HWPOISON, hugetlb: detect hwpoison in hugetlb code
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) William Irwin, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24
25 #include <asm/page.h>
26 #include <asm/pgtable.h>
27 #include <asm/io.h>
28
29 #include <linux/hugetlb.h>
30 #include <linux/node.h>
31 #include "internal.h"
32
33 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
34 static gfp_t htlb_alloc_mask = GFP_HIGHUSER;
35 unsigned long hugepages_treat_as_movable;
36
37 static int max_hstate;
38 unsigned int default_hstate_idx;
39 struct hstate hstates[HUGE_MAX_HSTATE];
40
41 __initdata LIST_HEAD(huge_boot_pages);
42
43 /* for command line parsing */
44 static struct hstate * __initdata parsed_hstate;
45 static unsigned long __initdata default_hstate_max_huge_pages;
46 static unsigned long __initdata default_hstate_size;
47
48 #define for_each_hstate(h) \
49         for ((h) = hstates; (h) < &hstates[max_hstate]; (h)++)
50
51 /*
52  * Protects updates to hugepage_freelists, nr_huge_pages, and free_huge_pages
53  */
54 static DEFINE_SPINLOCK(hugetlb_lock);
55
56 /*
57  * Region tracking -- allows tracking of reservations and instantiated pages
58  *                    across the pages in a mapping.
59  *
60  * The region data structures are protected by a combination of the mmap_sem
61  * and the hugetlb_instantion_mutex.  To access or modify a region the caller
62  * must either hold the mmap_sem for write, or the mmap_sem for read and
63  * the hugetlb_instantiation mutex:
64  *
65  *      down_write(&mm->mmap_sem);
66  * or
67  *      down_read(&mm->mmap_sem);
68  *      mutex_lock(&hugetlb_instantiation_mutex);
69  */
70 struct file_region {
71         struct list_head link;
72         long from;
73         long to;
74 };
75
76 static long region_add(struct list_head *head, long f, long t)
77 {
78         struct file_region *rg, *nrg, *trg;
79
80         /* Locate the region we are either in or before. */
81         list_for_each_entry(rg, head, link)
82                 if (f <= rg->to)
83                         break;
84
85         /* Round our left edge to the current segment if it encloses us. */
86         if (f > rg->from)
87                 f = rg->from;
88
89         /* Check for and consume any regions we now overlap with. */
90         nrg = rg;
91         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
92                 if (&rg->link == head)
93                         break;
94                 if (rg->from > t)
95                         break;
96
97                 /* If this area reaches higher then extend our area to
98                  * include it completely.  If this is not the first area
99                  * which we intend to reuse, free it. */
100                 if (rg->to > t)
101                         t = rg->to;
102                 if (rg != nrg) {
103                         list_del(&rg->link);
104                         kfree(rg);
105                 }
106         }
107         nrg->from = f;
108         nrg->to = t;
109         return 0;
110 }
111
112 static long region_chg(struct list_head *head, long f, long t)
113 {
114         struct file_region *rg, *nrg;
115         long chg = 0;
116
117         /* Locate the region we are before or in. */
118         list_for_each_entry(rg, head, link)
119                 if (f <= rg->to)
120                         break;
121
122         /* If we are below the current region then a new region is required.
123          * Subtle, allocate a new region at the position but make it zero
124          * size such that we can guarantee to record the reservation. */
125         if (&rg->link == head || t < rg->from) {
126                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
127                 if (!nrg)
128                         return -ENOMEM;
129                 nrg->from = f;
130                 nrg->to   = f;
131                 INIT_LIST_HEAD(&nrg->link);
132                 list_add(&nrg->link, rg->link.prev);
133
134                 return t - f;
135         }
136
137         /* Round our left edge to the current segment if it encloses us. */
138         if (f > rg->from)
139                 f = rg->from;
140         chg = t - f;
141
142         /* Check for and consume any regions we now overlap with. */
143         list_for_each_entry(rg, rg->link.prev, link) {
144                 if (&rg->link == head)
145                         break;
146                 if (rg->from > t)
147                         return chg;
148
149                 /* We overlap with this area, if it extends futher than
150                  * us then we must extend ourselves.  Account for its
151                  * existing reservation. */
152                 if (rg->to > t) {
153                         chg += rg->to - t;
154                         t = rg->to;
155                 }
156                 chg -= rg->to - rg->from;
157         }
158         return chg;
159 }
160
161 static long region_truncate(struct list_head *head, long end)
162 {
163         struct file_region *rg, *trg;
164         long chg = 0;
165
166         /* Locate the region we are either in or before. */
167         list_for_each_entry(rg, head, link)
168                 if (end <= rg->to)
169                         break;
170         if (&rg->link == head)
171                 return 0;
172
173         /* If we are in the middle of a region then adjust it. */
174         if (end > rg->from) {
175                 chg = rg->to - end;
176                 rg->to = end;
177                 rg = list_entry(rg->link.next, typeof(*rg), link);
178         }
179
180         /* Drop any remaining regions. */
181         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
182                 if (&rg->link == head)
183                         break;
184                 chg += rg->to - rg->from;
185                 list_del(&rg->link);
186                 kfree(rg);
187         }
188         return chg;
189 }
190
191 static long region_count(struct list_head *head, long f, long t)
192 {
193         struct file_region *rg;
194         long chg = 0;
195
196         /* Locate each segment we overlap with, and count that overlap. */
197         list_for_each_entry(rg, head, link) {
198                 int seg_from;
199                 int seg_to;
200
201                 if (rg->to <= f)
202                         continue;
203                 if (rg->from >= t)
204                         break;
205
206                 seg_from = max(rg->from, f);
207                 seg_to = min(rg->to, t);
208
209                 chg += seg_to - seg_from;
210         }
211
212         return chg;
213 }
214
215 /*
216  * Convert the address within this vma to the page offset within
217  * the mapping, in pagecache page units; huge pages here.
218  */
219 static pgoff_t vma_hugecache_offset(struct hstate *h,
220                         struct vm_area_struct *vma, unsigned long address)
221 {
222         return ((address - vma->vm_start) >> huge_page_shift(h)) +
223                         (vma->vm_pgoff >> huge_page_order(h));
224 }
225
226 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
227                                      unsigned long address)
228 {
229         return vma_hugecache_offset(hstate_vma(vma), vma, address);
230 }
231
232 /*
233  * Return the size of the pages allocated when backing a VMA. In the majority
234  * cases this will be same size as used by the page table entries.
235  */
236 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
237 {
238         struct hstate *hstate;
239
240         if (!is_vm_hugetlb_page(vma))
241                 return PAGE_SIZE;
242
243         hstate = hstate_vma(vma);
244
245         return 1UL << (hstate->order + PAGE_SHIFT);
246 }
247 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
248
249 /*
250  * Return the page size being used by the MMU to back a VMA. In the majority
251  * of cases, the page size used by the kernel matches the MMU size. On
252  * architectures where it differs, an architecture-specific version of this
253  * function is required.
254  */
255 #ifndef vma_mmu_pagesize
256 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
257 {
258         return vma_kernel_pagesize(vma);
259 }
260 #endif
261
262 /*
263  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
264  * bits of the reservation map pointer, which are always clear due to
265  * alignment.
266  */
267 #define HPAGE_RESV_OWNER    (1UL << 0)
268 #define HPAGE_RESV_UNMAPPED (1UL << 1)
269 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
270
271 /*
272  * These helpers are used to track how many pages are reserved for
273  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
274  * is guaranteed to have their future faults succeed.
275  *
276  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
277  * the reserve counters are updated with the hugetlb_lock held. It is safe
278  * to reset the VMA at fork() time as it is not in use yet and there is no
279  * chance of the global counters getting corrupted as a result of the values.
280  *
281  * The private mapping reservation is represented in a subtly different
282  * manner to a shared mapping.  A shared mapping has a region map associated
283  * with the underlying file, this region map represents the backing file
284  * pages which have ever had a reservation assigned which this persists even
285  * after the page is instantiated.  A private mapping has a region map
286  * associated with the original mmap which is attached to all VMAs which
287  * reference it, this region map represents those offsets which have consumed
288  * reservation ie. where pages have been instantiated.
289  */
290 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
291 {
292         return (unsigned long)vma->vm_private_data;
293 }
294
295 static void set_vma_private_data(struct vm_area_struct *vma,
296                                                         unsigned long value)
297 {
298         vma->vm_private_data = (void *)value;
299 }
300
301 struct resv_map {
302         struct kref refs;
303         struct list_head regions;
304 };
305
306 static struct resv_map *resv_map_alloc(void)
307 {
308         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
309         if (!resv_map)
310                 return NULL;
311
312         kref_init(&resv_map->refs);
313         INIT_LIST_HEAD(&resv_map->regions);
314
315         return resv_map;
316 }
317
318 static void resv_map_release(struct kref *ref)
319 {
320         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
321
322         /* Clear out any active regions before we release the map. */
323         region_truncate(&resv_map->regions, 0);
324         kfree(resv_map);
325 }
326
327 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
328 {
329         VM_BUG_ON(!is_vm_hugetlb_page(vma));
330         if (!(vma->vm_flags & VM_MAYSHARE))
331                 return (struct resv_map *)(get_vma_private_data(vma) &
332                                                         ~HPAGE_RESV_MASK);
333         return NULL;
334 }
335
336 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
337 {
338         VM_BUG_ON(!is_vm_hugetlb_page(vma));
339         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
340
341         set_vma_private_data(vma, (get_vma_private_data(vma) &
342                                 HPAGE_RESV_MASK) | (unsigned long)map);
343 }
344
345 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
346 {
347         VM_BUG_ON(!is_vm_hugetlb_page(vma));
348         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
349
350         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
351 }
352
353 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
354 {
355         VM_BUG_ON(!is_vm_hugetlb_page(vma));
356
357         return (get_vma_private_data(vma) & flag) != 0;
358 }
359
360 /* Decrement the reserved pages in the hugepage pool by one */
361 static void decrement_hugepage_resv_vma(struct hstate *h,
362                         struct vm_area_struct *vma)
363 {
364         if (vma->vm_flags & VM_NORESERVE)
365                 return;
366
367         if (vma->vm_flags & VM_MAYSHARE) {
368                 /* Shared mappings always use reserves */
369                 h->resv_huge_pages--;
370         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
371                 /*
372                  * Only the process that called mmap() has reserves for
373                  * private mappings.
374                  */
375                 h->resv_huge_pages--;
376         }
377 }
378
379 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
380 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
381 {
382         VM_BUG_ON(!is_vm_hugetlb_page(vma));
383         if (!(vma->vm_flags & VM_MAYSHARE))
384                 vma->vm_private_data = (void *)0;
385 }
386
387 /* Returns true if the VMA has associated reserve pages */
388 static int vma_has_reserves(struct vm_area_struct *vma)
389 {
390         if (vma->vm_flags & VM_MAYSHARE)
391                 return 1;
392         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
393                 return 1;
394         return 0;
395 }
396
397 static void clear_gigantic_page(struct page *page,
398                         unsigned long addr, unsigned long sz)
399 {
400         int i;
401         struct page *p = page;
402
403         might_sleep();
404         for (i = 0; i < sz/PAGE_SIZE; i++, p = mem_map_next(p, page, i)) {
405                 cond_resched();
406                 clear_user_highpage(p, addr + i * PAGE_SIZE);
407         }
408 }
409 static void clear_huge_page(struct page *page,
410                         unsigned long addr, unsigned long sz)
411 {
412         int i;
413
414         if (unlikely(sz/PAGE_SIZE > MAX_ORDER_NR_PAGES)) {
415                 clear_gigantic_page(page, addr, sz);
416                 return;
417         }
418
419         might_sleep();
420         for (i = 0; i < sz/PAGE_SIZE; i++) {
421                 cond_resched();
422                 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
423         }
424 }
425
426 static void copy_gigantic_page(struct page *dst, struct page *src,
427                            unsigned long addr, struct vm_area_struct *vma)
428 {
429         int i;
430         struct hstate *h = hstate_vma(vma);
431         struct page *dst_base = dst;
432         struct page *src_base = src;
433         might_sleep();
434         for (i = 0; i < pages_per_huge_page(h); ) {
435                 cond_resched();
436                 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
437
438                 i++;
439                 dst = mem_map_next(dst, dst_base, i);
440                 src = mem_map_next(src, src_base, i);
441         }
442 }
443 static void copy_huge_page(struct page *dst, struct page *src,
444                            unsigned long addr, struct vm_area_struct *vma)
445 {
446         int i;
447         struct hstate *h = hstate_vma(vma);
448
449         if (unlikely(pages_per_huge_page(h) > MAX_ORDER_NR_PAGES)) {
450                 copy_gigantic_page(dst, src, addr, vma);
451                 return;
452         }
453
454         might_sleep();
455         for (i = 0; i < pages_per_huge_page(h); i++) {
456                 cond_resched();
457                 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
458         }
459 }
460
461 static void enqueue_huge_page(struct hstate *h, struct page *page)
462 {
463         int nid = page_to_nid(page);
464         list_add(&page->lru, &h->hugepage_freelists[nid]);
465         h->free_huge_pages++;
466         h->free_huge_pages_node[nid]++;
467 }
468
469 static struct page *dequeue_huge_page_vma(struct hstate *h,
470                                 struct vm_area_struct *vma,
471                                 unsigned long address, int avoid_reserve)
472 {
473         int nid;
474         struct page *page = NULL;
475         struct mempolicy *mpol;
476         nodemask_t *nodemask;
477         struct zonelist *zonelist;
478         struct zone *zone;
479         struct zoneref *z;
480
481         get_mems_allowed();
482         zonelist = huge_zonelist(vma, address,
483                                         htlb_alloc_mask, &mpol, &nodemask);
484         /*
485          * A child process with MAP_PRIVATE mappings created by their parent
486          * have no page reserves. This check ensures that reservations are
487          * not "stolen". The child may still get SIGKILLed
488          */
489         if (!vma_has_reserves(vma) &&
490                         h->free_huge_pages - h->resv_huge_pages == 0)
491                 goto err;
492
493         /* If reserves cannot be used, ensure enough pages are in the pool */
494         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
495                 goto err;;
496
497         for_each_zone_zonelist_nodemask(zone, z, zonelist,
498                                                 MAX_NR_ZONES - 1, nodemask) {
499                 nid = zone_to_nid(zone);
500                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask) &&
501                     !list_empty(&h->hugepage_freelists[nid])) {
502                         page = list_entry(h->hugepage_freelists[nid].next,
503                                           struct page, lru);
504                         list_del(&page->lru);
505                         h->free_huge_pages--;
506                         h->free_huge_pages_node[nid]--;
507
508                         if (!avoid_reserve)
509                                 decrement_hugepage_resv_vma(h, vma);
510
511                         break;
512                 }
513         }
514 err:
515         mpol_cond_put(mpol);
516         put_mems_allowed();
517         return page;
518 }
519
520 static void update_and_free_page(struct hstate *h, struct page *page)
521 {
522         int i;
523
524         VM_BUG_ON(h->order >= MAX_ORDER);
525
526         h->nr_huge_pages--;
527         h->nr_huge_pages_node[page_to_nid(page)]--;
528         for (i = 0; i < pages_per_huge_page(h); i++) {
529                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
530                                 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
531                                 1 << PG_private | 1<< PG_writeback);
532         }
533         set_compound_page_dtor(page, NULL);
534         set_page_refcounted(page);
535         arch_release_hugepage(page);
536         __free_pages(page, huge_page_order(h));
537 }
538
539 struct hstate *size_to_hstate(unsigned long size)
540 {
541         struct hstate *h;
542
543         for_each_hstate(h) {
544                 if (huge_page_size(h) == size)
545                         return h;
546         }
547         return NULL;
548 }
549
550 static void free_huge_page(struct page *page)
551 {
552         /*
553          * Can't pass hstate in here because it is called from the
554          * compound page destructor.
555          */
556         struct hstate *h = page_hstate(page);
557         int nid = page_to_nid(page);
558         struct address_space *mapping;
559
560         mapping = (struct address_space *) page_private(page);
561         set_page_private(page, 0);
562         page->mapping = NULL;
563         BUG_ON(page_count(page));
564         BUG_ON(page_mapcount(page));
565         INIT_LIST_HEAD(&page->lru);
566
567         spin_lock(&hugetlb_lock);
568         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
569                 update_and_free_page(h, page);
570                 h->surplus_huge_pages--;
571                 h->surplus_huge_pages_node[nid]--;
572         } else {
573                 enqueue_huge_page(h, page);
574         }
575         spin_unlock(&hugetlb_lock);
576         if (mapping)
577                 hugetlb_put_quota(mapping, 1);
578 }
579
580 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
581 {
582         set_compound_page_dtor(page, free_huge_page);
583         spin_lock(&hugetlb_lock);
584         h->nr_huge_pages++;
585         h->nr_huge_pages_node[nid]++;
586         spin_unlock(&hugetlb_lock);
587         put_page(page); /* free it into the hugepage allocator */
588 }
589
590 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
591 {
592         int i;
593         int nr_pages = 1 << order;
594         struct page *p = page + 1;
595
596         /* we rely on prep_new_huge_page to set the destructor */
597         set_compound_order(page, order);
598         __SetPageHead(page);
599         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
600                 __SetPageTail(p);
601                 p->first_page = page;
602         }
603 }
604
605 int PageHuge(struct page *page)
606 {
607         compound_page_dtor *dtor;
608
609         if (!PageCompound(page))
610                 return 0;
611
612         page = compound_head(page);
613         dtor = get_compound_page_dtor(page);
614
615         return dtor == free_huge_page;
616 }
617
618 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
619 {
620         struct page *page;
621
622         if (h->order >= MAX_ORDER)
623                 return NULL;
624
625         page = alloc_pages_exact_node(nid,
626                 htlb_alloc_mask|__GFP_COMP|__GFP_THISNODE|
627                                                 __GFP_REPEAT|__GFP_NOWARN,
628                 huge_page_order(h));
629         if (page) {
630                 if (arch_prepare_hugepage(page)) {
631                         __free_pages(page, huge_page_order(h));
632                         return NULL;
633                 }
634                 prep_new_huge_page(h, page, nid);
635         }
636
637         return page;
638 }
639
640 /*
641  * common helper functions for hstate_next_node_to_{alloc|free}.
642  * We may have allocated or freed a huge page based on a different
643  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
644  * be outside of *nodes_allowed.  Ensure that we use an allowed
645  * node for alloc or free.
646  */
647 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
648 {
649         nid = next_node(nid, *nodes_allowed);
650         if (nid == MAX_NUMNODES)
651                 nid = first_node(*nodes_allowed);
652         VM_BUG_ON(nid >= MAX_NUMNODES);
653
654         return nid;
655 }
656
657 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
658 {
659         if (!node_isset(nid, *nodes_allowed))
660                 nid = next_node_allowed(nid, nodes_allowed);
661         return nid;
662 }
663
664 /*
665  * returns the previously saved node ["this node"] from which to
666  * allocate a persistent huge page for the pool and advance the
667  * next node from which to allocate, handling wrap at end of node
668  * mask.
669  */
670 static int hstate_next_node_to_alloc(struct hstate *h,
671                                         nodemask_t *nodes_allowed)
672 {
673         int nid;
674
675         VM_BUG_ON(!nodes_allowed);
676
677         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
678         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
679
680         return nid;
681 }
682
683 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
684 {
685         struct page *page;
686         int start_nid;
687         int next_nid;
688         int ret = 0;
689
690         start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
691         next_nid = start_nid;
692
693         do {
694                 page = alloc_fresh_huge_page_node(h, next_nid);
695                 if (page) {
696                         ret = 1;
697                         break;
698                 }
699                 next_nid = hstate_next_node_to_alloc(h, nodes_allowed);
700         } while (next_nid != start_nid);
701
702         if (ret)
703                 count_vm_event(HTLB_BUDDY_PGALLOC);
704         else
705                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
706
707         return ret;
708 }
709
710 /*
711  * helper for free_pool_huge_page() - return the previously saved
712  * node ["this node"] from which to free a huge page.  Advance the
713  * next node id whether or not we find a free huge page to free so
714  * that the next attempt to free addresses the next node.
715  */
716 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
717 {
718         int nid;
719
720         VM_BUG_ON(!nodes_allowed);
721
722         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
723         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
724
725         return nid;
726 }
727
728 /*
729  * Free huge page from pool from next node to free.
730  * Attempt to keep persistent huge pages more or less
731  * balanced over allowed nodes.
732  * Called with hugetlb_lock locked.
733  */
734 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
735                                                          bool acct_surplus)
736 {
737         int start_nid;
738         int next_nid;
739         int ret = 0;
740
741         start_nid = hstate_next_node_to_free(h, nodes_allowed);
742         next_nid = start_nid;
743
744         do {
745                 /*
746                  * If we're returning unused surplus pages, only examine
747                  * nodes with surplus pages.
748                  */
749                 if ((!acct_surplus || h->surplus_huge_pages_node[next_nid]) &&
750                     !list_empty(&h->hugepage_freelists[next_nid])) {
751                         struct page *page =
752                                 list_entry(h->hugepage_freelists[next_nid].next,
753                                           struct page, lru);
754                         list_del(&page->lru);
755                         h->free_huge_pages--;
756                         h->free_huge_pages_node[next_nid]--;
757                         if (acct_surplus) {
758                                 h->surplus_huge_pages--;
759                                 h->surplus_huge_pages_node[next_nid]--;
760                         }
761                         update_and_free_page(h, page);
762                         ret = 1;
763                         break;
764                 }
765                 next_nid = hstate_next_node_to_free(h, nodes_allowed);
766         } while (next_nid != start_nid);
767
768         return ret;
769 }
770
771 static struct page *alloc_buddy_huge_page(struct hstate *h,
772                         struct vm_area_struct *vma, unsigned long address)
773 {
774         struct page *page;
775         unsigned int nid;
776
777         if (h->order >= MAX_ORDER)
778                 return NULL;
779
780         /*
781          * Assume we will successfully allocate the surplus page to
782          * prevent racing processes from causing the surplus to exceed
783          * overcommit
784          *
785          * This however introduces a different race, where a process B
786          * tries to grow the static hugepage pool while alloc_pages() is
787          * called by process A. B will only examine the per-node
788          * counters in determining if surplus huge pages can be
789          * converted to normal huge pages in adjust_pool_surplus(). A
790          * won't be able to increment the per-node counter, until the
791          * lock is dropped by B, but B doesn't drop hugetlb_lock until
792          * no more huge pages can be converted from surplus to normal
793          * state (and doesn't try to convert again). Thus, we have a
794          * case where a surplus huge page exists, the pool is grown, and
795          * the surplus huge page still exists after, even though it
796          * should just have been converted to a normal huge page. This
797          * does not leak memory, though, as the hugepage will be freed
798          * once it is out of use. It also does not allow the counters to
799          * go out of whack in adjust_pool_surplus() as we don't modify
800          * the node values until we've gotten the hugepage and only the
801          * per-node value is checked there.
802          */
803         spin_lock(&hugetlb_lock);
804         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
805                 spin_unlock(&hugetlb_lock);
806                 return NULL;
807         } else {
808                 h->nr_huge_pages++;
809                 h->surplus_huge_pages++;
810         }
811         spin_unlock(&hugetlb_lock);
812
813         page = alloc_pages(htlb_alloc_mask|__GFP_COMP|
814                                         __GFP_REPEAT|__GFP_NOWARN,
815                                         huge_page_order(h));
816
817         if (page && arch_prepare_hugepage(page)) {
818                 __free_pages(page, huge_page_order(h));
819                 return NULL;
820         }
821
822         spin_lock(&hugetlb_lock);
823         if (page) {
824                 /*
825                  * This page is now managed by the hugetlb allocator and has
826                  * no users -- drop the buddy allocator's reference.
827                  */
828                 put_page_testzero(page);
829                 VM_BUG_ON(page_count(page));
830                 nid = page_to_nid(page);
831                 set_compound_page_dtor(page, free_huge_page);
832                 /*
833                  * We incremented the global counters already
834                  */
835                 h->nr_huge_pages_node[nid]++;
836                 h->surplus_huge_pages_node[nid]++;
837                 __count_vm_event(HTLB_BUDDY_PGALLOC);
838         } else {
839                 h->nr_huge_pages--;
840                 h->surplus_huge_pages--;
841                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
842         }
843         spin_unlock(&hugetlb_lock);
844
845         return page;
846 }
847
848 /*
849  * Increase the hugetlb pool such that it can accomodate a reservation
850  * of size 'delta'.
851  */
852 static int gather_surplus_pages(struct hstate *h, int delta)
853 {
854         struct list_head surplus_list;
855         struct page *page, *tmp;
856         int ret, i;
857         int needed, allocated;
858
859         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
860         if (needed <= 0) {
861                 h->resv_huge_pages += delta;
862                 return 0;
863         }
864
865         allocated = 0;
866         INIT_LIST_HEAD(&surplus_list);
867
868         ret = -ENOMEM;
869 retry:
870         spin_unlock(&hugetlb_lock);
871         for (i = 0; i < needed; i++) {
872                 page = alloc_buddy_huge_page(h, NULL, 0);
873                 if (!page) {
874                         /*
875                          * We were not able to allocate enough pages to
876                          * satisfy the entire reservation so we free what
877                          * we've allocated so far.
878                          */
879                         spin_lock(&hugetlb_lock);
880                         needed = 0;
881                         goto free;
882                 }
883
884                 list_add(&page->lru, &surplus_list);
885         }
886         allocated += needed;
887
888         /*
889          * After retaking hugetlb_lock, we need to recalculate 'needed'
890          * because either resv_huge_pages or free_huge_pages may have changed.
891          */
892         spin_lock(&hugetlb_lock);
893         needed = (h->resv_huge_pages + delta) -
894                         (h->free_huge_pages + allocated);
895         if (needed > 0)
896                 goto retry;
897
898         /*
899          * The surplus_list now contains _at_least_ the number of extra pages
900          * needed to accomodate the reservation.  Add the appropriate number
901          * of pages to the hugetlb pool and free the extras back to the buddy
902          * allocator.  Commit the entire reservation here to prevent another
903          * process from stealing the pages as they are added to the pool but
904          * before they are reserved.
905          */
906         needed += allocated;
907         h->resv_huge_pages += delta;
908         ret = 0;
909 free:
910         /* Free the needed pages to the hugetlb pool */
911         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
912                 if ((--needed) < 0)
913                         break;
914                 list_del(&page->lru);
915                 enqueue_huge_page(h, page);
916         }
917
918         /* Free unnecessary surplus pages to the buddy allocator */
919         if (!list_empty(&surplus_list)) {
920                 spin_unlock(&hugetlb_lock);
921                 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
922                         list_del(&page->lru);
923                         /*
924                          * The page has a reference count of zero already, so
925                          * call free_huge_page directly instead of using
926                          * put_page.  This must be done with hugetlb_lock
927                          * unlocked which is safe because free_huge_page takes
928                          * hugetlb_lock before deciding how to free the page.
929                          */
930                         free_huge_page(page);
931                 }
932                 spin_lock(&hugetlb_lock);
933         }
934
935         return ret;
936 }
937
938 /*
939  * When releasing a hugetlb pool reservation, any surplus pages that were
940  * allocated to satisfy the reservation must be explicitly freed if they were
941  * never used.
942  * Called with hugetlb_lock held.
943  */
944 static void return_unused_surplus_pages(struct hstate *h,
945                                         unsigned long unused_resv_pages)
946 {
947         unsigned long nr_pages;
948
949         /* Uncommit the reservation */
950         h->resv_huge_pages -= unused_resv_pages;
951
952         /* Cannot return gigantic pages currently */
953         if (h->order >= MAX_ORDER)
954                 return;
955
956         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
957
958         /*
959          * We want to release as many surplus pages as possible, spread
960          * evenly across all nodes with memory. Iterate across these nodes
961          * until we can no longer free unreserved surplus pages. This occurs
962          * when the nodes with surplus pages have no free pages.
963          * free_pool_huge_page() will balance the the freed pages across the
964          * on-line nodes with memory and will handle the hstate accounting.
965          */
966         while (nr_pages--) {
967                 if (!free_pool_huge_page(h, &node_states[N_HIGH_MEMORY], 1))
968                         break;
969         }
970 }
971
972 /*
973  * Determine if the huge page at addr within the vma has an associated
974  * reservation.  Where it does not we will need to logically increase
975  * reservation and actually increase quota before an allocation can occur.
976  * Where any new reservation would be required the reservation change is
977  * prepared, but not committed.  Once the page has been quota'd allocated
978  * an instantiated the change should be committed via vma_commit_reservation.
979  * No action is required on failure.
980  */
981 static long vma_needs_reservation(struct hstate *h,
982                         struct vm_area_struct *vma, unsigned long addr)
983 {
984         struct address_space *mapping = vma->vm_file->f_mapping;
985         struct inode *inode = mapping->host;
986
987         if (vma->vm_flags & VM_MAYSHARE) {
988                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
989                 return region_chg(&inode->i_mapping->private_list,
990                                                         idx, idx + 1);
991
992         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
993                 return 1;
994
995         } else  {
996                 long err;
997                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
998                 struct resv_map *reservations = vma_resv_map(vma);
999
1000                 err = region_chg(&reservations->regions, idx, idx + 1);
1001                 if (err < 0)
1002                         return err;
1003                 return 0;
1004         }
1005 }
1006 static void vma_commit_reservation(struct hstate *h,
1007                         struct vm_area_struct *vma, unsigned long addr)
1008 {
1009         struct address_space *mapping = vma->vm_file->f_mapping;
1010         struct inode *inode = mapping->host;
1011
1012         if (vma->vm_flags & VM_MAYSHARE) {
1013                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1014                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1015
1016         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1017                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1018                 struct resv_map *reservations = vma_resv_map(vma);
1019
1020                 /* Mark this page used in the map. */
1021                 region_add(&reservations->regions, idx, idx + 1);
1022         }
1023 }
1024
1025 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1026                                     unsigned long addr, int avoid_reserve)
1027 {
1028         struct hstate *h = hstate_vma(vma);
1029         struct page *page;
1030         struct address_space *mapping = vma->vm_file->f_mapping;
1031         struct inode *inode = mapping->host;
1032         long chg;
1033
1034         /*
1035          * Processes that did not create the mapping will have no reserves and
1036          * will not have accounted against quota. Check that the quota can be
1037          * made before satisfying the allocation
1038          * MAP_NORESERVE mappings may also need pages and quota allocated
1039          * if no reserve mapping overlaps.
1040          */
1041         chg = vma_needs_reservation(h, vma, addr);
1042         if (chg < 0)
1043                 return ERR_PTR(chg);
1044         if (chg)
1045                 if (hugetlb_get_quota(inode->i_mapping, chg))
1046                         return ERR_PTR(-ENOSPC);
1047
1048         spin_lock(&hugetlb_lock);
1049         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve);
1050         spin_unlock(&hugetlb_lock);
1051
1052         if (!page) {
1053                 page = alloc_buddy_huge_page(h, vma, addr);
1054                 if (!page) {
1055                         hugetlb_put_quota(inode->i_mapping, chg);
1056                         return ERR_PTR(-VM_FAULT_SIGBUS);
1057                 }
1058         }
1059
1060         set_page_refcounted(page);
1061         set_page_private(page, (unsigned long) mapping);
1062
1063         vma_commit_reservation(h, vma, addr);
1064
1065         return page;
1066 }
1067
1068 int __weak alloc_bootmem_huge_page(struct hstate *h)
1069 {
1070         struct huge_bootmem_page *m;
1071         int nr_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
1072
1073         while (nr_nodes) {
1074                 void *addr;
1075
1076                 addr = __alloc_bootmem_node_nopanic(
1077                                 NODE_DATA(hstate_next_node_to_alloc(h,
1078                                                 &node_states[N_HIGH_MEMORY])),
1079                                 huge_page_size(h), huge_page_size(h), 0);
1080
1081                 if (addr) {
1082                         /*
1083                          * Use the beginning of the huge page to store the
1084                          * huge_bootmem_page struct (until gather_bootmem
1085                          * puts them into the mem_map).
1086                          */
1087                         m = addr;
1088                         goto found;
1089                 }
1090                 nr_nodes--;
1091         }
1092         return 0;
1093
1094 found:
1095         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1096         /* Put them into a private list first because mem_map is not up yet */
1097         list_add(&m->list, &huge_boot_pages);
1098         m->hstate = h;
1099         return 1;
1100 }
1101
1102 static void prep_compound_huge_page(struct page *page, int order)
1103 {
1104         if (unlikely(order > (MAX_ORDER - 1)))
1105                 prep_compound_gigantic_page(page, order);
1106         else
1107                 prep_compound_page(page, order);
1108 }
1109
1110 /* Put bootmem huge pages into the standard lists after mem_map is up */
1111 static void __init gather_bootmem_prealloc(void)
1112 {
1113         struct huge_bootmem_page *m;
1114
1115         list_for_each_entry(m, &huge_boot_pages, list) {
1116                 struct page *page = virt_to_page(m);
1117                 struct hstate *h = m->hstate;
1118                 __ClearPageReserved(page);
1119                 WARN_ON(page_count(page) != 1);
1120                 prep_compound_huge_page(page, h->order);
1121                 prep_new_huge_page(h, page, page_to_nid(page));
1122         }
1123 }
1124
1125 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1126 {
1127         unsigned long i;
1128
1129         for (i = 0; i < h->max_huge_pages; ++i) {
1130                 if (h->order >= MAX_ORDER) {
1131                         if (!alloc_bootmem_huge_page(h))
1132                                 break;
1133                 } else if (!alloc_fresh_huge_page(h,
1134                                          &node_states[N_HIGH_MEMORY]))
1135                         break;
1136         }
1137         h->max_huge_pages = i;
1138 }
1139
1140 static void __init hugetlb_init_hstates(void)
1141 {
1142         struct hstate *h;
1143
1144         for_each_hstate(h) {
1145                 /* oversize hugepages were init'ed in early boot */
1146                 if (h->order < MAX_ORDER)
1147                         hugetlb_hstate_alloc_pages(h);
1148         }
1149 }
1150
1151 static char * __init memfmt(char *buf, unsigned long n)
1152 {
1153         if (n >= (1UL << 30))
1154                 sprintf(buf, "%lu GB", n >> 30);
1155         else if (n >= (1UL << 20))
1156                 sprintf(buf, "%lu MB", n >> 20);
1157         else
1158                 sprintf(buf, "%lu KB", n >> 10);
1159         return buf;
1160 }
1161
1162 static void __init report_hugepages(void)
1163 {
1164         struct hstate *h;
1165
1166         for_each_hstate(h) {
1167                 char buf[32];
1168                 printk(KERN_INFO "HugeTLB registered %s page size, "
1169                                  "pre-allocated %ld pages\n",
1170                         memfmt(buf, huge_page_size(h)),
1171                         h->free_huge_pages);
1172         }
1173 }
1174
1175 #ifdef CONFIG_HIGHMEM
1176 static void try_to_free_low(struct hstate *h, unsigned long count,
1177                                                 nodemask_t *nodes_allowed)
1178 {
1179         int i;
1180
1181         if (h->order >= MAX_ORDER)
1182                 return;
1183
1184         for_each_node_mask(i, *nodes_allowed) {
1185                 struct page *page, *next;
1186                 struct list_head *freel = &h->hugepage_freelists[i];
1187                 list_for_each_entry_safe(page, next, freel, lru) {
1188                         if (count >= h->nr_huge_pages)
1189                                 return;
1190                         if (PageHighMem(page))
1191                                 continue;
1192                         list_del(&page->lru);
1193                         update_and_free_page(h, page);
1194                         h->free_huge_pages--;
1195                         h->free_huge_pages_node[page_to_nid(page)]--;
1196                 }
1197         }
1198 }
1199 #else
1200 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1201                                                 nodemask_t *nodes_allowed)
1202 {
1203 }
1204 #endif
1205
1206 /*
1207  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1208  * balanced by operating on them in a round-robin fashion.
1209  * Returns 1 if an adjustment was made.
1210  */
1211 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1212                                 int delta)
1213 {
1214         int start_nid, next_nid;
1215         int ret = 0;
1216
1217         VM_BUG_ON(delta != -1 && delta != 1);
1218
1219         if (delta < 0)
1220                 start_nid = hstate_next_node_to_alloc(h, nodes_allowed);
1221         else
1222                 start_nid = hstate_next_node_to_free(h, nodes_allowed);
1223         next_nid = start_nid;
1224
1225         do {
1226                 int nid = next_nid;
1227                 if (delta < 0)  {
1228                         /*
1229                          * To shrink on this node, there must be a surplus page
1230                          */
1231                         if (!h->surplus_huge_pages_node[nid]) {
1232                                 next_nid = hstate_next_node_to_alloc(h,
1233                                                                 nodes_allowed);
1234                                 continue;
1235                         }
1236                 }
1237                 if (delta > 0) {
1238                         /*
1239                          * Surplus cannot exceed the total number of pages
1240                          */
1241                         if (h->surplus_huge_pages_node[nid] >=
1242                                                 h->nr_huge_pages_node[nid]) {
1243                                 next_nid = hstate_next_node_to_free(h,
1244                                                                 nodes_allowed);
1245                                 continue;
1246                         }
1247                 }
1248
1249                 h->surplus_huge_pages += delta;
1250                 h->surplus_huge_pages_node[nid] += delta;
1251                 ret = 1;
1252                 break;
1253         } while (next_nid != start_nid);
1254
1255         return ret;
1256 }
1257
1258 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1259 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1260                                                 nodemask_t *nodes_allowed)
1261 {
1262         unsigned long min_count, ret;
1263
1264         if (h->order >= MAX_ORDER)
1265                 return h->max_huge_pages;
1266
1267         /*
1268          * Increase the pool size
1269          * First take pages out of surplus state.  Then make up the
1270          * remaining difference by allocating fresh huge pages.
1271          *
1272          * We might race with alloc_buddy_huge_page() here and be unable
1273          * to convert a surplus huge page to a normal huge page. That is
1274          * not critical, though, it just means the overall size of the
1275          * pool might be one hugepage larger than it needs to be, but
1276          * within all the constraints specified by the sysctls.
1277          */
1278         spin_lock(&hugetlb_lock);
1279         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1280                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1281                         break;
1282         }
1283
1284         while (count > persistent_huge_pages(h)) {
1285                 /*
1286                  * If this allocation races such that we no longer need the
1287                  * page, free_huge_page will handle it by freeing the page
1288                  * and reducing the surplus.
1289                  */
1290                 spin_unlock(&hugetlb_lock);
1291                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1292                 spin_lock(&hugetlb_lock);
1293                 if (!ret)
1294                         goto out;
1295
1296                 /* Bail for signals. Probably ctrl-c from user */
1297                 if (signal_pending(current))
1298                         goto out;
1299         }
1300
1301         /*
1302          * Decrease the pool size
1303          * First return free pages to the buddy allocator (being careful
1304          * to keep enough around to satisfy reservations).  Then place
1305          * pages into surplus state as needed so the pool will shrink
1306          * to the desired size as pages become free.
1307          *
1308          * By placing pages into the surplus state independent of the
1309          * overcommit value, we are allowing the surplus pool size to
1310          * exceed overcommit. There are few sane options here. Since
1311          * alloc_buddy_huge_page() is checking the global counter,
1312          * though, we'll note that we're not allowed to exceed surplus
1313          * and won't grow the pool anywhere else. Not until one of the
1314          * sysctls are changed, or the surplus pages go out of use.
1315          */
1316         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1317         min_count = max(count, min_count);
1318         try_to_free_low(h, min_count, nodes_allowed);
1319         while (min_count < persistent_huge_pages(h)) {
1320                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1321                         break;
1322         }
1323         while (count < persistent_huge_pages(h)) {
1324                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1325                         break;
1326         }
1327 out:
1328         ret = persistent_huge_pages(h);
1329         spin_unlock(&hugetlb_lock);
1330         return ret;
1331 }
1332
1333 #define HSTATE_ATTR_RO(_name) \
1334         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1335
1336 #define HSTATE_ATTR(_name) \
1337         static struct kobj_attribute _name##_attr = \
1338                 __ATTR(_name, 0644, _name##_show, _name##_store)
1339
1340 static struct kobject *hugepages_kobj;
1341 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1342
1343 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1344
1345 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1346 {
1347         int i;
1348
1349         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1350                 if (hstate_kobjs[i] == kobj) {
1351                         if (nidp)
1352                                 *nidp = NUMA_NO_NODE;
1353                         return &hstates[i];
1354                 }
1355
1356         return kobj_to_node_hstate(kobj, nidp);
1357 }
1358
1359 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1360                                         struct kobj_attribute *attr, char *buf)
1361 {
1362         struct hstate *h;
1363         unsigned long nr_huge_pages;
1364         int nid;
1365
1366         h = kobj_to_hstate(kobj, &nid);
1367         if (nid == NUMA_NO_NODE)
1368                 nr_huge_pages = h->nr_huge_pages;
1369         else
1370                 nr_huge_pages = h->nr_huge_pages_node[nid];
1371
1372         return sprintf(buf, "%lu\n", nr_huge_pages);
1373 }
1374 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1375                         struct kobject *kobj, struct kobj_attribute *attr,
1376                         const char *buf, size_t len)
1377 {
1378         int err;
1379         int nid;
1380         unsigned long count;
1381         struct hstate *h;
1382         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1383
1384         err = strict_strtoul(buf, 10, &count);
1385         if (err)
1386                 return 0;
1387
1388         h = kobj_to_hstate(kobj, &nid);
1389         if (nid == NUMA_NO_NODE) {
1390                 /*
1391                  * global hstate attribute
1392                  */
1393                 if (!(obey_mempolicy &&
1394                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1395                         NODEMASK_FREE(nodes_allowed);
1396                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1397                 }
1398         } else if (nodes_allowed) {
1399                 /*
1400                  * per node hstate attribute: adjust count to global,
1401                  * but restrict alloc/free to the specified node.
1402                  */
1403                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1404                 init_nodemask_of_node(nodes_allowed, nid);
1405         } else
1406                 nodes_allowed = &node_states[N_HIGH_MEMORY];
1407
1408         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1409
1410         if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1411                 NODEMASK_FREE(nodes_allowed);
1412
1413         return len;
1414 }
1415
1416 static ssize_t nr_hugepages_show(struct kobject *kobj,
1417                                        struct kobj_attribute *attr, char *buf)
1418 {
1419         return nr_hugepages_show_common(kobj, attr, buf);
1420 }
1421
1422 static ssize_t nr_hugepages_store(struct kobject *kobj,
1423                struct kobj_attribute *attr, const char *buf, size_t len)
1424 {
1425         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1426 }
1427 HSTATE_ATTR(nr_hugepages);
1428
1429 #ifdef CONFIG_NUMA
1430
1431 /*
1432  * hstate attribute for optionally mempolicy-based constraint on persistent
1433  * huge page alloc/free.
1434  */
1435 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1436                                        struct kobj_attribute *attr, char *buf)
1437 {
1438         return nr_hugepages_show_common(kobj, attr, buf);
1439 }
1440
1441 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1442                struct kobj_attribute *attr, const char *buf, size_t len)
1443 {
1444         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1445 }
1446 HSTATE_ATTR(nr_hugepages_mempolicy);
1447 #endif
1448
1449
1450 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1451                                         struct kobj_attribute *attr, char *buf)
1452 {
1453         struct hstate *h = kobj_to_hstate(kobj, NULL);
1454         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1455 }
1456 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1457                 struct kobj_attribute *attr, const char *buf, size_t count)
1458 {
1459         int err;
1460         unsigned long input;
1461         struct hstate *h = kobj_to_hstate(kobj, NULL);
1462
1463         err = strict_strtoul(buf, 10, &input);
1464         if (err)
1465                 return 0;
1466
1467         spin_lock(&hugetlb_lock);
1468         h->nr_overcommit_huge_pages = input;
1469         spin_unlock(&hugetlb_lock);
1470
1471         return count;
1472 }
1473 HSTATE_ATTR(nr_overcommit_hugepages);
1474
1475 static ssize_t free_hugepages_show(struct kobject *kobj,
1476                                         struct kobj_attribute *attr, char *buf)
1477 {
1478         struct hstate *h;
1479         unsigned long free_huge_pages;
1480         int nid;
1481
1482         h = kobj_to_hstate(kobj, &nid);
1483         if (nid == NUMA_NO_NODE)
1484                 free_huge_pages = h->free_huge_pages;
1485         else
1486                 free_huge_pages = h->free_huge_pages_node[nid];
1487
1488         return sprintf(buf, "%lu\n", free_huge_pages);
1489 }
1490 HSTATE_ATTR_RO(free_hugepages);
1491
1492 static ssize_t resv_hugepages_show(struct kobject *kobj,
1493                                         struct kobj_attribute *attr, char *buf)
1494 {
1495         struct hstate *h = kobj_to_hstate(kobj, NULL);
1496         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1497 }
1498 HSTATE_ATTR_RO(resv_hugepages);
1499
1500 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1501                                         struct kobj_attribute *attr, char *buf)
1502 {
1503         struct hstate *h;
1504         unsigned long surplus_huge_pages;
1505         int nid;
1506
1507         h = kobj_to_hstate(kobj, &nid);
1508         if (nid == NUMA_NO_NODE)
1509                 surplus_huge_pages = h->surplus_huge_pages;
1510         else
1511                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1512
1513         return sprintf(buf, "%lu\n", surplus_huge_pages);
1514 }
1515 HSTATE_ATTR_RO(surplus_hugepages);
1516
1517 static struct attribute *hstate_attrs[] = {
1518         &nr_hugepages_attr.attr,
1519         &nr_overcommit_hugepages_attr.attr,
1520         &free_hugepages_attr.attr,
1521         &resv_hugepages_attr.attr,
1522         &surplus_hugepages_attr.attr,
1523 #ifdef CONFIG_NUMA
1524         &nr_hugepages_mempolicy_attr.attr,
1525 #endif
1526         NULL,
1527 };
1528
1529 static struct attribute_group hstate_attr_group = {
1530         .attrs = hstate_attrs,
1531 };
1532
1533 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1534                                     struct kobject **hstate_kobjs,
1535                                     struct attribute_group *hstate_attr_group)
1536 {
1537         int retval;
1538         int hi = h - hstates;
1539
1540         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1541         if (!hstate_kobjs[hi])
1542                 return -ENOMEM;
1543
1544         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1545         if (retval)
1546                 kobject_put(hstate_kobjs[hi]);
1547
1548         return retval;
1549 }
1550
1551 static void __init hugetlb_sysfs_init(void)
1552 {
1553         struct hstate *h;
1554         int err;
1555
1556         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1557         if (!hugepages_kobj)
1558                 return;
1559
1560         for_each_hstate(h) {
1561                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1562                                          hstate_kobjs, &hstate_attr_group);
1563                 if (err)
1564                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s",
1565                                                                 h->name);
1566         }
1567 }
1568
1569 #ifdef CONFIG_NUMA
1570
1571 /*
1572  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1573  * with node sysdevs in node_devices[] using a parallel array.  The array
1574  * index of a node sysdev or _hstate == node id.
1575  * This is here to avoid any static dependency of the node sysdev driver, in
1576  * the base kernel, on the hugetlb module.
1577  */
1578 struct node_hstate {
1579         struct kobject          *hugepages_kobj;
1580         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1581 };
1582 struct node_hstate node_hstates[MAX_NUMNODES];
1583
1584 /*
1585  * A subset of global hstate attributes for node sysdevs
1586  */
1587 static struct attribute *per_node_hstate_attrs[] = {
1588         &nr_hugepages_attr.attr,
1589         &free_hugepages_attr.attr,
1590         &surplus_hugepages_attr.attr,
1591         NULL,
1592 };
1593
1594 static struct attribute_group per_node_hstate_attr_group = {
1595         .attrs = per_node_hstate_attrs,
1596 };
1597
1598 /*
1599  * kobj_to_node_hstate - lookup global hstate for node sysdev hstate attr kobj.
1600  * Returns node id via non-NULL nidp.
1601  */
1602 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1603 {
1604         int nid;
1605
1606         for (nid = 0; nid < nr_node_ids; nid++) {
1607                 struct node_hstate *nhs = &node_hstates[nid];
1608                 int i;
1609                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1610                         if (nhs->hstate_kobjs[i] == kobj) {
1611                                 if (nidp)
1612                                         *nidp = nid;
1613                                 return &hstates[i];
1614                         }
1615         }
1616
1617         BUG();
1618         return NULL;
1619 }
1620
1621 /*
1622  * Unregister hstate attributes from a single node sysdev.
1623  * No-op if no hstate attributes attached.
1624  */
1625 void hugetlb_unregister_node(struct node *node)
1626 {
1627         struct hstate *h;
1628         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1629
1630         if (!nhs->hugepages_kobj)
1631                 return;         /* no hstate attributes */
1632
1633         for_each_hstate(h)
1634                 if (nhs->hstate_kobjs[h - hstates]) {
1635                         kobject_put(nhs->hstate_kobjs[h - hstates]);
1636                         nhs->hstate_kobjs[h - hstates] = NULL;
1637                 }
1638
1639         kobject_put(nhs->hugepages_kobj);
1640         nhs->hugepages_kobj = NULL;
1641 }
1642
1643 /*
1644  * hugetlb module exit:  unregister hstate attributes from node sysdevs
1645  * that have them.
1646  */
1647 static void hugetlb_unregister_all_nodes(void)
1648 {
1649         int nid;
1650
1651         /*
1652          * disable node sysdev registrations.
1653          */
1654         register_hugetlbfs_with_node(NULL, NULL);
1655
1656         /*
1657          * remove hstate attributes from any nodes that have them.
1658          */
1659         for (nid = 0; nid < nr_node_ids; nid++)
1660                 hugetlb_unregister_node(&node_devices[nid]);
1661 }
1662
1663 /*
1664  * Register hstate attributes for a single node sysdev.
1665  * No-op if attributes already registered.
1666  */
1667 void hugetlb_register_node(struct node *node)
1668 {
1669         struct hstate *h;
1670         struct node_hstate *nhs = &node_hstates[node->sysdev.id];
1671         int err;
1672
1673         if (nhs->hugepages_kobj)
1674                 return;         /* already allocated */
1675
1676         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1677                                                         &node->sysdev.kobj);
1678         if (!nhs->hugepages_kobj)
1679                 return;
1680
1681         for_each_hstate(h) {
1682                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1683                                                 nhs->hstate_kobjs,
1684                                                 &per_node_hstate_attr_group);
1685                 if (err) {
1686                         printk(KERN_ERR "Hugetlb: Unable to add hstate %s"
1687                                         " for node %d\n",
1688                                                 h->name, node->sysdev.id);
1689                         hugetlb_unregister_node(node);
1690                         break;
1691                 }
1692         }
1693 }
1694
1695 /*
1696  * hugetlb init time:  register hstate attributes for all registered node
1697  * sysdevs of nodes that have memory.  All on-line nodes should have
1698  * registered their associated sysdev by this time.
1699  */
1700 static void hugetlb_register_all_nodes(void)
1701 {
1702         int nid;
1703
1704         for_each_node_state(nid, N_HIGH_MEMORY) {
1705                 struct node *node = &node_devices[nid];
1706                 if (node->sysdev.id == nid)
1707                         hugetlb_register_node(node);
1708         }
1709
1710         /*
1711          * Let the node sysdev driver know we're here so it can
1712          * [un]register hstate attributes on node hotplug.
1713          */
1714         register_hugetlbfs_with_node(hugetlb_register_node,
1715                                      hugetlb_unregister_node);
1716 }
1717 #else   /* !CONFIG_NUMA */
1718
1719 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1720 {
1721         BUG();
1722         if (nidp)
1723                 *nidp = -1;
1724         return NULL;
1725 }
1726
1727 static void hugetlb_unregister_all_nodes(void) { }
1728
1729 static void hugetlb_register_all_nodes(void) { }
1730
1731 #endif
1732
1733 static void __exit hugetlb_exit(void)
1734 {
1735         struct hstate *h;
1736
1737         hugetlb_unregister_all_nodes();
1738
1739         for_each_hstate(h) {
1740                 kobject_put(hstate_kobjs[h - hstates]);
1741         }
1742
1743         kobject_put(hugepages_kobj);
1744 }
1745 module_exit(hugetlb_exit);
1746
1747 static int __init hugetlb_init(void)
1748 {
1749         /* Some platform decide whether they support huge pages at boot
1750          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1751          * there is no such support
1752          */
1753         if (HPAGE_SHIFT == 0)
1754                 return 0;
1755
1756         if (!size_to_hstate(default_hstate_size)) {
1757                 default_hstate_size = HPAGE_SIZE;
1758                 if (!size_to_hstate(default_hstate_size))
1759                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1760         }
1761         default_hstate_idx = size_to_hstate(default_hstate_size) - hstates;
1762         if (default_hstate_max_huge_pages)
1763                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1764
1765         hugetlb_init_hstates();
1766
1767         gather_bootmem_prealloc();
1768
1769         report_hugepages();
1770
1771         hugetlb_sysfs_init();
1772
1773         hugetlb_register_all_nodes();
1774
1775         return 0;
1776 }
1777 module_init(hugetlb_init);
1778
1779 /* Should be called on processing a hugepagesz=... option */
1780 void __init hugetlb_add_hstate(unsigned order)
1781 {
1782         struct hstate *h;
1783         unsigned long i;
1784
1785         if (size_to_hstate(PAGE_SIZE << order)) {
1786                 printk(KERN_WARNING "hugepagesz= specified twice, ignoring\n");
1787                 return;
1788         }
1789         BUG_ON(max_hstate >= HUGE_MAX_HSTATE);
1790         BUG_ON(order == 0);
1791         h = &hstates[max_hstate++];
1792         h->order = order;
1793         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1794         h->nr_huge_pages = 0;
1795         h->free_huge_pages = 0;
1796         for (i = 0; i < MAX_NUMNODES; ++i)
1797                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
1798         h->next_nid_to_alloc = first_node(node_states[N_HIGH_MEMORY]);
1799         h->next_nid_to_free = first_node(node_states[N_HIGH_MEMORY]);
1800         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
1801                                         huge_page_size(h)/1024);
1802
1803         parsed_hstate = h;
1804 }
1805
1806 static int __init hugetlb_nrpages_setup(char *s)
1807 {
1808         unsigned long *mhp;
1809         static unsigned long *last_mhp;
1810
1811         /*
1812          * !max_hstate means we haven't parsed a hugepagesz= parameter yet,
1813          * so this hugepages= parameter goes to the "default hstate".
1814          */
1815         if (!max_hstate)
1816                 mhp = &default_hstate_max_huge_pages;
1817         else
1818                 mhp = &parsed_hstate->max_huge_pages;
1819
1820         if (mhp == last_mhp) {
1821                 printk(KERN_WARNING "hugepages= specified twice without "
1822                         "interleaving hugepagesz=, ignoring\n");
1823                 return 1;
1824         }
1825
1826         if (sscanf(s, "%lu", mhp) <= 0)
1827                 *mhp = 0;
1828
1829         /*
1830          * Global state is always initialized later in hugetlb_init.
1831          * But we need to allocate >= MAX_ORDER hstates here early to still
1832          * use the bootmem allocator.
1833          */
1834         if (max_hstate && parsed_hstate->order >= MAX_ORDER)
1835                 hugetlb_hstate_alloc_pages(parsed_hstate);
1836
1837         last_mhp = mhp;
1838
1839         return 1;
1840 }
1841 __setup("hugepages=", hugetlb_nrpages_setup);
1842
1843 static int __init hugetlb_default_setup(char *s)
1844 {
1845         default_hstate_size = memparse(s, &s);
1846         return 1;
1847 }
1848 __setup("default_hugepagesz=", hugetlb_default_setup);
1849
1850 static unsigned int cpuset_mems_nr(unsigned int *array)
1851 {
1852         int node;
1853         unsigned int nr = 0;
1854
1855         for_each_node_mask(node, cpuset_current_mems_allowed)
1856                 nr += array[node];
1857
1858         return nr;
1859 }
1860
1861 #ifdef CONFIG_SYSCTL
1862 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
1863                          struct ctl_table *table, int write,
1864                          void __user *buffer, size_t *length, loff_t *ppos)
1865 {
1866         struct hstate *h = &default_hstate;
1867         unsigned long tmp;
1868
1869         if (!write)
1870                 tmp = h->max_huge_pages;
1871
1872         table->data = &tmp;
1873         table->maxlen = sizeof(unsigned long);
1874         proc_doulongvec_minmax(table, write, buffer, length, ppos);
1875
1876         if (write) {
1877                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
1878                                                 GFP_KERNEL | __GFP_NORETRY);
1879                 if (!(obey_mempolicy &&
1880                                init_nodemask_of_mempolicy(nodes_allowed))) {
1881                         NODEMASK_FREE(nodes_allowed);
1882                         nodes_allowed = &node_states[N_HIGH_MEMORY];
1883                 }
1884                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
1885
1886                 if (nodes_allowed != &node_states[N_HIGH_MEMORY])
1887                         NODEMASK_FREE(nodes_allowed);
1888         }
1889
1890         return 0;
1891 }
1892
1893 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
1894                           void __user *buffer, size_t *length, loff_t *ppos)
1895 {
1896
1897         return hugetlb_sysctl_handler_common(false, table, write,
1898                                                         buffer, length, ppos);
1899 }
1900
1901 #ifdef CONFIG_NUMA
1902 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
1903                           void __user *buffer, size_t *length, loff_t *ppos)
1904 {
1905         return hugetlb_sysctl_handler_common(true, table, write,
1906                                                         buffer, length, ppos);
1907 }
1908 #endif /* CONFIG_NUMA */
1909
1910 int hugetlb_treat_movable_handler(struct ctl_table *table, int write,
1911                         void __user *buffer,
1912                         size_t *length, loff_t *ppos)
1913 {
1914         proc_dointvec(table, write, buffer, length, ppos);
1915         if (hugepages_treat_as_movable)
1916                 htlb_alloc_mask = GFP_HIGHUSER_MOVABLE;
1917         else
1918                 htlb_alloc_mask = GFP_HIGHUSER;
1919         return 0;
1920 }
1921
1922 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
1923                         void __user *buffer,
1924                         size_t *length, loff_t *ppos)
1925 {
1926         struct hstate *h = &default_hstate;
1927         unsigned long tmp;
1928
1929         if (!write)
1930                 tmp = h->nr_overcommit_huge_pages;
1931
1932         table->data = &tmp;
1933         table->maxlen = sizeof(unsigned long);
1934         proc_doulongvec_minmax(table, write, buffer, length, ppos);
1935
1936         if (write) {
1937                 spin_lock(&hugetlb_lock);
1938                 h->nr_overcommit_huge_pages = tmp;
1939                 spin_unlock(&hugetlb_lock);
1940         }
1941
1942         return 0;
1943 }
1944
1945 #endif /* CONFIG_SYSCTL */
1946
1947 void hugetlb_report_meminfo(struct seq_file *m)
1948 {
1949         struct hstate *h = &default_hstate;
1950         seq_printf(m,
1951                         "HugePages_Total:   %5lu\n"
1952                         "HugePages_Free:    %5lu\n"
1953                         "HugePages_Rsvd:    %5lu\n"
1954                         "HugePages_Surp:    %5lu\n"
1955                         "Hugepagesize:   %8lu kB\n",
1956                         h->nr_huge_pages,
1957                         h->free_huge_pages,
1958                         h->resv_huge_pages,
1959                         h->surplus_huge_pages,
1960                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1961 }
1962
1963 int hugetlb_report_node_meminfo(int nid, char *buf)
1964 {
1965         struct hstate *h = &default_hstate;
1966         return sprintf(buf,
1967                 "Node %d HugePages_Total: %5u\n"
1968                 "Node %d HugePages_Free:  %5u\n"
1969                 "Node %d HugePages_Surp:  %5u\n",
1970                 nid, h->nr_huge_pages_node[nid],
1971                 nid, h->free_huge_pages_node[nid],
1972                 nid, h->surplus_huge_pages_node[nid]);
1973 }
1974
1975 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
1976 unsigned long hugetlb_total_pages(void)
1977 {
1978         struct hstate *h = &default_hstate;
1979         return h->nr_huge_pages * pages_per_huge_page(h);
1980 }
1981
1982 static int hugetlb_acct_memory(struct hstate *h, long delta)
1983 {
1984         int ret = -ENOMEM;
1985
1986         spin_lock(&hugetlb_lock);
1987         /*
1988          * When cpuset is configured, it breaks the strict hugetlb page
1989          * reservation as the accounting is done on a global variable. Such
1990          * reservation is completely rubbish in the presence of cpuset because
1991          * the reservation is not checked against page availability for the
1992          * current cpuset. Application can still potentially OOM'ed by kernel
1993          * with lack of free htlb page in cpuset that the task is in.
1994          * Attempt to enforce strict accounting with cpuset is almost
1995          * impossible (or too ugly) because cpuset is too fluid that
1996          * task or memory node can be dynamically moved between cpusets.
1997          *
1998          * The change of semantics for shared hugetlb mapping with cpuset is
1999          * undesirable. However, in order to preserve some of the semantics,
2000          * we fall back to check against current free page availability as
2001          * a best attempt and hopefully to minimize the impact of changing
2002          * semantics that cpuset has.
2003          */
2004         if (delta > 0) {
2005                 if (gather_surplus_pages(h, delta) < 0)
2006                         goto out;
2007
2008                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2009                         return_unused_surplus_pages(h, delta);
2010                         goto out;
2011                 }
2012         }
2013
2014         ret = 0;
2015         if (delta < 0)
2016                 return_unused_surplus_pages(h, (unsigned long) -delta);
2017
2018 out:
2019         spin_unlock(&hugetlb_lock);
2020         return ret;
2021 }
2022
2023 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2024 {
2025         struct resv_map *reservations = vma_resv_map(vma);
2026
2027         /*
2028          * This new VMA should share its siblings reservation map if present.
2029          * The VMA will only ever have a valid reservation map pointer where
2030          * it is being copied for another still existing VMA.  As that VMA
2031          * has a reference to the reservation map it cannot dissappear until
2032          * after this open call completes.  It is therefore safe to take a
2033          * new reference here without additional locking.
2034          */
2035         if (reservations)
2036                 kref_get(&reservations->refs);
2037 }
2038
2039 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2040 {
2041         struct hstate *h = hstate_vma(vma);
2042         struct resv_map *reservations = vma_resv_map(vma);
2043         unsigned long reserve;
2044         unsigned long start;
2045         unsigned long end;
2046
2047         if (reservations) {
2048                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2049                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2050
2051                 reserve = (end - start) -
2052                         region_count(&reservations->regions, start, end);
2053
2054                 kref_put(&reservations->refs, resv_map_release);
2055
2056                 if (reserve) {
2057                         hugetlb_acct_memory(h, -reserve);
2058                         hugetlb_put_quota(vma->vm_file->f_mapping, reserve);
2059                 }
2060         }
2061 }
2062
2063 /*
2064  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2065  * handle_mm_fault() to try to instantiate regular-sized pages in the
2066  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2067  * this far.
2068  */
2069 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2070 {
2071         BUG();
2072         return 0;
2073 }
2074
2075 const struct vm_operations_struct hugetlb_vm_ops = {
2076         .fault = hugetlb_vm_op_fault,
2077         .open = hugetlb_vm_op_open,
2078         .close = hugetlb_vm_op_close,
2079 };
2080
2081 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2082                                 int writable)
2083 {
2084         pte_t entry;
2085
2086         if (writable) {
2087                 entry =
2088                     pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
2089         } else {
2090                 entry = huge_pte_wrprotect(mk_pte(page, vma->vm_page_prot));
2091         }
2092         entry = pte_mkyoung(entry);
2093         entry = pte_mkhuge(entry);
2094
2095         return entry;
2096 }
2097
2098 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2099                                    unsigned long address, pte_t *ptep)
2100 {
2101         pte_t entry;
2102
2103         entry = pte_mkwrite(pte_mkdirty(huge_ptep_get(ptep)));
2104         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1)) {
2105                 update_mmu_cache(vma, address, ptep);
2106         }
2107 }
2108
2109
2110 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2111                             struct vm_area_struct *vma)
2112 {
2113         pte_t *src_pte, *dst_pte, entry;
2114         struct page *ptepage;
2115         unsigned long addr;
2116         int cow;
2117         struct hstate *h = hstate_vma(vma);
2118         unsigned long sz = huge_page_size(h);
2119
2120         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2121
2122         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2123                 src_pte = huge_pte_offset(src, addr);
2124                 if (!src_pte)
2125                         continue;
2126                 dst_pte = huge_pte_alloc(dst, addr, sz);
2127                 if (!dst_pte)
2128                         goto nomem;
2129
2130                 /* If the pagetables are shared don't copy or take references */
2131                 if (dst_pte == src_pte)
2132                         continue;
2133
2134                 spin_lock(&dst->page_table_lock);
2135                 spin_lock_nested(&src->page_table_lock, SINGLE_DEPTH_NESTING);
2136                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2137                         if (cow)
2138                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2139                         entry = huge_ptep_get(src_pte);
2140                         ptepage = pte_page(entry);
2141                         get_page(ptepage);
2142                         page_dup_rmap(ptepage);
2143                         set_huge_pte_at(dst, addr, dst_pte, entry);
2144                 }
2145                 spin_unlock(&src->page_table_lock);
2146                 spin_unlock(&dst->page_table_lock);
2147         }
2148         return 0;
2149
2150 nomem:
2151         return -ENOMEM;
2152 }
2153
2154 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2155 {
2156         swp_entry_t swp;
2157
2158         if (huge_pte_none(pte) || pte_present(pte))
2159                 return 0;
2160         swp = pte_to_swp_entry(pte);
2161         if (non_swap_entry(swp) && is_hwpoison_entry(swp)) {
2162                 return 1;
2163         } else
2164                 return 0;
2165 }
2166
2167 void __unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2168                             unsigned long end, struct page *ref_page)
2169 {
2170         struct mm_struct *mm = vma->vm_mm;
2171         unsigned long address;
2172         pte_t *ptep;
2173         pte_t pte;
2174         struct page *page;
2175         struct page *tmp;
2176         struct hstate *h = hstate_vma(vma);
2177         unsigned long sz = huge_page_size(h);
2178
2179         /*
2180          * A page gathering list, protected by per file i_mmap_lock. The
2181          * lock is used to avoid list corruption from multiple unmapping
2182          * of the same page since we are using page->lru.
2183          */
2184         LIST_HEAD(page_list);
2185
2186         WARN_ON(!is_vm_hugetlb_page(vma));
2187         BUG_ON(start & ~huge_page_mask(h));
2188         BUG_ON(end & ~huge_page_mask(h));
2189
2190         mmu_notifier_invalidate_range_start(mm, start, end);
2191         spin_lock(&mm->page_table_lock);
2192         for (address = start; address < end; address += sz) {
2193                 ptep = huge_pte_offset(mm, address);
2194                 if (!ptep)
2195                         continue;
2196
2197                 if (huge_pmd_unshare(mm, &address, ptep))
2198                         continue;
2199
2200                 /*
2201                  * If a reference page is supplied, it is because a specific
2202                  * page is being unmapped, not a range. Ensure the page we
2203                  * are about to unmap is the actual page of interest.
2204                  */
2205                 if (ref_page) {
2206                         pte = huge_ptep_get(ptep);
2207                         if (huge_pte_none(pte))
2208                                 continue;
2209                         page = pte_page(pte);
2210                         if (page != ref_page)
2211                                 continue;
2212
2213                         /*
2214                          * Mark the VMA as having unmapped its page so that
2215                          * future faults in this VMA will fail rather than
2216                          * looking like data was lost
2217                          */
2218                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2219                 }
2220
2221                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2222                 if (huge_pte_none(pte))
2223                         continue;
2224
2225                 /*
2226                  * HWPoisoned hugepage is already unmapped and dropped reference
2227                  */
2228                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte)))
2229                         continue;
2230
2231                 page = pte_page(pte);
2232                 if (pte_dirty(pte))
2233                         set_page_dirty(page);
2234                 list_add(&page->lru, &page_list);
2235         }
2236         spin_unlock(&mm->page_table_lock);
2237         flush_tlb_range(vma, start, end);
2238         mmu_notifier_invalidate_range_end(mm, start, end);
2239         list_for_each_entry_safe(page, tmp, &page_list, lru) {
2240                 page_remove_rmap(page);
2241                 list_del(&page->lru);
2242                 put_page(page);
2243         }
2244 }
2245
2246 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2247                           unsigned long end, struct page *ref_page)
2248 {
2249         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2250         __unmap_hugepage_range(vma, start, end, ref_page);
2251         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2252 }
2253
2254 /*
2255  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2256  * mappping it owns the reserve page for. The intention is to unmap the page
2257  * from other VMAs and let the children be SIGKILLed if they are faulting the
2258  * same region.
2259  */
2260 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2261                                 struct page *page, unsigned long address)
2262 {
2263         struct hstate *h = hstate_vma(vma);
2264         struct vm_area_struct *iter_vma;
2265         struct address_space *mapping;
2266         struct prio_tree_iter iter;
2267         pgoff_t pgoff;
2268
2269         /*
2270          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2271          * from page cache lookup which is in HPAGE_SIZE units.
2272          */
2273         address = address & huge_page_mask(h);
2274         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT)
2275                 + (vma->vm_pgoff >> PAGE_SHIFT);
2276         mapping = (struct address_space *)page_private(page);
2277
2278         /*
2279          * Take the mapping lock for the duration of the table walk. As
2280          * this mapping should be shared between all the VMAs,
2281          * __unmap_hugepage_range() is called as the lock is already held
2282          */
2283         spin_lock(&mapping->i_mmap_lock);
2284         vma_prio_tree_foreach(iter_vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
2285                 /* Do not unmap the current VMA */
2286                 if (iter_vma == vma)
2287                         continue;
2288
2289                 /*
2290                  * Unmap the page from other VMAs without their own reserves.
2291                  * They get marked to be SIGKILLed if they fault in these
2292                  * areas. This is because a future no-page fault on this VMA
2293                  * could insert a zeroed page instead of the data existing
2294                  * from the time of fork. This would look like data corruption
2295                  */
2296                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2297                         __unmap_hugepage_range(iter_vma,
2298                                 address, address + huge_page_size(h),
2299                                 page);
2300         }
2301         spin_unlock(&mapping->i_mmap_lock);
2302
2303         return 1;
2304 }
2305
2306 /*
2307  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2308  */
2309 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2310                         unsigned long address, pte_t *ptep, pte_t pte,
2311                         struct page *pagecache_page)
2312 {
2313         struct hstate *h = hstate_vma(vma);
2314         struct page *old_page, *new_page;
2315         int avoidcopy;
2316         int outside_reserve = 0;
2317
2318         old_page = pte_page(pte);
2319
2320 retry_avoidcopy:
2321         /* If no-one else is actually using this page, avoid the copy
2322          * and just make the page writable */
2323         avoidcopy = (page_mapcount(old_page) == 1);
2324         if (avoidcopy) {
2325                 if (!trylock_page(old_page))
2326                         if (PageAnon(old_page))
2327                                 page_move_anon_rmap(old_page, vma, address);
2328                 set_huge_ptep_writable(vma, address, ptep);
2329                 return 0;
2330         }
2331
2332         /*
2333          * If the process that created a MAP_PRIVATE mapping is about to
2334          * perform a COW due to a shared page count, attempt to satisfy
2335          * the allocation without using the existing reserves. The pagecache
2336          * page is used to determine if the reserve at this address was
2337          * consumed or not. If reserves were used, a partial faulted mapping
2338          * at the time of fork() could consume its reserves on COW instead
2339          * of the full address range.
2340          */
2341         if (!(vma->vm_flags & VM_MAYSHARE) &&
2342                         is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2343                         old_page != pagecache_page)
2344                 outside_reserve = 1;
2345
2346         page_cache_get(old_page);
2347
2348         /* Drop page_table_lock as buddy allocator may be called */
2349         spin_unlock(&mm->page_table_lock);
2350         new_page = alloc_huge_page(vma, address, outside_reserve);
2351
2352         if (IS_ERR(new_page)) {
2353                 page_cache_release(old_page);
2354
2355                 /*
2356                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2357                  * it is due to references held by a child and an insufficient
2358                  * huge page pool. To guarantee the original mappers
2359                  * reliability, unmap the page from child processes. The child
2360                  * may get SIGKILLed if it later faults.
2361                  */
2362                 if (outside_reserve) {
2363                         BUG_ON(huge_pte_none(pte));
2364                         if (unmap_ref_private(mm, vma, old_page, address)) {
2365                                 BUG_ON(page_count(old_page) != 1);
2366                                 BUG_ON(huge_pte_none(pte));
2367                                 spin_lock(&mm->page_table_lock);
2368                                 goto retry_avoidcopy;
2369                         }
2370                         WARN_ON_ONCE(1);
2371                 }
2372
2373                 /* Caller expects lock to be held */
2374                 spin_lock(&mm->page_table_lock);
2375                 return -PTR_ERR(new_page);
2376         }
2377
2378         /*
2379          * When the original hugepage is shared one, it does not have
2380          * anon_vma prepared.
2381          */
2382         if (unlikely(anon_vma_prepare(vma)))
2383                 return VM_FAULT_OOM;
2384
2385         copy_huge_page(new_page, old_page, address, vma);
2386         __SetPageUptodate(new_page);
2387
2388         /*
2389          * Retake the page_table_lock to check for racing updates
2390          * before the page tables are altered
2391          */
2392         spin_lock(&mm->page_table_lock);
2393         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2394         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2395                 /* Break COW */
2396                 huge_ptep_clear_flush(vma, address, ptep);
2397                 set_huge_pte_at(mm, address, ptep,
2398                                 make_huge_pte(vma, new_page, 1));
2399                 page_remove_rmap(old_page);
2400                 hugepage_add_anon_rmap(new_page, vma, address);
2401                 /* Make the old page be freed below */
2402                 new_page = old_page;
2403         }
2404         page_cache_release(new_page);
2405         page_cache_release(old_page);
2406         return 0;
2407 }
2408
2409 /* Return the pagecache page at a given address within a VMA */
2410 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2411                         struct vm_area_struct *vma, unsigned long address)
2412 {
2413         struct address_space *mapping;
2414         pgoff_t idx;
2415
2416         mapping = vma->vm_file->f_mapping;
2417         idx = vma_hugecache_offset(h, vma, address);
2418
2419         return find_lock_page(mapping, idx);
2420 }
2421
2422 /*
2423  * Return whether there is a pagecache page to back given address within VMA.
2424  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2425  */
2426 static bool hugetlbfs_pagecache_present(struct hstate *h,
2427                         struct vm_area_struct *vma, unsigned long address)
2428 {
2429         struct address_space *mapping;
2430         pgoff_t idx;
2431         struct page *page;
2432
2433         mapping = vma->vm_file->f_mapping;
2434         idx = vma_hugecache_offset(h, vma, address);
2435
2436         page = find_get_page(mapping, idx);
2437         if (page)
2438                 put_page(page);
2439         return page != NULL;
2440 }
2441
2442 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2443                         unsigned long address, pte_t *ptep, unsigned int flags)
2444 {
2445         struct hstate *h = hstate_vma(vma);
2446         int ret = VM_FAULT_SIGBUS;
2447         pgoff_t idx;
2448         unsigned long size;
2449         struct page *page;
2450         struct address_space *mapping;
2451         pte_t new_pte;
2452
2453         /*
2454          * Currently, we are forced to kill the process in the event the
2455          * original mapper has unmapped pages from the child due to a failed
2456          * COW. Warn that such a situation has occured as it may not be obvious
2457          */
2458         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2459                 printk(KERN_WARNING
2460                         "PID %d killed due to inadequate hugepage pool\n",
2461                         current->pid);
2462                 return ret;
2463         }
2464
2465         mapping = vma->vm_file->f_mapping;
2466         idx = vma_hugecache_offset(h, vma, address);
2467
2468         /*
2469          * Use page lock to guard against racing truncation
2470          * before we get page_table_lock.
2471          */
2472 retry:
2473         page = find_lock_page(mapping, idx);
2474         if (!page) {
2475                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2476                 if (idx >= size)
2477                         goto out;
2478                 page = alloc_huge_page(vma, address, 0);
2479                 if (IS_ERR(page)) {
2480                         ret = -PTR_ERR(page);
2481                         goto out;
2482                 }
2483                 clear_huge_page(page, address, huge_page_size(h));
2484                 __SetPageUptodate(page);
2485
2486                 if (vma->vm_flags & VM_MAYSHARE) {
2487                         int err;
2488                         struct inode *inode = mapping->host;
2489
2490                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2491                         if (err) {
2492                                 put_page(page);
2493                                 if (err == -EEXIST)
2494                                         goto retry;
2495                                 goto out;
2496                         }
2497
2498                         spin_lock(&inode->i_lock);
2499                         inode->i_blocks += blocks_per_huge_page(h);
2500                         spin_unlock(&inode->i_lock);
2501                         page_dup_rmap(page);
2502                 } else {
2503                         lock_page(page);
2504                         if (unlikely(anon_vma_prepare(vma))) {
2505                                 ret = VM_FAULT_OOM;
2506                                 goto backout_unlocked;
2507                         }
2508                         hugepage_add_new_anon_rmap(page, vma, address);
2509                 }
2510         } else {
2511                 page_dup_rmap(page);
2512         }
2513
2514         /*
2515          * Since memory error handler replaces pte into hwpoison swap entry
2516          * at the time of error handling, a process which reserved but not have
2517          * the mapping to the error hugepage does not have hwpoison swap entry.
2518          * So we need to block accesses from such a process by checking
2519          * PG_hwpoison bit here.
2520          */
2521         if (unlikely(PageHWPoison(page))) {
2522                 ret = VM_FAULT_HWPOISON;
2523                 goto backout_unlocked;
2524         }
2525
2526         /*
2527          * If we are going to COW a private mapping later, we examine the
2528          * pending reservations for this page now. This will ensure that
2529          * any allocations necessary to record that reservation occur outside
2530          * the spinlock.
2531          */
2532         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2533                 if (vma_needs_reservation(h, vma, address) < 0) {
2534                         ret = VM_FAULT_OOM;
2535                         goto backout_unlocked;
2536                 }
2537
2538         spin_lock(&mm->page_table_lock);
2539         size = i_size_read(mapping->host) >> huge_page_shift(h);
2540         if (idx >= size)
2541                 goto backout;
2542
2543         ret = 0;
2544         if (!huge_pte_none(huge_ptep_get(ptep)))
2545                 goto backout;
2546
2547         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2548                                 && (vma->vm_flags & VM_SHARED)));
2549         set_huge_pte_at(mm, address, ptep, new_pte);
2550
2551         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2552                 /* Optimization, do the COW without a second fault */
2553                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page);
2554         }
2555
2556         spin_unlock(&mm->page_table_lock);
2557         unlock_page(page);
2558 out:
2559         return ret;
2560
2561 backout:
2562         spin_unlock(&mm->page_table_lock);
2563 backout_unlocked:
2564         unlock_page(page);
2565         put_page(page);
2566         goto out;
2567 }
2568
2569 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2570                         unsigned long address, unsigned int flags)
2571 {
2572         pte_t *ptep;
2573         pte_t entry;
2574         int ret;
2575         struct page *page = NULL;
2576         struct page *pagecache_page = NULL;
2577         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2578         struct hstate *h = hstate_vma(vma);
2579
2580         ptep = huge_pte_offset(mm, address);
2581         if (ptep) {
2582                 entry = huge_ptep_get(ptep);
2583                 if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2584                         return VM_FAULT_HWPOISON;
2585         }
2586
2587         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2588         if (!ptep)
2589                 return VM_FAULT_OOM;
2590
2591         /*
2592          * Serialize hugepage allocation and instantiation, so that we don't
2593          * get spurious allocation failures if two CPUs race to instantiate
2594          * the same page in the page cache.
2595          */
2596         mutex_lock(&hugetlb_instantiation_mutex);
2597         entry = huge_ptep_get(ptep);
2598         if (huge_pte_none(entry)) {
2599                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2600                 goto out_mutex;
2601         }
2602
2603         ret = 0;
2604
2605         /*
2606          * If we are going to COW the mapping later, we examine the pending
2607          * reservations for this page now. This will ensure that any
2608          * allocations necessary to record that reservation occur outside the
2609          * spinlock. For private mappings, we also lookup the pagecache
2610          * page now as it is used to determine if a reservation has been
2611          * consumed.
2612          */
2613         if ((flags & FAULT_FLAG_WRITE) && !pte_write(entry)) {
2614                 if (vma_needs_reservation(h, vma, address) < 0) {
2615                         ret = VM_FAULT_OOM;
2616                         goto out_mutex;
2617                 }
2618
2619                 if (!(vma->vm_flags & VM_MAYSHARE))
2620                         pagecache_page = hugetlbfs_pagecache_page(h,
2621                                                                 vma, address);
2622         }
2623
2624         if (!pagecache_page) {
2625                 page = pte_page(entry);
2626                 lock_page(page);
2627         }
2628
2629         spin_lock(&mm->page_table_lock);
2630         /* Check for a racing update before calling hugetlb_cow */
2631         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2632                 goto out_page_table_lock;
2633
2634
2635         if (flags & FAULT_FLAG_WRITE) {
2636                 if (!pte_write(entry)) {
2637                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2638                                                         pagecache_page);
2639                         goto out_page_table_lock;
2640                 }
2641                 entry = pte_mkdirty(entry);
2642         }
2643         entry = pte_mkyoung(entry);
2644         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2645                                                 flags & FAULT_FLAG_WRITE))
2646                 update_mmu_cache(vma, address, ptep);
2647
2648 out_page_table_lock:
2649         spin_unlock(&mm->page_table_lock);
2650
2651         if (pagecache_page) {
2652                 unlock_page(pagecache_page);
2653                 put_page(pagecache_page);
2654         } else {
2655                 unlock_page(page);
2656         }
2657
2658 out_mutex:
2659         mutex_unlock(&hugetlb_instantiation_mutex);
2660
2661         return ret;
2662 }
2663
2664 /* Can be overriden by architectures */
2665 __attribute__((weak)) struct page *
2666 follow_huge_pud(struct mm_struct *mm, unsigned long address,
2667                pud_t *pud, int write)
2668 {
2669         BUG();
2670         return NULL;
2671 }
2672
2673 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
2674                         struct page **pages, struct vm_area_struct **vmas,
2675                         unsigned long *position, int *length, int i,
2676                         unsigned int flags)
2677 {
2678         unsigned long pfn_offset;
2679         unsigned long vaddr = *position;
2680         int remainder = *length;
2681         struct hstate *h = hstate_vma(vma);
2682
2683         spin_lock(&mm->page_table_lock);
2684         while (vaddr < vma->vm_end && remainder) {
2685                 pte_t *pte;
2686                 int absent;
2687                 struct page *page;
2688
2689                 /*
2690                  * Some archs (sparc64, sh*) have multiple pte_ts to
2691                  * each hugepage.  We have to make sure we get the
2692                  * first, for the page indexing below to work.
2693                  */
2694                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
2695                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
2696
2697                 /*
2698                  * When coredumping, it suits get_dump_page if we just return
2699                  * an error where there's an empty slot with no huge pagecache
2700                  * to back it.  This way, we avoid allocating a hugepage, and
2701                  * the sparse dumpfile avoids allocating disk blocks, but its
2702                  * huge holes still show up with zeroes where they need to be.
2703                  */
2704                 if (absent && (flags & FOLL_DUMP) &&
2705                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
2706                         remainder = 0;
2707                         break;
2708                 }
2709
2710                 if (absent ||
2711                     ((flags & FOLL_WRITE) && !pte_write(huge_ptep_get(pte)))) {
2712                         int ret;
2713
2714                         spin_unlock(&mm->page_table_lock);
2715                         ret = hugetlb_fault(mm, vma, vaddr,
2716                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
2717                         spin_lock(&mm->page_table_lock);
2718                         if (!(ret & VM_FAULT_ERROR))
2719                                 continue;
2720
2721                         remainder = 0;
2722                         break;
2723                 }
2724
2725                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
2726                 page = pte_page(huge_ptep_get(pte));
2727 same_page:
2728                 if (pages) {
2729                         pages[i] = mem_map_offset(page, pfn_offset);
2730                         get_page(pages[i]);
2731                 }
2732
2733                 if (vmas)
2734                         vmas[i] = vma;
2735
2736                 vaddr += PAGE_SIZE;
2737                 ++pfn_offset;
2738                 --remainder;
2739                 ++i;
2740                 if (vaddr < vma->vm_end && remainder &&
2741                                 pfn_offset < pages_per_huge_page(h)) {
2742                         /*
2743                          * We use pfn_offset to avoid touching the pageframes
2744                          * of this compound page.
2745                          */
2746                         goto same_page;
2747                 }
2748         }
2749         spin_unlock(&mm->page_table_lock);
2750         *length = remainder;
2751         *position = vaddr;
2752
2753         return i ? i : -EFAULT;
2754 }
2755
2756 void hugetlb_change_protection(struct vm_area_struct *vma,
2757                 unsigned long address, unsigned long end, pgprot_t newprot)
2758 {
2759         struct mm_struct *mm = vma->vm_mm;
2760         unsigned long start = address;
2761         pte_t *ptep;
2762         pte_t pte;
2763         struct hstate *h = hstate_vma(vma);
2764
2765         BUG_ON(address >= end);
2766         flush_cache_range(vma, address, end);
2767
2768         spin_lock(&vma->vm_file->f_mapping->i_mmap_lock);
2769         spin_lock(&mm->page_table_lock);
2770         for (; address < end; address += huge_page_size(h)) {
2771                 ptep = huge_pte_offset(mm, address);
2772                 if (!ptep)
2773                         continue;
2774                 if (huge_pmd_unshare(mm, &address, ptep))
2775                         continue;
2776                 if (!huge_pte_none(huge_ptep_get(ptep))) {
2777                         pte = huge_ptep_get_and_clear(mm, address, ptep);
2778                         pte = pte_mkhuge(pte_modify(pte, newprot));
2779                         set_huge_pte_at(mm, address, ptep, pte);
2780                 }
2781         }
2782         spin_unlock(&mm->page_table_lock);
2783         spin_unlock(&vma->vm_file->f_mapping->i_mmap_lock);
2784
2785         flush_tlb_range(vma, start, end);
2786 }
2787
2788 int hugetlb_reserve_pages(struct inode *inode,
2789                                         long from, long to,
2790                                         struct vm_area_struct *vma,
2791                                         int acctflag)
2792 {
2793         long ret, chg;
2794         struct hstate *h = hstate_inode(inode);
2795
2796         /*
2797          * Only apply hugepage reservation if asked. At fault time, an
2798          * attempt will be made for VM_NORESERVE to allocate a page
2799          * and filesystem quota without using reserves
2800          */
2801         if (acctflag & VM_NORESERVE)
2802                 return 0;
2803
2804         /*
2805          * Shared mappings base their reservation on the number of pages that
2806          * are already allocated on behalf of the file. Private mappings need
2807          * to reserve the full area even if read-only as mprotect() may be
2808          * called to make the mapping read-write. Assume !vma is a shm mapping
2809          */
2810         if (!vma || vma->vm_flags & VM_MAYSHARE)
2811                 chg = region_chg(&inode->i_mapping->private_list, from, to);
2812         else {
2813                 struct resv_map *resv_map = resv_map_alloc();
2814                 if (!resv_map)
2815                         return -ENOMEM;
2816
2817                 chg = to - from;
2818
2819                 set_vma_resv_map(vma, resv_map);
2820                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
2821         }
2822
2823         if (chg < 0)
2824                 return chg;
2825
2826         /* There must be enough filesystem quota for the mapping */
2827         if (hugetlb_get_quota(inode->i_mapping, chg))
2828                 return -ENOSPC;
2829
2830         /*
2831          * Check enough hugepages are available for the reservation.
2832          * Hand back the quota if there are not
2833          */
2834         ret = hugetlb_acct_memory(h, chg);
2835         if (ret < 0) {
2836                 hugetlb_put_quota(inode->i_mapping, chg);
2837                 return ret;
2838         }
2839
2840         /*
2841          * Account for the reservations made. Shared mappings record regions
2842          * that have reservations as they are shared by multiple VMAs.
2843          * When the last VMA disappears, the region map says how much
2844          * the reservation was and the page cache tells how much of
2845          * the reservation was consumed. Private mappings are per-VMA and
2846          * only the consumed reservations are tracked. When the VMA
2847          * disappears, the original reservation is the VMA size and the
2848          * consumed reservations are stored in the map. Hence, nothing
2849          * else has to be done for private mappings here
2850          */
2851         if (!vma || vma->vm_flags & VM_MAYSHARE)
2852                 region_add(&inode->i_mapping->private_list, from, to);
2853         return 0;
2854 }
2855
2856 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
2857 {
2858         struct hstate *h = hstate_inode(inode);
2859         long chg = region_truncate(&inode->i_mapping->private_list, offset);
2860
2861         spin_lock(&inode->i_lock);
2862         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
2863         spin_unlock(&inode->i_lock);
2864
2865         hugetlb_put_quota(inode->i_mapping, (chg - freed));
2866         hugetlb_acct_memory(h, -(chg - freed));
2867 }
2868
2869 /*
2870  * This function is called from memory failure code.
2871  * Assume the caller holds page lock of the head page.
2872  */
2873 void __isolate_hwpoisoned_huge_page(struct page *hpage)
2874 {
2875         struct hstate *h = page_hstate(hpage);
2876         int nid = page_to_nid(hpage);
2877
2878         spin_lock(&hugetlb_lock);
2879         list_del(&hpage->lru);
2880         h->free_huge_pages--;
2881         h->free_huge_pages_node[nid]--;
2882         spin_unlock(&hugetlb_lock);
2883 }