0
3 * This file contains KASAN runtime code that manages shadow memory for
4 * generic and software tag-based KASAN modes.
6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
10 * Andrey Konovalov <andreyknvl@gmail.com>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kfence.h>
17 #include <linux/kmemleak.h>
18 #include <linux/memory.h>
20 #include <linux/string.h>
21 #include <linux/types.h>
22 #include <linux/vmalloc.h>
24 #include <asm/cacheflush.h>
25 #include <asm/tlbflush.h>
29 bool __kasan_check_read(const volatile void *p, unsigned int size)
31 return kasan_check_range((void *)p, size, false, _RET_IP_);
33 EXPORT_SYMBOL(__kasan_check_read);
35 bool __kasan_check_write(const volatile void *p, unsigned int size)
37 return kasan_check_range((void *)p, size, true, _RET_IP_);
39 EXPORT_SYMBOL(__kasan_check_write);
41 #if !defined(CONFIG_CC_HAS_KASAN_MEMINTRINSIC_PREFIX) && !defined(CONFIG_GENERIC_ENTRY)
43 * CONFIG_GENERIC_ENTRY relies on compiler emitted mem*() calls to not be
44 * instrumented. KASAN enabled toolchains should emit __asan_mem*() functions
45 * for the sites they want to instrument.
47 * If we have a compiler that can instrument meminstrinsics, never override
48 * these, so that non-instrumented files can safely consider them as builtins.
51 void *memset(void *addr, int c, size_t len)
53 if (!kasan_check_range(addr, len, true, _RET_IP_))
56 return __memset(addr, c, len);
59 #ifdef __HAVE_ARCH_MEMMOVE
61 void *memmove(void *dest, const void *src, size_t len)
63 if (!kasan_check_range(src, len, false, _RET_IP_) ||
64 !kasan_check_range(dest, len, true, _RET_IP_))
67 return __memmove(dest, src, len);
72 void *memcpy(void *dest, const void *src, size_t len)
74 if (!kasan_check_range(src, len, false, _RET_IP_) ||
75 !kasan_check_range(dest, len, true, _RET_IP_))
78 return __memcpy(dest, src, len);
82 void *__asan_memset(void *addr, int c, ssize_t len)
84 if (!kasan_check_range(addr, len, true, _RET_IP_))
87 return __memset(addr, c, len);
89 EXPORT_SYMBOL(__asan_memset);
91 #ifdef __HAVE_ARCH_MEMMOVE
92 void *__asan_memmove(void *dest, const void *src, ssize_t len)
94 if (!kasan_check_range(src, len, false, _RET_IP_) ||
95 !kasan_check_range(dest, len, true, _RET_IP_))
98 return __memmove(dest, src, len);
100 EXPORT_SYMBOL(__asan_memmove);
103 void *__asan_memcpy(void *dest, const void *src, ssize_t len)
105 if (!kasan_check_range(src, len, false, _RET_IP_) ||
106 !kasan_check_range(dest, len, true, _RET_IP_))
109 return __memcpy(dest, src, len);
111 EXPORT_SYMBOL(__asan_memcpy);
113 #ifdef CONFIG_KASAN_SW_TAGS
114 void *__hwasan_memset(void *addr, int c, ssize_t len) __alias(__asan_memset);
115 EXPORT_SYMBOL(__hwasan_memset);
116 #ifdef __HAVE_ARCH_MEMMOVE
117 void *__hwasan_memmove(void *dest, const void *src, ssize_t len) __alias(__asan_memmove);
118 EXPORT_SYMBOL(__hwasan_memmove);
120 void *__hwasan_memcpy(void *dest, const void *src, ssize_t len) __alias(__asan_memcpy);
121 EXPORT_SYMBOL(__hwasan_memcpy);
124 void kasan_poison(const void *addr, size_t size, u8 value, bool init)
126 void *shadow_start, *shadow_end;
128 if (!kasan_arch_is_ready())
132 * Perform shadow offset calculation based on untagged address, as
133 * some of the callers (e.g. kasan_poison_object_data) pass tagged
134 * addresses to this function.
136 addr = kasan_reset_tag(addr);
138 /* Skip KFENCE memory if called explicitly outside of sl*b. */
139 if (is_kfence_address(addr))
142 if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
144 if (WARN_ON(size & KASAN_GRANULE_MASK))
147 shadow_start = kasan_mem_to_shadow(addr);
148 shadow_end = kasan_mem_to_shadow(addr + size);
150 __memset(shadow_start, value, shadow_end - shadow_start);
152 EXPORT_SYMBOL(kasan_poison);
154 #ifdef CONFIG_KASAN_GENERIC
155 void kasan_poison_last_granule(const void *addr, size_t size)
157 if (!kasan_arch_is_ready())
160 if (size & KASAN_GRANULE_MASK) {
161 u8 *shadow = (u8 *)kasan_mem_to_shadow(addr + size);
162 *shadow = size & KASAN_GRANULE_MASK;
167 void kasan_unpoison(const void *addr, size_t size, bool init)
169 u8 tag = get_tag(addr);
172 * Perform shadow offset calculation based on untagged address, as
173 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
174 * addresses to this function.
176 addr = kasan_reset_tag(addr);
179 * Skip KFENCE memory if called explicitly outside of sl*b. Also note
180 * that calls to ksize(), where size is not a multiple of machine-word
181 * size, would otherwise poison the invalid portion of the word.
183 if (is_kfence_address(addr))
186 if (WARN_ON((unsigned long)addr & KASAN_GRANULE_MASK))
189 /* Unpoison all granules that cover the object. */
190 kasan_poison(addr, round_up(size, KASAN_GRANULE_SIZE), tag, false);
192 /* Partially poison the last granule for the generic mode. */
193 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
194 kasan_poison_last_granule(addr, size);
197 #ifdef CONFIG_MEMORY_HOTPLUG
198 static bool shadow_mapped(unsigned long addr)
200 pgd_t *pgd = pgd_offset_k(addr);
208 p4d = p4d_offset(pgd, addr);
211 pud = pud_offset(p4d, addr);
216 * We can't use pud_large() or pud_huge(), the first one is
217 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
218 * pud_bad(), if pud is bad then it's bad because it's huge.
222 pmd = pmd_offset(pud, addr);
228 pte = pte_offset_kernel(pmd, addr);
229 return !pte_none(ptep_get(pte));
232 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
233 unsigned long action, void *data)
235 struct memory_notify *mem_data = data;
236 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
237 unsigned long shadow_end, shadow_size;
239 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
240 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
241 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
242 shadow_size = nr_shadow_pages << PAGE_SHIFT;
243 shadow_end = shadow_start + shadow_size;
245 if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
246 WARN_ON(start_kaddr % KASAN_MEMORY_PER_SHADOW_PAGE))
250 case MEM_GOING_ONLINE: {
254 * If shadow is mapped already than it must have been mapped
255 * during the boot. This could happen if we onlining previously
258 if (shadow_mapped(shadow_start))
261 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
262 shadow_end, GFP_KERNEL,
263 PAGE_KERNEL, VM_NO_GUARD,
264 pfn_to_nid(mem_data->start_pfn),
265 __builtin_return_address(0));
269 kmemleak_ignore(ret);
272 case MEM_CANCEL_ONLINE:
274 struct vm_struct *vm;
277 * shadow_start was either mapped during boot by kasan_init()
278 * or during memory online by __vmalloc_node_range().
279 * In the latter case we can use vfree() to free shadow.
280 * Non-NULL result of the find_vm_area() will tell us if
281 * that was the second case.
283 * Currently it's not possible to free shadow mapped
284 * during boot by kasan_init(). It's because the code
285 * to do that hasn't been written yet. So we'll just
288 vm = find_vm_area((void *)shadow_start);
290 vfree((void *)shadow_start);
297 static int __init kasan_memhotplug_init(void)
299 hotplug_memory_notifier(kasan_mem_notifier, DEFAULT_CALLBACK_PRI);
304 core_initcall(kasan_memhotplug_init);
307 #ifdef CONFIG_KASAN_VMALLOC
309 void __init __weak kasan_populate_early_vm_area_shadow(void *start,
314 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
320 if (likely(!pte_none(ptep_get(ptep))))
323 page = __get_free_page(GFP_KERNEL);
327 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
328 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
330 spin_lock(&init_mm.page_table_lock);
331 if (likely(pte_none(ptep_get(ptep)))) {
332 set_pte_at(&init_mm, addr, ptep, pte);
335 spin_unlock(&init_mm.page_table_lock);
341 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
343 unsigned long shadow_start, shadow_end;
346 if (!kasan_arch_is_ready())
349 if (!is_vmalloc_or_module_addr((void *)addr))
352 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
353 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
356 * User Mode Linux maps enough shadow memory for all of virtual memory
357 * at boot, so doesn't need to allocate more on vmalloc, just clear it.
359 * The remaining CONFIG_UML checks in this file exist for the same
362 if (IS_ENABLED(CONFIG_UML)) {
363 __memset((void *)shadow_start, KASAN_VMALLOC_INVALID, shadow_end - shadow_start);
367 shadow_start = PAGE_ALIGN_DOWN(shadow_start);
368 shadow_end = PAGE_ALIGN(shadow_end);
370 ret = apply_to_page_range(&init_mm, shadow_start,
371 shadow_end - shadow_start,
372 kasan_populate_vmalloc_pte, NULL);
376 flush_cache_vmap(shadow_start, shadow_end);
379 * We need to be careful about inter-cpu effects here. Consider:
382 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
385 * With compiler instrumentation, that ends up looking like this:
388 * // vmalloc() allocates memory
389 * // let a = area->addr
390 * // we reach kasan_populate_vmalloc
391 * // and call kasan_unpoison:
392 * STORE shadow(a), unpoison_val
394 * STORE shadow(a+99), unpoison_val x = LOAD p
395 * // rest of vmalloc process <data dependency>
396 * STORE p, a LOAD shadow(x+99)
398 * If there is no barrier between the end of unpoisoning the shadow
399 * and the store of the result to p, the stores could be committed
400 * in a different order by CPU#0, and CPU#1 could erroneously observe
401 * poison in the shadow.
403 * We need some sort of barrier between the stores.
405 * In the vmalloc() case, this is provided by a smp_wmb() in
406 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
407 * get_vm_area() and friends, the caller gets shadow allocated but
408 * doesn't have any pages mapped into the virtual address space that
409 * has been reserved. Mapping those pages in will involve taking and
410 * releasing a page-table lock, which will provide the barrier.
416 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
421 page = (unsigned long)__va(pte_pfn(ptep_get(ptep)) << PAGE_SHIFT);
423 spin_lock(&init_mm.page_table_lock);
425 if (likely(!pte_none(ptep_get(ptep)))) {
426 pte_clear(&init_mm, addr, ptep);
429 spin_unlock(&init_mm.page_table_lock);
435 * Release the backing for the vmalloc region [start, end), which
436 * lies within the free region [free_region_start, free_region_end).
438 * This can be run lazily, long after the region was freed. It runs
439 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
442 * How does this work?
443 * -------------------
445 * We have a region that is page aligned, labeled as A.
446 * That might not map onto the shadow in a way that is page-aligned:
450 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
451 * -------- -------- -------- -------- --------
454 * \-------\|/------/ |/---------------/
456 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
459 * First we align the start upwards and the end downwards, so that the
460 * shadow of the region aligns with shadow page boundaries. In the
461 * example, this gives us the shadow page (2). This is the shadow entirely
462 * covered by this allocation.
464 * Then we have the tricky bits. We want to know if we can free the
465 * partially covered shadow pages - (1) and (3) in the example. For this,
466 * we are given the start and end of the free region that contains this
467 * allocation. Extending our previous example, we could have:
469 * free_region_start free_region_end
472 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
473 * -------- -------- -------- -------- --------
476 * \-------\|/------/ |/---------------/
478 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
481 * Once again, we align the start of the free region up, and the end of
482 * the free region down so that the shadow is page aligned. So we can free
483 * page (1) - we know no allocation currently uses anything in that page,
484 * because all of it is in the vmalloc free region. But we cannot free
485 * page (3), because we can't be sure that the rest of it is unused.
487 * We only consider pages that contain part of the original region for
488 * freeing: we don't try to free other pages from the free region or we'd
489 * end up trying to free huge chunks of virtual address space.
494 * How do we know that we're not freeing a page that is simultaneously
495 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
497 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
498 * at the same time. While we run under free_vmap_area_lock, the population
501 * free_vmap_area_lock instead operates to ensure that the larger range
502 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
503 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
504 * no space identified as free will become used while we are running. This
505 * means that so long as we are careful with alignment and only free shadow
506 * pages entirely covered by the free region, we will not run in to any
507 * trouble - any simultaneous allocations will be for disjoint regions.
509 void kasan_release_vmalloc(unsigned long start, unsigned long end,
510 unsigned long free_region_start,
511 unsigned long free_region_end)
513 void *shadow_start, *shadow_end;
514 unsigned long region_start, region_end;
517 if (!kasan_arch_is_ready())
520 region_start = ALIGN(start, KASAN_MEMORY_PER_SHADOW_PAGE);
521 region_end = ALIGN_DOWN(end, KASAN_MEMORY_PER_SHADOW_PAGE);
523 free_region_start = ALIGN(free_region_start, KASAN_MEMORY_PER_SHADOW_PAGE);
525 if (start != region_start &&
526 free_region_start < region_start)
527 region_start -= KASAN_MEMORY_PER_SHADOW_PAGE;
529 free_region_end = ALIGN_DOWN(free_region_end, KASAN_MEMORY_PER_SHADOW_PAGE);
531 if (end != region_end &&
532 free_region_end > region_end)
533 region_end += KASAN_MEMORY_PER_SHADOW_PAGE;
535 shadow_start = kasan_mem_to_shadow((void *)region_start);
536 shadow_end = kasan_mem_to_shadow((void *)region_end);
538 if (shadow_end > shadow_start) {
539 size = shadow_end - shadow_start;
540 if (IS_ENABLED(CONFIG_UML)) {
541 __memset(shadow_start, KASAN_SHADOW_INIT, shadow_end - shadow_start);
544 apply_to_existing_page_range(&init_mm,
545 (unsigned long)shadow_start,
546 size, kasan_depopulate_vmalloc_pte,
548 flush_tlb_kernel_range((unsigned long)shadow_start,
549 (unsigned long)shadow_end);
553 void *__kasan_unpoison_vmalloc(const void *start, unsigned long size,
554 kasan_vmalloc_flags_t flags)
557 * Software KASAN modes unpoison both VM_ALLOC and non-VM_ALLOC
558 * mappings, so the KASAN_VMALLOC_VM_ALLOC flag is ignored.
559 * Software KASAN modes can't optimize zeroing memory by combining it
560 * with setting memory tags, so the KASAN_VMALLOC_INIT flag is ignored.
563 if (!kasan_arch_is_ready())
564 return (void *)start;
566 if (!is_vmalloc_or_module_addr(start))
567 return (void *)start;
570 * Don't tag executable memory with the tag-based mode.
571 * The kernel doesn't tolerate having the PC register tagged.
573 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS) &&
574 !(flags & KASAN_VMALLOC_PROT_NORMAL))
575 return (void *)start;
577 start = set_tag(start, kasan_random_tag());
578 kasan_unpoison(start, size, false);
579 return (void *)start;
583 * Poison the shadow for a vmalloc region. Called as part of the
584 * freeing process at the time the region is freed.
586 void __kasan_poison_vmalloc(const void *start, unsigned long size)
588 if (!kasan_arch_is_ready())
591 if (!is_vmalloc_or_module_addr(start))
594 size = round_up(size, KASAN_GRANULE_SIZE);
595 kasan_poison(start, size, KASAN_VMALLOC_INVALID, false);
598 #else /* CONFIG_KASAN_VMALLOC */
600 int kasan_alloc_module_shadow(void *addr, size_t size, gfp_t gfp_mask)
605 unsigned long shadow_start;
607 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
608 scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
609 KASAN_SHADOW_SCALE_SHIFT;
610 shadow_size = round_up(scaled_size, PAGE_SIZE);
612 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
615 if (IS_ENABLED(CONFIG_UML)) {
616 __memset((void *)shadow_start, KASAN_SHADOW_INIT, shadow_size);
620 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
621 shadow_start + shadow_size,
623 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
624 __builtin_return_address(0));
627 struct vm_struct *vm = find_vm_area(addr);
628 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
629 vm->flags |= VM_KASAN;
630 kmemleak_ignore(ret);
632 if (vm->flags & VM_DEFER_KMEMLEAK)
633 kmemleak_vmalloc(vm, size, gfp_mask);
641 void kasan_free_module_shadow(const struct vm_struct *vm)
643 if (IS_ENABLED(CONFIG_UML))
646 if (vm->flags & VM_KASAN)
647 vfree(kasan_mem_to_shadow(vm->addr));