clk: stm32: Fix a signedness issue in clk_stm32_composite_determine_rate()
[platform/kernel/linux-starfive.git] / mm / hugetlb_vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)     "HugeTLB: " fmt
12
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlbflush.h>
18 #include "hugetlb_vmemmap.h"
19
20 /**
21  * struct vmemmap_remap_walk - walk vmemmap page table
22  *
23  * @remap_pte:          called for each lowest-level entry (PTE).
24  * @nr_walked:          the number of walked pte.
25  * @reuse_page:         the page which is reused for the tail vmemmap pages.
26  * @reuse_addr:         the virtual address of the @reuse_page page.
27  * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
28  *                      or is mapped from.
29  */
30 struct vmemmap_remap_walk {
31         void                    (*remap_pte)(pte_t *pte, unsigned long addr,
32                                              struct vmemmap_remap_walk *walk);
33         unsigned long           nr_walked;
34         struct page             *reuse_page;
35         unsigned long           reuse_addr;
36         struct list_head        *vmemmap_pages;
37 };
38
39 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
40 {
41         pmd_t __pmd;
42         int i;
43         unsigned long addr = start;
44         struct page *head;
45         pte_t *pgtable;
46
47         spin_lock(&init_mm.page_table_lock);
48         head = pmd_leaf(*pmd) ? pmd_page(*pmd) : NULL;
49         spin_unlock(&init_mm.page_table_lock);
50
51         if (!head)
52                 return 0;
53
54         pgtable = pte_alloc_one_kernel(&init_mm);
55         if (!pgtable)
56                 return -ENOMEM;
57
58         pmd_populate_kernel(&init_mm, &__pmd, pgtable);
59
60         for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
61                 pte_t entry, *pte;
62                 pgprot_t pgprot = PAGE_KERNEL;
63
64                 entry = mk_pte(head + i, pgprot);
65                 pte = pte_offset_kernel(&__pmd, addr);
66                 set_pte_at(&init_mm, addr, pte, entry);
67         }
68
69         spin_lock(&init_mm.page_table_lock);
70         if (likely(pmd_leaf(*pmd))) {
71                 /*
72                  * Higher order allocations from buddy allocator must be able to
73                  * be treated as indepdenent small pages (as they can be freed
74                  * individually).
75                  */
76                 if (!PageReserved(head))
77                         split_page(head, get_order(PMD_SIZE));
78
79                 /* Make pte visible before pmd. See comment in pmd_install(). */
80                 smp_wmb();
81                 pmd_populate_kernel(&init_mm, pmd, pgtable);
82                 flush_tlb_kernel_range(start, start + PMD_SIZE);
83         } else {
84                 pte_free_kernel(&init_mm, pgtable);
85         }
86         spin_unlock(&init_mm.page_table_lock);
87
88         return 0;
89 }
90
91 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
92                               unsigned long end,
93                               struct vmemmap_remap_walk *walk)
94 {
95         pte_t *pte = pte_offset_kernel(pmd, addr);
96
97         /*
98          * The reuse_page is found 'first' in table walk before we start
99          * remapping (which is calling @walk->remap_pte).
100          */
101         if (!walk->reuse_page) {
102                 walk->reuse_page = pte_page(ptep_get(pte));
103                 /*
104                  * Because the reuse address is part of the range that we are
105                  * walking, skip the reuse address range.
106                  */
107                 addr += PAGE_SIZE;
108                 pte++;
109                 walk->nr_walked++;
110         }
111
112         for (; addr != end; addr += PAGE_SIZE, pte++) {
113                 walk->remap_pte(pte, addr, walk);
114                 walk->nr_walked++;
115         }
116 }
117
118 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
119                              unsigned long end,
120                              struct vmemmap_remap_walk *walk)
121 {
122         pmd_t *pmd;
123         unsigned long next;
124
125         pmd = pmd_offset(pud, addr);
126         do {
127                 int ret;
128
129                 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
130                 if (ret)
131                         return ret;
132
133                 next = pmd_addr_end(addr, end);
134                 vmemmap_pte_range(pmd, addr, next, walk);
135         } while (pmd++, addr = next, addr != end);
136
137         return 0;
138 }
139
140 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
141                              unsigned long end,
142                              struct vmemmap_remap_walk *walk)
143 {
144         pud_t *pud;
145         unsigned long next;
146
147         pud = pud_offset(p4d, addr);
148         do {
149                 int ret;
150
151                 next = pud_addr_end(addr, end);
152                 ret = vmemmap_pmd_range(pud, addr, next, walk);
153                 if (ret)
154                         return ret;
155         } while (pud++, addr = next, addr != end);
156
157         return 0;
158 }
159
160 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
161                              unsigned long end,
162                              struct vmemmap_remap_walk *walk)
163 {
164         p4d_t *p4d;
165         unsigned long next;
166
167         p4d = p4d_offset(pgd, addr);
168         do {
169                 int ret;
170
171                 next = p4d_addr_end(addr, end);
172                 ret = vmemmap_pud_range(p4d, addr, next, walk);
173                 if (ret)
174                         return ret;
175         } while (p4d++, addr = next, addr != end);
176
177         return 0;
178 }
179
180 static int vmemmap_remap_range(unsigned long start, unsigned long end,
181                                struct vmemmap_remap_walk *walk)
182 {
183         unsigned long addr = start;
184         unsigned long next;
185         pgd_t *pgd;
186
187         VM_BUG_ON(!PAGE_ALIGNED(start));
188         VM_BUG_ON(!PAGE_ALIGNED(end));
189
190         pgd = pgd_offset_k(addr);
191         do {
192                 int ret;
193
194                 next = pgd_addr_end(addr, end);
195                 ret = vmemmap_p4d_range(pgd, addr, next, walk);
196                 if (ret)
197                         return ret;
198         } while (pgd++, addr = next, addr != end);
199
200         flush_tlb_kernel_range(start, end);
201
202         return 0;
203 }
204
205 /*
206  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
207  * allocator or buddy allocator. If the PG_reserved flag is set, it means
208  * that it allocated from the memblock allocator, just free it via the
209  * free_bootmem_page(). Otherwise, use __free_page().
210  */
211 static inline void free_vmemmap_page(struct page *page)
212 {
213         if (PageReserved(page))
214                 free_bootmem_page(page);
215         else
216                 __free_page(page);
217 }
218
219 /* Free a list of the vmemmap pages */
220 static void free_vmemmap_page_list(struct list_head *list)
221 {
222         struct page *page, *next;
223
224         list_for_each_entry_safe(page, next, list, lru)
225                 free_vmemmap_page(page);
226 }
227
228 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
229                               struct vmemmap_remap_walk *walk)
230 {
231         /*
232          * Remap the tail pages as read-only to catch illegal write operation
233          * to the tail pages.
234          */
235         pgprot_t pgprot = PAGE_KERNEL_RO;
236         struct page *page = pte_page(ptep_get(pte));
237         pte_t entry;
238
239         /* Remapping the head page requires r/w */
240         if (unlikely(addr == walk->reuse_addr)) {
241                 pgprot = PAGE_KERNEL;
242                 list_del(&walk->reuse_page->lru);
243
244                 /*
245                  * Makes sure that preceding stores to the page contents from
246                  * vmemmap_remap_free() become visible before the set_pte_at()
247                  * write.
248                  */
249                 smp_wmb();
250         }
251
252         entry = mk_pte(walk->reuse_page, pgprot);
253         list_add_tail(&page->lru, walk->vmemmap_pages);
254         set_pte_at(&init_mm, addr, pte, entry);
255 }
256
257 /*
258  * How many struct page structs need to be reset. When we reuse the head
259  * struct page, the special metadata (e.g. page->flags or page->mapping)
260  * cannot copy to the tail struct page structs. The invalid value will be
261  * checked in the free_tail_page_prepare(). In order to avoid the message
262  * of "corrupted mapping in tail page". We need to reset at least 3 (one
263  * head struct page struct and two tail struct page structs) struct page
264  * structs.
265  */
266 #define NR_RESET_STRUCT_PAGE            3
267
268 static inline void reset_struct_pages(struct page *start)
269 {
270         struct page *from = start + NR_RESET_STRUCT_PAGE;
271
272         BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
273         memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
274 }
275
276 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
277                                 struct vmemmap_remap_walk *walk)
278 {
279         pgprot_t pgprot = PAGE_KERNEL;
280         struct page *page;
281         void *to;
282
283         BUG_ON(pte_page(ptep_get(pte)) != walk->reuse_page);
284
285         page = list_first_entry(walk->vmemmap_pages, struct page, lru);
286         list_del(&page->lru);
287         to = page_to_virt(page);
288         copy_page(to, (void *)walk->reuse_addr);
289         reset_struct_pages(to);
290
291         /*
292          * Makes sure that preceding stores to the page contents become visible
293          * before the set_pte_at() write.
294          */
295         smp_wmb();
296         set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
297 }
298
299 /**
300  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
301  *                      to the page which @reuse is mapped to, then free vmemmap
302  *                      which the range are mapped to.
303  * @start:      start address of the vmemmap virtual address range that we want
304  *              to remap.
305  * @end:        end address of the vmemmap virtual address range that we want to
306  *              remap.
307  * @reuse:      reuse address.
308  *
309  * Return: %0 on success, negative error code otherwise.
310  */
311 static int vmemmap_remap_free(unsigned long start, unsigned long end,
312                               unsigned long reuse)
313 {
314         int ret;
315         LIST_HEAD(vmemmap_pages);
316         struct vmemmap_remap_walk walk = {
317                 .remap_pte      = vmemmap_remap_pte,
318                 .reuse_addr     = reuse,
319                 .vmemmap_pages  = &vmemmap_pages,
320         };
321         int nid = page_to_nid((struct page *)start);
322         gfp_t gfp_mask = GFP_KERNEL | __GFP_THISNODE | __GFP_NORETRY |
323                         __GFP_NOWARN;
324
325         /*
326          * Allocate a new head vmemmap page to avoid breaking a contiguous
327          * block of struct page memory when freeing it back to page allocator
328          * in free_vmemmap_page_list(). This will allow the likely contiguous
329          * struct page backing memory to be kept contiguous and allowing for
330          * more allocations of hugepages. Fallback to the currently
331          * mapped head page in case should it fail to allocate.
332          */
333         walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
334         if (walk.reuse_page) {
335                 copy_page(page_to_virt(walk.reuse_page),
336                           (void *)walk.reuse_addr);
337                 list_add(&walk.reuse_page->lru, &vmemmap_pages);
338         }
339
340         /*
341          * In order to make remapping routine most efficient for the huge pages,
342          * the routine of vmemmap page table walking has the following rules
343          * (see more details from the vmemmap_pte_range()):
344          *
345          * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
346          *   should be continuous.
347          * - The @reuse address is part of the range [@reuse, @end) that we are
348          *   walking which is passed to vmemmap_remap_range().
349          * - The @reuse address is the first in the complete range.
350          *
351          * So we need to make sure that @start and @reuse meet the above rules.
352          */
353         BUG_ON(start - reuse != PAGE_SIZE);
354
355         mmap_read_lock(&init_mm);
356         ret = vmemmap_remap_range(reuse, end, &walk);
357         if (ret && walk.nr_walked) {
358                 end = reuse + walk.nr_walked * PAGE_SIZE;
359                 /*
360                  * vmemmap_pages contains pages from the previous
361                  * vmemmap_remap_range call which failed.  These
362                  * are pages which were removed from the vmemmap.
363                  * They will be restored in the following call.
364                  */
365                 walk = (struct vmemmap_remap_walk) {
366                         .remap_pte      = vmemmap_restore_pte,
367                         .reuse_addr     = reuse,
368                         .vmemmap_pages  = &vmemmap_pages,
369                 };
370
371                 vmemmap_remap_range(reuse, end, &walk);
372         }
373         mmap_read_unlock(&init_mm);
374
375         free_vmemmap_page_list(&vmemmap_pages);
376
377         return ret;
378 }
379
380 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
381                                    struct list_head *list)
382 {
383         gfp_t gfp_mask = GFP_KERNEL | __GFP_RETRY_MAYFAIL | __GFP_THISNODE;
384         unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
385         int nid = page_to_nid((struct page *)start);
386         struct page *page, *next;
387
388         while (nr_pages--) {
389                 page = alloc_pages_node(nid, gfp_mask, 0);
390                 if (!page)
391                         goto out;
392                 list_add_tail(&page->lru, list);
393         }
394
395         return 0;
396 out:
397         list_for_each_entry_safe(page, next, list, lru)
398                 __free_page(page);
399         return -ENOMEM;
400 }
401
402 /**
403  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
404  *                       to the page which is from the @vmemmap_pages
405  *                       respectively.
406  * @start:      start address of the vmemmap virtual address range that we want
407  *              to remap.
408  * @end:        end address of the vmemmap virtual address range that we want to
409  *              remap.
410  * @reuse:      reuse address.
411  *
412  * Return: %0 on success, negative error code otherwise.
413  */
414 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
415                                unsigned long reuse)
416 {
417         LIST_HEAD(vmemmap_pages);
418         struct vmemmap_remap_walk walk = {
419                 .remap_pte      = vmemmap_restore_pte,
420                 .reuse_addr     = reuse,
421                 .vmemmap_pages  = &vmemmap_pages,
422         };
423
424         /* See the comment in the vmemmap_remap_free(). */
425         BUG_ON(start - reuse != PAGE_SIZE);
426
427         if (alloc_vmemmap_page_list(start, end, &vmemmap_pages))
428                 return -ENOMEM;
429
430         mmap_read_lock(&init_mm);
431         vmemmap_remap_range(reuse, end, &walk);
432         mmap_read_unlock(&init_mm);
433
434         return 0;
435 }
436
437 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
438 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
439
440 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
441 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
442
443 /**
444  * hugetlb_vmemmap_restore - restore previously optimized (by
445  *                           hugetlb_vmemmap_optimize()) vmemmap pages which
446  *                           will be reallocated and remapped.
447  * @h:          struct hstate.
448  * @head:       the head page whose vmemmap pages will be restored.
449  *
450  * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
451  * negative error code otherwise.
452  */
453 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
454 {
455         int ret;
456         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
457         unsigned long vmemmap_reuse;
458
459         if (!HPageVmemmapOptimized(head))
460                 return 0;
461
462         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
463         vmemmap_reuse   = vmemmap_start;
464         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
465
466         /*
467          * The pages which the vmemmap virtual address range [@vmemmap_start,
468          * @vmemmap_end) are mapped to are freed to the buddy allocator, and
469          * the range is mapped to the page which @vmemmap_reuse is mapped to.
470          * When a HugeTLB page is freed to the buddy allocator, previously
471          * discarded vmemmap pages must be allocated and remapping.
472          */
473         ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse);
474         if (!ret) {
475                 ClearHPageVmemmapOptimized(head);
476                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
477         }
478
479         return ret;
480 }
481
482 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
483 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
484 {
485         if (!READ_ONCE(vmemmap_optimize_enabled))
486                 return false;
487
488         if (!hugetlb_vmemmap_optimizable(h))
489                 return false;
490
491         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
492                 pmd_t *pmdp, pmd;
493                 struct page *vmemmap_page;
494                 unsigned long vaddr = (unsigned long)head;
495
496                 /*
497                  * Only the vmemmap page's vmemmap page can be self-hosted.
498                  * Walking the page tables to find the backing page of the
499                  * vmemmap page.
500                  */
501                 pmdp = pmd_off_k(vaddr);
502                 /*
503                  * The READ_ONCE() is used to stabilize *pmdp in a register or
504                  * on the stack so that it will stop changing under the code.
505                  * The only concurrent operation where it can be changed is
506                  * split_vmemmap_huge_pmd() (*pmdp will be stable after this
507                  * operation).
508                  */
509                 pmd = READ_ONCE(*pmdp);
510                 if (pmd_leaf(pmd))
511                         vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
512                 else
513                         vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
514                 /*
515                  * Due to HugeTLB alignment requirements and the vmemmap pages
516                  * being at the start of the hotplugged memory region in
517                  * memory_hotplug.memmap_on_memory case. Checking any vmemmap
518                  * page's vmemmap page if it is marked as VmemmapSelfHosted is
519                  * sufficient.
520                  *
521                  * [                  hotplugged memory                  ]
522                  * [        section        ][...][        section        ]
523                  * [ vmemmap ][              usable memory               ]
524                  *   ^   |     |                                        |
525                  *   +---+     |                                        |
526                  *     ^       |                                        |
527                  *     +-------+                                        |
528                  *          ^                                           |
529                  *          +-------------------------------------------+
530                  */
531                 if (PageVmemmapSelfHosted(vmemmap_page))
532                         return false;
533         }
534
535         return true;
536 }
537
538 /**
539  * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
540  * @h:          struct hstate.
541  * @head:       the head page whose vmemmap pages will be optimized.
542  *
543  * This function only tries to optimize @head's vmemmap pages and does not
544  * guarantee that the optimization will succeed after it returns. The caller
545  * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
546  * have been optimized.
547  */
548 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
549 {
550         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
551         unsigned long vmemmap_reuse;
552
553         if (!vmemmap_should_optimize(h, head))
554                 return;
555
556         static_branch_inc(&hugetlb_optimize_vmemmap_key);
557
558         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
559         vmemmap_reuse   = vmemmap_start;
560         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
561
562         /*
563          * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
564          * to the page which @vmemmap_reuse is mapped to, then free the pages
565          * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
566          */
567         if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
568                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
569         else
570                 SetHPageVmemmapOptimized(head);
571 }
572
573 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
574         {
575                 .procname       = "hugetlb_optimize_vmemmap",
576                 .data           = &vmemmap_optimize_enabled,
577                 .maxlen         = sizeof(vmemmap_optimize_enabled),
578                 .mode           = 0644,
579                 .proc_handler   = proc_dobool,
580         },
581         { }
582 };
583
584 static int __init hugetlb_vmemmap_init(void)
585 {
586         const struct hstate *h;
587
588         /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
589         BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
590
591         for_each_hstate(h) {
592                 if (hugetlb_vmemmap_optimizable(h)) {
593                         register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
594                         break;
595                 }
596         }
597         return 0;
598 }
599 late_initcall(hugetlb_vmemmap_init);