1 // SPDX-License-Identifier: GPL-2.0
3 * This file contains KASAN runtime code that manages shadow memory for
4 * generic and software tag-based KASAN modes.
6 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
7 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
9 * Some code borrowed from https://github.com/xairy/kasan-prototype by
10 * Andrey Konovalov <andreyknvl@gmail.com>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/kmemleak.h>
17 #include <linux/memory.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/vmalloc.h>
23 #include <asm/cacheflush.h>
24 #include <asm/tlbflush.h>
28 bool __kasan_check_read(const volatile void *p, unsigned int size)
30 return check_memory_region((unsigned long)p, size, false, _RET_IP_);
32 EXPORT_SYMBOL(__kasan_check_read);
34 bool __kasan_check_write(const volatile void *p, unsigned int size)
36 return check_memory_region((unsigned long)p, size, true, _RET_IP_);
38 EXPORT_SYMBOL(__kasan_check_write);
41 void *memset(void *addr, int c, size_t len)
43 if (!check_memory_region((unsigned long)addr, len, true, _RET_IP_))
46 return __memset(addr, c, len);
49 #ifdef __HAVE_ARCH_MEMMOVE
51 void *memmove(void *dest, const void *src, size_t len)
53 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
54 !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
57 return __memmove(dest, src, len);
62 void *memcpy(void *dest, const void *src, size_t len)
64 if (!check_memory_region((unsigned long)src, len, false, _RET_IP_) ||
65 !check_memory_region((unsigned long)dest, len, true, _RET_IP_))
68 return __memcpy(dest, src, len);
72 * Poisons the shadow memory for 'size' bytes starting from 'addr'.
73 * Memory addresses should be aligned to KASAN_GRANULE_SIZE.
75 void poison_range(const void *address, size_t size, u8 value)
77 void *shadow_start, *shadow_end;
80 * Perform shadow offset calculation based on untagged address, as
81 * some of the callers (e.g. kasan_poison_object_data) pass tagged
82 * addresses to this function.
84 address = reset_tag(address);
86 shadow_start = kasan_mem_to_shadow(address);
87 shadow_end = kasan_mem_to_shadow(address + size);
89 __memset(shadow_start, value, shadow_end - shadow_start);
92 void unpoison_range(const void *address, size_t size)
94 u8 tag = get_tag(address);
97 * Perform shadow offset calculation based on untagged address, as
98 * some of the callers (e.g. kasan_unpoison_object_data) pass tagged
99 * addresses to this function.
101 address = reset_tag(address);
103 poison_range(address, size, tag);
105 if (size & KASAN_GRANULE_MASK) {
106 u8 *shadow = (u8 *)kasan_mem_to_shadow(address + size);
108 if (IS_ENABLED(CONFIG_KASAN_SW_TAGS))
111 *shadow = size & KASAN_GRANULE_MASK;
115 #ifdef CONFIG_MEMORY_HOTPLUG
116 static bool shadow_mapped(unsigned long addr)
118 pgd_t *pgd = pgd_offset_k(addr);
126 p4d = p4d_offset(pgd, addr);
129 pud = pud_offset(p4d, addr);
134 * We can't use pud_large() or pud_huge(), the first one is
135 * arch-specific, the last one depends on HUGETLB_PAGE. So let's abuse
136 * pud_bad(), if pud is bad then it's bad because it's huge.
140 pmd = pmd_offset(pud, addr);
146 pte = pte_offset_kernel(pmd, addr);
147 return !pte_none(*pte);
150 static int __meminit kasan_mem_notifier(struct notifier_block *nb,
151 unsigned long action, void *data)
153 struct memory_notify *mem_data = data;
154 unsigned long nr_shadow_pages, start_kaddr, shadow_start;
155 unsigned long shadow_end, shadow_size;
157 nr_shadow_pages = mem_data->nr_pages >> KASAN_SHADOW_SCALE_SHIFT;
158 start_kaddr = (unsigned long)pfn_to_kaddr(mem_data->start_pfn);
159 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)start_kaddr);
160 shadow_size = nr_shadow_pages << PAGE_SHIFT;
161 shadow_end = shadow_start + shadow_size;
163 if (WARN_ON(mem_data->nr_pages % KASAN_GRANULE_SIZE) ||
164 WARN_ON(start_kaddr % (KASAN_GRANULE_SIZE << PAGE_SHIFT)))
168 case MEM_GOING_ONLINE: {
172 * If shadow is mapped already than it must have been mapped
173 * during the boot. This could happen if we onlining previously
176 if (shadow_mapped(shadow_start))
179 ret = __vmalloc_node_range(shadow_size, PAGE_SIZE, shadow_start,
180 shadow_end, GFP_KERNEL,
181 PAGE_KERNEL, VM_NO_GUARD,
182 pfn_to_nid(mem_data->start_pfn),
183 __builtin_return_address(0));
187 kmemleak_ignore(ret);
190 case MEM_CANCEL_ONLINE:
192 struct vm_struct *vm;
195 * shadow_start was either mapped during boot by kasan_init()
196 * or during memory online by __vmalloc_node_range().
197 * In the latter case we can use vfree() to free shadow.
198 * Non-NULL result of the find_vm_area() will tell us if
199 * that was the second case.
201 * Currently it's not possible to free shadow mapped
202 * during boot by kasan_init(). It's because the code
203 * to do that hasn't been written yet. So we'll just
206 vm = find_vm_area((void *)shadow_start);
208 vfree((void *)shadow_start);
215 static int __init kasan_memhotplug_init(void)
217 hotplug_memory_notifier(kasan_mem_notifier, 0);
222 core_initcall(kasan_memhotplug_init);
225 #ifdef CONFIG_KASAN_VMALLOC
227 static int kasan_populate_vmalloc_pte(pte_t *ptep, unsigned long addr,
233 if (likely(!pte_none(*ptep)))
236 page = __get_free_page(GFP_KERNEL);
240 memset((void *)page, KASAN_VMALLOC_INVALID, PAGE_SIZE);
241 pte = pfn_pte(PFN_DOWN(__pa(page)), PAGE_KERNEL);
243 spin_lock(&init_mm.page_table_lock);
244 if (likely(pte_none(*ptep))) {
245 set_pte_at(&init_mm, addr, ptep, pte);
248 spin_unlock(&init_mm.page_table_lock);
254 int kasan_populate_vmalloc(unsigned long addr, unsigned long size)
256 unsigned long shadow_start, shadow_end;
259 if (!is_vmalloc_or_module_addr((void *)addr))
262 shadow_start = (unsigned long)kasan_mem_to_shadow((void *)addr);
263 shadow_start = ALIGN_DOWN(shadow_start, PAGE_SIZE);
264 shadow_end = (unsigned long)kasan_mem_to_shadow((void *)addr + size);
265 shadow_end = ALIGN(shadow_end, PAGE_SIZE);
267 ret = apply_to_page_range(&init_mm, shadow_start,
268 shadow_end - shadow_start,
269 kasan_populate_vmalloc_pte, NULL);
273 flush_cache_vmap(shadow_start, shadow_end);
276 * We need to be careful about inter-cpu effects here. Consider:
279 * WRITE_ONCE(p, vmalloc(100)); while (x = READ_ONCE(p)) ;
282 * With compiler instrumentation, that ends up looking like this:
285 * // vmalloc() allocates memory
286 * // let a = area->addr
287 * // we reach kasan_populate_vmalloc
288 * // and call unpoison_range:
289 * STORE shadow(a), unpoison_val
291 * STORE shadow(a+99), unpoison_val x = LOAD p
292 * // rest of vmalloc process <data dependency>
293 * STORE p, a LOAD shadow(x+99)
295 * If there is no barrier between the end of unpoisioning the shadow
296 * and the store of the result to p, the stores could be committed
297 * in a different order by CPU#0, and CPU#1 could erroneously observe
298 * poison in the shadow.
300 * We need some sort of barrier between the stores.
302 * In the vmalloc() case, this is provided by a smp_wmb() in
303 * clear_vm_uninitialized_flag(). In the per-cpu allocator and in
304 * get_vm_area() and friends, the caller gets shadow allocated but
305 * doesn't have any pages mapped into the virtual address space that
306 * has been reserved. Mapping those pages in will involve taking and
307 * releasing a page-table lock, which will provide the barrier.
314 * Poison the shadow for a vmalloc region. Called as part of the
315 * freeing process at the time the region is freed.
317 void kasan_poison_vmalloc(const void *start, unsigned long size)
319 if (!is_vmalloc_or_module_addr(start))
322 size = round_up(size, KASAN_GRANULE_SIZE);
323 poison_range(start, size, KASAN_VMALLOC_INVALID);
326 void kasan_unpoison_vmalloc(const void *start, unsigned long size)
328 if (!is_vmalloc_or_module_addr(start))
331 unpoison_range(start, size);
334 static int kasan_depopulate_vmalloc_pte(pte_t *ptep, unsigned long addr,
339 page = (unsigned long)__va(pte_pfn(*ptep) << PAGE_SHIFT);
341 spin_lock(&init_mm.page_table_lock);
343 if (likely(!pte_none(*ptep))) {
344 pte_clear(&init_mm, addr, ptep);
347 spin_unlock(&init_mm.page_table_lock);
353 * Release the backing for the vmalloc region [start, end), which
354 * lies within the free region [free_region_start, free_region_end).
356 * This can be run lazily, long after the region was freed. It runs
357 * under vmap_area_lock, so it's not safe to interact with the vmalloc/vmap
360 * How does this work?
361 * -------------------
363 * We have a region that is page aligned, labelled as A.
364 * That might not map onto the shadow in a way that is page-aligned:
368 * |????????|????????|AAAAAAAA|AA....AA|AAAAAAAA|????????| < vmalloc
369 * -------- -------- -------- -------- --------
372 * \-------\|/------/ |/---------------/
374 * |??AAAAAA|AAAAAAAA|AA??????| < shadow
377 * First we align the start upwards and the end downwards, so that the
378 * shadow of the region aligns with shadow page boundaries. In the
379 * example, this gives us the shadow page (2). This is the shadow entirely
380 * covered by this allocation.
382 * Then we have the tricky bits. We want to know if we can free the
383 * partially covered shadow pages - (1) and (3) in the example. For this,
384 * we are given the start and end of the free region that contains this
385 * allocation. Extending our previous example, we could have:
387 * free_region_start free_region_end
390 * |FFFFFFFF|FFFFFFFF|AAAAAAAA|AA....AA|AAAAAAAA|FFFFFFFF| < vmalloc
391 * -------- -------- -------- -------- --------
394 * \-------\|/------/ |/---------------/
396 * |FFAAAAAA|AAAAAAAA|AAF?????| < shadow
399 * Once again, we align the start of the free region up, and the end of
400 * the free region down so that the shadow is page aligned. So we can free
401 * page (1) - we know no allocation currently uses anything in that page,
402 * because all of it is in the vmalloc free region. But we cannot free
403 * page (3), because we can't be sure that the rest of it is unused.
405 * We only consider pages that contain part of the original region for
406 * freeing: we don't try to free other pages from the free region or we'd
407 * end up trying to free huge chunks of virtual address space.
412 * How do we know that we're not freeing a page that is simultaneously
413 * being used for a fresh allocation in kasan_populate_vmalloc(_pte)?
415 * We _can_ have kasan_release_vmalloc and kasan_populate_vmalloc running
416 * at the same time. While we run under free_vmap_area_lock, the population
419 * free_vmap_area_lock instead operates to ensure that the larger range
420 * [free_region_start, free_region_end) is safe: because __alloc_vmap_area and
421 * the per-cpu region-finding algorithm both run under free_vmap_area_lock,
422 * no space identified as free will become used while we are running. This
423 * means that so long as we are careful with alignment and only free shadow
424 * pages entirely covered by the free region, we will not run in to any
425 * trouble - any simultaneous allocations will be for disjoint regions.
427 void kasan_release_vmalloc(unsigned long start, unsigned long end,
428 unsigned long free_region_start,
429 unsigned long free_region_end)
431 void *shadow_start, *shadow_end;
432 unsigned long region_start, region_end;
435 region_start = ALIGN(start, PAGE_SIZE * KASAN_GRANULE_SIZE);
436 region_end = ALIGN_DOWN(end, PAGE_SIZE * KASAN_GRANULE_SIZE);
438 free_region_start = ALIGN(free_region_start,
439 PAGE_SIZE * KASAN_GRANULE_SIZE);
441 if (start != region_start &&
442 free_region_start < region_start)
443 region_start -= PAGE_SIZE * KASAN_GRANULE_SIZE;
445 free_region_end = ALIGN_DOWN(free_region_end,
446 PAGE_SIZE * KASAN_GRANULE_SIZE);
448 if (end != region_end &&
449 free_region_end > region_end)
450 region_end += PAGE_SIZE * KASAN_GRANULE_SIZE;
452 shadow_start = kasan_mem_to_shadow((void *)region_start);
453 shadow_end = kasan_mem_to_shadow((void *)region_end);
455 if (shadow_end > shadow_start) {
456 size = shadow_end - shadow_start;
457 apply_to_existing_page_range(&init_mm,
458 (unsigned long)shadow_start,
459 size, kasan_depopulate_vmalloc_pte,
461 flush_tlb_kernel_range((unsigned long)shadow_start,
462 (unsigned long)shadow_end);
466 #else /* CONFIG_KASAN_VMALLOC */
468 int kasan_module_alloc(void *addr, size_t size)
473 unsigned long shadow_start;
475 shadow_start = (unsigned long)kasan_mem_to_shadow(addr);
476 scaled_size = (size + KASAN_GRANULE_SIZE - 1) >>
477 KASAN_SHADOW_SCALE_SHIFT;
478 shadow_size = round_up(scaled_size, PAGE_SIZE);
480 if (WARN_ON(!PAGE_ALIGNED(shadow_start)))
483 ret = __vmalloc_node_range(shadow_size, 1, shadow_start,
484 shadow_start + shadow_size,
486 PAGE_KERNEL, VM_NO_GUARD, NUMA_NO_NODE,
487 __builtin_return_address(0));
490 __memset(ret, KASAN_SHADOW_INIT, shadow_size);
491 find_vm_area(addr)->flags |= VM_KASAN;
492 kmemleak_ignore(ret);
499 void kasan_free_shadow(const struct vm_struct *vm)
501 if (vm->flags & VM_KASAN)
502 vfree(kasan_mem_to_shadow(vm->addr));