Merge tag 'nfs-for-6.1-1' of git://git.linux-nfs.org/projects/anna/linux-nfs
[platform/kernel/linux-rpi.git] / mm / hugetlb_vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)     "HugeTLB: " fmt
12
13 #include <linux/pgtable.h>
14 #include <linux/bootmem_info.h>
15 #include <asm/pgalloc.h>
16 #include <asm/tlbflush.h>
17 #include "hugetlb_vmemmap.h"
18
19 /**
20  * struct vmemmap_remap_walk - walk vmemmap page table
21  *
22  * @remap_pte:          called for each lowest-level entry (PTE).
23  * @nr_walked:          the number of walked pte.
24  * @reuse_page:         the page which is reused for the tail vmemmap pages.
25  * @reuse_addr:         the virtual address of the @reuse_page page.
26  * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
27  *                      or is mapped from.
28  */
29 struct vmemmap_remap_walk {
30         void                    (*remap_pte)(pte_t *pte, unsigned long addr,
31                                              struct vmemmap_remap_walk *walk);
32         unsigned long           nr_walked;
33         struct page             *reuse_page;
34         unsigned long           reuse_addr;
35         struct list_head        *vmemmap_pages;
36 };
37
38 static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
39 {
40         pmd_t __pmd;
41         int i;
42         unsigned long addr = start;
43         struct page *page = pmd_page(*pmd);
44         pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
45
46         if (!pgtable)
47                 return -ENOMEM;
48
49         pmd_populate_kernel(&init_mm, &__pmd, pgtable);
50
51         for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
52                 pte_t entry, *pte;
53                 pgprot_t pgprot = PAGE_KERNEL;
54
55                 entry = mk_pte(page + i, pgprot);
56                 pte = pte_offset_kernel(&__pmd, addr);
57                 set_pte_at(&init_mm, addr, pte, entry);
58         }
59
60         spin_lock(&init_mm.page_table_lock);
61         if (likely(pmd_leaf(*pmd))) {
62                 /*
63                  * Higher order allocations from buddy allocator must be able to
64                  * be treated as indepdenent small pages (as they can be freed
65                  * individually).
66                  */
67                 if (!PageReserved(page))
68                         split_page(page, get_order(PMD_SIZE));
69
70                 /* Make pte visible before pmd. See comment in pmd_install(). */
71                 smp_wmb();
72                 pmd_populate_kernel(&init_mm, pmd, pgtable);
73                 flush_tlb_kernel_range(start, start + PMD_SIZE);
74         } else {
75                 pte_free_kernel(&init_mm, pgtable);
76         }
77         spin_unlock(&init_mm.page_table_lock);
78
79         return 0;
80 }
81
82 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
83 {
84         int leaf;
85
86         spin_lock(&init_mm.page_table_lock);
87         leaf = pmd_leaf(*pmd);
88         spin_unlock(&init_mm.page_table_lock);
89
90         if (!leaf)
91                 return 0;
92
93         return __split_vmemmap_huge_pmd(pmd, start);
94 }
95
96 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
97                               unsigned long end,
98                               struct vmemmap_remap_walk *walk)
99 {
100         pte_t *pte = pte_offset_kernel(pmd, addr);
101
102         /*
103          * The reuse_page is found 'first' in table walk before we start
104          * remapping (which is calling @walk->remap_pte).
105          */
106         if (!walk->reuse_page) {
107                 walk->reuse_page = pte_page(*pte);
108                 /*
109                  * Because the reuse address is part of the range that we are
110                  * walking, skip the reuse address range.
111                  */
112                 addr += PAGE_SIZE;
113                 pte++;
114                 walk->nr_walked++;
115         }
116
117         for (; addr != end; addr += PAGE_SIZE, pte++) {
118                 walk->remap_pte(pte, addr, walk);
119                 walk->nr_walked++;
120         }
121 }
122
123 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
124                              unsigned long end,
125                              struct vmemmap_remap_walk *walk)
126 {
127         pmd_t *pmd;
128         unsigned long next;
129
130         pmd = pmd_offset(pud, addr);
131         do {
132                 int ret;
133
134                 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
135                 if (ret)
136                         return ret;
137
138                 next = pmd_addr_end(addr, end);
139                 vmemmap_pte_range(pmd, addr, next, walk);
140         } while (pmd++, addr = next, addr != end);
141
142         return 0;
143 }
144
145 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
146                              unsigned long end,
147                              struct vmemmap_remap_walk *walk)
148 {
149         pud_t *pud;
150         unsigned long next;
151
152         pud = pud_offset(p4d, addr);
153         do {
154                 int ret;
155
156                 next = pud_addr_end(addr, end);
157                 ret = vmemmap_pmd_range(pud, addr, next, walk);
158                 if (ret)
159                         return ret;
160         } while (pud++, addr = next, addr != end);
161
162         return 0;
163 }
164
165 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
166                              unsigned long end,
167                              struct vmemmap_remap_walk *walk)
168 {
169         p4d_t *p4d;
170         unsigned long next;
171
172         p4d = p4d_offset(pgd, addr);
173         do {
174                 int ret;
175
176                 next = p4d_addr_end(addr, end);
177                 ret = vmemmap_pud_range(p4d, addr, next, walk);
178                 if (ret)
179                         return ret;
180         } while (p4d++, addr = next, addr != end);
181
182         return 0;
183 }
184
185 static int vmemmap_remap_range(unsigned long start, unsigned long end,
186                                struct vmemmap_remap_walk *walk)
187 {
188         unsigned long addr = start;
189         unsigned long next;
190         pgd_t *pgd;
191
192         VM_BUG_ON(!PAGE_ALIGNED(start));
193         VM_BUG_ON(!PAGE_ALIGNED(end));
194
195         pgd = pgd_offset_k(addr);
196         do {
197                 int ret;
198
199                 next = pgd_addr_end(addr, end);
200                 ret = vmemmap_p4d_range(pgd, addr, next, walk);
201                 if (ret)
202                         return ret;
203         } while (pgd++, addr = next, addr != end);
204
205         /*
206          * We only change the mapping of the vmemmap virtual address range
207          * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
208          * belongs to the range.
209          */
210         flush_tlb_kernel_range(start + PAGE_SIZE, end);
211
212         return 0;
213 }
214
215 /*
216  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
217  * allocator or buddy allocator. If the PG_reserved flag is set, it means
218  * that it allocated from the memblock allocator, just free it via the
219  * free_bootmem_page(). Otherwise, use __free_page().
220  */
221 static inline void free_vmemmap_page(struct page *page)
222 {
223         if (PageReserved(page))
224                 free_bootmem_page(page);
225         else
226                 __free_page(page);
227 }
228
229 /* Free a list of the vmemmap pages */
230 static void free_vmemmap_page_list(struct list_head *list)
231 {
232         struct page *page, *next;
233
234         list_for_each_entry_safe(page, next, list, lru) {
235                 list_del(&page->lru);
236                 free_vmemmap_page(page);
237         }
238 }
239
240 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
241                               struct vmemmap_remap_walk *walk)
242 {
243         /*
244          * Remap the tail pages as read-only to catch illegal write operation
245          * to the tail pages.
246          */
247         pgprot_t pgprot = PAGE_KERNEL_RO;
248         pte_t entry = mk_pte(walk->reuse_page, pgprot);
249         struct page *page = pte_page(*pte);
250
251         list_add_tail(&page->lru, walk->vmemmap_pages);
252         set_pte_at(&init_mm, addr, pte, entry);
253 }
254
255 /*
256  * How many struct page structs need to be reset. When we reuse the head
257  * struct page, the special metadata (e.g. page->flags or page->mapping)
258  * cannot copy to the tail struct page structs. The invalid value will be
259  * checked in the free_tail_pages_check(). In order to avoid the message
260  * of "corrupted mapping in tail page". We need to reset at least 3 (one
261  * head struct page struct and two tail struct page structs) struct page
262  * structs.
263  */
264 #define NR_RESET_STRUCT_PAGE            3
265
266 static inline void reset_struct_pages(struct page *start)
267 {
268         struct page *from = start + NR_RESET_STRUCT_PAGE;
269
270         BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
271         memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
272 }
273
274 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
275                                 struct vmemmap_remap_walk *walk)
276 {
277         pgprot_t pgprot = PAGE_KERNEL;
278         struct page *page;
279         void *to;
280
281         BUG_ON(pte_page(*pte) != walk->reuse_page);
282
283         page = list_first_entry(walk->vmemmap_pages, struct page, lru);
284         list_del(&page->lru);
285         to = page_to_virt(page);
286         copy_page(to, (void *)walk->reuse_addr);
287         reset_struct_pages(to);
288
289         /*
290          * Makes sure that preceding stores to the page contents become visible
291          * before the set_pte_at() write.
292          */
293         smp_wmb();
294         set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
295 }
296
297 /**
298  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
299  *                      to the page which @reuse is mapped to, then free vmemmap
300  *                      which the range are mapped to.
301  * @start:      start address of the vmemmap virtual address range that we want
302  *              to remap.
303  * @end:        end address of the vmemmap virtual address range that we want to
304  *              remap.
305  * @reuse:      reuse address.
306  *
307  * Return: %0 on success, negative error code otherwise.
308  */
309 static int vmemmap_remap_free(unsigned long start, unsigned long end,
310                               unsigned long reuse)
311 {
312         int ret;
313         LIST_HEAD(vmemmap_pages);
314         struct vmemmap_remap_walk walk = {
315                 .remap_pte      = vmemmap_remap_pte,
316                 .reuse_addr     = reuse,
317                 .vmemmap_pages  = &vmemmap_pages,
318         };
319
320         /*
321          * In order to make remapping routine most efficient for the huge pages,
322          * the routine of vmemmap page table walking has the following rules
323          * (see more details from the vmemmap_pte_range()):
324          *
325          * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
326          *   should be continuous.
327          * - The @reuse address is part of the range [@reuse, @end) that we are
328          *   walking which is passed to vmemmap_remap_range().
329          * - The @reuse address is the first in the complete range.
330          *
331          * So we need to make sure that @start and @reuse meet the above rules.
332          */
333         BUG_ON(start - reuse != PAGE_SIZE);
334
335         mmap_read_lock(&init_mm);
336         ret = vmemmap_remap_range(reuse, end, &walk);
337         if (ret && walk.nr_walked) {
338                 end = reuse + walk.nr_walked * PAGE_SIZE;
339                 /*
340                  * vmemmap_pages contains pages from the previous
341                  * vmemmap_remap_range call which failed.  These
342                  * are pages which were removed from the vmemmap.
343                  * They will be restored in the following call.
344                  */
345                 walk = (struct vmemmap_remap_walk) {
346                         .remap_pte      = vmemmap_restore_pte,
347                         .reuse_addr     = reuse,
348                         .vmemmap_pages  = &vmemmap_pages,
349                 };
350
351                 vmemmap_remap_range(reuse, end, &walk);
352         }
353         mmap_read_unlock(&init_mm);
354
355         free_vmemmap_page_list(&vmemmap_pages);
356
357         return ret;
358 }
359
360 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
361                                    gfp_t gfp_mask, struct list_head *list)
362 {
363         unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
364         int nid = page_to_nid((struct page *)start);
365         struct page *page, *next;
366
367         while (nr_pages--) {
368                 page = alloc_pages_node(nid, gfp_mask, 0);
369                 if (!page)
370                         goto out;
371                 list_add_tail(&page->lru, list);
372         }
373
374         return 0;
375 out:
376         list_for_each_entry_safe(page, next, list, lru)
377                 __free_pages(page, 0);
378         return -ENOMEM;
379 }
380
381 /**
382  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
383  *                       to the page which is from the @vmemmap_pages
384  *                       respectively.
385  * @start:      start address of the vmemmap virtual address range that we want
386  *              to remap.
387  * @end:        end address of the vmemmap virtual address range that we want to
388  *              remap.
389  * @reuse:      reuse address.
390  * @gfp_mask:   GFP flag for allocating vmemmap pages.
391  *
392  * Return: %0 on success, negative error code otherwise.
393  */
394 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
395                                unsigned long reuse, gfp_t gfp_mask)
396 {
397         LIST_HEAD(vmemmap_pages);
398         struct vmemmap_remap_walk walk = {
399                 .remap_pte      = vmemmap_restore_pte,
400                 .reuse_addr     = reuse,
401                 .vmemmap_pages  = &vmemmap_pages,
402         };
403
404         /* See the comment in the vmemmap_remap_free(). */
405         BUG_ON(start - reuse != PAGE_SIZE);
406
407         if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
408                 return -ENOMEM;
409
410         mmap_read_lock(&init_mm);
411         vmemmap_remap_range(reuse, end, &walk);
412         mmap_read_unlock(&init_mm);
413
414         return 0;
415 }
416
417 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
418 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
419
420 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
421 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
422
423 /**
424  * hugetlb_vmemmap_restore - restore previously optimized (by
425  *                           hugetlb_vmemmap_optimize()) vmemmap pages which
426  *                           will be reallocated and remapped.
427  * @h:          struct hstate.
428  * @head:       the head page whose vmemmap pages will be restored.
429  *
430  * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
431  * negative error code otherwise.
432  */
433 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
434 {
435         int ret;
436         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
437         unsigned long vmemmap_reuse;
438
439         if (!HPageVmemmapOptimized(head))
440                 return 0;
441
442         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
443         vmemmap_reuse   = vmemmap_start;
444         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
445
446         /*
447          * The pages which the vmemmap virtual address range [@vmemmap_start,
448          * @vmemmap_end) are mapped to are freed to the buddy allocator, and
449          * the range is mapped to the page which @vmemmap_reuse is mapped to.
450          * When a HugeTLB page is freed to the buddy allocator, previously
451          * discarded vmemmap pages must be allocated and remapping.
452          */
453         ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse,
454                                   GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
455         if (!ret) {
456                 ClearHPageVmemmapOptimized(head);
457                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
458         }
459
460         return ret;
461 }
462
463 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
464 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
465 {
466         if (!READ_ONCE(vmemmap_optimize_enabled))
467                 return false;
468
469         if (!hugetlb_vmemmap_optimizable(h))
470                 return false;
471
472         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
473                 pmd_t *pmdp, pmd;
474                 struct page *vmemmap_page;
475                 unsigned long vaddr = (unsigned long)head;
476
477                 /*
478                  * Only the vmemmap page's vmemmap page can be self-hosted.
479                  * Walking the page tables to find the backing page of the
480                  * vmemmap page.
481                  */
482                 pmdp = pmd_off_k(vaddr);
483                 /*
484                  * The READ_ONCE() is used to stabilize *pmdp in a register or
485                  * on the stack so that it will stop changing under the code.
486                  * The only concurrent operation where it can be changed is
487                  * split_vmemmap_huge_pmd() (*pmdp will be stable after this
488                  * operation).
489                  */
490                 pmd = READ_ONCE(*pmdp);
491                 if (pmd_leaf(pmd))
492                         vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
493                 else
494                         vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
495                 /*
496                  * Due to HugeTLB alignment requirements and the vmemmap pages
497                  * being at the start of the hotplugged memory region in
498                  * memory_hotplug.memmap_on_memory case. Checking any vmemmap
499                  * page's vmemmap page if it is marked as VmemmapSelfHosted is
500                  * sufficient.
501                  *
502                  * [                  hotplugged memory                  ]
503                  * [        section        ][...][        section        ]
504                  * [ vmemmap ][              usable memory               ]
505                  *   ^   |     |                                        |
506                  *   +---+     |                                        |
507                  *     ^       |                                        |
508                  *     +-------+                                        |
509                  *          ^                                           |
510                  *          +-------------------------------------------+
511                  */
512                 if (PageVmemmapSelfHosted(vmemmap_page))
513                         return false;
514         }
515
516         return true;
517 }
518
519 /**
520  * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
521  * @h:          struct hstate.
522  * @head:       the head page whose vmemmap pages will be optimized.
523  *
524  * This function only tries to optimize @head's vmemmap pages and does not
525  * guarantee that the optimization will succeed after it returns. The caller
526  * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
527  * have been optimized.
528  */
529 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
530 {
531         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
532         unsigned long vmemmap_reuse;
533
534         if (!vmemmap_should_optimize(h, head))
535                 return;
536
537         static_branch_inc(&hugetlb_optimize_vmemmap_key);
538
539         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
540         vmemmap_reuse   = vmemmap_start;
541         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
542
543         /*
544          * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
545          * to the page which @vmemmap_reuse is mapped to, then free the pages
546          * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
547          */
548         if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
549                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
550         else
551                 SetHPageVmemmapOptimized(head);
552 }
553
554 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
555         {
556                 .procname       = "hugetlb_optimize_vmemmap",
557                 .data           = &vmemmap_optimize_enabled,
558                 .maxlen         = sizeof(int),
559                 .mode           = 0644,
560                 .proc_handler   = proc_dobool,
561         },
562         { }
563 };
564
565 static int __init hugetlb_vmemmap_init(void)
566 {
567         /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
568         BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
569
570         if (IS_ENABLED(CONFIG_PROC_SYSCTL)) {
571                 const struct hstate *h;
572
573                 for_each_hstate(h) {
574                         if (hugetlb_vmemmap_optimizable(h)) {
575                                 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
576                                 break;
577                         }
578                 }
579         }
580         return 0;
581 }
582 late_initcall(hugetlb_vmemmap_init);