Merge tag 'devicetree-for-6.5-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-rpi.git] / mm / kasan / report.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains common KASAN error reporting code.
4  *
5  * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  *
8  * Some code borrowed from https://github.com/xairy/kasan-prototype by
9  *        Andrey Konovalov <andreyknvl@gmail.com>
10  */
11
12 #include <kunit/test.h>
13 #include <linux/bitops.h>
14 #include <linux/ftrace.h>
15 #include <linux/init.h>
16 #include <linux/kernel.h>
17 #include <linux/lockdep.h>
18 #include <linux/mm.h>
19 #include <linux/printk.h>
20 #include <linux/sched.h>
21 #include <linux/slab.h>
22 #include <linux/stackdepot.h>
23 #include <linux/stacktrace.h>
24 #include <linux/string.h>
25 #include <linux/types.h>
26 #include <linux/kasan.h>
27 #include <linux/module.h>
28 #include <linux/sched/task_stack.h>
29 #include <linux/uaccess.h>
30 #include <trace/events/error_report.h>
31
32 #include <asm/sections.h>
33
34 #include "kasan.h"
35 #include "../slab.h"
36
37 static unsigned long kasan_flags;
38
39 #define KASAN_BIT_REPORTED      0
40 #define KASAN_BIT_MULTI_SHOT    1
41
42 enum kasan_arg_fault {
43         KASAN_ARG_FAULT_DEFAULT,
44         KASAN_ARG_FAULT_REPORT,
45         KASAN_ARG_FAULT_PANIC,
46         KASAN_ARG_FAULT_PANIC_ON_WRITE,
47 };
48
49 static enum kasan_arg_fault kasan_arg_fault __ro_after_init = KASAN_ARG_FAULT_DEFAULT;
50
51 /* kasan.fault=report/panic */
52 static int __init early_kasan_fault(char *arg)
53 {
54         if (!arg)
55                 return -EINVAL;
56
57         if (!strcmp(arg, "report"))
58                 kasan_arg_fault = KASAN_ARG_FAULT_REPORT;
59         else if (!strcmp(arg, "panic"))
60                 kasan_arg_fault = KASAN_ARG_FAULT_PANIC;
61         else if (!strcmp(arg, "panic_on_write"))
62                 kasan_arg_fault = KASAN_ARG_FAULT_PANIC_ON_WRITE;
63         else
64                 return -EINVAL;
65
66         return 0;
67 }
68 early_param("kasan.fault", early_kasan_fault);
69
70 static int __init kasan_set_multi_shot(char *str)
71 {
72         set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
73         return 1;
74 }
75 __setup("kasan_multi_shot", kasan_set_multi_shot);
76
77 /*
78  * This function is used to check whether KASAN reports are suppressed for
79  * software KASAN modes via kasan_disable/enable_current() critical sections.
80  *
81  * This is done to avoid:
82  * 1. False-positive reports when accessing slab metadata,
83  * 2. Deadlocking when poisoned memory is accessed by the reporting code.
84  *
85  * Hardware Tag-Based KASAN instead relies on:
86  * For #1: Resetting tags via kasan_reset_tag().
87  * For #2: Suppression of tag checks via CPU, see report_suppress_start/end().
88  */
89 static bool report_suppressed_sw(void)
90 {
91 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
92         if (current->kasan_depth)
93                 return true;
94 #endif
95         return false;
96 }
97
98 static void report_suppress_start(void)
99 {
100 #ifdef CONFIG_KASAN_HW_TAGS
101         /*
102          * Disable preemption for the duration of printing a KASAN report, as
103          * hw_suppress_tag_checks_start() disables checks on the current CPU.
104          */
105         preempt_disable();
106         hw_suppress_tag_checks_start();
107 #else
108         kasan_disable_current();
109 #endif
110 }
111
112 static void report_suppress_stop(void)
113 {
114 #ifdef CONFIG_KASAN_HW_TAGS
115         hw_suppress_tag_checks_stop();
116         preempt_enable();
117 #else
118         kasan_enable_current();
119 #endif
120 }
121
122 /*
123  * Used to avoid reporting more than one KASAN bug unless kasan_multi_shot
124  * is enabled. Note that KASAN tests effectively enable kasan_multi_shot
125  * for their duration.
126  */
127 static bool report_enabled(void)
128 {
129         if (test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags))
130                 return true;
131         return !test_and_set_bit(KASAN_BIT_REPORTED, &kasan_flags);
132 }
133
134 #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST) || IS_ENABLED(CONFIG_KASAN_MODULE_TEST)
135
136 bool kasan_save_enable_multi_shot(void)
137 {
138         return test_and_set_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
139 }
140 EXPORT_SYMBOL_GPL(kasan_save_enable_multi_shot);
141
142 void kasan_restore_multi_shot(bool enabled)
143 {
144         if (!enabled)
145                 clear_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags);
146 }
147 EXPORT_SYMBOL_GPL(kasan_restore_multi_shot);
148
149 #endif
150
151 #if IS_ENABLED(CONFIG_KASAN_KUNIT_TEST)
152
153 /*
154  * Whether the KASAN KUnit test suite is currently being executed.
155  * Updated in kasan_test.c.
156  */
157 static bool kasan_kunit_executing;
158
159 void kasan_kunit_test_suite_start(void)
160 {
161         WRITE_ONCE(kasan_kunit_executing, true);
162 }
163 EXPORT_SYMBOL_GPL(kasan_kunit_test_suite_start);
164
165 void kasan_kunit_test_suite_end(void)
166 {
167         WRITE_ONCE(kasan_kunit_executing, false);
168 }
169 EXPORT_SYMBOL_GPL(kasan_kunit_test_suite_end);
170
171 static bool kasan_kunit_test_suite_executing(void)
172 {
173         return READ_ONCE(kasan_kunit_executing);
174 }
175
176 #else /* CONFIG_KASAN_KUNIT_TEST */
177
178 static inline bool kasan_kunit_test_suite_executing(void) { return false; }
179
180 #endif /* CONFIG_KASAN_KUNIT_TEST */
181
182 #if IS_ENABLED(CONFIG_KUNIT)
183
184 static void fail_non_kasan_kunit_test(void)
185 {
186         struct kunit *test;
187
188         if (kasan_kunit_test_suite_executing())
189                 return;
190
191         test = current->kunit_test;
192         if (test)
193                 kunit_set_failure(test);
194 }
195
196 #else /* CONFIG_KUNIT */
197
198 static inline void fail_non_kasan_kunit_test(void) { }
199
200 #endif /* CONFIG_KUNIT */
201
202 static DEFINE_SPINLOCK(report_lock);
203
204 static void start_report(unsigned long *flags, bool sync)
205 {
206         fail_non_kasan_kunit_test();
207         /* Respect the /proc/sys/kernel/traceoff_on_warning interface. */
208         disable_trace_on_warning();
209         /* Do not allow LOCKDEP mangling KASAN reports. */
210         lockdep_off();
211         /* Make sure we don't end up in loop. */
212         report_suppress_start();
213         spin_lock_irqsave(&report_lock, *flags);
214         pr_err("==================================================================\n");
215 }
216
217 static void end_report(unsigned long *flags, const void *addr, bool is_write)
218 {
219         if (addr)
220                 trace_error_report_end(ERROR_DETECTOR_KASAN,
221                                        (unsigned long)addr);
222         pr_err("==================================================================\n");
223         spin_unlock_irqrestore(&report_lock, *flags);
224         if (!test_bit(KASAN_BIT_MULTI_SHOT, &kasan_flags))
225                 check_panic_on_warn("KASAN");
226         switch (kasan_arg_fault) {
227         case KASAN_ARG_FAULT_DEFAULT:
228         case KASAN_ARG_FAULT_REPORT:
229                 break;
230         case KASAN_ARG_FAULT_PANIC:
231                 panic("kasan.fault=panic set ...\n");
232                 break;
233         case KASAN_ARG_FAULT_PANIC_ON_WRITE:
234                 if (is_write)
235                         panic("kasan.fault=panic_on_write set ...\n");
236                 break;
237         }
238         add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
239         lockdep_on();
240         report_suppress_stop();
241 }
242
243 static void print_error_description(struct kasan_report_info *info)
244 {
245         pr_err("BUG: KASAN: %s in %pS\n", info->bug_type, (void *)info->ip);
246
247         if (info->type != KASAN_REPORT_ACCESS) {
248                 pr_err("Free of addr %px by task %s/%d\n",
249                         info->access_addr, current->comm, task_pid_nr(current));
250                 return;
251         }
252
253         if (info->access_size)
254                 pr_err("%s of size %zu at addr %px by task %s/%d\n",
255                         info->is_write ? "Write" : "Read", info->access_size,
256                         info->access_addr, current->comm, task_pid_nr(current));
257         else
258                 pr_err("%s at addr %px by task %s/%d\n",
259                         info->is_write ? "Write" : "Read",
260                         info->access_addr, current->comm, task_pid_nr(current));
261 }
262
263 static void print_track(struct kasan_track *track, const char *prefix)
264 {
265         pr_err("%s by task %u:\n", prefix, track->pid);
266         if (track->stack)
267                 stack_depot_print(track->stack);
268         else
269                 pr_err("(stack is not available)\n");
270 }
271
272 static inline struct page *addr_to_page(const void *addr)
273 {
274         if (virt_addr_valid(addr))
275                 return virt_to_head_page(addr);
276         return NULL;
277 }
278
279 static void describe_object_addr(const void *addr, struct kasan_report_info *info)
280 {
281         unsigned long access_addr = (unsigned long)addr;
282         unsigned long object_addr = (unsigned long)info->object;
283         const char *rel_type, *region_state = "";
284         int rel_bytes;
285
286         pr_err("The buggy address belongs to the object at %px\n"
287                " which belongs to the cache %s of size %d\n",
288                 info->object, info->cache->name, info->cache->object_size);
289
290         if (access_addr < object_addr) {
291                 rel_type = "to the left";
292                 rel_bytes = object_addr - access_addr;
293         } else if (access_addr >= object_addr + info->alloc_size) {
294                 rel_type = "to the right";
295                 rel_bytes = access_addr - (object_addr + info->alloc_size);
296         } else {
297                 rel_type = "inside";
298                 rel_bytes = access_addr - object_addr;
299         }
300
301         /*
302          * Tag-Based modes use the stack ring to infer the bug type, but the
303          * memory region state description is generated based on the metadata.
304          * Thus, defining the region state as below can contradict the metadata.
305          * Fixing this requires further improvements, so only infer the state
306          * for the Generic mode.
307          */
308         if (IS_ENABLED(CONFIG_KASAN_GENERIC)) {
309                 if (strcmp(info->bug_type, "slab-out-of-bounds") == 0)
310                         region_state = "allocated ";
311                 else if (strcmp(info->bug_type, "slab-use-after-free") == 0)
312                         region_state = "freed ";
313         }
314
315         pr_err("The buggy address is located %d bytes %s of\n"
316                " %s%zu-byte region [%px, %px)\n",
317                rel_bytes, rel_type, region_state, info->alloc_size,
318                (void *)object_addr, (void *)(object_addr + info->alloc_size));
319 }
320
321 static void describe_object_stacks(struct kasan_report_info *info)
322 {
323         if (info->alloc_track.stack) {
324                 print_track(&info->alloc_track, "Allocated");
325                 pr_err("\n");
326         }
327
328         if (info->free_track.stack) {
329                 print_track(&info->free_track, "Freed");
330                 pr_err("\n");
331         }
332
333         kasan_print_aux_stacks(info->cache, info->object);
334 }
335
336 static void describe_object(const void *addr, struct kasan_report_info *info)
337 {
338         if (kasan_stack_collection_enabled())
339                 describe_object_stacks(info);
340         describe_object_addr(addr, info);
341 }
342
343 static inline bool kernel_or_module_addr(const void *addr)
344 {
345         if (is_kernel((unsigned long)addr))
346                 return true;
347         if (is_module_address((unsigned long)addr))
348                 return true;
349         return false;
350 }
351
352 static inline bool init_task_stack_addr(const void *addr)
353 {
354         return addr >= (void *)&init_thread_union.stack &&
355                 (addr <= (void *)&init_thread_union.stack +
356                         sizeof(init_thread_union.stack));
357 }
358
359 static void print_address_description(void *addr, u8 tag,
360                                       struct kasan_report_info *info)
361 {
362         struct page *page = addr_to_page(addr);
363
364         dump_stack_lvl(KERN_ERR);
365         pr_err("\n");
366
367         if (info->cache && info->object) {
368                 describe_object(addr, info);
369                 pr_err("\n");
370         }
371
372         if (kernel_or_module_addr(addr) && !init_task_stack_addr(addr)) {
373                 pr_err("The buggy address belongs to the variable:\n");
374                 pr_err(" %pS\n", addr);
375                 pr_err("\n");
376         }
377
378         if (object_is_on_stack(addr)) {
379                 /*
380                  * Currently, KASAN supports printing frame information only
381                  * for accesses to the task's own stack.
382                  */
383                 kasan_print_address_stack_frame(addr);
384                 pr_err("\n");
385         }
386
387         if (is_vmalloc_addr(addr)) {
388                 struct vm_struct *va = find_vm_area(addr);
389
390                 if (va) {
391                         pr_err("The buggy address belongs to the virtual mapping at\n"
392                                " [%px, %px) created by:\n"
393                                " %pS\n",
394                                va->addr, va->addr + va->size, va->caller);
395                         pr_err("\n");
396
397                         page = vmalloc_to_page(addr);
398                 }
399         }
400
401         if (page) {
402                 pr_err("The buggy address belongs to the physical page:\n");
403                 dump_page(page, "kasan: bad access detected");
404                 pr_err("\n");
405         }
406 }
407
408 static bool meta_row_is_guilty(const void *row, const void *addr)
409 {
410         return (row <= addr) && (addr < row + META_MEM_BYTES_PER_ROW);
411 }
412
413 static int meta_pointer_offset(const void *row, const void *addr)
414 {
415         /*
416          * Memory state around the buggy address:
417          *  ff00ff00ff00ff00: 00 00 00 05 fe fe fe fe fe fe fe fe fe fe fe fe
418          *  ...
419          *
420          * The length of ">ff00ff00ff00ff00: " is
421          *    3 + (BITS_PER_LONG / 8) * 2 chars.
422          * The length of each granule metadata is 2 bytes
423          *    plus 1 byte for space.
424          */
425         return 3 + (BITS_PER_LONG / 8) * 2 +
426                 (addr - row) / KASAN_GRANULE_SIZE * 3 + 1;
427 }
428
429 static void print_memory_metadata(const void *addr)
430 {
431         int i;
432         void *row;
433
434         row = (void *)round_down((unsigned long)addr, META_MEM_BYTES_PER_ROW)
435                         - META_ROWS_AROUND_ADDR * META_MEM_BYTES_PER_ROW;
436
437         pr_err("Memory state around the buggy address:\n");
438
439         for (i = -META_ROWS_AROUND_ADDR; i <= META_ROWS_AROUND_ADDR; i++) {
440                 char buffer[4 + (BITS_PER_LONG / 8) * 2];
441                 char metadata[META_BYTES_PER_ROW];
442
443                 snprintf(buffer, sizeof(buffer),
444                                 (i == 0) ? ">%px: " : " %px: ", row);
445
446                 /*
447                  * We should not pass a shadow pointer to generic
448                  * function, because generic functions may try to
449                  * access kasan mapping for the passed address.
450                  */
451                 kasan_metadata_fetch_row(&metadata[0], row);
452
453                 print_hex_dump(KERN_ERR, buffer,
454                         DUMP_PREFIX_NONE, META_BYTES_PER_ROW, 1,
455                         metadata, META_BYTES_PER_ROW, 0);
456
457                 if (meta_row_is_guilty(row, addr))
458                         pr_err("%*c\n", meta_pointer_offset(row, addr), '^');
459
460                 row += META_MEM_BYTES_PER_ROW;
461         }
462 }
463
464 static void print_report(struct kasan_report_info *info)
465 {
466         void *addr = kasan_reset_tag((void *)info->access_addr);
467         u8 tag = get_tag((void *)info->access_addr);
468
469         print_error_description(info);
470         if (addr_has_metadata(addr))
471                 kasan_print_tags(tag, info->first_bad_addr);
472         pr_err("\n");
473
474         if (addr_has_metadata(addr)) {
475                 print_address_description(addr, tag, info);
476                 print_memory_metadata(info->first_bad_addr);
477         } else {
478                 dump_stack_lvl(KERN_ERR);
479         }
480 }
481
482 static void complete_report_info(struct kasan_report_info *info)
483 {
484         void *addr = kasan_reset_tag((void *)info->access_addr);
485         struct slab *slab;
486
487         if (info->type == KASAN_REPORT_ACCESS)
488                 info->first_bad_addr = kasan_find_first_bad_addr(
489                                         (void *)info->access_addr, info->access_size);
490         else
491                 info->first_bad_addr = addr;
492
493         slab = kasan_addr_to_slab(addr);
494         if (slab) {
495                 info->cache = slab->slab_cache;
496                 info->object = nearest_obj(info->cache, slab, addr);
497
498                 /* Try to determine allocation size based on the metadata. */
499                 info->alloc_size = kasan_get_alloc_size(info->object, info->cache);
500                 /* Fallback to the object size if failed. */
501                 if (!info->alloc_size)
502                         info->alloc_size = info->cache->object_size;
503         } else
504                 info->cache = info->object = NULL;
505
506         switch (info->type) {
507         case KASAN_REPORT_INVALID_FREE:
508                 info->bug_type = "invalid-free";
509                 break;
510         case KASAN_REPORT_DOUBLE_FREE:
511                 info->bug_type = "double-free";
512                 break;
513         default:
514                 /* bug_type filled in by kasan_complete_mode_report_info. */
515                 break;
516         }
517
518         /* Fill in mode-specific report info fields. */
519         kasan_complete_mode_report_info(info);
520 }
521
522 void kasan_report_invalid_free(void *ptr, unsigned long ip, enum kasan_report_type type)
523 {
524         unsigned long flags;
525         struct kasan_report_info info;
526
527         /*
528          * Do not check report_suppressed_sw(), as an invalid-free cannot be
529          * caused by accessing poisoned memory and thus should not be suppressed
530          * by kasan_disable/enable_current() critical sections.
531          *
532          * Note that for Hardware Tag-Based KASAN, kasan_report_invalid_free()
533          * is triggered by explicit tag checks and not by the ones performed by
534          * the CPU. Thus, reporting invalid-free is not suppressed as well.
535          */
536         if (unlikely(!report_enabled()))
537                 return;
538
539         start_report(&flags, true);
540
541         memset(&info, 0, sizeof(info));
542         info.type = type;
543         info.access_addr = ptr;
544         info.access_size = 0;
545         info.is_write = false;
546         info.ip = ip;
547
548         complete_report_info(&info);
549
550         print_report(&info);
551
552         /*
553          * Invalid free is considered a "write" since the allocator's metadata
554          * updates involves writes.
555          */
556         end_report(&flags, ptr, true);
557 }
558
559 /*
560  * kasan_report() is the only reporting function that uses
561  * user_access_save/restore(): kasan_report_invalid_free() cannot be called
562  * from a UACCESS region, and kasan_report_async() is not used on x86.
563  */
564 bool kasan_report(const void *addr, size_t size, bool is_write,
565                         unsigned long ip)
566 {
567         bool ret = true;
568         unsigned long ua_flags = user_access_save();
569         unsigned long irq_flags;
570         struct kasan_report_info info;
571
572         if (unlikely(report_suppressed_sw()) || unlikely(!report_enabled())) {
573                 ret = false;
574                 goto out;
575         }
576
577         start_report(&irq_flags, true);
578
579         memset(&info, 0, sizeof(info));
580         info.type = KASAN_REPORT_ACCESS;
581         info.access_addr = addr;
582         info.access_size = size;
583         info.is_write = is_write;
584         info.ip = ip;
585
586         complete_report_info(&info);
587
588         print_report(&info);
589
590         end_report(&irq_flags, (void *)addr, is_write);
591
592 out:
593         user_access_restore(ua_flags);
594
595         return ret;
596 }
597
598 #ifdef CONFIG_KASAN_HW_TAGS
599 void kasan_report_async(void)
600 {
601         unsigned long flags;
602
603         /*
604          * Do not check report_suppressed_sw(), as
605          * kasan_disable/enable_current() critical sections do not affect
606          * Hardware Tag-Based KASAN.
607          */
608         if (unlikely(!report_enabled()))
609                 return;
610
611         start_report(&flags, false);
612         pr_err("BUG: KASAN: invalid-access\n");
613         pr_err("Asynchronous fault: no details available\n");
614         pr_err("\n");
615         dump_stack_lvl(KERN_ERR);
616         /*
617          * Conservatively set is_write=true, because no details are available.
618          * In this mode, kasan.fault=panic_on_write is like kasan.fault=panic.
619          */
620         end_report(&flags, NULL, true);
621 }
622 #endif /* CONFIG_KASAN_HW_TAGS */
623
624 #ifdef CONFIG_KASAN_INLINE
625 /*
626  * With CONFIG_KASAN_INLINE, accesses to bogus pointers (outside the high
627  * canonical half of the address space) cause out-of-bounds shadow memory reads
628  * before the actual access. For addresses in the low canonical half of the
629  * address space, as well as most non-canonical addresses, that out-of-bounds
630  * shadow memory access lands in the non-canonical part of the address space.
631  * Help the user figure out what the original bogus pointer was.
632  */
633 void kasan_non_canonical_hook(unsigned long addr)
634 {
635         unsigned long orig_addr;
636         const char *bug_type;
637
638         if (addr < KASAN_SHADOW_OFFSET)
639                 return;
640
641         orig_addr = (addr - KASAN_SHADOW_OFFSET) << KASAN_SHADOW_SCALE_SHIFT;
642         /*
643          * For faults near the shadow address for NULL, we can be fairly certain
644          * that this is a KASAN shadow memory access.
645          * For faults that correspond to shadow for low canonical addresses, we
646          * can still be pretty sure - that shadow region is a fairly narrow
647          * chunk of the non-canonical address space.
648          * But faults that look like shadow for non-canonical addresses are a
649          * really large chunk of the address space. In that case, we still
650          * print the decoded address, but make it clear that this is not
651          * necessarily what's actually going on.
652          */
653         if (orig_addr < PAGE_SIZE)
654                 bug_type = "null-ptr-deref";
655         else if (orig_addr < TASK_SIZE)
656                 bug_type = "probably user-memory-access";
657         else
658                 bug_type = "maybe wild-memory-access";
659         pr_alert("KASAN: %s in range [0x%016lx-0x%016lx]\n", bug_type,
660                  orig_addr, orig_addr + KASAN_GRANULE_SIZE - 1);
661 }
662 #endif