1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
39 #include <asm/pgalloc.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
48 #include "hugetlb_vmemmap.h"
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
68 static unsigned long hugetlb_cma_size __initdata;
70 __initdata LIST_HEAD(huge_boot_pages);
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
83 DEFINE_SPINLOCK(hugetlb_lock);
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98 unsigned long start, unsigned long end);
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
104 if (spool->max_hpages != -1)
105 return spool->used_hpages == 0;
106 if (spool->min_hpages != -1)
107 return spool->rsv_hpages == spool->min_hpages;
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113 unsigned long irq_flags)
115 spin_unlock_irqrestore(&spool->lock, irq_flags);
117 /* If no pages are used, and no other handles to the subpool
118 * remain, give up any reservations based on minimum size and
119 * free the subpool */
120 if (subpool_is_free(spool)) {
121 if (spool->min_hpages != -1)
122 hugetlb_acct_memory(spool->hstate,
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
131 struct hugepage_subpool *spool;
133 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
137 spin_lock_init(&spool->lock);
139 spool->max_hpages = max_hpages;
141 spool->min_hpages = min_hpages;
143 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
147 spool->rsv_hpages = min_hpages;
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
156 spin_lock_irqsave(&spool->lock, flags);
157 BUG_ON(!spool->count);
159 unlock_or_release_subpool(spool, flags);
163 * Subpool accounting for allocating and reserving pages.
164 * Return -ENOMEM if there are not enough resources to satisfy the
165 * request. Otherwise, return the number of pages by which the
166 * global pools must be adjusted (upward). The returned value may
167 * only be different than the passed value (delta) in the case where
168 * a subpool minimum size must be maintained.
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
178 spin_lock_irq(&spool->lock);
180 if (spool->max_hpages != -1) { /* maximum size accounting */
181 if ((spool->used_hpages + delta) <= spool->max_hpages)
182 spool->used_hpages += delta;
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->rsv_hpages) {
191 if (delta > spool->rsv_hpages) {
193 * Asking for more reserves than those already taken on
194 * behalf of subpool. Return difference.
196 ret = delta - spool->rsv_hpages;
197 spool->rsv_hpages = 0;
199 ret = 0; /* reserves already accounted for */
200 spool->rsv_hpages -= delta;
205 spin_unlock_irq(&spool->lock);
210 * Subpool accounting for freeing and unreserving pages.
211 * Return the number of global page reservations that must be dropped.
212 * The return value may only be different than the passed value (delta)
213 * in the case where a subpool minimum size must be maintained.
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
224 spin_lock_irqsave(&spool->lock, flags);
226 if (spool->max_hpages != -1) /* maximum size accounting */
227 spool->used_hpages -= delta;
229 /* minimum size accounting */
230 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231 if (spool->rsv_hpages + delta <= spool->min_hpages)
234 ret = spool->rsv_hpages + delta - spool->min_hpages;
236 spool->rsv_hpages += delta;
237 if (spool->rsv_hpages > spool->min_hpages)
238 spool->rsv_hpages = spool->min_hpages;
242 * If hugetlbfs_put_super couldn't free spool due to an outstanding
243 * quota reference, free it now.
245 unlock_or_release_subpool(spool, flags);
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
252 return HUGETLBFS_SB(inode->i_sb)->spool;
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
257 return subpool_inode(file_inode(vma->vm_file));
261 * hugetlb vma_lock helper routines
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
265 if (__vma_shareable_lock(vma)) {
266 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
268 down_read(&vma_lock->rw_sema);
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
274 if (__vma_shareable_lock(vma)) {
275 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
277 up_read(&vma_lock->rw_sema);
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
283 if (__vma_shareable_lock(vma)) {
284 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
286 down_write(&vma_lock->rw_sema);
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
292 if (__vma_shareable_lock(vma)) {
293 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
295 up_write(&vma_lock->rw_sema);
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
301 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
303 if (!__vma_shareable_lock(vma))
306 return down_write_trylock(&vma_lock->rw_sema);
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
311 if (__vma_shareable_lock(vma)) {
312 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
314 lockdep_assert_held(&vma_lock->rw_sema);
318 void hugetlb_vma_lock_release(struct kref *kref)
320 struct hugetlb_vma_lock *vma_lock = container_of(kref,
321 struct hugetlb_vma_lock, refs);
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
328 struct vm_area_struct *vma = vma_lock->vma;
331 * vma_lock structure may or not be released as a result of put,
332 * it certainly will no longer be attached to vma so clear pointer.
333 * Semaphore synchronizes access to vma_lock->vma field.
335 vma_lock->vma = NULL;
336 vma->vm_private_data = NULL;
337 up_write(&vma_lock->rw_sema);
338 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
343 if (__vma_shareable_lock(vma)) {
344 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
346 __hugetlb_vma_unlock_write_put(vma_lock);
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
353 * Only present in sharable vmas.
355 if (!vma || !__vma_shareable_lock(vma))
358 if (vma->vm_private_data) {
359 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
361 down_write(&vma_lock->rw_sema);
362 __hugetlb_vma_unlock_write_put(vma_lock);
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
368 struct hugetlb_vma_lock *vma_lock;
370 /* Only establish in (flags) sharable vmas */
371 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
374 /* Should never get here with non-NULL vm_private_data */
375 if (vma->vm_private_data)
378 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
381 * If we can not allocate structure, then vma can not
382 * participate in pmd sharing. This is only a possible
383 * performance enhancement and memory saving issue.
384 * However, the lock is also used to synchronize page
385 * faults with truncation. If the lock is not present,
386 * unlikely races could leave pages in a file past i_size
387 * until the file is removed. Warn in the unlikely case of
388 * allocation failure.
390 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
394 kref_init(&vma_lock->refs);
395 init_rwsem(&vma_lock->rw_sema);
397 vma->vm_private_data = vma_lock;
400 /* Helper that removes a struct file_region from the resv_map cache and returns
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
406 struct file_region *nrg;
408 VM_BUG_ON(resv->region_cache_count <= 0);
410 resv->region_cache_count--;
411 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412 list_del(&nrg->link);
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421 struct file_region *rg)
423 #ifdef CONFIG_CGROUP_HUGETLB
424 nrg->reservation_counter = rg->reservation_counter;
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
434 struct resv_map *resv,
435 struct file_region *nrg)
437 #ifdef CONFIG_CGROUP_HUGETLB
439 nrg->reservation_counter =
440 &h_cg->rsvd_hugepage[hstate_index(h)];
441 nrg->css = &h_cg->css;
443 * The caller will hold exactly one h_cg->css reference for the
444 * whole contiguous reservation region. But this area might be
445 * scattered when there are already some file_regions reside in
446 * it. As a result, many file_regions may share only one css
447 * reference. In order to ensure that one file_region must hold
448 * exactly one h_cg->css reference, we should do css_get for
449 * each file_region and leave the reference held by caller
453 if (!resv->pages_per_hpage)
454 resv->pages_per_hpage = pages_per_huge_page(h);
455 /* pages_per_hpage should be the same for all entries in
458 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
460 nrg->reservation_counter = NULL;
466 static void put_uncharge_info(struct file_region *rg)
468 #ifdef CONFIG_CGROUP_HUGETLB
474 static bool has_same_uncharge_info(struct file_region *rg,
475 struct file_region *org)
477 #ifdef CONFIG_CGROUP_HUGETLB
478 return rg->reservation_counter == org->reservation_counter &&
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
488 struct file_region *nrg, *prg;
490 prg = list_prev_entry(rg, link);
491 if (&prg->link != &resv->regions && prg->to == rg->from &&
492 has_same_uncharge_info(prg, rg)) {
496 put_uncharge_info(rg);
502 nrg = list_next_entry(rg, link);
503 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504 has_same_uncharge_info(nrg, rg)) {
505 nrg->from = rg->from;
508 put_uncharge_info(rg);
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515 long to, struct hstate *h, struct hugetlb_cgroup *cg,
516 long *regions_needed)
518 struct file_region *nrg;
520 if (!regions_needed) {
521 nrg = get_file_region_entry_from_cache(map, from, to);
522 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523 list_add(&nrg->link, rg);
524 coalesce_file_region(map, nrg);
526 *regions_needed += 1;
532 * Must be called with resv->lock held.
534 * Calling this with regions_needed != NULL will count the number of pages
535 * to be added but will not modify the linked list. And regions_needed will
536 * indicate the number of file_regions needed in the cache to carry out to add
537 * the regions for this range.
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540 struct hugetlb_cgroup *h_cg,
541 struct hstate *h, long *regions_needed)
544 struct list_head *head = &resv->regions;
545 long last_accounted_offset = f;
546 struct file_region *iter, *trg = NULL;
547 struct list_head *rg = NULL;
552 /* In this loop, we essentially handle an entry for the range
553 * [last_accounted_offset, iter->from), at every iteration, with some
556 list_for_each_entry_safe(iter, trg, head, link) {
557 /* Skip irrelevant regions that start before our range. */
558 if (iter->from < f) {
559 /* If this region ends after the last accounted offset,
560 * then we need to update last_accounted_offset.
562 if (iter->to > last_accounted_offset)
563 last_accounted_offset = iter->to;
567 /* When we find a region that starts beyond our range, we've
570 if (iter->from >= t) {
571 rg = iter->link.prev;
575 /* Add an entry for last_accounted_offset -> iter->from, and
576 * update last_accounted_offset.
578 if (iter->from > last_accounted_offset)
579 add += hugetlb_resv_map_add(resv, iter->link.prev,
580 last_accounted_offset,
584 last_accounted_offset = iter->to;
587 /* Handle the case where our range extends beyond
588 * last_accounted_offset.
592 if (last_accounted_offset < t)
593 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594 t, h, h_cg, regions_needed);
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
601 static int allocate_file_region_entries(struct resv_map *resv,
603 __must_hold(&resv->lock)
605 LIST_HEAD(allocated_regions);
606 int to_allocate = 0, i = 0;
607 struct file_region *trg = NULL, *rg = NULL;
609 VM_BUG_ON(regions_needed < 0);
612 * Check for sufficient descriptors in the cache to accommodate
613 * the number of in progress add operations plus regions_needed.
615 * This is a while loop because when we drop the lock, some other call
616 * to region_add or region_del may have consumed some region_entries,
617 * so we keep looping here until we finally have enough entries for
618 * (adds_in_progress + regions_needed).
620 while (resv->region_cache_count <
621 (resv->adds_in_progress + regions_needed)) {
622 to_allocate = resv->adds_in_progress + regions_needed -
623 resv->region_cache_count;
625 /* At this point, we should have enough entries in the cache
626 * for all the existing adds_in_progress. We should only be
627 * needing to allocate for regions_needed.
629 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
631 spin_unlock(&resv->lock);
632 for (i = 0; i < to_allocate; i++) {
633 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
636 list_add(&trg->link, &allocated_regions);
639 spin_lock(&resv->lock);
641 list_splice(&allocated_regions, &resv->region_cache);
642 resv->region_cache_count += to_allocate;
648 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
656 * Add the huge page range represented by [f, t) to the reserve
657 * map. Regions will be taken from the cache to fill in this range.
658 * Sufficient regions should exist in the cache due to the previous
659 * call to region_chg with the same range, but in some cases the cache will not
660 * have sufficient entries due to races with other code doing region_add or
661 * region_del. The extra needed entries will be allocated.
663 * regions_needed is the out value provided by a previous call to region_chg.
665 * Return the number of new huge pages added to the map. This number is greater
666 * than or equal to zero. If file_region entries needed to be allocated for
667 * this operation and we were not able to allocate, it returns -ENOMEM.
668 * region_add of regions of length 1 never allocate file_regions and cannot
669 * fail; region_chg will always allocate at least 1 entry and a region_add for
670 * 1 page will only require at most 1 entry.
672 static long region_add(struct resv_map *resv, long f, long t,
673 long in_regions_needed, struct hstate *h,
674 struct hugetlb_cgroup *h_cg)
676 long add = 0, actual_regions_needed = 0;
678 spin_lock(&resv->lock);
681 /* Count how many regions are actually needed to execute this add. */
682 add_reservation_in_range(resv, f, t, NULL, NULL,
683 &actual_regions_needed);
686 * Check for sufficient descriptors in the cache to accommodate
687 * this add operation. Note that actual_regions_needed may be greater
688 * than in_regions_needed, as the resv_map may have been modified since
689 * the region_chg call. In this case, we need to make sure that we
690 * allocate extra entries, such that we have enough for all the
691 * existing adds_in_progress, plus the excess needed for this
694 if (actual_regions_needed > in_regions_needed &&
695 resv->region_cache_count <
696 resv->adds_in_progress +
697 (actual_regions_needed - in_regions_needed)) {
698 /* region_add operation of range 1 should never need to
699 * allocate file_region entries.
701 VM_BUG_ON(t - f <= 1);
703 if (allocate_file_region_entries(
704 resv, actual_regions_needed - in_regions_needed)) {
711 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
713 resv->adds_in_progress -= in_regions_needed;
715 spin_unlock(&resv->lock);
720 * Examine the existing reserve map and determine how many
721 * huge pages in the specified range [f, t) are NOT currently
722 * represented. This routine is called before a subsequent
723 * call to region_add that will actually modify the reserve
724 * map to add the specified range [f, t). region_chg does
725 * not change the number of huge pages represented by the
726 * map. A number of new file_region structures is added to the cache as a
727 * placeholder, for the subsequent region_add call to use. At least 1
728 * file_region structure is added.
730 * out_regions_needed is the number of regions added to the
731 * resv->adds_in_progress. This value needs to be provided to a follow up call
732 * to region_add or region_abort for proper accounting.
734 * Returns the number of huge pages that need to be added to the existing
735 * reservation map for the range [f, t). This number is greater or equal to
736 * zero. -ENOMEM is returned if a new file_region structure or cache entry
737 * is needed and can not be allocated.
739 static long region_chg(struct resv_map *resv, long f, long t,
740 long *out_regions_needed)
744 spin_lock(&resv->lock);
746 /* Count how many hugepages in this range are NOT represented. */
747 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
750 if (*out_regions_needed == 0)
751 *out_regions_needed = 1;
753 if (allocate_file_region_entries(resv, *out_regions_needed))
756 resv->adds_in_progress += *out_regions_needed;
758 spin_unlock(&resv->lock);
763 * Abort the in progress add operation. The adds_in_progress field
764 * of the resv_map keeps track of the operations in progress between
765 * calls to region_chg and region_add. Operations are sometimes
766 * aborted after the call to region_chg. In such cases, region_abort
767 * is called to decrement the adds_in_progress counter. regions_needed
768 * is the value returned by the region_chg call, it is used to decrement
769 * the adds_in_progress counter.
771 * NOTE: The range arguments [f, t) are not needed or used in this
772 * routine. They are kept to make reading the calling code easier as
773 * arguments will match the associated region_chg call.
775 static void region_abort(struct resv_map *resv, long f, long t,
778 spin_lock(&resv->lock);
779 VM_BUG_ON(!resv->region_cache_count);
780 resv->adds_in_progress -= regions_needed;
781 spin_unlock(&resv->lock);
785 * Delete the specified range [f, t) from the reserve map. If the
786 * t parameter is LONG_MAX, this indicates that ALL regions after f
787 * should be deleted. Locate the regions which intersect [f, t)
788 * and either trim, delete or split the existing regions.
790 * Returns the number of huge pages deleted from the reserve map.
791 * In the normal case, the return value is zero or more. In the
792 * case where a region must be split, a new region descriptor must
793 * be allocated. If the allocation fails, -ENOMEM will be returned.
794 * NOTE: If the parameter t == LONG_MAX, then we will never split
795 * a region and possibly return -ENOMEM. Callers specifying
796 * t == LONG_MAX do not need to check for -ENOMEM error.
798 static long region_del(struct resv_map *resv, long f, long t)
800 struct list_head *head = &resv->regions;
801 struct file_region *rg, *trg;
802 struct file_region *nrg = NULL;
806 spin_lock(&resv->lock);
807 list_for_each_entry_safe(rg, trg, head, link) {
809 * Skip regions before the range to be deleted. file_region
810 * ranges are normally of the form [from, to). However, there
811 * may be a "placeholder" entry in the map which is of the form
812 * (from, to) with from == to. Check for placeholder entries
813 * at the beginning of the range to be deleted.
815 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
821 if (f > rg->from && t < rg->to) { /* Must split region */
823 * Check for an entry in the cache before dropping
824 * lock and attempting allocation.
827 resv->region_cache_count > resv->adds_in_progress) {
828 nrg = list_first_entry(&resv->region_cache,
831 list_del(&nrg->link);
832 resv->region_cache_count--;
836 spin_unlock(&resv->lock);
837 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
844 hugetlb_cgroup_uncharge_file_region(
845 resv, rg, t - f, false);
847 /* New entry for end of split region */
851 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
853 INIT_LIST_HEAD(&nrg->link);
855 /* Original entry is trimmed */
858 list_add(&nrg->link, &rg->link);
863 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864 del += rg->to - rg->from;
865 hugetlb_cgroup_uncharge_file_region(resv, rg,
866 rg->to - rg->from, true);
872 if (f <= rg->from) { /* Trim beginning of region */
873 hugetlb_cgroup_uncharge_file_region(resv, rg,
874 t - rg->from, false);
878 } else { /* Trim end of region */
879 hugetlb_cgroup_uncharge_file_region(resv, rg,
887 spin_unlock(&resv->lock);
893 * A rare out of memory error was encountered which prevented removal of
894 * the reserve map region for a page. The huge page itself was free'ed
895 * and removed from the page cache. This routine will adjust the subpool
896 * usage count, and the global reserve count if needed. By incrementing
897 * these counts, the reserve map entry which could not be deleted will
898 * appear as a "reserved" entry instead of simply dangling with incorrect
901 void hugetlb_fix_reserve_counts(struct inode *inode)
903 struct hugepage_subpool *spool = subpool_inode(inode);
905 bool reserved = false;
907 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908 if (rsv_adjust > 0) {
909 struct hstate *h = hstate_inode(inode);
911 if (!hugetlb_acct_memory(h, 1))
913 } else if (!rsv_adjust) {
918 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
922 * Count and return the number of huge pages in the reserve map
923 * that intersect with the range [f, t).
925 static long region_count(struct resv_map *resv, long f, long t)
927 struct list_head *head = &resv->regions;
928 struct file_region *rg;
931 spin_lock(&resv->lock);
932 /* Locate each segment we overlap with, and count that overlap. */
933 list_for_each_entry(rg, head, link) {
942 seg_from = max(rg->from, f);
943 seg_to = min(rg->to, t);
945 chg += seg_to - seg_from;
947 spin_unlock(&resv->lock);
953 * Convert the address within this vma to the page offset within
954 * the mapping, in pagecache page units; huge pages here.
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957 struct vm_area_struct *vma, unsigned long address)
959 return ((address - vma->vm_start) >> huge_page_shift(h)) +
960 (vma->vm_pgoff >> huge_page_order(h));
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964 unsigned long address)
966 return vma_hugecache_offset(hstate_vma(vma), vma, address);
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
971 * Return the size of the pages allocated when backing a VMA. In the majority
972 * cases this will be same size as used by the page table entries.
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
976 if (vma->vm_ops && vma->vm_ops->pagesize)
977 return vma->vm_ops->pagesize(vma);
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
983 * Return the page size being used by the MMU to back a VMA. In the majority
984 * of cases, the page size used by the kernel matches the MMU size. On
985 * architectures where it differs, an architecture-specific 'strong'
986 * version of this symbol is required.
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
990 return vma_kernel_pagesize(vma);
994 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
995 * bits of the reservation map pointer, which are always clear due to
998 #define HPAGE_RESV_OWNER (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1003 * These helpers are used to track how many pages are reserved for
1004 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005 * is guaranteed to have their future faults succeed.
1007 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008 * the reserve counters are updated with the hugetlb_lock held. It is safe
1009 * to reset the VMA at fork() time as it is not in use yet and there is no
1010 * chance of the global counters getting corrupted as a result of the values.
1012 * The private mapping reservation is represented in a subtly different
1013 * manner to a shared mapping. A shared mapping has a region map associated
1014 * with the underlying file, this region map represents the backing file
1015 * pages which have ever had a reservation assigned which this persists even
1016 * after the page is instantiated. A private mapping has a region map
1017 * associated with the original mmap which is attached to all VMAs which
1018 * reference it, this region map represents those offsets which have consumed
1019 * reservation ie. where pages have been instantiated.
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1023 return (unsigned long)vma->vm_private_data;
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027 unsigned long value)
1029 vma->vm_private_data = (void *)value;
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034 struct hugetlb_cgroup *h_cg,
1037 #ifdef CONFIG_CGROUP_HUGETLB
1039 resv_map->reservation_counter = NULL;
1040 resv_map->pages_per_hpage = 0;
1041 resv_map->css = NULL;
1043 resv_map->reservation_counter =
1044 &h_cg->rsvd_hugepage[hstate_index(h)];
1045 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046 resv_map->css = &h_cg->css;
1051 struct resv_map *resv_map_alloc(void)
1053 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1056 if (!resv_map || !rg) {
1062 kref_init(&resv_map->refs);
1063 spin_lock_init(&resv_map->lock);
1064 INIT_LIST_HEAD(&resv_map->regions);
1066 resv_map->adds_in_progress = 0;
1068 * Initialize these to 0. On shared mappings, 0's here indicate these
1069 * fields don't do cgroup accounting. On private mappings, these will be
1070 * re-initialized to the proper values, to indicate that hugetlb cgroup
1071 * reservations are to be un-charged from here.
1073 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1075 INIT_LIST_HEAD(&resv_map->region_cache);
1076 list_add(&rg->link, &resv_map->region_cache);
1077 resv_map->region_cache_count = 1;
1082 void resv_map_release(struct kref *ref)
1084 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085 struct list_head *head = &resv_map->region_cache;
1086 struct file_region *rg, *trg;
1088 /* Clear out any active regions before we release the map. */
1089 region_del(resv_map, 0, LONG_MAX);
1091 /* ... and any entries left in the cache */
1092 list_for_each_entry_safe(rg, trg, head, link) {
1093 list_del(&rg->link);
1097 VM_BUG_ON(resv_map->adds_in_progress);
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1105 * At inode evict time, i_mapping may not point to the original
1106 * address space within the inode. This original address space
1107 * contains the pointer to the resv_map. So, always use the
1108 * address space embedded within the inode.
1109 * The VERY common case is inode->mapping == &inode->i_data but,
1110 * this may not be true for device special inodes.
1112 return (struct resv_map *)(&inode->i_data)->private_data;
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1117 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118 if (vma->vm_flags & VM_MAYSHARE) {
1119 struct address_space *mapping = vma->vm_file->f_mapping;
1120 struct inode *inode = mapping->host;
1122 return inode_resv_map(inode);
1125 return (struct resv_map *)(get_vma_private_data(vma) &
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1132 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1135 set_vma_private_data(vma, (get_vma_private_data(vma) &
1136 HPAGE_RESV_MASK) | (unsigned long)map);
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1141 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1144 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1149 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1151 return (get_vma_private_data(vma) & flag) != 0;
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1156 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1158 * Clear vm_private_data
1159 * - For shared mappings this is a per-vma semaphore that may be
1160 * allocated in a subsequent call to hugetlb_vm_op_open.
1161 * Before clearing, make sure pointer is not associated with vma
1162 * as this will leak the structure. This is the case when called
1163 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164 * been called to allocate a new structure.
1165 * - For MAP_PRIVATE mappings, this is the reserve map which does
1166 * not apply to children. Faults generated by the children are
1167 * not guaranteed to succeed, even if read-only.
1169 if (vma->vm_flags & VM_MAYSHARE) {
1170 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1172 if (vma_lock && vma_lock->vma != vma)
1173 vma->vm_private_data = NULL;
1175 vma->vm_private_data = NULL;
1179 * Reset and decrement one ref on hugepage private reservation.
1180 * Called with mm->mmap_lock writer semaphore held.
1181 * This function should be only used by move_vma() and operate on
1182 * same sized vma. It should never come here with last ref on the
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1188 * Clear the old hugetlb private page reservation.
1189 * It has already been transferred to new_vma.
1191 * During a mremap() operation of a hugetlb vma we call move_vma()
1192 * which copies vma into new_vma and unmaps vma. After the copy
1193 * operation both new_vma and vma share a reference to the resv_map
1194 * struct, and at that point vma is about to be unmapped. We don't
1195 * want to return the reservation to the pool at unmap of vma because
1196 * the reservation still lives on in new_vma, so simply decrement the
1197 * ref here and remove the resv_map reference from this vma.
1199 struct resv_map *reservations = vma_resv_map(vma);
1201 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203 kref_put(&reservations->refs, resv_map_release);
1206 hugetlb_dup_vma_private(vma);
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1212 if (vma->vm_flags & VM_NORESERVE) {
1214 * This address is already reserved by other process(chg == 0),
1215 * so, we should decrement reserved count. Without decrementing,
1216 * reserve count remains after releasing inode, because this
1217 * allocated page will go into page cache and is regarded as
1218 * coming from reserved pool in releasing step. Currently, we
1219 * don't have any other solution to deal with this situation
1220 * properly, so add work-around here.
1222 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1228 /* Shared mappings always use reserves */
1229 if (vma->vm_flags & VM_MAYSHARE) {
1231 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1232 * be a region map for all pages. The only situation where
1233 * there is no region map is if a hole was punched via
1234 * fallocate. In this case, there really are no reserves to
1235 * use. This situation is indicated if chg != 0.
1244 * Only the process that called mmap() has reserves for
1247 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1249 * Like the shared case above, a hole punch or truncate
1250 * could have been performed on the private mapping.
1251 * Examine the value of chg to determine if reserves
1252 * actually exist or were previously consumed.
1253 * Very Subtle - The value of chg comes from a previous
1254 * call to vma_needs_reserves(). The reserve map for
1255 * private mappings has different (opposite) semantics
1256 * than that of shared mappings. vma_needs_reserves()
1257 * has already taken this difference in semantics into
1258 * account. Therefore, the meaning of chg is the same
1259 * as in the shared case above. Code could easily be
1260 * combined, but keeping it separate draws attention to
1261 * subtle differences.
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1274 int nid = folio_nid(folio);
1276 lockdep_assert_held(&hugetlb_lock);
1277 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1279 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280 h->free_huge_pages++;
1281 h->free_huge_pages_node[nid]++;
1282 folio_set_hugetlb_freed(folio);
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1288 struct folio *folio;
1289 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1291 lockdep_assert_held(&hugetlb_lock);
1292 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293 if (pin && !folio_is_longterm_pinnable(folio))
1296 if (folio_test_hwpoison(folio))
1299 list_move(&folio->lru, &h->hugepage_activelist);
1300 folio_ref_unfreeze(folio, 1);
1301 folio_clear_hugetlb_freed(folio);
1302 h->free_huge_pages--;
1303 h->free_huge_pages_node[nid]--;
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311 int nid, nodemask_t *nmask)
1313 unsigned int cpuset_mems_cookie;
1314 struct zonelist *zonelist;
1317 int node = NUMA_NO_NODE;
1319 zonelist = node_zonelist(nid, gfp_mask);
1322 cpuset_mems_cookie = read_mems_allowed_begin();
1323 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324 struct folio *folio;
1326 if (!cpuset_zone_allowed(zone, gfp_mask))
1329 * no need to ask again on the same node. Pool is node rather than
1332 if (zone_to_nid(zone) == node)
1334 node = zone_to_nid(zone);
1336 folio = dequeue_hugetlb_folio_node_exact(h, node);
1340 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1346 static unsigned long available_huge_pages(struct hstate *h)
1348 return h->free_huge_pages - h->resv_huge_pages;
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352 struct vm_area_struct *vma,
1353 unsigned long address, int avoid_reserve,
1356 struct folio *folio = NULL;
1357 struct mempolicy *mpol;
1359 nodemask_t *nodemask;
1363 * A child process with MAP_PRIVATE mappings created by their parent
1364 * have no page reserves. This check ensures that reservations are
1365 * not "stolen". The child may still get SIGKILLed
1367 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1370 /* If reserves cannot be used, ensure enough pages are in the pool */
1371 if (avoid_reserve && !available_huge_pages(h))
1374 gfp_mask = htlb_alloc_mask(h);
1375 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1377 if (mpol_is_preferred_many(mpol)) {
1378 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1381 /* Fallback to all nodes if page==NULL */
1386 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1389 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390 folio_set_hugetlb_restore_reserve(folio);
1391 h->resv_huge_pages--;
1394 mpol_cond_put(mpol);
1402 * common helper functions for hstate_next_node_to_{alloc|free}.
1403 * We may have allocated or freed a huge page based on a different
1404 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405 * be outside of *nodes_allowed. Ensure that we use an allowed
1406 * node for alloc or free.
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1410 nid = next_node_in(nid, *nodes_allowed);
1411 VM_BUG_ON(nid >= MAX_NUMNODES);
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1418 if (!node_isset(nid, *nodes_allowed))
1419 nid = next_node_allowed(nid, nodes_allowed);
1424 * returns the previously saved node ["this node"] from which to
1425 * allocate a persistent huge page for the pool and advance the
1426 * next node from which to allocate, handling wrap at end of node
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430 nodemask_t *nodes_allowed)
1434 VM_BUG_ON(!nodes_allowed);
1436 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1443 * helper for remove_pool_huge_page() - return the previously saved
1444 * node ["this node"] from which to free a huge page. Advance the
1445 * next node id whether or not we find a free huge page to free so
1446 * that the next attempt to free addresses the next node.
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1452 VM_BUG_ON(!nodes_allowed);
1454 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1461 for (nr_nodes = nodes_weight(*mask); \
1463 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1467 for (nr_nodes = nodes_weight(*mask); \
1469 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474 unsigned int order, bool demote)
1477 int nr_pages = 1 << order;
1480 atomic_set(&folio->_entire_mapcount, 0);
1481 atomic_set(&folio->_nr_pages_mapped, 0);
1482 atomic_set(&folio->_pincount, 0);
1484 for (i = 1; i < nr_pages; i++) {
1485 p = folio_page(folio, i);
1487 clear_compound_head(p);
1489 set_page_refcounted(p);
1492 __folio_clear_head(folio);
1495 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1498 __destroy_compound_gigantic_folio(folio, order, true);
1501 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1502 static void destroy_compound_gigantic_folio(struct folio *folio,
1505 __destroy_compound_gigantic_folio(folio, order, false);
1508 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1511 * If the page isn't allocated using the cma allocator,
1512 * cma_release() returns false.
1515 int nid = folio_nid(folio);
1517 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1521 free_contig_range(folio_pfn(folio), 1 << order);
1524 #ifdef CONFIG_CONTIG_ALLOC
1525 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1526 int nid, nodemask_t *nodemask)
1529 unsigned long nr_pages = pages_per_huge_page(h);
1530 if (nid == NUMA_NO_NODE)
1531 nid = numa_mem_id();
1537 if (hugetlb_cma[nid]) {
1538 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1539 huge_page_order(h), true);
1541 return page_folio(page);
1544 if (!(gfp_mask & __GFP_THISNODE)) {
1545 for_each_node_mask(node, *nodemask) {
1546 if (node == nid || !hugetlb_cma[node])
1549 page = cma_alloc(hugetlb_cma[node], nr_pages,
1550 huge_page_order(h), true);
1552 return page_folio(page);
1558 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1559 return page ? page_folio(page) : NULL;
1562 #else /* !CONFIG_CONTIG_ALLOC */
1563 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1564 int nid, nodemask_t *nodemask)
1568 #endif /* CONFIG_CONTIG_ALLOC */
1570 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572 int nid, nodemask_t *nodemask)
1576 static inline void free_gigantic_folio(struct folio *folio,
1577 unsigned int order) { }
1578 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1579 unsigned int order) { }
1583 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1584 * as just a compound page.
1586 * A reference is held on the folio, except in the case of demote.
1588 * Must be called with hugetlb lock held.
1590 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1591 bool adjust_surplus,
1594 int nid = folio_nid(folio);
1596 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1597 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1599 lockdep_assert_held(&hugetlb_lock);
1600 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1603 list_del(&folio->lru);
1605 if (folio_test_hugetlb_freed(folio)) {
1606 h->free_huge_pages--;
1607 h->free_huge_pages_node[nid]--;
1609 if (adjust_surplus) {
1610 h->surplus_huge_pages--;
1611 h->surplus_huge_pages_node[nid]--;
1617 * For non-gigantic pages set the destructor to the normal compound
1618 * page dtor. This is needed in case someone takes an additional
1619 * temporary ref to the page, and freeing is delayed until they drop
1622 * For gigantic pages set the destructor to the null dtor. This
1623 * destructor will never be called. Before freeing the gigantic
1624 * page destroy_compound_gigantic_folio will turn the folio into a
1625 * simple group of pages. After this the destructor does not
1628 * This handles the case where more than one ref is held when and
1629 * after update_and_free_hugetlb_folio is called.
1631 * In the case of demote we do not ref count the page as it will soon
1632 * be turned into a page of smaller size.
1635 folio_ref_unfreeze(folio, 1);
1636 if (hstate_is_gigantic(h))
1637 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1639 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1642 h->nr_huge_pages_node[nid]--;
1645 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1646 bool adjust_surplus)
1648 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1651 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1652 bool adjust_surplus)
1654 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1657 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1658 bool adjust_surplus)
1661 int nid = folio_nid(folio);
1663 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1665 lockdep_assert_held(&hugetlb_lock);
1667 INIT_LIST_HEAD(&folio->lru);
1669 h->nr_huge_pages_node[nid]++;
1671 if (adjust_surplus) {
1672 h->surplus_huge_pages++;
1673 h->surplus_huge_pages_node[nid]++;
1676 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1677 folio_change_private(folio, NULL);
1679 * We have to set hugetlb_vmemmap_optimized again as above
1680 * folio_change_private(folio, NULL) cleared it.
1682 folio_set_hugetlb_vmemmap_optimized(folio);
1685 * This folio is about to be managed by the hugetlb allocator and
1686 * should have no users. Drop our reference, and check for others
1689 zeroed = folio_put_testzero(folio);
1690 if (unlikely(!zeroed))
1692 * It is VERY unlikely soneone else has taken a ref on
1693 * the page. In this case, we simply return as the
1694 * hugetlb destructor (free_huge_page) will be called
1695 * when this other ref is dropped.
1699 arch_clear_hugepage_flags(&folio->page);
1700 enqueue_hugetlb_folio(h, folio);
1703 static void __update_and_free_hugetlb_folio(struct hstate *h,
1704 struct folio *folio)
1707 struct page *subpage;
1709 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1713 * If we don't know which subpages are hwpoisoned, we can't free
1714 * the hugepage, so it's leaked intentionally.
1716 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1719 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1720 spin_lock_irq(&hugetlb_lock);
1722 * If we cannot allocate vmemmap pages, just refuse to free the
1723 * page and put the page back on the hugetlb free list and treat
1724 * as a surplus page.
1726 add_hugetlb_folio(h, folio, true);
1727 spin_unlock_irq(&hugetlb_lock);
1732 * Move PageHWPoison flag from head page to the raw error pages,
1733 * which makes any healthy subpages reusable.
1735 if (unlikely(folio_test_hwpoison(folio)))
1736 folio_clear_hugetlb_hwpoison(folio);
1738 for (i = 0; i < pages_per_huge_page(h); i++) {
1739 subpage = folio_page(folio, i);
1740 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1741 1 << PG_referenced | 1 << PG_dirty |
1742 1 << PG_active | 1 << PG_private |
1747 * Non-gigantic pages demoted from CMA allocated gigantic pages
1748 * need to be given back to CMA in free_gigantic_folio.
1750 if (hstate_is_gigantic(h) ||
1751 hugetlb_cma_folio(folio, huge_page_order(h))) {
1752 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1753 free_gigantic_folio(folio, huge_page_order(h));
1755 __free_pages(&folio->page, huge_page_order(h));
1760 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1761 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1762 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1763 * the vmemmap pages.
1765 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1766 * freed and frees them one-by-one. As the page->mapping pointer is going
1767 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1768 * structure of a lockless linked list of huge pages to be freed.
1770 static LLIST_HEAD(hpage_freelist);
1772 static void free_hpage_workfn(struct work_struct *work)
1774 struct llist_node *node;
1776 node = llist_del_all(&hpage_freelist);
1782 page = container_of((struct address_space **)node,
1783 struct page, mapping);
1785 page->mapping = NULL;
1787 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1788 * is going to trigger because a previous call to
1789 * remove_hugetlb_folio() will call folio_set_compound_dtor
1790 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1793 h = size_to_hstate(page_size(page));
1795 __update_and_free_hugetlb_folio(h, page_folio(page));
1800 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1802 static inline void flush_free_hpage_work(struct hstate *h)
1804 if (hugetlb_vmemmap_optimizable(h))
1805 flush_work(&free_hpage_work);
1808 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1811 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1812 __update_and_free_hugetlb_folio(h, folio);
1817 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1819 * Only call schedule_work() if hpage_freelist is previously
1820 * empty. Otherwise, schedule_work() had been called but the workfn
1821 * hasn't retrieved the list yet.
1823 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1824 schedule_work(&free_hpage_work);
1827 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1829 struct page *page, *t_page;
1830 struct folio *folio;
1832 list_for_each_entry_safe(page, t_page, list, lru) {
1833 folio = page_folio(page);
1834 update_and_free_hugetlb_folio(h, folio, false);
1839 struct hstate *size_to_hstate(unsigned long size)
1843 for_each_hstate(h) {
1844 if (huge_page_size(h) == size)
1850 void free_huge_page(struct page *page)
1853 * Can't pass hstate in here because it is called from the
1854 * compound page destructor.
1856 struct folio *folio = page_folio(page);
1857 struct hstate *h = folio_hstate(folio);
1858 int nid = folio_nid(folio);
1859 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1860 bool restore_reserve;
1861 unsigned long flags;
1863 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1864 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1866 hugetlb_set_folio_subpool(folio, NULL);
1867 if (folio_test_anon(folio))
1868 __ClearPageAnonExclusive(&folio->page);
1869 folio->mapping = NULL;
1870 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1871 folio_clear_hugetlb_restore_reserve(folio);
1874 * If HPageRestoreReserve was set on page, page allocation consumed a
1875 * reservation. If the page was associated with a subpool, there
1876 * would have been a page reserved in the subpool before allocation
1877 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1878 * reservation, do not call hugepage_subpool_put_pages() as this will
1879 * remove the reserved page from the subpool.
1881 if (!restore_reserve) {
1883 * A return code of zero implies that the subpool will be
1884 * under its minimum size if the reservation is not restored
1885 * after page is free. Therefore, force restore_reserve
1888 if (hugepage_subpool_put_pages(spool, 1) == 0)
1889 restore_reserve = true;
1892 spin_lock_irqsave(&hugetlb_lock, flags);
1893 folio_clear_hugetlb_migratable(folio);
1894 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1895 pages_per_huge_page(h), folio);
1896 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1897 pages_per_huge_page(h), folio);
1898 if (restore_reserve)
1899 h->resv_huge_pages++;
1901 if (folio_test_hugetlb_temporary(folio)) {
1902 remove_hugetlb_folio(h, folio, false);
1903 spin_unlock_irqrestore(&hugetlb_lock, flags);
1904 update_and_free_hugetlb_folio(h, folio, true);
1905 } else if (h->surplus_huge_pages_node[nid]) {
1906 /* remove the page from active list */
1907 remove_hugetlb_folio(h, folio, true);
1908 spin_unlock_irqrestore(&hugetlb_lock, flags);
1909 update_and_free_hugetlb_folio(h, folio, true);
1911 arch_clear_hugepage_flags(page);
1912 enqueue_hugetlb_folio(h, folio);
1913 spin_unlock_irqrestore(&hugetlb_lock, flags);
1918 * Must be called with the hugetlb lock held
1920 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1922 lockdep_assert_held(&hugetlb_lock);
1924 h->nr_huge_pages_node[nid]++;
1927 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1929 hugetlb_vmemmap_optimize(h, &folio->page);
1930 INIT_LIST_HEAD(&folio->lru);
1931 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1932 hugetlb_set_folio_subpool(folio, NULL);
1933 set_hugetlb_cgroup(folio, NULL);
1934 set_hugetlb_cgroup_rsvd(folio, NULL);
1937 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1939 __prep_new_hugetlb_folio(h, folio);
1940 spin_lock_irq(&hugetlb_lock);
1941 __prep_account_new_huge_page(h, nid);
1942 spin_unlock_irq(&hugetlb_lock);
1945 static bool __prep_compound_gigantic_folio(struct folio *folio,
1946 unsigned int order, bool demote)
1949 int nr_pages = 1 << order;
1952 __folio_clear_reserved(folio);
1953 for (i = 0; i < nr_pages; i++) {
1954 p = folio_page(folio, i);
1957 * For gigantic hugepages allocated through bootmem at
1958 * boot, it's safer to be consistent with the not-gigantic
1959 * hugepages and clear the PG_reserved bit from all tail pages
1960 * too. Otherwise drivers using get_user_pages() to access tail
1961 * pages may get the reference counting wrong if they see
1962 * PG_reserved set on a tail page (despite the head page not
1963 * having PG_reserved set). Enforcing this consistency between
1964 * head and tail pages allows drivers to optimize away a check
1965 * on the head page when they need know if put_page() is needed
1966 * after get_user_pages().
1968 if (i != 0) /* head page cleared above */
1969 __ClearPageReserved(p);
1971 * Subtle and very unlikely
1973 * Gigantic 'page allocators' such as memblock or cma will
1974 * return a set of pages with each page ref counted. We need
1975 * to turn this set of pages into a compound page with tail
1976 * page ref counts set to zero. Code such as speculative page
1977 * cache adding could take a ref on a 'to be' tail page.
1978 * We need to respect any increased ref count, and only set
1979 * the ref count to zero if count is currently 1. If count
1980 * is not 1, we return an error. An error return indicates
1981 * the set of pages can not be converted to a gigantic page.
1982 * The caller who allocated the pages should then discard the
1983 * pages using the appropriate free interface.
1985 * In the case of demote, the ref count will be zero.
1988 if (!page_ref_freeze(p, 1)) {
1989 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1993 VM_BUG_ON_PAGE(page_count(p), p);
1996 set_compound_head(p, &folio->page);
1998 __folio_set_head(folio);
1999 /* we rely on prep_new_hugetlb_folio to set the destructor */
2000 folio_set_order(folio, order);
2001 atomic_set(&folio->_entire_mapcount, -1);
2002 atomic_set(&folio->_nr_pages_mapped, 0);
2003 atomic_set(&folio->_pincount, 0);
2007 /* undo page modifications made above */
2008 for (j = 0; j < i; j++) {
2009 p = folio_page(folio, j);
2011 clear_compound_head(p);
2012 set_page_refcounted(p);
2014 /* need to clear PG_reserved on remaining tail pages */
2015 for (; j < nr_pages; j++) {
2016 p = folio_page(folio, j);
2017 __ClearPageReserved(p);
2022 static bool prep_compound_gigantic_folio(struct folio *folio,
2025 return __prep_compound_gigantic_folio(folio, order, false);
2028 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2031 return __prep_compound_gigantic_folio(folio, order, true);
2035 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036 * transparent huge pages. See the PageTransHuge() documentation for more
2039 int PageHuge(struct page *page)
2041 struct folio *folio;
2043 if (!PageCompound(page))
2045 folio = page_folio(page);
2046 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2048 EXPORT_SYMBOL_GPL(PageHuge);
2051 * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2052 * @folio: The folio to test.
2054 * Context: Any context. Caller should have a reference on the folio to
2055 * prevent it from being turned into a tail page.
2056 * Return: True for hugetlbfs folios, false for anon folios or folios
2057 * belonging to other filesystems.
2059 bool folio_test_hugetlb(struct folio *folio)
2061 if (!folio_test_large(folio))
2064 return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2066 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2069 * Find and lock address space (mapping) in write mode.
2071 * Upon entry, the page is locked which means that page_mapping() is
2072 * stable. Due to locking order, we can only trylock_write. If we can
2073 * not get the lock, simply return NULL to caller.
2075 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2077 struct address_space *mapping = page_mapping(hpage);
2082 if (i_mmap_trylock_write(mapping))
2088 pgoff_t hugetlb_basepage_index(struct page *page)
2090 struct page *page_head = compound_head(page);
2091 pgoff_t index = page_index(page_head);
2092 unsigned long compound_idx;
2094 if (compound_order(page_head) > MAX_ORDER)
2095 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2097 compound_idx = page - page_head;
2099 return (index << compound_order(page_head)) + compound_idx;
2102 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2103 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2104 nodemask_t *node_alloc_noretry)
2106 int order = huge_page_order(h);
2108 bool alloc_try_hard = true;
2112 * By default we always try hard to allocate the page with
2113 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2114 * a loop (to adjust global huge page counts) and previous allocation
2115 * failed, do not continue to try hard on the same node. Use the
2116 * node_alloc_noretry bitmap to manage this state information.
2118 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2119 alloc_try_hard = false;
2120 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2122 gfp_mask |= __GFP_RETRY_MAYFAIL;
2123 if (nid == NUMA_NO_NODE)
2124 nid = numa_mem_id();
2126 page = __alloc_pages(gfp_mask, order, nid, nmask);
2128 /* Freeze head page */
2129 if (page && !page_ref_freeze(page, 1)) {
2130 __free_pages(page, order);
2131 if (retry) { /* retry once */
2135 /* WOW! twice in a row. */
2136 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2141 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2142 * indicates an overall state change. Clear bit so that we resume
2143 * normal 'try hard' allocations.
2145 if (node_alloc_noretry && page && !alloc_try_hard)
2146 node_clear(nid, *node_alloc_noretry);
2149 * If we tried hard to get a page but failed, set bit so that
2150 * subsequent attempts will not try as hard until there is an
2151 * overall state change.
2153 if (node_alloc_noretry && !page && alloc_try_hard)
2154 node_set(nid, *node_alloc_noretry);
2157 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2161 __count_vm_event(HTLB_BUDDY_PGALLOC);
2162 return page_folio(page);
2166 * Common helper to allocate a fresh hugetlb page. All specific allocators
2167 * should use this function to get new hugetlb pages
2169 * Note that returned page is 'frozen': ref count of head page and all tail
2172 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2173 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2174 nodemask_t *node_alloc_noretry)
2176 struct folio *folio;
2180 if (hstate_is_gigantic(h))
2181 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2183 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2184 nid, nmask, node_alloc_noretry);
2187 if (hstate_is_gigantic(h)) {
2188 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2190 * Rare failure to convert pages to compound page.
2191 * Free pages and try again - ONCE!
2193 free_gigantic_folio(folio, huge_page_order(h));
2201 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2207 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2210 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2211 nodemask_t *node_alloc_noretry)
2213 struct folio *folio;
2215 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2217 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2218 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2219 nodes_allowed, node_alloc_noretry);
2221 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2230 * Remove huge page from pool from next node to free. Attempt to keep
2231 * persistent huge pages more or less balanced over allowed nodes.
2232 * This routine only 'removes' the hugetlb page. The caller must make
2233 * an additional call to free the page to low level allocators.
2234 * Called with hugetlb_lock locked.
2236 static struct page *remove_pool_huge_page(struct hstate *h,
2237 nodemask_t *nodes_allowed,
2241 struct page *page = NULL;
2242 struct folio *folio;
2244 lockdep_assert_held(&hugetlb_lock);
2245 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2247 * If we're returning unused surplus pages, only examine
2248 * nodes with surplus pages.
2250 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2251 !list_empty(&h->hugepage_freelists[node])) {
2252 page = list_entry(h->hugepage_freelists[node].next,
2254 folio = page_folio(page);
2255 remove_hugetlb_folio(h, folio, acct_surplus);
2264 * Dissolve a given free hugepage into free buddy pages. This function does
2265 * nothing for in-use hugepages and non-hugepages.
2266 * This function returns values like below:
2268 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2269 * when the system is under memory pressure and the feature of
2270 * freeing unused vmemmap pages associated with each hugetlb page
2272 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2273 * (allocated or reserved.)
2274 * 0: successfully dissolved free hugepages or the page is not a
2275 * hugepage (considered as already dissolved)
2277 int dissolve_free_huge_page(struct page *page)
2280 struct folio *folio = page_folio(page);
2283 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2284 if (!folio_test_hugetlb(folio))
2287 spin_lock_irq(&hugetlb_lock);
2288 if (!folio_test_hugetlb(folio)) {
2293 if (!folio_ref_count(folio)) {
2294 struct hstate *h = folio_hstate(folio);
2295 if (!available_huge_pages(h))
2299 * We should make sure that the page is already on the free list
2300 * when it is dissolved.
2302 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2303 spin_unlock_irq(&hugetlb_lock);
2307 * Theoretically, we should return -EBUSY when we
2308 * encounter this race. In fact, we have a chance
2309 * to successfully dissolve the page if we do a
2310 * retry. Because the race window is quite small.
2311 * If we seize this opportunity, it is an optimization
2312 * for increasing the success rate of dissolving page.
2317 remove_hugetlb_folio(h, folio, false);
2318 h->max_huge_pages--;
2319 spin_unlock_irq(&hugetlb_lock);
2322 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2323 * before freeing the page. update_and_free_hugtlb_folio will fail to
2324 * free the page if it can not allocate required vmemmap. We
2325 * need to adjust max_huge_pages if the page is not freed.
2326 * Attempt to allocate vmemmmap here so that we can take
2327 * appropriate action on failure.
2329 rc = hugetlb_vmemmap_restore(h, &folio->page);
2331 update_and_free_hugetlb_folio(h, folio, false);
2333 spin_lock_irq(&hugetlb_lock);
2334 add_hugetlb_folio(h, folio, false);
2335 h->max_huge_pages++;
2336 spin_unlock_irq(&hugetlb_lock);
2342 spin_unlock_irq(&hugetlb_lock);
2347 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2348 * make specified memory blocks removable from the system.
2349 * Note that this will dissolve a free gigantic hugepage completely, if any
2350 * part of it lies within the given range.
2351 * Also note that if dissolve_free_huge_page() returns with an error, all
2352 * free hugepages that were dissolved before that error are lost.
2354 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2362 if (!hugepages_supported())
2365 order = huge_page_order(&default_hstate);
2367 order = min(order, huge_page_order(h));
2369 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2370 page = pfn_to_page(pfn);
2371 rc = dissolve_free_huge_page(page);
2380 * Allocates a fresh surplus page from the page allocator.
2382 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2383 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2385 struct folio *folio = NULL;
2387 if (hstate_is_gigantic(h))
2390 spin_lock_irq(&hugetlb_lock);
2391 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2393 spin_unlock_irq(&hugetlb_lock);
2395 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2399 spin_lock_irq(&hugetlb_lock);
2401 * We could have raced with the pool size change.
2402 * Double check that and simply deallocate the new page
2403 * if we would end up overcommiting the surpluses. Abuse
2404 * temporary page to workaround the nasty free_huge_page
2407 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2408 folio_set_hugetlb_temporary(folio);
2409 spin_unlock_irq(&hugetlb_lock);
2410 free_huge_page(&folio->page);
2414 h->surplus_huge_pages++;
2415 h->surplus_huge_pages_node[folio_nid(folio)]++;
2418 spin_unlock_irq(&hugetlb_lock);
2423 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2424 int nid, nodemask_t *nmask)
2426 struct folio *folio;
2428 if (hstate_is_gigantic(h))
2431 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2435 /* fresh huge pages are frozen */
2436 folio_ref_unfreeze(folio, 1);
2438 * We do not account these pages as surplus because they are only
2439 * temporary and will be released properly on the last reference
2441 folio_set_hugetlb_temporary(folio);
2447 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2450 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2451 struct vm_area_struct *vma, unsigned long addr)
2453 struct folio *folio = NULL;
2454 struct mempolicy *mpol;
2455 gfp_t gfp_mask = htlb_alloc_mask(h);
2457 nodemask_t *nodemask;
2459 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2460 if (mpol_is_preferred_many(mpol)) {
2461 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2463 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2464 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2466 /* Fallback to all nodes if page==NULL */
2471 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2472 mpol_cond_put(mpol);
2476 /* folio migration callback function */
2477 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2478 nodemask_t *nmask, gfp_t gfp_mask)
2480 spin_lock_irq(&hugetlb_lock);
2481 if (available_huge_pages(h)) {
2482 struct folio *folio;
2484 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2485 preferred_nid, nmask);
2487 spin_unlock_irq(&hugetlb_lock);
2491 spin_unlock_irq(&hugetlb_lock);
2493 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2496 /* mempolicy aware migration callback */
2497 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2498 unsigned long address)
2500 struct mempolicy *mpol;
2501 nodemask_t *nodemask;
2502 struct folio *folio;
2506 gfp_mask = htlb_alloc_mask(h);
2507 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2508 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2509 mpol_cond_put(mpol);
2515 * Increase the hugetlb pool such that it can accommodate a reservation
2518 static int gather_surplus_pages(struct hstate *h, long delta)
2519 __must_hold(&hugetlb_lock)
2521 LIST_HEAD(surplus_list);
2522 struct folio *folio;
2523 struct page *page, *tmp;
2526 long needed, allocated;
2527 bool alloc_ok = true;
2529 lockdep_assert_held(&hugetlb_lock);
2530 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2532 h->resv_huge_pages += delta;
2540 spin_unlock_irq(&hugetlb_lock);
2541 for (i = 0; i < needed; i++) {
2542 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2543 NUMA_NO_NODE, NULL);
2548 list_add(&folio->lru, &surplus_list);
2554 * After retaking hugetlb_lock, we need to recalculate 'needed'
2555 * because either resv_huge_pages or free_huge_pages may have changed.
2557 spin_lock_irq(&hugetlb_lock);
2558 needed = (h->resv_huge_pages + delta) -
2559 (h->free_huge_pages + allocated);
2564 * We were not able to allocate enough pages to
2565 * satisfy the entire reservation so we free what
2566 * we've allocated so far.
2571 * The surplus_list now contains _at_least_ the number of extra pages
2572 * needed to accommodate the reservation. Add the appropriate number
2573 * of pages to the hugetlb pool and free the extras back to the buddy
2574 * allocator. Commit the entire reservation here to prevent another
2575 * process from stealing the pages as they are added to the pool but
2576 * before they are reserved.
2578 needed += allocated;
2579 h->resv_huge_pages += delta;
2582 /* Free the needed pages to the hugetlb pool */
2583 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2586 /* Add the page to the hugetlb allocator */
2587 enqueue_hugetlb_folio(h, page_folio(page));
2590 spin_unlock_irq(&hugetlb_lock);
2593 * Free unnecessary surplus pages to the buddy allocator.
2594 * Pages have no ref count, call free_huge_page directly.
2596 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2597 free_huge_page(page);
2598 spin_lock_irq(&hugetlb_lock);
2604 * This routine has two main purposes:
2605 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2606 * in unused_resv_pages. This corresponds to the prior adjustments made
2607 * to the associated reservation map.
2608 * 2) Free any unused surplus pages that may have been allocated to satisfy
2609 * the reservation. As many as unused_resv_pages may be freed.
2611 static void return_unused_surplus_pages(struct hstate *h,
2612 unsigned long unused_resv_pages)
2614 unsigned long nr_pages;
2616 LIST_HEAD(page_list);
2618 lockdep_assert_held(&hugetlb_lock);
2619 /* Uncommit the reservation */
2620 h->resv_huge_pages -= unused_resv_pages;
2622 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2626 * Part (or even all) of the reservation could have been backed
2627 * by pre-allocated pages. Only free surplus pages.
2629 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2632 * We want to release as many surplus pages as possible, spread
2633 * evenly across all nodes with memory. Iterate across these nodes
2634 * until we can no longer free unreserved surplus pages. This occurs
2635 * when the nodes with surplus pages have no free pages.
2636 * remove_pool_huge_page() will balance the freed pages across the
2637 * on-line nodes with memory and will handle the hstate accounting.
2639 while (nr_pages--) {
2640 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2644 list_add(&page->lru, &page_list);
2648 spin_unlock_irq(&hugetlb_lock);
2649 update_and_free_pages_bulk(h, &page_list);
2650 spin_lock_irq(&hugetlb_lock);
2655 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2656 * are used by the huge page allocation routines to manage reservations.
2658 * vma_needs_reservation is called to determine if the huge page at addr
2659 * within the vma has an associated reservation. If a reservation is
2660 * needed, the value 1 is returned. The caller is then responsible for
2661 * managing the global reservation and subpool usage counts. After
2662 * the huge page has been allocated, vma_commit_reservation is called
2663 * to add the page to the reservation map. If the page allocation fails,
2664 * the reservation must be ended instead of committed. vma_end_reservation
2665 * is called in such cases.
2667 * In the normal case, vma_commit_reservation returns the same value
2668 * as the preceding vma_needs_reservation call. The only time this
2669 * is not the case is if a reserve map was changed between calls. It
2670 * is the responsibility of the caller to notice the difference and
2671 * take appropriate action.
2673 * vma_add_reservation is used in error paths where a reservation must
2674 * be restored when a newly allocated huge page must be freed. It is
2675 * to be called after calling vma_needs_reservation to determine if a
2676 * reservation exists.
2678 * vma_del_reservation is used in error paths where an entry in the reserve
2679 * map was created during huge page allocation and must be removed. It is to
2680 * be called after calling vma_needs_reservation to determine if a reservation
2683 enum vma_resv_mode {
2690 static long __vma_reservation_common(struct hstate *h,
2691 struct vm_area_struct *vma, unsigned long addr,
2692 enum vma_resv_mode mode)
2694 struct resv_map *resv;
2697 long dummy_out_regions_needed;
2699 resv = vma_resv_map(vma);
2703 idx = vma_hugecache_offset(h, vma, addr);
2705 case VMA_NEEDS_RESV:
2706 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2707 /* We assume that vma_reservation_* routines always operate on
2708 * 1 page, and that adding to resv map a 1 page entry can only
2709 * ever require 1 region.
2711 VM_BUG_ON(dummy_out_regions_needed != 1);
2713 case VMA_COMMIT_RESV:
2714 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2715 /* region_add calls of range 1 should never fail. */
2719 region_abort(resv, idx, idx + 1, 1);
2723 if (vma->vm_flags & VM_MAYSHARE) {
2724 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2725 /* region_add calls of range 1 should never fail. */
2728 region_abort(resv, idx, idx + 1, 1);
2729 ret = region_del(resv, idx, idx + 1);
2733 if (vma->vm_flags & VM_MAYSHARE) {
2734 region_abort(resv, idx, idx + 1, 1);
2735 ret = region_del(resv, idx, idx + 1);
2737 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2738 /* region_add calls of range 1 should never fail. */
2746 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2749 * We know private mapping must have HPAGE_RESV_OWNER set.
2751 * In most cases, reserves always exist for private mappings.
2752 * However, a file associated with mapping could have been
2753 * hole punched or truncated after reserves were consumed.
2754 * As subsequent fault on such a range will not use reserves.
2755 * Subtle - The reserve map for private mappings has the
2756 * opposite meaning than that of shared mappings. If NO
2757 * entry is in the reserve map, it means a reservation exists.
2758 * If an entry exists in the reserve map, it means the
2759 * reservation has already been consumed. As a result, the
2760 * return value of this routine is the opposite of the
2761 * value returned from reserve map manipulation routines above.
2770 static long vma_needs_reservation(struct hstate *h,
2771 struct vm_area_struct *vma, unsigned long addr)
2773 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2776 static long vma_commit_reservation(struct hstate *h,
2777 struct vm_area_struct *vma, unsigned long addr)
2779 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2782 static void vma_end_reservation(struct hstate *h,
2783 struct vm_area_struct *vma, unsigned long addr)
2785 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2788 static long vma_add_reservation(struct hstate *h,
2789 struct vm_area_struct *vma, unsigned long addr)
2791 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2794 static long vma_del_reservation(struct hstate *h,
2795 struct vm_area_struct *vma, unsigned long addr)
2797 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2801 * This routine is called to restore reservation information on error paths.
2802 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2803 * and the hugetlb mutex should remain held when calling this routine.
2805 * It handles two specific cases:
2806 * 1) A reservation was in place and the folio consumed the reservation.
2807 * hugetlb_restore_reserve is set in the folio.
2808 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2809 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2811 * In case 1, free_huge_page later in the error path will increment the
2812 * global reserve count. But, free_huge_page does not have enough context
2813 * to adjust the reservation map. This case deals primarily with private
2814 * mappings. Adjust the reserve map here to be consistent with global
2815 * reserve count adjustments to be made by free_huge_page. Make sure the
2816 * reserve map indicates there is a reservation present.
2818 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2820 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2821 unsigned long address, struct folio *folio)
2823 long rc = vma_needs_reservation(h, vma, address);
2825 if (folio_test_hugetlb_restore_reserve(folio)) {
2826 if (unlikely(rc < 0))
2828 * Rare out of memory condition in reserve map
2829 * manipulation. Clear hugetlb_restore_reserve so
2830 * that global reserve count will not be incremented
2831 * by free_huge_page. This will make it appear
2832 * as though the reservation for this folio was
2833 * consumed. This may prevent the task from
2834 * faulting in the folio at a later time. This
2835 * is better than inconsistent global huge page
2836 * accounting of reserve counts.
2838 folio_clear_hugetlb_restore_reserve(folio);
2840 (void)vma_add_reservation(h, vma, address);
2842 vma_end_reservation(h, vma, address);
2846 * This indicates there is an entry in the reserve map
2847 * not added by alloc_hugetlb_folio. We know it was added
2848 * before the alloc_hugetlb_folio call, otherwise
2849 * hugetlb_restore_reserve would be set on the folio.
2850 * Remove the entry so that a subsequent allocation
2851 * does not consume a reservation.
2853 rc = vma_del_reservation(h, vma, address);
2856 * VERY rare out of memory condition. Since
2857 * we can not delete the entry, set
2858 * hugetlb_restore_reserve so that the reserve
2859 * count will be incremented when the folio
2860 * is freed. This reserve will be consumed
2861 * on a subsequent allocation.
2863 folio_set_hugetlb_restore_reserve(folio);
2864 } else if (rc < 0) {
2866 * Rare out of memory condition from
2867 * vma_needs_reservation call. Memory allocation is
2868 * only attempted if a new entry is needed. Therefore,
2869 * this implies there is not an entry in the
2872 * For shared mappings, no entry in the map indicates
2873 * no reservation. We are done.
2875 if (!(vma->vm_flags & VM_MAYSHARE))
2877 * For private mappings, no entry indicates
2878 * a reservation is present. Since we can
2879 * not add an entry, set hugetlb_restore_reserve
2880 * on the folio so reserve count will be
2881 * incremented when freed. This reserve will
2882 * be consumed on a subsequent allocation.
2884 folio_set_hugetlb_restore_reserve(folio);
2887 * No reservation present, do nothing
2889 vma_end_reservation(h, vma, address);
2894 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2896 * @h: struct hstate old page belongs to
2897 * @old_folio: Old folio to dissolve
2898 * @list: List to isolate the page in case we need to
2899 * Returns 0 on success, otherwise negated error.
2901 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2902 struct folio *old_folio, struct list_head *list)
2904 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2905 int nid = folio_nid(old_folio);
2906 struct folio *new_folio;
2910 * Before dissolving the folio, we need to allocate a new one for the
2911 * pool to remain stable. Here, we allocate the folio and 'prep' it
2912 * by doing everything but actually updating counters and adding to
2913 * the pool. This simplifies and let us do most of the processing
2916 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2919 __prep_new_hugetlb_folio(h, new_folio);
2922 spin_lock_irq(&hugetlb_lock);
2923 if (!folio_test_hugetlb(old_folio)) {
2925 * Freed from under us. Drop new_folio too.
2928 } else if (folio_ref_count(old_folio)) {
2932 * Someone has grabbed the folio, try to isolate it here.
2933 * Fail with -EBUSY if not possible.
2935 spin_unlock_irq(&hugetlb_lock);
2936 isolated = isolate_hugetlb(old_folio, list);
2937 ret = isolated ? 0 : -EBUSY;
2938 spin_lock_irq(&hugetlb_lock);
2940 } else if (!folio_test_hugetlb_freed(old_folio)) {
2942 * Folio's refcount is 0 but it has not been enqueued in the
2943 * freelist yet. Race window is small, so we can succeed here if
2946 spin_unlock_irq(&hugetlb_lock);
2951 * Ok, old_folio is still a genuine free hugepage. Remove it from
2952 * the freelist and decrease the counters. These will be
2953 * incremented again when calling __prep_account_new_huge_page()
2954 * and enqueue_hugetlb_folio() for new_folio. The counters will
2955 * remain stable since this happens under the lock.
2957 remove_hugetlb_folio(h, old_folio, false);
2960 * Ref count on new_folio is already zero as it was dropped
2961 * earlier. It can be directly added to the pool free list.
2963 __prep_account_new_huge_page(h, nid);
2964 enqueue_hugetlb_folio(h, new_folio);
2967 * Folio has been replaced, we can safely free the old one.
2969 spin_unlock_irq(&hugetlb_lock);
2970 update_and_free_hugetlb_folio(h, old_folio, false);
2976 spin_unlock_irq(&hugetlb_lock);
2977 /* Folio has a zero ref count, but needs a ref to be freed */
2978 folio_ref_unfreeze(new_folio, 1);
2979 update_and_free_hugetlb_folio(h, new_folio, false);
2984 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2987 struct folio *folio = page_folio(page);
2991 * The page might have been dissolved from under our feet, so make sure
2992 * to carefully check the state under the lock.
2993 * Return success when racing as if we dissolved the page ourselves.
2995 spin_lock_irq(&hugetlb_lock);
2996 if (folio_test_hugetlb(folio)) {
2997 h = folio_hstate(folio);
2999 spin_unlock_irq(&hugetlb_lock);
3002 spin_unlock_irq(&hugetlb_lock);
3005 * Fence off gigantic pages as there is a cyclic dependency between
3006 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3007 * of bailing out right away without further retrying.
3009 if (hstate_is_gigantic(h))
3012 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3014 else if (!folio_ref_count(folio))
3015 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3020 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3021 unsigned long addr, int avoid_reserve)
3023 struct hugepage_subpool *spool = subpool_vma(vma);
3024 struct hstate *h = hstate_vma(vma);
3025 struct folio *folio;
3026 long map_chg, map_commit;
3029 struct hugetlb_cgroup *h_cg = NULL;
3030 bool deferred_reserve;
3032 idx = hstate_index(h);
3034 * Examine the region/reserve map to determine if the process
3035 * has a reservation for the page to be allocated. A return
3036 * code of zero indicates a reservation exists (no change).
3038 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3040 return ERR_PTR(-ENOMEM);
3043 * Processes that did not create the mapping will have no
3044 * reserves as indicated by the region/reserve map. Check
3045 * that the allocation will not exceed the subpool limit.
3046 * Allocations for MAP_NORESERVE mappings also need to be
3047 * checked against any subpool limit.
3049 if (map_chg || avoid_reserve) {
3050 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3052 vma_end_reservation(h, vma, addr);
3053 return ERR_PTR(-ENOSPC);
3057 * Even though there was no reservation in the region/reserve
3058 * map, there could be reservations associated with the
3059 * subpool that can be used. This would be indicated if the
3060 * return value of hugepage_subpool_get_pages() is zero.
3061 * However, if avoid_reserve is specified we still avoid even
3062 * the subpool reservations.
3068 /* If this allocation is not consuming a reservation, charge it now.
3070 deferred_reserve = map_chg || avoid_reserve;
3071 if (deferred_reserve) {
3072 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3073 idx, pages_per_huge_page(h), &h_cg);
3075 goto out_subpool_put;
3078 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3080 goto out_uncharge_cgroup_reservation;
3082 spin_lock_irq(&hugetlb_lock);
3084 * glb_chg is passed to indicate whether or not a page must be taken
3085 * from the global free pool (global change). gbl_chg == 0 indicates
3086 * a reservation exists for the allocation.
3088 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3090 spin_unlock_irq(&hugetlb_lock);
3091 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3093 goto out_uncharge_cgroup;
3094 spin_lock_irq(&hugetlb_lock);
3095 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3096 folio_set_hugetlb_restore_reserve(folio);
3097 h->resv_huge_pages--;
3099 list_add(&folio->lru, &h->hugepage_activelist);
3100 folio_ref_unfreeze(folio, 1);
3104 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3105 /* If allocation is not consuming a reservation, also store the
3106 * hugetlb_cgroup pointer on the page.
3108 if (deferred_reserve) {
3109 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3113 spin_unlock_irq(&hugetlb_lock);
3115 hugetlb_set_folio_subpool(folio, spool);
3117 map_commit = vma_commit_reservation(h, vma, addr);
3118 if (unlikely(map_chg > map_commit)) {
3120 * The page was added to the reservation map between
3121 * vma_needs_reservation and vma_commit_reservation.
3122 * This indicates a race with hugetlb_reserve_pages.
3123 * Adjust for the subpool count incremented above AND
3124 * in hugetlb_reserve_pages for the same page. Also,
3125 * the reservation count added in hugetlb_reserve_pages
3126 * no longer applies.
3130 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3131 hugetlb_acct_memory(h, -rsv_adjust);
3132 if (deferred_reserve)
3133 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3134 pages_per_huge_page(h), folio);
3138 out_uncharge_cgroup:
3139 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3140 out_uncharge_cgroup_reservation:
3141 if (deferred_reserve)
3142 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3145 if (map_chg || avoid_reserve)
3146 hugepage_subpool_put_pages(spool, 1);
3147 vma_end_reservation(h, vma, addr);
3148 return ERR_PTR(-ENOSPC);
3151 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3152 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3153 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3155 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3158 /* do node specific alloc */
3159 if (nid != NUMA_NO_NODE) {
3160 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3161 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3166 /* allocate from next node when distributing huge pages */
3167 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3168 m = memblock_alloc_try_nid_raw(
3169 huge_page_size(h), huge_page_size(h),
3170 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3172 * Use the beginning of the huge page to store the
3173 * huge_bootmem_page struct (until gather_bootmem
3174 * puts them into the mem_map).
3182 /* Put them into a private list first because mem_map is not up yet */
3183 INIT_LIST_HEAD(&m->list);
3184 list_add(&m->list, &huge_boot_pages);
3190 * Put bootmem huge pages into the standard lists after mem_map is up.
3191 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3193 static void __init gather_bootmem_prealloc(void)
3195 struct huge_bootmem_page *m;
3197 list_for_each_entry(m, &huge_boot_pages, list) {
3198 struct page *page = virt_to_page(m);
3199 struct folio *folio = page_folio(page);
3200 struct hstate *h = m->hstate;
3202 VM_BUG_ON(!hstate_is_gigantic(h));
3203 WARN_ON(folio_ref_count(folio) != 1);
3204 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3205 WARN_ON(folio_test_reserved(folio));
3206 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3207 free_huge_page(page); /* add to the hugepage allocator */
3209 /* VERY unlikely inflated ref count on a tail page */
3210 free_gigantic_folio(folio, huge_page_order(h));
3214 * We need to restore the 'stolen' pages to totalram_pages
3215 * in order to fix confusing memory reports from free(1) and
3216 * other side-effects, like CommitLimit going negative.
3218 adjust_managed_page_count(page, pages_per_huge_page(h));
3222 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3227 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3228 if (hstate_is_gigantic(h)) {
3229 if (!alloc_bootmem_huge_page(h, nid))
3232 struct folio *folio;
3233 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3235 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3236 &node_states[N_MEMORY], NULL);
3239 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3243 if (i == h->max_huge_pages_node[nid])
3246 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3247 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3248 h->max_huge_pages_node[nid], buf, nid, i);
3249 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3250 h->max_huge_pages_node[nid] = i;
3253 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3256 nodemask_t *node_alloc_noretry;
3257 bool node_specific_alloc = false;
3259 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3260 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3261 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3265 /* do node specific alloc */
3266 for_each_online_node(i) {
3267 if (h->max_huge_pages_node[i] > 0) {
3268 hugetlb_hstate_alloc_pages_onenode(h, i);
3269 node_specific_alloc = true;
3273 if (node_specific_alloc)
3276 /* below will do all node balanced alloc */
3277 if (!hstate_is_gigantic(h)) {
3279 * Bit mask controlling how hard we retry per-node allocations.
3280 * Ignore errors as lower level routines can deal with
3281 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3282 * time, we are likely in bigger trouble.
3284 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3287 /* allocations done at boot time */
3288 node_alloc_noretry = NULL;
3291 /* bit mask controlling how hard we retry per-node allocations */
3292 if (node_alloc_noretry)
3293 nodes_clear(*node_alloc_noretry);
3295 for (i = 0; i < h->max_huge_pages; ++i) {
3296 if (hstate_is_gigantic(h)) {
3297 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3299 } else if (!alloc_pool_huge_page(h,
3300 &node_states[N_MEMORY],
3301 node_alloc_noretry))
3305 if (i < h->max_huge_pages) {
3308 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3309 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3310 h->max_huge_pages, buf, i);
3311 h->max_huge_pages = i;
3313 kfree(node_alloc_noretry);
3316 static void __init hugetlb_init_hstates(void)
3318 struct hstate *h, *h2;
3320 for_each_hstate(h) {
3321 /* oversize hugepages were init'ed in early boot */
3322 if (!hstate_is_gigantic(h))
3323 hugetlb_hstate_alloc_pages(h);
3326 * Set demote order for each hstate. Note that
3327 * h->demote_order is initially 0.
3328 * - We can not demote gigantic pages if runtime freeing
3329 * is not supported, so skip this.
3330 * - If CMA allocation is possible, we can not demote
3331 * HUGETLB_PAGE_ORDER or smaller size pages.
3333 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3335 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3337 for_each_hstate(h2) {
3340 if (h2->order < h->order &&
3341 h2->order > h->demote_order)
3342 h->demote_order = h2->order;
3347 static void __init report_hugepages(void)
3351 for_each_hstate(h) {
3354 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3355 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3356 buf, h->free_huge_pages);
3357 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3358 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3362 #ifdef CONFIG_HIGHMEM
3363 static void try_to_free_low(struct hstate *h, unsigned long count,
3364 nodemask_t *nodes_allowed)
3367 LIST_HEAD(page_list);
3369 lockdep_assert_held(&hugetlb_lock);
3370 if (hstate_is_gigantic(h))
3374 * Collect pages to be freed on a list, and free after dropping lock
3376 for_each_node_mask(i, *nodes_allowed) {
3377 struct page *page, *next;
3378 struct list_head *freel = &h->hugepage_freelists[i];
3379 list_for_each_entry_safe(page, next, freel, lru) {
3380 if (count >= h->nr_huge_pages)
3382 if (PageHighMem(page))
3384 remove_hugetlb_folio(h, page_folio(page), false);
3385 list_add(&page->lru, &page_list);
3390 spin_unlock_irq(&hugetlb_lock);
3391 update_and_free_pages_bulk(h, &page_list);
3392 spin_lock_irq(&hugetlb_lock);
3395 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3396 nodemask_t *nodes_allowed)
3402 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3403 * balanced by operating on them in a round-robin fashion.
3404 * Returns 1 if an adjustment was made.
3406 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3411 lockdep_assert_held(&hugetlb_lock);
3412 VM_BUG_ON(delta != -1 && delta != 1);
3415 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3416 if (h->surplus_huge_pages_node[node])
3420 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3421 if (h->surplus_huge_pages_node[node] <
3422 h->nr_huge_pages_node[node])
3429 h->surplus_huge_pages += delta;
3430 h->surplus_huge_pages_node[node] += delta;
3434 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3435 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3436 nodemask_t *nodes_allowed)
3438 unsigned long min_count, ret;
3440 LIST_HEAD(page_list);
3441 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3444 * Bit mask controlling how hard we retry per-node allocations.
3445 * If we can not allocate the bit mask, do not attempt to allocate
3446 * the requested huge pages.
3448 if (node_alloc_noretry)
3449 nodes_clear(*node_alloc_noretry);
3454 * resize_lock mutex prevents concurrent adjustments to number of
3455 * pages in hstate via the proc/sysfs interfaces.
3457 mutex_lock(&h->resize_lock);
3458 flush_free_hpage_work(h);
3459 spin_lock_irq(&hugetlb_lock);
3462 * Check for a node specific request.
3463 * Changing node specific huge page count may require a corresponding
3464 * change to the global count. In any case, the passed node mask
3465 * (nodes_allowed) will restrict alloc/free to the specified node.
3467 if (nid != NUMA_NO_NODE) {
3468 unsigned long old_count = count;
3470 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3472 * User may have specified a large count value which caused the
3473 * above calculation to overflow. In this case, they wanted
3474 * to allocate as many huge pages as possible. Set count to
3475 * largest possible value to align with their intention.
3477 if (count < old_count)
3482 * Gigantic pages runtime allocation depend on the capability for large
3483 * page range allocation.
3484 * If the system does not provide this feature, return an error when
3485 * the user tries to allocate gigantic pages but let the user free the
3486 * boottime allocated gigantic pages.
3488 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3489 if (count > persistent_huge_pages(h)) {
3490 spin_unlock_irq(&hugetlb_lock);
3491 mutex_unlock(&h->resize_lock);
3492 NODEMASK_FREE(node_alloc_noretry);
3495 /* Fall through to decrease pool */
3499 * Increase the pool size
3500 * First take pages out of surplus state. Then make up the
3501 * remaining difference by allocating fresh huge pages.
3503 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3504 * to convert a surplus huge page to a normal huge page. That is
3505 * not critical, though, it just means the overall size of the
3506 * pool might be one hugepage larger than it needs to be, but
3507 * within all the constraints specified by the sysctls.
3509 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3510 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3514 while (count > persistent_huge_pages(h)) {
3516 * If this allocation races such that we no longer need the
3517 * page, free_huge_page will handle it by freeing the page
3518 * and reducing the surplus.
3520 spin_unlock_irq(&hugetlb_lock);
3522 /* yield cpu to avoid soft lockup */
3525 ret = alloc_pool_huge_page(h, nodes_allowed,
3526 node_alloc_noretry);
3527 spin_lock_irq(&hugetlb_lock);
3531 /* Bail for signals. Probably ctrl-c from user */
3532 if (signal_pending(current))
3537 * Decrease the pool size
3538 * First return free pages to the buddy allocator (being careful
3539 * to keep enough around to satisfy reservations). Then place
3540 * pages into surplus state as needed so the pool will shrink
3541 * to the desired size as pages become free.
3543 * By placing pages into the surplus state independent of the
3544 * overcommit value, we are allowing the surplus pool size to
3545 * exceed overcommit. There are few sane options here. Since
3546 * alloc_surplus_hugetlb_folio() is checking the global counter,
3547 * though, we'll note that we're not allowed to exceed surplus
3548 * and won't grow the pool anywhere else. Not until one of the
3549 * sysctls are changed, or the surplus pages go out of use.
3551 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3552 min_count = max(count, min_count);
3553 try_to_free_low(h, min_count, nodes_allowed);
3556 * Collect pages to be removed on list without dropping lock
3558 while (min_count < persistent_huge_pages(h)) {
3559 page = remove_pool_huge_page(h, nodes_allowed, 0);
3563 list_add(&page->lru, &page_list);
3565 /* free the pages after dropping lock */
3566 spin_unlock_irq(&hugetlb_lock);
3567 update_and_free_pages_bulk(h, &page_list);
3568 flush_free_hpage_work(h);
3569 spin_lock_irq(&hugetlb_lock);
3571 while (count < persistent_huge_pages(h)) {
3572 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3576 h->max_huge_pages = persistent_huge_pages(h);
3577 spin_unlock_irq(&hugetlb_lock);
3578 mutex_unlock(&h->resize_lock);
3580 NODEMASK_FREE(node_alloc_noretry);
3585 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3587 int i, nid = folio_nid(folio);
3588 struct hstate *target_hstate;
3589 struct page *subpage;
3590 struct folio *inner_folio;
3593 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3595 remove_hugetlb_folio_for_demote(h, folio, false);
3596 spin_unlock_irq(&hugetlb_lock);
3598 rc = hugetlb_vmemmap_restore(h, &folio->page);
3600 /* Allocation of vmemmmap failed, we can not demote folio */
3601 spin_lock_irq(&hugetlb_lock);
3602 folio_ref_unfreeze(folio, 1);
3603 add_hugetlb_folio(h, folio, false);
3608 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3609 * sizes as it will not ref count folios.
3611 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3614 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3615 * Without the mutex, pages added to target hstate could be marked
3618 * Note that we already hold h->resize_lock. To prevent deadlock,
3619 * use the convention of always taking larger size hstate mutex first.
3621 mutex_lock(&target_hstate->resize_lock);
3622 for (i = 0; i < pages_per_huge_page(h);
3623 i += pages_per_huge_page(target_hstate)) {
3624 subpage = folio_page(folio, i);
3625 inner_folio = page_folio(subpage);
3626 if (hstate_is_gigantic(target_hstate))
3627 prep_compound_gigantic_folio_for_demote(inner_folio,
3628 target_hstate->order);
3630 prep_compound_page(subpage, target_hstate->order);
3631 folio_change_private(inner_folio, NULL);
3632 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3633 free_huge_page(subpage);
3635 mutex_unlock(&target_hstate->resize_lock);
3637 spin_lock_irq(&hugetlb_lock);
3640 * Not absolutely necessary, but for consistency update max_huge_pages
3641 * based on pool changes for the demoted page.
3643 h->max_huge_pages--;
3644 target_hstate->max_huge_pages +=
3645 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3650 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3651 __must_hold(&hugetlb_lock)
3654 struct folio *folio;
3656 lockdep_assert_held(&hugetlb_lock);
3658 /* We should never get here if no demote order */
3659 if (!h->demote_order) {
3660 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3661 return -EINVAL; /* internal error */
3664 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3665 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3666 if (folio_test_hwpoison(folio))
3668 return demote_free_hugetlb_folio(h, folio);
3673 * Only way to get here is if all pages on free lists are poisoned.
3674 * Return -EBUSY so that caller will not retry.
3679 #define HSTATE_ATTR_RO(_name) \
3680 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3682 #define HSTATE_ATTR_WO(_name) \
3683 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3685 #define HSTATE_ATTR(_name) \
3686 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3688 static struct kobject *hugepages_kobj;
3689 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3691 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3693 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3697 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3698 if (hstate_kobjs[i] == kobj) {
3700 *nidp = NUMA_NO_NODE;
3704 return kobj_to_node_hstate(kobj, nidp);
3707 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3708 struct kobj_attribute *attr, char *buf)
3711 unsigned long nr_huge_pages;
3714 h = kobj_to_hstate(kobj, &nid);
3715 if (nid == NUMA_NO_NODE)
3716 nr_huge_pages = h->nr_huge_pages;
3718 nr_huge_pages = h->nr_huge_pages_node[nid];
3720 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3723 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3724 struct hstate *h, int nid,
3725 unsigned long count, size_t len)
3728 nodemask_t nodes_allowed, *n_mask;
3730 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3733 if (nid == NUMA_NO_NODE) {
3735 * global hstate attribute
3737 if (!(obey_mempolicy &&
3738 init_nodemask_of_mempolicy(&nodes_allowed)))
3739 n_mask = &node_states[N_MEMORY];
3741 n_mask = &nodes_allowed;
3744 * Node specific request. count adjustment happens in
3745 * set_max_huge_pages() after acquiring hugetlb_lock.
3747 init_nodemask_of_node(&nodes_allowed, nid);
3748 n_mask = &nodes_allowed;
3751 err = set_max_huge_pages(h, count, nid, n_mask);
3753 return err ? err : len;
3756 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3757 struct kobject *kobj, const char *buf,
3761 unsigned long count;
3765 err = kstrtoul(buf, 10, &count);
3769 h = kobj_to_hstate(kobj, &nid);
3770 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3773 static ssize_t nr_hugepages_show(struct kobject *kobj,
3774 struct kobj_attribute *attr, char *buf)
3776 return nr_hugepages_show_common(kobj, attr, buf);
3779 static ssize_t nr_hugepages_store(struct kobject *kobj,
3780 struct kobj_attribute *attr, const char *buf, size_t len)
3782 return nr_hugepages_store_common(false, kobj, buf, len);
3784 HSTATE_ATTR(nr_hugepages);
3789 * hstate attribute for optionally mempolicy-based constraint on persistent
3790 * huge page alloc/free.
3792 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3793 struct kobj_attribute *attr,
3796 return nr_hugepages_show_common(kobj, attr, buf);
3799 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3800 struct kobj_attribute *attr, const char *buf, size_t len)
3802 return nr_hugepages_store_common(true, kobj, buf, len);
3804 HSTATE_ATTR(nr_hugepages_mempolicy);
3808 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3809 struct kobj_attribute *attr, char *buf)
3811 struct hstate *h = kobj_to_hstate(kobj, NULL);
3812 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3815 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3816 struct kobj_attribute *attr, const char *buf, size_t count)
3819 unsigned long input;
3820 struct hstate *h = kobj_to_hstate(kobj, NULL);
3822 if (hstate_is_gigantic(h))
3825 err = kstrtoul(buf, 10, &input);
3829 spin_lock_irq(&hugetlb_lock);
3830 h->nr_overcommit_huge_pages = input;
3831 spin_unlock_irq(&hugetlb_lock);
3835 HSTATE_ATTR(nr_overcommit_hugepages);
3837 static ssize_t free_hugepages_show(struct kobject *kobj,
3838 struct kobj_attribute *attr, char *buf)
3841 unsigned long free_huge_pages;
3844 h = kobj_to_hstate(kobj, &nid);
3845 if (nid == NUMA_NO_NODE)
3846 free_huge_pages = h->free_huge_pages;
3848 free_huge_pages = h->free_huge_pages_node[nid];
3850 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3852 HSTATE_ATTR_RO(free_hugepages);
3854 static ssize_t resv_hugepages_show(struct kobject *kobj,
3855 struct kobj_attribute *attr, char *buf)
3857 struct hstate *h = kobj_to_hstate(kobj, NULL);
3858 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3860 HSTATE_ATTR_RO(resv_hugepages);
3862 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3863 struct kobj_attribute *attr, char *buf)
3866 unsigned long surplus_huge_pages;
3869 h = kobj_to_hstate(kobj, &nid);
3870 if (nid == NUMA_NO_NODE)
3871 surplus_huge_pages = h->surplus_huge_pages;
3873 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3875 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3877 HSTATE_ATTR_RO(surplus_hugepages);
3879 static ssize_t demote_store(struct kobject *kobj,
3880 struct kobj_attribute *attr, const char *buf, size_t len)
3882 unsigned long nr_demote;
3883 unsigned long nr_available;
3884 nodemask_t nodes_allowed, *n_mask;
3889 err = kstrtoul(buf, 10, &nr_demote);
3892 h = kobj_to_hstate(kobj, &nid);
3894 if (nid != NUMA_NO_NODE) {
3895 init_nodemask_of_node(&nodes_allowed, nid);
3896 n_mask = &nodes_allowed;
3898 n_mask = &node_states[N_MEMORY];
3901 /* Synchronize with other sysfs operations modifying huge pages */
3902 mutex_lock(&h->resize_lock);
3903 spin_lock_irq(&hugetlb_lock);
3907 * Check for available pages to demote each time thorough the
3908 * loop as demote_pool_huge_page will drop hugetlb_lock.
3910 if (nid != NUMA_NO_NODE)
3911 nr_available = h->free_huge_pages_node[nid];
3913 nr_available = h->free_huge_pages;
3914 nr_available -= h->resv_huge_pages;
3918 err = demote_pool_huge_page(h, n_mask);
3925 spin_unlock_irq(&hugetlb_lock);
3926 mutex_unlock(&h->resize_lock);
3932 HSTATE_ATTR_WO(demote);
3934 static ssize_t demote_size_show(struct kobject *kobj,
3935 struct kobj_attribute *attr, char *buf)
3937 struct hstate *h = kobj_to_hstate(kobj, NULL);
3938 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3940 return sysfs_emit(buf, "%lukB\n", demote_size);
3943 static ssize_t demote_size_store(struct kobject *kobj,
3944 struct kobj_attribute *attr,
3945 const char *buf, size_t count)
3947 struct hstate *h, *demote_hstate;
3948 unsigned long demote_size;
3949 unsigned int demote_order;
3951 demote_size = (unsigned long)memparse(buf, NULL);
3953 demote_hstate = size_to_hstate(demote_size);
3956 demote_order = demote_hstate->order;
3957 if (demote_order < HUGETLB_PAGE_ORDER)
3960 /* demote order must be smaller than hstate order */
3961 h = kobj_to_hstate(kobj, NULL);
3962 if (demote_order >= h->order)
3965 /* resize_lock synchronizes access to demote size and writes */
3966 mutex_lock(&h->resize_lock);
3967 h->demote_order = demote_order;
3968 mutex_unlock(&h->resize_lock);
3972 HSTATE_ATTR(demote_size);
3974 static struct attribute *hstate_attrs[] = {
3975 &nr_hugepages_attr.attr,
3976 &nr_overcommit_hugepages_attr.attr,
3977 &free_hugepages_attr.attr,
3978 &resv_hugepages_attr.attr,
3979 &surplus_hugepages_attr.attr,
3981 &nr_hugepages_mempolicy_attr.attr,
3986 static const struct attribute_group hstate_attr_group = {
3987 .attrs = hstate_attrs,
3990 static struct attribute *hstate_demote_attrs[] = {
3991 &demote_size_attr.attr,
3996 static const struct attribute_group hstate_demote_attr_group = {
3997 .attrs = hstate_demote_attrs,
4000 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4001 struct kobject **hstate_kobjs,
4002 const struct attribute_group *hstate_attr_group)
4005 int hi = hstate_index(h);
4007 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4008 if (!hstate_kobjs[hi])
4011 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4013 kobject_put(hstate_kobjs[hi]);
4014 hstate_kobjs[hi] = NULL;
4018 if (h->demote_order) {
4019 retval = sysfs_create_group(hstate_kobjs[hi],
4020 &hstate_demote_attr_group);
4022 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4023 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4024 kobject_put(hstate_kobjs[hi]);
4025 hstate_kobjs[hi] = NULL;
4034 static bool hugetlb_sysfs_initialized __ro_after_init;
4037 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4038 * with node devices in node_devices[] using a parallel array. The array
4039 * index of a node device or _hstate == node id.
4040 * This is here to avoid any static dependency of the node device driver, in
4041 * the base kernel, on the hugetlb module.
4043 struct node_hstate {
4044 struct kobject *hugepages_kobj;
4045 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4047 static struct node_hstate node_hstates[MAX_NUMNODES];
4050 * A subset of global hstate attributes for node devices
4052 static struct attribute *per_node_hstate_attrs[] = {
4053 &nr_hugepages_attr.attr,
4054 &free_hugepages_attr.attr,
4055 &surplus_hugepages_attr.attr,
4059 static const struct attribute_group per_node_hstate_attr_group = {
4060 .attrs = per_node_hstate_attrs,
4064 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4065 * Returns node id via non-NULL nidp.
4067 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4071 for (nid = 0; nid < nr_node_ids; nid++) {
4072 struct node_hstate *nhs = &node_hstates[nid];
4074 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4075 if (nhs->hstate_kobjs[i] == kobj) {
4087 * Unregister hstate attributes from a single node device.
4088 * No-op if no hstate attributes attached.
4090 void hugetlb_unregister_node(struct node *node)
4093 struct node_hstate *nhs = &node_hstates[node->dev.id];
4095 if (!nhs->hugepages_kobj)
4096 return; /* no hstate attributes */
4098 for_each_hstate(h) {
4099 int idx = hstate_index(h);
4100 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4104 if (h->demote_order)
4105 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4106 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4107 kobject_put(hstate_kobj);
4108 nhs->hstate_kobjs[idx] = NULL;
4111 kobject_put(nhs->hugepages_kobj);
4112 nhs->hugepages_kobj = NULL;
4117 * Register hstate attributes for a single node device.
4118 * No-op if attributes already registered.
4120 void hugetlb_register_node(struct node *node)
4123 struct node_hstate *nhs = &node_hstates[node->dev.id];
4126 if (!hugetlb_sysfs_initialized)
4129 if (nhs->hugepages_kobj)
4130 return; /* already allocated */
4132 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4134 if (!nhs->hugepages_kobj)
4137 for_each_hstate(h) {
4138 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4140 &per_node_hstate_attr_group);
4142 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4143 h->name, node->dev.id);
4144 hugetlb_unregister_node(node);
4151 * hugetlb init time: register hstate attributes for all registered node
4152 * devices of nodes that have memory. All on-line nodes should have
4153 * registered their associated device by this time.
4155 static void __init hugetlb_register_all_nodes(void)
4159 for_each_online_node(nid)
4160 hugetlb_register_node(node_devices[nid]);
4162 #else /* !CONFIG_NUMA */
4164 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4172 static void hugetlb_register_all_nodes(void) { }
4177 static void __init hugetlb_cma_check(void);
4179 static inline __init void hugetlb_cma_check(void)
4184 static void __init hugetlb_sysfs_init(void)
4189 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4190 if (!hugepages_kobj)
4193 for_each_hstate(h) {
4194 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4195 hstate_kobjs, &hstate_attr_group);
4197 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4201 hugetlb_sysfs_initialized = true;
4203 hugetlb_register_all_nodes();
4206 #ifdef CONFIG_SYSCTL
4207 static void hugetlb_sysctl_init(void);
4209 static inline void hugetlb_sysctl_init(void) { }
4212 static int __init hugetlb_init(void)
4216 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4219 if (!hugepages_supported()) {
4220 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4221 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4226 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4227 * architectures depend on setup being done here.
4229 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4230 if (!parsed_default_hugepagesz) {
4232 * If we did not parse a default huge page size, set
4233 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4234 * number of huge pages for this default size was implicitly
4235 * specified, set that here as well.
4236 * Note that the implicit setting will overwrite an explicit
4237 * setting. A warning will be printed in this case.
4239 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4240 if (default_hstate_max_huge_pages) {
4241 if (default_hstate.max_huge_pages) {
4244 string_get_size(huge_page_size(&default_hstate),
4245 1, STRING_UNITS_2, buf, 32);
4246 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4247 default_hstate.max_huge_pages, buf);
4248 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4249 default_hstate_max_huge_pages);
4251 default_hstate.max_huge_pages =
4252 default_hstate_max_huge_pages;
4254 for_each_online_node(i)
4255 default_hstate.max_huge_pages_node[i] =
4256 default_hugepages_in_node[i];
4260 hugetlb_cma_check();
4261 hugetlb_init_hstates();
4262 gather_bootmem_prealloc();
4265 hugetlb_sysfs_init();
4266 hugetlb_cgroup_file_init();
4267 hugetlb_sysctl_init();
4270 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4272 num_fault_mutexes = 1;
4274 hugetlb_fault_mutex_table =
4275 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4277 BUG_ON(!hugetlb_fault_mutex_table);
4279 for (i = 0; i < num_fault_mutexes; i++)
4280 mutex_init(&hugetlb_fault_mutex_table[i]);
4283 subsys_initcall(hugetlb_init);
4285 /* Overwritten by architectures with more huge page sizes */
4286 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4288 return size == HPAGE_SIZE;
4291 void __init hugetlb_add_hstate(unsigned int order)
4296 if (size_to_hstate(PAGE_SIZE << order)) {
4299 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4301 h = &hstates[hugetlb_max_hstate++];
4302 mutex_init(&h->resize_lock);
4304 h->mask = ~(huge_page_size(h) - 1);
4305 for (i = 0; i < MAX_NUMNODES; ++i)
4306 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4307 INIT_LIST_HEAD(&h->hugepage_activelist);
4308 h->next_nid_to_alloc = first_memory_node;
4309 h->next_nid_to_free = first_memory_node;
4310 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4311 huge_page_size(h)/SZ_1K);
4316 bool __init __weak hugetlb_node_alloc_supported(void)
4321 static void __init hugepages_clear_pages_in_node(void)
4323 if (!hugetlb_max_hstate) {
4324 default_hstate_max_huge_pages = 0;
4325 memset(default_hugepages_in_node, 0,
4326 sizeof(default_hugepages_in_node));
4328 parsed_hstate->max_huge_pages = 0;
4329 memset(parsed_hstate->max_huge_pages_node, 0,
4330 sizeof(parsed_hstate->max_huge_pages_node));
4335 * hugepages command line processing
4336 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4337 * specification. If not, ignore the hugepages value. hugepages can also
4338 * be the first huge page command line option in which case it implicitly
4339 * specifies the number of huge pages for the default size.
4341 static int __init hugepages_setup(char *s)
4344 static unsigned long *last_mhp;
4345 int node = NUMA_NO_NODE;
4350 if (!parsed_valid_hugepagesz) {
4351 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4352 parsed_valid_hugepagesz = true;
4357 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4358 * yet, so this hugepages= parameter goes to the "default hstate".
4359 * Otherwise, it goes with the previously parsed hugepagesz or
4360 * default_hugepagesz.
4362 else if (!hugetlb_max_hstate)
4363 mhp = &default_hstate_max_huge_pages;
4365 mhp = &parsed_hstate->max_huge_pages;
4367 if (mhp == last_mhp) {
4368 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4374 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4376 /* Parameter is node format */
4377 if (p[count] == ':') {
4378 if (!hugetlb_node_alloc_supported()) {
4379 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4382 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4384 node = array_index_nospec(tmp, MAX_NUMNODES);
4386 /* Parse hugepages */
4387 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4389 if (!hugetlb_max_hstate)
4390 default_hugepages_in_node[node] = tmp;
4392 parsed_hstate->max_huge_pages_node[node] = tmp;
4394 /* Go to parse next node*/
4395 if (p[count] == ',')
4408 * Global state is always initialized later in hugetlb_init.
4409 * But we need to allocate gigantic hstates here early to still
4410 * use the bootmem allocator.
4412 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4413 hugetlb_hstate_alloc_pages(parsed_hstate);
4420 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4421 hugepages_clear_pages_in_node();
4424 __setup("hugepages=", hugepages_setup);
4427 * hugepagesz command line processing
4428 * A specific huge page size can only be specified once with hugepagesz.
4429 * hugepagesz is followed by hugepages on the command line. The global
4430 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4431 * hugepagesz argument was valid.
4433 static int __init hugepagesz_setup(char *s)
4438 parsed_valid_hugepagesz = false;
4439 size = (unsigned long)memparse(s, NULL);
4441 if (!arch_hugetlb_valid_size(size)) {
4442 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4446 h = size_to_hstate(size);
4449 * hstate for this size already exists. This is normally
4450 * an error, but is allowed if the existing hstate is the
4451 * default hstate. More specifically, it is only allowed if
4452 * the number of huge pages for the default hstate was not
4453 * previously specified.
4455 if (!parsed_default_hugepagesz || h != &default_hstate ||
4456 default_hstate.max_huge_pages) {
4457 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4462 * No need to call hugetlb_add_hstate() as hstate already
4463 * exists. But, do set parsed_hstate so that a following
4464 * hugepages= parameter will be applied to this hstate.
4467 parsed_valid_hugepagesz = true;
4471 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4472 parsed_valid_hugepagesz = true;
4475 __setup("hugepagesz=", hugepagesz_setup);
4478 * default_hugepagesz command line input
4479 * Only one instance of default_hugepagesz allowed on command line.
4481 static int __init default_hugepagesz_setup(char *s)
4486 parsed_valid_hugepagesz = false;
4487 if (parsed_default_hugepagesz) {
4488 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4492 size = (unsigned long)memparse(s, NULL);
4494 if (!arch_hugetlb_valid_size(size)) {
4495 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4499 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4500 parsed_valid_hugepagesz = true;
4501 parsed_default_hugepagesz = true;
4502 default_hstate_idx = hstate_index(size_to_hstate(size));
4505 * The number of default huge pages (for this size) could have been
4506 * specified as the first hugetlb parameter: hugepages=X. If so,
4507 * then default_hstate_max_huge_pages is set. If the default huge
4508 * page size is gigantic (> MAX_ORDER), then the pages must be
4509 * allocated here from bootmem allocator.
4511 if (default_hstate_max_huge_pages) {
4512 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4513 for_each_online_node(i)
4514 default_hstate.max_huge_pages_node[i] =
4515 default_hugepages_in_node[i];
4516 if (hstate_is_gigantic(&default_hstate))
4517 hugetlb_hstate_alloc_pages(&default_hstate);
4518 default_hstate_max_huge_pages = 0;
4523 __setup("default_hugepagesz=", default_hugepagesz_setup);
4525 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4528 struct mempolicy *mpol = get_task_policy(current);
4531 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4532 * (from policy_nodemask) specifically for hugetlb case
4534 if (mpol->mode == MPOL_BIND &&
4535 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4536 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4537 return &mpol->nodes;
4542 static unsigned int allowed_mems_nr(struct hstate *h)
4545 unsigned int nr = 0;
4546 nodemask_t *mbind_nodemask;
4547 unsigned int *array = h->free_huge_pages_node;
4548 gfp_t gfp_mask = htlb_alloc_mask(h);
4550 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4551 for_each_node_mask(node, cpuset_current_mems_allowed) {
4552 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4559 #ifdef CONFIG_SYSCTL
4560 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4561 void *buffer, size_t *length,
4562 loff_t *ppos, unsigned long *out)
4564 struct ctl_table dup_table;
4567 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4568 * can duplicate the @table and alter the duplicate of it.
4571 dup_table.data = out;
4573 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4576 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4577 struct ctl_table *table, int write,
4578 void *buffer, size_t *length, loff_t *ppos)
4580 struct hstate *h = &default_hstate;
4581 unsigned long tmp = h->max_huge_pages;
4584 if (!hugepages_supported())
4587 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4593 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4594 NUMA_NO_NODE, tmp, *length);
4599 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4600 void *buffer, size_t *length, loff_t *ppos)
4603 return hugetlb_sysctl_handler_common(false, table, write,
4604 buffer, length, ppos);
4608 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4609 void *buffer, size_t *length, loff_t *ppos)
4611 return hugetlb_sysctl_handler_common(true, table, write,
4612 buffer, length, ppos);
4614 #endif /* CONFIG_NUMA */
4616 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4617 void *buffer, size_t *length, loff_t *ppos)
4619 struct hstate *h = &default_hstate;
4623 if (!hugepages_supported())
4626 tmp = h->nr_overcommit_huge_pages;
4628 if (write && hstate_is_gigantic(h))
4631 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4637 spin_lock_irq(&hugetlb_lock);
4638 h->nr_overcommit_huge_pages = tmp;
4639 spin_unlock_irq(&hugetlb_lock);
4645 static struct ctl_table hugetlb_table[] = {
4647 .procname = "nr_hugepages",
4649 .maxlen = sizeof(unsigned long),
4651 .proc_handler = hugetlb_sysctl_handler,
4655 .procname = "nr_hugepages_mempolicy",
4657 .maxlen = sizeof(unsigned long),
4659 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4663 .procname = "hugetlb_shm_group",
4664 .data = &sysctl_hugetlb_shm_group,
4665 .maxlen = sizeof(gid_t),
4667 .proc_handler = proc_dointvec,
4670 .procname = "nr_overcommit_hugepages",
4672 .maxlen = sizeof(unsigned long),
4674 .proc_handler = hugetlb_overcommit_handler,
4679 static void hugetlb_sysctl_init(void)
4681 register_sysctl_init("vm", hugetlb_table);
4683 #endif /* CONFIG_SYSCTL */
4685 void hugetlb_report_meminfo(struct seq_file *m)
4688 unsigned long total = 0;
4690 if (!hugepages_supported())
4693 for_each_hstate(h) {
4694 unsigned long count = h->nr_huge_pages;
4696 total += huge_page_size(h) * count;
4698 if (h == &default_hstate)
4700 "HugePages_Total: %5lu\n"
4701 "HugePages_Free: %5lu\n"
4702 "HugePages_Rsvd: %5lu\n"
4703 "HugePages_Surp: %5lu\n"
4704 "Hugepagesize: %8lu kB\n",
4708 h->surplus_huge_pages,
4709 huge_page_size(h) / SZ_1K);
4712 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4715 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4717 struct hstate *h = &default_hstate;
4719 if (!hugepages_supported())
4722 return sysfs_emit_at(buf, len,
4723 "Node %d HugePages_Total: %5u\n"
4724 "Node %d HugePages_Free: %5u\n"
4725 "Node %d HugePages_Surp: %5u\n",
4726 nid, h->nr_huge_pages_node[nid],
4727 nid, h->free_huge_pages_node[nid],
4728 nid, h->surplus_huge_pages_node[nid]);
4731 void hugetlb_show_meminfo_node(int nid)
4735 if (!hugepages_supported())
4739 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4741 h->nr_huge_pages_node[nid],
4742 h->free_huge_pages_node[nid],
4743 h->surplus_huge_pages_node[nid],
4744 huge_page_size(h) / SZ_1K);
4747 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4749 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4750 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4753 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4754 unsigned long hugetlb_total_pages(void)
4757 unsigned long nr_total_pages = 0;
4760 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4761 return nr_total_pages;
4764 static int hugetlb_acct_memory(struct hstate *h, long delta)
4771 spin_lock_irq(&hugetlb_lock);
4773 * When cpuset is configured, it breaks the strict hugetlb page
4774 * reservation as the accounting is done on a global variable. Such
4775 * reservation is completely rubbish in the presence of cpuset because
4776 * the reservation is not checked against page availability for the
4777 * current cpuset. Application can still potentially OOM'ed by kernel
4778 * with lack of free htlb page in cpuset that the task is in.
4779 * Attempt to enforce strict accounting with cpuset is almost
4780 * impossible (or too ugly) because cpuset is too fluid that
4781 * task or memory node can be dynamically moved between cpusets.
4783 * The change of semantics for shared hugetlb mapping with cpuset is
4784 * undesirable. However, in order to preserve some of the semantics,
4785 * we fall back to check against current free page availability as
4786 * a best attempt and hopefully to minimize the impact of changing
4787 * semantics that cpuset has.
4789 * Apart from cpuset, we also have memory policy mechanism that
4790 * also determines from which node the kernel will allocate memory
4791 * in a NUMA system. So similar to cpuset, we also should consider
4792 * the memory policy of the current task. Similar to the description
4796 if (gather_surplus_pages(h, delta) < 0)
4799 if (delta > allowed_mems_nr(h)) {
4800 return_unused_surplus_pages(h, delta);
4807 return_unused_surplus_pages(h, (unsigned long) -delta);
4810 spin_unlock_irq(&hugetlb_lock);
4814 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4816 struct resv_map *resv = vma_resv_map(vma);
4819 * HPAGE_RESV_OWNER indicates a private mapping.
4820 * This new VMA should share its siblings reservation map if present.
4821 * The VMA will only ever have a valid reservation map pointer where
4822 * it is being copied for another still existing VMA. As that VMA
4823 * has a reference to the reservation map it cannot disappear until
4824 * after this open call completes. It is therefore safe to take a
4825 * new reference here without additional locking.
4827 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4828 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4829 kref_get(&resv->refs);
4833 * vma_lock structure for sharable mappings is vma specific.
4834 * Clear old pointer (if copied via vm_area_dup) and allocate
4835 * new structure. Before clearing, make sure vma_lock is not
4838 if (vma->vm_flags & VM_MAYSHARE) {
4839 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4842 if (vma_lock->vma != vma) {
4843 vma->vm_private_data = NULL;
4844 hugetlb_vma_lock_alloc(vma);
4846 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4848 hugetlb_vma_lock_alloc(vma);
4852 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4854 struct hstate *h = hstate_vma(vma);
4855 struct resv_map *resv;
4856 struct hugepage_subpool *spool = subpool_vma(vma);
4857 unsigned long reserve, start, end;
4860 hugetlb_vma_lock_free(vma);
4862 resv = vma_resv_map(vma);
4863 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4866 start = vma_hugecache_offset(h, vma, vma->vm_start);
4867 end = vma_hugecache_offset(h, vma, vma->vm_end);
4869 reserve = (end - start) - region_count(resv, start, end);
4870 hugetlb_cgroup_uncharge_counter(resv, start, end);
4873 * Decrement reserve counts. The global reserve count may be
4874 * adjusted if the subpool has a minimum size.
4876 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4877 hugetlb_acct_memory(h, -gbl_reserve);
4880 kref_put(&resv->refs, resv_map_release);
4883 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4885 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4889 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4890 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4891 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4893 if (addr & ~PUD_MASK) {
4895 * hugetlb_vm_op_split is called right before we attempt to
4896 * split the VMA. We will need to unshare PMDs in the old and
4897 * new VMAs, so let's unshare before we split.
4899 unsigned long floor = addr & PUD_MASK;
4900 unsigned long ceil = floor + PUD_SIZE;
4902 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4903 hugetlb_unshare_pmds(vma, floor, ceil);
4909 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4911 return huge_page_size(hstate_vma(vma));
4915 * We cannot handle pagefaults against hugetlb pages at all. They cause
4916 * handle_mm_fault() to try to instantiate regular-sized pages in the
4917 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4920 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4927 * When a new function is introduced to vm_operations_struct and added
4928 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4929 * This is because under System V memory model, mappings created via
4930 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4931 * their original vm_ops are overwritten with shm_vm_ops.
4933 const struct vm_operations_struct hugetlb_vm_ops = {
4934 .fault = hugetlb_vm_op_fault,
4935 .open = hugetlb_vm_op_open,
4936 .close = hugetlb_vm_op_close,
4937 .may_split = hugetlb_vm_op_split,
4938 .pagesize = hugetlb_vm_op_pagesize,
4941 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4945 unsigned int shift = huge_page_shift(hstate_vma(vma));
4948 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4949 vma->vm_page_prot)));
4951 entry = huge_pte_wrprotect(mk_huge_pte(page,
4952 vma->vm_page_prot));
4954 entry = pte_mkyoung(entry);
4955 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4960 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4961 unsigned long address, pte_t *ptep)
4965 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4966 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4967 update_mmu_cache(vma, address, ptep);
4970 bool is_hugetlb_entry_migration(pte_t pte)
4974 if (huge_pte_none(pte) || pte_present(pte))
4976 swp = pte_to_swp_entry(pte);
4977 if (is_migration_entry(swp))
4983 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4987 if (huge_pte_none(pte) || pte_present(pte))
4989 swp = pte_to_swp_entry(pte);
4990 if (is_hwpoison_entry(swp))
4997 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4998 struct folio *new_folio, pte_t old)
5000 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5002 __folio_mark_uptodate(new_folio);
5003 hugepage_add_new_anon_rmap(new_folio, vma, addr);
5004 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5005 newpte = huge_pte_mkuffd_wp(newpte);
5006 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5007 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5008 folio_set_hugetlb_migratable(new_folio);
5011 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5012 struct vm_area_struct *dst_vma,
5013 struct vm_area_struct *src_vma)
5015 pte_t *src_pte, *dst_pte, entry;
5016 struct folio *pte_folio;
5018 bool cow = is_cow_mapping(src_vma->vm_flags);
5019 struct hstate *h = hstate_vma(src_vma);
5020 unsigned long sz = huge_page_size(h);
5021 unsigned long npages = pages_per_huge_page(h);
5022 struct mmu_notifier_range range;
5023 unsigned long last_addr_mask;
5027 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5030 mmu_notifier_invalidate_range_start(&range);
5031 mmap_assert_write_locked(src);
5032 raw_write_seqcount_begin(&src->write_protect_seq);
5035 * For shared mappings the vma lock must be held before
5036 * calling hugetlb_walk() in the src vma. Otherwise, the
5037 * returned ptep could go away if part of a shared pmd and
5038 * another thread calls huge_pmd_unshare.
5040 hugetlb_vma_lock_read(src_vma);
5043 last_addr_mask = hugetlb_mask_last_page(h);
5044 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5045 spinlock_t *src_ptl, *dst_ptl;
5046 src_pte = hugetlb_walk(src_vma, addr, sz);
5048 addr |= last_addr_mask;
5051 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5058 * If the pagetables are shared don't copy or take references.
5060 * dst_pte == src_pte is the common case of src/dest sharing.
5061 * However, src could have 'unshared' and dst shares with
5062 * another vma. So page_count of ptep page is checked instead
5063 * to reliably determine whether pte is shared.
5065 if (page_count(virt_to_page(dst_pte)) > 1) {
5066 addr |= last_addr_mask;
5070 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5071 src_ptl = huge_pte_lockptr(h, src, src_pte);
5072 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5073 entry = huge_ptep_get(src_pte);
5075 if (huge_pte_none(entry)) {
5077 * Skip if src entry none.
5080 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5081 if (!userfaultfd_wp(dst_vma))
5082 entry = huge_pte_clear_uffd_wp(entry);
5083 set_huge_pte_at(dst, addr, dst_pte, entry);
5084 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5085 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5086 bool uffd_wp = pte_swp_uffd_wp(entry);
5088 if (!is_readable_migration_entry(swp_entry) && cow) {
5090 * COW mappings require pages in both
5091 * parent and child to be set to read.
5093 swp_entry = make_readable_migration_entry(
5094 swp_offset(swp_entry));
5095 entry = swp_entry_to_pte(swp_entry);
5096 if (userfaultfd_wp(src_vma) && uffd_wp)
5097 entry = pte_swp_mkuffd_wp(entry);
5098 set_huge_pte_at(src, addr, src_pte, entry);
5100 if (!userfaultfd_wp(dst_vma))
5101 entry = huge_pte_clear_uffd_wp(entry);
5102 set_huge_pte_at(dst, addr, dst_pte, entry);
5103 } else if (unlikely(is_pte_marker(entry))) {
5104 /* No swap on hugetlb */
5106 is_swapin_error_entry(pte_to_swp_entry(entry)));
5108 * We copy the pte marker only if the dst vma has
5111 if (userfaultfd_wp(dst_vma))
5112 set_huge_pte_at(dst, addr, dst_pte, entry);
5114 entry = huge_ptep_get(src_pte);
5115 pte_folio = page_folio(pte_page(entry));
5116 folio_get(pte_folio);
5119 * Failing to duplicate the anon rmap is a rare case
5120 * where we see pinned hugetlb pages while they're
5121 * prone to COW. We need to do the COW earlier during
5124 * When pre-allocating the page or copying data, we
5125 * need to be without the pgtable locks since we could
5126 * sleep during the process.
5128 if (!folio_test_anon(pte_folio)) {
5129 page_dup_file_rmap(&pte_folio->page, true);
5130 } else if (page_try_dup_anon_rmap(&pte_folio->page,
5132 pte_t src_pte_old = entry;
5133 struct folio *new_folio;
5135 spin_unlock(src_ptl);
5136 spin_unlock(dst_ptl);
5137 /* Do not use reserve as it's private owned */
5138 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5139 if (IS_ERR(new_folio)) {
5140 folio_put(pte_folio);
5141 ret = PTR_ERR(new_folio);
5144 ret = copy_user_large_folio(new_folio,
5147 folio_put(pte_folio);
5149 folio_put(new_folio);
5153 /* Install the new hugetlb folio if src pte stable */
5154 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5155 src_ptl = huge_pte_lockptr(h, src, src_pte);
5156 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5157 entry = huge_ptep_get(src_pte);
5158 if (!pte_same(src_pte_old, entry)) {
5159 restore_reserve_on_error(h, dst_vma, addr,
5161 folio_put(new_folio);
5162 /* huge_ptep of dst_pte won't change as in child */
5165 hugetlb_install_folio(dst_vma, dst_pte, addr,
5166 new_folio, src_pte_old);
5167 spin_unlock(src_ptl);
5168 spin_unlock(dst_ptl);
5174 * No need to notify as we are downgrading page
5175 * table protection not changing it to point
5178 * See Documentation/mm/mmu_notifier.rst
5180 huge_ptep_set_wrprotect(src, addr, src_pte);
5181 entry = huge_pte_wrprotect(entry);
5184 if (!userfaultfd_wp(dst_vma))
5185 entry = huge_pte_clear_uffd_wp(entry);
5187 set_huge_pte_at(dst, addr, dst_pte, entry);
5188 hugetlb_count_add(npages, dst);
5190 spin_unlock(src_ptl);
5191 spin_unlock(dst_ptl);
5195 raw_write_seqcount_end(&src->write_protect_seq);
5196 mmu_notifier_invalidate_range_end(&range);
5198 hugetlb_vma_unlock_read(src_vma);
5204 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5205 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5207 struct hstate *h = hstate_vma(vma);
5208 struct mm_struct *mm = vma->vm_mm;
5209 spinlock_t *src_ptl, *dst_ptl;
5212 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5213 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5216 * We don't have to worry about the ordering of src and dst ptlocks
5217 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5219 if (src_ptl != dst_ptl)
5220 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5222 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5223 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5225 if (src_ptl != dst_ptl)
5226 spin_unlock(src_ptl);
5227 spin_unlock(dst_ptl);
5230 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5231 struct vm_area_struct *new_vma,
5232 unsigned long old_addr, unsigned long new_addr,
5235 struct hstate *h = hstate_vma(vma);
5236 struct address_space *mapping = vma->vm_file->f_mapping;
5237 unsigned long sz = huge_page_size(h);
5238 struct mm_struct *mm = vma->vm_mm;
5239 unsigned long old_end = old_addr + len;
5240 unsigned long last_addr_mask;
5241 pte_t *src_pte, *dst_pte;
5242 struct mmu_notifier_range range;
5243 bool shared_pmd = false;
5245 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5247 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5249 * In case of shared PMDs, we should cover the maximum possible
5252 flush_cache_range(vma, range.start, range.end);
5254 mmu_notifier_invalidate_range_start(&range);
5255 last_addr_mask = hugetlb_mask_last_page(h);
5256 /* Prevent race with file truncation */
5257 hugetlb_vma_lock_write(vma);
5258 i_mmap_lock_write(mapping);
5259 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5260 src_pte = hugetlb_walk(vma, old_addr, sz);
5262 old_addr |= last_addr_mask;
5263 new_addr |= last_addr_mask;
5266 if (huge_pte_none(huge_ptep_get(src_pte)))
5269 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5271 old_addr |= last_addr_mask;
5272 new_addr |= last_addr_mask;
5276 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5280 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5284 flush_tlb_range(vma, range.start, range.end);
5286 flush_tlb_range(vma, old_end - len, old_end);
5287 mmu_notifier_invalidate_range_end(&range);
5288 i_mmap_unlock_write(mapping);
5289 hugetlb_vma_unlock_write(vma);
5291 return len + old_addr - old_end;
5294 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5295 unsigned long start, unsigned long end,
5296 struct page *ref_page, zap_flags_t zap_flags)
5298 struct mm_struct *mm = vma->vm_mm;
5299 unsigned long address;
5304 struct hstate *h = hstate_vma(vma);
5305 unsigned long sz = huge_page_size(h);
5306 unsigned long last_addr_mask;
5307 bool force_flush = false;
5309 WARN_ON(!is_vm_hugetlb_page(vma));
5310 BUG_ON(start & ~huge_page_mask(h));
5311 BUG_ON(end & ~huge_page_mask(h));
5314 * This is a hugetlb vma, all the pte entries should point
5317 tlb_change_page_size(tlb, sz);
5318 tlb_start_vma(tlb, vma);
5320 last_addr_mask = hugetlb_mask_last_page(h);
5322 for (; address < end; address += sz) {
5323 ptep = hugetlb_walk(vma, address, sz);
5325 address |= last_addr_mask;
5329 ptl = huge_pte_lock(h, mm, ptep);
5330 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5332 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5334 address |= last_addr_mask;
5338 pte = huge_ptep_get(ptep);
5339 if (huge_pte_none(pte)) {
5345 * Migrating hugepage or HWPoisoned hugepage is already
5346 * unmapped and its refcount is dropped, so just clear pte here.
5348 if (unlikely(!pte_present(pte))) {
5350 * If the pte was wr-protected by uffd-wp in any of the
5351 * swap forms, meanwhile the caller does not want to
5352 * drop the uffd-wp bit in this zap, then replace the
5353 * pte with a marker.
5355 if (pte_swp_uffd_wp_any(pte) &&
5356 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5357 set_huge_pte_at(mm, address, ptep,
5358 make_pte_marker(PTE_MARKER_UFFD_WP));
5360 huge_pte_clear(mm, address, ptep, sz);
5365 page = pte_page(pte);
5367 * If a reference page is supplied, it is because a specific
5368 * page is being unmapped, not a range. Ensure the page we
5369 * are about to unmap is the actual page of interest.
5372 if (page != ref_page) {
5377 * Mark the VMA as having unmapped its page so that
5378 * future faults in this VMA will fail rather than
5379 * looking like data was lost
5381 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5384 pte = huge_ptep_get_and_clear(mm, address, ptep);
5385 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5386 if (huge_pte_dirty(pte))
5387 set_page_dirty(page);
5388 /* Leave a uffd-wp pte marker if needed */
5389 if (huge_pte_uffd_wp(pte) &&
5390 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5391 set_huge_pte_at(mm, address, ptep,
5392 make_pte_marker(PTE_MARKER_UFFD_WP));
5393 hugetlb_count_sub(pages_per_huge_page(h), mm);
5394 page_remove_rmap(page, vma, true);
5397 tlb_remove_page_size(tlb, page, huge_page_size(h));
5399 * Bail out after unmapping reference page if supplied
5404 tlb_end_vma(tlb, vma);
5407 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5408 * could defer the flush until now, since by holding i_mmap_rwsem we
5409 * guaranteed that the last refernece would not be dropped. But we must
5410 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5411 * dropped and the last reference to the shared PMDs page might be
5414 * In theory we could defer the freeing of the PMD pages as well, but
5415 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5416 * detect sharing, so we cannot defer the release of the page either.
5417 * Instead, do flush now.
5420 tlb_flush_mmu_tlbonly(tlb);
5423 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5424 struct vm_area_struct *vma, unsigned long start,
5425 unsigned long end, struct page *ref_page,
5426 zap_flags_t zap_flags)
5428 hugetlb_vma_lock_write(vma);
5429 i_mmap_lock_write(vma->vm_file->f_mapping);
5431 /* mmu notification performed in caller */
5432 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5434 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5436 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5437 * When the vma_lock is freed, this makes the vma ineligible
5438 * for pmd sharing. And, i_mmap_rwsem is required to set up
5439 * pmd sharing. This is important as page tables for this
5440 * unmapped range will be asynchrously deleted. If the page
5441 * tables are shared, there will be issues when accessed by
5444 __hugetlb_vma_unlock_write_free(vma);
5445 i_mmap_unlock_write(vma->vm_file->f_mapping);
5447 i_mmap_unlock_write(vma->vm_file->f_mapping);
5448 hugetlb_vma_unlock_write(vma);
5452 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5453 unsigned long end, struct page *ref_page,
5454 zap_flags_t zap_flags)
5456 struct mmu_notifier_range range;
5457 struct mmu_gather tlb;
5459 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5461 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5462 mmu_notifier_invalidate_range_start(&range);
5463 tlb_gather_mmu(&tlb, vma->vm_mm);
5465 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5467 mmu_notifier_invalidate_range_end(&range);
5468 tlb_finish_mmu(&tlb);
5472 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5473 * mapping it owns the reserve page for. The intention is to unmap the page
5474 * from other VMAs and let the children be SIGKILLed if they are faulting the
5477 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5478 struct page *page, unsigned long address)
5480 struct hstate *h = hstate_vma(vma);
5481 struct vm_area_struct *iter_vma;
5482 struct address_space *mapping;
5486 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5487 * from page cache lookup which is in HPAGE_SIZE units.
5489 address = address & huge_page_mask(h);
5490 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5492 mapping = vma->vm_file->f_mapping;
5495 * Take the mapping lock for the duration of the table walk. As
5496 * this mapping should be shared between all the VMAs,
5497 * __unmap_hugepage_range() is called as the lock is already held
5499 i_mmap_lock_write(mapping);
5500 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5501 /* Do not unmap the current VMA */
5502 if (iter_vma == vma)
5506 * Shared VMAs have their own reserves and do not affect
5507 * MAP_PRIVATE accounting but it is possible that a shared
5508 * VMA is using the same page so check and skip such VMAs.
5510 if (iter_vma->vm_flags & VM_MAYSHARE)
5514 * Unmap the page from other VMAs without their own reserves.
5515 * They get marked to be SIGKILLed if they fault in these
5516 * areas. This is because a future no-page fault on this VMA
5517 * could insert a zeroed page instead of the data existing
5518 * from the time of fork. This would look like data corruption
5520 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5521 unmap_hugepage_range(iter_vma, address,
5522 address + huge_page_size(h), page, 0);
5524 i_mmap_unlock_write(mapping);
5528 * hugetlb_wp() should be called with page lock of the original hugepage held.
5529 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5530 * cannot race with other handlers or page migration.
5531 * Keep the pte_same checks anyway to make transition from the mutex easier.
5533 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5534 unsigned long address, pte_t *ptep, unsigned int flags,
5535 struct folio *pagecache_folio, spinlock_t *ptl)
5537 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5538 pte_t pte = huge_ptep_get(ptep);
5539 struct hstate *h = hstate_vma(vma);
5540 struct folio *old_folio;
5541 struct folio *new_folio;
5542 int outside_reserve = 0;
5544 unsigned long haddr = address & huge_page_mask(h);
5545 struct mmu_notifier_range range;
5548 * Never handle CoW for uffd-wp protected pages. It should be only
5549 * handled when the uffd-wp protection is removed.
5551 * Note that only the CoW optimization path (in hugetlb_no_page())
5552 * can trigger this, because hugetlb_fault() will always resolve
5553 * uffd-wp bit first.
5555 if (!unshare && huge_pte_uffd_wp(pte))
5559 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5560 * PTE mapped R/O such as maybe_mkwrite() would do.
5562 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5563 return VM_FAULT_SIGSEGV;
5565 /* Let's take out MAP_SHARED mappings first. */
5566 if (vma->vm_flags & VM_MAYSHARE) {
5567 set_huge_ptep_writable(vma, haddr, ptep);
5571 old_folio = page_folio(pte_page(pte));
5573 delayacct_wpcopy_start();
5577 * If no-one else is actually using this page, we're the exclusive
5578 * owner and can reuse this page.
5580 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5581 if (!PageAnonExclusive(&old_folio->page))
5582 page_move_anon_rmap(&old_folio->page, vma);
5583 if (likely(!unshare))
5584 set_huge_ptep_writable(vma, haddr, ptep);
5586 delayacct_wpcopy_end();
5589 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5590 PageAnonExclusive(&old_folio->page), &old_folio->page);
5593 * If the process that created a MAP_PRIVATE mapping is about to
5594 * perform a COW due to a shared page count, attempt to satisfy
5595 * the allocation without using the existing reserves. The pagecache
5596 * page is used to determine if the reserve at this address was
5597 * consumed or not. If reserves were used, a partial faulted mapping
5598 * at the time of fork() could consume its reserves on COW instead
5599 * of the full address range.
5601 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5602 old_folio != pagecache_folio)
5603 outside_reserve = 1;
5605 folio_get(old_folio);
5608 * Drop page table lock as buddy allocator may be called. It will
5609 * be acquired again before returning to the caller, as expected.
5612 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5614 if (IS_ERR(new_folio)) {
5616 * If a process owning a MAP_PRIVATE mapping fails to COW,
5617 * it is due to references held by a child and an insufficient
5618 * huge page pool. To guarantee the original mappers
5619 * reliability, unmap the page from child processes. The child
5620 * may get SIGKILLed if it later faults.
5622 if (outside_reserve) {
5623 struct address_space *mapping = vma->vm_file->f_mapping;
5627 folio_put(old_folio);
5629 * Drop hugetlb_fault_mutex and vma_lock before
5630 * unmapping. unmapping needs to hold vma_lock
5631 * in write mode. Dropping vma_lock in read mode
5632 * here is OK as COW mappings do not interact with
5635 * Reacquire both after unmap operation.
5637 idx = vma_hugecache_offset(h, vma, haddr);
5638 hash = hugetlb_fault_mutex_hash(mapping, idx);
5639 hugetlb_vma_unlock_read(vma);
5640 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5642 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5644 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5645 hugetlb_vma_lock_read(vma);
5647 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5649 pte_same(huge_ptep_get(ptep), pte)))
5650 goto retry_avoidcopy;
5652 * race occurs while re-acquiring page table
5653 * lock, and our job is done.
5655 delayacct_wpcopy_end();
5659 ret = vmf_error(PTR_ERR(new_folio));
5660 goto out_release_old;
5664 * When the original hugepage is shared one, it does not have
5665 * anon_vma prepared.
5667 if (unlikely(anon_vma_prepare(vma))) {
5669 goto out_release_all;
5672 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5673 ret = VM_FAULT_HWPOISON_LARGE;
5674 goto out_release_all;
5676 __folio_mark_uptodate(new_folio);
5678 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5679 haddr + huge_page_size(h));
5680 mmu_notifier_invalidate_range_start(&range);
5683 * Retake the page table lock to check for racing updates
5684 * before the page tables are altered
5687 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5688 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5689 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5691 /* Break COW or unshare */
5692 huge_ptep_clear_flush(vma, haddr, ptep);
5693 mmu_notifier_invalidate_range(mm, range.start, range.end);
5694 page_remove_rmap(&old_folio->page, vma, true);
5695 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5696 if (huge_pte_uffd_wp(pte))
5697 newpte = huge_pte_mkuffd_wp(newpte);
5698 set_huge_pte_at(mm, haddr, ptep, newpte);
5699 folio_set_hugetlb_migratable(new_folio);
5700 /* Make the old page be freed below */
5701 new_folio = old_folio;
5704 mmu_notifier_invalidate_range_end(&range);
5707 * No restore in case of successful pagetable update (Break COW or
5710 if (new_folio != old_folio)
5711 restore_reserve_on_error(h, vma, haddr, new_folio);
5712 folio_put(new_folio);
5714 folio_put(old_folio);
5716 spin_lock(ptl); /* Caller expects lock to be held */
5718 delayacct_wpcopy_end();
5723 * Return whether there is a pagecache page to back given address within VMA.
5724 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5726 static bool hugetlbfs_pagecache_present(struct hstate *h,
5727 struct vm_area_struct *vma, unsigned long address)
5729 struct address_space *mapping = vma->vm_file->f_mapping;
5730 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5731 struct folio *folio;
5733 folio = filemap_get_folio(mapping, idx);
5740 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5743 struct inode *inode = mapping->host;
5744 struct hstate *h = hstate_inode(inode);
5747 __folio_set_locked(folio);
5748 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5750 if (unlikely(err)) {
5751 __folio_clear_locked(folio);
5754 folio_clear_hugetlb_restore_reserve(folio);
5757 * mark folio dirty so that it will not be removed from cache/file
5758 * by non-hugetlbfs specific code paths.
5760 folio_mark_dirty(folio);
5762 spin_lock(&inode->i_lock);
5763 inode->i_blocks += blocks_per_huge_page(h);
5764 spin_unlock(&inode->i_lock);
5768 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5769 struct address_space *mapping,
5772 unsigned long haddr,
5774 unsigned long reason)
5777 struct vm_fault vmf = {
5780 .real_address = addr,
5784 * Hard to debug if it ends up being
5785 * used by a callee that assumes
5786 * something about the other
5787 * uninitialized fields... same as in
5793 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5794 * userfault. Also mmap_lock could be dropped due to handling
5795 * userfault, any vma operation should be careful from here.
5797 hugetlb_vma_unlock_read(vma);
5798 hash = hugetlb_fault_mutex_hash(mapping, idx);
5799 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5800 return handle_userfault(&vmf, reason);
5804 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5805 * false if pte changed or is changing.
5807 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5808 pte_t *ptep, pte_t old_pte)
5813 ptl = huge_pte_lock(h, mm, ptep);
5814 same = pte_same(huge_ptep_get(ptep), old_pte);
5820 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5821 struct vm_area_struct *vma,
5822 struct address_space *mapping, pgoff_t idx,
5823 unsigned long address, pte_t *ptep,
5824 pte_t old_pte, unsigned int flags)
5826 struct hstate *h = hstate_vma(vma);
5827 vm_fault_t ret = VM_FAULT_SIGBUS;
5830 struct folio *folio;
5833 unsigned long haddr = address & huge_page_mask(h);
5834 bool new_folio, new_pagecache_folio = false;
5835 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5838 * Currently, we are forced to kill the process in the event the
5839 * original mapper has unmapped pages from the child due to a failed
5840 * COW/unsharing. Warn that such a situation has occurred as it may not
5843 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5844 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5850 * Use page lock to guard against racing truncation
5851 * before we get page_table_lock.
5854 folio = filemap_lock_folio(mapping, idx);
5855 if (IS_ERR(folio)) {
5856 size = i_size_read(mapping->host) >> huge_page_shift(h);
5859 /* Check for page in userfault range */
5860 if (userfaultfd_missing(vma)) {
5862 * Since hugetlb_no_page() was examining pte
5863 * without pgtable lock, we need to re-test under
5864 * lock because the pte may not be stable and could
5865 * have changed from under us. Try to detect
5866 * either changed or during-changing ptes and retry
5867 * properly when needed.
5869 * Note that userfaultfd is actually fine with
5870 * false positives (e.g. caused by pte changed),
5871 * but not wrong logical events (e.g. caused by
5872 * reading a pte during changing). The latter can
5873 * confuse the userspace, so the strictness is very
5874 * much preferred. E.g., MISSING event should
5875 * never happen on the page after UFFDIO_COPY has
5876 * correctly installed the page and returned.
5878 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5883 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5888 folio = alloc_hugetlb_folio(vma, haddr, 0);
5889 if (IS_ERR(folio)) {
5891 * Returning error will result in faulting task being
5892 * sent SIGBUS. The hugetlb fault mutex prevents two
5893 * tasks from racing to fault in the same page which
5894 * could result in false unable to allocate errors.
5895 * Page migration does not take the fault mutex, but
5896 * does a clear then write of pte's under page table
5897 * lock. Page fault code could race with migration,
5898 * notice the clear pte and try to allocate a page
5899 * here. Before returning error, get ptl and make
5900 * sure there really is no pte entry.
5902 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5903 ret = vmf_error(PTR_ERR(folio));
5908 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5909 __folio_mark_uptodate(folio);
5912 if (vma->vm_flags & VM_MAYSHARE) {
5913 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5916 * err can't be -EEXIST which implies someone
5917 * else consumed the reservation since hugetlb
5918 * fault mutex is held when add a hugetlb page
5919 * to the page cache. So it's safe to call
5920 * restore_reserve_on_error() here.
5922 restore_reserve_on_error(h, vma, haddr, folio);
5926 new_pagecache_folio = true;
5929 if (unlikely(anon_vma_prepare(vma))) {
5931 goto backout_unlocked;
5937 * If memory error occurs between mmap() and fault, some process
5938 * don't have hwpoisoned swap entry for errored virtual address.
5939 * So we need to block hugepage fault by PG_hwpoison bit check.
5941 if (unlikely(folio_test_hwpoison(folio))) {
5942 ret = VM_FAULT_HWPOISON_LARGE |
5943 VM_FAULT_SET_HINDEX(hstate_index(h));
5944 goto backout_unlocked;
5947 /* Check for page in userfault range. */
5948 if (userfaultfd_minor(vma)) {
5949 folio_unlock(folio);
5951 /* See comment in userfaultfd_missing() block above */
5952 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5956 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5963 * If we are going to COW a private mapping later, we examine the
5964 * pending reservations for this page now. This will ensure that
5965 * any allocations necessary to record that reservation occur outside
5968 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5969 if (vma_needs_reservation(h, vma, haddr) < 0) {
5971 goto backout_unlocked;
5973 /* Just decrements count, does not deallocate */
5974 vma_end_reservation(h, vma, haddr);
5977 ptl = huge_pte_lock(h, mm, ptep);
5979 /* If pte changed from under us, retry */
5980 if (!pte_same(huge_ptep_get(ptep), old_pte))
5984 hugepage_add_new_anon_rmap(folio, vma, haddr);
5986 page_dup_file_rmap(&folio->page, true);
5987 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5988 && (vma->vm_flags & VM_SHARED)));
5990 * If this pte was previously wr-protected, keep it wr-protected even
5993 if (unlikely(pte_marker_uffd_wp(old_pte)))
5994 new_pte = huge_pte_mkuffd_wp(new_pte);
5995 set_huge_pte_at(mm, haddr, ptep, new_pte);
5997 hugetlb_count_add(pages_per_huge_page(h), mm);
5998 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5999 /* Optimization, do the COW without a second fault */
6000 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6006 * Only set hugetlb_migratable in newly allocated pages. Existing pages
6007 * found in the pagecache may not have hugetlb_migratable if they have
6008 * been isolated for migration.
6011 folio_set_hugetlb_migratable(folio);
6013 folio_unlock(folio);
6015 hugetlb_vma_unlock_read(vma);
6016 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6022 if (new_folio && !new_pagecache_folio)
6023 restore_reserve_on_error(h, vma, haddr, folio);
6025 folio_unlock(folio);
6031 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6033 unsigned long key[2];
6036 key[0] = (unsigned long) mapping;
6039 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6041 return hash & (num_fault_mutexes - 1);
6045 * For uniprocessor systems we always use a single mutex, so just
6046 * return 0 and avoid the hashing overhead.
6048 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6054 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6055 unsigned long address, unsigned int flags)
6062 struct folio *folio = NULL;
6063 struct folio *pagecache_folio = NULL;
6064 struct hstate *h = hstate_vma(vma);
6065 struct address_space *mapping;
6066 int need_wait_lock = 0;
6067 unsigned long haddr = address & huge_page_mask(h);
6070 * Serialize hugepage allocation and instantiation, so that we don't
6071 * get spurious allocation failures if two CPUs race to instantiate
6072 * the same page in the page cache.
6074 mapping = vma->vm_file->f_mapping;
6075 idx = vma_hugecache_offset(h, vma, haddr);
6076 hash = hugetlb_fault_mutex_hash(mapping, idx);
6077 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6080 * Acquire vma lock before calling huge_pte_alloc and hold
6081 * until finished with ptep. This prevents huge_pmd_unshare from
6082 * being called elsewhere and making the ptep no longer valid.
6084 hugetlb_vma_lock_read(vma);
6085 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6087 hugetlb_vma_unlock_read(vma);
6088 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6089 return VM_FAULT_OOM;
6092 entry = huge_ptep_get(ptep);
6093 /* PTE markers should be handled the same way as none pte */
6094 if (huge_pte_none_mostly(entry))
6096 * hugetlb_no_page will drop vma lock and hugetlb fault
6097 * mutex internally, which make us return immediately.
6099 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6105 * entry could be a migration/hwpoison entry at this point, so this
6106 * check prevents the kernel from going below assuming that we have
6107 * an active hugepage in pagecache. This goto expects the 2nd page
6108 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6109 * properly handle it.
6111 if (!pte_present(entry)) {
6112 if (unlikely(is_hugetlb_entry_migration(entry))) {
6114 * Release the hugetlb fault lock now, but retain
6115 * the vma lock, because it is needed to guard the
6116 * huge_pte_lockptr() later in
6117 * migration_entry_wait_huge(). The vma lock will
6118 * be released there.
6120 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6121 migration_entry_wait_huge(vma, ptep);
6123 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6124 ret = VM_FAULT_HWPOISON_LARGE |
6125 VM_FAULT_SET_HINDEX(hstate_index(h));
6130 * If we are going to COW/unshare the mapping later, we examine the
6131 * pending reservations for this page now. This will ensure that any
6132 * allocations necessary to record that reservation occur outside the
6133 * spinlock. Also lookup the pagecache page now as it is used to
6134 * determine if a reservation has been consumed.
6136 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6137 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6138 if (vma_needs_reservation(h, vma, haddr) < 0) {
6142 /* Just decrements count, does not deallocate */
6143 vma_end_reservation(h, vma, haddr);
6145 pagecache_folio = filemap_lock_folio(mapping, idx);
6146 if (IS_ERR(pagecache_folio))
6147 pagecache_folio = NULL;
6150 ptl = huge_pte_lock(h, mm, ptep);
6152 /* Check for a racing update before calling hugetlb_wp() */
6153 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6156 /* Handle userfault-wp first, before trying to lock more pages */
6157 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6158 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6159 struct vm_fault vmf = {
6162 .real_address = address,
6167 if (pagecache_folio) {
6168 folio_unlock(pagecache_folio);
6169 folio_put(pagecache_folio);
6171 hugetlb_vma_unlock_read(vma);
6172 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6173 return handle_userfault(&vmf, VM_UFFD_WP);
6177 * hugetlb_wp() requires page locks of pte_page(entry) and
6178 * pagecache_folio, so here we need take the former one
6179 * when folio != pagecache_folio or !pagecache_folio.
6181 folio = page_folio(pte_page(entry));
6182 if (folio != pagecache_folio)
6183 if (!folio_trylock(folio)) {
6190 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6191 if (!huge_pte_write(entry)) {
6192 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6193 pagecache_folio, ptl);
6195 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6196 entry = huge_pte_mkdirty(entry);
6199 entry = pte_mkyoung(entry);
6200 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6201 flags & FAULT_FLAG_WRITE))
6202 update_mmu_cache(vma, haddr, ptep);
6204 if (folio != pagecache_folio)
6205 folio_unlock(folio);
6210 if (pagecache_folio) {
6211 folio_unlock(pagecache_folio);
6212 folio_put(pagecache_folio);
6215 hugetlb_vma_unlock_read(vma);
6216 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6218 * Generally it's safe to hold refcount during waiting page lock. But
6219 * here we just wait to defer the next page fault to avoid busy loop and
6220 * the page is not used after unlocked before returning from the current
6221 * page fault. So we are safe from accessing freed page, even if we wait
6222 * here without taking refcount.
6225 folio_wait_locked(folio);
6229 #ifdef CONFIG_USERFAULTFD
6231 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6232 * with modifications for hugetlb pages.
6234 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6235 struct vm_area_struct *dst_vma,
6236 unsigned long dst_addr,
6237 unsigned long src_addr,
6239 struct folio **foliop)
6241 struct mm_struct *dst_mm = dst_vma->vm_mm;
6242 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6243 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6244 struct hstate *h = hstate_vma(dst_vma);
6245 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6246 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6248 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6252 struct folio *folio;
6254 bool folio_in_pagecache = false;
6258 folio = filemap_lock_folio(mapping, idx);
6261 folio_in_pagecache = true;
6262 } else if (!*foliop) {
6263 /* If a folio already exists, then it's UFFDIO_COPY for
6264 * a non-missing case. Return -EEXIST.
6267 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6272 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6273 if (IS_ERR(folio)) {
6278 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6281 /* fallback to copy_from_user outside mmap_lock */
6282 if (unlikely(ret)) {
6284 /* Free the allocated folio which may have
6285 * consumed a reservation.
6287 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6290 /* Allocate a temporary folio to hold the copied
6293 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6299 /* Set the outparam foliop and return to the caller to
6300 * copy the contents outside the lock. Don't free the
6307 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6314 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6315 if (IS_ERR(folio)) {
6321 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6331 * The memory barrier inside __folio_mark_uptodate makes sure that
6332 * preceding stores to the page contents become visible before
6333 * the set_pte_at() write.
6335 __folio_mark_uptodate(folio);
6337 /* Add shared, newly allocated pages to the page cache. */
6338 if (vm_shared && !is_continue) {
6339 size = i_size_read(mapping->host) >> huge_page_shift(h);
6342 goto out_release_nounlock;
6345 * Serialization between remove_inode_hugepages() and
6346 * hugetlb_add_to_page_cache() below happens through the
6347 * hugetlb_fault_mutex_table that here must be hold by
6350 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6352 goto out_release_nounlock;
6353 folio_in_pagecache = true;
6356 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6359 if (folio_test_hwpoison(folio))
6360 goto out_release_unlock;
6363 * We allow to overwrite a pte marker: consider when both MISSING|WP
6364 * registered, we firstly wr-protect a none pte which has no page cache
6365 * page backing it, then access the page.
6368 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6369 goto out_release_unlock;
6371 if (folio_in_pagecache)
6372 page_dup_file_rmap(&folio->page, true);
6374 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6377 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6378 * with wp flag set, don't set pte write bit.
6380 if (wp_enabled || (is_continue && !vm_shared))
6383 writable = dst_vma->vm_flags & VM_WRITE;
6385 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6387 * Always mark UFFDIO_COPY page dirty; note that this may not be
6388 * extremely important for hugetlbfs for now since swapping is not
6389 * supported, but we should still be clear in that this page cannot be
6390 * thrown away at will, even if write bit not set.
6392 _dst_pte = huge_pte_mkdirty(_dst_pte);
6393 _dst_pte = pte_mkyoung(_dst_pte);
6396 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6398 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6400 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6402 /* No need to invalidate - it was non-present before */
6403 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6407 folio_set_hugetlb_migratable(folio);
6408 if (vm_shared || is_continue)
6409 folio_unlock(folio);
6415 if (vm_shared || is_continue)
6416 folio_unlock(folio);
6417 out_release_nounlock:
6418 if (!folio_in_pagecache)
6419 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6423 #endif /* CONFIG_USERFAULTFD */
6425 static void record_subpages(struct page *page, struct vm_area_struct *vma,
6426 int refs, struct page **pages)
6430 for (nr = 0; nr < refs; nr++) {
6432 pages[nr] = nth_page(page, nr);
6436 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6437 unsigned int flags, pte_t *pte,
6440 pte_t pteval = huge_ptep_get(pte);
6443 if (is_swap_pte(pteval))
6445 if (huge_pte_write(pteval))
6447 if (flags & FOLL_WRITE)
6449 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6456 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6457 unsigned long address, unsigned int flags)
6459 struct hstate *h = hstate_vma(vma);
6460 struct mm_struct *mm = vma->vm_mm;
6461 unsigned long haddr = address & huge_page_mask(h);
6462 struct page *page = NULL;
6467 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6468 * follow_hugetlb_page().
6470 if (WARN_ON_ONCE(flags & FOLL_PIN))
6473 hugetlb_vma_lock_read(vma);
6474 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6478 ptl = huge_pte_lock(h, mm, pte);
6479 entry = huge_ptep_get(pte);
6480 if (pte_present(entry)) {
6481 page = pte_page(entry) +
6482 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6484 * Note that page may be a sub-page, and with vmemmap
6485 * optimizations the page struct may be read only.
6486 * try_grab_page() will increase the ref count on the
6487 * head page, so this will be OK.
6489 * try_grab_page() should always be able to get the page here,
6490 * because we hold the ptl lock and have verified pte_present().
6492 if (try_grab_page(page, flags)) {
6500 hugetlb_vma_unlock_read(vma);
6504 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6505 struct page **pages, unsigned long *position,
6506 unsigned long *nr_pages, long i, unsigned int flags,
6509 unsigned long pfn_offset;
6510 unsigned long vaddr = *position;
6511 unsigned long remainder = *nr_pages;
6512 struct hstate *h = hstate_vma(vma);
6513 int err = -EFAULT, refs;
6515 while (vaddr < vma->vm_end && remainder) {
6517 spinlock_t *ptl = NULL;
6518 bool unshare = false;
6523 * If we have a pending SIGKILL, don't keep faulting pages and
6524 * potentially allocating memory.
6526 if (fatal_signal_pending(current)) {
6531 hugetlb_vma_lock_read(vma);
6533 * Some archs (sparc64, sh*) have multiple pte_ts to
6534 * each hugepage. We have to make sure we get the
6535 * first, for the page indexing below to work.
6537 * Note that page table lock is not held when pte is null.
6539 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6542 ptl = huge_pte_lock(h, mm, pte);
6543 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6546 * When coredumping, it suits get_dump_page if we just return
6547 * an error where there's an empty slot with no huge pagecache
6548 * to back it. This way, we avoid allocating a hugepage, and
6549 * the sparse dumpfile avoids allocating disk blocks, but its
6550 * huge holes still show up with zeroes where they need to be.
6552 if (absent && (flags & FOLL_DUMP) &&
6553 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6556 hugetlb_vma_unlock_read(vma);
6562 * We need call hugetlb_fault for both hugepages under migration
6563 * (in which case hugetlb_fault waits for the migration,) and
6564 * hwpoisoned hugepages (in which case we need to prevent the
6565 * caller from accessing to them.) In order to do this, we use
6566 * here is_swap_pte instead of is_hugetlb_entry_migration and
6567 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6568 * both cases, and because we can't follow correct pages
6569 * directly from any kind of swap entries.
6572 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6574 unsigned int fault_flags = 0;
6578 hugetlb_vma_unlock_read(vma);
6580 if (flags & FOLL_WRITE)
6581 fault_flags |= FAULT_FLAG_WRITE;
6583 fault_flags |= FAULT_FLAG_UNSHARE;
6585 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6586 FAULT_FLAG_KILLABLE;
6587 if (flags & FOLL_INTERRUPTIBLE)
6588 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6590 if (flags & FOLL_NOWAIT)
6591 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6592 FAULT_FLAG_RETRY_NOWAIT;
6593 if (flags & FOLL_TRIED) {
6595 * Note: FAULT_FLAG_ALLOW_RETRY and
6596 * FAULT_FLAG_TRIED can co-exist
6598 fault_flags |= FAULT_FLAG_TRIED;
6600 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6601 if (ret & VM_FAULT_ERROR) {
6602 err = vm_fault_to_errno(ret, flags);
6606 if (ret & VM_FAULT_RETRY) {
6608 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6612 * VM_FAULT_RETRY must not return an
6613 * error, it will return zero
6616 * No need to update "position" as the
6617 * caller will not check it after
6618 * *nr_pages is set to 0.
6625 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6626 page = pte_page(huge_ptep_get(pte));
6628 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6629 !PageAnonExclusive(page), page);
6632 * If subpage information not requested, update counters
6633 * and skip the same_page loop below.
6635 if (!pages && !pfn_offset &&
6636 (vaddr + huge_page_size(h) < vma->vm_end) &&
6637 (remainder >= pages_per_huge_page(h))) {
6638 vaddr += huge_page_size(h);
6639 remainder -= pages_per_huge_page(h);
6640 i += pages_per_huge_page(h);
6642 hugetlb_vma_unlock_read(vma);
6646 /* vaddr may not be aligned to PAGE_SIZE */
6647 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6648 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6651 record_subpages(nth_page(page, pfn_offset),
6653 likely(pages) ? pages + i : NULL);
6657 * try_grab_folio() should always succeed here,
6658 * because: a) we hold the ptl lock, and b) we've just
6659 * checked that the huge page is present in the page
6660 * tables. If the huge page is present, then the tail
6661 * pages must also be present. The ptl prevents the
6662 * head page and tail pages from being rearranged in
6663 * any way. As this is hugetlb, the pages will never
6664 * be p2pdma or not longterm pinable. So this page
6665 * must be available at this point, unless the page
6666 * refcount overflowed:
6668 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6671 hugetlb_vma_unlock_read(vma);
6678 vaddr += (refs << PAGE_SHIFT);
6683 hugetlb_vma_unlock_read(vma);
6685 *nr_pages = remainder;
6687 * setting position is actually required only if remainder is
6688 * not zero but it's faster not to add a "if (remainder)"
6696 long hugetlb_change_protection(struct vm_area_struct *vma,
6697 unsigned long address, unsigned long end,
6698 pgprot_t newprot, unsigned long cp_flags)
6700 struct mm_struct *mm = vma->vm_mm;
6701 unsigned long start = address;
6704 struct hstate *h = hstate_vma(vma);
6705 long pages = 0, psize = huge_page_size(h);
6706 bool shared_pmd = false;
6707 struct mmu_notifier_range range;
6708 unsigned long last_addr_mask;
6709 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6710 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6713 * In the case of shared PMDs, the area to flush could be beyond
6714 * start/end. Set range.start/range.end to cover the maximum possible
6715 * range if PMD sharing is possible.
6717 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6719 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6721 BUG_ON(address >= end);
6722 flush_cache_range(vma, range.start, range.end);
6724 mmu_notifier_invalidate_range_start(&range);
6725 hugetlb_vma_lock_write(vma);
6726 i_mmap_lock_write(vma->vm_file->f_mapping);
6727 last_addr_mask = hugetlb_mask_last_page(h);
6728 for (; address < end; address += psize) {
6730 ptep = hugetlb_walk(vma, address, psize);
6733 address |= last_addr_mask;
6737 * Userfaultfd wr-protect requires pgtable
6738 * pre-allocations to install pte markers.
6740 ptep = huge_pte_alloc(mm, vma, address, psize);
6746 ptl = huge_pte_lock(h, mm, ptep);
6747 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6749 * When uffd-wp is enabled on the vma, unshare
6750 * shouldn't happen at all. Warn about it if it
6751 * happened due to some reason.
6753 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6757 address |= last_addr_mask;
6760 pte = huge_ptep_get(ptep);
6761 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6762 /* Nothing to do. */
6763 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6764 swp_entry_t entry = pte_to_swp_entry(pte);
6765 struct page *page = pfn_swap_entry_to_page(entry);
6768 if (is_writable_migration_entry(entry)) {
6770 entry = make_readable_exclusive_migration_entry(
6773 entry = make_readable_migration_entry(
6775 newpte = swp_entry_to_pte(entry);
6780 newpte = pte_swp_mkuffd_wp(newpte);
6781 else if (uffd_wp_resolve)
6782 newpte = pte_swp_clear_uffd_wp(newpte);
6783 if (!pte_same(pte, newpte))
6784 set_huge_pte_at(mm, address, ptep, newpte);
6785 } else if (unlikely(is_pte_marker(pte))) {
6786 /* No other markers apply for now. */
6787 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6788 if (uffd_wp_resolve)
6789 /* Safe to modify directly (non-present->none). */
6790 huge_pte_clear(mm, address, ptep, psize);
6791 } else if (!huge_pte_none(pte)) {
6793 unsigned int shift = huge_page_shift(hstate_vma(vma));
6795 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6796 pte = huge_pte_modify(old_pte, newprot);
6797 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6799 pte = huge_pte_mkuffd_wp(pte);
6800 else if (uffd_wp_resolve)
6801 pte = huge_pte_clear_uffd_wp(pte);
6802 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6806 if (unlikely(uffd_wp))
6807 /* Safe to modify directly (none->non-present). */
6808 set_huge_pte_at(mm, address, ptep,
6809 make_pte_marker(PTE_MARKER_UFFD_WP));
6814 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6815 * may have cleared our pud entry and done put_page on the page table:
6816 * once we release i_mmap_rwsem, another task can do the final put_page
6817 * and that page table be reused and filled with junk. If we actually
6818 * did unshare a page of pmds, flush the range corresponding to the pud.
6821 flush_hugetlb_tlb_range(vma, range.start, range.end);
6823 flush_hugetlb_tlb_range(vma, start, end);
6825 * No need to call mmu_notifier_invalidate_range() we are downgrading
6826 * page table protection not changing it to point to a new page.
6828 * See Documentation/mm/mmu_notifier.rst
6830 i_mmap_unlock_write(vma->vm_file->f_mapping);
6831 hugetlb_vma_unlock_write(vma);
6832 mmu_notifier_invalidate_range_end(&range);
6834 return pages > 0 ? (pages << h->order) : pages;
6837 /* Return true if reservation was successful, false otherwise. */
6838 bool hugetlb_reserve_pages(struct inode *inode,
6840 struct vm_area_struct *vma,
6841 vm_flags_t vm_flags)
6843 long chg = -1, add = -1;
6844 struct hstate *h = hstate_inode(inode);
6845 struct hugepage_subpool *spool = subpool_inode(inode);
6846 struct resv_map *resv_map;
6847 struct hugetlb_cgroup *h_cg = NULL;
6848 long gbl_reserve, regions_needed = 0;
6850 /* This should never happen */
6852 VM_WARN(1, "%s called with a negative range\n", __func__);
6857 * vma specific semaphore used for pmd sharing and fault/truncation
6860 hugetlb_vma_lock_alloc(vma);
6863 * Only apply hugepage reservation if asked. At fault time, an
6864 * attempt will be made for VM_NORESERVE to allocate a page
6865 * without using reserves
6867 if (vm_flags & VM_NORESERVE)
6871 * Shared mappings base their reservation on the number of pages that
6872 * are already allocated on behalf of the file. Private mappings need
6873 * to reserve the full area even if read-only as mprotect() may be
6874 * called to make the mapping read-write. Assume !vma is a shm mapping
6876 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6878 * resv_map can not be NULL as hugetlb_reserve_pages is only
6879 * called for inodes for which resv_maps were created (see
6880 * hugetlbfs_get_inode).
6882 resv_map = inode_resv_map(inode);
6884 chg = region_chg(resv_map, from, to, ®ions_needed);
6886 /* Private mapping. */
6887 resv_map = resv_map_alloc();
6893 set_vma_resv_map(vma, resv_map);
6894 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6900 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6901 chg * pages_per_huge_page(h), &h_cg) < 0)
6904 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6905 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6908 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6912 * There must be enough pages in the subpool for the mapping. If
6913 * the subpool has a minimum size, there may be some global
6914 * reservations already in place (gbl_reserve).
6916 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6917 if (gbl_reserve < 0)
6918 goto out_uncharge_cgroup;
6921 * Check enough hugepages are available for the reservation.
6922 * Hand the pages back to the subpool if there are not
6924 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6928 * Account for the reservations made. Shared mappings record regions
6929 * that have reservations as they are shared by multiple VMAs.
6930 * When the last VMA disappears, the region map says how much
6931 * the reservation was and the page cache tells how much of
6932 * the reservation was consumed. Private mappings are per-VMA and
6933 * only the consumed reservations are tracked. When the VMA
6934 * disappears, the original reservation is the VMA size and the
6935 * consumed reservations are stored in the map. Hence, nothing
6936 * else has to be done for private mappings here
6938 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6939 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6941 if (unlikely(add < 0)) {
6942 hugetlb_acct_memory(h, -gbl_reserve);
6944 } else if (unlikely(chg > add)) {
6946 * pages in this range were added to the reserve
6947 * map between region_chg and region_add. This
6948 * indicates a race with alloc_hugetlb_folio. Adjust
6949 * the subpool and reserve counts modified above
6950 * based on the difference.
6955 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6956 * reference to h_cg->css. See comment below for detail.
6958 hugetlb_cgroup_uncharge_cgroup_rsvd(
6960 (chg - add) * pages_per_huge_page(h), h_cg);
6962 rsv_adjust = hugepage_subpool_put_pages(spool,
6964 hugetlb_acct_memory(h, -rsv_adjust);
6967 * The file_regions will hold their own reference to
6968 * h_cg->css. So we should release the reference held
6969 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6972 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6978 /* put back original number of pages, chg */
6979 (void)hugepage_subpool_put_pages(spool, chg);
6980 out_uncharge_cgroup:
6981 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6982 chg * pages_per_huge_page(h), h_cg);
6984 hugetlb_vma_lock_free(vma);
6985 if (!vma || vma->vm_flags & VM_MAYSHARE)
6986 /* Only call region_abort if the region_chg succeeded but the
6987 * region_add failed or didn't run.
6989 if (chg >= 0 && add < 0)
6990 region_abort(resv_map, from, to, regions_needed);
6991 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6992 kref_put(&resv_map->refs, resv_map_release);
6996 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6999 struct hstate *h = hstate_inode(inode);
7000 struct resv_map *resv_map = inode_resv_map(inode);
7002 struct hugepage_subpool *spool = subpool_inode(inode);
7006 * Since this routine can be called in the evict inode path for all
7007 * hugetlbfs inodes, resv_map could be NULL.
7010 chg = region_del(resv_map, start, end);
7012 * region_del() can fail in the rare case where a region
7013 * must be split and another region descriptor can not be
7014 * allocated. If end == LONG_MAX, it will not fail.
7020 spin_lock(&inode->i_lock);
7021 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7022 spin_unlock(&inode->i_lock);
7025 * If the subpool has a minimum size, the number of global
7026 * reservations to be released may be adjusted.
7028 * Note that !resv_map implies freed == 0. So (chg - freed)
7029 * won't go negative.
7031 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7032 hugetlb_acct_memory(h, -gbl_reserve);
7037 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7038 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7039 struct vm_area_struct *vma,
7040 unsigned long addr, pgoff_t idx)
7042 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7044 unsigned long sbase = saddr & PUD_MASK;
7045 unsigned long s_end = sbase + PUD_SIZE;
7047 /* Allow segments to share if only one is marked locked */
7048 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7049 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7052 * match the virtual addresses, permission and the alignment of the
7055 * Also, vma_lock (vm_private_data) is required for sharing.
7057 if (pmd_index(addr) != pmd_index(saddr) ||
7058 vm_flags != svm_flags ||
7059 !range_in_vma(svma, sbase, s_end) ||
7060 !svma->vm_private_data)
7066 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7068 unsigned long start = addr & PUD_MASK;
7069 unsigned long end = start + PUD_SIZE;
7071 #ifdef CONFIG_USERFAULTFD
7072 if (uffd_disable_huge_pmd_share(vma))
7076 * check on proper vm_flags and page table alignment
7078 if (!(vma->vm_flags & VM_MAYSHARE))
7080 if (!vma->vm_private_data) /* vma lock required for sharing */
7082 if (!range_in_vma(vma, start, end))
7088 * Determine if start,end range within vma could be mapped by shared pmd.
7089 * If yes, adjust start and end to cover range associated with possible
7090 * shared pmd mappings.
7092 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7093 unsigned long *start, unsigned long *end)
7095 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7096 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7099 * vma needs to span at least one aligned PUD size, and the range
7100 * must be at least partially within in.
7102 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7103 (*end <= v_start) || (*start >= v_end))
7106 /* Extend the range to be PUD aligned for a worst case scenario */
7107 if (*start > v_start)
7108 *start = ALIGN_DOWN(*start, PUD_SIZE);
7111 *end = ALIGN(*end, PUD_SIZE);
7115 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7116 * and returns the corresponding pte. While this is not necessary for the
7117 * !shared pmd case because we can allocate the pmd later as well, it makes the
7118 * code much cleaner. pmd allocation is essential for the shared case because
7119 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7120 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7121 * bad pmd for sharing.
7123 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7124 unsigned long addr, pud_t *pud)
7126 struct address_space *mapping = vma->vm_file->f_mapping;
7127 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7129 struct vm_area_struct *svma;
7130 unsigned long saddr;
7134 i_mmap_lock_read(mapping);
7135 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7139 saddr = page_table_shareable(svma, vma, addr, idx);
7141 spte = hugetlb_walk(svma, saddr,
7142 vma_mmu_pagesize(svma));
7144 get_page(virt_to_page(spte));
7153 spin_lock(&mm->page_table_lock);
7154 if (pud_none(*pud)) {
7155 pud_populate(mm, pud,
7156 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7159 put_page(virt_to_page(spte));
7161 spin_unlock(&mm->page_table_lock);
7163 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7164 i_mmap_unlock_read(mapping);
7169 * unmap huge page backed by shared pte.
7171 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7172 * indicated by page_count > 1, unmap is achieved by clearing pud and
7173 * decrementing the ref count. If count == 1, the pte page is not shared.
7175 * Called with page table lock held.
7177 * returns: 1 successfully unmapped a shared pte page
7178 * 0 the underlying pte page is not shared, or it is the last user
7180 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7181 unsigned long addr, pte_t *ptep)
7183 pgd_t *pgd = pgd_offset(mm, addr);
7184 p4d_t *p4d = p4d_offset(pgd, addr);
7185 pud_t *pud = pud_offset(p4d, addr);
7187 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7188 hugetlb_vma_assert_locked(vma);
7189 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7190 if (page_count(virt_to_page(ptep)) == 1)
7194 put_page(virt_to_page(ptep));
7199 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7201 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7202 unsigned long addr, pud_t *pud)
7207 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7208 unsigned long addr, pte_t *ptep)
7213 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7214 unsigned long *start, unsigned long *end)
7218 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7222 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7224 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7225 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7226 unsigned long addr, unsigned long sz)
7233 pgd = pgd_offset(mm, addr);
7234 p4d = p4d_alloc(mm, pgd, addr);
7237 pud = pud_alloc(mm, p4d, addr);
7239 if (sz == PUD_SIZE) {
7242 BUG_ON(sz != PMD_SIZE);
7243 if (want_pmd_share(vma, addr) && pud_none(*pud))
7244 pte = huge_pmd_share(mm, vma, addr, pud);
7246 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7249 BUG_ON(pte && pte_present(ptep_get(pte)) && !pte_huge(ptep_get(pte)));
7255 * huge_pte_offset() - Walk the page table to resolve the hugepage
7256 * entry at address @addr
7258 * Return: Pointer to page table entry (PUD or PMD) for
7259 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7260 * size @sz doesn't match the hugepage size at this level of the page
7263 pte_t *huge_pte_offset(struct mm_struct *mm,
7264 unsigned long addr, unsigned long sz)
7271 pgd = pgd_offset(mm, addr);
7272 if (!pgd_present(*pgd))
7274 p4d = p4d_offset(pgd, addr);
7275 if (!p4d_present(*p4d))
7278 pud = pud_offset(p4d, addr);
7280 /* must be pud huge, non-present or none */
7281 return (pte_t *)pud;
7282 if (!pud_present(*pud))
7284 /* must have a valid entry and size to go further */
7286 pmd = pmd_offset(pud, addr);
7287 /* must be pmd huge, non-present or none */
7288 return (pte_t *)pmd;
7292 * Return a mask that can be used to update an address to the last huge
7293 * page in a page table page mapping size. Used to skip non-present
7294 * page table entries when linearly scanning address ranges. Architectures
7295 * with unique huge page to page table relationships can define their own
7296 * version of this routine.
7298 unsigned long hugetlb_mask_last_page(struct hstate *h)
7300 unsigned long hp_size = huge_page_size(h);
7302 if (hp_size == PUD_SIZE)
7303 return P4D_SIZE - PUD_SIZE;
7304 else if (hp_size == PMD_SIZE)
7305 return PUD_SIZE - PMD_SIZE;
7312 /* See description above. Architectures can provide their own version. */
7313 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7315 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7316 if (huge_page_size(h) == PMD_SIZE)
7317 return PUD_SIZE - PMD_SIZE;
7322 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7325 * These functions are overwritable if your architecture needs its own
7328 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7332 spin_lock_irq(&hugetlb_lock);
7333 if (!folio_test_hugetlb(folio) ||
7334 !folio_test_hugetlb_migratable(folio) ||
7335 !folio_try_get(folio)) {
7339 folio_clear_hugetlb_migratable(folio);
7340 list_move_tail(&folio->lru, list);
7342 spin_unlock_irq(&hugetlb_lock);
7346 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7351 spin_lock_irq(&hugetlb_lock);
7352 if (folio_test_hugetlb(folio)) {
7354 if (folio_test_hugetlb_freed(folio))
7356 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7357 ret = folio_try_get(folio);
7361 spin_unlock_irq(&hugetlb_lock);
7365 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7366 bool *migratable_cleared)
7370 spin_lock_irq(&hugetlb_lock);
7371 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7372 spin_unlock_irq(&hugetlb_lock);
7376 void folio_putback_active_hugetlb(struct folio *folio)
7378 spin_lock_irq(&hugetlb_lock);
7379 folio_set_hugetlb_migratable(folio);
7380 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7381 spin_unlock_irq(&hugetlb_lock);
7385 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7387 struct hstate *h = folio_hstate(old_folio);
7389 hugetlb_cgroup_migrate(old_folio, new_folio);
7390 set_page_owner_migrate_reason(&new_folio->page, reason);
7393 * transfer temporary state of the new hugetlb folio. This is
7394 * reverse to other transitions because the newpage is going to
7395 * be final while the old one will be freed so it takes over
7396 * the temporary status.
7398 * Also note that we have to transfer the per-node surplus state
7399 * here as well otherwise the global surplus count will not match
7402 if (folio_test_hugetlb_temporary(new_folio)) {
7403 int old_nid = folio_nid(old_folio);
7404 int new_nid = folio_nid(new_folio);
7406 folio_set_hugetlb_temporary(old_folio);
7407 folio_clear_hugetlb_temporary(new_folio);
7411 * There is no need to transfer the per-node surplus state
7412 * when we do not cross the node.
7414 if (new_nid == old_nid)
7416 spin_lock_irq(&hugetlb_lock);
7417 if (h->surplus_huge_pages_node[old_nid]) {
7418 h->surplus_huge_pages_node[old_nid]--;
7419 h->surplus_huge_pages_node[new_nid]++;
7421 spin_unlock_irq(&hugetlb_lock);
7425 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7426 unsigned long start,
7429 struct hstate *h = hstate_vma(vma);
7430 unsigned long sz = huge_page_size(h);
7431 struct mm_struct *mm = vma->vm_mm;
7432 struct mmu_notifier_range range;
7433 unsigned long address;
7437 if (!(vma->vm_flags & VM_MAYSHARE))
7443 flush_cache_range(vma, start, end);
7445 * No need to call adjust_range_if_pmd_sharing_possible(), because
7446 * we have already done the PUD_SIZE alignment.
7448 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7450 mmu_notifier_invalidate_range_start(&range);
7451 hugetlb_vma_lock_write(vma);
7452 i_mmap_lock_write(vma->vm_file->f_mapping);
7453 for (address = start; address < end; address += PUD_SIZE) {
7454 ptep = hugetlb_walk(vma, address, sz);
7457 ptl = huge_pte_lock(h, mm, ptep);
7458 huge_pmd_unshare(mm, vma, address, ptep);
7461 flush_hugetlb_tlb_range(vma, start, end);
7462 i_mmap_unlock_write(vma->vm_file->f_mapping);
7463 hugetlb_vma_unlock_write(vma);
7465 * No need to call mmu_notifier_invalidate_range(), see
7466 * Documentation/mm/mmu_notifier.rst.
7468 mmu_notifier_invalidate_range_end(&range);
7472 * This function will unconditionally remove all the shared pmd pgtable entries
7473 * within the specific vma for a hugetlbfs memory range.
7475 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7477 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7478 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7482 static bool cma_reserve_called __initdata;
7484 static int __init cmdline_parse_hugetlb_cma(char *p)
7491 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7494 if (s[count] == ':') {
7495 if (tmp >= MAX_NUMNODES)
7497 nid = array_index_nospec(tmp, MAX_NUMNODES);
7500 tmp = memparse(s, &s);
7501 hugetlb_cma_size_in_node[nid] = tmp;
7502 hugetlb_cma_size += tmp;
7505 * Skip the separator if have one, otherwise
7506 * break the parsing.
7513 hugetlb_cma_size = memparse(p, &p);
7521 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7523 void __init hugetlb_cma_reserve(int order)
7525 unsigned long size, reserved, per_node;
7526 bool node_specific_cma_alloc = false;
7529 cma_reserve_called = true;
7531 if (!hugetlb_cma_size)
7534 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7535 if (hugetlb_cma_size_in_node[nid] == 0)
7538 if (!node_online(nid)) {
7539 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7540 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7541 hugetlb_cma_size_in_node[nid] = 0;
7545 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7546 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7547 nid, (PAGE_SIZE << order) / SZ_1M);
7548 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7549 hugetlb_cma_size_in_node[nid] = 0;
7551 node_specific_cma_alloc = true;
7555 /* Validate the CMA size again in case some invalid nodes specified. */
7556 if (!hugetlb_cma_size)
7559 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7560 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7561 (PAGE_SIZE << order) / SZ_1M);
7562 hugetlb_cma_size = 0;
7566 if (!node_specific_cma_alloc) {
7568 * If 3 GB area is requested on a machine with 4 numa nodes,
7569 * let's allocate 1 GB on first three nodes and ignore the last one.
7571 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7572 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7573 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7577 for_each_online_node(nid) {
7579 char name[CMA_MAX_NAME];
7581 if (node_specific_cma_alloc) {
7582 if (hugetlb_cma_size_in_node[nid] == 0)
7585 size = hugetlb_cma_size_in_node[nid];
7587 size = min(per_node, hugetlb_cma_size - reserved);
7590 size = round_up(size, PAGE_SIZE << order);
7592 snprintf(name, sizeof(name), "hugetlb%d", nid);
7594 * Note that 'order per bit' is based on smallest size that
7595 * may be returned to CMA allocator in the case of
7596 * huge page demotion.
7598 res = cma_declare_contiguous_nid(0, size, 0,
7599 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7601 &hugetlb_cma[nid], nid);
7603 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7609 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7612 if (reserved >= hugetlb_cma_size)
7618 * hugetlb_cma_size is used to determine if allocations from
7619 * cma are possible. Set to zero if no cma regions are set up.
7621 hugetlb_cma_size = 0;
7624 static void __init hugetlb_cma_check(void)
7626 if (!hugetlb_cma_size || cma_reserve_called)
7629 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7632 #endif /* CONFIG_CMA */