hugetlb: revert use of page_cache_next_miss()
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265         if (__vma_shareable_lock(vma)) {
266                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268                 down_read(&vma_lock->rw_sema);
269         }
270 }
271
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274         if (__vma_shareable_lock(vma)) {
275                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277                 up_read(&vma_lock->rw_sema);
278         }
279 }
280
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283         if (__vma_shareable_lock(vma)) {
284                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286                 down_write(&vma_lock->rw_sema);
287         }
288 }
289
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292         if (__vma_shareable_lock(vma)) {
293                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295                 up_write(&vma_lock->rw_sema);
296         }
297 }
298
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303         if (!__vma_shareable_lock(vma))
304                 return 1;
305
306         return down_write_trylock(&vma_lock->rw_sema);
307 }
308
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311         if (__vma_shareable_lock(vma)) {
312                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314                 lockdep_assert_held(&vma_lock->rw_sema);
315         }
316 }
317
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320         struct hugetlb_vma_lock *vma_lock = container_of(kref,
321                         struct hugetlb_vma_lock, refs);
322
323         kfree(vma_lock);
324 }
325
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328         struct vm_area_struct *vma = vma_lock->vma;
329
330         /*
331          * vma_lock structure may or not be released as a result of put,
332          * it certainly will no longer be attached to vma so clear pointer.
333          * Semaphore synchronizes access to vma_lock->vma field.
334          */
335         vma_lock->vma = NULL;
336         vma->vm_private_data = NULL;
337         up_write(&vma_lock->rw_sema);
338         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343         if (__vma_shareable_lock(vma)) {
344                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346                 __hugetlb_vma_unlock_write_put(vma_lock);
347         }
348 }
349
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352         /*
353          * Only present in sharable vmas.
354          */
355         if (!vma || !__vma_shareable_lock(vma))
356                 return;
357
358         if (vma->vm_private_data) {
359                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361                 down_write(&vma_lock->rw_sema);
362                 __hugetlb_vma_unlock_write_put(vma_lock);
363         }
364 }
365
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368         struct hugetlb_vma_lock *vma_lock;
369
370         /* Only establish in (flags) sharable vmas */
371         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372                 return;
373
374         /* Should never get here with non-NULL vm_private_data */
375         if (vma->vm_private_data)
376                 return;
377
378         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379         if (!vma_lock) {
380                 /*
381                  * If we can not allocate structure, then vma can not
382                  * participate in pmd sharing.  This is only a possible
383                  * performance enhancement and memory saving issue.
384                  * However, the lock is also used to synchronize page
385                  * faults with truncation.  If the lock is not present,
386                  * unlikely races could leave pages in a file past i_size
387                  * until the file is removed.  Warn in the unlikely case of
388                  * allocation failure.
389                  */
390                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391                 return;
392         }
393
394         kref_init(&vma_lock->refs);
395         init_rwsem(&vma_lock->rw_sema);
396         vma_lock->vma = vma;
397         vma->vm_private_data = vma_lock;
398 }
399
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406         struct file_region *nrg;
407
408         VM_BUG_ON(resv->region_cache_count <= 0);
409
410         resv->region_cache_count--;
411         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412         list_del(&nrg->link);
413
414         nrg->from = from;
415         nrg->to = to;
416
417         return nrg;
418 }
419
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421                                               struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424         nrg->reservation_counter = rg->reservation_counter;
425         nrg->css = rg->css;
426         if (rg->css)
427                 css_get(rg->css);
428 #endif
429 }
430
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433                                                 struct hstate *h,
434                                                 struct resv_map *resv,
435                                                 struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438         if (h_cg) {
439                 nrg->reservation_counter =
440                         &h_cg->rsvd_hugepage[hstate_index(h)];
441                 nrg->css = &h_cg->css;
442                 /*
443                  * The caller will hold exactly one h_cg->css reference for the
444                  * whole contiguous reservation region. But this area might be
445                  * scattered when there are already some file_regions reside in
446                  * it. As a result, many file_regions may share only one css
447                  * reference. In order to ensure that one file_region must hold
448                  * exactly one h_cg->css reference, we should do css_get for
449                  * each file_region and leave the reference held by caller
450                  * untouched.
451                  */
452                 css_get(&h_cg->css);
453                 if (!resv->pages_per_hpage)
454                         resv->pages_per_hpage = pages_per_huge_page(h);
455                 /* pages_per_hpage should be the same for all entries in
456                  * a resv_map.
457                  */
458                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459         } else {
460                 nrg->reservation_counter = NULL;
461                 nrg->css = NULL;
462         }
463 #endif
464 }
465
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469         if (rg->css)
470                 css_put(rg->css);
471 #endif
472 }
473
474 static bool has_same_uncharge_info(struct file_region *rg,
475                                    struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478         return rg->reservation_counter == org->reservation_counter &&
479                rg->css == org->css;
480
481 #else
482         return true;
483 #endif
484 }
485
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488         struct file_region *nrg, *prg;
489
490         prg = list_prev_entry(rg, link);
491         if (&prg->link != &resv->regions && prg->to == rg->from &&
492             has_same_uncharge_info(prg, rg)) {
493                 prg->to = rg->to;
494
495                 list_del(&rg->link);
496                 put_uncharge_info(rg);
497                 kfree(rg);
498
499                 rg = prg;
500         }
501
502         nrg = list_next_entry(rg, link);
503         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504             has_same_uncharge_info(nrg, rg)) {
505                 nrg->from = rg->from;
506
507                 list_del(&rg->link);
508                 put_uncharge_info(rg);
509                 kfree(rg);
510         }
511 }
512
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
516                      long *regions_needed)
517 {
518         struct file_region *nrg;
519
520         if (!regions_needed) {
521                 nrg = get_file_region_entry_from_cache(map, from, to);
522                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523                 list_add(&nrg->link, rg);
524                 coalesce_file_region(map, nrg);
525         } else
526                 *regions_needed += 1;
527
528         return to - from;
529 }
530
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540                                      struct hugetlb_cgroup *h_cg,
541                                      struct hstate *h, long *regions_needed)
542 {
543         long add = 0;
544         struct list_head *head = &resv->regions;
545         long last_accounted_offset = f;
546         struct file_region *iter, *trg = NULL;
547         struct list_head *rg = NULL;
548
549         if (regions_needed)
550                 *regions_needed = 0;
551
552         /* In this loop, we essentially handle an entry for the range
553          * [last_accounted_offset, iter->from), at every iteration, with some
554          * bounds checking.
555          */
556         list_for_each_entry_safe(iter, trg, head, link) {
557                 /* Skip irrelevant regions that start before our range. */
558                 if (iter->from < f) {
559                         /* If this region ends after the last accounted offset,
560                          * then we need to update last_accounted_offset.
561                          */
562                         if (iter->to > last_accounted_offset)
563                                 last_accounted_offset = iter->to;
564                         continue;
565                 }
566
567                 /* When we find a region that starts beyond our range, we've
568                  * finished.
569                  */
570                 if (iter->from >= t) {
571                         rg = iter->link.prev;
572                         break;
573                 }
574
575                 /* Add an entry for last_accounted_offset -> iter->from, and
576                  * update last_accounted_offset.
577                  */
578                 if (iter->from > last_accounted_offset)
579                         add += hugetlb_resv_map_add(resv, iter->link.prev,
580                                                     last_accounted_offset,
581                                                     iter->from, h, h_cg,
582                                                     regions_needed);
583
584                 last_accounted_offset = iter->to;
585         }
586
587         /* Handle the case where our range extends beyond
588          * last_accounted_offset.
589          */
590         if (!rg)
591                 rg = head->prev;
592         if (last_accounted_offset < t)
593                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594                                             t, h, h_cg, regions_needed);
595
596         return add;
597 }
598
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602                                         int regions_needed)
603         __must_hold(&resv->lock)
604 {
605         LIST_HEAD(allocated_regions);
606         int to_allocate = 0, i = 0;
607         struct file_region *trg = NULL, *rg = NULL;
608
609         VM_BUG_ON(regions_needed < 0);
610
611         /*
612          * Check for sufficient descriptors in the cache to accommodate
613          * the number of in progress add operations plus regions_needed.
614          *
615          * This is a while loop because when we drop the lock, some other call
616          * to region_add or region_del may have consumed some region_entries,
617          * so we keep looping here until we finally have enough entries for
618          * (adds_in_progress + regions_needed).
619          */
620         while (resv->region_cache_count <
621                (resv->adds_in_progress + regions_needed)) {
622                 to_allocate = resv->adds_in_progress + regions_needed -
623                               resv->region_cache_count;
624
625                 /* At this point, we should have enough entries in the cache
626                  * for all the existing adds_in_progress. We should only be
627                  * needing to allocate for regions_needed.
628                  */
629                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631                 spin_unlock(&resv->lock);
632                 for (i = 0; i < to_allocate; i++) {
633                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634                         if (!trg)
635                                 goto out_of_memory;
636                         list_add(&trg->link, &allocated_regions);
637                 }
638
639                 spin_lock(&resv->lock);
640
641                 list_splice(&allocated_regions, &resv->region_cache);
642                 resv->region_cache_count += to_allocate;
643         }
644
645         return 0;
646
647 out_of_memory:
648         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649                 list_del(&rg->link);
650                 kfree(rg);
651         }
652         return -ENOMEM;
653 }
654
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673                        long in_regions_needed, struct hstate *h,
674                        struct hugetlb_cgroup *h_cg)
675 {
676         long add = 0, actual_regions_needed = 0;
677
678         spin_lock(&resv->lock);
679 retry:
680
681         /* Count how many regions are actually needed to execute this add. */
682         add_reservation_in_range(resv, f, t, NULL, NULL,
683                                  &actual_regions_needed);
684
685         /*
686          * Check for sufficient descriptors in the cache to accommodate
687          * this add operation. Note that actual_regions_needed may be greater
688          * than in_regions_needed, as the resv_map may have been modified since
689          * the region_chg call. In this case, we need to make sure that we
690          * allocate extra entries, such that we have enough for all the
691          * existing adds_in_progress, plus the excess needed for this
692          * operation.
693          */
694         if (actual_regions_needed > in_regions_needed &&
695             resv->region_cache_count <
696                     resv->adds_in_progress +
697                             (actual_regions_needed - in_regions_needed)) {
698                 /* region_add operation of range 1 should never need to
699                  * allocate file_region entries.
700                  */
701                 VM_BUG_ON(t - f <= 1);
702
703                 if (allocate_file_region_entries(
704                             resv, actual_regions_needed - in_regions_needed)) {
705                         return -ENOMEM;
706                 }
707
708                 goto retry;
709         }
710
711         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712
713         resv->adds_in_progress -= in_regions_needed;
714
715         spin_unlock(&resv->lock);
716         return add;
717 }
718
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740                        long *out_regions_needed)
741 {
742         long chg = 0;
743
744         spin_lock(&resv->lock);
745
746         /* Count how many hugepages in this range are NOT represented. */
747         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748                                        out_regions_needed);
749
750         if (*out_regions_needed == 0)
751                 *out_regions_needed = 1;
752
753         if (allocate_file_region_entries(resv, *out_regions_needed))
754                 return -ENOMEM;
755
756         resv->adds_in_progress += *out_regions_needed;
757
758         spin_unlock(&resv->lock);
759         return chg;
760 }
761
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776                          long regions_needed)
777 {
778         spin_lock(&resv->lock);
779         VM_BUG_ON(!resv->region_cache_count);
780         resv->adds_in_progress -= regions_needed;
781         spin_unlock(&resv->lock);
782 }
783
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800         struct list_head *head = &resv->regions;
801         struct file_region *rg, *trg;
802         struct file_region *nrg = NULL;
803         long del = 0;
804
805 retry:
806         spin_lock(&resv->lock);
807         list_for_each_entry_safe(rg, trg, head, link) {
808                 /*
809                  * Skip regions before the range to be deleted.  file_region
810                  * ranges are normally of the form [from, to).  However, there
811                  * may be a "placeholder" entry in the map which is of the form
812                  * (from, to) with from == to.  Check for placeholder entries
813                  * at the beginning of the range to be deleted.
814                  */
815                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816                         continue;
817
818                 if (rg->from >= t)
819                         break;
820
821                 if (f > rg->from && t < rg->to) { /* Must split region */
822                         /*
823                          * Check for an entry in the cache before dropping
824                          * lock and attempting allocation.
825                          */
826                         if (!nrg &&
827                             resv->region_cache_count > resv->adds_in_progress) {
828                                 nrg = list_first_entry(&resv->region_cache,
829                                                         struct file_region,
830                                                         link);
831                                 list_del(&nrg->link);
832                                 resv->region_cache_count--;
833                         }
834
835                         if (!nrg) {
836                                 spin_unlock(&resv->lock);
837                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838                                 if (!nrg)
839                                         return -ENOMEM;
840                                 goto retry;
841                         }
842
843                         del += t - f;
844                         hugetlb_cgroup_uncharge_file_region(
845                                 resv, rg, t - f, false);
846
847                         /* New entry for end of split region */
848                         nrg->from = t;
849                         nrg->to = rg->to;
850
851                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
853                         INIT_LIST_HEAD(&nrg->link);
854
855                         /* Original entry is trimmed */
856                         rg->to = f;
857
858                         list_add(&nrg->link, &rg->link);
859                         nrg = NULL;
860                         break;
861                 }
862
863                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864                         del += rg->to - rg->from;
865                         hugetlb_cgroup_uncharge_file_region(resv, rg,
866                                                             rg->to - rg->from, true);
867                         list_del(&rg->link);
868                         kfree(rg);
869                         continue;
870                 }
871
872                 if (f <= rg->from) {    /* Trim beginning of region */
873                         hugetlb_cgroup_uncharge_file_region(resv, rg,
874                                                             t - rg->from, false);
875
876                         del += t - rg->from;
877                         rg->from = t;
878                 } else {                /* Trim end of region */
879                         hugetlb_cgroup_uncharge_file_region(resv, rg,
880                                                             rg->to - f, false);
881
882                         del += rg->to - f;
883                         rg->to = f;
884                 }
885         }
886
887         spin_unlock(&resv->lock);
888         kfree(nrg);
889         return del;
890 }
891
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903         struct hugepage_subpool *spool = subpool_inode(inode);
904         long rsv_adjust;
905         bool reserved = false;
906
907         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908         if (rsv_adjust > 0) {
909                 struct hstate *h = hstate_inode(inode);
910
911                 if (!hugetlb_acct_memory(h, 1))
912                         reserved = true;
913         } else if (!rsv_adjust) {
914                 reserved = true;
915         }
916
917         if (!reserved)
918                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927         struct list_head *head = &resv->regions;
928         struct file_region *rg;
929         long chg = 0;
930
931         spin_lock(&resv->lock);
932         /* Locate each segment we overlap with, and count that overlap. */
933         list_for_each_entry(rg, head, link) {
934                 long seg_from;
935                 long seg_to;
936
937                 if (rg->to <= f)
938                         continue;
939                 if (rg->from >= t)
940                         break;
941
942                 seg_from = max(rg->from, f);
943                 seg_to = min(rg->to, t);
944
945                 chg += seg_to - seg_from;
946         }
947         spin_unlock(&resv->lock);
948
949         return chg;
950 }
951
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957                         struct vm_area_struct *vma, unsigned long address)
958 {
959         return ((address - vma->vm_start) >> huge_page_shift(h)) +
960                         (vma->vm_pgoff >> huge_page_order(h));
961 }
962
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964                                      unsigned long address)
965 {
966         return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976         if (vma->vm_ops && vma->vm_ops->pagesize)
977                 return vma->vm_ops->pagesize(vma);
978         return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990         return vma_kernel_pagesize(vma);
991 }
992
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023         return (unsigned long)vma->vm_private_data;
1024 }
1025
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027                                                         unsigned long value)
1028 {
1029         vma->vm_private_data = (void *)value;
1030 }
1031
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034                                           struct hugetlb_cgroup *h_cg,
1035                                           struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038         if (!h_cg || !h) {
1039                 resv_map->reservation_counter = NULL;
1040                 resv_map->pages_per_hpage = 0;
1041                 resv_map->css = NULL;
1042         } else {
1043                 resv_map->reservation_counter =
1044                         &h_cg->rsvd_hugepage[hstate_index(h)];
1045                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046                 resv_map->css = &h_cg->css;
1047         }
1048 #endif
1049 }
1050
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056         if (!resv_map || !rg) {
1057                 kfree(resv_map);
1058                 kfree(rg);
1059                 return NULL;
1060         }
1061
1062         kref_init(&resv_map->refs);
1063         spin_lock_init(&resv_map->lock);
1064         INIT_LIST_HEAD(&resv_map->regions);
1065
1066         resv_map->adds_in_progress = 0;
1067         /*
1068          * Initialize these to 0. On shared mappings, 0's here indicate these
1069          * fields don't do cgroup accounting. On private mappings, these will be
1070          * re-initialized to the proper values, to indicate that hugetlb cgroup
1071          * reservations are to be un-charged from here.
1072          */
1073         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074
1075         INIT_LIST_HEAD(&resv_map->region_cache);
1076         list_add(&rg->link, &resv_map->region_cache);
1077         resv_map->region_cache_count = 1;
1078
1079         return resv_map;
1080 }
1081
1082 void resv_map_release(struct kref *ref)
1083 {
1084         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085         struct list_head *head = &resv_map->region_cache;
1086         struct file_region *rg, *trg;
1087
1088         /* Clear out any active regions before we release the map. */
1089         region_del(resv_map, 0, LONG_MAX);
1090
1091         /* ... and any entries left in the cache */
1092         list_for_each_entry_safe(rg, trg, head, link) {
1093                 list_del(&rg->link);
1094                 kfree(rg);
1095         }
1096
1097         VM_BUG_ON(resv_map->adds_in_progress);
1098
1099         kfree(resv_map);
1100 }
1101
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104         /*
1105          * At inode evict time, i_mapping may not point to the original
1106          * address space within the inode.  This original address space
1107          * contains the pointer to the resv_map.  So, always use the
1108          * address space embedded within the inode.
1109          * The VERY common case is inode->mapping == &inode->i_data but,
1110          * this may not be true for device special inodes.
1111          */
1112         return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118         if (vma->vm_flags & VM_MAYSHARE) {
1119                 struct address_space *mapping = vma->vm_file->f_mapping;
1120                 struct inode *inode = mapping->host;
1121
1122                 return inode_resv_map(inode);
1123
1124         } else {
1125                 return (struct resv_map *)(get_vma_private_data(vma) &
1126                                                         ~HPAGE_RESV_MASK);
1127         }
1128 }
1129
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134
1135         set_vma_private_data(vma, (get_vma_private_data(vma) &
1136                                 HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143
1144         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150
1151         return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157         /*
1158          * Clear vm_private_data
1159          * - For shared mappings this is a per-vma semaphore that may be
1160          *   allocated in a subsequent call to hugetlb_vm_op_open.
1161          *   Before clearing, make sure pointer is not associated with vma
1162          *   as this will leak the structure.  This is the case when called
1163          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164          *   been called to allocate a new structure.
1165          * - For MAP_PRIVATE mappings, this is the reserve map which does
1166          *   not apply to children.  Faults generated by the children are
1167          *   not guaranteed to succeed, even if read-only.
1168          */
1169         if (vma->vm_flags & VM_MAYSHARE) {
1170                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172                 if (vma_lock && vma_lock->vma != vma)
1173                         vma->vm_private_data = NULL;
1174         } else
1175                 vma->vm_private_data = NULL;
1176 }
1177
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187         /*
1188          * Clear the old hugetlb private page reservation.
1189          * It has already been transferred to new_vma.
1190          *
1191          * During a mremap() operation of a hugetlb vma we call move_vma()
1192          * which copies vma into new_vma and unmaps vma. After the copy
1193          * operation both new_vma and vma share a reference to the resv_map
1194          * struct, and at that point vma is about to be unmapped. We don't
1195          * want to return the reservation to the pool at unmap of vma because
1196          * the reservation still lives on in new_vma, so simply decrement the
1197          * ref here and remove the resv_map reference from this vma.
1198          */
1199         struct resv_map *reservations = vma_resv_map(vma);
1200
1201         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203                 kref_put(&reservations->refs, resv_map_release);
1204         }
1205
1206         hugetlb_dup_vma_private(vma);
1207 }
1208
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212         if (vma->vm_flags & VM_NORESERVE) {
1213                 /*
1214                  * This address is already reserved by other process(chg == 0),
1215                  * so, we should decrement reserved count. Without decrementing,
1216                  * reserve count remains after releasing inode, because this
1217                  * allocated page will go into page cache and is regarded as
1218                  * coming from reserved pool in releasing step.  Currently, we
1219                  * don't have any other solution to deal with this situation
1220                  * properly, so add work-around here.
1221                  */
1222                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223                         return true;
1224                 else
1225                         return false;
1226         }
1227
1228         /* Shared mappings always use reserves */
1229         if (vma->vm_flags & VM_MAYSHARE) {
1230                 /*
1231                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232                  * be a region map for all pages.  The only situation where
1233                  * there is no region map is if a hole was punched via
1234                  * fallocate.  In this case, there really are no reserves to
1235                  * use.  This situation is indicated if chg != 0.
1236                  */
1237                 if (chg)
1238                         return false;
1239                 else
1240                         return true;
1241         }
1242
1243         /*
1244          * Only the process that called mmap() has reserves for
1245          * private mappings.
1246          */
1247         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248                 /*
1249                  * Like the shared case above, a hole punch or truncate
1250                  * could have been performed on the private mapping.
1251                  * Examine the value of chg to determine if reserves
1252                  * actually exist or were previously consumed.
1253                  * Very Subtle - The value of chg comes from a previous
1254                  * call to vma_needs_reserves().  The reserve map for
1255                  * private mappings has different (opposite) semantics
1256                  * than that of shared mappings.  vma_needs_reserves()
1257                  * has already taken this difference in semantics into
1258                  * account.  Therefore, the meaning of chg is the same
1259                  * as in the shared case above.  Code could easily be
1260                  * combined, but keeping it separate draws attention to
1261                  * subtle differences.
1262                  */
1263                 if (chg)
1264                         return false;
1265                 else
1266                         return true;
1267         }
1268
1269         return false;
1270 }
1271
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274         int nid = folio_nid(folio);
1275
1276         lockdep_assert_held(&hugetlb_lock);
1277         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278
1279         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280         h->free_huge_pages++;
1281         h->free_huge_pages_node[nid]++;
1282         folio_set_hugetlb_freed(folio);
1283 }
1284
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286                                                                 int nid)
1287 {
1288         struct folio *folio;
1289         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290
1291         lockdep_assert_held(&hugetlb_lock);
1292         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293                 if (pin && !folio_is_longterm_pinnable(folio))
1294                         continue;
1295
1296                 if (folio_test_hwpoison(folio))
1297                         continue;
1298
1299                 list_move(&folio->lru, &h->hugepage_activelist);
1300                 folio_ref_unfreeze(folio, 1);
1301                 folio_clear_hugetlb_freed(folio);
1302                 h->free_huge_pages--;
1303                 h->free_huge_pages_node[nid]--;
1304                 return folio;
1305         }
1306
1307         return NULL;
1308 }
1309
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311                                                         int nid, nodemask_t *nmask)
1312 {
1313         unsigned int cpuset_mems_cookie;
1314         struct zonelist *zonelist;
1315         struct zone *zone;
1316         struct zoneref *z;
1317         int node = NUMA_NO_NODE;
1318
1319         zonelist = node_zonelist(nid, gfp_mask);
1320
1321 retry_cpuset:
1322         cpuset_mems_cookie = read_mems_allowed_begin();
1323         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324                 struct folio *folio;
1325
1326                 if (!cpuset_zone_allowed(zone, gfp_mask))
1327                         continue;
1328                 /*
1329                  * no need to ask again on the same node. Pool is node rather than
1330                  * zone aware
1331                  */
1332                 if (zone_to_nid(zone) == node)
1333                         continue;
1334                 node = zone_to_nid(zone);
1335
1336                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1337                 if (folio)
1338                         return folio;
1339         }
1340         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341                 goto retry_cpuset;
1342
1343         return NULL;
1344 }
1345
1346 static unsigned long available_huge_pages(struct hstate *h)
1347 {
1348         return h->free_huge_pages - h->resv_huge_pages;
1349 }
1350
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352                                 struct vm_area_struct *vma,
1353                                 unsigned long address, int avoid_reserve,
1354                                 long chg)
1355 {
1356         struct folio *folio = NULL;
1357         struct mempolicy *mpol;
1358         gfp_t gfp_mask;
1359         nodemask_t *nodemask;
1360         int nid;
1361
1362         /*
1363          * A child process with MAP_PRIVATE mappings created by their parent
1364          * have no page reserves. This check ensures that reservations are
1365          * not "stolen". The child may still get SIGKILLed
1366          */
1367         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368                 goto err;
1369
1370         /* If reserves cannot be used, ensure enough pages are in the pool */
1371         if (avoid_reserve && !available_huge_pages(h))
1372                 goto err;
1373
1374         gfp_mask = htlb_alloc_mask(h);
1375         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376
1377         if (mpol_is_preferred_many(mpol)) {
1378                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379                                                         nid, nodemask);
1380
1381                 /* Fallback to all nodes if page==NULL */
1382                 nodemask = NULL;
1383         }
1384
1385         if (!folio)
1386                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387                                                         nid, nodemask);
1388
1389         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390                 folio_set_hugetlb_restore_reserve(folio);
1391                 h->resv_huge_pages--;
1392         }
1393
1394         mpol_cond_put(mpol);
1395         return folio;
1396
1397 err:
1398         return NULL;
1399 }
1400
1401 /*
1402  * common helper functions for hstate_next_node_to_{alloc|free}.
1403  * We may have allocated or freed a huge page based on a different
1404  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405  * be outside of *nodes_allowed.  Ensure that we use an allowed
1406  * node for alloc or free.
1407  */
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409 {
1410         nid = next_node_in(nid, *nodes_allowed);
1411         VM_BUG_ON(nid >= MAX_NUMNODES);
1412
1413         return nid;
1414 }
1415
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417 {
1418         if (!node_isset(nid, *nodes_allowed))
1419                 nid = next_node_allowed(nid, nodes_allowed);
1420         return nid;
1421 }
1422
1423 /*
1424  * returns the previously saved node ["this node"] from which to
1425  * allocate a persistent huge page for the pool and advance the
1426  * next node from which to allocate, handling wrap at end of node
1427  * mask.
1428  */
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430                                         nodemask_t *nodes_allowed)
1431 {
1432         int nid;
1433
1434         VM_BUG_ON(!nodes_allowed);
1435
1436         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438
1439         return nid;
1440 }
1441
1442 /*
1443  * helper for remove_pool_huge_page() - return the previously saved
1444  * node ["this node"] from which to free a huge page.  Advance the
1445  * next node id whether or not we find a free huge page to free so
1446  * that the next attempt to free addresses the next node.
1447  */
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449 {
1450         int nid;
1451
1452         VM_BUG_ON(!nodes_allowed);
1453
1454         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456
1457         return nid;
1458 }
1459
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1461         for (nr_nodes = nodes_weight(*mask);                            \
1462                 nr_nodes > 0 &&                                         \
1463                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1464                 nr_nodes--)
1465
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1467         for (nr_nodes = nodes_weight(*mask);                            \
1468                 nr_nodes > 0 &&                                         \
1469                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1470                 nr_nodes--)
1471
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474                                         unsigned int order, bool demote)
1475 {
1476         int i;
1477         int nr_pages = 1 << order;
1478         struct page *p;
1479
1480         atomic_set(&folio->_entire_mapcount, 0);
1481         atomic_set(&folio->_nr_pages_mapped, 0);
1482         atomic_set(&folio->_pincount, 0);
1483
1484         for (i = 1; i < nr_pages; i++) {
1485                 p = folio_page(folio, i);
1486                 p->mapping = NULL;
1487                 clear_compound_head(p);
1488                 if (!demote)
1489                         set_page_refcounted(p);
1490         }
1491
1492         __folio_clear_head(folio);
1493 }
1494
1495 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1496                                         unsigned int order)
1497 {
1498         __destroy_compound_gigantic_folio(folio, order, true);
1499 }
1500
1501 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1502 static void destroy_compound_gigantic_folio(struct folio *folio,
1503                                         unsigned int order)
1504 {
1505         __destroy_compound_gigantic_folio(folio, order, false);
1506 }
1507
1508 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1509 {
1510         /*
1511          * If the page isn't allocated using the cma allocator,
1512          * cma_release() returns false.
1513          */
1514 #ifdef CONFIG_CMA
1515         int nid = folio_nid(folio);
1516
1517         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1518                 return;
1519 #endif
1520
1521         free_contig_range(folio_pfn(folio), 1 << order);
1522 }
1523
1524 #ifdef CONFIG_CONTIG_ALLOC
1525 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1526                 int nid, nodemask_t *nodemask)
1527 {
1528         struct page *page;
1529         unsigned long nr_pages = pages_per_huge_page(h);
1530         if (nid == NUMA_NO_NODE)
1531                 nid = numa_mem_id();
1532
1533 #ifdef CONFIG_CMA
1534         {
1535                 int node;
1536
1537                 if (hugetlb_cma[nid]) {
1538                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1539                                         huge_page_order(h), true);
1540                         if (page)
1541                                 return page_folio(page);
1542                 }
1543
1544                 if (!(gfp_mask & __GFP_THISNODE)) {
1545                         for_each_node_mask(node, *nodemask) {
1546                                 if (node == nid || !hugetlb_cma[node])
1547                                         continue;
1548
1549                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1550                                                 huge_page_order(h), true);
1551                                 if (page)
1552                                         return page_folio(page);
1553                         }
1554                 }
1555         }
1556 #endif
1557
1558         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1559         return page ? page_folio(page) : NULL;
1560 }
1561
1562 #else /* !CONFIG_CONTIG_ALLOC */
1563 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1564                                         int nid, nodemask_t *nodemask)
1565 {
1566         return NULL;
1567 }
1568 #endif /* CONFIG_CONTIG_ALLOC */
1569
1570 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572                                         int nid, nodemask_t *nodemask)
1573 {
1574         return NULL;
1575 }
1576 static inline void free_gigantic_folio(struct folio *folio,
1577                                                 unsigned int order) { }
1578 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1579                                                 unsigned int order) { }
1580 #endif
1581
1582 /*
1583  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1584  * as just a compound page.
1585  *
1586  * A reference is held on the folio, except in the case of demote.
1587  *
1588  * Must be called with hugetlb lock held.
1589  */
1590 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1591                                                         bool adjust_surplus,
1592                                                         bool demote)
1593 {
1594         int nid = folio_nid(folio);
1595
1596         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1597         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1598
1599         lockdep_assert_held(&hugetlb_lock);
1600         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1601                 return;
1602
1603         list_del(&folio->lru);
1604
1605         if (folio_test_hugetlb_freed(folio)) {
1606                 h->free_huge_pages--;
1607                 h->free_huge_pages_node[nid]--;
1608         }
1609         if (adjust_surplus) {
1610                 h->surplus_huge_pages--;
1611                 h->surplus_huge_pages_node[nid]--;
1612         }
1613
1614         /*
1615          * Very subtle
1616          *
1617          * For non-gigantic pages set the destructor to the normal compound
1618          * page dtor.  This is needed in case someone takes an additional
1619          * temporary ref to the page, and freeing is delayed until they drop
1620          * their reference.
1621          *
1622          * For gigantic pages set the destructor to the null dtor.  This
1623          * destructor will never be called.  Before freeing the gigantic
1624          * page destroy_compound_gigantic_folio will turn the folio into a
1625          * simple group of pages.  After this the destructor does not
1626          * apply.
1627          *
1628          * This handles the case where more than one ref is held when and
1629          * after update_and_free_hugetlb_folio is called.
1630          *
1631          * In the case of demote we do not ref count the page as it will soon
1632          * be turned into a page of smaller size.
1633          */
1634         if (!demote)
1635                 folio_ref_unfreeze(folio, 1);
1636         if (hstate_is_gigantic(h))
1637                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1638         else
1639                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1640
1641         h->nr_huge_pages--;
1642         h->nr_huge_pages_node[nid]--;
1643 }
1644
1645 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1646                                                         bool adjust_surplus)
1647 {
1648         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1649 }
1650
1651 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1652                                                         bool adjust_surplus)
1653 {
1654         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1655 }
1656
1657 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1658                              bool adjust_surplus)
1659 {
1660         int zeroed;
1661         int nid = folio_nid(folio);
1662
1663         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1664
1665         lockdep_assert_held(&hugetlb_lock);
1666
1667         INIT_LIST_HEAD(&folio->lru);
1668         h->nr_huge_pages++;
1669         h->nr_huge_pages_node[nid]++;
1670
1671         if (adjust_surplus) {
1672                 h->surplus_huge_pages++;
1673                 h->surplus_huge_pages_node[nid]++;
1674         }
1675
1676         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1677         folio_change_private(folio, NULL);
1678         /*
1679          * We have to set hugetlb_vmemmap_optimized again as above
1680          * folio_change_private(folio, NULL) cleared it.
1681          */
1682         folio_set_hugetlb_vmemmap_optimized(folio);
1683
1684         /*
1685          * This folio is about to be managed by the hugetlb allocator and
1686          * should have no users.  Drop our reference, and check for others
1687          * just in case.
1688          */
1689         zeroed = folio_put_testzero(folio);
1690         if (unlikely(!zeroed))
1691                 /*
1692                  * It is VERY unlikely soneone else has taken a ref on
1693                  * the page.  In this case, we simply return as the
1694                  * hugetlb destructor (free_huge_page) will be called
1695                  * when this other ref is dropped.
1696                  */
1697                 return;
1698
1699         arch_clear_hugepage_flags(&folio->page);
1700         enqueue_hugetlb_folio(h, folio);
1701 }
1702
1703 static void __update_and_free_hugetlb_folio(struct hstate *h,
1704                                                 struct folio *folio)
1705 {
1706         int i;
1707         struct page *subpage;
1708
1709         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1710                 return;
1711
1712         /*
1713          * If we don't know which subpages are hwpoisoned, we can't free
1714          * the hugepage, so it's leaked intentionally.
1715          */
1716         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1717                 return;
1718
1719         if (hugetlb_vmemmap_restore(h, &folio->page)) {
1720                 spin_lock_irq(&hugetlb_lock);
1721                 /*
1722                  * If we cannot allocate vmemmap pages, just refuse to free the
1723                  * page and put the page back on the hugetlb free list and treat
1724                  * as a surplus page.
1725                  */
1726                 add_hugetlb_folio(h, folio, true);
1727                 spin_unlock_irq(&hugetlb_lock);
1728                 return;
1729         }
1730
1731         /*
1732          * Move PageHWPoison flag from head page to the raw error pages,
1733          * which makes any healthy subpages reusable.
1734          */
1735         if (unlikely(folio_test_hwpoison(folio)))
1736                 folio_clear_hugetlb_hwpoison(folio);
1737
1738         for (i = 0; i < pages_per_huge_page(h); i++) {
1739                 subpage = folio_page(folio, i);
1740                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1741                                 1 << PG_referenced | 1 << PG_dirty |
1742                                 1 << PG_active | 1 << PG_private |
1743                                 1 << PG_writeback);
1744         }
1745
1746         /*
1747          * Non-gigantic pages demoted from CMA allocated gigantic pages
1748          * need to be given back to CMA in free_gigantic_folio.
1749          */
1750         if (hstate_is_gigantic(h) ||
1751             hugetlb_cma_folio(folio, huge_page_order(h))) {
1752                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1753                 free_gigantic_folio(folio, huge_page_order(h));
1754         } else {
1755                 __free_pages(&folio->page, huge_page_order(h));
1756         }
1757 }
1758
1759 /*
1760  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1761  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1762  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1763  * the vmemmap pages.
1764  *
1765  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1766  * freed and frees them one-by-one. As the page->mapping pointer is going
1767  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1768  * structure of a lockless linked list of huge pages to be freed.
1769  */
1770 static LLIST_HEAD(hpage_freelist);
1771
1772 static void free_hpage_workfn(struct work_struct *work)
1773 {
1774         struct llist_node *node;
1775
1776         node = llist_del_all(&hpage_freelist);
1777
1778         while (node) {
1779                 struct page *page;
1780                 struct hstate *h;
1781
1782                 page = container_of((struct address_space **)node,
1783                                      struct page, mapping);
1784                 node = node->next;
1785                 page->mapping = NULL;
1786                 /*
1787                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1788                  * is going to trigger because a previous call to
1789                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1790                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1791                  * directly.
1792                  */
1793                 h = size_to_hstate(page_size(page));
1794
1795                 __update_and_free_hugetlb_folio(h, page_folio(page));
1796
1797                 cond_resched();
1798         }
1799 }
1800 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1801
1802 static inline void flush_free_hpage_work(struct hstate *h)
1803 {
1804         if (hugetlb_vmemmap_optimizable(h))
1805                 flush_work(&free_hpage_work);
1806 }
1807
1808 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1809                                  bool atomic)
1810 {
1811         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1812                 __update_and_free_hugetlb_folio(h, folio);
1813                 return;
1814         }
1815
1816         /*
1817          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1818          *
1819          * Only call schedule_work() if hpage_freelist is previously
1820          * empty. Otherwise, schedule_work() had been called but the workfn
1821          * hasn't retrieved the list yet.
1822          */
1823         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1824                 schedule_work(&free_hpage_work);
1825 }
1826
1827 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1828 {
1829         struct page *page, *t_page;
1830         struct folio *folio;
1831
1832         list_for_each_entry_safe(page, t_page, list, lru) {
1833                 folio = page_folio(page);
1834                 update_and_free_hugetlb_folio(h, folio, false);
1835                 cond_resched();
1836         }
1837 }
1838
1839 struct hstate *size_to_hstate(unsigned long size)
1840 {
1841         struct hstate *h;
1842
1843         for_each_hstate(h) {
1844                 if (huge_page_size(h) == size)
1845                         return h;
1846         }
1847         return NULL;
1848 }
1849
1850 void free_huge_page(struct page *page)
1851 {
1852         /*
1853          * Can't pass hstate in here because it is called from the
1854          * compound page destructor.
1855          */
1856         struct folio *folio = page_folio(page);
1857         struct hstate *h = folio_hstate(folio);
1858         int nid = folio_nid(folio);
1859         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1860         bool restore_reserve;
1861         unsigned long flags;
1862
1863         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1864         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1865
1866         hugetlb_set_folio_subpool(folio, NULL);
1867         if (folio_test_anon(folio))
1868                 __ClearPageAnonExclusive(&folio->page);
1869         folio->mapping = NULL;
1870         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1871         folio_clear_hugetlb_restore_reserve(folio);
1872
1873         /*
1874          * If HPageRestoreReserve was set on page, page allocation consumed a
1875          * reservation.  If the page was associated with a subpool, there
1876          * would have been a page reserved in the subpool before allocation
1877          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1878          * reservation, do not call hugepage_subpool_put_pages() as this will
1879          * remove the reserved page from the subpool.
1880          */
1881         if (!restore_reserve) {
1882                 /*
1883                  * A return code of zero implies that the subpool will be
1884                  * under its minimum size if the reservation is not restored
1885                  * after page is free.  Therefore, force restore_reserve
1886                  * operation.
1887                  */
1888                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1889                         restore_reserve = true;
1890         }
1891
1892         spin_lock_irqsave(&hugetlb_lock, flags);
1893         folio_clear_hugetlb_migratable(folio);
1894         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1895                                      pages_per_huge_page(h), folio);
1896         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1897                                           pages_per_huge_page(h), folio);
1898         if (restore_reserve)
1899                 h->resv_huge_pages++;
1900
1901         if (folio_test_hugetlb_temporary(folio)) {
1902                 remove_hugetlb_folio(h, folio, false);
1903                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1904                 update_and_free_hugetlb_folio(h, folio, true);
1905         } else if (h->surplus_huge_pages_node[nid]) {
1906                 /* remove the page from active list */
1907                 remove_hugetlb_folio(h, folio, true);
1908                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1909                 update_and_free_hugetlb_folio(h, folio, true);
1910         } else {
1911                 arch_clear_hugepage_flags(page);
1912                 enqueue_hugetlb_folio(h, folio);
1913                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1914         }
1915 }
1916
1917 /*
1918  * Must be called with the hugetlb lock held
1919  */
1920 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1921 {
1922         lockdep_assert_held(&hugetlb_lock);
1923         h->nr_huge_pages++;
1924         h->nr_huge_pages_node[nid]++;
1925 }
1926
1927 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1928 {
1929         hugetlb_vmemmap_optimize(h, &folio->page);
1930         INIT_LIST_HEAD(&folio->lru);
1931         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1932         hugetlb_set_folio_subpool(folio, NULL);
1933         set_hugetlb_cgroup(folio, NULL);
1934         set_hugetlb_cgroup_rsvd(folio, NULL);
1935 }
1936
1937 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1938 {
1939         __prep_new_hugetlb_folio(h, folio);
1940         spin_lock_irq(&hugetlb_lock);
1941         __prep_account_new_huge_page(h, nid);
1942         spin_unlock_irq(&hugetlb_lock);
1943 }
1944
1945 static bool __prep_compound_gigantic_folio(struct folio *folio,
1946                                         unsigned int order, bool demote)
1947 {
1948         int i, j;
1949         int nr_pages = 1 << order;
1950         struct page *p;
1951
1952         __folio_clear_reserved(folio);
1953         for (i = 0; i < nr_pages; i++) {
1954                 p = folio_page(folio, i);
1955
1956                 /*
1957                  * For gigantic hugepages allocated through bootmem at
1958                  * boot, it's safer to be consistent with the not-gigantic
1959                  * hugepages and clear the PG_reserved bit from all tail pages
1960                  * too.  Otherwise drivers using get_user_pages() to access tail
1961                  * pages may get the reference counting wrong if they see
1962                  * PG_reserved set on a tail page (despite the head page not
1963                  * having PG_reserved set).  Enforcing this consistency between
1964                  * head and tail pages allows drivers to optimize away a check
1965                  * on the head page when they need know if put_page() is needed
1966                  * after get_user_pages().
1967                  */
1968                 if (i != 0)     /* head page cleared above */
1969                         __ClearPageReserved(p);
1970                 /*
1971                  * Subtle and very unlikely
1972                  *
1973                  * Gigantic 'page allocators' such as memblock or cma will
1974                  * return a set of pages with each page ref counted.  We need
1975                  * to turn this set of pages into a compound page with tail
1976                  * page ref counts set to zero.  Code such as speculative page
1977                  * cache adding could take a ref on a 'to be' tail page.
1978                  * We need to respect any increased ref count, and only set
1979                  * the ref count to zero if count is currently 1.  If count
1980                  * is not 1, we return an error.  An error return indicates
1981                  * the set of pages can not be converted to a gigantic page.
1982                  * The caller who allocated the pages should then discard the
1983                  * pages using the appropriate free interface.
1984                  *
1985                  * In the case of demote, the ref count will be zero.
1986                  */
1987                 if (!demote) {
1988                         if (!page_ref_freeze(p, 1)) {
1989                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1990                                 goto out_error;
1991                         }
1992                 } else {
1993                         VM_BUG_ON_PAGE(page_count(p), p);
1994                 }
1995                 if (i != 0)
1996                         set_compound_head(p, &folio->page);
1997         }
1998         __folio_set_head(folio);
1999         /* we rely on prep_new_hugetlb_folio to set the destructor */
2000         folio_set_order(folio, order);
2001         atomic_set(&folio->_entire_mapcount, -1);
2002         atomic_set(&folio->_nr_pages_mapped, 0);
2003         atomic_set(&folio->_pincount, 0);
2004         return true;
2005
2006 out_error:
2007         /* undo page modifications made above */
2008         for (j = 0; j < i; j++) {
2009                 p = folio_page(folio, j);
2010                 if (j != 0)
2011                         clear_compound_head(p);
2012                 set_page_refcounted(p);
2013         }
2014         /* need to clear PG_reserved on remaining tail pages  */
2015         for (; j < nr_pages; j++) {
2016                 p = folio_page(folio, j);
2017                 __ClearPageReserved(p);
2018         }
2019         return false;
2020 }
2021
2022 static bool prep_compound_gigantic_folio(struct folio *folio,
2023                                                         unsigned int order)
2024 {
2025         return __prep_compound_gigantic_folio(folio, order, false);
2026 }
2027
2028 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2029                                                         unsigned int order)
2030 {
2031         return __prep_compound_gigantic_folio(folio, order, true);
2032 }
2033
2034 /*
2035  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2036  * transparent huge pages.  See the PageTransHuge() documentation for more
2037  * details.
2038  */
2039 int PageHuge(struct page *page)
2040 {
2041         struct folio *folio;
2042
2043         if (!PageCompound(page))
2044                 return 0;
2045         folio = page_folio(page);
2046         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2047 }
2048 EXPORT_SYMBOL_GPL(PageHuge);
2049
2050 /**
2051  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2052  * @folio: The folio to test.
2053  *
2054  * Context: Any context.  Caller should have a reference on the folio to
2055  * prevent it from being turned into a tail page.
2056  * Return: True for hugetlbfs folios, false for anon folios or folios
2057  * belonging to other filesystems.
2058  */
2059 bool folio_test_hugetlb(struct folio *folio)
2060 {
2061         if (!folio_test_large(folio))
2062                 return false;
2063
2064         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2065 }
2066 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2067
2068 /*
2069  * Find and lock address space (mapping) in write mode.
2070  *
2071  * Upon entry, the page is locked which means that page_mapping() is
2072  * stable.  Due to locking order, we can only trylock_write.  If we can
2073  * not get the lock, simply return NULL to caller.
2074  */
2075 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2076 {
2077         struct address_space *mapping = page_mapping(hpage);
2078
2079         if (!mapping)
2080                 return mapping;
2081
2082         if (i_mmap_trylock_write(mapping))
2083                 return mapping;
2084
2085         return NULL;
2086 }
2087
2088 pgoff_t hugetlb_basepage_index(struct page *page)
2089 {
2090         struct page *page_head = compound_head(page);
2091         pgoff_t index = page_index(page_head);
2092         unsigned long compound_idx;
2093
2094         if (compound_order(page_head) > MAX_ORDER)
2095                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2096         else
2097                 compound_idx = page - page_head;
2098
2099         return (index << compound_order(page_head)) + compound_idx;
2100 }
2101
2102 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2103                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2104                 nodemask_t *node_alloc_noretry)
2105 {
2106         int order = huge_page_order(h);
2107         struct page *page;
2108         bool alloc_try_hard = true;
2109         bool retry = true;
2110
2111         /*
2112          * By default we always try hard to allocate the page with
2113          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2114          * a loop (to adjust global huge page counts) and previous allocation
2115          * failed, do not continue to try hard on the same node.  Use the
2116          * node_alloc_noretry bitmap to manage this state information.
2117          */
2118         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2119                 alloc_try_hard = false;
2120         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2121         if (alloc_try_hard)
2122                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2123         if (nid == NUMA_NO_NODE)
2124                 nid = numa_mem_id();
2125 retry:
2126         page = __alloc_pages(gfp_mask, order, nid, nmask);
2127
2128         /* Freeze head page */
2129         if (page && !page_ref_freeze(page, 1)) {
2130                 __free_pages(page, order);
2131                 if (retry) {    /* retry once */
2132                         retry = false;
2133                         goto retry;
2134                 }
2135                 /* WOW!  twice in a row. */
2136                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2137                 page = NULL;
2138         }
2139
2140         /*
2141          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2142          * indicates an overall state change.  Clear bit so that we resume
2143          * normal 'try hard' allocations.
2144          */
2145         if (node_alloc_noretry && page && !alloc_try_hard)
2146                 node_clear(nid, *node_alloc_noretry);
2147
2148         /*
2149          * If we tried hard to get a page but failed, set bit so that
2150          * subsequent attempts will not try as hard until there is an
2151          * overall state change.
2152          */
2153         if (node_alloc_noretry && !page && alloc_try_hard)
2154                 node_set(nid, *node_alloc_noretry);
2155
2156         if (!page) {
2157                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2158                 return NULL;
2159         }
2160
2161         __count_vm_event(HTLB_BUDDY_PGALLOC);
2162         return page_folio(page);
2163 }
2164
2165 /*
2166  * Common helper to allocate a fresh hugetlb page. All specific allocators
2167  * should use this function to get new hugetlb pages
2168  *
2169  * Note that returned page is 'frozen':  ref count of head page and all tail
2170  * pages is zero.
2171  */
2172 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2173                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2174                 nodemask_t *node_alloc_noretry)
2175 {
2176         struct folio *folio;
2177         bool retry = false;
2178
2179 retry:
2180         if (hstate_is_gigantic(h))
2181                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2182         else
2183                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2184                                 nid, nmask, node_alloc_noretry);
2185         if (!folio)
2186                 return NULL;
2187         if (hstate_is_gigantic(h)) {
2188                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2189                         /*
2190                          * Rare failure to convert pages to compound page.
2191                          * Free pages and try again - ONCE!
2192                          */
2193                         free_gigantic_folio(folio, huge_page_order(h));
2194                         if (!retry) {
2195                                 retry = true;
2196                                 goto retry;
2197                         }
2198                         return NULL;
2199                 }
2200         }
2201         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2202
2203         return folio;
2204 }
2205
2206 /*
2207  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2208  * manner.
2209  */
2210 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2211                                 nodemask_t *node_alloc_noretry)
2212 {
2213         struct folio *folio;
2214         int nr_nodes, node;
2215         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2216
2217         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2218                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2219                                         nodes_allowed, node_alloc_noretry);
2220                 if (folio) {
2221                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2222                         return 1;
2223                 }
2224         }
2225
2226         return 0;
2227 }
2228
2229 /*
2230  * Remove huge page from pool from next node to free.  Attempt to keep
2231  * persistent huge pages more or less balanced over allowed nodes.
2232  * This routine only 'removes' the hugetlb page.  The caller must make
2233  * an additional call to free the page to low level allocators.
2234  * Called with hugetlb_lock locked.
2235  */
2236 static struct page *remove_pool_huge_page(struct hstate *h,
2237                                                 nodemask_t *nodes_allowed,
2238                                                  bool acct_surplus)
2239 {
2240         int nr_nodes, node;
2241         struct page *page = NULL;
2242         struct folio *folio;
2243
2244         lockdep_assert_held(&hugetlb_lock);
2245         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2246                 /*
2247                  * If we're returning unused surplus pages, only examine
2248                  * nodes with surplus pages.
2249                  */
2250                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2251                     !list_empty(&h->hugepage_freelists[node])) {
2252                         page = list_entry(h->hugepage_freelists[node].next,
2253                                           struct page, lru);
2254                         folio = page_folio(page);
2255                         remove_hugetlb_folio(h, folio, acct_surplus);
2256                         break;
2257                 }
2258         }
2259
2260         return page;
2261 }
2262
2263 /*
2264  * Dissolve a given free hugepage into free buddy pages. This function does
2265  * nothing for in-use hugepages and non-hugepages.
2266  * This function returns values like below:
2267  *
2268  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2269  *           when the system is under memory pressure and the feature of
2270  *           freeing unused vmemmap pages associated with each hugetlb page
2271  *           is enabled.
2272  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2273  *           (allocated or reserved.)
2274  *       0:  successfully dissolved free hugepages or the page is not a
2275  *           hugepage (considered as already dissolved)
2276  */
2277 int dissolve_free_huge_page(struct page *page)
2278 {
2279         int rc = -EBUSY;
2280         struct folio *folio = page_folio(page);
2281
2282 retry:
2283         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2284         if (!folio_test_hugetlb(folio))
2285                 return 0;
2286
2287         spin_lock_irq(&hugetlb_lock);
2288         if (!folio_test_hugetlb(folio)) {
2289                 rc = 0;
2290                 goto out;
2291         }
2292
2293         if (!folio_ref_count(folio)) {
2294                 struct hstate *h = folio_hstate(folio);
2295                 if (!available_huge_pages(h))
2296                         goto out;
2297
2298                 /*
2299                  * We should make sure that the page is already on the free list
2300                  * when it is dissolved.
2301                  */
2302                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2303                         spin_unlock_irq(&hugetlb_lock);
2304                         cond_resched();
2305
2306                         /*
2307                          * Theoretically, we should return -EBUSY when we
2308                          * encounter this race. In fact, we have a chance
2309                          * to successfully dissolve the page if we do a
2310                          * retry. Because the race window is quite small.
2311                          * If we seize this opportunity, it is an optimization
2312                          * for increasing the success rate of dissolving page.
2313                          */
2314                         goto retry;
2315                 }
2316
2317                 remove_hugetlb_folio(h, folio, false);
2318                 h->max_huge_pages--;
2319                 spin_unlock_irq(&hugetlb_lock);
2320
2321                 /*
2322                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2323                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2324                  * free the page if it can not allocate required vmemmap.  We
2325                  * need to adjust max_huge_pages if the page is not freed.
2326                  * Attempt to allocate vmemmmap here so that we can take
2327                  * appropriate action on failure.
2328                  */
2329                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2330                 if (!rc) {
2331                         update_and_free_hugetlb_folio(h, folio, false);
2332                 } else {
2333                         spin_lock_irq(&hugetlb_lock);
2334                         add_hugetlb_folio(h, folio, false);
2335                         h->max_huge_pages++;
2336                         spin_unlock_irq(&hugetlb_lock);
2337                 }
2338
2339                 return rc;
2340         }
2341 out:
2342         spin_unlock_irq(&hugetlb_lock);
2343         return rc;
2344 }
2345
2346 /*
2347  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2348  * make specified memory blocks removable from the system.
2349  * Note that this will dissolve a free gigantic hugepage completely, if any
2350  * part of it lies within the given range.
2351  * Also note that if dissolve_free_huge_page() returns with an error, all
2352  * free hugepages that were dissolved before that error are lost.
2353  */
2354 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2355 {
2356         unsigned long pfn;
2357         struct page *page;
2358         int rc = 0;
2359         unsigned int order;
2360         struct hstate *h;
2361
2362         if (!hugepages_supported())
2363                 return rc;
2364
2365         order = huge_page_order(&default_hstate);
2366         for_each_hstate(h)
2367                 order = min(order, huge_page_order(h));
2368
2369         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2370                 page = pfn_to_page(pfn);
2371                 rc = dissolve_free_huge_page(page);
2372                 if (rc)
2373                         break;
2374         }
2375
2376         return rc;
2377 }
2378
2379 /*
2380  * Allocates a fresh surplus page from the page allocator.
2381  */
2382 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2383                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2384 {
2385         struct folio *folio = NULL;
2386
2387         if (hstate_is_gigantic(h))
2388                 return NULL;
2389
2390         spin_lock_irq(&hugetlb_lock);
2391         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2392                 goto out_unlock;
2393         spin_unlock_irq(&hugetlb_lock);
2394
2395         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2396         if (!folio)
2397                 return NULL;
2398
2399         spin_lock_irq(&hugetlb_lock);
2400         /*
2401          * We could have raced with the pool size change.
2402          * Double check that and simply deallocate the new page
2403          * if we would end up overcommiting the surpluses. Abuse
2404          * temporary page to workaround the nasty free_huge_page
2405          * codeflow
2406          */
2407         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2408                 folio_set_hugetlb_temporary(folio);
2409                 spin_unlock_irq(&hugetlb_lock);
2410                 free_huge_page(&folio->page);
2411                 return NULL;
2412         }
2413
2414         h->surplus_huge_pages++;
2415         h->surplus_huge_pages_node[folio_nid(folio)]++;
2416
2417 out_unlock:
2418         spin_unlock_irq(&hugetlb_lock);
2419
2420         return folio;
2421 }
2422
2423 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2424                                      int nid, nodemask_t *nmask)
2425 {
2426         struct folio *folio;
2427
2428         if (hstate_is_gigantic(h))
2429                 return NULL;
2430
2431         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2432         if (!folio)
2433                 return NULL;
2434
2435         /* fresh huge pages are frozen */
2436         folio_ref_unfreeze(folio, 1);
2437         /*
2438          * We do not account these pages as surplus because they are only
2439          * temporary and will be released properly on the last reference
2440          */
2441         folio_set_hugetlb_temporary(folio);
2442
2443         return folio;
2444 }
2445
2446 /*
2447  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2448  */
2449 static
2450 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2451                 struct vm_area_struct *vma, unsigned long addr)
2452 {
2453         struct folio *folio = NULL;
2454         struct mempolicy *mpol;
2455         gfp_t gfp_mask = htlb_alloc_mask(h);
2456         int nid;
2457         nodemask_t *nodemask;
2458
2459         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2460         if (mpol_is_preferred_many(mpol)) {
2461                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2462
2463                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2464                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2465
2466                 /* Fallback to all nodes if page==NULL */
2467                 nodemask = NULL;
2468         }
2469
2470         if (!folio)
2471                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2472         mpol_cond_put(mpol);
2473         return folio;
2474 }
2475
2476 /* folio migration callback function */
2477 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2478                 nodemask_t *nmask, gfp_t gfp_mask)
2479 {
2480         spin_lock_irq(&hugetlb_lock);
2481         if (available_huge_pages(h)) {
2482                 struct folio *folio;
2483
2484                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2485                                                 preferred_nid, nmask);
2486                 if (folio) {
2487                         spin_unlock_irq(&hugetlb_lock);
2488                         return folio;
2489                 }
2490         }
2491         spin_unlock_irq(&hugetlb_lock);
2492
2493         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2494 }
2495
2496 /* mempolicy aware migration callback */
2497 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2498                 unsigned long address)
2499 {
2500         struct mempolicy *mpol;
2501         nodemask_t *nodemask;
2502         struct folio *folio;
2503         gfp_t gfp_mask;
2504         int node;
2505
2506         gfp_mask = htlb_alloc_mask(h);
2507         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2508         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2509         mpol_cond_put(mpol);
2510
2511         return folio;
2512 }
2513
2514 /*
2515  * Increase the hugetlb pool such that it can accommodate a reservation
2516  * of size 'delta'.
2517  */
2518 static int gather_surplus_pages(struct hstate *h, long delta)
2519         __must_hold(&hugetlb_lock)
2520 {
2521         LIST_HEAD(surplus_list);
2522         struct folio *folio;
2523         struct page *page, *tmp;
2524         int ret;
2525         long i;
2526         long needed, allocated;
2527         bool alloc_ok = true;
2528
2529         lockdep_assert_held(&hugetlb_lock);
2530         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2531         if (needed <= 0) {
2532                 h->resv_huge_pages += delta;
2533                 return 0;
2534         }
2535
2536         allocated = 0;
2537
2538         ret = -ENOMEM;
2539 retry:
2540         spin_unlock_irq(&hugetlb_lock);
2541         for (i = 0; i < needed; i++) {
2542                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2543                                 NUMA_NO_NODE, NULL);
2544                 if (!folio) {
2545                         alloc_ok = false;
2546                         break;
2547                 }
2548                 list_add(&folio->lru, &surplus_list);
2549                 cond_resched();
2550         }
2551         allocated += i;
2552
2553         /*
2554          * After retaking hugetlb_lock, we need to recalculate 'needed'
2555          * because either resv_huge_pages or free_huge_pages may have changed.
2556          */
2557         spin_lock_irq(&hugetlb_lock);
2558         needed = (h->resv_huge_pages + delta) -
2559                         (h->free_huge_pages + allocated);
2560         if (needed > 0) {
2561                 if (alloc_ok)
2562                         goto retry;
2563                 /*
2564                  * We were not able to allocate enough pages to
2565                  * satisfy the entire reservation so we free what
2566                  * we've allocated so far.
2567                  */
2568                 goto free;
2569         }
2570         /*
2571          * The surplus_list now contains _at_least_ the number of extra pages
2572          * needed to accommodate the reservation.  Add the appropriate number
2573          * of pages to the hugetlb pool and free the extras back to the buddy
2574          * allocator.  Commit the entire reservation here to prevent another
2575          * process from stealing the pages as they are added to the pool but
2576          * before they are reserved.
2577          */
2578         needed += allocated;
2579         h->resv_huge_pages += delta;
2580         ret = 0;
2581
2582         /* Free the needed pages to the hugetlb pool */
2583         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2584                 if ((--needed) < 0)
2585                         break;
2586                 /* Add the page to the hugetlb allocator */
2587                 enqueue_hugetlb_folio(h, page_folio(page));
2588         }
2589 free:
2590         spin_unlock_irq(&hugetlb_lock);
2591
2592         /*
2593          * Free unnecessary surplus pages to the buddy allocator.
2594          * Pages have no ref count, call free_huge_page directly.
2595          */
2596         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2597                 free_huge_page(page);
2598         spin_lock_irq(&hugetlb_lock);
2599
2600         return ret;
2601 }
2602
2603 /*
2604  * This routine has two main purposes:
2605  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2606  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2607  *    to the associated reservation map.
2608  * 2) Free any unused surplus pages that may have been allocated to satisfy
2609  *    the reservation.  As many as unused_resv_pages may be freed.
2610  */
2611 static void return_unused_surplus_pages(struct hstate *h,
2612                                         unsigned long unused_resv_pages)
2613 {
2614         unsigned long nr_pages;
2615         struct page *page;
2616         LIST_HEAD(page_list);
2617
2618         lockdep_assert_held(&hugetlb_lock);
2619         /* Uncommit the reservation */
2620         h->resv_huge_pages -= unused_resv_pages;
2621
2622         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2623                 goto out;
2624
2625         /*
2626          * Part (or even all) of the reservation could have been backed
2627          * by pre-allocated pages. Only free surplus pages.
2628          */
2629         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2630
2631         /*
2632          * We want to release as many surplus pages as possible, spread
2633          * evenly across all nodes with memory. Iterate across these nodes
2634          * until we can no longer free unreserved surplus pages. This occurs
2635          * when the nodes with surplus pages have no free pages.
2636          * remove_pool_huge_page() will balance the freed pages across the
2637          * on-line nodes with memory and will handle the hstate accounting.
2638          */
2639         while (nr_pages--) {
2640                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2641                 if (!page)
2642                         goto out;
2643
2644                 list_add(&page->lru, &page_list);
2645         }
2646
2647 out:
2648         spin_unlock_irq(&hugetlb_lock);
2649         update_and_free_pages_bulk(h, &page_list);
2650         spin_lock_irq(&hugetlb_lock);
2651 }
2652
2653
2654 /*
2655  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2656  * are used by the huge page allocation routines to manage reservations.
2657  *
2658  * vma_needs_reservation is called to determine if the huge page at addr
2659  * within the vma has an associated reservation.  If a reservation is
2660  * needed, the value 1 is returned.  The caller is then responsible for
2661  * managing the global reservation and subpool usage counts.  After
2662  * the huge page has been allocated, vma_commit_reservation is called
2663  * to add the page to the reservation map.  If the page allocation fails,
2664  * the reservation must be ended instead of committed.  vma_end_reservation
2665  * is called in such cases.
2666  *
2667  * In the normal case, vma_commit_reservation returns the same value
2668  * as the preceding vma_needs_reservation call.  The only time this
2669  * is not the case is if a reserve map was changed between calls.  It
2670  * is the responsibility of the caller to notice the difference and
2671  * take appropriate action.
2672  *
2673  * vma_add_reservation is used in error paths where a reservation must
2674  * be restored when a newly allocated huge page must be freed.  It is
2675  * to be called after calling vma_needs_reservation to determine if a
2676  * reservation exists.
2677  *
2678  * vma_del_reservation is used in error paths where an entry in the reserve
2679  * map was created during huge page allocation and must be removed.  It is to
2680  * be called after calling vma_needs_reservation to determine if a reservation
2681  * exists.
2682  */
2683 enum vma_resv_mode {
2684         VMA_NEEDS_RESV,
2685         VMA_COMMIT_RESV,
2686         VMA_END_RESV,
2687         VMA_ADD_RESV,
2688         VMA_DEL_RESV,
2689 };
2690 static long __vma_reservation_common(struct hstate *h,
2691                                 struct vm_area_struct *vma, unsigned long addr,
2692                                 enum vma_resv_mode mode)
2693 {
2694         struct resv_map *resv;
2695         pgoff_t idx;
2696         long ret;
2697         long dummy_out_regions_needed;
2698
2699         resv = vma_resv_map(vma);
2700         if (!resv)
2701                 return 1;
2702
2703         idx = vma_hugecache_offset(h, vma, addr);
2704         switch (mode) {
2705         case VMA_NEEDS_RESV:
2706                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2707                 /* We assume that vma_reservation_* routines always operate on
2708                  * 1 page, and that adding to resv map a 1 page entry can only
2709                  * ever require 1 region.
2710                  */
2711                 VM_BUG_ON(dummy_out_regions_needed != 1);
2712                 break;
2713         case VMA_COMMIT_RESV:
2714                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2715                 /* region_add calls of range 1 should never fail. */
2716                 VM_BUG_ON(ret < 0);
2717                 break;
2718         case VMA_END_RESV:
2719                 region_abort(resv, idx, idx + 1, 1);
2720                 ret = 0;
2721                 break;
2722         case VMA_ADD_RESV:
2723                 if (vma->vm_flags & VM_MAYSHARE) {
2724                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2725                         /* region_add calls of range 1 should never fail. */
2726                         VM_BUG_ON(ret < 0);
2727                 } else {
2728                         region_abort(resv, idx, idx + 1, 1);
2729                         ret = region_del(resv, idx, idx + 1);
2730                 }
2731                 break;
2732         case VMA_DEL_RESV:
2733                 if (vma->vm_flags & VM_MAYSHARE) {
2734                         region_abort(resv, idx, idx + 1, 1);
2735                         ret = region_del(resv, idx, idx + 1);
2736                 } else {
2737                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2738                         /* region_add calls of range 1 should never fail. */
2739                         VM_BUG_ON(ret < 0);
2740                 }
2741                 break;
2742         default:
2743                 BUG();
2744         }
2745
2746         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2747                 return ret;
2748         /*
2749          * We know private mapping must have HPAGE_RESV_OWNER set.
2750          *
2751          * In most cases, reserves always exist for private mappings.
2752          * However, a file associated with mapping could have been
2753          * hole punched or truncated after reserves were consumed.
2754          * As subsequent fault on such a range will not use reserves.
2755          * Subtle - The reserve map for private mappings has the
2756          * opposite meaning than that of shared mappings.  If NO
2757          * entry is in the reserve map, it means a reservation exists.
2758          * If an entry exists in the reserve map, it means the
2759          * reservation has already been consumed.  As a result, the
2760          * return value of this routine is the opposite of the
2761          * value returned from reserve map manipulation routines above.
2762          */
2763         if (ret > 0)
2764                 return 0;
2765         if (ret == 0)
2766                 return 1;
2767         return ret;
2768 }
2769
2770 static long vma_needs_reservation(struct hstate *h,
2771                         struct vm_area_struct *vma, unsigned long addr)
2772 {
2773         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2774 }
2775
2776 static long vma_commit_reservation(struct hstate *h,
2777                         struct vm_area_struct *vma, unsigned long addr)
2778 {
2779         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2780 }
2781
2782 static void vma_end_reservation(struct hstate *h,
2783                         struct vm_area_struct *vma, unsigned long addr)
2784 {
2785         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2786 }
2787
2788 static long vma_add_reservation(struct hstate *h,
2789                         struct vm_area_struct *vma, unsigned long addr)
2790 {
2791         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2792 }
2793
2794 static long vma_del_reservation(struct hstate *h,
2795                         struct vm_area_struct *vma, unsigned long addr)
2796 {
2797         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2798 }
2799
2800 /*
2801  * This routine is called to restore reservation information on error paths.
2802  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2803  * and the hugetlb mutex should remain held when calling this routine.
2804  *
2805  * It handles two specific cases:
2806  * 1) A reservation was in place and the folio consumed the reservation.
2807  *    hugetlb_restore_reserve is set in the folio.
2808  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2809  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2810  *
2811  * In case 1, free_huge_page later in the error path will increment the
2812  * global reserve count.  But, free_huge_page does not have enough context
2813  * to adjust the reservation map.  This case deals primarily with private
2814  * mappings.  Adjust the reserve map here to be consistent with global
2815  * reserve count adjustments to be made by free_huge_page.  Make sure the
2816  * reserve map indicates there is a reservation present.
2817  *
2818  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2819  */
2820 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2821                         unsigned long address, struct folio *folio)
2822 {
2823         long rc = vma_needs_reservation(h, vma, address);
2824
2825         if (folio_test_hugetlb_restore_reserve(folio)) {
2826                 if (unlikely(rc < 0))
2827                         /*
2828                          * Rare out of memory condition in reserve map
2829                          * manipulation.  Clear hugetlb_restore_reserve so
2830                          * that global reserve count will not be incremented
2831                          * by free_huge_page.  This will make it appear
2832                          * as though the reservation for this folio was
2833                          * consumed.  This may prevent the task from
2834                          * faulting in the folio at a later time.  This
2835                          * is better than inconsistent global huge page
2836                          * accounting of reserve counts.
2837                          */
2838                         folio_clear_hugetlb_restore_reserve(folio);
2839                 else if (rc)
2840                         (void)vma_add_reservation(h, vma, address);
2841                 else
2842                         vma_end_reservation(h, vma, address);
2843         } else {
2844                 if (!rc) {
2845                         /*
2846                          * This indicates there is an entry in the reserve map
2847                          * not added by alloc_hugetlb_folio.  We know it was added
2848                          * before the alloc_hugetlb_folio call, otherwise
2849                          * hugetlb_restore_reserve would be set on the folio.
2850                          * Remove the entry so that a subsequent allocation
2851                          * does not consume a reservation.
2852                          */
2853                         rc = vma_del_reservation(h, vma, address);
2854                         if (rc < 0)
2855                                 /*
2856                                  * VERY rare out of memory condition.  Since
2857                                  * we can not delete the entry, set
2858                                  * hugetlb_restore_reserve so that the reserve
2859                                  * count will be incremented when the folio
2860                                  * is freed.  This reserve will be consumed
2861                                  * on a subsequent allocation.
2862                                  */
2863                                 folio_set_hugetlb_restore_reserve(folio);
2864                 } else if (rc < 0) {
2865                         /*
2866                          * Rare out of memory condition from
2867                          * vma_needs_reservation call.  Memory allocation is
2868                          * only attempted if a new entry is needed.  Therefore,
2869                          * this implies there is not an entry in the
2870                          * reserve map.
2871                          *
2872                          * For shared mappings, no entry in the map indicates
2873                          * no reservation.  We are done.
2874                          */
2875                         if (!(vma->vm_flags & VM_MAYSHARE))
2876                                 /*
2877                                  * For private mappings, no entry indicates
2878                                  * a reservation is present.  Since we can
2879                                  * not add an entry, set hugetlb_restore_reserve
2880                                  * on the folio so reserve count will be
2881                                  * incremented when freed.  This reserve will
2882                                  * be consumed on a subsequent allocation.
2883                                  */
2884                                 folio_set_hugetlb_restore_reserve(folio);
2885                 } else
2886                         /*
2887                          * No reservation present, do nothing
2888                          */
2889                          vma_end_reservation(h, vma, address);
2890         }
2891 }
2892
2893 /*
2894  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2895  * the old one
2896  * @h: struct hstate old page belongs to
2897  * @old_folio: Old folio to dissolve
2898  * @list: List to isolate the page in case we need to
2899  * Returns 0 on success, otherwise negated error.
2900  */
2901 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2902                         struct folio *old_folio, struct list_head *list)
2903 {
2904         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2905         int nid = folio_nid(old_folio);
2906         struct folio *new_folio;
2907         int ret = 0;
2908
2909         /*
2910          * Before dissolving the folio, we need to allocate a new one for the
2911          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2912          * by doing everything but actually updating counters and adding to
2913          * the pool.  This simplifies and let us do most of the processing
2914          * under the lock.
2915          */
2916         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2917         if (!new_folio)
2918                 return -ENOMEM;
2919         __prep_new_hugetlb_folio(h, new_folio);
2920
2921 retry:
2922         spin_lock_irq(&hugetlb_lock);
2923         if (!folio_test_hugetlb(old_folio)) {
2924                 /*
2925                  * Freed from under us. Drop new_folio too.
2926                  */
2927                 goto free_new;
2928         } else if (folio_ref_count(old_folio)) {
2929                 bool isolated;
2930
2931                 /*
2932                  * Someone has grabbed the folio, try to isolate it here.
2933                  * Fail with -EBUSY if not possible.
2934                  */
2935                 spin_unlock_irq(&hugetlb_lock);
2936                 isolated = isolate_hugetlb(old_folio, list);
2937                 ret = isolated ? 0 : -EBUSY;
2938                 spin_lock_irq(&hugetlb_lock);
2939                 goto free_new;
2940         } else if (!folio_test_hugetlb_freed(old_folio)) {
2941                 /*
2942                  * Folio's refcount is 0 but it has not been enqueued in the
2943                  * freelist yet. Race window is small, so we can succeed here if
2944                  * we retry.
2945                  */
2946                 spin_unlock_irq(&hugetlb_lock);
2947                 cond_resched();
2948                 goto retry;
2949         } else {
2950                 /*
2951                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2952                  * the freelist and decrease the counters. These will be
2953                  * incremented again when calling __prep_account_new_huge_page()
2954                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2955                  * remain stable since this happens under the lock.
2956                  */
2957                 remove_hugetlb_folio(h, old_folio, false);
2958
2959                 /*
2960                  * Ref count on new_folio is already zero as it was dropped
2961                  * earlier.  It can be directly added to the pool free list.
2962                  */
2963                 __prep_account_new_huge_page(h, nid);
2964                 enqueue_hugetlb_folio(h, new_folio);
2965
2966                 /*
2967                  * Folio has been replaced, we can safely free the old one.
2968                  */
2969                 spin_unlock_irq(&hugetlb_lock);
2970                 update_and_free_hugetlb_folio(h, old_folio, false);
2971         }
2972
2973         return ret;
2974
2975 free_new:
2976         spin_unlock_irq(&hugetlb_lock);
2977         /* Folio has a zero ref count, but needs a ref to be freed */
2978         folio_ref_unfreeze(new_folio, 1);
2979         update_and_free_hugetlb_folio(h, new_folio, false);
2980
2981         return ret;
2982 }
2983
2984 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2985 {
2986         struct hstate *h;
2987         struct folio *folio = page_folio(page);
2988         int ret = -EBUSY;
2989
2990         /*
2991          * The page might have been dissolved from under our feet, so make sure
2992          * to carefully check the state under the lock.
2993          * Return success when racing as if we dissolved the page ourselves.
2994          */
2995         spin_lock_irq(&hugetlb_lock);
2996         if (folio_test_hugetlb(folio)) {
2997                 h = folio_hstate(folio);
2998         } else {
2999                 spin_unlock_irq(&hugetlb_lock);
3000                 return 0;
3001         }
3002         spin_unlock_irq(&hugetlb_lock);
3003
3004         /*
3005          * Fence off gigantic pages as there is a cyclic dependency between
3006          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3007          * of bailing out right away without further retrying.
3008          */
3009         if (hstate_is_gigantic(h))
3010                 return -ENOMEM;
3011
3012         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3013                 ret = 0;
3014         else if (!folio_ref_count(folio))
3015                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3016
3017         return ret;
3018 }
3019
3020 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3021                                     unsigned long addr, int avoid_reserve)
3022 {
3023         struct hugepage_subpool *spool = subpool_vma(vma);
3024         struct hstate *h = hstate_vma(vma);
3025         struct folio *folio;
3026         long map_chg, map_commit;
3027         long gbl_chg;
3028         int ret, idx;
3029         struct hugetlb_cgroup *h_cg = NULL;
3030         bool deferred_reserve;
3031
3032         idx = hstate_index(h);
3033         /*
3034          * Examine the region/reserve map to determine if the process
3035          * has a reservation for the page to be allocated.  A return
3036          * code of zero indicates a reservation exists (no change).
3037          */
3038         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3039         if (map_chg < 0)
3040                 return ERR_PTR(-ENOMEM);
3041
3042         /*
3043          * Processes that did not create the mapping will have no
3044          * reserves as indicated by the region/reserve map. Check
3045          * that the allocation will not exceed the subpool limit.
3046          * Allocations for MAP_NORESERVE mappings also need to be
3047          * checked against any subpool limit.
3048          */
3049         if (map_chg || avoid_reserve) {
3050                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3051                 if (gbl_chg < 0) {
3052                         vma_end_reservation(h, vma, addr);
3053                         return ERR_PTR(-ENOSPC);
3054                 }
3055
3056                 /*
3057                  * Even though there was no reservation in the region/reserve
3058                  * map, there could be reservations associated with the
3059                  * subpool that can be used.  This would be indicated if the
3060                  * return value of hugepage_subpool_get_pages() is zero.
3061                  * However, if avoid_reserve is specified we still avoid even
3062                  * the subpool reservations.
3063                  */
3064                 if (avoid_reserve)
3065                         gbl_chg = 1;
3066         }
3067
3068         /* If this allocation is not consuming a reservation, charge it now.
3069          */
3070         deferred_reserve = map_chg || avoid_reserve;
3071         if (deferred_reserve) {
3072                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3073                         idx, pages_per_huge_page(h), &h_cg);
3074                 if (ret)
3075                         goto out_subpool_put;
3076         }
3077
3078         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3079         if (ret)
3080                 goto out_uncharge_cgroup_reservation;
3081
3082         spin_lock_irq(&hugetlb_lock);
3083         /*
3084          * glb_chg is passed to indicate whether or not a page must be taken
3085          * from the global free pool (global change).  gbl_chg == 0 indicates
3086          * a reservation exists for the allocation.
3087          */
3088         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3089         if (!folio) {
3090                 spin_unlock_irq(&hugetlb_lock);
3091                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3092                 if (!folio)
3093                         goto out_uncharge_cgroup;
3094                 spin_lock_irq(&hugetlb_lock);
3095                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3096                         folio_set_hugetlb_restore_reserve(folio);
3097                         h->resv_huge_pages--;
3098                 }
3099                 list_add(&folio->lru, &h->hugepage_activelist);
3100                 folio_ref_unfreeze(folio, 1);
3101                 /* Fall through */
3102         }
3103
3104         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3105         /* If allocation is not consuming a reservation, also store the
3106          * hugetlb_cgroup pointer on the page.
3107          */
3108         if (deferred_reserve) {
3109                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3110                                                   h_cg, folio);
3111         }
3112
3113         spin_unlock_irq(&hugetlb_lock);
3114
3115         hugetlb_set_folio_subpool(folio, spool);
3116
3117         map_commit = vma_commit_reservation(h, vma, addr);
3118         if (unlikely(map_chg > map_commit)) {
3119                 /*
3120                  * The page was added to the reservation map between
3121                  * vma_needs_reservation and vma_commit_reservation.
3122                  * This indicates a race with hugetlb_reserve_pages.
3123                  * Adjust for the subpool count incremented above AND
3124                  * in hugetlb_reserve_pages for the same page.  Also,
3125                  * the reservation count added in hugetlb_reserve_pages
3126                  * no longer applies.
3127                  */
3128                 long rsv_adjust;
3129
3130                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3131                 hugetlb_acct_memory(h, -rsv_adjust);
3132                 if (deferred_reserve)
3133                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3134                                         pages_per_huge_page(h), folio);
3135         }
3136         return folio;
3137
3138 out_uncharge_cgroup:
3139         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3140 out_uncharge_cgroup_reservation:
3141         if (deferred_reserve)
3142                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3143                                                     h_cg);
3144 out_subpool_put:
3145         if (map_chg || avoid_reserve)
3146                 hugepage_subpool_put_pages(spool, 1);
3147         vma_end_reservation(h, vma, addr);
3148         return ERR_PTR(-ENOSPC);
3149 }
3150
3151 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3152         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3153 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3154 {
3155         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3156         int nr_nodes, node;
3157
3158         /* do node specific alloc */
3159         if (nid != NUMA_NO_NODE) {
3160                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3161                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3162                 if (!m)
3163                         return 0;
3164                 goto found;
3165         }
3166         /* allocate from next node when distributing huge pages */
3167         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3168                 m = memblock_alloc_try_nid_raw(
3169                                 huge_page_size(h), huge_page_size(h),
3170                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3171                 /*
3172                  * Use the beginning of the huge page to store the
3173                  * huge_bootmem_page struct (until gather_bootmem
3174                  * puts them into the mem_map).
3175                  */
3176                 if (!m)
3177                         return 0;
3178                 goto found;
3179         }
3180
3181 found:
3182         /* Put them into a private list first because mem_map is not up yet */
3183         INIT_LIST_HEAD(&m->list);
3184         list_add(&m->list, &huge_boot_pages);
3185         m->hstate = h;
3186         return 1;
3187 }
3188
3189 /*
3190  * Put bootmem huge pages into the standard lists after mem_map is up.
3191  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3192  */
3193 static void __init gather_bootmem_prealloc(void)
3194 {
3195         struct huge_bootmem_page *m;
3196
3197         list_for_each_entry(m, &huge_boot_pages, list) {
3198                 struct page *page = virt_to_page(m);
3199                 struct folio *folio = page_folio(page);
3200                 struct hstate *h = m->hstate;
3201
3202                 VM_BUG_ON(!hstate_is_gigantic(h));
3203                 WARN_ON(folio_ref_count(folio) != 1);
3204                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3205                         WARN_ON(folio_test_reserved(folio));
3206                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3207                         free_huge_page(page); /* add to the hugepage allocator */
3208                 } else {
3209                         /* VERY unlikely inflated ref count on a tail page */
3210                         free_gigantic_folio(folio, huge_page_order(h));
3211                 }
3212
3213                 /*
3214                  * We need to restore the 'stolen' pages to totalram_pages
3215                  * in order to fix confusing memory reports from free(1) and
3216                  * other side-effects, like CommitLimit going negative.
3217                  */
3218                 adjust_managed_page_count(page, pages_per_huge_page(h));
3219                 cond_resched();
3220         }
3221 }
3222 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3223 {
3224         unsigned long i;
3225         char buf[32];
3226
3227         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3228                 if (hstate_is_gigantic(h)) {
3229                         if (!alloc_bootmem_huge_page(h, nid))
3230                                 break;
3231                 } else {
3232                         struct folio *folio;
3233                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3234
3235                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3236                                         &node_states[N_MEMORY], NULL);
3237                         if (!folio)
3238                                 break;
3239                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3240                 }
3241                 cond_resched();
3242         }
3243         if (i == h->max_huge_pages_node[nid])
3244                 return;
3245
3246         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3247         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3248                 h->max_huge_pages_node[nid], buf, nid, i);
3249         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3250         h->max_huge_pages_node[nid] = i;
3251 }
3252
3253 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3254 {
3255         unsigned long i;
3256         nodemask_t *node_alloc_noretry;
3257         bool node_specific_alloc = false;
3258
3259         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3260         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3261                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3262                 return;
3263         }
3264
3265         /* do node specific alloc */
3266         for_each_online_node(i) {
3267                 if (h->max_huge_pages_node[i] > 0) {
3268                         hugetlb_hstate_alloc_pages_onenode(h, i);
3269                         node_specific_alloc = true;
3270                 }
3271         }
3272
3273         if (node_specific_alloc)
3274                 return;
3275
3276         /* below will do all node balanced alloc */
3277         if (!hstate_is_gigantic(h)) {
3278                 /*
3279                  * Bit mask controlling how hard we retry per-node allocations.
3280                  * Ignore errors as lower level routines can deal with
3281                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3282                  * time, we are likely in bigger trouble.
3283                  */
3284                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3285                                                 GFP_KERNEL);
3286         } else {
3287                 /* allocations done at boot time */
3288                 node_alloc_noretry = NULL;
3289         }
3290
3291         /* bit mask controlling how hard we retry per-node allocations */
3292         if (node_alloc_noretry)
3293                 nodes_clear(*node_alloc_noretry);
3294
3295         for (i = 0; i < h->max_huge_pages; ++i) {
3296                 if (hstate_is_gigantic(h)) {
3297                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3298                                 break;
3299                 } else if (!alloc_pool_huge_page(h,
3300                                          &node_states[N_MEMORY],
3301                                          node_alloc_noretry))
3302                         break;
3303                 cond_resched();
3304         }
3305         if (i < h->max_huge_pages) {
3306                 char buf[32];
3307
3308                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3309                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3310                         h->max_huge_pages, buf, i);
3311                 h->max_huge_pages = i;
3312         }
3313         kfree(node_alloc_noretry);
3314 }
3315
3316 static void __init hugetlb_init_hstates(void)
3317 {
3318         struct hstate *h, *h2;
3319
3320         for_each_hstate(h) {
3321                 /* oversize hugepages were init'ed in early boot */
3322                 if (!hstate_is_gigantic(h))
3323                         hugetlb_hstate_alloc_pages(h);
3324
3325                 /*
3326                  * Set demote order for each hstate.  Note that
3327                  * h->demote_order is initially 0.
3328                  * - We can not demote gigantic pages if runtime freeing
3329                  *   is not supported, so skip this.
3330                  * - If CMA allocation is possible, we can not demote
3331                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3332                  */
3333                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3334                         continue;
3335                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3336                         continue;
3337                 for_each_hstate(h2) {
3338                         if (h2 == h)
3339                                 continue;
3340                         if (h2->order < h->order &&
3341                             h2->order > h->demote_order)
3342                                 h->demote_order = h2->order;
3343                 }
3344         }
3345 }
3346
3347 static void __init report_hugepages(void)
3348 {
3349         struct hstate *h;
3350
3351         for_each_hstate(h) {
3352                 char buf[32];
3353
3354                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3355                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3356                         buf, h->free_huge_pages);
3357                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3358                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3359         }
3360 }
3361
3362 #ifdef CONFIG_HIGHMEM
3363 static void try_to_free_low(struct hstate *h, unsigned long count,
3364                                                 nodemask_t *nodes_allowed)
3365 {
3366         int i;
3367         LIST_HEAD(page_list);
3368
3369         lockdep_assert_held(&hugetlb_lock);
3370         if (hstate_is_gigantic(h))
3371                 return;
3372
3373         /*
3374          * Collect pages to be freed on a list, and free after dropping lock
3375          */
3376         for_each_node_mask(i, *nodes_allowed) {
3377                 struct page *page, *next;
3378                 struct list_head *freel = &h->hugepage_freelists[i];
3379                 list_for_each_entry_safe(page, next, freel, lru) {
3380                         if (count >= h->nr_huge_pages)
3381                                 goto out;
3382                         if (PageHighMem(page))
3383                                 continue;
3384                         remove_hugetlb_folio(h, page_folio(page), false);
3385                         list_add(&page->lru, &page_list);
3386                 }
3387         }
3388
3389 out:
3390         spin_unlock_irq(&hugetlb_lock);
3391         update_and_free_pages_bulk(h, &page_list);
3392         spin_lock_irq(&hugetlb_lock);
3393 }
3394 #else
3395 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3396                                                 nodemask_t *nodes_allowed)
3397 {
3398 }
3399 #endif
3400
3401 /*
3402  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3403  * balanced by operating on them in a round-robin fashion.
3404  * Returns 1 if an adjustment was made.
3405  */
3406 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3407                                 int delta)
3408 {
3409         int nr_nodes, node;
3410
3411         lockdep_assert_held(&hugetlb_lock);
3412         VM_BUG_ON(delta != -1 && delta != 1);
3413
3414         if (delta < 0) {
3415                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3416                         if (h->surplus_huge_pages_node[node])
3417                                 goto found;
3418                 }
3419         } else {
3420                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3421                         if (h->surplus_huge_pages_node[node] <
3422                                         h->nr_huge_pages_node[node])
3423                                 goto found;
3424                 }
3425         }
3426         return 0;
3427
3428 found:
3429         h->surplus_huge_pages += delta;
3430         h->surplus_huge_pages_node[node] += delta;
3431         return 1;
3432 }
3433
3434 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3435 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3436                               nodemask_t *nodes_allowed)
3437 {
3438         unsigned long min_count, ret;
3439         struct page *page;
3440         LIST_HEAD(page_list);
3441         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3442
3443         /*
3444          * Bit mask controlling how hard we retry per-node allocations.
3445          * If we can not allocate the bit mask, do not attempt to allocate
3446          * the requested huge pages.
3447          */
3448         if (node_alloc_noretry)
3449                 nodes_clear(*node_alloc_noretry);
3450         else
3451                 return -ENOMEM;
3452
3453         /*
3454          * resize_lock mutex prevents concurrent adjustments to number of
3455          * pages in hstate via the proc/sysfs interfaces.
3456          */
3457         mutex_lock(&h->resize_lock);
3458         flush_free_hpage_work(h);
3459         spin_lock_irq(&hugetlb_lock);
3460
3461         /*
3462          * Check for a node specific request.
3463          * Changing node specific huge page count may require a corresponding
3464          * change to the global count.  In any case, the passed node mask
3465          * (nodes_allowed) will restrict alloc/free to the specified node.
3466          */
3467         if (nid != NUMA_NO_NODE) {
3468                 unsigned long old_count = count;
3469
3470                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3471                 /*
3472                  * User may have specified a large count value which caused the
3473                  * above calculation to overflow.  In this case, they wanted
3474                  * to allocate as many huge pages as possible.  Set count to
3475                  * largest possible value to align with their intention.
3476                  */
3477                 if (count < old_count)
3478                         count = ULONG_MAX;
3479         }
3480
3481         /*
3482          * Gigantic pages runtime allocation depend on the capability for large
3483          * page range allocation.
3484          * If the system does not provide this feature, return an error when
3485          * the user tries to allocate gigantic pages but let the user free the
3486          * boottime allocated gigantic pages.
3487          */
3488         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3489                 if (count > persistent_huge_pages(h)) {
3490                         spin_unlock_irq(&hugetlb_lock);
3491                         mutex_unlock(&h->resize_lock);
3492                         NODEMASK_FREE(node_alloc_noretry);
3493                         return -EINVAL;
3494                 }
3495                 /* Fall through to decrease pool */
3496         }
3497
3498         /*
3499          * Increase the pool size
3500          * First take pages out of surplus state.  Then make up the
3501          * remaining difference by allocating fresh huge pages.
3502          *
3503          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3504          * to convert a surplus huge page to a normal huge page. That is
3505          * not critical, though, it just means the overall size of the
3506          * pool might be one hugepage larger than it needs to be, but
3507          * within all the constraints specified by the sysctls.
3508          */
3509         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3510                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3511                         break;
3512         }
3513
3514         while (count > persistent_huge_pages(h)) {
3515                 /*
3516                  * If this allocation races such that we no longer need the
3517                  * page, free_huge_page will handle it by freeing the page
3518                  * and reducing the surplus.
3519                  */
3520                 spin_unlock_irq(&hugetlb_lock);
3521
3522                 /* yield cpu to avoid soft lockup */
3523                 cond_resched();
3524
3525                 ret = alloc_pool_huge_page(h, nodes_allowed,
3526                                                 node_alloc_noretry);
3527                 spin_lock_irq(&hugetlb_lock);
3528                 if (!ret)
3529                         goto out;
3530
3531                 /* Bail for signals. Probably ctrl-c from user */
3532                 if (signal_pending(current))
3533                         goto out;
3534         }
3535
3536         /*
3537          * Decrease the pool size
3538          * First return free pages to the buddy allocator (being careful
3539          * to keep enough around to satisfy reservations).  Then place
3540          * pages into surplus state as needed so the pool will shrink
3541          * to the desired size as pages become free.
3542          *
3543          * By placing pages into the surplus state independent of the
3544          * overcommit value, we are allowing the surplus pool size to
3545          * exceed overcommit. There are few sane options here. Since
3546          * alloc_surplus_hugetlb_folio() is checking the global counter,
3547          * though, we'll note that we're not allowed to exceed surplus
3548          * and won't grow the pool anywhere else. Not until one of the
3549          * sysctls are changed, or the surplus pages go out of use.
3550          */
3551         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3552         min_count = max(count, min_count);
3553         try_to_free_low(h, min_count, nodes_allowed);
3554
3555         /*
3556          * Collect pages to be removed on list without dropping lock
3557          */
3558         while (min_count < persistent_huge_pages(h)) {
3559                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3560                 if (!page)
3561                         break;
3562
3563                 list_add(&page->lru, &page_list);
3564         }
3565         /* free the pages after dropping lock */
3566         spin_unlock_irq(&hugetlb_lock);
3567         update_and_free_pages_bulk(h, &page_list);
3568         flush_free_hpage_work(h);
3569         spin_lock_irq(&hugetlb_lock);
3570
3571         while (count < persistent_huge_pages(h)) {
3572                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3573                         break;
3574         }
3575 out:
3576         h->max_huge_pages = persistent_huge_pages(h);
3577         spin_unlock_irq(&hugetlb_lock);
3578         mutex_unlock(&h->resize_lock);
3579
3580         NODEMASK_FREE(node_alloc_noretry);
3581
3582         return 0;
3583 }
3584
3585 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3586 {
3587         int i, nid = folio_nid(folio);
3588         struct hstate *target_hstate;
3589         struct page *subpage;
3590         struct folio *inner_folio;
3591         int rc = 0;
3592
3593         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3594
3595         remove_hugetlb_folio_for_demote(h, folio, false);
3596         spin_unlock_irq(&hugetlb_lock);
3597
3598         rc = hugetlb_vmemmap_restore(h, &folio->page);
3599         if (rc) {
3600                 /* Allocation of vmemmmap failed, we can not demote folio */
3601                 spin_lock_irq(&hugetlb_lock);
3602                 folio_ref_unfreeze(folio, 1);
3603                 add_hugetlb_folio(h, folio, false);
3604                 return rc;
3605         }
3606
3607         /*
3608          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3609          * sizes as it will not ref count folios.
3610          */
3611         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3612
3613         /*
3614          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3615          * Without the mutex, pages added to target hstate could be marked
3616          * as surplus.
3617          *
3618          * Note that we already hold h->resize_lock.  To prevent deadlock,
3619          * use the convention of always taking larger size hstate mutex first.
3620          */
3621         mutex_lock(&target_hstate->resize_lock);
3622         for (i = 0; i < pages_per_huge_page(h);
3623                                 i += pages_per_huge_page(target_hstate)) {
3624                 subpage = folio_page(folio, i);
3625                 inner_folio = page_folio(subpage);
3626                 if (hstate_is_gigantic(target_hstate))
3627                         prep_compound_gigantic_folio_for_demote(inner_folio,
3628                                                         target_hstate->order);
3629                 else
3630                         prep_compound_page(subpage, target_hstate->order);
3631                 folio_change_private(inner_folio, NULL);
3632                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3633                 free_huge_page(subpage);
3634         }
3635         mutex_unlock(&target_hstate->resize_lock);
3636
3637         spin_lock_irq(&hugetlb_lock);
3638
3639         /*
3640          * Not absolutely necessary, but for consistency update max_huge_pages
3641          * based on pool changes for the demoted page.
3642          */
3643         h->max_huge_pages--;
3644         target_hstate->max_huge_pages +=
3645                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3646
3647         return rc;
3648 }
3649
3650 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3651         __must_hold(&hugetlb_lock)
3652 {
3653         int nr_nodes, node;
3654         struct folio *folio;
3655
3656         lockdep_assert_held(&hugetlb_lock);
3657
3658         /* We should never get here if no demote order */
3659         if (!h->demote_order) {
3660                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3661                 return -EINVAL;         /* internal error */
3662         }
3663
3664         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3665                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3666                         if (folio_test_hwpoison(folio))
3667                                 continue;
3668                         return demote_free_hugetlb_folio(h, folio);
3669                 }
3670         }
3671
3672         /*
3673          * Only way to get here is if all pages on free lists are poisoned.
3674          * Return -EBUSY so that caller will not retry.
3675          */
3676         return -EBUSY;
3677 }
3678
3679 #define HSTATE_ATTR_RO(_name) \
3680         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3681
3682 #define HSTATE_ATTR_WO(_name) \
3683         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3684
3685 #define HSTATE_ATTR(_name) \
3686         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3687
3688 static struct kobject *hugepages_kobj;
3689 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3690
3691 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3692
3693 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3694 {
3695         int i;
3696
3697         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3698                 if (hstate_kobjs[i] == kobj) {
3699                         if (nidp)
3700                                 *nidp = NUMA_NO_NODE;
3701                         return &hstates[i];
3702                 }
3703
3704         return kobj_to_node_hstate(kobj, nidp);
3705 }
3706
3707 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3708                                         struct kobj_attribute *attr, char *buf)
3709 {
3710         struct hstate *h;
3711         unsigned long nr_huge_pages;
3712         int nid;
3713
3714         h = kobj_to_hstate(kobj, &nid);
3715         if (nid == NUMA_NO_NODE)
3716                 nr_huge_pages = h->nr_huge_pages;
3717         else
3718                 nr_huge_pages = h->nr_huge_pages_node[nid];
3719
3720         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3721 }
3722
3723 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3724                                            struct hstate *h, int nid,
3725                                            unsigned long count, size_t len)
3726 {
3727         int err;
3728         nodemask_t nodes_allowed, *n_mask;
3729
3730         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3731                 return -EINVAL;
3732
3733         if (nid == NUMA_NO_NODE) {
3734                 /*
3735                  * global hstate attribute
3736                  */
3737                 if (!(obey_mempolicy &&
3738                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3739                         n_mask = &node_states[N_MEMORY];
3740                 else
3741                         n_mask = &nodes_allowed;
3742         } else {
3743                 /*
3744                  * Node specific request.  count adjustment happens in
3745                  * set_max_huge_pages() after acquiring hugetlb_lock.
3746                  */
3747                 init_nodemask_of_node(&nodes_allowed, nid);
3748                 n_mask = &nodes_allowed;
3749         }
3750
3751         err = set_max_huge_pages(h, count, nid, n_mask);
3752
3753         return err ? err : len;
3754 }
3755
3756 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3757                                          struct kobject *kobj, const char *buf,
3758                                          size_t len)
3759 {
3760         struct hstate *h;
3761         unsigned long count;
3762         int nid;
3763         int err;
3764
3765         err = kstrtoul(buf, 10, &count);
3766         if (err)
3767                 return err;
3768
3769         h = kobj_to_hstate(kobj, &nid);
3770         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3771 }
3772
3773 static ssize_t nr_hugepages_show(struct kobject *kobj,
3774                                        struct kobj_attribute *attr, char *buf)
3775 {
3776         return nr_hugepages_show_common(kobj, attr, buf);
3777 }
3778
3779 static ssize_t nr_hugepages_store(struct kobject *kobj,
3780                struct kobj_attribute *attr, const char *buf, size_t len)
3781 {
3782         return nr_hugepages_store_common(false, kobj, buf, len);
3783 }
3784 HSTATE_ATTR(nr_hugepages);
3785
3786 #ifdef CONFIG_NUMA
3787
3788 /*
3789  * hstate attribute for optionally mempolicy-based constraint on persistent
3790  * huge page alloc/free.
3791  */
3792 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3793                                            struct kobj_attribute *attr,
3794                                            char *buf)
3795 {
3796         return nr_hugepages_show_common(kobj, attr, buf);
3797 }
3798
3799 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3800                struct kobj_attribute *attr, const char *buf, size_t len)
3801 {
3802         return nr_hugepages_store_common(true, kobj, buf, len);
3803 }
3804 HSTATE_ATTR(nr_hugepages_mempolicy);
3805 #endif
3806
3807
3808 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3809                                         struct kobj_attribute *attr, char *buf)
3810 {
3811         struct hstate *h = kobj_to_hstate(kobj, NULL);
3812         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3813 }
3814
3815 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3816                 struct kobj_attribute *attr, const char *buf, size_t count)
3817 {
3818         int err;
3819         unsigned long input;
3820         struct hstate *h = kobj_to_hstate(kobj, NULL);
3821
3822         if (hstate_is_gigantic(h))
3823                 return -EINVAL;
3824
3825         err = kstrtoul(buf, 10, &input);
3826         if (err)
3827                 return err;
3828
3829         spin_lock_irq(&hugetlb_lock);
3830         h->nr_overcommit_huge_pages = input;
3831         spin_unlock_irq(&hugetlb_lock);
3832
3833         return count;
3834 }
3835 HSTATE_ATTR(nr_overcommit_hugepages);
3836
3837 static ssize_t free_hugepages_show(struct kobject *kobj,
3838                                         struct kobj_attribute *attr, char *buf)
3839 {
3840         struct hstate *h;
3841         unsigned long free_huge_pages;
3842         int nid;
3843
3844         h = kobj_to_hstate(kobj, &nid);
3845         if (nid == NUMA_NO_NODE)
3846                 free_huge_pages = h->free_huge_pages;
3847         else
3848                 free_huge_pages = h->free_huge_pages_node[nid];
3849
3850         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3851 }
3852 HSTATE_ATTR_RO(free_hugepages);
3853
3854 static ssize_t resv_hugepages_show(struct kobject *kobj,
3855                                         struct kobj_attribute *attr, char *buf)
3856 {
3857         struct hstate *h = kobj_to_hstate(kobj, NULL);
3858         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3859 }
3860 HSTATE_ATTR_RO(resv_hugepages);
3861
3862 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3863                                         struct kobj_attribute *attr, char *buf)
3864 {
3865         struct hstate *h;
3866         unsigned long surplus_huge_pages;
3867         int nid;
3868
3869         h = kobj_to_hstate(kobj, &nid);
3870         if (nid == NUMA_NO_NODE)
3871                 surplus_huge_pages = h->surplus_huge_pages;
3872         else
3873                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3874
3875         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3876 }
3877 HSTATE_ATTR_RO(surplus_hugepages);
3878
3879 static ssize_t demote_store(struct kobject *kobj,
3880                struct kobj_attribute *attr, const char *buf, size_t len)
3881 {
3882         unsigned long nr_demote;
3883         unsigned long nr_available;
3884         nodemask_t nodes_allowed, *n_mask;
3885         struct hstate *h;
3886         int err;
3887         int nid;
3888
3889         err = kstrtoul(buf, 10, &nr_demote);
3890         if (err)
3891                 return err;
3892         h = kobj_to_hstate(kobj, &nid);
3893
3894         if (nid != NUMA_NO_NODE) {
3895                 init_nodemask_of_node(&nodes_allowed, nid);
3896                 n_mask = &nodes_allowed;
3897         } else {
3898                 n_mask = &node_states[N_MEMORY];
3899         }
3900
3901         /* Synchronize with other sysfs operations modifying huge pages */
3902         mutex_lock(&h->resize_lock);
3903         spin_lock_irq(&hugetlb_lock);
3904
3905         while (nr_demote) {
3906                 /*
3907                  * Check for available pages to demote each time thorough the
3908                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3909                  */
3910                 if (nid != NUMA_NO_NODE)
3911                         nr_available = h->free_huge_pages_node[nid];
3912                 else
3913                         nr_available = h->free_huge_pages;
3914                 nr_available -= h->resv_huge_pages;
3915                 if (!nr_available)
3916                         break;
3917
3918                 err = demote_pool_huge_page(h, n_mask);
3919                 if (err)
3920                         break;
3921
3922                 nr_demote--;
3923         }
3924
3925         spin_unlock_irq(&hugetlb_lock);
3926         mutex_unlock(&h->resize_lock);
3927
3928         if (err)
3929                 return err;
3930         return len;
3931 }
3932 HSTATE_ATTR_WO(demote);
3933
3934 static ssize_t demote_size_show(struct kobject *kobj,
3935                                         struct kobj_attribute *attr, char *buf)
3936 {
3937         struct hstate *h = kobj_to_hstate(kobj, NULL);
3938         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3939
3940         return sysfs_emit(buf, "%lukB\n", demote_size);
3941 }
3942
3943 static ssize_t demote_size_store(struct kobject *kobj,
3944                                         struct kobj_attribute *attr,
3945                                         const char *buf, size_t count)
3946 {
3947         struct hstate *h, *demote_hstate;
3948         unsigned long demote_size;
3949         unsigned int demote_order;
3950
3951         demote_size = (unsigned long)memparse(buf, NULL);
3952
3953         demote_hstate = size_to_hstate(demote_size);
3954         if (!demote_hstate)
3955                 return -EINVAL;
3956         demote_order = demote_hstate->order;
3957         if (demote_order < HUGETLB_PAGE_ORDER)
3958                 return -EINVAL;
3959
3960         /* demote order must be smaller than hstate order */
3961         h = kobj_to_hstate(kobj, NULL);
3962         if (demote_order >= h->order)
3963                 return -EINVAL;
3964
3965         /* resize_lock synchronizes access to demote size and writes */
3966         mutex_lock(&h->resize_lock);
3967         h->demote_order = demote_order;
3968         mutex_unlock(&h->resize_lock);
3969
3970         return count;
3971 }
3972 HSTATE_ATTR(demote_size);
3973
3974 static struct attribute *hstate_attrs[] = {
3975         &nr_hugepages_attr.attr,
3976         &nr_overcommit_hugepages_attr.attr,
3977         &free_hugepages_attr.attr,
3978         &resv_hugepages_attr.attr,
3979         &surplus_hugepages_attr.attr,
3980 #ifdef CONFIG_NUMA
3981         &nr_hugepages_mempolicy_attr.attr,
3982 #endif
3983         NULL,
3984 };
3985
3986 static const struct attribute_group hstate_attr_group = {
3987         .attrs = hstate_attrs,
3988 };
3989
3990 static struct attribute *hstate_demote_attrs[] = {
3991         &demote_size_attr.attr,
3992         &demote_attr.attr,
3993         NULL,
3994 };
3995
3996 static const struct attribute_group hstate_demote_attr_group = {
3997         .attrs = hstate_demote_attrs,
3998 };
3999
4000 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4001                                     struct kobject **hstate_kobjs,
4002                                     const struct attribute_group *hstate_attr_group)
4003 {
4004         int retval;
4005         int hi = hstate_index(h);
4006
4007         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4008         if (!hstate_kobjs[hi])
4009                 return -ENOMEM;
4010
4011         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4012         if (retval) {
4013                 kobject_put(hstate_kobjs[hi]);
4014                 hstate_kobjs[hi] = NULL;
4015                 return retval;
4016         }
4017
4018         if (h->demote_order) {
4019                 retval = sysfs_create_group(hstate_kobjs[hi],
4020                                             &hstate_demote_attr_group);
4021                 if (retval) {
4022                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4023                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4024                         kobject_put(hstate_kobjs[hi]);
4025                         hstate_kobjs[hi] = NULL;
4026                         return retval;
4027                 }
4028         }
4029
4030         return 0;
4031 }
4032
4033 #ifdef CONFIG_NUMA
4034 static bool hugetlb_sysfs_initialized __ro_after_init;
4035
4036 /*
4037  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4038  * with node devices in node_devices[] using a parallel array.  The array
4039  * index of a node device or _hstate == node id.
4040  * This is here to avoid any static dependency of the node device driver, in
4041  * the base kernel, on the hugetlb module.
4042  */
4043 struct node_hstate {
4044         struct kobject          *hugepages_kobj;
4045         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4046 };
4047 static struct node_hstate node_hstates[MAX_NUMNODES];
4048
4049 /*
4050  * A subset of global hstate attributes for node devices
4051  */
4052 static struct attribute *per_node_hstate_attrs[] = {
4053         &nr_hugepages_attr.attr,
4054         &free_hugepages_attr.attr,
4055         &surplus_hugepages_attr.attr,
4056         NULL,
4057 };
4058
4059 static const struct attribute_group per_node_hstate_attr_group = {
4060         .attrs = per_node_hstate_attrs,
4061 };
4062
4063 /*
4064  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4065  * Returns node id via non-NULL nidp.
4066  */
4067 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4068 {
4069         int nid;
4070
4071         for (nid = 0; nid < nr_node_ids; nid++) {
4072                 struct node_hstate *nhs = &node_hstates[nid];
4073                 int i;
4074                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4075                         if (nhs->hstate_kobjs[i] == kobj) {
4076                                 if (nidp)
4077                                         *nidp = nid;
4078                                 return &hstates[i];
4079                         }
4080         }
4081
4082         BUG();
4083         return NULL;
4084 }
4085
4086 /*
4087  * Unregister hstate attributes from a single node device.
4088  * No-op if no hstate attributes attached.
4089  */
4090 void hugetlb_unregister_node(struct node *node)
4091 {
4092         struct hstate *h;
4093         struct node_hstate *nhs = &node_hstates[node->dev.id];
4094
4095         if (!nhs->hugepages_kobj)
4096                 return;         /* no hstate attributes */
4097
4098         for_each_hstate(h) {
4099                 int idx = hstate_index(h);
4100                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4101
4102                 if (!hstate_kobj)
4103                         continue;
4104                 if (h->demote_order)
4105                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4106                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4107                 kobject_put(hstate_kobj);
4108                 nhs->hstate_kobjs[idx] = NULL;
4109         }
4110
4111         kobject_put(nhs->hugepages_kobj);
4112         nhs->hugepages_kobj = NULL;
4113 }
4114
4115
4116 /*
4117  * Register hstate attributes for a single node device.
4118  * No-op if attributes already registered.
4119  */
4120 void hugetlb_register_node(struct node *node)
4121 {
4122         struct hstate *h;
4123         struct node_hstate *nhs = &node_hstates[node->dev.id];
4124         int err;
4125
4126         if (!hugetlb_sysfs_initialized)
4127                 return;
4128
4129         if (nhs->hugepages_kobj)
4130                 return;         /* already allocated */
4131
4132         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4133                                                         &node->dev.kobj);
4134         if (!nhs->hugepages_kobj)
4135                 return;
4136
4137         for_each_hstate(h) {
4138                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4139                                                 nhs->hstate_kobjs,
4140                                                 &per_node_hstate_attr_group);
4141                 if (err) {
4142                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4143                                 h->name, node->dev.id);
4144                         hugetlb_unregister_node(node);
4145                         break;
4146                 }
4147         }
4148 }
4149
4150 /*
4151  * hugetlb init time:  register hstate attributes for all registered node
4152  * devices of nodes that have memory.  All on-line nodes should have
4153  * registered their associated device by this time.
4154  */
4155 static void __init hugetlb_register_all_nodes(void)
4156 {
4157         int nid;
4158
4159         for_each_online_node(nid)
4160                 hugetlb_register_node(node_devices[nid]);
4161 }
4162 #else   /* !CONFIG_NUMA */
4163
4164 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4165 {
4166         BUG();
4167         if (nidp)
4168                 *nidp = -1;
4169         return NULL;
4170 }
4171
4172 static void hugetlb_register_all_nodes(void) { }
4173
4174 #endif
4175
4176 #ifdef CONFIG_CMA
4177 static void __init hugetlb_cma_check(void);
4178 #else
4179 static inline __init void hugetlb_cma_check(void)
4180 {
4181 }
4182 #endif
4183
4184 static void __init hugetlb_sysfs_init(void)
4185 {
4186         struct hstate *h;
4187         int err;
4188
4189         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4190         if (!hugepages_kobj)
4191                 return;
4192
4193         for_each_hstate(h) {
4194                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4195                                          hstate_kobjs, &hstate_attr_group);
4196                 if (err)
4197                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4198         }
4199
4200 #ifdef CONFIG_NUMA
4201         hugetlb_sysfs_initialized = true;
4202 #endif
4203         hugetlb_register_all_nodes();
4204 }
4205
4206 #ifdef CONFIG_SYSCTL
4207 static void hugetlb_sysctl_init(void);
4208 #else
4209 static inline void hugetlb_sysctl_init(void) { }
4210 #endif
4211
4212 static int __init hugetlb_init(void)
4213 {
4214         int i;
4215
4216         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4217                         __NR_HPAGEFLAGS);
4218
4219         if (!hugepages_supported()) {
4220                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4221                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4222                 return 0;
4223         }
4224
4225         /*
4226          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4227          * architectures depend on setup being done here.
4228          */
4229         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4230         if (!parsed_default_hugepagesz) {
4231                 /*
4232                  * If we did not parse a default huge page size, set
4233                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4234                  * number of huge pages for this default size was implicitly
4235                  * specified, set that here as well.
4236                  * Note that the implicit setting will overwrite an explicit
4237                  * setting.  A warning will be printed in this case.
4238                  */
4239                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4240                 if (default_hstate_max_huge_pages) {
4241                         if (default_hstate.max_huge_pages) {
4242                                 char buf[32];
4243
4244                                 string_get_size(huge_page_size(&default_hstate),
4245                                         1, STRING_UNITS_2, buf, 32);
4246                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4247                                         default_hstate.max_huge_pages, buf);
4248                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4249                                         default_hstate_max_huge_pages);
4250                         }
4251                         default_hstate.max_huge_pages =
4252                                 default_hstate_max_huge_pages;
4253
4254                         for_each_online_node(i)
4255                                 default_hstate.max_huge_pages_node[i] =
4256                                         default_hugepages_in_node[i];
4257                 }
4258         }
4259
4260         hugetlb_cma_check();
4261         hugetlb_init_hstates();
4262         gather_bootmem_prealloc();
4263         report_hugepages();
4264
4265         hugetlb_sysfs_init();
4266         hugetlb_cgroup_file_init();
4267         hugetlb_sysctl_init();
4268
4269 #ifdef CONFIG_SMP
4270         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4271 #else
4272         num_fault_mutexes = 1;
4273 #endif
4274         hugetlb_fault_mutex_table =
4275                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4276                               GFP_KERNEL);
4277         BUG_ON(!hugetlb_fault_mutex_table);
4278
4279         for (i = 0; i < num_fault_mutexes; i++)
4280                 mutex_init(&hugetlb_fault_mutex_table[i]);
4281         return 0;
4282 }
4283 subsys_initcall(hugetlb_init);
4284
4285 /* Overwritten by architectures with more huge page sizes */
4286 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4287 {
4288         return size == HPAGE_SIZE;
4289 }
4290
4291 void __init hugetlb_add_hstate(unsigned int order)
4292 {
4293         struct hstate *h;
4294         unsigned long i;
4295
4296         if (size_to_hstate(PAGE_SIZE << order)) {
4297                 return;
4298         }
4299         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4300         BUG_ON(order == 0);
4301         h = &hstates[hugetlb_max_hstate++];
4302         mutex_init(&h->resize_lock);
4303         h->order = order;
4304         h->mask = ~(huge_page_size(h) - 1);
4305         for (i = 0; i < MAX_NUMNODES; ++i)
4306                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4307         INIT_LIST_HEAD(&h->hugepage_activelist);
4308         h->next_nid_to_alloc = first_memory_node;
4309         h->next_nid_to_free = first_memory_node;
4310         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4311                                         huge_page_size(h)/SZ_1K);
4312
4313         parsed_hstate = h;
4314 }
4315
4316 bool __init __weak hugetlb_node_alloc_supported(void)
4317 {
4318         return true;
4319 }
4320
4321 static void __init hugepages_clear_pages_in_node(void)
4322 {
4323         if (!hugetlb_max_hstate) {
4324                 default_hstate_max_huge_pages = 0;
4325                 memset(default_hugepages_in_node, 0,
4326                         sizeof(default_hugepages_in_node));
4327         } else {
4328                 parsed_hstate->max_huge_pages = 0;
4329                 memset(parsed_hstate->max_huge_pages_node, 0,
4330                         sizeof(parsed_hstate->max_huge_pages_node));
4331         }
4332 }
4333
4334 /*
4335  * hugepages command line processing
4336  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4337  * specification.  If not, ignore the hugepages value.  hugepages can also
4338  * be the first huge page command line  option in which case it implicitly
4339  * specifies the number of huge pages for the default size.
4340  */
4341 static int __init hugepages_setup(char *s)
4342 {
4343         unsigned long *mhp;
4344         static unsigned long *last_mhp;
4345         int node = NUMA_NO_NODE;
4346         int count;
4347         unsigned long tmp;
4348         char *p = s;
4349
4350         if (!parsed_valid_hugepagesz) {
4351                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4352                 parsed_valid_hugepagesz = true;
4353                 return 1;
4354         }
4355
4356         /*
4357          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4358          * yet, so this hugepages= parameter goes to the "default hstate".
4359          * Otherwise, it goes with the previously parsed hugepagesz or
4360          * default_hugepagesz.
4361          */
4362         else if (!hugetlb_max_hstate)
4363                 mhp = &default_hstate_max_huge_pages;
4364         else
4365                 mhp = &parsed_hstate->max_huge_pages;
4366
4367         if (mhp == last_mhp) {
4368                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4369                 return 1;
4370         }
4371
4372         while (*p) {
4373                 count = 0;
4374                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4375                         goto invalid;
4376                 /* Parameter is node format */
4377                 if (p[count] == ':') {
4378                         if (!hugetlb_node_alloc_supported()) {
4379                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4380                                 return 1;
4381                         }
4382                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4383                                 goto invalid;
4384                         node = array_index_nospec(tmp, MAX_NUMNODES);
4385                         p += count + 1;
4386                         /* Parse hugepages */
4387                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4388                                 goto invalid;
4389                         if (!hugetlb_max_hstate)
4390                                 default_hugepages_in_node[node] = tmp;
4391                         else
4392                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4393                         *mhp += tmp;
4394                         /* Go to parse next node*/
4395                         if (p[count] == ',')
4396                                 p += count + 1;
4397                         else
4398                                 break;
4399                 } else {
4400                         if (p != s)
4401                                 goto invalid;
4402                         *mhp = tmp;
4403                         break;
4404                 }
4405         }
4406
4407         /*
4408          * Global state is always initialized later in hugetlb_init.
4409          * But we need to allocate gigantic hstates here early to still
4410          * use the bootmem allocator.
4411          */
4412         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4413                 hugetlb_hstate_alloc_pages(parsed_hstate);
4414
4415         last_mhp = mhp;
4416
4417         return 1;
4418
4419 invalid:
4420         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4421         hugepages_clear_pages_in_node();
4422         return 1;
4423 }
4424 __setup("hugepages=", hugepages_setup);
4425
4426 /*
4427  * hugepagesz command line processing
4428  * A specific huge page size can only be specified once with hugepagesz.
4429  * hugepagesz is followed by hugepages on the command line.  The global
4430  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4431  * hugepagesz argument was valid.
4432  */
4433 static int __init hugepagesz_setup(char *s)
4434 {
4435         unsigned long size;
4436         struct hstate *h;
4437
4438         parsed_valid_hugepagesz = false;
4439         size = (unsigned long)memparse(s, NULL);
4440
4441         if (!arch_hugetlb_valid_size(size)) {
4442                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4443                 return 1;
4444         }
4445
4446         h = size_to_hstate(size);
4447         if (h) {
4448                 /*
4449                  * hstate for this size already exists.  This is normally
4450                  * an error, but is allowed if the existing hstate is the
4451                  * default hstate.  More specifically, it is only allowed if
4452                  * the number of huge pages for the default hstate was not
4453                  * previously specified.
4454                  */
4455                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4456                     default_hstate.max_huge_pages) {
4457                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4458                         return 1;
4459                 }
4460
4461                 /*
4462                  * No need to call hugetlb_add_hstate() as hstate already
4463                  * exists.  But, do set parsed_hstate so that a following
4464                  * hugepages= parameter will be applied to this hstate.
4465                  */
4466                 parsed_hstate = h;
4467                 parsed_valid_hugepagesz = true;
4468                 return 1;
4469         }
4470
4471         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4472         parsed_valid_hugepagesz = true;
4473         return 1;
4474 }
4475 __setup("hugepagesz=", hugepagesz_setup);
4476
4477 /*
4478  * default_hugepagesz command line input
4479  * Only one instance of default_hugepagesz allowed on command line.
4480  */
4481 static int __init default_hugepagesz_setup(char *s)
4482 {
4483         unsigned long size;
4484         int i;
4485
4486         parsed_valid_hugepagesz = false;
4487         if (parsed_default_hugepagesz) {
4488                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4489                 return 1;
4490         }
4491
4492         size = (unsigned long)memparse(s, NULL);
4493
4494         if (!arch_hugetlb_valid_size(size)) {
4495                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4496                 return 1;
4497         }
4498
4499         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4500         parsed_valid_hugepagesz = true;
4501         parsed_default_hugepagesz = true;
4502         default_hstate_idx = hstate_index(size_to_hstate(size));
4503
4504         /*
4505          * The number of default huge pages (for this size) could have been
4506          * specified as the first hugetlb parameter: hugepages=X.  If so,
4507          * then default_hstate_max_huge_pages is set.  If the default huge
4508          * page size is gigantic (> MAX_ORDER), then the pages must be
4509          * allocated here from bootmem allocator.
4510          */
4511         if (default_hstate_max_huge_pages) {
4512                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4513                 for_each_online_node(i)
4514                         default_hstate.max_huge_pages_node[i] =
4515                                 default_hugepages_in_node[i];
4516                 if (hstate_is_gigantic(&default_hstate))
4517                         hugetlb_hstate_alloc_pages(&default_hstate);
4518                 default_hstate_max_huge_pages = 0;
4519         }
4520
4521         return 1;
4522 }
4523 __setup("default_hugepagesz=", default_hugepagesz_setup);
4524
4525 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4526 {
4527 #ifdef CONFIG_NUMA
4528         struct mempolicy *mpol = get_task_policy(current);
4529
4530         /*
4531          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4532          * (from policy_nodemask) specifically for hugetlb case
4533          */
4534         if (mpol->mode == MPOL_BIND &&
4535                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4536                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4537                 return &mpol->nodes;
4538 #endif
4539         return NULL;
4540 }
4541
4542 static unsigned int allowed_mems_nr(struct hstate *h)
4543 {
4544         int node;
4545         unsigned int nr = 0;
4546         nodemask_t *mbind_nodemask;
4547         unsigned int *array = h->free_huge_pages_node;
4548         gfp_t gfp_mask = htlb_alloc_mask(h);
4549
4550         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4551         for_each_node_mask(node, cpuset_current_mems_allowed) {
4552                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4553                         nr += array[node];
4554         }
4555
4556         return nr;
4557 }
4558
4559 #ifdef CONFIG_SYSCTL
4560 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4561                                           void *buffer, size_t *length,
4562                                           loff_t *ppos, unsigned long *out)
4563 {
4564         struct ctl_table dup_table;
4565
4566         /*
4567          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4568          * can duplicate the @table and alter the duplicate of it.
4569          */
4570         dup_table = *table;
4571         dup_table.data = out;
4572
4573         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4574 }
4575
4576 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4577                          struct ctl_table *table, int write,
4578                          void *buffer, size_t *length, loff_t *ppos)
4579 {
4580         struct hstate *h = &default_hstate;
4581         unsigned long tmp = h->max_huge_pages;
4582         int ret;
4583
4584         if (!hugepages_supported())
4585                 return -EOPNOTSUPP;
4586
4587         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4588                                              &tmp);
4589         if (ret)
4590                 goto out;
4591
4592         if (write)
4593                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4594                                                   NUMA_NO_NODE, tmp, *length);
4595 out:
4596         return ret;
4597 }
4598
4599 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4600                           void *buffer, size_t *length, loff_t *ppos)
4601 {
4602
4603         return hugetlb_sysctl_handler_common(false, table, write,
4604                                                         buffer, length, ppos);
4605 }
4606
4607 #ifdef CONFIG_NUMA
4608 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4609                           void *buffer, size_t *length, loff_t *ppos)
4610 {
4611         return hugetlb_sysctl_handler_common(true, table, write,
4612                                                         buffer, length, ppos);
4613 }
4614 #endif /* CONFIG_NUMA */
4615
4616 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4617                 void *buffer, size_t *length, loff_t *ppos)
4618 {
4619         struct hstate *h = &default_hstate;
4620         unsigned long tmp;
4621         int ret;
4622
4623         if (!hugepages_supported())
4624                 return -EOPNOTSUPP;
4625
4626         tmp = h->nr_overcommit_huge_pages;
4627
4628         if (write && hstate_is_gigantic(h))
4629                 return -EINVAL;
4630
4631         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4632                                              &tmp);
4633         if (ret)
4634                 goto out;
4635
4636         if (write) {
4637                 spin_lock_irq(&hugetlb_lock);
4638                 h->nr_overcommit_huge_pages = tmp;
4639                 spin_unlock_irq(&hugetlb_lock);
4640         }
4641 out:
4642         return ret;
4643 }
4644
4645 static struct ctl_table hugetlb_table[] = {
4646         {
4647                 .procname       = "nr_hugepages",
4648                 .data           = NULL,
4649                 .maxlen         = sizeof(unsigned long),
4650                 .mode           = 0644,
4651                 .proc_handler   = hugetlb_sysctl_handler,
4652         },
4653 #ifdef CONFIG_NUMA
4654         {
4655                 .procname       = "nr_hugepages_mempolicy",
4656                 .data           = NULL,
4657                 .maxlen         = sizeof(unsigned long),
4658                 .mode           = 0644,
4659                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4660         },
4661 #endif
4662         {
4663                 .procname       = "hugetlb_shm_group",
4664                 .data           = &sysctl_hugetlb_shm_group,
4665                 .maxlen         = sizeof(gid_t),
4666                 .mode           = 0644,
4667                 .proc_handler   = proc_dointvec,
4668         },
4669         {
4670                 .procname       = "nr_overcommit_hugepages",
4671                 .data           = NULL,
4672                 .maxlen         = sizeof(unsigned long),
4673                 .mode           = 0644,
4674                 .proc_handler   = hugetlb_overcommit_handler,
4675         },
4676         { }
4677 };
4678
4679 static void hugetlb_sysctl_init(void)
4680 {
4681         register_sysctl_init("vm", hugetlb_table);
4682 }
4683 #endif /* CONFIG_SYSCTL */
4684
4685 void hugetlb_report_meminfo(struct seq_file *m)
4686 {
4687         struct hstate *h;
4688         unsigned long total = 0;
4689
4690         if (!hugepages_supported())
4691                 return;
4692
4693         for_each_hstate(h) {
4694                 unsigned long count = h->nr_huge_pages;
4695
4696                 total += huge_page_size(h) * count;
4697
4698                 if (h == &default_hstate)
4699                         seq_printf(m,
4700                                    "HugePages_Total:   %5lu\n"
4701                                    "HugePages_Free:    %5lu\n"
4702                                    "HugePages_Rsvd:    %5lu\n"
4703                                    "HugePages_Surp:    %5lu\n"
4704                                    "Hugepagesize:   %8lu kB\n",
4705                                    count,
4706                                    h->free_huge_pages,
4707                                    h->resv_huge_pages,
4708                                    h->surplus_huge_pages,
4709                                    huge_page_size(h) / SZ_1K);
4710         }
4711
4712         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4713 }
4714
4715 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4716 {
4717         struct hstate *h = &default_hstate;
4718
4719         if (!hugepages_supported())
4720                 return 0;
4721
4722         return sysfs_emit_at(buf, len,
4723                              "Node %d HugePages_Total: %5u\n"
4724                              "Node %d HugePages_Free:  %5u\n"
4725                              "Node %d HugePages_Surp:  %5u\n",
4726                              nid, h->nr_huge_pages_node[nid],
4727                              nid, h->free_huge_pages_node[nid],
4728                              nid, h->surplus_huge_pages_node[nid]);
4729 }
4730
4731 void hugetlb_show_meminfo_node(int nid)
4732 {
4733         struct hstate *h;
4734
4735         if (!hugepages_supported())
4736                 return;
4737
4738         for_each_hstate(h)
4739                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4740                         nid,
4741                         h->nr_huge_pages_node[nid],
4742                         h->free_huge_pages_node[nid],
4743                         h->surplus_huge_pages_node[nid],
4744                         huge_page_size(h) / SZ_1K);
4745 }
4746
4747 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4748 {
4749         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4750                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4751 }
4752
4753 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4754 unsigned long hugetlb_total_pages(void)
4755 {
4756         struct hstate *h;
4757         unsigned long nr_total_pages = 0;
4758
4759         for_each_hstate(h)
4760                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4761         return nr_total_pages;
4762 }
4763
4764 static int hugetlb_acct_memory(struct hstate *h, long delta)
4765 {
4766         int ret = -ENOMEM;
4767
4768         if (!delta)
4769                 return 0;
4770
4771         spin_lock_irq(&hugetlb_lock);
4772         /*
4773          * When cpuset is configured, it breaks the strict hugetlb page
4774          * reservation as the accounting is done on a global variable. Such
4775          * reservation is completely rubbish in the presence of cpuset because
4776          * the reservation is not checked against page availability for the
4777          * current cpuset. Application can still potentially OOM'ed by kernel
4778          * with lack of free htlb page in cpuset that the task is in.
4779          * Attempt to enforce strict accounting with cpuset is almost
4780          * impossible (or too ugly) because cpuset is too fluid that
4781          * task or memory node can be dynamically moved between cpusets.
4782          *
4783          * The change of semantics for shared hugetlb mapping with cpuset is
4784          * undesirable. However, in order to preserve some of the semantics,
4785          * we fall back to check against current free page availability as
4786          * a best attempt and hopefully to minimize the impact of changing
4787          * semantics that cpuset has.
4788          *
4789          * Apart from cpuset, we also have memory policy mechanism that
4790          * also determines from which node the kernel will allocate memory
4791          * in a NUMA system. So similar to cpuset, we also should consider
4792          * the memory policy of the current task. Similar to the description
4793          * above.
4794          */
4795         if (delta > 0) {
4796                 if (gather_surplus_pages(h, delta) < 0)
4797                         goto out;
4798
4799                 if (delta > allowed_mems_nr(h)) {
4800                         return_unused_surplus_pages(h, delta);
4801                         goto out;
4802                 }
4803         }
4804
4805         ret = 0;
4806         if (delta < 0)
4807                 return_unused_surplus_pages(h, (unsigned long) -delta);
4808
4809 out:
4810         spin_unlock_irq(&hugetlb_lock);
4811         return ret;
4812 }
4813
4814 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4815 {
4816         struct resv_map *resv = vma_resv_map(vma);
4817
4818         /*
4819          * HPAGE_RESV_OWNER indicates a private mapping.
4820          * This new VMA should share its siblings reservation map if present.
4821          * The VMA will only ever have a valid reservation map pointer where
4822          * it is being copied for another still existing VMA.  As that VMA
4823          * has a reference to the reservation map it cannot disappear until
4824          * after this open call completes.  It is therefore safe to take a
4825          * new reference here without additional locking.
4826          */
4827         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4828                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4829                 kref_get(&resv->refs);
4830         }
4831
4832         /*
4833          * vma_lock structure for sharable mappings is vma specific.
4834          * Clear old pointer (if copied via vm_area_dup) and allocate
4835          * new structure.  Before clearing, make sure vma_lock is not
4836          * for this vma.
4837          */
4838         if (vma->vm_flags & VM_MAYSHARE) {
4839                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4840
4841                 if (vma_lock) {
4842                         if (vma_lock->vma != vma) {
4843                                 vma->vm_private_data = NULL;
4844                                 hugetlb_vma_lock_alloc(vma);
4845                         } else
4846                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4847                 } else
4848                         hugetlb_vma_lock_alloc(vma);
4849         }
4850 }
4851
4852 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4853 {
4854         struct hstate *h = hstate_vma(vma);
4855         struct resv_map *resv;
4856         struct hugepage_subpool *spool = subpool_vma(vma);
4857         unsigned long reserve, start, end;
4858         long gbl_reserve;
4859
4860         hugetlb_vma_lock_free(vma);
4861
4862         resv = vma_resv_map(vma);
4863         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4864                 return;
4865
4866         start = vma_hugecache_offset(h, vma, vma->vm_start);
4867         end = vma_hugecache_offset(h, vma, vma->vm_end);
4868
4869         reserve = (end - start) - region_count(resv, start, end);
4870         hugetlb_cgroup_uncharge_counter(resv, start, end);
4871         if (reserve) {
4872                 /*
4873                  * Decrement reserve counts.  The global reserve count may be
4874                  * adjusted if the subpool has a minimum size.
4875                  */
4876                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4877                 hugetlb_acct_memory(h, -gbl_reserve);
4878         }
4879
4880         kref_put(&resv->refs, resv_map_release);
4881 }
4882
4883 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4884 {
4885         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4886                 return -EINVAL;
4887
4888         /*
4889          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4890          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4891          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4892          */
4893         if (addr & ~PUD_MASK) {
4894                 /*
4895                  * hugetlb_vm_op_split is called right before we attempt to
4896                  * split the VMA. We will need to unshare PMDs in the old and
4897                  * new VMAs, so let's unshare before we split.
4898                  */
4899                 unsigned long floor = addr & PUD_MASK;
4900                 unsigned long ceil = floor + PUD_SIZE;
4901
4902                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4903                         hugetlb_unshare_pmds(vma, floor, ceil);
4904         }
4905
4906         return 0;
4907 }
4908
4909 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4910 {
4911         return huge_page_size(hstate_vma(vma));
4912 }
4913
4914 /*
4915  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4916  * handle_mm_fault() to try to instantiate regular-sized pages in the
4917  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4918  * this far.
4919  */
4920 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4921 {
4922         BUG();
4923         return 0;
4924 }
4925
4926 /*
4927  * When a new function is introduced to vm_operations_struct and added
4928  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4929  * This is because under System V memory model, mappings created via
4930  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4931  * their original vm_ops are overwritten with shm_vm_ops.
4932  */
4933 const struct vm_operations_struct hugetlb_vm_ops = {
4934         .fault = hugetlb_vm_op_fault,
4935         .open = hugetlb_vm_op_open,
4936         .close = hugetlb_vm_op_close,
4937         .may_split = hugetlb_vm_op_split,
4938         .pagesize = hugetlb_vm_op_pagesize,
4939 };
4940
4941 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4942                                 int writable)
4943 {
4944         pte_t entry;
4945         unsigned int shift = huge_page_shift(hstate_vma(vma));
4946
4947         if (writable) {
4948                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4949                                          vma->vm_page_prot)));
4950         } else {
4951                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4952                                            vma->vm_page_prot));
4953         }
4954         entry = pte_mkyoung(entry);
4955         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4956
4957         return entry;
4958 }
4959
4960 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4961                                    unsigned long address, pte_t *ptep)
4962 {
4963         pte_t entry;
4964
4965         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4966         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4967                 update_mmu_cache(vma, address, ptep);
4968 }
4969
4970 bool is_hugetlb_entry_migration(pte_t pte)
4971 {
4972         swp_entry_t swp;
4973
4974         if (huge_pte_none(pte) || pte_present(pte))
4975                 return false;
4976         swp = pte_to_swp_entry(pte);
4977         if (is_migration_entry(swp))
4978                 return true;
4979         else
4980                 return false;
4981 }
4982
4983 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4984 {
4985         swp_entry_t swp;
4986
4987         if (huge_pte_none(pte) || pte_present(pte))
4988                 return false;
4989         swp = pte_to_swp_entry(pte);
4990         if (is_hwpoison_entry(swp))
4991                 return true;
4992         else
4993                 return false;
4994 }
4995
4996 static void
4997 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4998                       struct folio *new_folio, pte_t old)
4999 {
5000         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5001
5002         __folio_mark_uptodate(new_folio);
5003         hugepage_add_new_anon_rmap(new_folio, vma, addr);
5004         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5005                 newpte = huge_pte_mkuffd_wp(newpte);
5006         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5007         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5008         folio_set_hugetlb_migratable(new_folio);
5009 }
5010
5011 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5012                             struct vm_area_struct *dst_vma,
5013                             struct vm_area_struct *src_vma)
5014 {
5015         pte_t *src_pte, *dst_pte, entry;
5016         struct folio *pte_folio;
5017         unsigned long addr;
5018         bool cow = is_cow_mapping(src_vma->vm_flags);
5019         struct hstate *h = hstate_vma(src_vma);
5020         unsigned long sz = huge_page_size(h);
5021         unsigned long npages = pages_per_huge_page(h);
5022         struct mmu_notifier_range range;
5023         unsigned long last_addr_mask;
5024         int ret = 0;
5025
5026         if (cow) {
5027                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5028                                         src_vma->vm_start,
5029                                         src_vma->vm_end);
5030                 mmu_notifier_invalidate_range_start(&range);
5031                 mmap_assert_write_locked(src);
5032                 raw_write_seqcount_begin(&src->write_protect_seq);
5033         } else {
5034                 /*
5035                  * For shared mappings the vma lock must be held before
5036                  * calling hugetlb_walk() in the src vma. Otherwise, the
5037                  * returned ptep could go away if part of a shared pmd and
5038                  * another thread calls huge_pmd_unshare.
5039                  */
5040                 hugetlb_vma_lock_read(src_vma);
5041         }
5042
5043         last_addr_mask = hugetlb_mask_last_page(h);
5044         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5045                 spinlock_t *src_ptl, *dst_ptl;
5046                 src_pte = hugetlb_walk(src_vma, addr, sz);
5047                 if (!src_pte) {
5048                         addr |= last_addr_mask;
5049                         continue;
5050                 }
5051                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5052                 if (!dst_pte) {
5053                         ret = -ENOMEM;
5054                         break;
5055                 }
5056
5057                 /*
5058                  * If the pagetables are shared don't copy or take references.
5059                  *
5060                  * dst_pte == src_pte is the common case of src/dest sharing.
5061                  * However, src could have 'unshared' and dst shares with
5062                  * another vma. So page_count of ptep page is checked instead
5063                  * to reliably determine whether pte is shared.
5064                  */
5065                 if (page_count(virt_to_page(dst_pte)) > 1) {
5066                         addr |= last_addr_mask;
5067                         continue;
5068                 }
5069
5070                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5071                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5072                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5073                 entry = huge_ptep_get(src_pte);
5074 again:
5075                 if (huge_pte_none(entry)) {
5076                         /*
5077                          * Skip if src entry none.
5078                          */
5079                         ;
5080                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5081                         if (!userfaultfd_wp(dst_vma))
5082                                 entry = huge_pte_clear_uffd_wp(entry);
5083                         set_huge_pte_at(dst, addr, dst_pte, entry);
5084                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5085                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5086                         bool uffd_wp = pte_swp_uffd_wp(entry);
5087
5088                         if (!is_readable_migration_entry(swp_entry) && cow) {
5089                                 /*
5090                                  * COW mappings require pages in both
5091                                  * parent and child to be set to read.
5092                                  */
5093                                 swp_entry = make_readable_migration_entry(
5094                                                         swp_offset(swp_entry));
5095                                 entry = swp_entry_to_pte(swp_entry);
5096                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5097                                         entry = pte_swp_mkuffd_wp(entry);
5098                                 set_huge_pte_at(src, addr, src_pte, entry);
5099                         }
5100                         if (!userfaultfd_wp(dst_vma))
5101                                 entry = huge_pte_clear_uffd_wp(entry);
5102                         set_huge_pte_at(dst, addr, dst_pte, entry);
5103                 } else if (unlikely(is_pte_marker(entry))) {
5104                         /* No swap on hugetlb */
5105                         WARN_ON_ONCE(
5106                             is_swapin_error_entry(pte_to_swp_entry(entry)));
5107                         /*
5108                          * We copy the pte marker only if the dst vma has
5109                          * uffd-wp enabled.
5110                          */
5111                         if (userfaultfd_wp(dst_vma))
5112                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5113                 } else {
5114                         entry = huge_ptep_get(src_pte);
5115                         pte_folio = page_folio(pte_page(entry));
5116                         folio_get(pte_folio);
5117
5118                         /*
5119                          * Failing to duplicate the anon rmap is a rare case
5120                          * where we see pinned hugetlb pages while they're
5121                          * prone to COW. We need to do the COW earlier during
5122                          * fork.
5123                          *
5124                          * When pre-allocating the page or copying data, we
5125                          * need to be without the pgtable locks since we could
5126                          * sleep during the process.
5127                          */
5128                         if (!folio_test_anon(pte_folio)) {
5129                                 page_dup_file_rmap(&pte_folio->page, true);
5130                         } else if (page_try_dup_anon_rmap(&pte_folio->page,
5131                                                           true, src_vma)) {
5132                                 pte_t src_pte_old = entry;
5133                                 struct folio *new_folio;
5134
5135                                 spin_unlock(src_ptl);
5136                                 spin_unlock(dst_ptl);
5137                                 /* Do not use reserve as it's private owned */
5138                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5139                                 if (IS_ERR(new_folio)) {
5140                                         folio_put(pte_folio);
5141                                         ret = PTR_ERR(new_folio);
5142                                         break;
5143                                 }
5144                                 ret = copy_user_large_folio(new_folio,
5145                                                             pte_folio,
5146                                                             addr, dst_vma);
5147                                 folio_put(pte_folio);
5148                                 if (ret) {
5149                                         folio_put(new_folio);
5150                                         break;
5151                                 }
5152
5153                                 /* Install the new hugetlb folio if src pte stable */
5154                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5155                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5156                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5157                                 entry = huge_ptep_get(src_pte);
5158                                 if (!pte_same(src_pte_old, entry)) {
5159                                         restore_reserve_on_error(h, dst_vma, addr,
5160                                                                 new_folio);
5161                                         folio_put(new_folio);
5162                                         /* huge_ptep of dst_pte won't change as in child */
5163                                         goto again;
5164                                 }
5165                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5166                                                       new_folio, src_pte_old);
5167                                 spin_unlock(src_ptl);
5168                                 spin_unlock(dst_ptl);
5169                                 continue;
5170                         }
5171
5172                         if (cow) {
5173                                 /*
5174                                  * No need to notify as we are downgrading page
5175                                  * table protection not changing it to point
5176                                  * to a new page.
5177                                  *
5178                                  * See Documentation/mm/mmu_notifier.rst
5179                                  */
5180                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5181                                 entry = huge_pte_wrprotect(entry);
5182                         }
5183
5184                         if (!userfaultfd_wp(dst_vma))
5185                                 entry = huge_pte_clear_uffd_wp(entry);
5186
5187                         set_huge_pte_at(dst, addr, dst_pte, entry);
5188                         hugetlb_count_add(npages, dst);
5189                 }
5190                 spin_unlock(src_ptl);
5191                 spin_unlock(dst_ptl);
5192         }
5193
5194         if (cow) {
5195                 raw_write_seqcount_end(&src->write_protect_seq);
5196                 mmu_notifier_invalidate_range_end(&range);
5197         } else {
5198                 hugetlb_vma_unlock_read(src_vma);
5199         }
5200
5201         return ret;
5202 }
5203
5204 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5205                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5206 {
5207         struct hstate *h = hstate_vma(vma);
5208         struct mm_struct *mm = vma->vm_mm;
5209         spinlock_t *src_ptl, *dst_ptl;
5210         pte_t pte;
5211
5212         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5213         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5214
5215         /*
5216          * We don't have to worry about the ordering of src and dst ptlocks
5217          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5218          */
5219         if (src_ptl != dst_ptl)
5220                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5221
5222         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5223         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5224
5225         if (src_ptl != dst_ptl)
5226                 spin_unlock(src_ptl);
5227         spin_unlock(dst_ptl);
5228 }
5229
5230 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5231                              struct vm_area_struct *new_vma,
5232                              unsigned long old_addr, unsigned long new_addr,
5233                              unsigned long len)
5234 {
5235         struct hstate *h = hstate_vma(vma);
5236         struct address_space *mapping = vma->vm_file->f_mapping;
5237         unsigned long sz = huge_page_size(h);
5238         struct mm_struct *mm = vma->vm_mm;
5239         unsigned long old_end = old_addr + len;
5240         unsigned long last_addr_mask;
5241         pte_t *src_pte, *dst_pte;
5242         struct mmu_notifier_range range;
5243         bool shared_pmd = false;
5244
5245         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5246                                 old_end);
5247         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5248         /*
5249          * In case of shared PMDs, we should cover the maximum possible
5250          * range.
5251          */
5252         flush_cache_range(vma, range.start, range.end);
5253
5254         mmu_notifier_invalidate_range_start(&range);
5255         last_addr_mask = hugetlb_mask_last_page(h);
5256         /* Prevent race with file truncation */
5257         hugetlb_vma_lock_write(vma);
5258         i_mmap_lock_write(mapping);
5259         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5260                 src_pte = hugetlb_walk(vma, old_addr, sz);
5261                 if (!src_pte) {
5262                         old_addr |= last_addr_mask;
5263                         new_addr |= last_addr_mask;
5264                         continue;
5265                 }
5266                 if (huge_pte_none(huge_ptep_get(src_pte)))
5267                         continue;
5268
5269                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5270                         shared_pmd = true;
5271                         old_addr |= last_addr_mask;
5272                         new_addr |= last_addr_mask;
5273                         continue;
5274                 }
5275
5276                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5277                 if (!dst_pte)
5278                         break;
5279
5280                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5281         }
5282
5283         if (shared_pmd)
5284                 flush_tlb_range(vma, range.start, range.end);
5285         else
5286                 flush_tlb_range(vma, old_end - len, old_end);
5287         mmu_notifier_invalidate_range_end(&range);
5288         i_mmap_unlock_write(mapping);
5289         hugetlb_vma_unlock_write(vma);
5290
5291         return len + old_addr - old_end;
5292 }
5293
5294 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5295                                    unsigned long start, unsigned long end,
5296                                    struct page *ref_page, zap_flags_t zap_flags)
5297 {
5298         struct mm_struct *mm = vma->vm_mm;
5299         unsigned long address;
5300         pte_t *ptep;
5301         pte_t pte;
5302         spinlock_t *ptl;
5303         struct page *page;
5304         struct hstate *h = hstate_vma(vma);
5305         unsigned long sz = huge_page_size(h);
5306         unsigned long last_addr_mask;
5307         bool force_flush = false;
5308
5309         WARN_ON(!is_vm_hugetlb_page(vma));
5310         BUG_ON(start & ~huge_page_mask(h));
5311         BUG_ON(end & ~huge_page_mask(h));
5312
5313         /*
5314          * This is a hugetlb vma, all the pte entries should point
5315          * to huge page.
5316          */
5317         tlb_change_page_size(tlb, sz);
5318         tlb_start_vma(tlb, vma);
5319
5320         last_addr_mask = hugetlb_mask_last_page(h);
5321         address = start;
5322         for (; address < end; address += sz) {
5323                 ptep = hugetlb_walk(vma, address, sz);
5324                 if (!ptep) {
5325                         address |= last_addr_mask;
5326                         continue;
5327                 }
5328
5329                 ptl = huge_pte_lock(h, mm, ptep);
5330                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5331                         spin_unlock(ptl);
5332                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5333                         force_flush = true;
5334                         address |= last_addr_mask;
5335                         continue;
5336                 }
5337
5338                 pte = huge_ptep_get(ptep);
5339                 if (huge_pte_none(pte)) {
5340                         spin_unlock(ptl);
5341                         continue;
5342                 }
5343
5344                 /*
5345                  * Migrating hugepage or HWPoisoned hugepage is already
5346                  * unmapped and its refcount is dropped, so just clear pte here.
5347                  */
5348                 if (unlikely(!pte_present(pte))) {
5349                         /*
5350                          * If the pte was wr-protected by uffd-wp in any of the
5351                          * swap forms, meanwhile the caller does not want to
5352                          * drop the uffd-wp bit in this zap, then replace the
5353                          * pte with a marker.
5354                          */
5355                         if (pte_swp_uffd_wp_any(pte) &&
5356                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5357                                 set_huge_pte_at(mm, address, ptep,
5358                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5359                         else
5360                                 huge_pte_clear(mm, address, ptep, sz);
5361                         spin_unlock(ptl);
5362                         continue;
5363                 }
5364
5365                 page = pte_page(pte);
5366                 /*
5367                  * If a reference page is supplied, it is because a specific
5368                  * page is being unmapped, not a range. Ensure the page we
5369                  * are about to unmap is the actual page of interest.
5370                  */
5371                 if (ref_page) {
5372                         if (page != ref_page) {
5373                                 spin_unlock(ptl);
5374                                 continue;
5375                         }
5376                         /*
5377                          * Mark the VMA as having unmapped its page so that
5378                          * future faults in this VMA will fail rather than
5379                          * looking like data was lost
5380                          */
5381                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5382                 }
5383
5384                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5385                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5386                 if (huge_pte_dirty(pte))
5387                         set_page_dirty(page);
5388                 /* Leave a uffd-wp pte marker if needed */
5389                 if (huge_pte_uffd_wp(pte) &&
5390                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5391                         set_huge_pte_at(mm, address, ptep,
5392                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5393                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5394                 page_remove_rmap(page, vma, true);
5395
5396                 spin_unlock(ptl);
5397                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5398                 /*
5399                  * Bail out after unmapping reference page if supplied
5400                  */
5401                 if (ref_page)
5402                         break;
5403         }
5404         tlb_end_vma(tlb, vma);
5405
5406         /*
5407          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5408          * could defer the flush until now, since by holding i_mmap_rwsem we
5409          * guaranteed that the last refernece would not be dropped. But we must
5410          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5411          * dropped and the last reference to the shared PMDs page might be
5412          * dropped as well.
5413          *
5414          * In theory we could defer the freeing of the PMD pages as well, but
5415          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5416          * detect sharing, so we cannot defer the release of the page either.
5417          * Instead, do flush now.
5418          */
5419         if (force_flush)
5420                 tlb_flush_mmu_tlbonly(tlb);
5421 }
5422
5423 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5424                           struct vm_area_struct *vma, unsigned long start,
5425                           unsigned long end, struct page *ref_page,
5426                           zap_flags_t zap_flags)
5427 {
5428         hugetlb_vma_lock_write(vma);
5429         i_mmap_lock_write(vma->vm_file->f_mapping);
5430
5431         /* mmu notification performed in caller */
5432         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5433
5434         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5435                 /*
5436                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5437                  * When the vma_lock is freed, this makes the vma ineligible
5438                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5439                  * pmd sharing.  This is important as page tables for this
5440                  * unmapped range will be asynchrously deleted.  If the page
5441                  * tables are shared, there will be issues when accessed by
5442                  * someone else.
5443                  */
5444                 __hugetlb_vma_unlock_write_free(vma);
5445                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5446         } else {
5447                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5448                 hugetlb_vma_unlock_write(vma);
5449         }
5450 }
5451
5452 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5453                           unsigned long end, struct page *ref_page,
5454                           zap_flags_t zap_flags)
5455 {
5456         struct mmu_notifier_range range;
5457         struct mmu_gather tlb;
5458
5459         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5460                                 start, end);
5461         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5462         mmu_notifier_invalidate_range_start(&range);
5463         tlb_gather_mmu(&tlb, vma->vm_mm);
5464
5465         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5466
5467         mmu_notifier_invalidate_range_end(&range);
5468         tlb_finish_mmu(&tlb);
5469 }
5470
5471 /*
5472  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5473  * mapping it owns the reserve page for. The intention is to unmap the page
5474  * from other VMAs and let the children be SIGKILLed if they are faulting the
5475  * same region.
5476  */
5477 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5478                               struct page *page, unsigned long address)
5479 {
5480         struct hstate *h = hstate_vma(vma);
5481         struct vm_area_struct *iter_vma;
5482         struct address_space *mapping;
5483         pgoff_t pgoff;
5484
5485         /*
5486          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5487          * from page cache lookup which is in HPAGE_SIZE units.
5488          */
5489         address = address & huge_page_mask(h);
5490         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5491                         vma->vm_pgoff;
5492         mapping = vma->vm_file->f_mapping;
5493
5494         /*
5495          * Take the mapping lock for the duration of the table walk. As
5496          * this mapping should be shared between all the VMAs,
5497          * __unmap_hugepage_range() is called as the lock is already held
5498          */
5499         i_mmap_lock_write(mapping);
5500         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5501                 /* Do not unmap the current VMA */
5502                 if (iter_vma == vma)
5503                         continue;
5504
5505                 /*
5506                  * Shared VMAs have their own reserves and do not affect
5507                  * MAP_PRIVATE accounting but it is possible that a shared
5508                  * VMA is using the same page so check and skip such VMAs.
5509                  */
5510                 if (iter_vma->vm_flags & VM_MAYSHARE)
5511                         continue;
5512
5513                 /*
5514                  * Unmap the page from other VMAs without their own reserves.
5515                  * They get marked to be SIGKILLed if they fault in these
5516                  * areas. This is because a future no-page fault on this VMA
5517                  * could insert a zeroed page instead of the data existing
5518                  * from the time of fork. This would look like data corruption
5519                  */
5520                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5521                         unmap_hugepage_range(iter_vma, address,
5522                                              address + huge_page_size(h), page, 0);
5523         }
5524         i_mmap_unlock_write(mapping);
5525 }
5526
5527 /*
5528  * hugetlb_wp() should be called with page lock of the original hugepage held.
5529  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5530  * cannot race with other handlers or page migration.
5531  * Keep the pte_same checks anyway to make transition from the mutex easier.
5532  */
5533 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5534                        unsigned long address, pte_t *ptep, unsigned int flags,
5535                        struct folio *pagecache_folio, spinlock_t *ptl)
5536 {
5537         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5538         pte_t pte = huge_ptep_get(ptep);
5539         struct hstate *h = hstate_vma(vma);
5540         struct folio *old_folio;
5541         struct folio *new_folio;
5542         int outside_reserve = 0;
5543         vm_fault_t ret = 0;
5544         unsigned long haddr = address & huge_page_mask(h);
5545         struct mmu_notifier_range range;
5546
5547         /*
5548          * Never handle CoW for uffd-wp protected pages.  It should be only
5549          * handled when the uffd-wp protection is removed.
5550          *
5551          * Note that only the CoW optimization path (in hugetlb_no_page())
5552          * can trigger this, because hugetlb_fault() will always resolve
5553          * uffd-wp bit first.
5554          */
5555         if (!unshare && huge_pte_uffd_wp(pte))
5556                 return 0;
5557
5558         /*
5559          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5560          * PTE mapped R/O such as maybe_mkwrite() would do.
5561          */
5562         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5563                 return VM_FAULT_SIGSEGV;
5564
5565         /* Let's take out MAP_SHARED mappings first. */
5566         if (vma->vm_flags & VM_MAYSHARE) {
5567                 set_huge_ptep_writable(vma, haddr, ptep);
5568                 return 0;
5569         }
5570
5571         old_folio = page_folio(pte_page(pte));
5572
5573         delayacct_wpcopy_start();
5574
5575 retry_avoidcopy:
5576         /*
5577          * If no-one else is actually using this page, we're the exclusive
5578          * owner and can reuse this page.
5579          */
5580         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5581                 if (!PageAnonExclusive(&old_folio->page))
5582                         page_move_anon_rmap(&old_folio->page, vma);
5583                 if (likely(!unshare))
5584                         set_huge_ptep_writable(vma, haddr, ptep);
5585
5586                 delayacct_wpcopy_end();
5587                 return 0;
5588         }
5589         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5590                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5591
5592         /*
5593          * If the process that created a MAP_PRIVATE mapping is about to
5594          * perform a COW due to a shared page count, attempt to satisfy
5595          * the allocation without using the existing reserves. The pagecache
5596          * page is used to determine if the reserve at this address was
5597          * consumed or not. If reserves were used, a partial faulted mapping
5598          * at the time of fork() could consume its reserves on COW instead
5599          * of the full address range.
5600          */
5601         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5602                         old_folio != pagecache_folio)
5603                 outside_reserve = 1;
5604
5605         folio_get(old_folio);
5606
5607         /*
5608          * Drop page table lock as buddy allocator may be called. It will
5609          * be acquired again before returning to the caller, as expected.
5610          */
5611         spin_unlock(ptl);
5612         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5613
5614         if (IS_ERR(new_folio)) {
5615                 /*
5616                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5617                  * it is due to references held by a child and an insufficient
5618                  * huge page pool. To guarantee the original mappers
5619                  * reliability, unmap the page from child processes. The child
5620                  * may get SIGKILLed if it later faults.
5621                  */
5622                 if (outside_reserve) {
5623                         struct address_space *mapping = vma->vm_file->f_mapping;
5624                         pgoff_t idx;
5625                         u32 hash;
5626
5627                         folio_put(old_folio);
5628                         /*
5629                          * Drop hugetlb_fault_mutex and vma_lock before
5630                          * unmapping.  unmapping needs to hold vma_lock
5631                          * in write mode.  Dropping vma_lock in read mode
5632                          * here is OK as COW mappings do not interact with
5633                          * PMD sharing.
5634                          *
5635                          * Reacquire both after unmap operation.
5636                          */
5637                         idx = vma_hugecache_offset(h, vma, haddr);
5638                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5639                         hugetlb_vma_unlock_read(vma);
5640                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5641
5642                         unmap_ref_private(mm, vma, &old_folio->page, haddr);
5643
5644                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5645                         hugetlb_vma_lock_read(vma);
5646                         spin_lock(ptl);
5647                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5648                         if (likely(ptep &&
5649                                    pte_same(huge_ptep_get(ptep), pte)))
5650                                 goto retry_avoidcopy;
5651                         /*
5652                          * race occurs while re-acquiring page table
5653                          * lock, and our job is done.
5654                          */
5655                         delayacct_wpcopy_end();
5656                         return 0;
5657                 }
5658
5659                 ret = vmf_error(PTR_ERR(new_folio));
5660                 goto out_release_old;
5661         }
5662
5663         /*
5664          * When the original hugepage is shared one, it does not have
5665          * anon_vma prepared.
5666          */
5667         if (unlikely(anon_vma_prepare(vma))) {
5668                 ret = VM_FAULT_OOM;
5669                 goto out_release_all;
5670         }
5671
5672         if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5673                 ret = VM_FAULT_HWPOISON_LARGE;
5674                 goto out_release_all;
5675         }
5676         __folio_mark_uptodate(new_folio);
5677
5678         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5679                                 haddr + huge_page_size(h));
5680         mmu_notifier_invalidate_range_start(&range);
5681
5682         /*
5683          * Retake the page table lock to check for racing updates
5684          * before the page tables are altered
5685          */
5686         spin_lock(ptl);
5687         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5688         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5689                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5690
5691                 /* Break COW or unshare */
5692                 huge_ptep_clear_flush(vma, haddr, ptep);
5693                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5694                 page_remove_rmap(&old_folio->page, vma, true);
5695                 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5696                 if (huge_pte_uffd_wp(pte))
5697                         newpte = huge_pte_mkuffd_wp(newpte);
5698                 set_huge_pte_at(mm, haddr, ptep, newpte);
5699                 folio_set_hugetlb_migratable(new_folio);
5700                 /* Make the old page be freed below */
5701                 new_folio = old_folio;
5702         }
5703         spin_unlock(ptl);
5704         mmu_notifier_invalidate_range_end(&range);
5705 out_release_all:
5706         /*
5707          * No restore in case of successful pagetable update (Break COW or
5708          * unshare)
5709          */
5710         if (new_folio != old_folio)
5711                 restore_reserve_on_error(h, vma, haddr, new_folio);
5712         folio_put(new_folio);
5713 out_release_old:
5714         folio_put(old_folio);
5715
5716         spin_lock(ptl); /* Caller expects lock to be held */
5717
5718         delayacct_wpcopy_end();
5719         return ret;
5720 }
5721
5722 /*
5723  * Return whether there is a pagecache page to back given address within VMA.
5724  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5725  */
5726 static bool hugetlbfs_pagecache_present(struct hstate *h,
5727                         struct vm_area_struct *vma, unsigned long address)
5728 {
5729         struct address_space *mapping = vma->vm_file->f_mapping;
5730         pgoff_t idx = vma_hugecache_offset(h, vma, address);
5731         struct folio *folio;
5732
5733         folio = filemap_get_folio(mapping, idx);
5734         if (IS_ERR(folio))
5735                 return false;
5736         folio_put(folio);
5737         return true;
5738 }
5739
5740 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5741                            pgoff_t idx)
5742 {
5743         struct inode *inode = mapping->host;
5744         struct hstate *h = hstate_inode(inode);
5745         int err;
5746
5747         __folio_set_locked(folio);
5748         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5749
5750         if (unlikely(err)) {
5751                 __folio_clear_locked(folio);
5752                 return err;
5753         }
5754         folio_clear_hugetlb_restore_reserve(folio);
5755
5756         /*
5757          * mark folio dirty so that it will not be removed from cache/file
5758          * by non-hugetlbfs specific code paths.
5759          */
5760         folio_mark_dirty(folio);
5761
5762         spin_lock(&inode->i_lock);
5763         inode->i_blocks += blocks_per_huge_page(h);
5764         spin_unlock(&inode->i_lock);
5765         return 0;
5766 }
5767
5768 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5769                                                   struct address_space *mapping,
5770                                                   pgoff_t idx,
5771                                                   unsigned int flags,
5772                                                   unsigned long haddr,
5773                                                   unsigned long addr,
5774                                                   unsigned long reason)
5775 {
5776         u32 hash;
5777         struct vm_fault vmf = {
5778                 .vma = vma,
5779                 .address = haddr,
5780                 .real_address = addr,
5781                 .flags = flags,
5782
5783                 /*
5784                  * Hard to debug if it ends up being
5785                  * used by a callee that assumes
5786                  * something about the other
5787                  * uninitialized fields... same as in
5788                  * memory.c
5789                  */
5790         };
5791
5792         /*
5793          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5794          * userfault. Also mmap_lock could be dropped due to handling
5795          * userfault, any vma operation should be careful from here.
5796          */
5797         hugetlb_vma_unlock_read(vma);
5798         hash = hugetlb_fault_mutex_hash(mapping, idx);
5799         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5800         return handle_userfault(&vmf, reason);
5801 }
5802
5803 /*
5804  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5805  * false if pte changed or is changing.
5806  */
5807 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5808                                pte_t *ptep, pte_t old_pte)
5809 {
5810         spinlock_t *ptl;
5811         bool same;
5812
5813         ptl = huge_pte_lock(h, mm, ptep);
5814         same = pte_same(huge_ptep_get(ptep), old_pte);
5815         spin_unlock(ptl);
5816
5817         return same;
5818 }
5819
5820 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5821                         struct vm_area_struct *vma,
5822                         struct address_space *mapping, pgoff_t idx,
5823                         unsigned long address, pte_t *ptep,
5824                         pte_t old_pte, unsigned int flags)
5825 {
5826         struct hstate *h = hstate_vma(vma);
5827         vm_fault_t ret = VM_FAULT_SIGBUS;
5828         int anon_rmap = 0;
5829         unsigned long size;
5830         struct folio *folio;
5831         pte_t new_pte;
5832         spinlock_t *ptl;
5833         unsigned long haddr = address & huge_page_mask(h);
5834         bool new_folio, new_pagecache_folio = false;
5835         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5836
5837         /*
5838          * Currently, we are forced to kill the process in the event the
5839          * original mapper has unmapped pages from the child due to a failed
5840          * COW/unsharing. Warn that such a situation has occurred as it may not
5841          * be obvious.
5842          */
5843         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5844                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5845                            current->pid);
5846                 goto out;
5847         }
5848
5849         /*
5850          * Use page lock to guard against racing truncation
5851          * before we get page_table_lock.
5852          */
5853         new_folio = false;
5854         folio = filemap_lock_folio(mapping, idx);
5855         if (IS_ERR(folio)) {
5856                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5857                 if (idx >= size)
5858                         goto out;
5859                 /* Check for page in userfault range */
5860                 if (userfaultfd_missing(vma)) {
5861                         /*
5862                          * Since hugetlb_no_page() was examining pte
5863                          * without pgtable lock, we need to re-test under
5864                          * lock because the pte may not be stable and could
5865                          * have changed from under us.  Try to detect
5866                          * either changed or during-changing ptes and retry
5867                          * properly when needed.
5868                          *
5869                          * Note that userfaultfd is actually fine with
5870                          * false positives (e.g. caused by pte changed),
5871                          * but not wrong logical events (e.g. caused by
5872                          * reading a pte during changing).  The latter can
5873                          * confuse the userspace, so the strictness is very
5874                          * much preferred.  E.g., MISSING event should
5875                          * never happen on the page after UFFDIO_COPY has
5876                          * correctly installed the page and returned.
5877                          */
5878                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5879                                 ret = 0;
5880                                 goto out;
5881                         }
5882
5883                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5884                                                         haddr, address,
5885                                                         VM_UFFD_MISSING);
5886                 }
5887
5888                 folio = alloc_hugetlb_folio(vma, haddr, 0);
5889                 if (IS_ERR(folio)) {
5890                         /*
5891                          * Returning error will result in faulting task being
5892                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5893                          * tasks from racing to fault in the same page which
5894                          * could result in false unable to allocate errors.
5895                          * Page migration does not take the fault mutex, but
5896                          * does a clear then write of pte's under page table
5897                          * lock.  Page fault code could race with migration,
5898                          * notice the clear pte and try to allocate a page
5899                          * here.  Before returning error, get ptl and make
5900                          * sure there really is no pte entry.
5901                          */
5902                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5903                                 ret = vmf_error(PTR_ERR(folio));
5904                         else
5905                                 ret = 0;
5906                         goto out;
5907                 }
5908                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5909                 __folio_mark_uptodate(folio);
5910                 new_folio = true;
5911
5912                 if (vma->vm_flags & VM_MAYSHARE) {
5913                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5914                         if (err) {
5915                                 /*
5916                                  * err can't be -EEXIST which implies someone
5917                                  * else consumed the reservation since hugetlb
5918                                  * fault mutex is held when add a hugetlb page
5919                                  * to the page cache. So it's safe to call
5920                                  * restore_reserve_on_error() here.
5921                                  */
5922                                 restore_reserve_on_error(h, vma, haddr, folio);
5923                                 folio_put(folio);
5924                                 goto out;
5925                         }
5926                         new_pagecache_folio = true;
5927                 } else {
5928                         folio_lock(folio);
5929                         if (unlikely(anon_vma_prepare(vma))) {
5930                                 ret = VM_FAULT_OOM;
5931                                 goto backout_unlocked;
5932                         }
5933                         anon_rmap = 1;
5934                 }
5935         } else {
5936                 /*
5937                  * If memory error occurs between mmap() and fault, some process
5938                  * don't have hwpoisoned swap entry for errored virtual address.
5939                  * So we need to block hugepage fault by PG_hwpoison bit check.
5940                  */
5941                 if (unlikely(folio_test_hwpoison(folio))) {
5942                         ret = VM_FAULT_HWPOISON_LARGE |
5943                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5944                         goto backout_unlocked;
5945                 }
5946
5947                 /* Check for page in userfault range. */
5948                 if (userfaultfd_minor(vma)) {
5949                         folio_unlock(folio);
5950                         folio_put(folio);
5951                         /* See comment in userfaultfd_missing() block above */
5952                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5953                                 ret = 0;
5954                                 goto out;
5955                         }
5956                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5957                                                         haddr, address,
5958                                                         VM_UFFD_MINOR);
5959                 }
5960         }
5961
5962         /*
5963          * If we are going to COW a private mapping later, we examine the
5964          * pending reservations for this page now. This will ensure that
5965          * any allocations necessary to record that reservation occur outside
5966          * the spinlock.
5967          */
5968         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5969                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5970                         ret = VM_FAULT_OOM;
5971                         goto backout_unlocked;
5972                 }
5973                 /* Just decrements count, does not deallocate */
5974                 vma_end_reservation(h, vma, haddr);
5975         }
5976
5977         ptl = huge_pte_lock(h, mm, ptep);
5978         ret = 0;
5979         /* If pte changed from under us, retry */
5980         if (!pte_same(huge_ptep_get(ptep), old_pte))
5981                 goto backout;
5982
5983         if (anon_rmap)
5984                 hugepage_add_new_anon_rmap(folio, vma, haddr);
5985         else
5986                 page_dup_file_rmap(&folio->page, true);
5987         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5988                                 && (vma->vm_flags & VM_SHARED)));
5989         /*
5990          * If this pte was previously wr-protected, keep it wr-protected even
5991          * if populated.
5992          */
5993         if (unlikely(pte_marker_uffd_wp(old_pte)))
5994                 new_pte = huge_pte_mkuffd_wp(new_pte);
5995         set_huge_pte_at(mm, haddr, ptep, new_pte);
5996
5997         hugetlb_count_add(pages_per_huge_page(h), mm);
5998         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5999                 /* Optimization, do the COW without a second fault */
6000                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6001         }
6002
6003         spin_unlock(ptl);
6004
6005         /*
6006          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6007          * found in the pagecache may not have hugetlb_migratable if they have
6008          * been isolated for migration.
6009          */
6010         if (new_folio)
6011                 folio_set_hugetlb_migratable(folio);
6012
6013         folio_unlock(folio);
6014 out:
6015         hugetlb_vma_unlock_read(vma);
6016         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6017         return ret;
6018
6019 backout:
6020         spin_unlock(ptl);
6021 backout_unlocked:
6022         if (new_folio && !new_pagecache_folio)
6023                 restore_reserve_on_error(h, vma, haddr, folio);
6024
6025         folio_unlock(folio);
6026         folio_put(folio);
6027         goto out;
6028 }
6029
6030 #ifdef CONFIG_SMP
6031 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6032 {
6033         unsigned long key[2];
6034         u32 hash;
6035
6036         key[0] = (unsigned long) mapping;
6037         key[1] = idx;
6038
6039         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6040
6041         return hash & (num_fault_mutexes - 1);
6042 }
6043 #else
6044 /*
6045  * For uniprocessor systems we always use a single mutex, so just
6046  * return 0 and avoid the hashing overhead.
6047  */
6048 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6049 {
6050         return 0;
6051 }
6052 #endif
6053
6054 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6055                         unsigned long address, unsigned int flags)
6056 {
6057         pte_t *ptep, entry;
6058         spinlock_t *ptl;
6059         vm_fault_t ret;
6060         u32 hash;
6061         pgoff_t idx;
6062         struct folio *folio = NULL;
6063         struct folio *pagecache_folio = NULL;
6064         struct hstate *h = hstate_vma(vma);
6065         struct address_space *mapping;
6066         int need_wait_lock = 0;
6067         unsigned long haddr = address & huge_page_mask(h);
6068
6069         /*
6070          * Serialize hugepage allocation and instantiation, so that we don't
6071          * get spurious allocation failures if two CPUs race to instantiate
6072          * the same page in the page cache.
6073          */
6074         mapping = vma->vm_file->f_mapping;
6075         idx = vma_hugecache_offset(h, vma, haddr);
6076         hash = hugetlb_fault_mutex_hash(mapping, idx);
6077         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6078
6079         /*
6080          * Acquire vma lock before calling huge_pte_alloc and hold
6081          * until finished with ptep.  This prevents huge_pmd_unshare from
6082          * being called elsewhere and making the ptep no longer valid.
6083          */
6084         hugetlb_vma_lock_read(vma);
6085         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6086         if (!ptep) {
6087                 hugetlb_vma_unlock_read(vma);
6088                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6089                 return VM_FAULT_OOM;
6090         }
6091
6092         entry = huge_ptep_get(ptep);
6093         /* PTE markers should be handled the same way as none pte */
6094         if (huge_pte_none_mostly(entry))
6095                 /*
6096                  * hugetlb_no_page will drop vma lock and hugetlb fault
6097                  * mutex internally, which make us return immediately.
6098                  */
6099                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6100                                       entry, flags);
6101
6102         ret = 0;
6103
6104         /*
6105          * entry could be a migration/hwpoison entry at this point, so this
6106          * check prevents the kernel from going below assuming that we have
6107          * an active hugepage in pagecache. This goto expects the 2nd page
6108          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6109          * properly handle it.
6110          */
6111         if (!pte_present(entry)) {
6112                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6113                         /*
6114                          * Release the hugetlb fault lock now, but retain
6115                          * the vma lock, because it is needed to guard the
6116                          * huge_pte_lockptr() later in
6117                          * migration_entry_wait_huge(). The vma lock will
6118                          * be released there.
6119                          */
6120                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6121                         migration_entry_wait_huge(vma, ptep);
6122                         return 0;
6123                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6124                         ret = VM_FAULT_HWPOISON_LARGE |
6125                             VM_FAULT_SET_HINDEX(hstate_index(h));
6126                 goto out_mutex;
6127         }
6128
6129         /*
6130          * If we are going to COW/unshare the mapping later, we examine the
6131          * pending reservations for this page now. This will ensure that any
6132          * allocations necessary to record that reservation occur outside the
6133          * spinlock. Also lookup the pagecache page now as it is used to
6134          * determine if a reservation has been consumed.
6135          */
6136         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6137             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6138                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6139                         ret = VM_FAULT_OOM;
6140                         goto out_mutex;
6141                 }
6142                 /* Just decrements count, does not deallocate */
6143                 vma_end_reservation(h, vma, haddr);
6144
6145                 pagecache_folio = filemap_lock_folio(mapping, idx);
6146                 if (IS_ERR(pagecache_folio))
6147                         pagecache_folio = NULL;
6148         }
6149
6150         ptl = huge_pte_lock(h, mm, ptep);
6151
6152         /* Check for a racing update before calling hugetlb_wp() */
6153         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6154                 goto out_ptl;
6155
6156         /* Handle userfault-wp first, before trying to lock more pages */
6157         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6158             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6159                 struct vm_fault vmf = {
6160                         .vma = vma,
6161                         .address = haddr,
6162                         .real_address = address,
6163                         .flags = flags,
6164                 };
6165
6166                 spin_unlock(ptl);
6167                 if (pagecache_folio) {
6168                         folio_unlock(pagecache_folio);
6169                         folio_put(pagecache_folio);
6170                 }
6171                 hugetlb_vma_unlock_read(vma);
6172                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6173                 return handle_userfault(&vmf, VM_UFFD_WP);
6174         }
6175
6176         /*
6177          * hugetlb_wp() requires page locks of pte_page(entry) and
6178          * pagecache_folio, so here we need take the former one
6179          * when folio != pagecache_folio or !pagecache_folio.
6180          */
6181         folio = page_folio(pte_page(entry));
6182         if (folio != pagecache_folio)
6183                 if (!folio_trylock(folio)) {
6184                         need_wait_lock = 1;
6185                         goto out_ptl;
6186                 }
6187
6188         folio_get(folio);
6189
6190         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6191                 if (!huge_pte_write(entry)) {
6192                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6193                                          pagecache_folio, ptl);
6194                         goto out_put_page;
6195                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6196                         entry = huge_pte_mkdirty(entry);
6197                 }
6198         }
6199         entry = pte_mkyoung(entry);
6200         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6201                                                 flags & FAULT_FLAG_WRITE))
6202                 update_mmu_cache(vma, haddr, ptep);
6203 out_put_page:
6204         if (folio != pagecache_folio)
6205                 folio_unlock(folio);
6206         folio_put(folio);
6207 out_ptl:
6208         spin_unlock(ptl);
6209
6210         if (pagecache_folio) {
6211                 folio_unlock(pagecache_folio);
6212                 folio_put(pagecache_folio);
6213         }
6214 out_mutex:
6215         hugetlb_vma_unlock_read(vma);
6216         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6217         /*
6218          * Generally it's safe to hold refcount during waiting page lock. But
6219          * here we just wait to defer the next page fault to avoid busy loop and
6220          * the page is not used after unlocked before returning from the current
6221          * page fault. So we are safe from accessing freed page, even if we wait
6222          * here without taking refcount.
6223          */
6224         if (need_wait_lock)
6225                 folio_wait_locked(folio);
6226         return ret;
6227 }
6228
6229 #ifdef CONFIG_USERFAULTFD
6230 /*
6231  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6232  * with modifications for hugetlb pages.
6233  */
6234 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6235                              struct vm_area_struct *dst_vma,
6236                              unsigned long dst_addr,
6237                              unsigned long src_addr,
6238                              uffd_flags_t flags,
6239                              struct folio **foliop)
6240 {
6241         struct mm_struct *dst_mm = dst_vma->vm_mm;
6242         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6243         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6244         struct hstate *h = hstate_vma(dst_vma);
6245         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6246         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6247         unsigned long size;
6248         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6249         pte_t _dst_pte;
6250         spinlock_t *ptl;
6251         int ret = -ENOMEM;
6252         struct folio *folio;
6253         int writable;
6254         bool folio_in_pagecache = false;
6255
6256         if (is_continue) {
6257                 ret = -EFAULT;
6258                 folio = filemap_lock_folio(mapping, idx);
6259                 if (IS_ERR(folio))
6260                         goto out;
6261                 folio_in_pagecache = true;
6262         } else if (!*foliop) {
6263                 /* If a folio already exists, then it's UFFDIO_COPY for
6264                  * a non-missing case. Return -EEXIST.
6265                  */
6266                 if (vm_shared &&
6267                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6268                         ret = -EEXIST;
6269                         goto out;
6270                 }
6271
6272                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6273                 if (IS_ERR(folio)) {
6274                         ret = -ENOMEM;
6275                         goto out;
6276                 }
6277
6278                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6279                                            false);
6280
6281                 /* fallback to copy_from_user outside mmap_lock */
6282                 if (unlikely(ret)) {
6283                         ret = -ENOENT;
6284                         /* Free the allocated folio which may have
6285                          * consumed a reservation.
6286                          */
6287                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6288                         folio_put(folio);
6289
6290                         /* Allocate a temporary folio to hold the copied
6291                          * contents.
6292                          */
6293                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6294                         if (!folio) {
6295                                 ret = -ENOMEM;
6296                                 goto out;
6297                         }
6298                         *foliop = folio;
6299                         /* Set the outparam foliop and return to the caller to
6300                          * copy the contents outside the lock. Don't free the
6301                          * folio.
6302                          */
6303                         goto out;
6304                 }
6305         } else {
6306                 if (vm_shared &&
6307                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6308                         folio_put(*foliop);
6309                         ret = -EEXIST;
6310                         *foliop = NULL;
6311                         goto out;
6312                 }
6313
6314                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6315                 if (IS_ERR(folio)) {
6316                         folio_put(*foliop);
6317                         ret = -ENOMEM;
6318                         *foliop = NULL;
6319                         goto out;
6320                 }
6321                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6322                 folio_put(*foliop);
6323                 *foliop = NULL;
6324                 if (ret) {
6325                         folio_put(folio);
6326                         goto out;
6327                 }
6328         }
6329
6330         /*
6331          * The memory barrier inside __folio_mark_uptodate makes sure that
6332          * preceding stores to the page contents become visible before
6333          * the set_pte_at() write.
6334          */
6335         __folio_mark_uptodate(folio);
6336
6337         /* Add shared, newly allocated pages to the page cache. */
6338         if (vm_shared && !is_continue) {
6339                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6340                 ret = -EFAULT;
6341                 if (idx >= size)
6342                         goto out_release_nounlock;
6343
6344                 /*
6345                  * Serialization between remove_inode_hugepages() and
6346                  * hugetlb_add_to_page_cache() below happens through the
6347                  * hugetlb_fault_mutex_table that here must be hold by
6348                  * the caller.
6349                  */
6350                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6351                 if (ret)
6352                         goto out_release_nounlock;
6353                 folio_in_pagecache = true;
6354         }
6355
6356         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6357
6358         ret = -EIO;
6359         if (folio_test_hwpoison(folio))
6360                 goto out_release_unlock;
6361
6362         /*
6363          * We allow to overwrite a pte marker: consider when both MISSING|WP
6364          * registered, we firstly wr-protect a none pte which has no page cache
6365          * page backing it, then access the page.
6366          */
6367         ret = -EEXIST;
6368         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6369                 goto out_release_unlock;
6370
6371         if (folio_in_pagecache)
6372                 page_dup_file_rmap(&folio->page, true);
6373         else
6374                 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6375
6376         /*
6377          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6378          * with wp flag set, don't set pte write bit.
6379          */
6380         if (wp_enabled || (is_continue && !vm_shared))
6381                 writable = 0;
6382         else
6383                 writable = dst_vma->vm_flags & VM_WRITE;
6384
6385         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6386         /*
6387          * Always mark UFFDIO_COPY page dirty; note that this may not be
6388          * extremely important for hugetlbfs for now since swapping is not
6389          * supported, but we should still be clear in that this page cannot be
6390          * thrown away at will, even if write bit not set.
6391          */
6392         _dst_pte = huge_pte_mkdirty(_dst_pte);
6393         _dst_pte = pte_mkyoung(_dst_pte);
6394
6395         if (wp_enabled)
6396                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6397
6398         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6399
6400         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6401
6402         /* No need to invalidate - it was non-present before */
6403         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6404
6405         spin_unlock(ptl);
6406         if (!is_continue)
6407                 folio_set_hugetlb_migratable(folio);
6408         if (vm_shared || is_continue)
6409                 folio_unlock(folio);
6410         ret = 0;
6411 out:
6412         return ret;
6413 out_release_unlock:
6414         spin_unlock(ptl);
6415         if (vm_shared || is_continue)
6416                 folio_unlock(folio);
6417 out_release_nounlock:
6418         if (!folio_in_pagecache)
6419                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6420         folio_put(folio);
6421         goto out;
6422 }
6423 #endif /* CONFIG_USERFAULTFD */
6424
6425 static void record_subpages(struct page *page, struct vm_area_struct *vma,
6426                             int refs, struct page **pages)
6427 {
6428         int nr;
6429
6430         for (nr = 0; nr < refs; nr++) {
6431                 if (likely(pages))
6432                         pages[nr] = nth_page(page, nr);
6433         }
6434 }
6435
6436 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6437                                                unsigned int flags, pte_t *pte,
6438                                                bool *unshare)
6439 {
6440         pte_t pteval = huge_ptep_get(pte);
6441
6442         *unshare = false;
6443         if (is_swap_pte(pteval))
6444                 return true;
6445         if (huge_pte_write(pteval))
6446                 return false;
6447         if (flags & FOLL_WRITE)
6448                 return true;
6449         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6450                 *unshare = true;
6451                 return true;
6452         }
6453         return false;
6454 }
6455
6456 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6457                                 unsigned long address, unsigned int flags)
6458 {
6459         struct hstate *h = hstate_vma(vma);
6460         struct mm_struct *mm = vma->vm_mm;
6461         unsigned long haddr = address & huge_page_mask(h);
6462         struct page *page = NULL;
6463         spinlock_t *ptl;
6464         pte_t *pte, entry;
6465
6466         /*
6467          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6468          * follow_hugetlb_page().
6469          */
6470         if (WARN_ON_ONCE(flags & FOLL_PIN))
6471                 return NULL;
6472
6473         hugetlb_vma_lock_read(vma);
6474         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6475         if (!pte)
6476                 goto out_unlock;
6477
6478         ptl = huge_pte_lock(h, mm, pte);
6479         entry = huge_ptep_get(pte);
6480         if (pte_present(entry)) {
6481                 page = pte_page(entry) +
6482                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6483                 /*
6484                  * Note that page may be a sub-page, and with vmemmap
6485                  * optimizations the page struct may be read only.
6486                  * try_grab_page() will increase the ref count on the
6487                  * head page, so this will be OK.
6488                  *
6489                  * try_grab_page() should always be able to get the page here,
6490                  * because we hold the ptl lock and have verified pte_present().
6491                  */
6492                 if (try_grab_page(page, flags)) {
6493                         page = NULL;
6494                         goto out;
6495                 }
6496         }
6497 out:
6498         spin_unlock(ptl);
6499 out_unlock:
6500         hugetlb_vma_unlock_read(vma);
6501         return page;
6502 }
6503
6504 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6505                          struct page **pages, unsigned long *position,
6506                          unsigned long *nr_pages, long i, unsigned int flags,
6507                          int *locked)
6508 {
6509         unsigned long pfn_offset;
6510         unsigned long vaddr = *position;
6511         unsigned long remainder = *nr_pages;
6512         struct hstate *h = hstate_vma(vma);
6513         int err = -EFAULT, refs;
6514
6515         while (vaddr < vma->vm_end && remainder) {
6516                 pte_t *pte;
6517                 spinlock_t *ptl = NULL;
6518                 bool unshare = false;
6519                 int absent;
6520                 struct page *page;
6521
6522                 /*
6523                  * If we have a pending SIGKILL, don't keep faulting pages and
6524                  * potentially allocating memory.
6525                  */
6526                 if (fatal_signal_pending(current)) {
6527                         remainder = 0;
6528                         break;
6529                 }
6530
6531                 hugetlb_vma_lock_read(vma);
6532                 /*
6533                  * Some archs (sparc64, sh*) have multiple pte_ts to
6534                  * each hugepage.  We have to make sure we get the
6535                  * first, for the page indexing below to work.
6536                  *
6537                  * Note that page table lock is not held when pte is null.
6538                  */
6539                 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6540                                    huge_page_size(h));
6541                 if (pte)
6542                         ptl = huge_pte_lock(h, mm, pte);
6543                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6544
6545                 /*
6546                  * When coredumping, it suits get_dump_page if we just return
6547                  * an error where there's an empty slot with no huge pagecache
6548                  * to back it.  This way, we avoid allocating a hugepage, and
6549                  * the sparse dumpfile avoids allocating disk blocks, but its
6550                  * huge holes still show up with zeroes where they need to be.
6551                  */
6552                 if (absent && (flags & FOLL_DUMP) &&
6553                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6554                         if (pte)
6555                                 spin_unlock(ptl);
6556                         hugetlb_vma_unlock_read(vma);
6557                         remainder = 0;
6558                         break;
6559                 }
6560
6561                 /*
6562                  * We need call hugetlb_fault for both hugepages under migration
6563                  * (in which case hugetlb_fault waits for the migration,) and
6564                  * hwpoisoned hugepages (in which case we need to prevent the
6565                  * caller from accessing to them.) In order to do this, we use
6566                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6567                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6568                  * both cases, and because we can't follow correct pages
6569                  * directly from any kind of swap entries.
6570                  */
6571                 if (absent ||
6572                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6573                         vm_fault_t ret;
6574                         unsigned int fault_flags = 0;
6575
6576                         if (pte)
6577                                 spin_unlock(ptl);
6578                         hugetlb_vma_unlock_read(vma);
6579
6580                         if (flags & FOLL_WRITE)
6581                                 fault_flags |= FAULT_FLAG_WRITE;
6582                         else if (unshare)
6583                                 fault_flags |= FAULT_FLAG_UNSHARE;
6584                         if (locked) {
6585                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6586                                         FAULT_FLAG_KILLABLE;
6587                                 if (flags & FOLL_INTERRUPTIBLE)
6588                                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6589                         }
6590                         if (flags & FOLL_NOWAIT)
6591                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6592                                         FAULT_FLAG_RETRY_NOWAIT;
6593                         if (flags & FOLL_TRIED) {
6594                                 /*
6595                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6596                                  * FAULT_FLAG_TRIED can co-exist
6597                                  */
6598                                 fault_flags |= FAULT_FLAG_TRIED;
6599                         }
6600                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6601                         if (ret & VM_FAULT_ERROR) {
6602                                 err = vm_fault_to_errno(ret, flags);
6603                                 remainder = 0;
6604                                 break;
6605                         }
6606                         if (ret & VM_FAULT_RETRY) {
6607                                 if (locked &&
6608                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6609                                         *locked = 0;
6610                                 *nr_pages = 0;
6611                                 /*
6612                                  * VM_FAULT_RETRY must not return an
6613                                  * error, it will return zero
6614                                  * instead.
6615                                  *
6616                                  * No need to update "position" as the
6617                                  * caller will not check it after
6618                                  * *nr_pages is set to 0.
6619                                  */
6620                                 return i;
6621                         }
6622                         continue;
6623                 }
6624
6625                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6626                 page = pte_page(huge_ptep_get(pte));
6627
6628                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6629                                !PageAnonExclusive(page), page);
6630
6631                 /*
6632                  * If subpage information not requested, update counters
6633                  * and skip the same_page loop below.
6634                  */
6635                 if (!pages && !pfn_offset &&
6636                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6637                     (remainder >= pages_per_huge_page(h))) {
6638                         vaddr += huge_page_size(h);
6639                         remainder -= pages_per_huge_page(h);
6640                         i += pages_per_huge_page(h);
6641                         spin_unlock(ptl);
6642                         hugetlb_vma_unlock_read(vma);
6643                         continue;
6644                 }
6645
6646                 /* vaddr may not be aligned to PAGE_SIZE */
6647                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6648                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6649
6650                 if (pages)
6651                         record_subpages(nth_page(page, pfn_offset),
6652                                         vma, refs,
6653                                         likely(pages) ? pages + i : NULL);
6654
6655                 if (pages) {
6656                         /*
6657                          * try_grab_folio() should always succeed here,
6658                          * because: a) we hold the ptl lock, and b) we've just
6659                          * checked that the huge page is present in the page
6660                          * tables. If the huge page is present, then the tail
6661                          * pages must also be present. The ptl prevents the
6662                          * head page and tail pages from being rearranged in
6663                          * any way. As this is hugetlb, the pages will never
6664                          * be p2pdma or not longterm pinable. So this page
6665                          * must be available at this point, unless the page
6666                          * refcount overflowed:
6667                          */
6668                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6669                                                          flags))) {
6670                                 spin_unlock(ptl);
6671                                 hugetlb_vma_unlock_read(vma);
6672                                 remainder = 0;
6673                                 err = -ENOMEM;
6674                                 break;
6675                         }
6676                 }
6677
6678                 vaddr += (refs << PAGE_SHIFT);
6679                 remainder -= refs;
6680                 i += refs;
6681
6682                 spin_unlock(ptl);
6683                 hugetlb_vma_unlock_read(vma);
6684         }
6685         *nr_pages = remainder;
6686         /*
6687          * setting position is actually required only if remainder is
6688          * not zero but it's faster not to add a "if (remainder)"
6689          * branch.
6690          */
6691         *position = vaddr;
6692
6693         return i ? i : err;
6694 }
6695
6696 long hugetlb_change_protection(struct vm_area_struct *vma,
6697                 unsigned long address, unsigned long end,
6698                 pgprot_t newprot, unsigned long cp_flags)
6699 {
6700         struct mm_struct *mm = vma->vm_mm;
6701         unsigned long start = address;
6702         pte_t *ptep;
6703         pte_t pte;
6704         struct hstate *h = hstate_vma(vma);
6705         long pages = 0, psize = huge_page_size(h);
6706         bool shared_pmd = false;
6707         struct mmu_notifier_range range;
6708         unsigned long last_addr_mask;
6709         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6710         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6711
6712         /*
6713          * In the case of shared PMDs, the area to flush could be beyond
6714          * start/end.  Set range.start/range.end to cover the maximum possible
6715          * range if PMD sharing is possible.
6716          */
6717         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6718                                 0, mm, start, end);
6719         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6720
6721         BUG_ON(address >= end);
6722         flush_cache_range(vma, range.start, range.end);
6723
6724         mmu_notifier_invalidate_range_start(&range);
6725         hugetlb_vma_lock_write(vma);
6726         i_mmap_lock_write(vma->vm_file->f_mapping);
6727         last_addr_mask = hugetlb_mask_last_page(h);
6728         for (; address < end; address += psize) {
6729                 spinlock_t *ptl;
6730                 ptep = hugetlb_walk(vma, address, psize);
6731                 if (!ptep) {
6732                         if (!uffd_wp) {
6733                                 address |= last_addr_mask;
6734                                 continue;
6735                         }
6736                         /*
6737                          * Userfaultfd wr-protect requires pgtable
6738                          * pre-allocations to install pte markers.
6739                          */
6740                         ptep = huge_pte_alloc(mm, vma, address, psize);
6741                         if (!ptep) {
6742                                 pages = -ENOMEM;
6743                                 break;
6744                         }
6745                 }
6746                 ptl = huge_pte_lock(h, mm, ptep);
6747                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6748                         /*
6749                          * When uffd-wp is enabled on the vma, unshare
6750                          * shouldn't happen at all.  Warn about it if it
6751                          * happened due to some reason.
6752                          */
6753                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6754                         pages++;
6755                         spin_unlock(ptl);
6756                         shared_pmd = true;
6757                         address |= last_addr_mask;
6758                         continue;
6759                 }
6760                 pte = huge_ptep_get(ptep);
6761                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6762                         /* Nothing to do. */
6763                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6764                         swp_entry_t entry = pte_to_swp_entry(pte);
6765                         struct page *page = pfn_swap_entry_to_page(entry);
6766                         pte_t newpte = pte;
6767
6768                         if (is_writable_migration_entry(entry)) {
6769                                 if (PageAnon(page))
6770                                         entry = make_readable_exclusive_migration_entry(
6771                                                                 swp_offset(entry));
6772                                 else
6773                                         entry = make_readable_migration_entry(
6774                                                                 swp_offset(entry));
6775                                 newpte = swp_entry_to_pte(entry);
6776                                 pages++;
6777                         }
6778
6779                         if (uffd_wp)
6780                                 newpte = pte_swp_mkuffd_wp(newpte);
6781                         else if (uffd_wp_resolve)
6782                                 newpte = pte_swp_clear_uffd_wp(newpte);
6783                         if (!pte_same(pte, newpte))
6784                                 set_huge_pte_at(mm, address, ptep, newpte);
6785                 } else if (unlikely(is_pte_marker(pte))) {
6786                         /* No other markers apply for now. */
6787                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6788                         if (uffd_wp_resolve)
6789                                 /* Safe to modify directly (non-present->none). */
6790                                 huge_pte_clear(mm, address, ptep, psize);
6791                 } else if (!huge_pte_none(pte)) {
6792                         pte_t old_pte;
6793                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6794
6795                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6796                         pte = huge_pte_modify(old_pte, newprot);
6797                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6798                         if (uffd_wp)
6799                                 pte = huge_pte_mkuffd_wp(pte);
6800                         else if (uffd_wp_resolve)
6801                                 pte = huge_pte_clear_uffd_wp(pte);
6802                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6803                         pages++;
6804                 } else {
6805                         /* None pte */
6806                         if (unlikely(uffd_wp))
6807                                 /* Safe to modify directly (none->non-present). */
6808                                 set_huge_pte_at(mm, address, ptep,
6809                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6810                 }
6811                 spin_unlock(ptl);
6812         }
6813         /*
6814          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6815          * may have cleared our pud entry and done put_page on the page table:
6816          * once we release i_mmap_rwsem, another task can do the final put_page
6817          * and that page table be reused and filled with junk.  If we actually
6818          * did unshare a page of pmds, flush the range corresponding to the pud.
6819          */
6820         if (shared_pmd)
6821                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6822         else
6823                 flush_hugetlb_tlb_range(vma, start, end);
6824         /*
6825          * No need to call mmu_notifier_invalidate_range() we are downgrading
6826          * page table protection not changing it to point to a new page.
6827          *
6828          * See Documentation/mm/mmu_notifier.rst
6829          */
6830         i_mmap_unlock_write(vma->vm_file->f_mapping);
6831         hugetlb_vma_unlock_write(vma);
6832         mmu_notifier_invalidate_range_end(&range);
6833
6834         return pages > 0 ? (pages << h->order) : pages;
6835 }
6836
6837 /* Return true if reservation was successful, false otherwise.  */
6838 bool hugetlb_reserve_pages(struct inode *inode,
6839                                         long from, long to,
6840                                         struct vm_area_struct *vma,
6841                                         vm_flags_t vm_flags)
6842 {
6843         long chg = -1, add = -1;
6844         struct hstate *h = hstate_inode(inode);
6845         struct hugepage_subpool *spool = subpool_inode(inode);
6846         struct resv_map *resv_map;
6847         struct hugetlb_cgroup *h_cg = NULL;
6848         long gbl_reserve, regions_needed = 0;
6849
6850         /* This should never happen */
6851         if (from > to) {
6852                 VM_WARN(1, "%s called with a negative range\n", __func__);
6853                 return false;
6854         }
6855
6856         /*
6857          * vma specific semaphore used for pmd sharing and fault/truncation
6858          * synchronization
6859          */
6860         hugetlb_vma_lock_alloc(vma);
6861
6862         /*
6863          * Only apply hugepage reservation if asked. At fault time, an
6864          * attempt will be made for VM_NORESERVE to allocate a page
6865          * without using reserves
6866          */
6867         if (vm_flags & VM_NORESERVE)
6868                 return true;
6869
6870         /*
6871          * Shared mappings base their reservation on the number of pages that
6872          * are already allocated on behalf of the file. Private mappings need
6873          * to reserve the full area even if read-only as mprotect() may be
6874          * called to make the mapping read-write. Assume !vma is a shm mapping
6875          */
6876         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6877                 /*
6878                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6879                  * called for inodes for which resv_maps were created (see
6880                  * hugetlbfs_get_inode).
6881                  */
6882                 resv_map = inode_resv_map(inode);
6883
6884                 chg = region_chg(resv_map, from, to, &regions_needed);
6885         } else {
6886                 /* Private mapping. */
6887                 resv_map = resv_map_alloc();
6888                 if (!resv_map)
6889                         goto out_err;
6890
6891                 chg = to - from;
6892
6893                 set_vma_resv_map(vma, resv_map);
6894                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6895         }
6896
6897         if (chg < 0)
6898                 goto out_err;
6899
6900         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6901                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6902                 goto out_err;
6903
6904         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6905                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6906                  * of the resv_map.
6907                  */
6908                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6909         }
6910
6911         /*
6912          * There must be enough pages in the subpool for the mapping. If
6913          * the subpool has a minimum size, there may be some global
6914          * reservations already in place (gbl_reserve).
6915          */
6916         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6917         if (gbl_reserve < 0)
6918                 goto out_uncharge_cgroup;
6919
6920         /*
6921          * Check enough hugepages are available for the reservation.
6922          * Hand the pages back to the subpool if there are not
6923          */
6924         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6925                 goto out_put_pages;
6926
6927         /*
6928          * Account for the reservations made. Shared mappings record regions
6929          * that have reservations as they are shared by multiple VMAs.
6930          * When the last VMA disappears, the region map says how much
6931          * the reservation was and the page cache tells how much of
6932          * the reservation was consumed. Private mappings are per-VMA and
6933          * only the consumed reservations are tracked. When the VMA
6934          * disappears, the original reservation is the VMA size and the
6935          * consumed reservations are stored in the map. Hence, nothing
6936          * else has to be done for private mappings here
6937          */
6938         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6939                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6940
6941                 if (unlikely(add < 0)) {
6942                         hugetlb_acct_memory(h, -gbl_reserve);
6943                         goto out_put_pages;
6944                 } else if (unlikely(chg > add)) {
6945                         /*
6946                          * pages in this range were added to the reserve
6947                          * map between region_chg and region_add.  This
6948                          * indicates a race with alloc_hugetlb_folio.  Adjust
6949                          * the subpool and reserve counts modified above
6950                          * based on the difference.
6951                          */
6952                         long rsv_adjust;
6953
6954                         /*
6955                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6956                          * reference to h_cg->css. See comment below for detail.
6957                          */
6958                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6959                                 hstate_index(h),
6960                                 (chg - add) * pages_per_huge_page(h), h_cg);
6961
6962                         rsv_adjust = hugepage_subpool_put_pages(spool,
6963                                                                 chg - add);
6964                         hugetlb_acct_memory(h, -rsv_adjust);
6965                 } else if (h_cg) {
6966                         /*
6967                          * The file_regions will hold their own reference to
6968                          * h_cg->css. So we should release the reference held
6969                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6970                          * done.
6971                          */
6972                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6973                 }
6974         }
6975         return true;
6976
6977 out_put_pages:
6978         /* put back original number of pages, chg */
6979         (void)hugepage_subpool_put_pages(spool, chg);
6980 out_uncharge_cgroup:
6981         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6982                                             chg * pages_per_huge_page(h), h_cg);
6983 out_err:
6984         hugetlb_vma_lock_free(vma);
6985         if (!vma || vma->vm_flags & VM_MAYSHARE)
6986                 /* Only call region_abort if the region_chg succeeded but the
6987                  * region_add failed or didn't run.
6988                  */
6989                 if (chg >= 0 && add < 0)
6990                         region_abort(resv_map, from, to, regions_needed);
6991         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6992                 kref_put(&resv_map->refs, resv_map_release);
6993         return false;
6994 }
6995
6996 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6997                                                                 long freed)
6998 {
6999         struct hstate *h = hstate_inode(inode);
7000         struct resv_map *resv_map = inode_resv_map(inode);
7001         long chg = 0;
7002         struct hugepage_subpool *spool = subpool_inode(inode);
7003         long gbl_reserve;
7004
7005         /*
7006          * Since this routine can be called in the evict inode path for all
7007          * hugetlbfs inodes, resv_map could be NULL.
7008          */
7009         if (resv_map) {
7010                 chg = region_del(resv_map, start, end);
7011                 /*
7012                  * region_del() can fail in the rare case where a region
7013                  * must be split and another region descriptor can not be
7014                  * allocated.  If end == LONG_MAX, it will not fail.
7015                  */
7016                 if (chg < 0)
7017                         return chg;
7018         }
7019
7020         spin_lock(&inode->i_lock);
7021         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7022         spin_unlock(&inode->i_lock);
7023
7024         /*
7025          * If the subpool has a minimum size, the number of global
7026          * reservations to be released may be adjusted.
7027          *
7028          * Note that !resv_map implies freed == 0. So (chg - freed)
7029          * won't go negative.
7030          */
7031         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7032         hugetlb_acct_memory(h, -gbl_reserve);
7033
7034         return 0;
7035 }
7036
7037 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7038 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7039                                 struct vm_area_struct *vma,
7040                                 unsigned long addr, pgoff_t idx)
7041 {
7042         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7043                                 svma->vm_start;
7044         unsigned long sbase = saddr & PUD_MASK;
7045         unsigned long s_end = sbase + PUD_SIZE;
7046
7047         /* Allow segments to share if only one is marked locked */
7048         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7049         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7050
7051         /*
7052          * match the virtual addresses, permission and the alignment of the
7053          * page table page.
7054          *
7055          * Also, vma_lock (vm_private_data) is required for sharing.
7056          */
7057         if (pmd_index(addr) != pmd_index(saddr) ||
7058             vm_flags != svm_flags ||
7059             !range_in_vma(svma, sbase, s_end) ||
7060             !svma->vm_private_data)
7061                 return 0;
7062
7063         return saddr;
7064 }
7065
7066 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7067 {
7068         unsigned long start = addr & PUD_MASK;
7069         unsigned long end = start + PUD_SIZE;
7070
7071 #ifdef CONFIG_USERFAULTFD
7072         if (uffd_disable_huge_pmd_share(vma))
7073                 return false;
7074 #endif
7075         /*
7076          * check on proper vm_flags and page table alignment
7077          */
7078         if (!(vma->vm_flags & VM_MAYSHARE))
7079                 return false;
7080         if (!vma->vm_private_data)      /* vma lock required for sharing */
7081                 return false;
7082         if (!range_in_vma(vma, start, end))
7083                 return false;
7084         return true;
7085 }
7086
7087 /*
7088  * Determine if start,end range within vma could be mapped by shared pmd.
7089  * If yes, adjust start and end to cover range associated with possible
7090  * shared pmd mappings.
7091  */
7092 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7093                                 unsigned long *start, unsigned long *end)
7094 {
7095         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7096                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7097
7098         /*
7099          * vma needs to span at least one aligned PUD size, and the range
7100          * must be at least partially within in.
7101          */
7102         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7103                 (*end <= v_start) || (*start >= v_end))
7104                 return;
7105
7106         /* Extend the range to be PUD aligned for a worst case scenario */
7107         if (*start > v_start)
7108                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7109
7110         if (*end < v_end)
7111                 *end = ALIGN(*end, PUD_SIZE);
7112 }
7113
7114 /*
7115  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7116  * and returns the corresponding pte. While this is not necessary for the
7117  * !shared pmd case because we can allocate the pmd later as well, it makes the
7118  * code much cleaner. pmd allocation is essential for the shared case because
7119  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7120  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7121  * bad pmd for sharing.
7122  */
7123 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7124                       unsigned long addr, pud_t *pud)
7125 {
7126         struct address_space *mapping = vma->vm_file->f_mapping;
7127         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7128                         vma->vm_pgoff;
7129         struct vm_area_struct *svma;
7130         unsigned long saddr;
7131         pte_t *spte = NULL;
7132         pte_t *pte;
7133
7134         i_mmap_lock_read(mapping);
7135         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7136                 if (svma == vma)
7137                         continue;
7138
7139                 saddr = page_table_shareable(svma, vma, addr, idx);
7140                 if (saddr) {
7141                         spte = hugetlb_walk(svma, saddr,
7142                                             vma_mmu_pagesize(svma));
7143                         if (spte) {
7144                                 get_page(virt_to_page(spte));
7145                                 break;
7146                         }
7147                 }
7148         }
7149
7150         if (!spte)
7151                 goto out;
7152
7153         spin_lock(&mm->page_table_lock);
7154         if (pud_none(*pud)) {
7155                 pud_populate(mm, pud,
7156                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7157                 mm_inc_nr_pmds(mm);
7158         } else {
7159                 put_page(virt_to_page(spte));
7160         }
7161         spin_unlock(&mm->page_table_lock);
7162 out:
7163         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7164         i_mmap_unlock_read(mapping);
7165         return pte;
7166 }
7167
7168 /*
7169  * unmap huge page backed by shared pte.
7170  *
7171  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7172  * indicated by page_count > 1, unmap is achieved by clearing pud and
7173  * decrementing the ref count. If count == 1, the pte page is not shared.
7174  *
7175  * Called with page table lock held.
7176  *
7177  * returns: 1 successfully unmapped a shared pte page
7178  *          0 the underlying pte page is not shared, or it is the last user
7179  */
7180 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7181                                         unsigned long addr, pte_t *ptep)
7182 {
7183         pgd_t *pgd = pgd_offset(mm, addr);
7184         p4d_t *p4d = p4d_offset(pgd, addr);
7185         pud_t *pud = pud_offset(p4d, addr);
7186
7187         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7188         hugetlb_vma_assert_locked(vma);
7189         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7190         if (page_count(virt_to_page(ptep)) == 1)
7191                 return 0;
7192
7193         pud_clear(pud);
7194         put_page(virt_to_page(ptep));
7195         mm_dec_nr_pmds(mm);
7196         return 1;
7197 }
7198
7199 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7200
7201 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7202                       unsigned long addr, pud_t *pud)
7203 {
7204         return NULL;
7205 }
7206
7207 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7208                                 unsigned long addr, pte_t *ptep)
7209 {
7210         return 0;
7211 }
7212
7213 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7214                                 unsigned long *start, unsigned long *end)
7215 {
7216 }
7217
7218 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7219 {
7220         return false;
7221 }
7222 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7223
7224 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7225 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7226                         unsigned long addr, unsigned long sz)
7227 {
7228         pgd_t *pgd;
7229         p4d_t *p4d;
7230         pud_t *pud;
7231         pte_t *pte = NULL;
7232
7233         pgd = pgd_offset(mm, addr);
7234         p4d = p4d_alloc(mm, pgd, addr);
7235         if (!p4d)
7236                 return NULL;
7237         pud = pud_alloc(mm, p4d, addr);
7238         if (pud) {
7239                 if (sz == PUD_SIZE) {
7240                         pte = (pte_t *)pud;
7241                 } else {
7242                         BUG_ON(sz != PMD_SIZE);
7243                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7244                                 pte = huge_pmd_share(mm, vma, addr, pud);
7245                         else
7246                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7247                 }
7248         }
7249         BUG_ON(pte && pte_present(ptep_get(pte)) && !pte_huge(ptep_get(pte)));
7250
7251         return pte;
7252 }
7253
7254 /*
7255  * huge_pte_offset() - Walk the page table to resolve the hugepage
7256  * entry at address @addr
7257  *
7258  * Return: Pointer to page table entry (PUD or PMD) for
7259  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7260  * size @sz doesn't match the hugepage size at this level of the page
7261  * table.
7262  */
7263 pte_t *huge_pte_offset(struct mm_struct *mm,
7264                        unsigned long addr, unsigned long sz)
7265 {
7266         pgd_t *pgd;
7267         p4d_t *p4d;
7268         pud_t *pud;
7269         pmd_t *pmd;
7270
7271         pgd = pgd_offset(mm, addr);
7272         if (!pgd_present(*pgd))
7273                 return NULL;
7274         p4d = p4d_offset(pgd, addr);
7275         if (!p4d_present(*p4d))
7276                 return NULL;
7277
7278         pud = pud_offset(p4d, addr);
7279         if (sz == PUD_SIZE)
7280                 /* must be pud huge, non-present or none */
7281                 return (pte_t *)pud;
7282         if (!pud_present(*pud))
7283                 return NULL;
7284         /* must have a valid entry and size to go further */
7285
7286         pmd = pmd_offset(pud, addr);
7287         /* must be pmd huge, non-present or none */
7288         return (pte_t *)pmd;
7289 }
7290
7291 /*
7292  * Return a mask that can be used to update an address to the last huge
7293  * page in a page table page mapping size.  Used to skip non-present
7294  * page table entries when linearly scanning address ranges.  Architectures
7295  * with unique huge page to page table relationships can define their own
7296  * version of this routine.
7297  */
7298 unsigned long hugetlb_mask_last_page(struct hstate *h)
7299 {
7300         unsigned long hp_size = huge_page_size(h);
7301
7302         if (hp_size == PUD_SIZE)
7303                 return P4D_SIZE - PUD_SIZE;
7304         else if (hp_size == PMD_SIZE)
7305                 return PUD_SIZE - PMD_SIZE;
7306         else
7307                 return 0UL;
7308 }
7309
7310 #else
7311
7312 /* See description above.  Architectures can provide their own version. */
7313 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7314 {
7315 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7316         if (huge_page_size(h) == PMD_SIZE)
7317                 return PUD_SIZE - PMD_SIZE;
7318 #endif
7319         return 0UL;
7320 }
7321
7322 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7323
7324 /*
7325  * These functions are overwritable if your architecture needs its own
7326  * behavior.
7327  */
7328 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7329 {
7330         bool ret = true;
7331
7332         spin_lock_irq(&hugetlb_lock);
7333         if (!folio_test_hugetlb(folio) ||
7334             !folio_test_hugetlb_migratable(folio) ||
7335             !folio_try_get(folio)) {
7336                 ret = false;
7337                 goto unlock;
7338         }
7339         folio_clear_hugetlb_migratable(folio);
7340         list_move_tail(&folio->lru, list);
7341 unlock:
7342         spin_unlock_irq(&hugetlb_lock);
7343         return ret;
7344 }
7345
7346 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7347 {
7348         int ret = 0;
7349
7350         *hugetlb = false;
7351         spin_lock_irq(&hugetlb_lock);
7352         if (folio_test_hugetlb(folio)) {
7353                 *hugetlb = true;
7354                 if (folio_test_hugetlb_freed(folio))
7355                         ret = 0;
7356                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7357                         ret = folio_try_get(folio);
7358                 else
7359                         ret = -EBUSY;
7360         }
7361         spin_unlock_irq(&hugetlb_lock);
7362         return ret;
7363 }
7364
7365 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7366                                 bool *migratable_cleared)
7367 {
7368         int ret;
7369
7370         spin_lock_irq(&hugetlb_lock);
7371         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7372         spin_unlock_irq(&hugetlb_lock);
7373         return ret;
7374 }
7375
7376 void folio_putback_active_hugetlb(struct folio *folio)
7377 {
7378         spin_lock_irq(&hugetlb_lock);
7379         folio_set_hugetlb_migratable(folio);
7380         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7381         spin_unlock_irq(&hugetlb_lock);
7382         folio_put(folio);
7383 }
7384
7385 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7386 {
7387         struct hstate *h = folio_hstate(old_folio);
7388
7389         hugetlb_cgroup_migrate(old_folio, new_folio);
7390         set_page_owner_migrate_reason(&new_folio->page, reason);
7391
7392         /*
7393          * transfer temporary state of the new hugetlb folio. This is
7394          * reverse to other transitions because the newpage is going to
7395          * be final while the old one will be freed so it takes over
7396          * the temporary status.
7397          *
7398          * Also note that we have to transfer the per-node surplus state
7399          * here as well otherwise the global surplus count will not match
7400          * the per-node's.
7401          */
7402         if (folio_test_hugetlb_temporary(new_folio)) {
7403                 int old_nid = folio_nid(old_folio);
7404                 int new_nid = folio_nid(new_folio);
7405
7406                 folio_set_hugetlb_temporary(old_folio);
7407                 folio_clear_hugetlb_temporary(new_folio);
7408
7409
7410                 /*
7411                  * There is no need to transfer the per-node surplus state
7412                  * when we do not cross the node.
7413                  */
7414                 if (new_nid == old_nid)
7415                         return;
7416                 spin_lock_irq(&hugetlb_lock);
7417                 if (h->surplus_huge_pages_node[old_nid]) {
7418                         h->surplus_huge_pages_node[old_nid]--;
7419                         h->surplus_huge_pages_node[new_nid]++;
7420                 }
7421                 spin_unlock_irq(&hugetlb_lock);
7422         }
7423 }
7424
7425 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7426                                    unsigned long start,
7427                                    unsigned long end)
7428 {
7429         struct hstate *h = hstate_vma(vma);
7430         unsigned long sz = huge_page_size(h);
7431         struct mm_struct *mm = vma->vm_mm;
7432         struct mmu_notifier_range range;
7433         unsigned long address;
7434         spinlock_t *ptl;
7435         pte_t *ptep;
7436
7437         if (!(vma->vm_flags & VM_MAYSHARE))
7438                 return;
7439
7440         if (start >= end)
7441                 return;
7442
7443         flush_cache_range(vma, start, end);
7444         /*
7445          * No need to call adjust_range_if_pmd_sharing_possible(), because
7446          * we have already done the PUD_SIZE alignment.
7447          */
7448         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7449                                 start, end);
7450         mmu_notifier_invalidate_range_start(&range);
7451         hugetlb_vma_lock_write(vma);
7452         i_mmap_lock_write(vma->vm_file->f_mapping);
7453         for (address = start; address < end; address += PUD_SIZE) {
7454                 ptep = hugetlb_walk(vma, address, sz);
7455                 if (!ptep)
7456                         continue;
7457                 ptl = huge_pte_lock(h, mm, ptep);
7458                 huge_pmd_unshare(mm, vma, address, ptep);
7459                 spin_unlock(ptl);
7460         }
7461         flush_hugetlb_tlb_range(vma, start, end);
7462         i_mmap_unlock_write(vma->vm_file->f_mapping);
7463         hugetlb_vma_unlock_write(vma);
7464         /*
7465          * No need to call mmu_notifier_invalidate_range(), see
7466          * Documentation/mm/mmu_notifier.rst.
7467          */
7468         mmu_notifier_invalidate_range_end(&range);
7469 }
7470
7471 /*
7472  * This function will unconditionally remove all the shared pmd pgtable entries
7473  * within the specific vma for a hugetlbfs memory range.
7474  */
7475 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7476 {
7477         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7478                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7479 }
7480
7481 #ifdef CONFIG_CMA
7482 static bool cma_reserve_called __initdata;
7483
7484 static int __init cmdline_parse_hugetlb_cma(char *p)
7485 {
7486         int nid, count = 0;
7487         unsigned long tmp;
7488         char *s = p;
7489
7490         while (*s) {
7491                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7492                         break;
7493
7494                 if (s[count] == ':') {
7495                         if (tmp >= MAX_NUMNODES)
7496                                 break;
7497                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7498
7499                         s += count + 1;
7500                         tmp = memparse(s, &s);
7501                         hugetlb_cma_size_in_node[nid] = tmp;
7502                         hugetlb_cma_size += tmp;
7503
7504                         /*
7505                          * Skip the separator if have one, otherwise
7506                          * break the parsing.
7507                          */
7508                         if (*s == ',')
7509                                 s++;
7510                         else
7511                                 break;
7512                 } else {
7513                         hugetlb_cma_size = memparse(p, &p);
7514                         break;
7515                 }
7516         }
7517
7518         return 0;
7519 }
7520
7521 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7522
7523 void __init hugetlb_cma_reserve(int order)
7524 {
7525         unsigned long size, reserved, per_node;
7526         bool node_specific_cma_alloc = false;
7527         int nid;
7528
7529         cma_reserve_called = true;
7530
7531         if (!hugetlb_cma_size)
7532                 return;
7533
7534         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7535                 if (hugetlb_cma_size_in_node[nid] == 0)
7536                         continue;
7537
7538                 if (!node_online(nid)) {
7539                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7540                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7541                         hugetlb_cma_size_in_node[nid] = 0;
7542                         continue;
7543                 }
7544
7545                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7546                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7547                                 nid, (PAGE_SIZE << order) / SZ_1M);
7548                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7549                         hugetlb_cma_size_in_node[nid] = 0;
7550                 } else {
7551                         node_specific_cma_alloc = true;
7552                 }
7553         }
7554
7555         /* Validate the CMA size again in case some invalid nodes specified. */
7556         if (!hugetlb_cma_size)
7557                 return;
7558
7559         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7560                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7561                         (PAGE_SIZE << order) / SZ_1M);
7562                 hugetlb_cma_size = 0;
7563                 return;
7564         }
7565
7566         if (!node_specific_cma_alloc) {
7567                 /*
7568                  * If 3 GB area is requested on a machine with 4 numa nodes,
7569                  * let's allocate 1 GB on first three nodes and ignore the last one.
7570                  */
7571                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7572                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7573                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7574         }
7575
7576         reserved = 0;
7577         for_each_online_node(nid) {
7578                 int res;
7579                 char name[CMA_MAX_NAME];
7580
7581                 if (node_specific_cma_alloc) {
7582                         if (hugetlb_cma_size_in_node[nid] == 0)
7583                                 continue;
7584
7585                         size = hugetlb_cma_size_in_node[nid];
7586                 } else {
7587                         size = min(per_node, hugetlb_cma_size - reserved);
7588                 }
7589
7590                 size = round_up(size, PAGE_SIZE << order);
7591
7592                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7593                 /*
7594                  * Note that 'order per bit' is based on smallest size that
7595                  * may be returned to CMA allocator in the case of
7596                  * huge page demotion.
7597                  */
7598                 res = cma_declare_contiguous_nid(0, size, 0,
7599                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7600                                                  0, false, name,
7601                                                  &hugetlb_cma[nid], nid);
7602                 if (res) {
7603                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7604                                 res, nid);
7605                         continue;
7606                 }
7607
7608                 reserved += size;
7609                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7610                         size / SZ_1M, nid);
7611
7612                 if (reserved >= hugetlb_cma_size)
7613                         break;
7614         }
7615
7616         if (!reserved)
7617                 /*
7618                  * hugetlb_cma_size is used to determine if allocations from
7619                  * cma are possible.  Set to zero if no cma regions are set up.
7620                  */
7621                 hugetlb_cma_size = 0;
7622 }
7623
7624 static void __init hugetlb_cma_check(void)
7625 {
7626         if (!hugetlb_cma_size || cma_reserve_called)
7627                 return;
7628
7629         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7630 }
7631
7632 #endif /* CONFIG_CMA */