tracing: Fix a possible race when disabling buffered events
[platform/kernel/linux-starfive.git] / mm / hugetlb_vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)     "HugeTLB: " fmt
12
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlbflush.h>
18 #include "hugetlb_vmemmap.h"
19
20 /**
21  * struct vmemmap_remap_walk - walk vmemmap page table
22  *
23  * @remap_pte:          called for each lowest-level entry (PTE).
24  * @nr_walked:          the number of walked pte.
25  * @reuse_page:         the page which is reused for the tail vmemmap pages.
26  * @reuse_addr:         the virtual address of the @reuse_page page.
27  * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
28  *                      or is mapped from.
29  */
30 struct vmemmap_remap_walk {
31         void                    (*remap_pte)(pte_t *pte, unsigned long addr,
32                                              struct vmemmap_remap_walk *walk);
33         unsigned long           nr_walked;
34         struct page             *reuse_page;
35         unsigned long           reuse_addr;
36         struct list_head        *vmemmap_pages;
37 };
38
39 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
40 {
41         pmd_t __pmd;
42         int i;
43         unsigned long addr = start;
44         struct page *head;
45         pte_t *pgtable;
46
47         spin_lock(&init_mm.page_table_lock);
48         head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
49         spin_unlock(&init_mm.page_table_lock);
50
51         if (!head)
52                 return 0;
53
54         pgtable = pte_alloc_one_kernel(&init_mm);
55         if (!pgtable)
56                 return -ENOMEM;
57
58         pmd_populate_kernel(&init_mm, &__pmd, pgtable);
59
60         for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
61                 pte_t entry, *pte;
62                 pgprot_t pgprot = PAGE_KERNEL;
63
64                 entry = mk_pte(head + i, pgprot);
65                 pte = pte_offset_kernel(&__pmd, addr);
66                 set_pte_at(&init_mm, addr, pte, entry);
67         }
68
69         spin_lock(&init_mm.page_table_lock);
70         if (likely(pmd_leaf(*pmd))) {
71                 /*
72                  * Higher order allocations from buddy allocator must be able to
73                  * be treated as indepdenent small pages (as they can be freed
74                  * individually).
75                  */
76                 if (!PageReserved(head))
77                         split_page(head, get_order(PMD_SIZE));
78
79                 /* Make pte visible before pmd. See comment in pmd_install(). */
80                 smp_wmb();
81                 pmd_populate_kernel(&init_mm, pmd, pgtable);
82                 flush_tlb_kernel_range(start, start + PMD_SIZE);
83         } else {
84                 pte_free_kernel(&init_mm, pgtable);
85         }
86         spin_unlock(&init_mm.page_table_lock);
87
88         return 0;
89 }
90
91 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
92                               unsigned long end,
93                               struct vmemmap_remap_walk *walk)
94 {
95         pte_t *pte = pte_offset_kernel(pmd, addr);
96
97         /*
98          * The reuse_page is found 'first' in table walk before we start
99          * remapping (which is calling @walk->remap_pte).
100          */
101         if (!walk->reuse_page) {
102                 walk->reuse_page = pte_page(*pte);
103                 /*
104                  * Because the reuse address is part of the range that we are
105                  * walking, skip the reuse address range.
106                  */
107                 addr += PAGE_SIZE;
108                 pte++;
109                 walk->nr_walked++;
110         }
111
112         for (; addr != end; addr += PAGE_SIZE, pte++) {
113                 walk->remap_pte(pte, addr, walk);
114                 walk->nr_walked++;
115         }
116 }
117
118 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
119                              unsigned long end,
120                              struct vmemmap_remap_walk *walk)
121 {
122         pmd_t *pmd;
123         unsigned long next;
124
125         pmd = pmd_offset(pud, addr);
126         do {
127                 int ret;
128
129                 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
130                 if (ret)
131                         return ret;
132
133                 next = pmd_addr_end(addr, end);
134                 vmemmap_pte_range(pmd, addr, next, walk);
135         } while (pmd++, addr = next, addr != end);
136
137         return 0;
138 }
139
140 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
141                              unsigned long end,
142                              struct vmemmap_remap_walk *walk)
143 {
144         pud_t *pud;
145         unsigned long next;
146
147         pud = pud_offset(p4d, addr);
148         do {
149                 int ret;
150
151                 next = pud_addr_end(addr, end);
152                 ret = vmemmap_pmd_range(pud, addr, next, walk);
153                 if (ret)
154                         return ret;
155         } while (pud++, addr = next, addr != end);
156
157         return 0;
158 }
159
160 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
161                              unsigned long end,
162                              struct vmemmap_remap_walk *walk)
163 {
164         p4d_t *p4d;
165         unsigned long next;
166
167         p4d = p4d_offset(pgd, addr);
168         do {
169                 int ret;
170
171                 next = p4d_addr_end(addr, end);
172                 ret = vmemmap_pud_range(p4d, addr, next, walk);
173                 if (ret)
174                         return ret;
175         } while (p4d++, addr = next, addr != end);
176
177         return 0;
178 }
179
180 static int vmemmap_remap_range(unsigned long start, unsigned long end,
181                                struct vmemmap_remap_walk *walk)
182 {
183         unsigned long addr = start;
184         unsigned long next;
185         pgd_t *pgd;
186
187         VM_BUG_ON(!PAGE_ALIGNED(start));
188         VM_BUG_ON(!PAGE_ALIGNED(end));
189
190         pgd = pgd_offset_k(addr);
191         do {
192                 int ret;
193
194                 next = pgd_addr_end(addr, end);
195                 ret = vmemmap_p4d_range(pgd, addr, next, walk);
196                 if (ret)
197                         return ret;
198         } while (pgd++, addr = next, addr != end);
199
200         /*
201          * We only change the mapping of the vmemmap virtual address range
202          * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
203          * belongs to the range.
204          */
205         flush_tlb_kernel_range(start + PAGE_SIZE, end);
206
207         return 0;
208 }
209
210 /*
211  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
212  * allocator or buddy allocator. If the PG_reserved flag is set, it means
213  * that it allocated from the memblock allocator, just free it via the
214  * free_bootmem_page(). Otherwise, use __free_page().
215  */
216 static inline void free_vmemmap_page(struct page *page)
217 {
218         if (PageReserved(page))
219                 free_bootmem_page(page);
220         else
221                 __free_page(page);
222 }
223
224 /* Free a list of the vmemmap pages */
225 static void free_vmemmap_page_list(struct list_head *list)
226 {
227         struct page *page, *next;
228
229         list_for_each_entry_safe(page, next, list, lru) {
230                 list_del(&page->lru);
231                 free_vmemmap_page(page);
232         }
233 }
234
235 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
236                               struct vmemmap_remap_walk *walk)
237 {
238         /*
239          * Remap the tail pages as read-only to catch illegal write operation
240          * to the tail pages.
241          */
242         pgprot_t pgprot = PAGE_KERNEL_RO;
243         pte_t entry = mk_pte(walk->reuse_page, pgprot);
244         struct page *page = pte_page(*pte);
245
246         list_add_tail(&page->lru, walk->vmemmap_pages);
247         set_pte_at(&init_mm, addr, pte, entry);
248 }
249
250 /*
251  * How many struct page structs need to be reset. When we reuse the head
252  * struct page, the special metadata (e.g. page->flags or page->mapping)
253  * cannot copy to the tail struct page structs. The invalid value will be
254  * checked in the free_tail_pages_check(). In order to avoid the message
255  * of "corrupted mapping in tail page". We need to reset at least 3 (one
256  * head struct page struct and two tail struct page structs) struct page
257  * structs.
258  */
259 #define NR_RESET_STRUCT_PAGE            3
260
261 static inline void reset_struct_pages(struct page *start)
262 {
263         struct page *from = start + NR_RESET_STRUCT_PAGE;
264
265         BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
266         memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
267 }
268
269 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
270                                 struct vmemmap_remap_walk *walk)
271 {
272         pgprot_t pgprot = PAGE_KERNEL;
273         struct page *page;
274         void *to;
275
276         BUG_ON(pte_page(*pte) != walk->reuse_page);
277
278         page = list_first_entry(walk->vmemmap_pages, struct page, lru);
279         list_del(&page->lru);
280         to = page_to_virt(page);
281         copy_page(to, (void *)walk->reuse_addr);
282         reset_struct_pages(to);
283
284         /*
285          * Makes sure that preceding stores to the page contents become visible
286          * before the set_pte_at() write.
287          */
288         smp_wmb();
289         set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
290 }
291
292 /**
293  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
294  *                      to the page which @reuse is mapped to, then free vmemmap
295  *                      which the range are mapped to.
296  * @start:      start address of the vmemmap virtual address range that we want
297  *              to remap.
298  * @end:        end address of the vmemmap virtual address range that we want to
299  *              remap.
300  * @reuse:      reuse address.
301  *
302  * Return: %0 on success, negative error code otherwise.
303  */
304 static int vmemmap_remap_free(unsigned long start, unsigned long end,
305                               unsigned long reuse)
306 {
307         int ret;
308         LIST_HEAD(vmemmap_pages);
309         struct vmemmap_remap_walk walk = {
310                 .remap_pte      = vmemmap_remap_pte,
311                 .reuse_addr     = reuse,
312                 .vmemmap_pages  = &vmemmap_pages,
313         };
314
315         /*
316          * In order to make remapping routine most efficient for the huge pages,
317          * the routine of vmemmap page table walking has the following rules
318          * (see more details from the vmemmap_pte_range()):
319          *
320          * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
321          *   should be continuous.
322          * - The @reuse address is part of the range [@reuse, @end) that we are
323          *   walking which is passed to vmemmap_remap_range().
324          * - The @reuse address is the first in the complete range.
325          *
326          * So we need to make sure that @start and @reuse meet the above rules.
327          */
328         BUG_ON(start - reuse != PAGE_SIZE);
329
330         mmap_read_lock(&init_mm);
331         ret = vmemmap_remap_range(reuse, end, &walk);
332         if (ret && walk.nr_walked) {
333                 end = reuse + walk.nr_walked * PAGE_SIZE;
334                 /*
335                  * vmemmap_pages contains pages from the previous
336                  * vmemmap_remap_range call which failed.  These
337                  * are pages which were removed from the vmemmap.
338                  * They will be restored in the following call.
339                  */
340                 walk = (struct vmemmap_remap_walk) {
341                         .remap_pte      = vmemmap_restore_pte,
342                         .reuse_addr     = reuse,
343                         .vmemmap_pages  = &vmemmap_pages,
344                 };
345
346                 vmemmap_remap_range(reuse, end, &walk);
347         }
348         mmap_read_unlock(&init_mm);
349
350         free_vmemmap_page_list(&vmemmap_pages);
351
352         return ret;
353 }
354
355 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
356                                    gfp_t gfp_mask, struct list_head *list)
357 {
358         unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
359         int nid = page_to_nid((struct page *)start);
360         struct page *page, *next;
361
362         while (nr_pages--) {
363                 page = alloc_pages_node(nid, gfp_mask, 0);
364                 if (!page)
365                         goto out;
366                 list_add_tail(&page->lru, list);
367         }
368
369         return 0;
370 out:
371         list_for_each_entry_safe(page, next, list, lru)
372                 __free_pages(page, 0);
373         return -ENOMEM;
374 }
375
376 /**
377  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
378  *                       to the page which is from the @vmemmap_pages
379  *                       respectively.
380  * @start:      start address of the vmemmap virtual address range that we want
381  *              to remap.
382  * @end:        end address of the vmemmap virtual address range that we want to
383  *              remap.
384  * @reuse:      reuse address.
385  * @gfp_mask:   GFP flag for allocating vmemmap pages.
386  *
387  * Return: %0 on success, negative error code otherwise.
388  */
389 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
390                                unsigned long reuse, gfp_t gfp_mask)
391 {
392         LIST_HEAD(vmemmap_pages);
393         struct vmemmap_remap_walk walk = {
394                 .remap_pte      = vmemmap_restore_pte,
395                 .reuse_addr     = reuse,
396                 .vmemmap_pages  = &vmemmap_pages,
397         };
398
399         /* See the comment in the vmemmap_remap_free(). */
400         BUG_ON(start - reuse != PAGE_SIZE);
401
402         if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
403                 return -ENOMEM;
404
405         mmap_read_lock(&init_mm);
406         vmemmap_remap_range(reuse, end, &walk);
407         mmap_read_unlock(&init_mm);
408
409         return 0;
410 }
411
412 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
413 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
414
415 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
416 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
417
418 /**
419  * hugetlb_vmemmap_restore - restore previously optimized (by
420  *                           hugetlb_vmemmap_optimize()) vmemmap pages which
421  *                           will be reallocated and remapped.
422  * @h:          struct hstate.
423  * @head:       the head page whose vmemmap pages will be restored.
424  *
425  * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
426  * negative error code otherwise.
427  */
428 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
429 {
430         int ret;
431         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
432         unsigned long vmemmap_reuse;
433
434         if (!HPageVmemmapOptimized(head))
435                 return 0;
436
437         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
438         vmemmap_reuse   = vmemmap_start;
439         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
440
441         /*
442          * The pages which the vmemmap virtual address range [@vmemmap_start,
443          * @vmemmap_end) are mapped to are freed to the buddy allocator, and
444          * the range is mapped to the page which @vmemmap_reuse is mapped to.
445          * When a HugeTLB page is freed to the buddy allocator, previously
446          * discarded vmemmap pages must be allocated and remapping.
447          */
448         ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse,
449                                   GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
450         if (!ret) {
451                 ClearHPageVmemmapOptimized(head);
452                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
453         }
454
455         return ret;
456 }
457
458 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
459 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
460 {
461         if (!READ_ONCE(vmemmap_optimize_enabled))
462                 return false;
463
464         if (!hugetlb_vmemmap_optimizable(h))
465                 return false;
466
467         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
468                 pmd_t *pmdp, pmd;
469                 struct page *vmemmap_page;
470                 unsigned long vaddr = (unsigned long)head;
471
472                 /*
473                  * Only the vmemmap page's vmemmap page can be self-hosted.
474                  * Walking the page tables to find the backing page of the
475                  * vmemmap page.
476                  */
477                 pmdp = pmd_off_k(vaddr);
478                 /*
479                  * The READ_ONCE() is used to stabilize *pmdp in a register or
480                  * on the stack so that it will stop changing under the code.
481                  * The only concurrent operation where it can be changed is
482                  * split_vmemmap_huge_pmd() (*pmdp will be stable after this
483                  * operation).
484                  */
485                 pmd = READ_ONCE(*pmdp);
486                 if (pmd_leaf(pmd))
487                         vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
488                 else
489                         vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
490                 /*
491                  * Due to HugeTLB alignment requirements and the vmemmap pages
492                  * being at the start of the hotplugged memory region in
493                  * memory_hotplug.memmap_on_memory case. Checking any vmemmap
494                  * page's vmemmap page if it is marked as VmemmapSelfHosted is
495                  * sufficient.
496                  *
497                  * [                  hotplugged memory                  ]
498                  * [        section        ][...][        section        ]
499                  * [ vmemmap ][              usable memory               ]
500                  *   ^   |     |                                        |
501                  *   +---+     |                                        |
502                  *     ^       |                                        |
503                  *     +-------+                                        |
504                  *          ^                                           |
505                  *          +-------------------------------------------+
506                  */
507                 if (PageVmemmapSelfHosted(vmemmap_page))
508                         return false;
509         }
510
511         return true;
512 }
513
514 /**
515  * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
516  * @h:          struct hstate.
517  * @head:       the head page whose vmemmap pages will be optimized.
518  *
519  * This function only tries to optimize @head's vmemmap pages and does not
520  * guarantee that the optimization will succeed after it returns. The caller
521  * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
522  * have been optimized.
523  */
524 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
525 {
526         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
527         unsigned long vmemmap_reuse;
528
529         if (!vmemmap_should_optimize(h, head))
530                 return;
531
532         static_branch_inc(&hugetlb_optimize_vmemmap_key);
533
534         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
535         vmemmap_reuse   = vmemmap_start;
536         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
537
538         /*
539          * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
540          * to the page which @vmemmap_reuse is mapped to, then free the pages
541          * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
542          */
543         if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
544                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
545         else
546                 SetHPageVmemmapOptimized(head);
547 }
548
549 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
550         {
551                 .procname       = "hugetlb_optimize_vmemmap",
552                 .data           = &vmemmap_optimize_enabled,
553                 .maxlen         = sizeof(int),
554                 .mode           = 0644,
555                 .proc_handler   = proc_dobool,
556         },
557         { }
558 };
559
560 static int __init hugetlb_vmemmap_init(void)
561 {
562         /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
563         BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
564
565         if (IS_ENABLED(CONFIG_PROC_SYSCTL)) {
566                 const struct hstate *h;
567
568                 for_each_hstate(h) {
569                         if (hugetlb_vmemmap_optimizable(h)) {
570                                 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
571                                 break;
572                         }
573                 }
574         }
575         return 0;
576 }
577 late_initcall(hugetlb_vmemmap_init);