1 // SPDX-License-Identifier: GPL-2.0
3 * This file contains common KASAN code.
5 * Copyright (c) 2014 Samsung Electronics Co., Ltd.
6 * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
8 * Some code borrowed from https://github.com/xairy/kasan-prototype by
9 * Andrey Konovalov <andreyknvl@gmail.com>
12 #include <linux/export.h>
13 #include <linux/init.h>
14 #include <linux/kasan.h>
15 #include <linux/kernel.h>
16 #include <linux/linkage.h>
17 #include <linux/memblock.h>
18 #include <linux/memory.h>
20 #include <linux/module.h>
21 #include <linux/printk.h>
22 #include <linux/sched.h>
23 #include <linux/sched/task_stack.h>
24 #include <linux/slab.h>
25 #include <linux/stacktrace.h>
26 #include <linux/string.h>
27 #include <linux/types.h>
28 #include <linux/bug.h>
33 depot_stack_handle_t kasan_save_stack(gfp_t flags, bool can_alloc)
35 unsigned long entries[KASAN_STACK_DEPTH];
36 unsigned int nr_entries;
38 nr_entries = stack_trace_save(entries, ARRAY_SIZE(entries), 0);
39 return __stack_depot_save(entries, nr_entries, flags, can_alloc);
42 void kasan_set_track(struct kasan_track *track, gfp_t flags)
44 track->pid = current->pid;
45 track->stack = kasan_save_stack(flags, true);
48 #if defined(CONFIG_KASAN_GENERIC) || defined(CONFIG_KASAN_SW_TAGS)
49 void kasan_enable_current(void)
51 current->kasan_depth++;
53 EXPORT_SYMBOL(kasan_enable_current);
55 void kasan_disable_current(void)
57 current->kasan_depth--;
59 EXPORT_SYMBOL(kasan_disable_current);
61 #endif /* CONFIG_KASAN_GENERIC || CONFIG_KASAN_SW_TAGS */
63 void __kasan_unpoison_range(const void *address, size_t size)
65 kasan_unpoison(address, size, false);
68 #ifdef CONFIG_KASAN_STACK
69 /* Unpoison the entire stack for a task. */
70 void kasan_unpoison_task_stack(struct task_struct *task)
72 void *base = task_stack_page(task);
74 kasan_unpoison(base, THREAD_SIZE, false);
77 /* Unpoison the stack for the current task beyond a watermark sp value. */
78 asmlinkage void kasan_unpoison_task_stack_below(const void *watermark)
81 * Calculate the task stack base address. Avoid using 'current'
82 * because this function is called by early resume code which hasn't
83 * yet set up the percpu register (%gs).
85 void *base = (void *)((unsigned long)watermark & ~(THREAD_SIZE - 1));
87 kasan_unpoison(base, watermark - base, false);
89 #endif /* CONFIG_KASAN_STACK */
92 * Only allow cache merging when stack collection is disabled and no metadata
95 slab_flags_t __kasan_never_merge(void)
97 if (kasan_stack_collection_enabled())
102 void __kasan_unpoison_pages(struct page *page, unsigned int order, bool init)
107 if (unlikely(PageHighMem(page)))
110 tag = kasan_random_tag();
111 kasan_unpoison(set_tag(page_address(page), tag),
112 PAGE_SIZE << order, init);
113 for (i = 0; i < (1 << order); i++)
114 page_kasan_tag_set(page + i, tag);
117 void __kasan_poison_pages(struct page *page, unsigned int order, bool init)
119 if (likely(!PageHighMem(page)))
120 kasan_poison(page_address(page), PAGE_SIZE << order,
121 KASAN_PAGE_FREE, init);
125 * Adaptive redzone policy taken from the userspace AddressSanitizer runtime.
126 * For larger allocations larger redzones are used.
128 static inline unsigned int optimal_redzone(unsigned int object_size)
131 object_size <= 64 - 16 ? 16 :
132 object_size <= 128 - 32 ? 32 :
133 object_size <= 512 - 64 ? 64 :
134 object_size <= 4096 - 128 ? 128 :
135 object_size <= (1 << 14) - 256 ? 256 :
136 object_size <= (1 << 15) - 512 ? 512 :
137 object_size <= (1 << 16) - 1024 ? 1024 : 2048;
140 void __kasan_cache_create(struct kmem_cache *cache, unsigned int *size,
143 unsigned int ok_size;
144 unsigned int optimal_size;
147 * SLAB_KASAN is used to mark caches as ones that are sanitized by
148 * KASAN. Currently this flag is used in two places:
149 * 1. In slab_ksize() when calculating the size of the accessible
150 * memory within the object.
151 * 2. In slab_common.c to prevent merging of sanitized caches.
153 *flags |= SLAB_KASAN;
155 if (!kasan_stack_collection_enabled())
160 /* Add alloc meta into redzone. */
161 cache->kasan_info.alloc_meta_offset = *size;
162 *size += sizeof(struct kasan_alloc_meta);
165 * If alloc meta doesn't fit, don't add it.
166 * This can only happen with SLAB, as it has KMALLOC_MAX_SIZE equal
167 * to KMALLOC_MAX_CACHE_SIZE and doesn't fall back to page_alloc for
170 if (*size > KMALLOC_MAX_SIZE) {
171 cache->kasan_info.alloc_meta_offset = 0;
173 /* Continue, since free meta might still fit. */
176 /* Only the generic mode uses free meta or flexible redzones. */
177 if (!IS_ENABLED(CONFIG_KASAN_GENERIC)) {
178 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
183 * Add free meta into redzone when it's not possible to store
184 * it in the object. This is the case when:
185 * 1. Object is SLAB_TYPESAFE_BY_RCU, which means that it can
186 * be touched after it was freed, or
187 * 2. Object has a constructor, which means it's expected to
188 * retain its content until the next allocation, or
189 * 3. Object is too small.
190 * Otherwise cache->kasan_info.free_meta_offset = 0 is implied.
192 if ((cache->flags & SLAB_TYPESAFE_BY_RCU) || cache->ctor ||
193 cache->object_size < sizeof(struct kasan_free_meta)) {
196 cache->kasan_info.free_meta_offset = *size;
197 *size += sizeof(struct kasan_free_meta);
199 /* If free meta doesn't fit, don't add it. */
200 if (*size > KMALLOC_MAX_SIZE) {
201 cache->kasan_info.free_meta_offset = KASAN_NO_FREE_META;
206 /* Calculate size with optimal redzone. */
207 optimal_size = cache->object_size + optimal_redzone(cache->object_size);
208 /* Limit it with KMALLOC_MAX_SIZE (relevant for SLAB only). */
209 if (optimal_size > KMALLOC_MAX_SIZE)
210 optimal_size = KMALLOC_MAX_SIZE;
211 /* Use optimal size if the size with added metas is not large enough. */
212 if (*size < optimal_size)
213 *size = optimal_size;
216 void __kasan_cache_create_kmalloc(struct kmem_cache *cache)
218 cache->kasan_info.is_kmalloc = true;
221 size_t __kasan_metadata_size(struct kmem_cache *cache)
223 if (!kasan_stack_collection_enabled())
225 return (cache->kasan_info.alloc_meta_offset ?
226 sizeof(struct kasan_alloc_meta) : 0) +
227 (cache->kasan_info.free_meta_offset ?
228 sizeof(struct kasan_free_meta) : 0);
231 struct kasan_alloc_meta *kasan_get_alloc_meta(struct kmem_cache *cache,
234 if (!cache->kasan_info.alloc_meta_offset)
236 return kasan_reset_tag(object) + cache->kasan_info.alloc_meta_offset;
239 #ifdef CONFIG_KASAN_GENERIC
240 struct kasan_free_meta *kasan_get_free_meta(struct kmem_cache *cache,
243 BUILD_BUG_ON(sizeof(struct kasan_free_meta) > 32);
244 if (cache->kasan_info.free_meta_offset == KASAN_NO_FREE_META)
246 return kasan_reset_tag(object) + cache->kasan_info.free_meta_offset;
250 void __kasan_poison_slab(struct slab *slab)
252 struct page *page = slab_page(slab);
255 for (i = 0; i < compound_nr(page); i++)
256 page_kasan_tag_reset(page + i);
257 kasan_poison(page_address(page), page_size(page),
258 KASAN_SLAB_REDZONE, false);
261 void __kasan_unpoison_object_data(struct kmem_cache *cache, void *object)
263 kasan_unpoison(object, cache->object_size, false);
266 void __kasan_poison_object_data(struct kmem_cache *cache, void *object)
268 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
269 KASAN_SLAB_REDZONE, false);
273 * This function assigns a tag to an object considering the following:
274 * 1. A cache might have a constructor, which might save a pointer to a slab
275 * object somewhere (e.g. in the object itself). We preassign a tag for
276 * each object in caches with constructors during slab creation and reuse
277 * the same tag each time a particular object is allocated.
278 * 2. A cache might be SLAB_TYPESAFE_BY_RCU, which means objects can be
279 * accessed after being freed. We preassign tags for objects in these
281 * 3. For SLAB allocator we can't preassign tags randomly since the freelist
282 * is stored as an array of indexes instead of a linked list. Assign tags
283 * based on objects indexes, so that objects that are next to each other
284 * get different tags.
286 static inline u8 assign_tag(struct kmem_cache *cache,
287 const void *object, bool init)
289 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
293 * If the cache neither has a constructor nor has SLAB_TYPESAFE_BY_RCU
294 * set, assign a tag when the object is being allocated (init == false).
296 if (!cache->ctor && !(cache->flags & SLAB_TYPESAFE_BY_RCU))
297 return init ? KASAN_TAG_KERNEL : kasan_random_tag();
299 /* For caches that either have a constructor or SLAB_TYPESAFE_BY_RCU: */
301 /* For SLAB assign tags based on the object index in the freelist. */
302 return (u8)obj_to_index(cache, virt_to_slab(object), (void *)object);
305 * For SLUB assign a random tag during slab creation, otherwise reuse
306 * the already assigned tag.
308 return init ? kasan_random_tag() : get_tag(object);
312 void * __must_check __kasan_init_slab_obj(struct kmem_cache *cache,
315 struct kasan_alloc_meta *alloc_meta;
317 if (kasan_stack_collection_enabled()) {
318 alloc_meta = kasan_get_alloc_meta(cache, object);
320 __memset(alloc_meta, 0, sizeof(*alloc_meta));
323 /* Tag is ignored in set_tag() without CONFIG_KASAN_SW/HW_TAGS */
324 object = set_tag(object, assign_tag(cache, object, true));
326 return (void *)object;
329 static inline bool ____kasan_slab_free(struct kmem_cache *cache, void *object,
330 unsigned long ip, bool quarantine, bool init)
335 if (!kasan_arch_is_ready())
338 tag = get_tag(object);
339 tagged_object = object;
340 object = kasan_reset_tag(object);
342 if (is_kfence_address(object))
345 if (unlikely(nearest_obj(cache, virt_to_slab(object), object) !=
347 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_INVALID_FREE);
351 /* RCU slabs could be legally used after free within the RCU period */
352 if (unlikely(cache->flags & SLAB_TYPESAFE_BY_RCU))
355 if (!kasan_byte_accessible(tagged_object)) {
356 kasan_report_invalid_free(tagged_object, ip, KASAN_REPORT_DOUBLE_FREE);
360 kasan_poison(object, round_up(cache->object_size, KASAN_GRANULE_SIZE),
361 KASAN_SLAB_FREE, init);
363 if ((IS_ENABLED(CONFIG_KASAN_GENERIC) && !quarantine))
366 if (kasan_stack_collection_enabled())
367 kasan_set_free_info(cache, object, tag);
369 return kasan_quarantine_put(cache, object);
372 bool __kasan_slab_free(struct kmem_cache *cache, void *object,
373 unsigned long ip, bool init)
375 return ____kasan_slab_free(cache, object, ip, true, init);
378 static inline bool ____kasan_kfree_large(void *ptr, unsigned long ip)
380 if (ptr != page_address(virt_to_head_page(ptr))) {
381 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_INVALID_FREE);
385 if (!kasan_byte_accessible(ptr)) {
386 kasan_report_invalid_free(ptr, ip, KASAN_REPORT_DOUBLE_FREE);
391 * The object will be poisoned by kasan_poison_pages() or
392 * kasan_slab_free_mempool().
398 void __kasan_kfree_large(void *ptr, unsigned long ip)
400 ____kasan_kfree_large(ptr, ip);
403 void __kasan_slab_free_mempool(void *ptr, unsigned long ip)
407 folio = virt_to_folio(ptr);
410 * Even though this function is only called for kmem_cache_alloc and
411 * kmalloc backed mempool allocations, those allocations can still be
412 * !PageSlab() when the size provided to kmalloc is larger than
413 * KMALLOC_MAX_SIZE, and kmalloc falls back onto page_alloc.
415 if (unlikely(!folio_test_slab(folio))) {
416 if (____kasan_kfree_large(ptr, ip))
418 kasan_poison(ptr, folio_size(folio), KASAN_PAGE_FREE, false);
420 struct slab *slab = folio_slab(folio);
422 ____kasan_slab_free(slab->slab_cache, ptr, ip, false, false);
426 static void set_alloc_info(struct kmem_cache *cache, void *object,
427 gfp_t flags, bool is_kmalloc)
429 struct kasan_alloc_meta *alloc_meta;
431 /* Don't save alloc info for kmalloc caches in kasan_slab_alloc(). */
432 if (cache->kasan_info.is_kmalloc && !is_kmalloc)
435 alloc_meta = kasan_get_alloc_meta(cache, object);
437 kasan_set_track(&alloc_meta->alloc_track, flags);
440 void * __must_check __kasan_slab_alloc(struct kmem_cache *cache,
441 void *object, gfp_t flags, bool init)
446 if (gfpflags_allow_blocking(flags))
447 kasan_quarantine_reduce();
449 if (unlikely(object == NULL))
452 if (is_kfence_address(object))
453 return (void *)object;
456 * Generate and assign random tag for tag-based modes.
457 * Tag is ignored in set_tag() for the generic mode.
459 tag = assign_tag(cache, object, false);
460 tagged_object = set_tag(object, tag);
463 * Unpoison the whole object.
464 * For kmalloc() allocations, kasan_kmalloc() will do precise poisoning.
466 kasan_unpoison(tagged_object, cache->object_size, init);
468 /* Save alloc info (if possible) for non-kmalloc() allocations. */
469 if (kasan_stack_collection_enabled())
470 set_alloc_info(cache, (void *)object, flags, false);
472 return tagged_object;
475 static inline void *____kasan_kmalloc(struct kmem_cache *cache,
476 const void *object, size_t size, gfp_t flags)
478 unsigned long redzone_start;
479 unsigned long redzone_end;
481 if (gfpflags_allow_blocking(flags))
482 kasan_quarantine_reduce();
484 if (unlikely(object == NULL))
487 if (is_kfence_address(kasan_reset_tag(object)))
488 return (void *)object;
491 * The object has already been unpoisoned by kasan_slab_alloc() for
492 * kmalloc() or by kasan_krealloc() for krealloc().
496 * The redzone has byte-level precision for the generic mode.
497 * Partially poison the last object granule to cover the unaligned
498 * part of the redzone.
500 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
501 kasan_poison_last_granule((void *)object, size);
503 /* Poison the aligned part of the redzone. */
504 redzone_start = round_up((unsigned long)(object + size),
506 redzone_end = round_up((unsigned long)(object + cache->object_size),
508 kasan_poison((void *)redzone_start, redzone_end - redzone_start,
509 KASAN_SLAB_REDZONE, false);
512 * Save alloc info (if possible) for kmalloc() allocations.
513 * This also rewrites the alloc info when called from kasan_krealloc().
515 if (kasan_stack_collection_enabled())
516 set_alloc_info(cache, (void *)object, flags, true);
518 /* Keep the tag that was set by kasan_slab_alloc(). */
519 return (void *)object;
522 void * __must_check __kasan_kmalloc(struct kmem_cache *cache, const void *object,
523 size_t size, gfp_t flags)
525 return ____kasan_kmalloc(cache, object, size, flags);
527 EXPORT_SYMBOL(__kasan_kmalloc);
529 void * __must_check __kasan_kmalloc_large(const void *ptr, size_t size,
532 unsigned long redzone_start;
533 unsigned long redzone_end;
535 if (gfpflags_allow_blocking(flags))
536 kasan_quarantine_reduce();
538 if (unlikely(ptr == NULL))
542 * The object has already been unpoisoned by kasan_unpoison_pages() for
543 * alloc_pages() or by kasan_krealloc() for krealloc().
547 * The redzone has byte-level precision for the generic mode.
548 * Partially poison the last object granule to cover the unaligned
549 * part of the redzone.
551 if (IS_ENABLED(CONFIG_KASAN_GENERIC))
552 kasan_poison_last_granule(ptr, size);
554 /* Poison the aligned part of the redzone. */
555 redzone_start = round_up((unsigned long)(ptr + size),
557 redzone_end = (unsigned long)ptr + page_size(virt_to_page(ptr));
558 kasan_poison((void *)redzone_start, redzone_end - redzone_start,
559 KASAN_PAGE_REDZONE, false);
564 void * __must_check __kasan_krealloc(const void *object, size_t size, gfp_t flags)
568 if (unlikely(object == ZERO_SIZE_PTR))
569 return (void *)object;
572 * Unpoison the object's data.
573 * Part of it might already have been unpoisoned, but it's unknown
574 * how big that part is.
576 kasan_unpoison(object, size, false);
578 slab = virt_to_slab(object);
580 /* Piggy-back on kmalloc() instrumentation to poison the redzone. */
582 return __kasan_kmalloc_large(object, size, flags);
584 return ____kasan_kmalloc(slab->slab_cache, object, size, flags);
587 bool __kasan_check_byte(const void *address, unsigned long ip)
589 if (!kasan_byte_accessible(address)) {
590 kasan_report((unsigned long)address, 1, false, ip);