Merge tag 'io_uring-6.3-2023-03-24' of git://git.kernel.dk/linux
[platform/kernel/linux-starfive.git] / mm / internal.h
1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /* internal.h: mm/ internal definitions
3  *
4  * Copyright (C) 2004 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7 #ifndef __MM_INTERNAL_H
8 #define __MM_INTERNAL_H
9
10 #include <linux/fs.h>
11 #include <linux/mm.h>
12 #include <linux/pagemap.h>
13 #include <linux/rmap.h>
14 #include <linux/tracepoint-defs.h>
15
16 struct folio_batch;
17
18 /*
19  * The set of flags that only affect watermark checking and reclaim
20  * behaviour. This is used by the MM to obey the caller constraints
21  * about IO, FS and watermark checking while ignoring placement
22  * hints such as HIGHMEM usage.
23  */
24 #define GFP_RECLAIM_MASK (__GFP_RECLAIM|__GFP_HIGH|__GFP_IO|__GFP_FS|\
25                         __GFP_NOWARN|__GFP_RETRY_MAYFAIL|__GFP_NOFAIL|\
26                         __GFP_NORETRY|__GFP_MEMALLOC|__GFP_NOMEMALLOC|\
27                         __GFP_NOLOCKDEP)
28
29 /* The GFP flags allowed during early boot */
30 #define GFP_BOOT_MASK (__GFP_BITS_MASK & ~(__GFP_RECLAIM|__GFP_IO|__GFP_FS))
31
32 /* Control allocation cpuset and node placement constraints */
33 #define GFP_CONSTRAINT_MASK (__GFP_HARDWALL|__GFP_THISNODE)
34
35 /* Do not use these with a slab allocator */
36 #define GFP_SLAB_BUG_MASK (__GFP_DMA32|__GFP_HIGHMEM|~__GFP_BITS_MASK)
37
38 /*
39  * Different from WARN_ON_ONCE(), no warning will be issued
40  * when we specify __GFP_NOWARN.
41  */
42 #define WARN_ON_ONCE_GFP(cond, gfp)     ({                              \
43         static bool __section(".data.once") __warned;                   \
44         int __ret_warn_once = !!(cond);                                 \
45                                                                         \
46         if (unlikely(!(gfp & __GFP_NOWARN) && __ret_warn_once && !__warned)) { \
47                 __warned = true;                                        \
48                 WARN_ON(1);                                             \
49         }                                                               \
50         unlikely(__ret_warn_once);                                      \
51 })
52
53 void page_writeback_init(void);
54
55 /*
56  * If a 16GB hugetlb folio were mapped by PTEs of all of its 4kB pages,
57  * its nr_pages_mapped would be 0x400000: choose the COMPOUND_MAPPED bit
58  * above that range, instead of 2*(PMD_SIZE/PAGE_SIZE).  Hugetlb currently
59  * leaves nr_pages_mapped at 0, but avoid surprise if it participates later.
60  */
61 #define COMPOUND_MAPPED         0x800000
62 #define FOLIO_PAGES_MAPPED      (COMPOUND_MAPPED - 1)
63
64 /*
65  * How many individual pages have an elevated _mapcount.  Excludes
66  * the folio's entire_mapcount.
67  */
68 static inline int folio_nr_pages_mapped(struct folio *folio)
69 {
70         return atomic_read(&folio->_nr_pages_mapped) & FOLIO_PAGES_MAPPED;
71 }
72
73 static inline void *folio_raw_mapping(struct folio *folio)
74 {
75         unsigned long mapping = (unsigned long)folio->mapping;
76
77         return (void *)(mapping & ~PAGE_MAPPING_FLAGS);
78 }
79
80 void __acct_reclaim_writeback(pg_data_t *pgdat, struct folio *folio,
81                                                 int nr_throttled);
82 static inline void acct_reclaim_writeback(struct folio *folio)
83 {
84         pg_data_t *pgdat = folio_pgdat(folio);
85         int nr_throttled = atomic_read(&pgdat->nr_writeback_throttled);
86
87         if (nr_throttled)
88                 __acct_reclaim_writeback(pgdat, folio, nr_throttled);
89 }
90
91 static inline void wake_throttle_isolated(pg_data_t *pgdat)
92 {
93         wait_queue_head_t *wqh;
94
95         wqh = &pgdat->reclaim_wait[VMSCAN_THROTTLE_ISOLATED];
96         if (waitqueue_active(wqh))
97                 wake_up(wqh);
98 }
99
100 vm_fault_t do_swap_page(struct vm_fault *vmf);
101 void folio_rotate_reclaimable(struct folio *folio);
102 bool __folio_end_writeback(struct folio *folio);
103 void deactivate_file_folio(struct folio *folio);
104 void folio_activate(struct folio *folio);
105
106 void free_pgtables(struct mmu_gather *tlb, struct maple_tree *mt,
107                    struct vm_area_struct *start_vma, unsigned long floor,
108                    unsigned long ceiling);
109 void pmd_install(struct mm_struct *mm, pmd_t *pmd, pgtable_t *pte);
110
111 struct zap_details;
112 void unmap_page_range(struct mmu_gather *tlb,
113                              struct vm_area_struct *vma,
114                              unsigned long addr, unsigned long end,
115                              struct zap_details *details);
116
117 void page_cache_ra_order(struct readahead_control *, struct file_ra_state *,
118                 unsigned int order);
119 void force_page_cache_ra(struct readahead_control *, unsigned long nr);
120 static inline void force_page_cache_readahead(struct address_space *mapping,
121                 struct file *file, pgoff_t index, unsigned long nr_to_read)
122 {
123         DEFINE_READAHEAD(ractl, file, &file->f_ra, mapping, index);
124         force_page_cache_ra(&ractl, nr_to_read);
125 }
126
127 unsigned find_lock_entries(struct address_space *mapping, pgoff_t *start,
128                 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
129 unsigned find_get_entries(struct address_space *mapping, pgoff_t *start,
130                 pgoff_t end, struct folio_batch *fbatch, pgoff_t *indices);
131 void filemap_free_folio(struct address_space *mapping, struct folio *folio);
132 int truncate_inode_folio(struct address_space *mapping, struct folio *folio);
133 bool truncate_inode_partial_folio(struct folio *folio, loff_t start,
134                 loff_t end);
135 long invalidate_inode_page(struct page *page);
136 unsigned long invalidate_mapping_pagevec(struct address_space *mapping,
137                 pgoff_t start, pgoff_t end, unsigned long *nr_pagevec);
138
139 /**
140  * folio_evictable - Test whether a folio is evictable.
141  * @folio: The folio to test.
142  *
143  * Test whether @folio is evictable -- i.e., should be placed on
144  * active/inactive lists vs unevictable list.
145  *
146  * Reasons folio might not be evictable:
147  * 1. folio's mapping marked unevictable
148  * 2. One of the pages in the folio is part of an mlocked VMA
149  */
150 static inline bool folio_evictable(struct folio *folio)
151 {
152         bool ret;
153
154         /* Prevent address_space of inode and swap cache from being freed */
155         rcu_read_lock();
156         ret = !mapping_unevictable(folio_mapping(folio)) &&
157                         !folio_test_mlocked(folio);
158         rcu_read_unlock();
159         return ret;
160 }
161
162 /*
163  * Turn a non-refcounted page (->_refcount == 0) into refcounted with
164  * a count of one.
165  */
166 static inline void set_page_refcounted(struct page *page)
167 {
168         VM_BUG_ON_PAGE(PageTail(page), page);
169         VM_BUG_ON_PAGE(page_ref_count(page), page);
170         set_page_count(page, 1);
171 }
172
173 extern unsigned long highest_memmap_pfn;
174
175 /*
176  * Maximum number of reclaim retries without progress before the OOM
177  * killer is consider the only way forward.
178  */
179 #define MAX_RECLAIM_RETRIES 16
180
181 /*
182  * in mm/early_ioremap.c
183  */
184 pgprot_t __init early_memremap_pgprot_adjust(resource_size_t phys_addr,
185                                         unsigned long size, pgprot_t prot);
186
187 /*
188  * in mm/vmscan.c:
189  */
190 bool isolate_lru_page(struct page *page);
191 bool folio_isolate_lru(struct folio *folio);
192 void putback_lru_page(struct page *page);
193 void folio_putback_lru(struct folio *folio);
194 extern void reclaim_throttle(pg_data_t *pgdat, enum vmscan_throttle_state reason);
195
196 /*
197  * in mm/rmap.c:
198  */
199 pmd_t *mm_find_pmd(struct mm_struct *mm, unsigned long address);
200
201 /*
202  * in mm/page_alloc.c
203  */
204
205 /*
206  * Structure for holding the mostly immutable allocation parameters passed
207  * between functions involved in allocations, including the alloc_pages*
208  * family of functions.
209  *
210  * nodemask, migratetype and highest_zoneidx are initialized only once in
211  * __alloc_pages() and then never change.
212  *
213  * zonelist, preferred_zone and highest_zoneidx are set first in
214  * __alloc_pages() for the fast path, and might be later changed
215  * in __alloc_pages_slowpath(). All other functions pass the whole structure
216  * by a const pointer.
217  */
218 struct alloc_context {
219         struct zonelist *zonelist;
220         nodemask_t *nodemask;
221         struct zoneref *preferred_zoneref;
222         int migratetype;
223
224         /*
225          * highest_zoneidx represents highest usable zone index of
226          * the allocation request. Due to the nature of the zone,
227          * memory on lower zone than the highest_zoneidx will be
228          * protected by lowmem_reserve[highest_zoneidx].
229          *
230          * highest_zoneidx is also used by reclaim/compaction to limit
231          * the target zone since higher zone than this index cannot be
232          * usable for this allocation request.
233          */
234         enum zone_type highest_zoneidx;
235         bool spread_dirty_pages;
236 };
237
238 /*
239  * This function returns the order of a free page in the buddy system. In
240  * general, page_zone(page)->lock must be held by the caller to prevent the
241  * page from being allocated in parallel and returning garbage as the order.
242  * If a caller does not hold page_zone(page)->lock, it must guarantee that the
243  * page cannot be allocated or merged in parallel. Alternatively, it must
244  * handle invalid values gracefully, and use buddy_order_unsafe() below.
245  */
246 static inline unsigned int buddy_order(struct page *page)
247 {
248         /* PageBuddy() must be checked by the caller */
249         return page_private(page);
250 }
251
252 /*
253  * Like buddy_order(), but for callers who cannot afford to hold the zone lock.
254  * PageBuddy() should be checked first by the caller to minimize race window,
255  * and invalid values must be handled gracefully.
256  *
257  * READ_ONCE is used so that if the caller assigns the result into a local
258  * variable and e.g. tests it for valid range before using, the compiler cannot
259  * decide to remove the variable and inline the page_private(page) multiple
260  * times, potentially observing different values in the tests and the actual
261  * use of the result.
262  */
263 #define buddy_order_unsafe(page)        READ_ONCE(page_private(page))
264
265 /*
266  * This function checks whether a page is free && is the buddy
267  * we can coalesce a page and its buddy if
268  * (a) the buddy is not in a hole (check before calling!) &&
269  * (b) the buddy is in the buddy system &&
270  * (c) a page and its buddy have the same order &&
271  * (d) a page and its buddy are in the same zone.
272  *
273  * For recording whether a page is in the buddy system, we set PageBuddy.
274  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
275  *
276  * For recording page's order, we use page_private(page).
277  */
278 static inline bool page_is_buddy(struct page *page, struct page *buddy,
279                                  unsigned int order)
280 {
281         if (!page_is_guard(buddy) && !PageBuddy(buddy))
282                 return false;
283
284         if (buddy_order(buddy) != order)
285                 return false;
286
287         /*
288          * zone check is done late to avoid uselessly calculating
289          * zone/node ids for pages that could never merge.
290          */
291         if (page_zone_id(page) != page_zone_id(buddy))
292                 return false;
293
294         VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
295
296         return true;
297 }
298
299 /*
300  * Locate the struct page for both the matching buddy in our
301  * pair (buddy1) and the combined O(n+1) page they form (page).
302  *
303  * 1) Any buddy B1 will have an order O twin B2 which satisfies
304  * the following equation:
305  *     B2 = B1 ^ (1 << O)
306  * For example, if the starting buddy (buddy2) is #8 its order
307  * 1 buddy is #10:
308  *     B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
309  *
310  * 2) Any buddy B will have an order O+1 parent P which
311  * satisfies the following equation:
312  *     P = B & ~(1 << O)
313  *
314  * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
315  */
316 static inline unsigned long
317 __find_buddy_pfn(unsigned long page_pfn, unsigned int order)
318 {
319         return page_pfn ^ (1 << order);
320 }
321
322 /*
323  * Find the buddy of @page and validate it.
324  * @page: The input page
325  * @pfn: The pfn of the page, it saves a call to page_to_pfn() when the
326  *       function is used in the performance-critical __free_one_page().
327  * @order: The order of the page
328  * @buddy_pfn: The output pointer to the buddy pfn, it also saves a call to
329  *             page_to_pfn().
330  *
331  * The found buddy can be a non PageBuddy, out of @page's zone, or its order is
332  * not the same as @page. The validation is necessary before use it.
333  *
334  * Return: the found buddy page or NULL if not found.
335  */
336 static inline struct page *find_buddy_page_pfn(struct page *page,
337                         unsigned long pfn, unsigned int order, unsigned long *buddy_pfn)
338 {
339         unsigned long __buddy_pfn = __find_buddy_pfn(pfn, order);
340         struct page *buddy;
341
342         buddy = page + (__buddy_pfn - pfn);
343         if (buddy_pfn)
344                 *buddy_pfn = __buddy_pfn;
345
346         if (page_is_buddy(page, buddy, order))
347                 return buddy;
348         return NULL;
349 }
350
351 extern struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
352                                 unsigned long end_pfn, struct zone *zone);
353
354 static inline struct page *pageblock_pfn_to_page(unsigned long start_pfn,
355                                 unsigned long end_pfn, struct zone *zone)
356 {
357         if (zone->contiguous)
358                 return pfn_to_page(start_pfn);
359
360         return __pageblock_pfn_to_page(start_pfn, end_pfn, zone);
361 }
362
363 extern int __isolate_free_page(struct page *page, unsigned int order);
364 extern void __putback_isolated_page(struct page *page, unsigned int order,
365                                     int mt);
366 extern void memblock_free_pages(struct page *page, unsigned long pfn,
367                                         unsigned int order);
368 extern void __free_pages_core(struct page *page, unsigned int order);
369 extern void prep_compound_page(struct page *page, unsigned int order);
370 extern void post_alloc_hook(struct page *page, unsigned int order,
371                                         gfp_t gfp_flags);
372 extern int user_min_free_kbytes;
373
374 extern void free_unref_page(struct page *page, unsigned int order);
375 extern void free_unref_page_list(struct list_head *list);
376
377 extern void zone_pcp_reset(struct zone *zone);
378 extern void zone_pcp_disable(struct zone *zone);
379 extern void zone_pcp_enable(struct zone *zone);
380
381 extern void *memmap_alloc(phys_addr_t size, phys_addr_t align,
382                           phys_addr_t min_addr,
383                           int nid, bool exact_nid);
384
385 int split_free_page(struct page *free_page,
386                         unsigned int order, unsigned long split_pfn_offset);
387
388 /*
389  * This will have no effect, other than possibly generating a warning, if the
390  * caller passes in a non-large folio.
391  */
392 static inline void folio_set_order(struct folio *folio, unsigned int order)
393 {
394         if (WARN_ON_ONCE(!folio_test_large(folio)))
395                 return;
396
397         folio->_folio_order = order;
398 #ifdef CONFIG_64BIT
399         /*
400          * When hugetlb dissolves a folio, we need to clear the tail
401          * page, rather than setting nr_pages to 1.
402          */
403         folio->_folio_nr_pages = order ? 1U << order : 0;
404 #endif
405 }
406
407 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
408
409 /*
410  * in mm/compaction.c
411  */
412 /*
413  * compact_control is used to track pages being migrated and the free pages
414  * they are being migrated to during memory compaction. The free_pfn starts
415  * at the end of a zone and migrate_pfn begins at the start. Movable pages
416  * are moved to the end of a zone during a compaction run and the run
417  * completes when free_pfn <= migrate_pfn
418  */
419 struct compact_control {
420         struct list_head freepages;     /* List of free pages to migrate to */
421         struct list_head migratepages;  /* List of pages being migrated */
422         unsigned int nr_freepages;      /* Number of isolated free pages */
423         unsigned int nr_migratepages;   /* Number of pages to migrate */
424         unsigned long free_pfn;         /* isolate_freepages search base */
425         /*
426          * Acts as an in/out parameter to page isolation for migration.
427          * isolate_migratepages uses it as a search base.
428          * isolate_migratepages_block will update the value to the next pfn
429          * after the last isolated one.
430          */
431         unsigned long migrate_pfn;
432         unsigned long fast_start_pfn;   /* a pfn to start linear scan from */
433         struct zone *zone;
434         unsigned long total_migrate_scanned;
435         unsigned long total_free_scanned;
436         unsigned short fast_search_fail;/* failures to use free list searches */
437         short search_order;             /* order to start a fast search at */
438         const gfp_t gfp_mask;           /* gfp mask of a direct compactor */
439         int order;                      /* order a direct compactor needs */
440         int migratetype;                /* migratetype of direct compactor */
441         const unsigned int alloc_flags; /* alloc flags of a direct compactor */
442         const int highest_zoneidx;      /* zone index of a direct compactor */
443         enum migrate_mode mode;         /* Async or sync migration mode */
444         bool ignore_skip_hint;          /* Scan blocks even if marked skip */
445         bool no_set_skip_hint;          /* Don't mark blocks for skipping */
446         bool ignore_block_suitable;     /* Scan blocks considered unsuitable */
447         bool direct_compaction;         /* False from kcompactd or /proc/... */
448         bool proactive_compaction;      /* kcompactd proactive compaction */
449         bool whole_zone;                /* Whole zone should/has been scanned */
450         bool contended;                 /* Signal lock contention */
451         bool finish_pageblock;          /* Scan the remainder of a pageblock. Used
452                                          * when there are potentially transient
453                                          * isolation or migration failures to
454                                          * ensure forward progress.
455                                          */
456         bool alloc_contig;              /* alloc_contig_range allocation */
457 };
458
459 /*
460  * Used in direct compaction when a page should be taken from the freelists
461  * immediately when one is created during the free path.
462  */
463 struct capture_control {
464         struct compact_control *cc;
465         struct page *page;
466 };
467
468 unsigned long
469 isolate_freepages_range(struct compact_control *cc,
470                         unsigned long start_pfn, unsigned long end_pfn);
471 int
472 isolate_migratepages_range(struct compact_control *cc,
473                            unsigned long low_pfn, unsigned long end_pfn);
474
475 int __alloc_contig_migrate_range(struct compact_control *cc,
476                                         unsigned long start, unsigned long end);
477 #endif
478 int find_suitable_fallback(struct free_area *area, unsigned int order,
479                         int migratetype, bool only_stealable, bool *can_steal);
480
481 /*
482  * These three helpers classifies VMAs for virtual memory accounting.
483  */
484
485 /*
486  * Executable code area - executable, not writable, not stack
487  */
488 static inline bool is_exec_mapping(vm_flags_t flags)
489 {
490         return (flags & (VM_EXEC | VM_WRITE | VM_STACK)) == VM_EXEC;
491 }
492
493 /*
494  * Stack area - automatically grows in one direction
495  *
496  * VM_GROWSUP / VM_GROWSDOWN VMAs are always private anonymous:
497  * do_mmap() forbids all other combinations.
498  */
499 static inline bool is_stack_mapping(vm_flags_t flags)
500 {
501         return (flags & VM_STACK) == VM_STACK;
502 }
503
504 /*
505  * Data area - private, writable, not stack
506  */
507 static inline bool is_data_mapping(vm_flags_t flags)
508 {
509         return (flags & (VM_WRITE | VM_SHARED | VM_STACK)) == VM_WRITE;
510 }
511
512 /* mm/util.c */
513 struct anon_vma *folio_anon_vma(struct folio *folio);
514
515 #ifdef CONFIG_MMU
516 void unmap_mapping_folio(struct folio *folio);
517 extern long populate_vma_page_range(struct vm_area_struct *vma,
518                 unsigned long start, unsigned long end, int *locked);
519 extern long faultin_vma_page_range(struct vm_area_struct *vma,
520                                    unsigned long start, unsigned long end,
521                                    bool write, int *locked);
522 extern int mlock_future_check(struct mm_struct *mm, unsigned long flags,
523                               unsigned long len);
524 /*
525  * mlock_vma_folio() and munlock_vma_folio():
526  * should be called with vma's mmap_lock held for read or write,
527  * under page table lock for the pte/pmd being added or removed.
528  *
529  * mlock is usually called at the end of page_add_*_rmap(), munlock at
530  * the end of page_remove_rmap(); but new anon folios are managed by
531  * folio_add_lru_vma() calling mlock_new_folio().
532  *
533  * @compound is used to include pmd mappings of THPs, but filter out
534  * pte mappings of THPs, which cannot be consistently counted: a pte
535  * mapping of the THP head cannot be distinguished by the page alone.
536  */
537 void mlock_folio(struct folio *folio);
538 static inline void mlock_vma_folio(struct folio *folio,
539                         struct vm_area_struct *vma, bool compound)
540 {
541         /*
542          * The VM_SPECIAL check here serves two purposes.
543          * 1) VM_IO check prevents migration from double-counting during mlock.
544          * 2) Although mmap_region() and mlock_fixup() take care that VM_LOCKED
545          *    is never left set on a VM_SPECIAL vma, there is an interval while
546          *    file->f_op->mmap() is using vm_insert_page(s), when VM_LOCKED may
547          *    still be set while VM_SPECIAL bits are added: so ignore it then.
548          */
549         if (unlikely((vma->vm_flags & (VM_LOCKED|VM_SPECIAL)) == VM_LOCKED) &&
550             (compound || !folio_test_large(folio)))
551                 mlock_folio(folio);
552 }
553
554 void munlock_folio(struct folio *folio);
555 static inline void munlock_vma_folio(struct folio *folio,
556                         struct vm_area_struct *vma, bool compound)
557 {
558         if (unlikely(vma->vm_flags & VM_LOCKED) &&
559             (compound || !folio_test_large(folio)))
560                 munlock_folio(folio);
561 }
562
563 void mlock_new_folio(struct folio *folio);
564 bool need_mlock_drain(int cpu);
565 void mlock_drain_local(void);
566 void mlock_drain_remote(int cpu);
567
568 extern pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma);
569
570 /*
571  * Return the start of user virtual address at the specific offset within
572  * a vma.
573  */
574 static inline unsigned long
575 vma_pgoff_address(pgoff_t pgoff, unsigned long nr_pages,
576                   struct vm_area_struct *vma)
577 {
578         unsigned long address;
579
580         if (pgoff >= vma->vm_pgoff) {
581                 address = vma->vm_start +
582                         ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
583                 /* Check for address beyond vma (or wrapped through 0?) */
584                 if (address < vma->vm_start || address >= vma->vm_end)
585                         address = -EFAULT;
586         } else if (pgoff + nr_pages - 1 >= vma->vm_pgoff) {
587                 /* Test above avoids possibility of wrap to 0 on 32-bit */
588                 address = vma->vm_start;
589         } else {
590                 address = -EFAULT;
591         }
592         return address;
593 }
594
595 /*
596  * Return the start of user virtual address of a page within a vma.
597  * Returns -EFAULT if all of the page is outside the range of vma.
598  * If page is a compound head, the entire compound page is considered.
599  */
600 static inline unsigned long
601 vma_address(struct page *page, struct vm_area_struct *vma)
602 {
603         VM_BUG_ON_PAGE(PageKsm(page), page);    /* KSM page->index unusable */
604         return vma_pgoff_address(page_to_pgoff(page), compound_nr(page), vma);
605 }
606
607 /*
608  * Then at what user virtual address will none of the range be found in vma?
609  * Assumes that vma_address() already returned a good starting address.
610  */
611 static inline unsigned long vma_address_end(struct page_vma_mapped_walk *pvmw)
612 {
613         struct vm_area_struct *vma = pvmw->vma;
614         pgoff_t pgoff;
615         unsigned long address;
616
617         /* Common case, plus ->pgoff is invalid for KSM */
618         if (pvmw->nr_pages == 1)
619                 return pvmw->address + PAGE_SIZE;
620
621         pgoff = pvmw->pgoff + pvmw->nr_pages;
622         address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
623         /* Check for address beyond vma (or wrapped through 0?) */
624         if (address < vma->vm_start || address > vma->vm_end)
625                 address = vma->vm_end;
626         return address;
627 }
628
629 static inline struct file *maybe_unlock_mmap_for_io(struct vm_fault *vmf,
630                                                     struct file *fpin)
631 {
632         int flags = vmf->flags;
633
634         if (fpin)
635                 return fpin;
636
637         /*
638          * FAULT_FLAG_RETRY_NOWAIT means we don't want to wait on page locks or
639          * anything, so we only pin the file and drop the mmap_lock if only
640          * FAULT_FLAG_ALLOW_RETRY is set, while this is the first attempt.
641          */
642         if (fault_flag_allow_retry_first(flags) &&
643             !(flags & FAULT_FLAG_RETRY_NOWAIT)) {
644                 fpin = get_file(vmf->vma->vm_file);
645                 mmap_read_unlock(vmf->vma->vm_mm);
646         }
647         return fpin;
648 }
649 #else /* !CONFIG_MMU */
650 static inline void unmap_mapping_folio(struct folio *folio) { }
651 static inline void mlock_new_folio(struct folio *folio) { }
652 static inline bool need_mlock_drain(int cpu) { return false; }
653 static inline void mlock_drain_local(void) { }
654 static inline void mlock_drain_remote(int cpu) { }
655 static inline void vunmap_range_noflush(unsigned long start, unsigned long end)
656 {
657 }
658 #endif /* !CONFIG_MMU */
659
660 /* Memory initialisation debug and verification */
661 enum mminit_level {
662         MMINIT_WARNING,
663         MMINIT_VERIFY,
664         MMINIT_TRACE
665 };
666
667 #ifdef CONFIG_DEBUG_MEMORY_INIT
668
669 extern int mminit_loglevel;
670
671 #define mminit_dprintk(level, prefix, fmt, arg...) \
672 do { \
673         if (level < mminit_loglevel) { \
674                 if (level <= MMINIT_WARNING) \
675                         pr_warn("mminit::" prefix " " fmt, ##arg);      \
676                 else \
677                         printk(KERN_DEBUG "mminit::" prefix " " fmt, ##arg); \
678         } \
679 } while (0)
680
681 extern void mminit_verify_pageflags_layout(void);
682 extern void mminit_verify_zonelist(void);
683 #else
684
685 static inline void mminit_dprintk(enum mminit_level level,
686                                 const char *prefix, const char *fmt, ...)
687 {
688 }
689
690 static inline void mminit_verify_pageflags_layout(void)
691 {
692 }
693
694 static inline void mminit_verify_zonelist(void)
695 {
696 }
697 #endif /* CONFIG_DEBUG_MEMORY_INIT */
698
699 #define NODE_RECLAIM_NOSCAN     -2
700 #define NODE_RECLAIM_FULL       -1
701 #define NODE_RECLAIM_SOME       0
702 #define NODE_RECLAIM_SUCCESS    1
703
704 #ifdef CONFIG_NUMA
705 extern int node_reclaim(struct pglist_data *, gfp_t, unsigned int);
706 extern int find_next_best_node(int node, nodemask_t *used_node_mask);
707 #else
708 static inline int node_reclaim(struct pglist_data *pgdat, gfp_t mask,
709                                 unsigned int order)
710 {
711         return NODE_RECLAIM_NOSCAN;
712 }
713 static inline int find_next_best_node(int node, nodemask_t *used_node_mask)
714 {
715         return NUMA_NO_NODE;
716 }
717 #endif
718
719 /*
720  * mm/memory-failure.c
721  */
722 extern int hwpoison_filter(struct page *p);
723
724 extern u32 hwpoison_filter_dev_major;
725 extern u32 hwpoison_filter_dev_minor;
726 extern u64 hwpoison_filter_flags_mask;
727 extern u64 hwpoison_filter_flags_value;
728 extern u64 hwpoison_filter_memcg;
729 extern u32 hwpoison_filter_enable;
730
731 extern unsigned long  __must_check vm_mmap_pgoff(struct file *, unsigned long,
732         unsigned long, unsigned long,
733         unsigned long, unsigned long);
734
735 extern void set_pageblock_order(void);
736 unsigned int reclaim_clean_pages_from_list(struct zone *zone,
737                                             struct list_head *page_list);
738 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
739 #define ALLOC_WMARK_MIN         WMARK_MIN
740 #define ALLOC_WMARK_LOW         WMARK_LOW
741 #define ALLOC_WMARK_HIGH        WMARK_HIGH
742 #define ALLOC_NO_WATERMARKS     0x04 /* don't check watermarks at all */
743
744 /* Mask to get the watermark bits */
745 #define ALLOC_WMARK_MASK        (ALLOC_NO_WATERMARKS-1)
746
747 /*
748  * Only MMU archs have async oom victim reclaim - aka oom_reaper so we
749  * cannot assume a reduced access to memory reserves is sufficient for
750  * !MMU
751  */
752 #ifdef CONFIG_MMU
753 #define ALLOC_OOM               0x08
754 #else
755 #define ALLOC_OOM               ALLOC_NO_WATERMARKS
756 #endif
757
758 #define ALLOC_NON_BLOCK          0x10 /* Caller cannot block. Allow access
759                                        * to 25% of the min watermark or
760                                        * 62.5% if __GFP_HIGH is set.
761                                        */
762 #define ALLOC_MIN_RESERVE        0x20 /* __GFP_HIGH set. Allow access to 50%
763                                        * of the min watermark.
764                                        */
765 #define ALLOC_CPUSET             0x40 /* check for correct cpuset */
766 #define ALLOC_CMA                0x80 /* allow allocations from CMA areas */
767 #ifdef CONFIG_ZONE_DMA32
768 #define ALLOC_NOFRAGMENT        0x100 /* avoid mixing pageblock types */
769 #else
770 #define ALLOC_NOFRAGMENT          0x0
771 #endif
772 #define ALLOC_HIGHATOMIC        0x200 /* Allows access to MIGRATE_HIGHATOMIC */
773 #define ALLOC_KSWAPD            0x800 /* allow waking of kswapd, __GFP_KSWAPD_RECLAIM set */
774
775 /* Flags that allow allocations below the min watermark. */
776 #define ALLOC_RESERVES (ALLOC_NON_BLOCK|ALLOC_MIN_RESERVE|ALLOC_HIGHATOMIC|ALLOC_OOM)
777
778 enum ttu_flags;
779 struct tlbflush_unmap_batch;
780
781
782 /*
783  * only for MM internal work items which do not depend on
784  * any allocations or locks which might depend on allocations
785  */
786 extern struct workqueue_struct *mm_percpu_wq;
787
788 #ifdef CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH
789 void try_to_unmap_flush(void);
790 void try_to_unmap_flush_dirty(void);
791 void flush_tlb_batched_pending(struct mm_struct *mm);
792 #else
793 static inline void try_to_unmap_flush(void)
794 {
795 }
796 static inline void try_to_unmap_flush_dirty(void)
797 {
798 }
799 static inline void flush_tlb_batched_pending(struct mm_struct *mm)
800 {
801 }
802 #endif /* CONFIG_ARCH_WANT_BATCHED_UNMAP_TLB_FLUSH */
803
804 extern const struct trace_print_flags pageflag_names[];
805 extern const struct trace_print_flags vmaflag_names[];
806 extern const struct trace_print_flags gfpflag_names[];
807
808 static inline bool is_migrate_highatomic(enum migratetype migratetype)
809 {
810         return migratetype == MIGRATE_HIGHATOMIC;
811 }
812
813 static inline bool is_migrate_highatomic_page(struct page *page)
814 {
815         return get_pageblock_migratetype(page) == MIGRATE_HIGHATOMIC;
816 }
817
818 void setup_zone_pageset(struct zone *zone);
819
820 struct migration_target_control {
821         int nid;                /* preferred node id */
822         nodemask_t *nmask;
823         gfp_t gfp_mask;
824 };
825
826 /*
827  * mm/filemap.c
828  */
829 size_t splice_folio_into_pipe(struct pipe_inode_info *pipe,
830                               struct folio *folio, loff_t fpos, size_t size);
831
832 /*
833  * mm/vmalloc.c
834  */
835 #ifdef CONFIG_MMU
836 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
837                 pgprot_t prot, struct page **pages, unsigned int page_shift);
838 #else
839 static inline
840 int vmap_pages_range_noflush(unsigned long addr, unsigned long end,
841                 pgprot_t prot, struct page **pages, unsigned int page_shift)
842 {
843         return -EINVAL;
844 }
845 #endif
846
847 int __vmap_pages_range_noflush(unsigned long addr, unsigned long end,
848                                pgprot_t prot, struct page **pages,
849                                unsigned int page_shift);
850
851 void vunmap_range_noflush(unsigned long start, unsigned long end);
852
853 void __vunmap_range_noflush(unsigned long start, unsigned long end);
854
855 int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
856                       unsigned long addr, int page_nid, int *flags);
857
858 void free_zone_device_page(struct page *page);
859 int migrate_device_coherent_page(struct page *page);
860
861 /*
862  * mm/gup.c
863  */
864 struct folio *try_grab_folio(struct page *page, int refs, unsigned int flags);
865 int __must_check try_grab_page(struct page *page, unsigned int flags);
866
867 enum {
868         /* mark page accessed */
869         FOLL_TOUCH = 1 << 16,
870         /* a retry, previous pass started an IO */
871         FOLL_TRIED = 1 << 17,
872         /* we are working on non-current tsk/mm */
873         FOLL_REMOTE = 1 << 18,
874         /* pages must be released via unpin_user_page */
875         FOLL_PIN = 1 << 19,
876         /* gup_fast: prevent fall-back to slow gup */
877         FOLL_FAST_ONLY = 1 << 20,
878         /* allow unlocking the mmap lock */
879         FOLL_UNLOCKABLE = 1 << 21,
880 };
881
882 /*
883  * Indicates for which pages that are write-protected in the page table,
884  * whether GUP has to trigger unsharing via FAULT_FLAG_UNSHARE such that the
885  * GUP pin will remain consistent with the pages mapped into the page tables
886  * of the MM.
887  *
888  * Temporary unmapping of PageAnonExclusive() pages or clearing of
889  * PageAnonExclusive() has to protect against concurrent GUP:
890  * * Ordinary GUP: Using the PT lock
891  * * GUP-fast and fork(): mm->write_protect_seq
892  * * GUP-fast and KSM or temporary unmapping (swap, migration): see
893  *    page_try_share_anon_rmap()
894  *
895  * Must be called with the (sub)page that's actually referenced via the
896  * page table entry, which might not necessarily be the head page for a
897  * PTE-mapped THP.
898  *
899  * If the vma is NULL, we're coming from the GUP-fast path and might have
900  * to fallback to the slow path just to lookup the vma.
901  */
902 static inline bool gup_must_unshare(struct vm_area_struct *vma,
903                                     unsigned int flags, struct page *page)
904 {
905         /*
906          * FOLL_WRITE is implicitly handled correctly as the page table entry
907          * has to be writable -- and if it references (part of) an anonymous
908          * folio, that part is required to be marked exclusive.
909          */
910         if ((flags & (FOLL_WRITE | FOLL_PIN)) != FOLL_PIN)
911                 return false;
912         /*
913          * Note: PageAnon(page) is stable until the page is actually getting
914          * freed.
915          */
916         if (!PageAnon(page)) {
917                 /*
918                  * We only care about R/O long-term pining: R/O short-term
919                  * pinning does not have the semantics to observe successive
920                  * changes through the process page tables.
921                  */
922                 if (!(flags & FOLL_LONGTERM))
923                         return false;
924
925                 /* We really need the vma ... */
926                 if (!vma)
927                         return true;
928
929                 /*
930                  * ... because we only care about writable private ("COW")
931                  * mappings where we have to break COW early.
932                  */
933                 return is_cow_mapping(vma->vm_flags);
934         }
935
936         /* Paired with a memory barrier in page_try_share_anon_rmap(). */
937         if (IS_ENABLED(CONFIG_HAVE_FAST_GUP))
938                 smp_rmb();
939
940         /*
941          * Note that PageKsm() pages cannot be exclusive, and consequently,
942          * cannot get pinned.
943          */
944         return !PageAnonExclusive(page);
945 }
946
947 extern bool mirrored_kernelcore;
948
949 static inline bool vma_soft_dirty_enabled(struct vm_area_struct *vma)
950 {
951         /*
952          * NOTE: we must check this before VM_SOFTDIRTY on soft-dirty
953          * enablements, because when without soft-dirty being compiled in,
954          * VM_SOFTDIRTY is defined as 0x0, then !(vm_flags & VM_SOFTDIRTY)
955          * will be constantly true.
956          */
957         if (!IS_ENABLED(CONFIG_MEM_SOFT_DIRTY))
958                 return false;
959
960         /*
961          * Soft-dirty is kind of special: its tracking is enabled when the
962          * vma flags not set.
963          */
964         return !(vma->vm_flags & VM_SOFTDIRTY);
965 }
966
967 /*
968  * VMA Iterator functions shared between nommu and mmap
969  */
970 static inline int vma_iter_prealloc(struct vma_iterator *vmi)
971 {
972         return mas_preallocate(&vmi->mas, GFP_KERNEL);
973 }
974
975 static inline void vma_iter_clear(struct vma_iterator *vmi,
976                                   unsigned long start, unsigned long end)
977 {
978         mas_set_range(&vmi->mas, start, end - 1);
979         mas_store_prealloc(&vmi->mas, NULL);
980 }
981
982 static inline struct vm_area_struct *vma_iter_load(struct vma_iterator *vmi)
983 {
984         return mas_walk(&vmi->mas);
985 }
986
987 /* Store a VMA with preallocated memory */
988 static inline void vma_iter_store(struct vma_iterator *vmi,
989                                   struct vm_area_struct *vma)
990 {
991
992 #if defined(CONFIG_DEBUG_VM_MAPLE_TREE)
993         if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.index > vma->vm_start)) {
994                 printk("%lu > %lu\n", vmi->mas.index, vma->vm_start);
995                 printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end);
996                 printk("into slot    %lu-%lu", vmi->mas.index, vmi->mas.last);
997                 mt_dump(vmi->mas.tree);
998         }
999         if (WARN_ON(vmi->mas.node != MAS_START && vmi->mas.last <  vma->vm_start)) {
1000                 printk("%lu < %lu\n", vmi->mas.last, vma->vm_start);
1001                 printk("store of vma %lu-%lu", vma->vm_start, vma->vm_end);
1002                 printk("into slot    %lu-%lu", vmi->mas.index, vmi->mas.last);
1003                 mt_dump(vmi->mas.tree);
1004         }
1005 #endif
1006
1007         if (vmi->mas.node != MAS_START &&
1008             ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1009                 vma_iter_invalidate(vmi);
1010
1011         vmi->mas.index = vma->vm_start;
1012         vmi->mas.last = vma->vm_end - 1;
1013         mas_store_prealloc(&vmi->mas, vma);
1014 }
1015
1016 static inline int vma_iter_store_gfp(struct vma_iterator *vmi,
1017                         struct vm_area_struct *vma, gfp_t gfp)
1018 {
1019         if (vmi->mas.node != MAS_START &&
1020             ((vmi->mas.index > vma->vm_start) || (vmi->mas.last < vma->vm_start)))
1021                 vma_iter_invalidate(vmi);
1022
1023         vmi->mas.index = vma->vm_start;
1024         vmi->mas.last = vma->vm_end - 1;
1025         mas_store_gfp(&vmi->mas, vma, gfp);
1026         if (unlikely(mas_is_err(&vmi->mas)))
1027                 return -ENOMEM;
1028
1029         return 0;
1030 }
1031
1032 /*
1033  * VMA lock generalization
1034  */
1035 struct vma_prepare {
1036         struct vm_area_struct *vma;
1037         struct vm_area_struct *adj_next;
1038         struct file *file;
1039         struct address_space *mapping;
1040         struct anon_vma *anon_vma;
1041         struct vm_area_struct *insert;
1042         struct vm_area_struct *remove;
1043         struct vm_area_struct *remove2;
1044 };
1045 #endif  /* __MM_INTERNAL_H */