1 // SPDX-License-Identifier: GPL-2.0
3 * HugeTLB Vmemmap Optimization (HVO)
5 * Copyright (c) 2020, ByteDance. All rights reserved.
7 * Author: Muchun Song <songmuchun@bytedance.com>
9 * See Documentation/mm/vmemmap_dedup.rst
11 #define pr_fmt(fmt) "HugeTLB: " fmt
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlbflush.h>
18 #include "hugetlb_vmemmap.h"
21 * struct vmemmap_remap_walk - walk vmemmap page table
23 * @remap_pte: called for each lowest-level entry (PTE).
24 * @nr_walked: the number of walked pte.
25 * @reuse_page: the page which is reused for the tail vmemmap pages.
26 * @reuse_addr: the virtual address of the @reuse_page page.
27 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
30 struct vmemmap_remap_walk {
31 void (*remap_pte)(pte_t *pte, unsigned long addr,
32 struct vmemmap_remap_walk *walk);
33 unsigned long nr_walked;
34 struct page *reuse_page;
35 unsigned long reuse_addr;
36 struct list_head *vmemmap_pages;
39 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
43 unsigned long addr = start;
47 spin_lock(&init_mm.page_table_lock);
48 head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
49 spin_unlock(&init_mm.page_table_lock);
54 pgtable = pte_alloc_one_kernel(&init_mm);
58 pmd_populate_kernel(&init_mm, &__pmd, pgtable);
60 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
62 pgprot_t pgprot = PAGE_KERNEL;
64 entry = mk_pte(head + i, pgprot);
65 pte = pte_offset_kernel(&__pmd, addr);
66 set_pte_at(&init_mm, addr, pte, entry);
69 spin_lock(&init_mm.page_table_lock);
70 if (likely(pmd_leaf(*pmd))) {
72 * Higher order allocations from buddy allocator must be able to
73 * be treated as indepdenent small pages (as they can be freed
76 if (!PageReserved(head))
77 split_page(head, get_order(PMD_SIZE));
79 /* Make pte visible before pmd. See comment in pmd_install(). */
81 pmd_populate_kernel(&init_mm, pmd, pgtable);
82 flush_tlb_kernel_range(start, start + PMD_SIZE);
84 pte_free_kernel(&init_mm, pgtable);
86 spin_unlock(&init_mm.page_table_lock);
91 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
93 struct vmemmap_remap_walk *walk)
95 pte_t *pte = pte_offset_kernel(pmd, addr);
98 * The reuse_page is found 'first' in table walk before we start
99 * remapping (which is calling @walk->remap_pte).
101 if (!walk->reuse_page) {
102 walk->reuse_page = pte_page(ptep_get(pte));
104 * Because the reuse address is part of the range that we are
105 * walking, skip the reuse address range.
112 for (; addr != end; addr += PAGE_SIZE, pte++) {
113 walk->remap_pte(pte, addr, walk);
118 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
120 struct vmemmap_remap_walk *walk)
125 pmd = pmd_offset(pud, addr);
129 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
133 next = pmd_addr_end(addr, end);
134 vmemmap_pte_range(pmd, addr, next, walk);
135 } while (pmd++, addr = next, addr != end);
140 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
142 struct vmemmap_remap_walk *walk)
147 pud = pud_offset(p4d, addr);
151 next = pud_addr_end(addr, end);
152 ret = vmemmap_pmd_range(pud, addr, next, walk);
155 } while (pud++, addr = next, addr != end);
160 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
162 struct vmemmap_remap_walk *walk)
167 p4d = p4d_offset(pgd, addr);
171 next = p4d_addr_end(addr, end);
172 ret = vmemmap_pud_range(p4d, addr, next, walk);
175 } while (p4d++, addr = next, addr != end);
180 static int vmemmap_remap_range(unsigned long start, unsigned long end,
181 struct vmemmap_remap_walk *walk)
183 unsigned long addr = start;
187 VM_BUG_ON(!PAGE_ALIGNED(start));
188 VM_BUG_ON(!PAGE_ALIGNED(end));
190 pgd = pgd_offset_k(addr);
194 next = pgd_addr_end(addr, end);
195 ret = vmemmap_p4d_range(pgd, addr, next, walk);
198 } while (pgd++, addr = next, addr != end);
200 flush_tlb_kernel_range(start, end);
206 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
207 * allocator or buddy allocator. If the PG_reserved flag is set, it means
208 * that it allocated from the memblock allocator, just free it via the
209 * free_bootmem_page(). Otherwise, use __free_page().
211 static inline void free_vmemmap_page(struct page *page)
213 if (PageReserved(page))
214 free_bootmem_page(page);
219 /* Free a list of the vmemmap pages */
220 static void free_vmemmap_page_list(struct list_head *list)
222 struct page *page, *next;
224 list_for_each_entry_safe(page, next, list, lru)
225 free_vmemmap_page(page);
228 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
229 struct vmemmap_remap_walk *walk)
232 * Remap the tail pages as read-only to catch illegal write operation
235 pgprot_t pgprot = PAGE_KERNEL_RO;
236 struct page *page = pte_page(ptep_get(pte));
239 /* Remapping the head page requires r/w */
240 if (unlikely(addr == walk->reuse_addr)) {
241 pgprot = PAGE_KERNEL;
242 list_del(&walk->reuse_page->lru);
245 * Makes sure that preceding stores to the page contents from
246 * vmemmap_remap_free() become visible before the set_pte_at()
252 entry = mk_pte(walk->reuse_page, pgprot);
253 list_add_tail(&page->lru, walk->vmemmap_pages);
254 set_pte_at(&init_mm, addr, pte, entry);
258 * How many struct page structs need to be reset. When we reuse the head
259 * struct page, the special metadata (e.g. page->flags or page->mapping)
260 * cannot copy to the tail struct page structs. The invalid value will be
261 * checked in the free_tail_page_prepare(). In order to avoid the message
262 * of "corrupted mapping in tail page". We need to reset at least 3 (one
263 * head struct page struct and two tail struct page structs) struct page
266 #define NR_RESET_STRUCT_PAGE 3
268 static inline void reset_struct_pages(struct page *start)
270 struct page *from = start + NR_RESET_STRUCT_PAGE;
272 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
273 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
276 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
277 struct vmemmap_remap_walk *walk)
279 pgprot_t pgprot = PAGE_KERNEL;
283 BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
285 page = list_first_entry(walk->vmemmap_pages, struct page, lru);
286 list_del(&page->lru);
287 to = page_to_virt(page);
288 copy_page(to, (void *)walk->reuse_addr);
289 reset_struct_pages(to);
292 * Makes sure that preceding stores to the page contents become visible
293 * before the set_pte_at() write.
296 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
300 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
301 * to the page which @reuse is mapped to, then free vmemmap
302 * which the range are mapped to.
303 * @start: start address of the vmemmap virtual address range that we want
305 * @end: end address of the vmemmap virtual address range that we want to
307 * @reuse: reuse address.
309 * Return: %0 on success, negative error code otherwise.
311 static int vmemmap_remap_free(unsigned long start, unsigned long end,
315 LIST_HEAD(vmemmap_pages);
316 struct vmemmap_remap_walk walk = {
317 .remap_pte = vmemmap_remap_pte,
319 .vmemmap_pages = &vmemmap_pages,
321 int nid = page_to_nid((struct page *)start);
322 gfp_t gfp_mask = GFP_KERNEL | __GFP_THISNODE | __GFP_NORETRY |
326 * Allocate a new head vmemmap page to avoid breaking a contiguous
327 * block of struct page memory when freeing it back to page allocator
328 * in free_vmemmap_page_list(). This will allow the likely contiguous
329 * struct page backing memory to be kept contiguous and allowing for
330 * more allocations of hugepages. Fallback to the currently
331 * mapped head page in case should it fail to allocate.
333 walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
334 if (walk.reuse_page) {
335 copy_page(page_to_virt(walk.reuse_page),
336 (void *)walk.reuse_addr);
337 list_add(&walk.reuse_page->lru, &vmemmap_pages);
341 * In order to make remapping routine most efficient for the huge pages,
342 * the routine of vmemmap page table walking has the following rules
343 * (see more details from the vmemmap_pte_range()):
345 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
346 * should be continuous.
347 * - The @reuse address is part of the range [@reuse, @end) that we are
348 * walking which is passed to vmemmap_remap_range().
349 * - The @reuse address is the first in the complete range.
351 * So we need to make sure that @start and @reuse meet the above rules.
353 BUG_ON(start - reuse != PAGE_SIZE);
355 mmap_read_lock(&init_mm);
356 ret = vmemmap_remap_range(reuse, end, &walk);
357 if (ret && walk.nr_walked) {
358 end = reuse + walk.nr_walked * PAGE_SIZE;
360 * vmemmap_pages contains pages from the previous
361 * vmemmap_remap_range call which failed. These
362 * are pages which were removed from the vmemmap.
363 * They will be restored in the following call.
365 walk = (struct vmemmap_remap_walk) {
366 .remap_pte = vmemmap_restore_pte,
368 .vmemmap_pages = &vmemmap_pages,
371 vmemmap_remap_range(reuse, end, &walk);
373 mmap_read_unlock(&init_mm);
375 free_vmemmap_page_list(&vmemmap_pages);
380 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
381 struct list_head *list)
383 gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_THISNODE;
384 unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
385 int nid = page_to_nid((struct page *)start);
386 struct page *page, *next;
389 page = alloc_pages_node(nid, gfp_mask, 0);
392 list_add_tail(&page->lru, list);
397 list_for_each_entry_safe(page, next, list, lru)
403 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
404 * to the page which is from the @vmemmap_pages
406 * @start: start address of the vmemmap virtual address range that we want
408 * @end: end address of the vmemmap virtual address range that we want to
410 * @reuse: reuse address.
412 * Return: %0 on success, negative error code otherwise.
414 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
417 LIST_HEAD(vmemmap_pages);
418 struct vmemmap_remap_walk walk = {
419 .remap_pte = vmemmap_restore_pte,
421 .vmemmap_pages = &vmemmap_pages,
424 /* See the comment in the vmemmap_remap_free(). */
425 BUG_ON(start - reuse != PAGE_SIZE);
427 if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
430 mmap_read_lock(&init_mm);
431 vmemmap_remap_range(reuse, end, &walk);
432 mmap_read_unlock(&init_mm);
437 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
438 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
440 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
441 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
444 * hugetlb_vmemmap_restore - restore previously optimized (by
445 * hugetlb_vmemmap_optimize()) vmemmap pages which
446 * will be reallocated and remapped.
448 * @head: the head page whose vmemmap pages will be restored.
450 * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
451 * negative error code otherwise.
453 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
456 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
457 unsigned long vmemmap_reuse;
459 if (!HPageVmemmapOptimized(head))
462 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
463 vmemmap_reuse = vmemmap_start;
464 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
467 * The pages which the vmemmap virtual address range [@vmemmap_start,
468 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
469 * the range is mapped to the page which @vmemmap_reuse is mapped to.
470 * When a HugeTLB page is freed to the buddy allocator, previously
471 * discarded vmemmap pages must be allocated and remapping.
473 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse);
475 ClearHPageVmemmapOptimized(head);
476 static_branch_dec(&hugetlb_optimize_vmemmap_key);
482 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
483 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
485 if (!READ_ONCE(vmemmap_optimize_enabled))
488 if (!hugetlb_vmemmap_optimizable(h))
491 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
493 struct page *vmemmap_page;
494 unsigned long vaddr = (unsigned long)head;
497 * Only the vmemmap page's vmemmap page can be self-hosted.
498 * Walking the page tables to find the backing page of the
501 pmdp = pmd_off_k(vaddr);
503 * The READ_ONCE() is used to stabilize *pmdp in a register or
504 * on the stack so that it will stop changing under the code.
505 * The only concurrent operation where it can be changed is
506 * split_vmemmap_huge_pmd() (*pmdp will be stable after this
509 pmd = READ_ONCE(*pmdp);
511 vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
513 vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
515 * Due to HugeTLB alignment requirements and the vmemmap pages
516 * being at the start of the hotplugged memory region in
517 * memory_hotplug.memmap_on_memory case. Checking any vmemmap
518 * page's vmemmap page if it is marked as VmemmapSelfHosted is
521 * [ hotplugged memory ]
522 * [ section ][...][ section ]
523 * [ vmemmap ][ usable memory ]
529 * +-------------------------------------------+
531 if (PageVmemmapSelfHosted(vmemmap_page))
539 * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
541 * @head: the head page whose vmemmap pages will be optimized.
543 * This function only tries to optimize @head's vmemmap pages and does not
544 * guarantee that the optimization will succeed after it returns. The caller
545 * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
546 * have been optimized.
548 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
550 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
551 unsigned long vmemmap_reuse;
553 if (!vmemmap_should_optimize(h, head))
556 static_branch_inc(&hugetlb_optimize_vmemmap_key);
558 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
559 vmemmap_reuse = vmemmap_start;
560 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
563 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
564 * to the page which @vmemmap_reuse is mapped to, then free the pages
565 * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
567 if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
568 static_branch_dec(&hugetlb_optimize_vmemmap_key);
570 SetHPageVmemmapOptimized(head);
573 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
575 .procname = "hugetlb_optimize_vmemmap",
576 .data = &vmemmap_optimize_enabled,
577 .maxlen = sizeof(vmemmap_optimize_enabled),
579 .proc_handler = proc_dobool,
584 static int __init hugetlb_vmemmap_init(void)
586 const struct hstate *h;
588 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
589 BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
592 if (hugetlb_vmemmap_optimizable(h)) {
593 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
599 late_initcall(hugetlb_vmemmap_init);