WIP: update tizen_qemu_defconfig
[platform/kernel/linux-starfive.git] / mm / hugetlb_vmemmap.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * HugeTLB Vmemmap Optimization (HVO)
4  *
5  * Copyright (c) 2020, ByteDance. All rights reserved.
6  *
7  *     Author: Muchun Song <songmuchun@bytedance.com>
8  *
9  * See Documentation/mm/vmemmap_dedup.rst
10  */
11 #define pr_fmt(fmt)     "HugeTLB: " fmt
12
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlbflush.h>
18 #include "hugetlb_vmemmap.h"
19
20 /**
21  * struct vmemmap_remap_walk - walk vmemmap page table
22  *
23  * @remap_pte:          called for each lowest-level entry (PTE).
24  * @nr_walked:          the number of walked pte.
25  * @reuse_page:         the page which is reused for the tail vmemmap pages.
26  * @reuse_addr:         the virtual address of the @reuse_page page.
27  * @vmemmap_pages:      the list head of the vmemmap pages that can be freed
28  *                      or is mapped from.
29  */
30 struct vmemmap_remap_walk {
31         void                    (*remap_pte)(pte_t *pte, unsigned long addr,
32                                              struct vmemmap_remap_walk *walk);
33         unsigned long           nr_walked;
34         struct page             *reuse_page;
35         unsigned long           reuse_addr;
36         struct list_head        *vmemmap_pages;
37 };
38
39 static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
40 {
41         pmd_t __pmd;
42         int i;
43         unsigned long addr = start;
44         struct page *page = pmd_page(*pmd);
45         pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
46
47         if (!pgtable)
48                 return -ENOMEM;
49
50         pmd_populate_kernel(&init_mm, &__pmd, pgtable);
51
52         for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
53                 pte_t entry, *pte;
54                 pgprot_t pgprot = PAGE_KERNEL;
55
56                 entry = mk_pte(page + i, pgprot);
57                 pte = pte_offset_kernel(&__pmd, addr);
58                 set_pte_at(&init_mm, addr, pte, entry);
59         }
60
61         spin_lock(&init_mm.page_table_lock);
62         if (likely(pmd_leaf(*pmd))) {
63                 /*
64                  * Higher order allocations from buddy allocator must be able to
65                  * be treated as indepdenent small pages (as they can be freed
66                  * individually).
67                  */
68                 if (!PageReserved(page))
69                         split_page(page, get_order(PMD_SIZE));
70
71                 /* Make pte visible before pmd. See comment in pmd_install(). */
72                 smp_wmb();
73                 pmd_populate_kernel(&init_mm, pmd, pgtable);
74                 flush_tlb_kernel_range(start, start + PMD_SIZE);
75         } else {
76                 pte_free_kernel(&init_mm, pgtable);
77         }
78         spin_unlock(&init_mm.page_table_lock);
79
80         return 0;
81 }
82
83 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
84 {
85         int leaf;
86
87         spin_lock(&init_mm.page_table_lock);
88         leaf = pmd_leaf(*pmd);
89         spin_unlock(&init_mm.page_table_lock);
90
91         if (!leaf)
92                 return 0;
93
94         return __split_vmemmap_huge_pmd(pmd, start);
95 }
96
97 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
98                               unsigned long end,
99                               struct vmemmap_remap_walk *walk)
100 {
101         pte_t *pte = pte_offset_kernel(pmd, addr);
102
103         /*
104          * The reuse_page is found 'first' in table walk before we start
105          * remapping (which is calling @walk->remap_pte).
106          */
107         if (!walk->reuse_page) {
108                 walk->reuse_page = pte_page(*pte);
109                 /*
110                  * Because the reuse address is part of the range that we are
111                  * walking, skip the reuse address range.
112                  */
113                 addr += PAGE_SIZE;
114                 pte++;
115                 walk->nr_walked++;
116         }
117
118         for (; addr != end; addr += PAGE_SIZE, pte++) {
119                 walk->remap_pte(pte, addr, walk);
120                 walk->nr_walked++;
121         }
122 }
123
124 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
125                              unsigned long end,
126                              struct vmemmap_remap_walk *walk)
127 {
128         pmd_t *pmd;
129         unsigned long next;
130
131         pmd = pmd_offset(pud, addr);
132         do {
133                 int ret;
134
135                 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
136                 if (ret)
137                         return ret;
138
139                 next = pmd_addr_end(addr, end);
140                 vmemmap_pte_range(pmd, addr, next, walk);
141         } while (pmd++, addr = next, addr != end);
142
143         return 0;
144 }
145
146 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
147                              unsigned long end,
148                              struct vmemmap_remap_walk *walk)
149 {
150         pud_t *pud;
151         unsigned long next;
152
153         pud = pud_offset(p4d, addr);
154         do {
155                 int ret;
156
157                 next = pud_addr_end(addr, end);
158                 ret = vmemmap_pmd_range(pud, addr, next, walk);
159                 if (ret)
160                         return ret;
161         } while (pud++, addr = next, addr != end);
162
163         return 0;
164 }
165
166 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
167                              unsigned long end,
168                              struct vmemmap_remap_walk *walk)
169 {
170         p4d_t *p4d;
171         unsigned long next;
172
173         p4d = p4d_offset(pgd, addr);
174         do {
175                 int ret;
176
177                 next = p4d_addr_end(addr, end);
178                 ret = vmemmap_pud_range(p4d, addr, next, walk);
179                 if (ret)
180                         return ret;
181         } while (p4d++, addr = next, addr != end);
182
183         return 0;
184 }
185
186 static int vmemmap_remap_range(unsigned long start, unsigned long end,
187                                struct vmemmap_remap_walk *walk)
188 {
189         unsigned long addr = start;
190         unsigned long next;
191         pgd_t *pgd;
192
193         VM_BUG_ON(!PAGE_ALIGNED(start));
194         VM_BUG_ON(!PAGE_ALIGNED(end));
195
196         pgd = pgd_offset_k(addr);
197         do {
198                 int ret;
199
200                 next = pgd_addr_end(addr, end);
201                 ret = vmemmap_p4d_range(pgd, addr, next, walk);
202                 if (ret)
203                         return ret;
204         } while (pgd++, addr = next, addr != end);
205
206         /*
207          * We only change the mapping of the vmemmap virtual address range
208          * [@start + PAGE_SIZE, end), so we only need to flush the TLB which
209          * belongs to the range.
210          */
211         flush_tlb_kernel_range(start + PAGE_SIZE, end);
212
213         return 0;
214 }
215
216 /*
217  * Free a vmemmap page. A vmemmap page can be allocated from the memblock
218  * allocator or buddy allocator. If the PG_reserved flag is set, it means
219  * that it allocated from the memblock allocator, just free it via the
220  * free_bootmem_page(). Otherwise, use __free_page().
221  */
222 static inline void free_vmemmap_page(struct page *page)
223 {
224         if (PageReserved(page))
225                 free_bootmem_page(page);
226         else
227                 __free_page(page);
228 }
229
230 /* Free a list of the vmemmap pages */
231 static void free_vmemmap_page_list(struct list_head *list)
232 {
233         struct page *page, *next;
234
235         list_for_each_entry_safe(page, next, list, lru) {
236                 list_del(&page->lru);
237                 free_vmemmap_page(page);
238         }
239 }
240
241 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
242                               struct vmemmap_remap_walk *walk)
243 {
244         /*
245          * Remap the tail pages as read-only to catch illegal write operation
246          * to the tail pages.
247          */
248         pgprot_t pgprot = PAGE_KERNEL_RO;
249         pte_t entry = mk_pte(walk->reuse_page, pgprot);
250         struct page *page = pte_page(*pte);
251
252         list_add_tail(&page->lru, walk->vmemmap_pages);
253         set_pte_at(&init_mm, addr, pte, entry);
254 }
255
256 /*
257  * How many struct page structs need to be reset. When we reuse the head
258  * struct page, the special metadata (e.g. page->flags or page->mapping)
259  * cannot copy to the tail struct page structs. The invalid value will be
260  * checked in the free_tail_pages_check(). In order to avoid the message
261  * of "corrupted mapping in tail page". We need to reset at least 3 (one
262  * head struct page struct and two tail struct page structs) struct page
263  * structs.
264  */
265 #define NR_RESET_STRUCT_PAGE            3
266
267 static inline void reset_struct_pages(struct page *start)
268 {
269         struct page *from = start + NR_RESET_STRUCT_PAGE;
270
271         BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
272         memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
273 }
274
275 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
276                                 struct vmemmap_remap_walk *walk)
277 {
278         pgprot_t pgprot = PAGE_KERNEL;
279         struct page *page;
280         void *to;
281
282         BUG_ON(pte_page(*pte) != walk->reuse_page);
283
284         page = list_first_entry(walk->vmemmap_pages, struct page, lru);
285         list_del(&page->lru);
286         to = page_to_virt(page);
287         copy_page(to, (void *)walk->reuse_addr);
288         reset_struct_pages(to);
289
290         /*
291          * Makes sure that preceding stores to the page contents become visible
292          * before the set_pte_at() write.
293          */
294         smp_wmb();
295         set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
296 }
297
298 /**
299  * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
300  *                      to the page which @reuse is mapped to, then free vmemmap
301  *                      which the range are mapped to.
302  * @start:      start address of the vmemmap virtual address range that we want
303  *              to remap.
304  * @end:        end address of the vmemmap virtual address range that we want to
305  *              remap.
306  * @reuse:      reuse address.
307  *
308  * Return: %0 on success, negative error code otherwise.
309  */
310 static int vmemmap_remap_free(unsigned long start, unsigned long end,
311                               unsigned long reuse)
312 {
313         int ret;
314         LIST_HEAD(vmemmap_pages);
315         struct vmemmap_remap_walk walk = {
316                 .remap_pte      = vmemmap_remap_pte,
317                 .reuse_addr     = reuse,
318                 .vmemmap_pages  = &vmemmap_pages,
319         };
320
321         /*
322          * In order to make remapping routine most efficient for the huge pages,
323          * the routine of vmemmap page table walking has the following rules
324          * (see more details from the vmemmap_pte_range()):
325          *
326          * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
327          *   should be continuous.
328          * - The @reuse address is part of the range [@reuse, @end) that we are
329          *   walking which is passed to vmemmap_remap_range().
330          * - The @reuse address is the first in the complete range.
331          *
332          * So we need to make sure that @start and @reuse meet the above rules.
333          */
334         BUG_ON(start - reuse != PAGE_SIZE);
335
336         mmap_read_lock(&init_mm);
337         ret = vmemmap_remap_range(reuse, end, &walk);
338         if (ret && walk.nr_walked) {
339                 end = reuse + walk.nr_walked * PAGE_SIZE;
340                 /*
341                  * vmemmap_pages contains pages from the previous
342                  * vmemmap_remap_range call which failed.  These
343                  * are pages which were removed from the vmemmap.
344                  * They will be restored in the following call.
345                  */
346                 walk = (struct vmemmap_remap_walk) {
347                         .remap_pte      = vmemmap_restore_pte,
348                         .reuse_addr     = reuse,
349                         .vmemmap_pages  = &vmemmap_pages,
350                 };
351
352                 vmemmap_remap_range(reuse, end, &walk);
353         }
354         mmap_read_unlock(&init_mm);
355
356         free_vmemmap_page_list(&vmemmap_pages);
357
358         return ret;
359 }
360
361 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
362                                    gfp_t gfp_mask, struct list_head *list)
363 {
364         unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
365         int nid = page_to_nid((struct page *)start);
366         struct page *page, *next;
367
368         while (nr_pages--) {
369                 page = alloc_pages_node(nid, gfp_mask, 0);
370                 if (!page)
371                         goto out;
372                 list_add_tail(&page->lru, list);
373         }
374
375         return 0;
376 out:
377         list_for_each_entry_safe(page, next, list, lru)
378                 __free_pages(page, 0);
379         return -ENOMEM;
380 }
381
382 /**
383  * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
384  *                       to the page which is from the @vmemmap_pages
385  *                       respectively.
386  * @start:      start address of the vmemmap virtual address range that we want
387  *              to remap.
388  * @end:        end address of the vmemmap virtual address range that we want to
389  *              remap.
390  * @reuse:      reuse address.
391  * @gfp_mask:   GFP flag for allocating vmemmap pages.
392  *
393  * Return: %0 on success, negative error code otherwise.
394  */
395 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
396                                unsigned long reuse, gfp_t gfp_mask)
397 {
398         LIST_HEAD(vmemmap_pages);
399         struct vmemmap_remap_walk walk = {
400                 .remap_pte      = vmemmap_restore_pte,
401                 .reuse_addr     = reuse,
402                 .vmemmap_pages  = &vmemmap_pages,
403         };
404
405         /* See the comment in the vmemmap_remap_free(). */
406         BUG_ON(start - reuse != PAGE_SIZE);
407
408         if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
409                 return -ENOMEM;
410
411         mmap_read_lock(&init_mm);
412         vmemmap_remap_range(reuse, end, &walk);
413         mmap_read_unlock(&init_mm);
414
415         return 0;
416 }
417
418 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
419 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
420
421 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
422 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
423
424 /**
425  * hugetlb_vmemmap_restore - restore previously optimized (by
426  *                           hugetlb_vmemmap_optimize()) vmemmap pages which
427  *                           will be reallocated and remapped.
428  * @h:          struct hstate.
429  * @head:       the head page whose vmemmap pages will be restored.
430  *
431  * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
432  * negative error code otherwise.
433  */
434 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
435 {
436         int ret;
437         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
438         unsigned long vmemmap_reuse;
439
440         if (!HPageVmemmapOptimized(head))
441                 return 0;
442
443         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
444         vmemmap_reuse   = vmemmap_start;
445         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
446
447         /*
448          * The pages which the vmemmap virtual address range [@vmemmap_start,
449          * @vmemmap_end) are mapped to are freed to the buddy allocator, and
450          * the range is mapped to the page which @vmemmap_reuse is mapped to.
451          * When a HugeTLB page is freed to the buddy allocator, previously
452          * discarded vmemmap pages must be allocated and remapping.
453          */
454         ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse,
455                                   GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
456         if (!ret) {
457                 ClearHPageVmemmapOptimized(head);
458                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
459         }
460
461         return ret;
462 }
463
464 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
465 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
466 {
467         if (!READ_ONCE(vmemmap_optimize_enabled))
468                 return false;
469
470         if (!hugetlb_vmemmap_optimizable(h))
471                 return false;
472
473         if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
474                 pmd_t *pmdp, pmd;
475                 struct page *vmemmap_page;
476                 unsigned long vaddr = (unsigned long)head;
477
478                 /*
479                  * Only the vmemmap page's vmemmap page can be self-hosted.
480                  * Walking the page tables to find the backing page of the
481                  * vmemmap page.
482                  */
483                 pmdp = pmd_off_k(vaddr);
484                 /*
485                  * The READ_ONCE() is used to stabilize *pmdp in a register or
486                  * on the stack so that it will stop changing under the code.
487                  * The only concurrent operation where it can be changed is
488                  * split_vmemmap_huge_pmd() (*pmdp will be stable after this
489                  * operation).
490                  */
491                 pmd = READ_ONCE(*pmdp);
492                 if (pmd_leaf(pmd))
493                         vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
494                 else
495                         vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
496                 /*
497                  * Due to HugeTLB alignment requirements and the vmemmap pages
498                  * being at the start of the hotplugged memory region in
499                  * memory_hotplug.memmap_on_memory case. Checking any vmemmap
500                  * page's vmemmap page if it is marked as VmemmapSelfHosted is
501                  * sufficient.
502                  *
503                  * [                  hotplugged memory                  ]
504                  * [        section        ][...][        section        ]
505                  * [ vmemmap ][              usable memory               ]
506                  *   ^   |     |                                        |
507                  *   +---+     |                                        |
508                  *     ^       |                                        |
509                  *     +-------+                                        |
510                  *          ^                                           |
511                  *          +-------------------------------------------+
512                  */
513                 if (PageVmemmapSelfHosted(vmemmap_page))
514                         return false;
515         }
516
517         return true;
518 }
519
520 /**
521  * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
522  * @h:          struct hstate.
523  * @head:       the head page whose vmemmap pages will be optimized.
524  *
525  * This function only tries to optimize @head's vmemmap pages and does not
526  * guarantee that the optimization will succeed after it returns. The caller
527  * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
528  * have been optimized.
529  */
530 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
531 {
532         unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
533         unsigned long vmemmap_reuse;
534
535         if (!vmemmap_should_optimize(h, head))
536                 return;
537
538         static_branch_inc(&hugetlb_optimize_vmemmap_key);
539
540         vmemmap_end     = vmemmap_start + hugetlb_vmemmap_size(h);
541         vmemmap_reuse   = vmemmap_start;
542         vmemmap_start   += HUGETLB_VMEMMAP_RESERVE_SIZE;
543
544         /*
545          * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
546          * to the page which @vmemmap_reuse is mapped to, then free the pages
547          * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
548          */
549         if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
550                 static_branch_dec(&hugetlb_optimize_vmemmap_key);
551         else
552                 SetHPageVmemmapOptimized(head);
553 }
554
555 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
556         {
557                 .procname       = "hugetlb_optimize_vmemmap",
558                 .data           = &vmemmap_optimize_enabled,
559                 .maxlen         = sizeof(int),
560                 .mode           = 0644,
561                 .proc_handler   = proc_dobool,
562         },
563         { }
564 };
565
566 static int __init hugetlb_vmemmap_init(void)
567 {
568         /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
569         BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
570
571         if (IS_ENABLED(CONFIG_PROC_SYSCTL)) {
572                 const struct hstate *h;
573
574                 for_each_hstate(h) {
575                         if (hugetlb_vmemmap_optimizable(h)) {
576                                 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
577                                 break;
578                         }
579                 }
580         }
581         return 0;
582 }
583 late_initcall(hugetlb_vmemmap_init);