1 // SPDX-License-Identifier: GPL-2.0
3 * HugeTLB Vmemmap Optimization (HVO)
5 * Copyright (c) 2020, ByteDance. All rights reserved.
7 * Author: Muchun Song <songmuchun@bytedance.com>
9 * See Documentation/mm/vmemmap_dedup.rst
11 #define pr_fmt(fmt) "HugeTLB: " fmt
13 #include <linux/pgtable.h>
14 #include <linux/moduleparam.h>
15 #include <linux/bootmem_info.h>
16 #include <asm/pgalloc.h>
17 #include <asm/tlbflush.h>
18 #include "hugetlb_vmemmap.h"
21 * struct vmemmap_remap_walk - walk vmemmap page table
23 * @remap_pte: called for each lowest-level entry (PTE).
24 * @nr_walked: the number of walked pte.
25 * @reuse_page: the page which is reused for the tail vmemmap pages.
26 * @reuse_addr: the virtual address of the @reuse_page page.
27 * @vmemmap_pages: the list head of the vmemmap pages that can be freed
30 struct vmemmap_remap_walk {
31 void (*remap_pte)(pte_t *pte, unsigned long addr,
32 struct vmemmap_remap_walk *walk);
33 unsigned long nr_walked;
34 struct page *reuse_page;
35 unsigned long reuse_addr;
36 struct list_head *vmemmap_pages;
39 static int __split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
43 unsigned long addr = start;
44 struct page *page = pmd_page(*pmd);
45 pte_t *pgtable = pte_alloc_one_kernel(&init_mm);
50 pmd_populate_kernel(&init_mm, &__pmd, pgtable);
52 for (i = 0; i < PTRS_PER_PTE; i++, addr += PAGE_SIZE) {
54 pgprot_t pgprot = PAGE_KERNEL;
56 entry = mk_pte(page + i, pgprot);
57 pte = pte_offset_kernel(&__pmd, addr);
58 set_pte_at(&init_mm, addr, pte, entry);
61 spin_lock(&init_mm.page_table_lock);
62 if (likely(pmd_leaf(*pmd))) {
64 * Higher order allocations from buddy allocator must be able to
65 * be treated as indepdenent small pages (as they can be freed
68 if (!PageReserved(page))
69 split_page(page, get_order(PMD_SIZE));
71 /* Make pte visible before pmd. See comment in pmd_install(). */
73 pmd_populate_kernel(&init_mm, pmd, pgtable);
74 flush_tlb_kernel_range(start, start + PMD_SIZE);
76 pte_free_kernel(&init_mm, pgtable);
78 spin_unlock(&init_mm.page_table_lock);
83 static int split_vmemmap_huge_pmd(pmd_t *pmd, unsigned long start)
87 spin_lock(&init_mm.page_table_lock);
88 leaf = pmd_leaf(*pmd);
89 spin_unlock(&init_mm.page_table_lock);
94 return __split_vmemmap_huge_pmd(pmd, start);
97 static void vmemmap_pte_range(pmd_t *pmd, unsigned long addr,
99 struct vmemmap_remap_walk *walk)
101 pte_t *pte = pte_offset_kernel(pmd, addr);
104 * The reuse_page is found 'first' in table walk before we start
105 * remapping (which is calling @walk->remap_pte).
107 if (!walk->reuse_page) {
108 walk->reuse_page = pte_page(*pte);
110 * Because the reuse address is part of the range that we are
111 * walking, skip the reuse address range.
118 for (; addr != end; addr += PAGE_SIZE, pte++) {
119 walk->remap_pte(pte, addr, walk);
124 static int vmemmap_pmd_range(pud_t *pud, unsigned long addr,
126 struct vmemmap_remap_walk *walk)
131 pmd = pmd_offset(pud, addr);
135 ret = split_vmemmap_huge_pmd(pmd, addr & PMD_MASK);
139 next = pmd_addr_end(addr, end);
140 vmemmap_pte_range(pmd, addr, next, walk);
141 } while (pmd++, addr = next, addr != end);
146 static int vmemmap_pud_range(p4d_t *p4d, unsigned long addr,
148 struct vmemmap_remap_walk *walk)
153 pud = pud_offset(p4d, addr);
157 next = pud_addr_end(addr, end);
158 ret = vmemmap_pmd_range(pud, addr, next, walk);
161 } while (pud++, addr = next, addr != end);
166 static int vmemmap_p4d_range(pgd_t *pgd, unsigned long addr,
168 struct vmemmap_remap_walk *walk)
173 p4d = p4d_offset(pgd, addr);
177 next = p4d_addr_end(addr, end);
178 ret = vmemmap_pud_range(p4d, addr, next, walk);
181 } while (p4d++, addr = next, addr != end);
186 static int vmemmap_remap_range(unsigned long start, unsigned long end,
187 struct vmemmap_remap_walk *walk)
189 unsigned long addr = start;
193 VM_BUG_ON(!PAGE_ALIGNED(start));
194 VM_BUG_ON(!PAGE_ALIGNED(end));
196 pgd = pgd_offset_k(addr);
200 next = pgd_addr_end(addr, end);
201 ret = vmemmap_p4d_range(pgd, addr, next, walk);
204 } while (pgd++, addr = next, addr != end);
206 flush_tlb_kernel_range(start, end);
212 * Free a vmemmap page. A vmemmap page can be allocated from the memblock
213 * allocator or buddy allocator. If the PG_reserved flag is set, it means
214 * that it allocated from the memblock allocator, just free it via the
215 * free_bootmem_page(). Otherwise, use __free_page().
217 static inline void free_vmemmap_page(struct page *page)
219 if (PageReserved(page))
220 free_bootmem_page(page);
225 /* Free a list of the vmemmap pages */
226 static void free_vmemmap_page_list(struct list_head *list)
228 struct page *page, *next;
230 list_for_each_entry_safe(page, next, list, lru)
231 free_vmemmap_page(page);
234 static void vmemmap_remap_pte(pte_t *pte, unsigned long addr,
235 struct vmemmap_remap_walk *walk)
238 * Remap the tail pages as read-only to catch illegal write operation
241 pgprot_t pgprot = PAGE_KERNEL_RO;
242 struct page *page = pte_page(*pte);
245 /* Remapping the head page requires r/w */
246 if (unlikely(addr == walk->reuse_addr)) {
247 pgprot = PAGE_KERNEL;
248 list_del(&walk->reuse_page->lru);
251 * Makes sure that preceding stores to the page contents from
252 * vmemmap_remap_free() become visible before the set_pte_at()
258 entry = mk_pte(walk->reuse_page, pgprot);
259 list_add_tail(&page->lru, walk->vmemmap_pages);
260 set_pte_at(&init_mm, addr, pte, entry);
264 * How many struct page structs need to be reset. When we reuse the head
265 * struct page, the special metadata (e.g. page->flags or page->mapping)
266 * cannot copy to the tail struct page structs. The invalid value will be
267 * checked in the free_tail_pages_check(). In order to avoid the message
268 * of "corrupted mapping in tail page". We need to reset at least 3 (one
269 * head struct page struct and two tail struct page structs) struct page
272 #define NR_RESET_STRUCT_PAGE 3
274 static inline void reset_struct_pages(struct page *start)
276 struct page *from = start + NR_RESET_STRUCT_PAGE;
278 BUILD_BUG_ON(NR_RESET_STRUCT_PAGE * 2 > PAGE_SIZE / sizeof(struct page));
279 memcpy(start, from, sizeof(*from) * NR_RESET_STRUCT_PAGE);
282 static void vmemmap_restore_pte(pte_t *pte, unsigned long addr,
283 struct vmemmap_remap_walk *walk)
285 pgprot_t pgprot = PAGE_KERNEL;
289 BUG_ON(pte_page(*pte) != walk->reuse_page);
291 page = list_first_entry(walk->vmemmap_pages, struct page, lru);
292 list_del(&page->lru);
293 to = page_to_virt(page);
294 copy_page(to, (void *)walk->reuse_addr);
295 reset_struct_pages(to);
298 * Makes sure that preceding stores to the page contents become visible
299 * before the set_pte_at() write.
302 set_pte_at(&init_mm, addr, pte, mk_pte(page, pgprot));
306 * vmemmap_remap_free - remap the vmemmap virtual address range [@start, @end)
307 * to the page which @reuse is mapped to, then free vmemmap
308 * which the range are mapped to.
309 * @start: start address of the vmemmap virtual address range that we want
311 * @end: end address of the vmemmap virtual address range that we want to
313 * @reuse: reuse address.
315 * Return: %0 on success, negative error code otherwise.
317 static int vmemmap_remap_free(unsigned long start, unsigned long end,
321 LIST_HEAD(vmemmap_pages);
322 struct vmemmap_remap_walk walk = {
323 .remap_pte = vmemmap_remap_pte,
325 .vmemmap_pages = &vmemmap_pages,
327 int nid = page_to_nid((struct page *)start);
328 gfp_t gfp_mask = GFP_KERNEL | __GFP_THISNODE | __GFP_NORETRY |
332 * Allocate a new head vmemmap page to avoid breaking a contiguous
333 * block of struct page memory when freeing it back to page allocator
334 * in free_vmemmap_page_list(). This will allow the likely contiguous
335 * struct page backing memory to be kept contiguous and allowing for
336 * more allocations of hugepages. Fallback to the currently
337 * mapped head page in case should it fail to allocate.
339 walk.reuse_page = alloc_pages_node(nid, gfp_mask, 0);
340 if (walk.reuse_page) {
341 copy_page(page_to_virt(walk.reuse_page),
342 (void *)walk.reuse_addr);
343 list_add(&walk.reuse_page->lru, &vmemmap_pages);
347 * In order to make remapping routine most efficient for the huge pages,
348 * the routine of vmemmap page table walking has the following rules
349 * (see more details from the vmemmap_pte_range()):
351 * - The range [@start, @end) and the range [@reuse, @reuse + PAGE_SIZE)
352 * should be continuous.
353 * - The @reuse address is part of the range [@reuse, @end) that we are
354 * walking which is passed to vmemmap_remap_range().
355 * - The @reuse address is the first in the complete range.
357 * So we need to make sure that @start and @reuse meet the above rules.
359 BUG_ON(start - reuse != PAGE_SIZE);
361 mmap_read_lock(&init_mm);
362 ret = vmemmap_remap_range(reuse, end, &walk);
363 if (ret && walk.nr_walked) {
364 end = reuse + walk.nr_walked * PAGE_SIZE;
366 * vmemmap_pages contains pages from the previous
367 * vmemmap_remap_range call which failed. These
368 * are pages which were removed from the vmemmap.
369 * They will be restored in the following call.
371 walk = (struct vmemmap_remap_walk) {
372 .remap_pte = vmemmap_restore_pte,
374 .vmemmap_pages = &vmemmap_pages,
377 vmemmap_remap_range(reuse, end, &walk);
379 mmap_read_unlock(&init_mm);
381 free_vmemmap_page_list(&vmemmap_pages);
386 static int alloc_vmemmap_page_list(unsigned long start, unsigned long end,
387 gfp_t gfp_mask, struct list_head *list)
389 unsigned long nr_pages = (end - start) >> PAGE_SHIFT;
390 int nid = page_to_nid((struct page *)start);
391 struct page *page, *next;
394 page = alloc_pages_node(nid, gfp_mask, 0);
397 list_add_tail(&page->lru, list);
402 list_for_each_entry_safe(page, next, list, lru)
403 __free_pages(page, 0);
408 * vmemmap_remap_alloc - remap the vmemmap virtual address range [@start, end)
409 * to the page which is from the @vmemmap_pages
411 * @start: start address of the vmemmap virtual address range that we want
413 * @end: end address of the vmemmap virtual address range that we want to
415 * @reuse: reuse address.
416 * @gfp_mask: GFP flag for allocating vmemmap pages.
418 * Return: %0 on success, negative error code otherwise.
420 static int vmemmap_remap_alloc(unsigned long start, unsigned long end,
421 unsigned long reuse, gfp_t gfp_mask)
423 LIST_HEAD(vmemmap_pages);
424 struct vmemmap_remap_walk walk = {
425 .remap_pte = vmemmap_restore_pte,
427 .vmemmap_pages = &vmemmap_pages,
430 /* See the comment in the vmemmap_remap_free(). */
431 BUG_ON(start - reuse != PAGE_SIZE);
433 if (alloc_vmemmap_page_list(start, end, gfp_mask, &vmemmap_pages))
436 mmap_read_lock(&init_mm);
437 vmemmap_remap_range(reuse, end, &walk);
438 mmap_read_unlock(&init_mm);
443 DEFINE_STATIC_KEY_FALSE(hugetlb_optimize_vmemmap_key);
444 EXPORT_SYMBOL(hugetlb_optimize_vmemmap_key);
446 static bool vmemmap_optimize_enabled = IS_ENABLED(CONFIG_HUGETLB_PAGE_OPTIMIZE_VMEMMAP_DEFAULT_ON);
447 core_param(hugetlb_free_vmemmap, vmemmap_optimize_enabled, bool, 0);
450 * hugetlb_vmemmap_restore - restore previously optimized (by
451 * hugetlb_vmemmap_optimize()) vmemmap pages which
452 * will be reallocated and remapped.
454 * @head: the head page whose vmemmap pages will be restored.
456 * Return: %0 if @head's vmemmap pages have been reallocated and remapped,
457 * negative error code otherwise.
459 int hugetlb_vmemmap_restore(const struct hstate *h, struct page *head)
462 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
463 unsigned long vmemmap_reuse;
465 if (!HPageVmemmapOptimized(head))
468 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
469 vmemmap_reuse = vmemmap_start;
470 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
473 * The pages which the vmemmap virtual address range [@vmemmap_start,
474 * @vmemmap_end) are mapped to are freed to the buddy allocator, and
475 * the range is mapped to the page which @vmemmap_reuse is mapped to.
476 * When a HugeTLB page is freed to the buddy allocator, previously
477 * discarded vmemmap pages must be allocated and remapping.
479 ret = vmemmap_remap_alloc(vmemmap_start, vmemmap_end, vmemmap_reuse,
480 GFP_KERNEL | __GFP_NORETRY | __GFP_THISNODE);
482 ClearHPageVmemmapOptimized(head);
483 static_branch_dec(&hugetlb_optimize_vmemmap_key);
489 /* Return true iff a HugeTLB whose vmemmap should and can be optimized. */
490 static bool vmemmap_should_optimize(const struct hstate *h, const struct page *head)
492 if (!READ_ONCE(vmemmap_optimize_enabled))
495 if (!hugetlb_vmemmap_optimizable(h))
498 if (IS_ENABLED(CONFIG_MEMORY_HOTPLUG)) {
500 struct page *vmemmap_page;
501 unsigned long vaddr = (unsigned long)head;
504 * Only the vmemmap page's vmemmap page can be self-hosted.
505 * Walking the page tables to find the backing page of the
508 pmdp = pmd_off_k(vaddr);
510 * The READ_ONCE() is used to stabilize *pmdp in a register or
511 * on the stack so that it will stop changing under the code.
512 * The only concurrent operation where it can be changed is
513 * split_vmemmap_huge_pmd() (*pmdp will be stable after this
516 pmd = READ_ONCE(*pmdp);
518 vmemmap_page = pmd_page(pmd) + pte_index(vaddr);
520 vmemmap_page = pte_page(*pte_offset_kernel(pmdp, vaddr));
522 * Due to HugeTLB alignment requirements and the vmemmap pages
523 * being at the start of the hotplugged memory region in
524 * memory_hotplug.memmap_on_memory case. Checking any vmemmap
525 * page's vmemmap page if it is marked as VmemmapSelfHosted is
528 * [ hotplugged memory ]
529 * [ section ][...][ section ]
530 * [ vmemmap ][ usable memory ]
536 * +-------------------------------------------+
538 if (PageVmemmapSelfHosted(vmemmap_page))
546 * hugetlb_vmemmap_optimize - optimize @head page's vmemmap pages.
548 * @head: the head page whose vmemmap pages will be optimized.
550 * This function only tries to optimize @head's vmemmap pages and does not
551 * guarantee that the optimization will succeed after it returns. The caller
552 * can use HPageVmemmapOptimized(@head) to detect if @head's vmemmap pages
553 * have been optimized.
555 void hugetlb_vmemmap_optimize(const struct hstate *h, struct page *head)
557 unsigned long vmemmap_start = (unsigned long)head, vmemmap_end;
558 unsigned long vmemmap_reuse;
560 if (!vmemmap_should_optimize(h, head))
563 static_branch_inc(&hugetlb_optimize_vmemmap_key);
565 vmemmap_end = vmemmap_start + hugetlb_vmemmap_size(h);
566 vmemmap_reuse = vmemmap_start;
567 vmemmap_start += HUGETLB_VMEMMAP_RESERVE_SIZE;
570 * Remap the vmemmap virtual address range [@vmemmap_start, @vmemmap_end)
571 * to the page which @vmemmap_reuse is mapped to, then free the pages
572 * which the range [@vmemmap_start, @vmemmap_end] is mapped to.
574 if (vmemmap_remap_free(vmemmap_start, vmemmap_end, vmemmap_reuse))
575 static_branch_dec(&hugetlb_optimize_vmemmap_key);
577 SetHPageVmemmapOptimized(head);
580 static struct ctl_table hugetlb_vmemmap_sysctls[] = {
582 .procname = "hugetlb_optimize_vmemmap",
583 .data = &vmemmap_optimize_enabled,
584 .maxlen = sizeof(int),
586 .proc_handler = proc_dobool,
591 static int __init hugetlb_vmemmap_init(void)
593 /* HUGETLB_VMEMMAP_RESERVE_SIZE should cover all used struct pages */
594 BUILD_BUG_ON(__NR_USED_SUBPAGE * sizeof(struct page) > HUGETLB_VMEMMAP_RESERVE_SIZE);
596 if (IS_ENABLED(CONFIG_PROC_SYSCTL)) {
597 const struct hstate *h;
600 if (hugetlb_vmemmap_optimizable(h)) {
601 register_sysctl_init("vm", hugetlb_vmemmap_sysctls);
608 late_initcall(hugetlb_vmemmap_init);