1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
39 #include <asm/pgalloc.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
48 #include "hugetlb_vmemmap.h"
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
68 static unsigned long hugetlb_cma_size __initdata;
70 __initdata LIST_HEAD(huge_boot_pages);
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
83 DEFINE_SPINLOCK(hugetlb_lock);
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
113 spin_unlock_irqrestore(&spool->lock, irq_flags);
115 /* If no pages are used, and no other handles to the subpool
116 * remain, give up any reservations based on minimum size and
117 * free the subpool */
118 if (subpool_is_free(spool)) {
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 struct hugepage_subpool *spool;
131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135 spin_lock_init(&spool->lock);
137 spool->max_hpages = max_hpages;
139 spool->min_hpages = min_hpages;
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145 spool->rsv_hpages = min_hpages;
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 spin_lock_irqsave(&spool->lock, flags);
155 BUG_ON(!spool->count);
157 unlock_or_release_subpool(spool, flags);
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
163 * request. Otherwise, return the number of pages by which the
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
166 * a subpool minimum size must be maintained.
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
176 spin_lock_irq(&spool->lock);
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 if (delta > spool->rsv_hpages) {
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
203 spin_unlock_irq(&spool->lock);
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
222 spin_lock_irqsave(&spool->lock, flags);
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
243 unlock_or_release_subpool(spool, flags);
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 return HUGETLBFS_SB(inode->i_sb)->spool;
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 return subpool_inode(file_inode(vma->vm_file));
258 /* Helper that removes a struct file_region from the resv_map cache and returns
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
264 struct file_region *nrg;
266 VM_BUG_ON(resv->region_cache_count <= 0);
268 resv->region_cache_count--;
269 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270 list_del(&nrg->link);
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279 struct file_region *rg)
281 #ifdef CONFIG_CGROUP_HUGETLB
282 nrg->reservation_counter = rg->reservation_counter;
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
292 struct resv_map *resv,
293 struct file_region *nrg)
295 #ifdef CONFIG_CGROUP_HUGETLB
297 nrg->reservation_counter =
298 &h_cg->rsvd_hugepage[hstate_index(h)];
299 nrg->css = &h_cg->css;
301 * The caller will hold exactly one h_cg->css reference for the
302 * whole contiguous reservation region. But this area might be
303 * scattered when there are already some file_regions reside in
304 * it. As a result, many file_regions may share only one css
305 * reference. In order to ensure that one file_region must hold
306 * exactly one h_cg->css reference, we should do css_get for
307 * each file_region and leave the reference held by caller
311 if (!resv->pages_per_hpage)
312 resv->pages_per_hpage = pages_per_huge_page(h);
313 /* pages_per_hpage should be the same for all entries in
316 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
318 nrg->reservation_counter = NULL;
324 static void put_uncharge_info(struct file_region *rg)
326 #ifdef CONFIG_CGROUP_HUGETLB
332 static bool has_same_uncharge_info(struct file_region *rg,
333 struct file_region *org)
335 #ifdef CONFIG_CGROUP_HUGETLB
336 return rg->reservation_counter == org->reservation_counter &&
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
346 struct file_region *nrg, *prg;
348 prg = list_prev_entry(rg, link);
349 if (&prg->link != &resv->regions && prg->to == rg->from &&
350 has_same_uncharge_info(prg, rg)) {
354 put_uncharge_info(rg);
360 nrg = list_next_entry(rg, link);
361 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362 has_same_uncharge_info(nrg, rg)) {
363 nrg->from = rg->from;
366 put_uncharge_info(rg);
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373 long to, struct hstate *h, struct hugetlb_cgroup *cg,
374 long *regions_needed)
376 struct file_region *nrg;
378 if (!regions_needed) {
379 nrg = get_file_region_entry_from_cache(map, from, to);
380 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381 list_add(&nrg->link, rg);
382 coalesce_file_region(map, nrg);
384 *regions_needed += 1;
390 * Must be called with resv->lock held.
392 * Calling this with regions_needed != NULL will count the number of pages
393 * to be added but will not modify the linked list. And regions_needed will
394 * indicate the number of file_regions needed in the cache to carry out to add
395 * the regions for this range.
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398 struct hugetlb_cgroup *h_cg,
399 struct hstate *h, long *regions_needed)
402 struct list_head *head = &resv->regions;
403 long last_accounted_offset = f;
404 struct file_region *iter, *trg = NULL;
405 struct list_head *rg = NULL;
410 /* In this loop, we essentially handle an entry for the range
411 * [last_accounted_offset, iter->from), at every iteration, with some
414 list_for_each_entry_safe(iter, trg, head, link) {
415 /* Skip irrelevant regions that start before our range. */
416 if (iter->from < f) {
417 /* If this region ends after the last accounted offset,
418 * then we need to update last_accounted_offset.
420 if (iter->to > last_accounted_offset)
421 last_accounted_offset = iter->to;
425 /* When we find a region that starts beyond our range, we've
428 if (iter->from >= t) {
429 rg = iter->link.prev;
433 /* Add an entry for last_accounted_offset -> iter->from, and
434 * update last_accounted_offset.
436 if (iter->from > last_accounted_offset)
437 add += hugetlb_resv_map_add(resv, iter->link.prev,
438 last_accounted_offset,
442 last_accounted_offset = iter->to;
445 /* Handle the case where our range extends beyond
446 * last_accounted_offset.
450 if (last_accounted_offset < t)
451 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452 t, h, h_cg, regions_needed);
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
459 static int allocate_file_region_entries(struct resv_map *resv,
461 __must_hold(&resv->lock)
463 LIST_HEAD(allocated_regions);
464 int to_allocate = 0, i = 0;
465 struct file_region *trg = NULL, *rg = NULL;
467 VM_BUG_ON(regions_needed < 0);
470 * Check for sufficient descriptors in the cache to accommodate
471 * the number of in progress add operations plus regions_needed.
473 * This is a while loop because when we drop the lock, some other call
474 * to region_add or region_del may have consumed some region_entries,
475 * so we keep looping here until we finally have enough entries for
476 * (adds_in_progress + regions_needed).
478 while (resv->region_cache_count <
479 (resv->adds_in_progress + regions_needed)) {
480 to_allocate = resv->adds_in_progress + regions_needed -
481 resv->region_cache_count;
483 /* At this point, we should have enough entries in the cache
484 * for all the existing adds_in_progress. We should only be
485 * needing to allocate for regions_needed.
487 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
489 spin_unlock(&resv->lock);
490 for (i = 0; i < to_allocate; i++) {
491 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
494 list_add(&trg->link, &allocated_regions);
497 spin_lock(&resv->lock);
499 list_splice(&allocated_regions, &resv->region_cache);
500 resv->region_cache_count += to_allocate;
506 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
514 * Add the huge page range represented by [f, t) to the reserve
515 * map. Regions will be taken from the cache to fill in this range.
516 * Sufficient regions should exist in the cache due to the previous
517 * call to region_chg with the same range, but in some cases the cache will not
518 * have sufficient entries due to races with other code doing region_add or
519 * region_del. The extra needed entries will be allocated.
521 * regions_needed is the out value provided by a previous call to region_chg.
523 * Return the number of new huge pages added to the map. This number is greater
524 * than or equal to zero. If file_region entries needed to be allocated for
525 * this operation and we were not able to allocate, it returns -ENOMEM.
526 * region_add of regions of length 1 never allocate file_regions and cannot
527 * fail; region_chg will always allocate at least 1 entry and a region_add for
528 * 1 page will only require at most 1 entry.
530 static long region_add(struct resv_map *resv, long f, long t,
531 long in_regions_needed, struct hstate *h,
532 struct hugetlb_cgroup *h_cg)
534 long add = 0, actual_regions_needed = 0;
536 spin_lock(&resv->lock);
539 /* Count how many regions are actually needed to execute this add. */
540 add_reservation_in_range(resv, f, t, NULL, NULL,
541 &actual_regions_needed);
544 * Check for sufficient descriptors in the cache to accommodate
545 * this add operation. Note that actual_regions_needed may be greater
546 * than in_regions_needed, as the resv_map may have been modified since
547 * the region_chg call. In this case, we need to make sure that we
548 * allocate extra entries, such that we have enough for all the
549 * existing adds_in_progress, plus the excess needed for this
552 if (actual_regions_needed > in_regions_needed &&
553 resv->region_cache_count <
554 resv->adds_in_progress +
555 (actual_regions_needed - in_regions_needed)) {
556 /* region_add operation of range 1 should never need to
557 * allocate file_region entries.
559 VM_BUG_ON(t - f <= 1);
561 if (allocate_file_region_entries(
562 resv, actual_regions_needed - in_regions_needed)) {
569 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
571 resv->adds_in_progress -= in_regions_needed;
573 spin_unlock(&resv->lock);
578 * Examine the existing reserve map and determine how many
579 * huge pages in the specified range [f, t) are NOT currently
580 * represented. This routine is called before a subsequent
581 * call to region_add that will actually modify the reserve
582 * map to add the specified range [f, t). region_chg does
583 * not change the number of huge pages represented by the
584 * map. A number of new file_region structures is added to the cache as a
585 * placeholder, for the subsequent region_add call to use. At least 1
586 * file_region structure is added.
588 * out_regions_needed is the number of regions added to the
589 * resv->adds_in_progress. This value needs to be provided to a follow up call
590 * to region_add or region_abort for proper accounting.
592 * Returns the number of huge pages that need to be added to the existing
593 * reservation map for the range [f, t). This number is greater or equal to
594 * zero. -ENOMEM is returned if a new file_region structure or cache entry
595 * is needed and can not be allocated.
597 static long region_chg(struct resv_map *resv, long f, long t,
598 long *out_regions_needed)
602 spin_lock(&resv->lock);
604 /* Count how many hugepages in this range are NOT represented. */
605 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
608 if (*out_regions_needed == 0)
609 *out_regions_needed = 1;
611 if (allocate_file_region_entries(resv, *out_regions_needed))
614 resv->adds_in_progress += *out_regions_needed;
616 spin_unlock(&resv->lock);
621 * Abort the in progress add operation. The adds_in_progress field
622 * of the resv_map keeps track of the operations in progress between
623 * calls to region_chg and region_add. Operations are sometimes
624 * aborted after the call to region_chg. In such cases, region_abort
625 * is called to decrement the adds_in_progress counter. regions_needed
626 * is the value returned by the region_chg call, it is used to decrement
627 * the adds_in_progress counter.
629 * NOTE: The range arguments [f, t) are not needed or used in this
630 * routine. They are kept to make reading the calling code easier as
631 * arguments will match the associated region_chg call.
633 static void region_abort(struct resv_map *resv, long f, long t,
636 spin_lock(&resv->lock);
637 VM_BUG_ON(!resv->region_cache_count);
638 resv->adds_in_progress -= regions_needed;
639 spin_unlock(&resv->lock);
643 * Delete the specified range [f, t) from the reserve map. If the
644 * t parameter is LONG_MAX, this indicates that ALL regions after f
645 * should be deleted. Locate the regions which intersect [f, t)
646 * and either trim, delete or split the existing regions.
648 * Returns the number of huge pages deleted from the reserve map.
649 * In the normal case, the return value is zero or more. In the
650 * case where a region must be split, a new region descriptor must
651 * be allocated. If the allocation fails, -ENOMEM will be returned.
652 * NOTE: If the parameter t == LONG_MAX, then we will never split
653 * a region and possibly return -ENOMEM. Callers specifying
654 * t == LONG_MAX do not need to check for -ENOMEM error.
656 static long region_del(struct resv_map *resv, long f, long t)
658 struct list_head *head = &resv->regions;
659 struct file_region *rg, *trg;
660 struct file_region *nrg = NULL;
664 spin_lock(&resv->lock);
665 list_for_each_entry_safe(rg, trg, head, link) {
667 * Skip regions before the range to be deleted. file_region
668 * ranges are normally of the form [from, to). However, there
669 * may be a "placeholder" entry in the map which is of the form
670 * (from, to) with from == to. Check for placeholder entries
671 * at the beginning of the range to be deleted.
673 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
679 if (f > rg->from && t < rg->to) { /* Must split region */
681 * Check for an entry in the cache before dropping
682 * lock and attempting allocation.
685 resv->region_cache_count > resv->adds_in_progress) {
686 nrg = list_first_entry(&resv->region_cache,
689 list_del(&nrg->link);
690 resv->region_cache_count--;
694 spin_unlock(&resv->lock);
695 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
702 hugetlb_cgroup_uncharge_file_region(
703 resv, rg, t - f, false);
705 /* New entry for end of split region */
709 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
711 INIT_LIST_HEAD(&nrg->link);
713 /* Original entry is trimmed */
716 list_add(&nrg->link, &rg->link);
721 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722 del += rg->to - rg->from;
723 hugetlb_cgroup_uncharge_file_region(resv, rg,
724 rg->to - rg->from, true);
730 if (f <= rg->from) { /* Trim beginning of region */
731 hugetlb_cgroup_uncharge_file_region(resv, rg,
732 t - rg->from, false);
736 } else { /* Trim end of region */
737 hugetlb_cgroup_uncharge_file_region(resv, rg,
745 spin_unlock(&resv->lock);
751 * A rare out of memory error was encountered which prevented removal of
752 * the reserve map region for a page. The huge page itself was free'ed
753 * and removed from the page cache. This routine will adjust the subpool
754 * usage count, and the global reserve count if needed. By incrementing
755 * these counts, the reserve map entry which could not be deleted will
756 * appear as a "reserved" entry instead of simply dangling with incorrect
759 void hugetlb_fix_reserve_counts(struct inode *inode)
761 struct hugepage_subpool *spool = subpool_inode(inode);
763 bool reserved = false;
765 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766 if (rsv_adjust > 0) {
767 struct hstate *h = hstate_inode(inode);
769 if (!hugetlb_acct_memory(h, 1))
771 } else if (!rsv_adjust) {
776 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
780 * Count and return the number of huge pages in the reserve map
781 * that intersect with the range [f, t).
783 static long region_count(struct resv_map *resv, long f, long t)
785 struct list_head *head = &resv->regions;
786 struct file_region *rg;
789 spin_lock(&resv->lock);
790 /* Locate each segment we overlap with, and count that overlap. */
791 list_for_each_entry(rg, head, link) {
800 seg_from = max(rg->from, f);
801 seg_to = min(rg->to, t);
803 chg += seg_to - seg_from;
805 spin_unlock(&resv->lock);
811 * Convert the address within this vma to the page offset within
812 * the mapping, in pagecache page units; huge pages here.
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815 struct vm_area_struct *vma, unsigned long address)
817 return ((address - vma->vm_start) >> huge_page_shift(h)) +
818 (vma->vm_pgoff >> huge_page_order(h));
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822 unsigned long address)
824 return vma_hugecache_offset(hstate_vma(vma), vma, address);
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
829 * Return the size of the pages allocated when backing a VMA. In the majority
830 * cases this will be same size as used by the page table entries.
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
834 if (vma->vm_ops && vma->vm_ops->pagesize)
835 return vma->vm_ops->pagesize(vma);
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
841 * Return the page size being used by the MMU to back a VMA. In the majority
842 * of cases, the page size used by the kernel matches the MMU size. On
843 * architectures where it differs, an architecture-specific 'strong'
844 * version of this symbol is required.
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
848 return vma_kernel_pagesize(vma);
852 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
853 * bits of the reservation map pointer, which are always clear due to
856 #define HPAGE_RESV_OWNER (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
861 * These helpers are used to track how many pages are reserved for
862 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863 * is guaranteed to have their future faults succeed.
865 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866 * the reserve counters are updated with the hugetlb_lock held. It is safe
867 * to reset the VMA at fork() time as it is not in use yet and there is no
868 * chance of the global counters getting corrupted as a result of the values.
870 * The private mapping reservation is represented in a subtly different
871 * manner to a shared mapping. A shared mapping has a region map associated
872 * with the underlying file, this region map represents the backing file
873 * pages which have ever had a reservation assigned which this persists even
874 * after the page is instantiated. A private mapping has a region map
875 * associated with the original mmap which is attached to all VMAs which
876 * reference it, this region map represents those offsets which have consumed
877 * reservation ie. where pages have been instantiated.
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
881 return (unsigned long)vma->vm_private_data;
884 static void set_vma_private_data(struct vm_area_struct *vma,
887 vma->vm_private_data = (void *)value;
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892 struct hugetlb_cgroup *h_cg,
895 #ifdef CONFIG_CGROUP_HUGETLB
897 resv_map->reservation_counter = NULL;
898 resv_map->pages_per_hpage = 0;
899 resv_map->css = NULL;
901 resv_map->reservation_counter =
902 &h_cg->rsvd_hugepage[hstate_index(h)];
903 resv_map->pages_per_hpage = pages_per_huge_page(h);
904 resv_map->css = &h_cg->css;
909 struct resv_map *resv_map_alloc(void)
911 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
914 if (!resv_map || !rg) {
920 kref_init(&resv_map->refs);
921 spin_lock_init(&resv_map->lock);
922 INIT_LIST_HEAD(&resv_map->regions);
924 resv_map->adds_in_progress = 0;
926 * Initialize these to 0. On shared mappings, 0's here indicate these
927 * fields don't do cgroup accounting. On private mappings, these will be
928 * re-initialized to the proper values, to indicate that hugetlb cgroup
929 * reservations are to be un-charged from here.
931 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
933 INIT_LIST_HEAD(&resv_map->region_cache);
934 list_add(&rg->link, &resv_map->region_cache);
935 resv_map->region_cache_count = 1;
940 void resv_map_release(struct kref *ref)
942 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943 struct list_head *head = &resv_map->region_cache;
944 struct file_region *rg, *trg;
946 /* Clear out any active regions before we release the map. */
947 region_del(resv_map, 0, LONG_MAX);
949 /* ... and any entries left in the cache */
950 list_for_each_entry_safe(rg, trg, head, link) {
955 VM_BUG_ON(resv_map->adds_in_progress);
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
963 * At inode evict time, i_mapping may not point to the original
964 * address space within the inode. This original address space
965 * contains the pointer to the resv_map. So, always use the
966 * address space embedded within the inode.
967 * The VERY common case is inode->mapping == &inode->i_data but,
968 * this may not be true for device special inodes.
970 return (struct resv_map *)(&inode->i_data)->private_data;
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
975 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976 if (vma->vm_flags & VM_MAYSHARE) {
977 struct address_space *mapping = vma->vm_file->f_mapping;
978 struct inode *inode = mapping->host;
980 return inode_resv_map(inode);
983 return (struct resv_map *)(get_vma_private_data(vma) &
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
990 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
993 set_vma_private_data(vma, (get_vma_private_data(vma) &
994 HPAGE_RESV_MASK) | (unsigned long)map);
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
999 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1002 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1007 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1009 return (get_vma_private_data(vma) & flag) != 0;
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1014 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1016 * Clear vm_private_data
1017 * - For shared mappings this is a per-vma semaphore that may be
1018 * allocated in a subsequent call to hugetlb_vm_op_open.
1019 * Before clearing, make sure pointer is not associated with vma
1020 * as this will leak the structure. This is the case when called
1021 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022 * been called to allocate a new structure.
1023 * - For MAP_PRIVATE mappings, this is the reserve map which does
1024 * not apply to children. Faults generated by the children are
1025 * not guaranteed to succeed, even if read-only.
1027 if (vma->vm_flags & VM_MAYSHARE) {
1028 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1030 if (vma_lock && vma_lock->vma != vma)
1031 vma->vm_private_data = NULL;
1033 vma->vm_private_data = NULL;
1037 * Reset and decrement one ref on hugepage private reservation.
1038 * Called with mm->mmap_sem writer semaphore held.
1039 * This function should be only used by move_vma() and operate on
1040 * same sized vma. It should never come here with last ref on the
1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1046 * Clear the old hugetlb private page reservation.
1047 * It has already been transferred to new_vma.
1049 * During a mremap() operation of a hugetlb vma we call move_vma()
1050 * which copies vma into new_vma and unmaps vma. After the copy
1051 * operation both new_vma and vma share a reference to the resv_map
1052 * struct, and at that point vma is about to be unmapped. We don't
1053 * want to return the reservation to the pool at unmap of vma because
1054 * the reservation still lives on in new_vma, so simply decrement the
1055 * ref here and remove the resv_map reference from this vma.
1057 struct resv_map *reservations = vma_resv_map(vma);
1059 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1061 kref_put(&reservations->refs, resv_map_release);
1064 hugetlb_dup_vma_private(vma);
1067 /* Returns true if the VMA has associated reserve pages */
1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1070 if (vma->vm_flags & VM_NORESERVE) {
1072 * This address is already reserved by other process(chg == 0),
1073 * so, we should decrement reserved count. Without decrementing,
1074 * reserve count remains after releasing inode, because this
1075 * allocated page will go into page cache and is regarded as
1076 * coming from reserved pool in releasing step. Currently, we
1077 * don't have any other solution to deal with this situation
1078 * properly, so add work-around here.
1080 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1086 /* Shared mappings always use reserves */
1087 if (vma->vm_flags & VM_MAYSHARE) {
1089 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1090 * be a region map for all pages. The only situation where
1091 * there is no region map is if a hole was punched via
1092 * fallocate. In this case, there really are no reserves to
1093 * use. This situation is indicated if chg != 0.
1102 * Only the process that called mmap() has reserves for
1105 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1107 * Like the shared case above, a hole punch or truncate
1108 * could have been performed on the private mapping.
1109 * Examine the value of chg to determine if reserves
1110 * actually exist or were previously consumed.
1111 * Very Subtle - The value of chg comes from a previous
1112 * call to vma_needs_reserves(). The reserve map for
1113 * private mappings has different (opposite) semantics
1114 * than that of shared mappings. vma_needs_reserves()
1115 * has already taken this difference in semantics into
1116 * account. Therefore, the meaning of chg is the same
1117 * as in the shared case above. Code could easily be
1118 * combined, but keeping it separate draws attention to
1119 * subtle differences.
1130 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1132 int nid = folio_nid(folio);
1134 lockdep_assert_held(&hugetlb_lock);
1135 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1137 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1138 h->free_huge_pages++;
1139 h->free_huge_pages_node[nid]++;
1140 folio_set_hugetlb_freed(folio);
1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1146 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1148 lockdep_assert_held(&hugetlb_lock);
1149 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1150 if (pin && !is_longterm_pinnable_page(page))
1153 if (PageHWPoison(page))
1156 list_move(&page->lru, &h->hugepage_activelist);
1157 set_page_refcounted(page);
1158 ClearHPageFreed(page);
1159 h->free_huge_pages--;
1160 h->free_huge_pages_node[nid]--;
1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1170 unsigned int cpuset_mems_cookie;
1171 struct zonelist *zonelist;
1174 int node = NUMA_NO_NODE;
1176 zonelist = node_zonelist(nid, gfp_mask);
1179 cpuset_mems_cookie = read_mems_allowed_begin();
1180 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1183 if (!cpuset_zone_allowed(zone, gfp_mask))
1186 * no need to ask again on the same node. Pool is node rather than
1189 if (zone_to_nid(zone) == node)
1191 node = zone_to_nid(zone);
1193 page = dequeue_huge_page_node_exact(h, node);
1197 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1203 static unsigned long available_huge_pages(struct hstate *h)
1205 return h->free_huge_pages - h->resv_huge_pages;
1208 static struct page *dequeue_huge_page_vma(struct hstate *h,
1209 struct vm_area_struct *vma,
1210 unsigned long address, int avoid_reserve,
1213 struct page *page = NULL;
1214 struct mempolicy *mpol;
1216 nodemask_t *nodemask;
1220 * A child process with MAP_PRIVATE mappings created by their parent
1221 * have no page reserves. This check ensures that reservations are
1222 * not "stolen". The child may still get SIGKILLed
1224 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1227 /* If reserves cannot be used, ensure enough pages are in the pool */
1228 if (avoid_reserve && !available_huge_pages(h))
1231 gfp_mask = htlb_alloc_mask(h);
1232 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1234 if (mpol_is_preferred_many(mpol)) {
1235 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1237 /* Fallback to all nodes if page==NULL */
1242 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1244 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1245 SetHPageRestoreReserve(page);
1246 h->resv_huge_pages--;
1249 mpol_cond_put(mpol);
1257 * common helper functions for hstate_next_node_to_{alloc|free}.
1258 * We may have allocated or freed a huge page based on a different
1259 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260 * be outside of *nodes_allowed. Ensure that we use an allowed
1261 * node for alloc or free.
1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1265 nid = next_node_in(nid, *nodes_allowed);
1266 VM_BUG_ON(nid >= MAX_NUMNODES);
1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1273 if (!node_isset(nid, *nodes_allowed))
1274 nid = next_node_allowed(nid, nodes_allowed);
1279 * returns the previously saved node ["this node"] from which to
1280 * allocate a persistent huge page for the pool and advance the
1281 * next node from which to allocate, handling wrap at end of node
1284 static int hstate_next_node_to_alloc(struct hstate *h,
1285 nodemask_t *nodes_allowed)
1289 VM_BUG_ON(!nodes_allowed);
1291 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1298 * helper for remove_pool_huge_page() - return the previously saved
1299 * node ["this node"] from which to free a huge page. Advance the
1300 * next node id whether or not we find a free huge page to free so
1301 * that the next attempt to free addresses the next node.
1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1307 VM_BUG_ON(!nodes_allowed);
1309 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1316 for (nr_nodes = nodes_weight(*mask); \
1318 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1322 for (nr_nodes = nodes_weight(*mask); \
1324 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1327 /* used to demote non-gigantic_huge pages as well */
1328 static void __destroy_compound_gigantic_folio(struct folio *folio,
1329 unsigned int order, bool demote)
1332 int nr_pages = 1 << order;
1335 atomic_set(folio_mapcount_ptr(folio), 0);
1336 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1337 atomic_set(folio_pincount_ptr(folio), 0);
1339 for (i = 1; i < nr_pages; i++) {
1340 p = folio_page(folio, i);
1342 clear_compound_head(p);
1344 set_page_refcounted(p);
1347 folio_set_compound_order(folio, 0);
1348 __folio_clear_head(folio);
1351 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1354 __destroy_compound_gigantic_folio(folio, order, true);
1357 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1358 static void destroy_compound_gigantic_folio(struct folio *folio,
1361 __destroy_compound_gigantic_folio(folio, order, false);
1364 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1367 * If the page isn't allocated using the cma allocator,
1368 * cma_release() returns false.
1371 int nid = folio_nid(folio);
1373 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1377 free_contig_range(folio_pfn(folio), 1 << order);
1380 #ifdef CONFIG_CONTIG_ALLOC
1381 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1382 int nid, nodemask_t *nodemask)
1385 unsigned long nr_pages = pages_per_huge_page(h);
1386 if (nid == NUMA_NO_NODE)
1387 nid = numa_mem_id();
1393 if (hugetlb_cma[nid]) {
1394 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1395 huge_page_order(h), true);
1397 return page_folio(page);
1400 if (!(gfp_mask & __GFP_THISNODE)) {
1401 for_each_node_mask(node, *nodemask) {
1402 if (node == nid || !hugetlb_cma[node])
1405 page = cma_alloc(hugetlb_cma[node], nr_pages,
1406 huge_page_order(h), true);
1408 return page_folio(page);
1414 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1415 return page ? page_folio(page) : NULL;
1418 #else /* !CONFIG_CONTIG_ALLOC */
1419 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1420 int nid, nodemask_t *nodemask)
1424 #endif /* CONFIG_CONTIG_ALLOC */
1426 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1427 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1428 int nid, nodemask_t *nodemask)
1432 static inline void free_gigantic_folio(struct folio *folio,
1433 unsigned int order) { }
1434 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1435 unsigned int order) { }
1439 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1440 * as just a compound page.
1442 * A reference is held on the folio, except in the case of demote.
1444 * Must be called with hugetlb lock held.
1446 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1447 bool adjust_surplus,
1450 int nid = folio_nid(folio);
1452 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1453 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1455 lockdep_assert_held(&hugetlb_lock);
1456 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1459 list_del(&folio->lru);
1461 if (folio_test_hugetlb_freed(folio)) {
1462 h->free_huge_pages--;
1463 h->free_huge_pages_node[nid]--;
1465 if (adjust_surplus) {
1466 h->surplus_huge_pages--;
1467 h->surplus_huge_pages_node[nid]--;
1473 * For non-gigantic pages set the destructor to the normal compound
1474 * page dtor. This is needed in case someone takes an additional
1475 * temporary ref to the page, and freeing is delayed until they drop
1478 * For gigantic pages set the destructor to the null dtor. This
1479 * destructor will never be called. Before freeing the gigantic
1480 * page destroy_compound_gigantic_folio will turn the folio into a
1481 * simple group of pages. After this the destructor does not
1484 * This handles the case where more than one ref is held when and
1485 * after update_and_free_hugetlb_folio is called.
1487 * In the case of demote we do not ref count the page as it will soon
1488 * be turned into a page of smaller size.
1491 folio_ref_unfreeze(folio, 1);
1492 if (hstate_is_gigantic(h))
1493 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1495 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1498 h->nr_huge_pages_node[nid]--;
1501 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1502 bool adjust_surplus)
1504 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1507 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1508 bool adjust_surplus)
1510 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1513 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1514 bool adjust_surplus)
1517 int nid = folio_nid(folio);
1519 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1521 lockdep_assert_held(&hugetlb_lock);
1523 INIT_LIST_HEAD(&folio->lru);
1525 h->nr_huge_pages_node[nid]++;
1527 if (adjust_surplus) {
1528 h->surplus_huge_pages++;
1529 h->surplus_huge_pages_node[nid]++;
1532 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1533 folio_change_private(folio, NULL);
1535 * We have to set hugetlb_vmemmap_optimized again as above
1536 * folio_change_private(folio, NULL) cleared it.
1538 folio_set_hugetlb_vmemmap_optimized(folio);
1541 * This folio is about to be managed by the hugetlb allocator and
1542 * should have no users. Drop our reference, and check for others
1545 zeroed = folio_put_testzero(folio);
1546 if (unlikely(!zeroed))
1548 * It is VERY unlikely soneone else has taken a ref on
1549 * the page. In this case, we simply return as the
1550 * hugetlb destructor (free_huge_page) will be called
1551 * when this other ref is dropped.
1555 arch_clear_hugepage_flags(&folio->page);
1556 enqueue_hugetlb_folio(h, folio);
1559 static void __update_and_free_page(struct hstate *h, struct page *page)
1562 struct folio *folio = page_folio(page);
1563 struct page *subpage;
1565 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1569 * If we don't know which subpages are hwpoisoned, we can't free
1570 * the hugepage, so it's leaked intentionally.
1572 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1575 if (hugetlb_vmemmap_restore(h, page)) {
1576 spin_lock_irq(&hugetlb_lock);
1578 * If we cannot allocate vmemmap pages, just refuse to free the
1579 * page and put the page back on the hugetlb free list and treat
1580 * as a surplus page.
1582 add_hugetlb_folio(h, folio, true);
1583 spin_unlock_irq(&hugetlb_lock);
1588 * Move PageHWPoison flag from head page to the raw error pages,
1589 * which makes any healthy subpages reusable.
1591 if (unlikely(folio_test_hwpoison(folio)))
1592 hugetlb_clear_page_hwpoison(&folio->page);
1594 for (i = 0; i < pages_per_huge_page(h); i++) {
1595 subpage = folio_page(folio, i);
1596 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1597 1 << PG_referenced | 1 << PG_dirty |
1598 1 << PG_active | 1 << PG_private |
1603 * Non-gigantic pages demoted from CMA allocated gigantic pages
1604 * need to be given back to CMA in free_gigantic_folio.
1606 if (hstate_is_gigantic(h) ||
1607 hugetlb_cma_folio(folio, huge_page_order(h))) {
1608 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1609 free_gigantic_folio(folio, huge_page_order(h));
1611 __free_pages(page, huge_page_order(h));
1616 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1617 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1618 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1619 * the vmemmap pages.
1621 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1622 * freed and frees them one-by-one. As the page->mapping pointer is going
1623 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1624 * structure of a lockless linked list of huge pages to be freed.
1626 static LLIST_HEAD(hpage_freelist);
1628 static void free_hpage_workfn(struct work_struct *work)
1630 struct llist_node *node;
1632 node = llist_del_all(&hpage_freelist);
1638 page = container_of((struct address_space **)node,
1639 struct page, mapping);
1641 page->mapping = NULL;
1643 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1644 * is going to trigger because a previous call to
1645 * remove_hugetlb_folio() will call folio_set_compound_dtor
1646 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1649 h = size_to_hstate(page_size(page));
1651 __update_and_free_page(h, page);
1656 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1658 static inline void flush_free_hpage_work(struct hstate *h)
1660 if (hugetlb_vmemmap_optimizable(h))
1661 flush_work(&free_hpage_work);
1664 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1667 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1668 __update_and_free_page(h, &folio->page);
1673 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1675 * Only call schedule_work() if hpage_freelist is previously
1676 * empty. Otherwise, schedule_work() had been called but the workfn
1677 * hasn't retrieved the list yet.
1679 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1680 schedule_work(&free_hpage_work);
1683 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1685 struct page *page, *t_page;
1686 struct folio *folio;
1688 list_for_each_entry_safe(page, t_page, list, lru) {
1689 folio = page_folio(page);
1690 update_and_free_hugetlb_folio(h, folio, false);
1695 struct hstate *size_to_hstate(unsigned long size)
1699 for_each_hstate(h) {
1700 if (huge_page_size(h) == size)
1706 void free_huge_page(struct page *page)
1709 * Can't pass hstate in here because it is called from the
1710 * compound page destructor.
1712 struct folio *folio = page_folio(page);
1713 struct hstate *h = folio_hstate(folio);
1714 int nid = folio_nid(folio);
1715 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1716 bool restore_reserve;
1717 unsigned long flags;
1719 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1720 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1722 hugetlb_set_folio_subpool(folio, NULL);
1723 if (folio_test_anon(folio))
1724 __ClearPageAnonExclusive(&folio->page);
1725 folio->mapping = NULL;
1726 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1727 folio_clear_hugetlb_restore_reserve(folio);
1730 * If HPageRestoreReserve was set on page, page allocation consumed a
1731 * reservation. If the page was associated with a subpool, there
1732 * would have been a page reserved in the subpool before allocation
1733 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1734 * reservation, do not call hugepage_subpool_put_pages() as this will
1735 * remove the reserved page from the subpool.
1737 if (!restore_reserve) {
1739 * A return code of zero implies that the subpool will be
1740 * under its minimum size if the reservation is not restored
1741 * after page is free. Therefore, force restore_reserve
1744 if (hugepage_subpool_put_pages(spool, 1) == 0)
1745 restore_reserve = true;
1748 spin_lock_irqsave(&hugetlb_lock, flags);
1749 folio_clear_hugetlb_migratable(folio);
1750 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1751 pages_per_huge_page(h), folio);
1752 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1753 pages_per_huge_page(h), folio);
1754 if (restore_reserve)
1755 h->resv_huge_pages++;
1757 if (folio_test_hugetlb_temporary(folio)) {
1758 remove_hugetlb_folio(h, folio, false);
1759 spin_unlock_irqrestore(&hugetlb_lock, flags);
1760 update_and_free_hugetlb_folio(h, folio, true);
1761 } else if (h->surplus_huge_pages_node[nid]) {
1762 /* remove the page from active list */
1763 remove_hugetlb_folio(h, folio, true);
1764 spin_unlock_irqrestore(&hugetlb_lock, flags);
1765 update_and_free_hugetlb_folio(h, folio, true);
1767 arch_clear_hugepage_flags(page);
1768 enqueue_hugetlb_folio(h, folio);
1769 spin_unlock_irqrestore(&hugetlb_lock, flags);
1774 * Must be called with the hugetlb lock held
1776 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1778 lockdep_assert_held(&hugetlb_lock);
1780 h->nr_huge_pages_node[nid]++;
1783 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1785 hugetlb_vmemmap_optimize(h, &folio->page);
1786 INIT_LIST_HEAD(&folio->lru);
1787 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1788 hugetlb_set_folio_subpool(folio, NULL);
1789 set_hugetlb_cgroup(folio, NULL);
1790 set_hugetlb_cgroup_rsvd(folio, NULL);
1793 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1795 __prep_new_hugetlb_folio(h, folio);
1796 spin_lock_irq(&hugetlb_lock);
1797 __prep_account_new_huge_page(h, nid);
1798 spin_unlock_irq(&hugetlb_lock);
1801 static bool __prep_compound_gigantic_folio(struct folio *folio,
1802 unsigned int order, bool demote)
1805 int nr_pages = 1 << order;
1808 __folio_clear_reserved(folio);
1809 __folio_set_head(folio);
1810 /* we rely on prep_new_hugetlb_folio to set the destructor */
1811 folio_set_compound_order(folio, order);
1812 for (i = 0; i < nr_pages; i++) {
1813 p = folio_page(folio, i);
1816 * For gigantic hugepages allocated through bootmem at
1817 * boot, it's safer to be consistent with the not-gigantic
1818 * hugepages and clear the PG_reserved bit from all tail pages
1819 * too. Otherwise drivers using get_user_pages() to access tail
1820 * pages may get the reference counting wrong if they see
1821 * PG_reserved set on a tail page (despite the head page not
1822 * having PG_reserved set). Enforcing this consistency between
1823 * head and tail pages allows drivers to optimize away a check
1824 * on the head page when they need know if put_page() is needed
1825 * after get_user_pages().
1827 if (i != 0) /* head page cleared above */
1828 __ClearPageReserved(p);
1830 * Subtle and very unlikely
1832 * Gigantic 'page allocators' such as memblock or cma will
1833 * return a set of pages with each page ref counted. We need
1834 * to turn this set of pages into a compound page with tail
1835 * page ref counts set to zero. Code such as speculative page
1836 * cache adding could take a ref on a 'to be' tail page.
1837 * We need to respect any increased ref count, and only set
1838 * the ref count to zero if count is currently 1. If count
1839 * is not 1, we return an error. An error return indicates
1840 * the set of pages can not be converted to a gigantic page.
1841 * The caller who allocated the pages should then discard the
1842 * pages using the appropriate free interface.
1844 * In the case of demote, the ref count will be zero.
1847 if (!page_ref_freeze(p, 1)) {
1848 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1852 VM_BUG_ON_PAGE(page_count(p), p);
1855 set_compound_head(p, &folio->page);
1857 atomic_set(folio_mapcount_ptr(folio), -1);
1858 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1859 atomic_set(folio_pincount_ptr(folio), 0);
1863 /* undo page modifications made above */
1864 for (j = 0; j < i; j++) {
1865 p = folio_page(folio, j);
1867 clear_compound_head(p);
1868 set_page_refcounted(p);
1870 /* need to clear PG_reserved on remaining tail pages */
1871 for (; j < nr_pages; j++) {
1872 p = folio_page(folio, j);
1873 __ClearPageReserved(p);
1875 folio_set_compound_order(folio, 0);
1876 __folio_clear_head(folio);
1880 static bool prep_compound_gigantic_folio(struct folio *folio,
1883 return __prep_compound_gigantic_folio(folio, order, false);
1886 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
1889 return __prep_compound_gigantic_folio(folio, order, true);
1893 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1894 * transparent huge pages. See the PageTransHuge() documentation for more
1897 int PageHuge(struct page *page)
1899 if (!PageCompound(page))
1902 page = compound_head(page);
1903 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1905 EXPORT_SYMBOL_GPL(PageHuge);
1908 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1909 * normal or transparent huge pages.
1911 int PageHeadHuge(struct page *page_head)
1913 if (!PageHead(page_head))
1916 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1918 EXPORT_SYMBOL_GPL(PageHeadHuge);
1921 * Find and lock address space (mapping) in write mode.
1923 * Upon entry, the page is locked which means that page_mapping() is
1924 * stable. Due to locking order, we can only trylock_write. If we can
1925 * not get the lock, simply return NULL to caller.
1927 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1929 struct address_space *mapping = page_mapping(hpage);
1934 if (i_mmap_trylock_write(mapping))
1940 pgoff_t hugetlb_basepage_index(struct page *page)
1942 struct page *page_head = compound_head(page);
1943 pgoff_t index = page_index(page_head);
1944 unsigned long compound_idx;
1946 if (compound_order(page_head) >= MAX_ORDER)
1947 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1949 compound_idx = page - page_head;
1951 return (index << compound_order(page_head)) + compound_idx;
1954 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1955 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1956 nodemask_t *node_alloc_noretry)
1958 int order = huge_page_order(h);
1960 bool alloc_try_hard = true;
1964 * By default we always try hard to allocate the page with
1965 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1966 * a loop (to adjust global huge page counts) and previous allocation
1967 * failed, do not continue to try hard on the same node. Use the
1968 * node_alloc_noretry bitmap to manage this state information.
1970 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1971 alloc_try_hard = false;
1972 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1974 gfp_mask |= __GFP_RETRY_MAYFAIL;
1975 if (nid == NUMA_NO_NODE)
1976 nid = numa_mem_id();
1978 page = __alloc_pages(gfp_mask, order, nid, nmask);
1980 /* Freeze head page */
1981 if (page && !page_ref_freeze(page, 1)) {
1982 __free_pages(page, order);
1983 if (retry) { /* retry once */
1987 /* WOW! twice in a row. */
1988 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1993 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1994 * indicates an overall state change. Clear bit so that we resume
1995 * normal 'try hard' allocations.
1997 if (node_alloc_noretry && page && !alloc_try_hard)
1998 node_clear(nid, *node_alloc_noretry);
2001 * If we tried hard to get a page but failed, set bit so that
2002 * subsequent attempts will not try as hard until there is an
2003 * overall state change.
2005 if (node_alloc_noretry && !page && alloc_try_hard)
2006 node_set(nid, *node_alloc_noretry);
2009 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2013 __count_vm_event(HTLB_BUDDY_PGALLOC);
2014 return page_folio(page);
2018 * Common helper to allocate a fresh hugetlb page. All specific allocators
2019 * should use this function to get new hugetlb pages
2021 * Note that returned page is 'frozen': ref count of head page and all tail
2024 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2025 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2026 nodemask_t *node_alloc_noretry)
2028 struct folio *folio;
2032 if (hstate_is_gigantic(h))
2033 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2035 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2036 nid, nmask, node_alloc_noretry);
2039 if (hstate_is_gigantic(h)) {
2040 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2042 * Rare failure to convert pages to compound page.
2043 * Free pages and try again - ONCE!
2045 free_gigantic_folio(folio, huge_page_order(h));
2053 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2059 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2062 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2063 nodemask_t *node_alloc_noretry)
2065 struct folio *folio;
2067 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2069 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2070 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2071 nodes_allowed, node_alloc_noretry);
2073 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2082 * Remove huge page from pool from next node to free. Attempt to keep
2083 * persistent huge pages more or less balanced over allowed nodes.
2084 * This routine only 'removes' the hugetlb page. The caller must make
2085 * an additional call to free the page to low level allocators.
2086 * Called with hugetlb_lock locked.
2088 static struct page *remove_pool_huge_page(struct hstate *h,
2089 nodemask_t *nodes_allowed,
2093 struct page *page = NULL;
2094 struct folio *folio;
2096 lockdep_assert_held(&hugetlb_lock);
2097 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2099 * If we're returning unused surplus pages, only examine
2100 * nodes with surplus pages.
2102 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2103 !list_empty(&h->hugepage_freelists[node])) {
2104 page = list_entry(h->hugepage_freelists[node].next,
2106 folio = page_folio(page);
2107 remove_hugetlb_folio(h, folio, acct_surplus);
2116 * Dissolve a given free hugepage into free buddy pages. This function does
2117 * nothing for in-use hugepages and non-hugepages.
2118 * This function returns values like below:
2120 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2121 * when the system is under memory pressure and the feature of
2122 * freeing unused vmemmap pages associated with each hugetlb page
2124 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2125 * (allocated or reserved.)
2126 * 0: successfully dissolved free hugepages or the page is not a
2127 * hugepage (considered as already dissolved)
2129 int dissolve_free_huge_page(struct page *page)
2132 struct folio *folio = page_folio(page);
2135 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2136 if (!folio_test_hugetlb(folio))
2139 spin_lock_irq(&hugetlb_lock);
2140 if (!folio_test_hugetlb(folio)) {
2145 if (!folio_ref_count(folio)) {
2146 struct hstate *h = folio_hstate(folio);
2147 if (!available_huge_pages(h))
2151 * We should make sure that the page is already on the free list
2152 * when it is dissolved.
2154 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2155 spin_unlock_irq(&hugetlb_lock);
2159 * Theoretically, we should return -EBUSY when we
2160 * encounter this race. In fact, we have a chance
2161 * to successfully dissolve the page if we do a
2162 * retry. Because the race window is quite small.
2163 * If we seize this opportunity, it is an optimization
2164 * for increasing the success rate of dissolving page.
2169 remove_hugetlb_folio(h, folio, false);
2170 h->max_huge_pages--;
2171 spin_unlock_irq(&hugetlb_lock);
2174 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2175 * before freeing the page. update_and_free_hugtlb_folio will fail to
2176 * free the page if it can not allocate required vmemmap. We
2177 * need to adjust max_huge_pages if the page is not freed.
2178 * Attempt to allocate vmemmmap here so that we can take
2179 * appropriate action on failure.
2181 rc = hugetlb_vmemmap_restore(h, &folio->page);
2183 update_and_free_hugetlb_folio(h, folio, false);
2185 spin_lock_irq(&hugetlb_lock);
2186 add_hugetlb_folio(h, folio, false);
2187 h->max_huge_pages++;
2188 spin_unlock_irq(&hugetlb_lock);
2194 spin_unlock_irq(&hugetlb_lock);
2199 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2200 * make specified memory blocks removable from the system.
2201 * Note that this will dissolve a free gigantic hugepage completely, if any
2202 * part of it lies within the given range.
2203 * Also note that if dissolve_free_huge_page() returns with an error, all
2204 * free hugepages that were dissolved before that error are lost.
2206 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2214 if (!hugepages_supported())
2217 order = huge_page_order(&default_hstate);
2219 order = min(order, huge_page_order(h));
2221 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2222 page = pfn_to_page(pfn);
2223 rc = dissolve_free_huge_page(page);
2232 * Allocates a fresh surplus page from the page allocator.
2234 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2235 int nid, nodemask_t *nmask)
2237 struct folio *folio = NULL;
2239 if (hstate_is_gigantic(h))
2242 spin_lock_irq(&hugetlb_lock);
2243 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2245 spin_unlock_irq(&hugetlb_lock);
2247 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2251 spin_lock_irq(&hugetlb_lock);
2253 * We could have raced with the pool size change.
2254 * Double check that and simply deallocate the new page
2255 * if we would end up overcommiting the surpluses. Abuse
2256 * temporary page to workaround the nasty free_huge_page
2259 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2260 folio_set_hugetlb_temporary(folio);
2261 spin_unlock_irq(&hugetlb_lock);
2262 free_huge_page(&folio->page);
2266 h->surplus_huge_pages++;
2267 h->surplus_huge_pages_node[folio_nid(folio)]++;
2270 spin_unlock_irq(&hugetlb_lock);
2272 return &folio->page;
2275 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2276 int nid, nodemask_t *nmask)
2278 struct folio *folio;
2280 if (hstate_is_gigantic(h))
2283 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2287 /* fresh huge pages are frozen */
2288 folio_ref_unfreeze(folio, 1);
2290 * We do not account these pages as surplus because they are only
2291 * temporary and will be released properly on the last reference
2293 folio_set_hugetlb_temporary(folio);
2295 return &folio->page;
2299 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2302 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2303 struct vm_area_struct *vma, unsigned long addr)
2305 struct page *page = NULL;
2306 struct mempolicy *mpol;
2307 gfp_t gfp_mask = htlb_alloc_mask(h);
2309 nodemask_t *nodemask;
2311 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2312 if (mpol_is_preferred_many(mpol)) {
2313 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2315 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2316 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2318 /* Fallback to all nodes if page==NULL */
2323 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2324 mpol_cond_put(mpol);
2328 /* page migration callback function */
2329 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2330 nodemask_t *nmask, gfp_t gfp_mask)
2332 spin_lock_irq(&hugetlb_lock);
2333 if (available_huge_pages(h)) {
2336 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2338 spin_unlock_irq(&hugetlb_lock);
2342 spin_unlock_irq(&hugetlb_lock);
2344 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2347 /* mempolicy aware migration callback */
2348 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2349 unsigned long address)
2351 struct mempolicy *mpol;
2352 nodemask_t *nodemask;
2357 gfp_mask = htlb_alloc_mask(h);
2358 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2359 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2360 mpol_cond_put(mpol);
2366 * Increase the hugetlb pool such that it can accommodate a reservation
2369 static int gather_surplus_pages(struct hstate *h, long delta)
2370 __must_hold(&hugetlb_lock)
2372 LIST_HEAD(surplus_list);
2373 struct page *page, *tmp;
2376 long needed, allocated;
2377 bool alloc_ok = true;
2379 lockdep_assert_held(&hugetlb_lock);
2380 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2382 h->resv_huge_pages += delta;
2390 spin_unlock_irq(&hugetlb_lock);
2391 for (i = 0; i < needed; i++) {
2392 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2393 NUMA_NO_NODE, NULL);
2398 list_add(&page->lru, &surplus_list);
2404 * After retaking hugetlb_lock, we need to recalculate 'needed'
2405 * because either resv_huge_pages or free_huge_pages may have changed.
2407 spin_lock_irq(&hugetlb_lock);
2408 needed = (h->resv_huge_pages + delta) -
2409 (h->free_huge_pages + allocated);
2414 * We were not able to allocate enough pages to
2415 * satisfy the entire reservation so we free what
2416 * we've allocated so far.
2421 * The surplus_list now contains _at_least_ the number of extra pages
2422 * needed to accommodate the reservation. Add the appropriate number
2423 * of pages to the hugetlb pool and free the extras back to the buddy
2424 * allocator. Commit the entire reservation here to prevent another
2425 * process from stealing the pages as they are added to the pool but
2426 * before they are reserved.
2428 needed += allocated;
2429 h->resv_huge_pages += delta;
2432 /* Free the needed pages to the hugetlb pool */
2433 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2436 /* Add the page to the hugetlb allocator */
2437 enqueue_hugetlb_folio(h, page_folio(page));
2440 spin_unlock_irq(&hugetlb_lock);
2443 * Free unnecessary surplus pages to the buddy allocator.
2444 * Pages have no ref count, call free_huge_page directly.
2446 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2447 free_huge_page(page);
2448 spin_lock_irq(&hugetlb_lock);
2454 * This routine has two main purposes:
2455 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2456 * in unused_resv_pages. This corresponds to the prior adjustments made
2457 * to the associated reservation map.
2458 * 2) Free any unused surplus pages that may have been allocated to satisfy
2459 * the reservation. As many as unused_resv_pages may be freed.
2461 static void return_unused_surplus_pages(struct hstate *h,
2462 unsigned long unused_resv_pages)
2464 unsigned long nr_pages;
2466 LIST_HEAD(page_list);
2468 lockdep_assert_held(&hugetlb_lock);
2469 /* Uncommit the reservation */
2470 h->resv_huge_pages -= unused_resv_pages;
2472 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2476 * Part (or even all) of the reservation could have been backed
2477 * by pre-allocated pages. Only free surplus pages.
2479 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2482 * We want to release as many surplus pages as possible, spread
2483 * evenly across all nodes with memory. Iterate across these nodes
2484 * until we can no longer free unreserved surplus pages. This occurs
2485 * when the nodes with surplus pages have no free pages.
2486 * remove_pool_huge_page() will balance the freed pages across the
2487 * on-line nodes with memory and will handle the hstate accounting.
2489 while (nr_pages--) {
2490 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2494 list_add(&page->lru, &page_list);
2498 spin_unlock_irq(&hugetlb_lock);
2499 update_and_free_pages_bulk(h, &page_list);
2500 spin_lock_irq(&hugetlb_lock);
2505 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2506 * are used by the huge page allocation routines to manage reservations.
2508 * vma_needs_reservation is called to determine if the huge page at addr
2509 * within the vma has an associated reservation. If a reservation is
2510 * needed, the value 1 is returned. The caller is then responsible for
2511 * managing the global reservation and subpool usage counts. After
2512 * the huge page has been allocated, vma_commit_reservation is called
2513 * to add the page to the reservation map. If the page allocation fails,
2514 * the reservation must be ended instead of committed. vma_end_reservation
2515 * is called in such cases.
2517 * In the normal case, vma_commit_reservation returns the same value
2518 * as the preceding vma_needs_reservation call. The only time this
2519 * is not the case is if a reserve map was changed between calls. It
2520 * is the responsibility of the caller to notice the difference and
2521 * take appropriate action.
2523 * vma_add_reservation is used in error paths where a reservation must
2524 * be restored when a newly allocated huge page must be freed. It is
2525 * to be called after calling vma_needs_reservation to determine if a
2526 * reservation exists.
2528 * vma_del_reservation is used in error paths where an entry in the reserve
2529 * map was created during huge page allocation and must be removed. It is to
2530 * be called after calling vma_needs_reservation to determine if a reservation
2533 enum vma_resv_mode {
2540 static long __vma_reservation_common(struct hstate *h,
2541 struct vm_area_struct *vma, unsigned long addr,
2542 enum vma_resv_mode mode)
2544 struct resv_map *resv;
2547 long dummy_out_regions_needed;
2549 resv = vma_resv_map(vma);
2553 idx = vma_hugecache_offset(h, vma, addr);
2555 case VMA_NEEDS_RESV:
2556 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2557 /* We assume that vma_reservation_* routines always operate on
2558 * 1 page, and that adding to resv map a 1 page entry can only
2559 * ever require 1 region.
2561 VM_BUG_ON(dummy_out_regions_needed != 1);
2563 case VMA_COMMIT_RESV:
2564 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2565 /* region_add calls of range 1 should never fail. */
2569 region_abort(resv, idx, idx + 1, 1);
2573 if (vma->vm_flags & VM_MAYSHARE) {
2574 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2575 /* region_add calls of range 1 should never fail. */
2578 region_abort(resv, idx, idx + 1, 1);
2579 ret = region_del(resv, idx, idx + 1);
2583 if (vma->vm_flags & VM_MAYSHARE) {
2584 region_abort(resv, idx, idx + 1, 1);
2585 ret = region_del(resv, idx, idx + 1);
2587 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2588 /* region_add calls of range 1 should never fail. */
2596 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2599 * We know private mapping must have HPAGE_RESV_OWNER set.
2601 * In most cases, reserves always exist for private mappings.
2602 * However, a file associated with mapping could have been
2603 * hole punched or truncated after reserves were consumed.
2604 * As subsequent fault on such a range will not use reserves.
2605 * Subtle - The reserve map for private mappings has the
2606 * opposite meaning than that of shared mappings. If NO
2607 * entry is in the reserve map, it means a reservation exists.
2608 * If an entry exists in the reserve map, it means the
2609 * reservation has already been consumed. As a result, the
2610 * return value of this routine is the opposite of the
2611 * value returned from reserve map manipulation routines above.
2620 static long vma_needs_reservation(struct hstate *h,
2621 struct vm_area_struct *vma, unsigned long addr)
2623 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2626 static long vma_commit_reservation(struct hstate *h,
2627 struct vm_area_struct *vma, unsigned long addr)
2629 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2632 static void vma_end_reservation(struct hstate *h,
2633 struct vm_area_struct *vma, unsigned long addr)
2635 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2638 static long vma_add_reservation(struct hstate *h,
2639 struct vm_area_struct *vma, unsigned long addr)
2641 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2644 static long vma_del_reservation(struct hstate *h,
2645 struct vm_area_struct *vma, unsigned long addr)
2647 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2651 * This routine is called to restore reservation information on error paths.
2652 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2653 * the hugetlb mutex should remain held when calling this routine.
2655 * It handles two specific cases:
2656 * 1) A reservation was in place and the page consumed the reservation.
2657 * HPageRestoreReserve is set in the page.
2658 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2659 * not set. However, alloc_huge_page always updates the reserve map.
2661 * In case 1, free_huge_page later in the error path will increment the
2662 * global reserve count. But, free_huge_page does not have enough context
2663 * to adjust the reservation map. This case deals primarily with private
2664 * mappings. Adjust the reserve map here to be consistent with global
2665 * reserve count adjustments to be made by free_huge_page. Make sure the
2666 * reserve map indicates there is a reservation present.
2668 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2670 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2671 unsigned long address, struct page *page)
2673 long rc = vma_needs_reservation(h, vma, address);
2675 if (HPageRestoreReserve(page)) {
2676 if (unlikely(rc < 0))
2678 * Rare out of memory condition in reserve map
2679 * manipulation. Clear HPageRestoreReserve so that
2680 * global reserve count will not be incremented
2681 * by free_huge_page. This will make it appear
2682 * as though the reservation for this page was
2683 * consumed. This may prevent the task from
2684 * faulting in the page at a later time. This
2685 * is better than inconsistent global huge page
2686 * accounting of reserve counts.
2688 ClearHPageRestoreReserve(page);
2690 (void)vma_add_reservation(h, vma, address);
2692 vma_end_reservation(h, vma, address);
2696 * This indicates there is an entry in the reserve map
2697 * not added by alloc_huge_page. We know it was added
2698 * before the alloc_huge_page call, otherwise
2699 * HPageRestoreReserve would be set on the page.
2700 * Remove the entry so that a subsequent allocation
2701 * does not consume a reservation.
2703 rc = vma_del_reservation(h, vma, address);
2706 * VERY rare out of memory condition. Since
2707 * we can not delete the entry, set
2708 * HPageRestoreReserve so that the reserve
2709 * count will be incremented when the page
2710 * is freed. This reserve will be consumed
2711 * on a subsequent allocation.
2713 SetHPageRestoreReserve(page);
2714 } else if (rc < 0) {
2716 * Rare out of memory condition from
2717 * vma_needs_reservation call. Memory allocation is
2718 * only attempted if a new entry is needed. Therefore,
2719 * this implies there is not an entry in the
2722 * For shared mappings, no entry in the map indicates
2723 * no reservation. We are done.
2725 if (!(vma->vm_flags & VM_MAYSHARE))
2727 * For private mappings, no entry indicates
2728 * a reservation is present. Since we can
2729 * not add an entry, set SetHPageRestoreReserve
2730 * on the page so reserve count will be
2731 * incremented when freed. This reserve will
2732 * be consumed on a subsequent allocation.
2734 SetHPageRestoreReserve(page);
2737 * No reservation present, do nothing
2739 vma_end_reservation(h, vma, address);
2744 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2746 * @h: struct hstate old page belongs to
2747 * @old_folio: Old folio to dissolve
2748 * @list: List to isolate the page in case we need to
2749 * Returns 0 on success, otherwise negated error.
2751 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2752 struct folio *old_folio, struct list_head *list)
2754 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2755 int nid = folio_nid(old_folio);
2756 struct folio *new_folio;
2760 * Before dissolving the folio, we need to allocate a new one for the
2761 * pool to remain stable. Here, we allocate the folio and 'prep' it
2762 * by doing everything but actually updating counters and adding to
2763 * the pool. This simplifies and let us do most of the processing
2766 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2769 __prep_new_hugetlb_folio(h, new_folio);
2772 spin_lock_irq(&hugetlb_lock);
2773 if (!folio_test_hugetlb(old_folio)) {
2775 * Freed from under us. Drop new_folio too.
2778 } else if (folio_ref_count(old_folio)) {
2780 * Someone has grabbed the folio, try to isolate it here.
2781 * Fail with -EBUSY if not possible.
2783 spin_unlock_irq(&hugetlb_lock);
2784 ret = isolate_hugetlb(&old_folio->page, list);
2785 spin_lock_irq(&hugetlb_lock);
2787 } else if (!folio_test_hugetlb_freed(old_folio)) {
2789 * Folio's refcount is 0 but it has not been enqueued in the
2790 * freelist yet. Race window is small, so we can succeed here if
2793 spin_unlock_irq(&hugetlb_lock);
2798 * Ok, old_folio is still a genuine free hugepage. Remove it from
2799 * the freelist and decrease the counters. These will be
2800 * incremented again when calling __prep_account_new_huge_page()
2801 * and enqueue_hugetlb_folio() for new_folio. The counters will
2802 * remain stable since this happens under the lock.
2804 remove_hugetlb_folio(h, old_folio, false);
2807 * Ref count on new_folio is already zero as it was dropped
2808 * earlier. It can be directly added to the pool free list.
2810 __prep_account_new_huge_page(h, nid);
2811 enqueue_hugetlb_folio(h, new_folio);
2814 * Folio has been replaced, we can safely free the old one.
2816 spin_unlock_irq(&hugetlb_lock);
2817 update_and_free_hugetlb_folio(h, old_folio, false);
2823 spin_unlock_irq(&hugetlb_lock);
2824 /* Folio has a zero ref count, but needs a ref to be freed */
2825 folio_ref_unfreeze(new_folio, 1);
2826 update_and_free_hugetlb_folio(h, new_folio, false);
2831 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2834 struct folio *folio = page_folio(page);
2838 * The page might have been dissolved from under our feet, so make sure
2839 * to carefully check the state under the lock.
2840 * Return success when racing as if we dissolved the page ourselves.
2842 spin_lock_irq(&hugetlb_lock);
2843 if (folio_test_hugetlb(folio)) {
2844 h = folio_hstate(folio);
2846 spin_unlock_irq(&hugetlb_lock);
2849 spin_unlock_irq(&hugetlb_lock);
2852 * Fence off gigantic pages as there is a cyclic dependency between
2853 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2854 * of bailing out right away without further retrying.
2856 if (hstate_is_gigantic(h))
2859 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
2861 else if (!folio_ref_count(folio))
2862 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2867 struct page *alloc_huge_page(struct vm_area_struct *vma,
2868 unsigned long addr, int avoid_reserve)
2870 struct hugepage_subpool *spool = subpool_vma(vma);
2871 struct hstate *h = hstate_vma(vma);
2873 struct folio *folio;
2874 long map_chg, map_commit;
2877 struct hugetlb_cgroup *h_cg;
2878 bool deferred_reserve;
2880 idx = hstate_index(h);
2882 * Examine the region/reserve map to determine if the process
2883 * has a reservation for the page to be allocated. A return
2884 * code of zero indicates a reservation exists (no change).
2886 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2888 return ERR_PTR(-ENOMEM);
2891 * Processes that did not create the mapping will have no
2892 * reserves as indicated by the region/reserve map. Check
2893 * that the allocation will not exceed the subpool limit.
2894 * Allocations for MAP_NORESERVE mappings also need to be
2895 * checked against any subpool limit.
2897 if (map_chg || avoid_reserve) {
2898 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2900 vma_end_reservation(h, vma, addr);
2901 return ERR_PTR(-ENOSPC);
2905 * Even though there was no reservation in the region/reserve
2906 * map, there could be reservations associated with the
2907 * subpool that can be used. This would be indicated if the
2908 * return value of hugepage_subpool_get_pages() is zero.
2909 * However, if avoid_reserve is specified we still avoid even
2910 * the subpool reservations.
2916 /* If this allocation is not consuming a reservation, charge it now.
2918 deferred_reserve = map_chg || avoid_reserve;
2919 if (deferred_reserve) {
2920 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2921 idx, pages_per_huge_page(h), &h_cg);
2923 goto out_subpool_put;
2926 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2928 goto out_uncharge_cgroup_reservation;
2930 spin_lock_irq(&hugetlb_lock);
2932 * glb_chg is passed to indicate whether or not a page must be taken
2933 * from the global free pool (global change). gbl_chg == 0 indicates
2934 * a reservation exists for the allocation.
2936 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2938 spin_unlock_irq(&hugetlb_lock);
2939 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2941 goto out_uncharge_cgroup;
2942 spin_lock_irq(&hugetlb_lock);
2943 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2944 SetHPageRestoreReserve(page);
2945 h->resv_huge_pages--;
2947 list_add(&page->lru, &h->hugepage_activelist);
2948 set_page_refcounted(page);
2951 folio = page_folio(page);
2952 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2953 /* If allocation is not consuming a reservation, also store the
2954 * hugetlb_cgroup pointer on the page.
2956 if (deferred_reserve) {
2957 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2961 spin_unlock_irq(&hugetlb_lock);
2963 hugetlb_set_page_subpool(page, spool);
2965 map_commit = vma_commit_reservation(h, vma, addr);
2966 if (unlikely(map_chg > map_commit)) {
2968 * The page was added to the reservation map between
2969 * vma_needs_reservation and vma_commit_reservation.
2970 * This indicates a race with hugetlb_reserve_pages.
2971 * Adjust for the subpool count incremented above AND
2972 * in hugetlb_reserve_pages for the same page. Also,
2973 * the reservation count added in hugetlb_reserve_pages
2974 * no longer applies.
2978 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2979 hugetlb_acct_memory(h, -rsv_adjust);
2980 if (deferred_reserve)
2981 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2982 pages_per_huge_page(h), folio);
2986 out_uncharge_cgroup:
2987 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2988 out_uncharge_cgroup_reservation:
2989 if (deferred_reserve)
2990 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2993 if (map_chg || avoid_reserve)
2994 hugepage_subpool_put_pages(spool, 1);
2995 vma_end_reservation(h, vma, addr);
2996 return ERR_PTR(-ENOSPC);
2999 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3000 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3001 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3003 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3006 /* do node specific alloc */
3007 if (nid != NUMA_NO_NODE) {
3008 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3009 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3014 /* allocate from next node when distributing huge pages */
3015 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3016 m = memblock_alloc_try_nid_raw(
3017 huge_page_size(h), huge_page_size(h),
3018 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3020 * Use the beginning of the huge page to store the
3021 * huge_bootmem_page struct (until gather_bootmem
3022 * puts them into the mem_map).
3030 /* Put them into a private list first because mem_map is not up yet */
3031 INIT_LIST_HEAD(&m->list);
3032 list_add(&m->list, &huge_boot_pages);
3038 * Put bootmem huge pages into the standard lists after mem_map is up.
3039 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3041 static void __init gather_bootmem_prealloc(void)
3043 struct huge_bootmem_page *m;
3045 list_for_each_entry(m, &huge_boot_pages, list) {
3046 struct page *page = virt_to_page(m);
3047 struct folio *folio = page_folio(page);
3048 struct hstate *h = m->hstate;
3050 VM_BUG_ON(!hstate_is_gigantic(h));
3051 WARN_ON(folio_ref_count(folio) != 1);
3052 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3053 WARN_ON(folio_test_reserved(folio));
3054 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3055 free_huge_page(page); /* add to the hugepage allocator */
3057 /* VERY unlikely inflated ref count on a tail page */
3058 free_gigantic_folio(folio, huge_page_order(h));
3062 * We need to restore the 'stolen' pages to totalram_pages
3063 * in order to fix confusing memory reports from free(1) and
3064 * other side-effects, like CommitLimit going negative.
3066 adjust_managed_page_count(page, pages_per_huge_page(h));
3070 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3075 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3076 if (hstate_is_gigantic(h)) {
3077 if (!alloc_bootmem_huge_page(h, nid))
3080 struct folio *folio;
3081 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3083 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3084 &node_states[N_MEMORY], NULL);
3087 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3091 if (i == h->max_huge_pages_node[nid])
3094 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3095 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3096 h->max_huge_pages_node[nid], buf, nid, i);
3097 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3098 h->max_huge_pages_node[nid] = i;
3101 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3104 nodemask_t *node_alloc_noretry;
3105 bool node_specific_alloc = false;
3107 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3108 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3109 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3113 /* do node specific alloc */
3114 for_each_online_node(i) {
3115 if (h->max_huge_pages_node[i] > 0) {
3116 hugetlb_hstate_alloc_pages_onenode(h, i);
3117 node_specific_alloc = true;
3121 if (node_specific_alloc)
3124 /* below will do all node balanced alloc */
3125 if (!hstate_is_gigantic(h)) {
3127 * Bit mask controlling how hard we retry per-node allocations.
3128 * Ignore errors as lower level routines can deal with
3129 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3130 * time, we are likely in bigger trouble.
3132 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3135 /* allocations done at boot time */
3136 node_alloc_noretry = NULL;
3139 /* bit mask controlling how hard we retry per-node allocations */
3140 if (node_alloc_noretry)
3141 nodes_clear(*node_alloc_noretry);
3143 for (i = 0; i < h->max_huge_pages; ++i) {
3144 if (hstate_is_gigantic(h)) {
3145 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3147 } else if (!alloc_pool_huge_page(h,
3148 &node_states[N_MEMORY],
3149 node_alloc_noretry))
3153 if (i < h->max_huge_pages) {
3156 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3157 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3158 h->max_huge_pages, buf, i);
3159 h->max_huge_pages = i;
3161 kfree(node_alloc_noretry);
3164 static void __init hugetlb_init_hstates(void)
3166 struct hstate *h, *h2;
3168 for_each_hstate(h) {
3169 /* oversize hugepages were init'ed in early boot */
3170 if (!hstate_is_gigantic(h))
3171 hugetlb_hstate_alloc_pages(h);
3174 * Set demote order for each hstate. Note that
3175 * h->demote_order is initially 0.
3176 * - We can not demote gigantic pages if runtime freeing
3177 * is not supported, so skip this.
3178 * - If CMA allocation is possible, we can not demote
3179 * HUGETLB_PAGE_ORDER or smaller size pages.
3181 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3183 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3185 for_each_hstate(h2) {
3188 if (h2->order < h->order &&
3189 h2->order > h->demote_order)
3190 h->demote_order = h2->order;
3195 static void __init report_hugepages(void)
3199 for_each_hstate(h) {
3202 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3203 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3204 buf, h->free_huge_pages);
3205 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3206 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3210 #ifdef CONFIG_HIGHMEM
3211 static void try_to_free_low(struct hstate *h, unsigned long count,
3212 nodemask_t *nodes_allowed)
3215 LIST_HEAD(page_list);
3217 lockdep_assert_held(&hugetlb_lock);
3218 if (hstate_is_gigantic(h))
3222 * Collect pages to be freed on a list, and free after dropping lock
3224 for_each_node_mask(i, *nodes_allowed) {
3225 struct page *page, *next;
3226 struct list_head *freel = &h->hugepage_freelists[i];
3227 list_for_each_entry_safe(page, next, freel, lru) {
3228 if (count >= h->nr_huge_pages)
3230 if (PageHighMem(page))
3232 remove_hugetlb_folio(h, page_folio(page), false);
3233 list_add(&page->lru, &page_list);
3238 spin_unlock_irq(&hugetlb_lock);
3239 update_and_free_pages_bulk(h, &page_list);
3240 spin_lock_irq(&hugetlb_lock);
3243 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3244 nodemask_t *nodes_allowed)
3250 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3251 * balanced by operating on them in a round-robin fashion.
3252 * Returns 1 if an adjustment was made.
3254 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3259 lockdep_assert_held(&hugetlb_lock);
3260 VM_BUG_ON(delta != -1 && delta != 1);
3263 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3264 if (h->surplus_huge_pages_node[node])
3268 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3269 if (h->surplus_huge_pages_node[node] <
3270 h->nr_huge_pages_node[node])
3277 h->surplus_huge_pages += delta;
3278 h->surplus_huge_pages_node[node] += delta;
3282 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3283 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3284 nodemask_t *nodes_allowed)
3286 unsigned long min_count, ret;
3288 LIST_HEAD(page_list);
3289 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3292 * Bit mask controlling how hard we retry per-node allocations.
3293 * If we can not allocate the bit mask, do not attempt to allocate
3294 * the requested huge pages.
3296 if (node_alloc_noretry)
3297 nodes_clear(*node_alloc_noretry);
3302 * resize_lock mutex prevents concurrent adjustments to number of
3303 * pages in hstate via the proc/sysfs interfaces.
3305 mutex_lock(&h->resize_lock);
3306 flush_free_hpage_work(h);
3307 spin_lock_irq(&hugetlb_lock);
3310 * Check for a node specific request.
3311 * Changing node specific huge page count may require a corresponding
3312 * change to the global count. In any case, the passed node mask
3313 * (nodes_allowed) will restrict alloc/free to the specified node.
3315 if (nid != NUMA_NO_NODE) {
3316 unsigned long old_count = count;
3318 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3320 * User may have specified a large count value which caused the
3321 * above calculation to overflow. In this case, they wanted
3322 * to allocate as many huge pages as possible. Set count to
3323 * largest possible value to align with their intention.
3325 if (count < old_count)
3330 * Gigantic pages runtime allocation depend on the capability for large
3331 * page range allocation.
3332 * If the system does not provide this feature, return an error when
3333 * the user tries to allocate gigantic pages but let the user free the
3334 * boottime allocated gigantic pages.
3336 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3337 if (count > persistent_huge_pages(h)) {
3338 spin_unlock_irq(&hugetlb_lock);
3339 mutex_unlock(&h->resize_lock);
3340 NODEMASK_FREE(node_alloc_noretry);
3343 /* Fall through to decrease pool */
3347 * Increase the pool size
3348 * First take pages out of surplus state. Then make up the
3349 * remaining difference by allocating fresh huge pages.
3351 * We might race with alloc_surplus_huge_page() here and be unable
3352 * to convert a surplus huge page to a normal huge page. That is
3353 * not critical, though, it just means the overall size of the
3354 * pool might be one hugepage larger than it needs to be, but
3355 * within all the constraints specified by the sysctls.
3357 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3358 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3362 while (count > persistent_huge_pages(h)) {
3364 * If this allocation races such that we no longer need the
3365 * page, free_huge_page will handle it by freeing the page
3366 * and reducing the surplus.
3368 spin_unlock_irq(&hugetlb_lock);
3370 /* yield cpu to avoid soft lockup */
3373 ret = alloc_pool_huge_page(h, nodes_allowed,
3374 node_alloc_noretry);
3375 spin_lock_irq(&hugetlb_lock);
3379 /* Bail for signals. Probably ctrl-c from user */
3380 if (signal_pending(current))
3385 * Decrease the pool size
3386 * First return free pages to the buddy allocator (being careful
3387 * to keep enough around to satisfy reservations). Then place
3388 * pages into surplus state as needed so the pool will shrink
3389 * to the desired size as pages become free.
3391 * By placing pages into the surplus state independent of the
3392 * overcommit value, we are allowing the surplus pool size to
3393 * exceed overcommit. There are few sane options here. Since
3394 * alloc_surplus_huge_page() is checking the global counter,
3395 * though, we'll note that we're not allowed to exceed surplus
3396 * and won't grow the pool anywhere else. Not until one of the
3397 * sysctls are changed, or the surplus pages go out of use.
3399 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3400 min_count = max(count, min_count);
3401 try_to_free_low(h, min_count, nodes_allowed);
3404 * Collect pages to be removed on list without dropping lock
3406 while (min_count < persistent_huge_pages(h)) {
3407 page = remove_pool_huge_page(h, nodes_allowed, 0);
3411 list_add(&page->lru, &page_list);
3413 /* free the pages after dropping lock */
3414 spin_unlock_irq(&hugetlb_lock);
3415 update_and_free_pages_bulk(h, &page_list);
3416 flush_free_hpage_work(h);
3417 spin_lock_irq(&hugetlb_lock);
3419 while (count < persistent_huge_pages(h)) {
3420 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3424 h->max_huge_pages = persistent_huge_pages(h);
3425 spin_unlock_irq(&hugetlb_lock);
3426 mutex_unlock(&h->resize_lock);
3428 NODEMASK_FREE(node_alloc_noretry);
3433 static int demote_free_huge_page(struct hstate *h, struct page *page)
3435 int i, nid = page_to_nid(page);
3436 struct hstate *target_hstate;
3437 struct folio *folio = page_folio(page);
3438 struct page *subpage;
3441 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3443 remove_hugetlb_folio_for_demote(h, folio, false);
3444 spin_unlock_irq(&hugetlb_lock);
3446 rc = hugetlb_vmemmap_restore(h, page);
3448 /* Allocation of vmemmmap failed, we can not demote page */
3449 spin_lock_irq(&hugetlb_lock);
3450 set_page_refcounted(page);
3451 add_hugetlb_folio(h, page_folio(page), false);
3456 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3457 * sizes as it will not ref count pages.
3459 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3462 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3463 * Without the mutex, pages added to target hstate could be marked
3466 * Note that we already hold h->resize_lock. To prevent deadlock,
3467 * use the convention of always taking larger size hstate mutex first.
3469 mutex_lock(&target_hstate->resize_lock);
3470 for (i = 0; i < pages_per_huge_page(h);
3471 i += pages_per_huge_page(target_hstate)) {
3472 subpage = nth_page(page, i);
3473 folio = page_folio(subpage);
3474 if (hstate_is_gigantic(target_hstate))
3475 prep_compound_gigantic_folio_for_demote(folio,
3476 target_hstate->order);
3478 prep_compound_page(subpage, target_hstate->order);
3479 set_page_private(subpage, 0);
3480 prep_new_hugetlb_folio(target_hstate, folio, nid);
3481 free_huge_page(subpage);
3483 mutex_unlock(&target_hstate->resize_lock);
3485 spin_lock_irq(&hugetlb_lock);
3488 * Not absolutely necessary, but for consistency update max_huge_pages
3489 * based on pool changes for the demoted page.
3491 h->max_huge_pages--;
3492 target_hstate->max_huge_pages +=
3493 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3498 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3499 __must_hold(&hugetlb_lock)
3504 lockdep_assert_held(&hugetlb_lock);
3506 /* We should never get here if no demote order */
3507 if (!h->demote_order) {
3508 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3509 return -EINVAL; /* internal error */
3512 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3513 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3514 if (PageHWPoison(page))
3517 return demote_free_huge_page(h, page);
3522 * Only way to get here is if all pages on free lists are poisoned.
3523 * Return -EBUSY so that caller will not retry.
3528 #define HSTATE_ATTR_RO(_name) \
3529 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3531 #define HSTATE_ATTR_WO(_name) \
3532 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3534 #define HSTATE_ATTR(_name) \
3535 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3537 static struct kobject *hugepages_kobj;
3538 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3540 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3542 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3546 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3547 if (hstate_kobjs[i] == kobj) {
3549 *nidp = NUMA_NO_NODE;
3553 return kobj_to_node_hstate(kobj, nidp);
3556 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3557 struct kobj_attribute *attr, char *buf)
3560 unsigned long nr_huge_pages;
3563 h = kobj_to_hstate(kobj, &nid);
3564 if (nid == NUMA_NO_NODE)
3565 nr_huge_pages = h->nr_huge_pages;
3567 nr_huge_pages = h->nr_huge_pages_node[nid];
3569 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3572 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3573 struct hstate *h, int nid,
3574 unsigned long count, size_t len)
3577 nodemask_t nodes_allowed, *n_mask;
3579 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3582 if (nid == NUMA_NO_NODE) {
3584 * global hstate attribute
3586 if (!(obey_mempolicy &&
3587 init_nodemask_of_mempolicy(&nodes_allowed)))
3588 n_mask = &node_states[N_MEMORY];
3590 n_mask = &nodes_allowed;
3593 * Node specific request. count adjustment happens in
3594 * set_max_huge_pages() after acquiring hugetlb_lock.
3596 init_nodemask_of_node(&nodes_allowed, nid);
3597 n_mask = &nodes_allowed;
3600 err = set_max_huge_pages(h, count, nid, n_mask);
3602 return err ? err : len;
3605 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3606 struct kobject *kobj, const char *buf,
3610 unsigned long count;
3614 err = kstrtoul(buf, 10, &count);
3618 h = kobj_to_hstate(kobj, &nid);
3619 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3622 static ssize_t nr_hugepages_show(struct kobject *kobj,
3623 struct kobj_attribute *attr, char *buf)
3625 return nr_hugepages_show_common(kobj, attr, buf);
3628 static ssize_t nr_hugepages_store(struct kobject *kobj,
3629 struct kobj_attribute *attr, const char *buf, size_t len)
3631 return nr_hugepages_store_common(false, kobj, buf, len);
3633 HSTATE_ATTR(nr_hugepages);
3638 * hstate attribute for optionally mempolicy-based constraint on persistent
3639 * huge page alloc/free.
3641 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3642 struct kobj_attribute *attr,
3645 return nr_hugepages_show_common(kobj, attr, buf);
3648 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3649 struct kobj_attribute *attr, const char *buf, size_t len)
3651 return nr_hugepages_store_common(true, kobj, buf, len);
3653 HSTATE_ATTR(nr_hugepages_mempolicy);
3657 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3658 struct kobj_attribute *attr, char *buf)
3660 struct hstate *h = kobj_to_hstate(kobj, NULL);
3661 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3664 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3665 struct kobj_attribute *attr, const char *buf, size_t count)
3668 unsigned long input;
3669 struct hstate *h = kobj_to_hstate(kobj, NULL);
3671 if (hstate_is_gigantic(h))
3674 err = kstrtoul(buf, 10, &input);
3678 spin_lock_irq(&hugetlb_lock);
3679 h->nr_overcommit_huge_pages = input;
3680 spin_unlock_irq(&hugetlb_lock);
3684 HSTATE_ATTR(nr_overcommit_hugepages);
3686 static ssize_t free_hugepages_show(struct kobject *kobj,
3687 struct kobj_attribute *attr, char *buf)
3690 unsigned long free_huge_pages;
3693 h = kobj_to_hstate(kobj, &nid);
3694 if (nid == NUMA_NO_NODE)
3695 free_huge_pages = h->free_huge_pages;
3697 free_huge_pages = h->free_huge_pages_node[nid];
3699 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3701 HSTATE_ATTR_RO(free_hugepages);
3703 static ssize_t resv_hugepages_show(struct kobject *kobj,
3704 struct kobj_attribute *attr, char *buf)
3706 struct hstate *h = kobj_to_hstate(kobj, NULL);
3707 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3709 HSTATE_ATTR_RO(resv_hugepages);
3711 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3712 struct kobj_attribute *attr, char *buf)
3715 unsigned long surplus_huge_pages;
3718 h = kobj_to_hstate(kobj, &nid);
3719 if (nid == NUMA_NO_NODE)
3720 surplus_huge_pages = h->surplus_huge_pages;
3722 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3724 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3726 HSTATE_ATTR_RO(surplus_hugepages);
3728 static ssize_t demote_store(struct kobject *kobj,
3729 struct kobj_attribute *attr, const char *buf, size_t len)
3731 unsigned long nr_demote;
3732 unsigned long nr_available;
3733 nodemask_t nodes_allowed, *n_mask;
3738 err = kstrtoul(buf, 10, &nr_demote);
3741 h = kobj_to_hstate(kobj, &nid);
3743 if (nid != NUMA_NO_NODE) {
3744 init_nodemask_of_node(&nodes_allowed, nid);
3745 n_mask = &nodes_allowed;
3747 n_mask = &node_states[N_MEMORY];
3750 /* Synchronize with other sysfs operations modifying huge pages */
3751 mutex_lock(&h->resize_lock);
3752 spin_lock_irq(&hugetlb_lock);
3756 * Check for available pages to demote each time thorough the
3757 * loop as demote_pool_huge_page will drop hugetlb_lock.
3759 if (nid != NUMA_NO_NODE)
3760 nr_available = h->free_huge_pages_node[nid];
3762 nr_available = h->free_huge_pages;
3763 nr_available -= h->resv_huge_pages;
3767 err = demote_pool_huge_page(h, n_mask);
3774 spin_unlock_irq(&hugetlb_lock);
3775 mutex_unlock(&h->resize_lock);
3781 HSTATE_ATTR_WO(demote);
3783 static ssize_t demote_size_show(struct kobject *kobj,
3784 struct kobj_attribute *attr, char *buf)
3786 struct hstate *h = kobj_to_hstate(kobj, NULL);
3787 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3789 return sysfs_emit(buf, "%lukB\n", demote_size);
3792 static ssize_t demote_size_store(struct kobject *kobj,
3793 struct kobj_attribute *attr,
3794 const char *buf, size_t count)
3796 struct hstate *h, *demote_hstate;
3797 unsigned long demote_size;
3798 unsigned int demote_order;
3800 demote_size = (unsigned long)memparse(buf, NULL);
3802 demote_hstate = size_to_hstate(demote_size);
3805 demote_order = demote_hstate->order;
3806 if (demote_order < HUGETLB_PAGE_ORDER)
3809 /* demote order must be smaller than hstate order */
3810 h = kobj_to_hstate(kobj, NULL);
3811 if (demote_order >= h->order)
3814 /* resize_lock synchronizes access to demote size and writes */
3815 mutex_lock(&h->resize_lock);
3816 h->demote_order = demote_order;
3817 mutex_unlock(&h->resize_lock);
3821 HSTATE_ATTR(demote_size);
3823 static struct attribute *hstate_attrs[] = {
3824 &nr_hugepages_attr.attr,
3825 &nr_overcommit_hugepages_attr.attr,
3826 &free_hugepages_attr.attr,
3827 &resv_hugepages_attr.attr,
3828 &surplus_hugepages_attr.attr,
3830 &nr_hugepages_mempolicy_attr.attr,
3835 static const struct attribute_group hstate_attr_group = {
3836 .attrs = hstate_attrs,
3839 static struct attribute *hstate_demote_attrs[] = {
3840 &demote_size_attr.attr,
3845 static const struct attribute_group hstate_demote_attr_group = {
3846 .attrs = hstate_demote_attrs,
3849 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3850 struct kobject **hstate_kobjs,
3851 const struct attribute_group *hstate_attr_group)
3854 int hi = hstate_index(h);
3856 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3857 if (!hstate_kobjs[hi])
3860 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3862 kobject_put(hstate_kobjs[hi]);
3863 hstate_kobjs[hi] = NULL;
3867 if (h->demote_order) {
3868 retval = sysfs_create_group(hstate_kobjs[hi],
3869 &hstate_demote_attr_group);
3871 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3872 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3873 kobject_put(hstate_kobjs[hi]);
3874 hstate_kobjs[hi] = NULL;
3883 static bool hugetlb_sysfs_initialized __ro_after_init;
3886 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3887 * with node devices in node_devices[] using a parallel array. The array
3888 * index of a node device or _hstate == node id.
3889 * This is here to avoid any static dependency of the node device driver, in
3890 * the base kernel, on the hugetlb module.
3892 struct node_hstate {
3893 struct kobject *hugepages_kobj;
3894 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3896 static struct node_hstate node_hstates[MAX_NUMNODES];
3899 * A subset of global hstate attributes for node devices
3901 static struct attribute *per_node_hstate_attrs[] = {
3902 &nr_hugepages_attr.attr,
3903 &free_hugepages_attr.attr,
3904 &surplus_hugepages_attr.attr,
3908 static const struct attribute_group per_node_hstate_attr_group = {
3909 .attrs = per_node_hstate_attrs,
3913 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3914 * Returns node id via non-NULL nidp.
3916 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3920 for (nid = 0; nid < nr_node_ids; nid++) {
3921 struct node_hstate *nhs = &node_hstates[nid];
3923 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3924 if (nhs->hstate_kobjs[i] == kobj) {
3936 * Unregister hstate attributes from a single node device.
3937 * No-op if no hstate attributes attached.
3939 void hugetlb_unregister_node(struct node *node)
3942 struct node_hstate *nhs = &node_hstates[node->dev.id];
3944 if (!nhs->hugepages_kobj)
3945 return; /* no hstate attributes */
3947 for_each_hstate(h) {
3948 int idx = hstate_index(h);
3949 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3953 if (h->demote_order)
3954 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3955 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3956 kobject_put(hstate_kobj);
3957 nhs->hstate_kobjs[idx] = NULL;
3960 kobject_put(nhs->hugepages_kobj);
3961 nhs->hugepages_kobj = NULL;
3966 * Register hstate attributes for a single node device.
3967 * No-op if attributes already registered.
3969 void hugetlb_register_node(struct node *node)
3972 struct node_hstate *nhs = &node_hstates[node->dev.id];
3975 if (!hugetlb_sysfs_initialized)
3978 if (nhs->hugepages_kobj)
3979 return; /* already allocated */
3981 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3983 if (!nhs->hugepages_kobj)
3986 for_each_hstate(h) {
3987 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3989 &per_node_hstate_attr_group);
3991 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3992 h->name, node->dev.id);
3993 hugetlb_unregister_node(node);
4000 * hugetlb init time: register hstate attributes for all registered node
4001 * devices of nodes that have memory. All on-line nodes should have
4002 * registered their associated device by this time.
4004 static void __init hugetlb_register_all_nodes(void)
4008 for_each_online_node(nid)
4009 hugetlb_register_node(node_devices[nid]);
4011 #else /* !CONFIG_NUMA */
4013 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4021 static void hugetlb_register_all_nodes(void) { }
4026 static void __init hugetlb_cma_check(void);
4028 static inline __init void hugetlb_cma_check(void)
4033 static void __init hugetlb_sysfs_init(void)
4038 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4039 if (!hugepages_kobj)
4042 for_each_hstate(h) {
4043 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4044 hstate_kobjs, &hstate_attr_group);
4046 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4050 hugetlb_sysfs_initialized = true;
4052 hugetlb_register_all_nodes();
4055 static int __init hugetlb_init(void)
4059 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4062 if (!hugepages_supported()) {
4063 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4064 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4069 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4070 * architectures depend on setup being done here.
4072 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4073 if (!parsed_default_hugepagesz) {
4075 * If we did not parse a default huge page size, set
4076 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4077 * number of huge pages for this default size was implicitly
4078 * specified, set that here as well.
4079 * Note that the implicit setting will overwrite an explicit
4080 * setting. A warning will be printed in this case.
4082 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4083 if (default_hstate_max_huge_pages) {
4084 if (default_hstate.max_huge_pages) {
4087 string_get_size(huge_page_size(&default_hstate),
4088 1, STRING_UNITS_2, buf, 32);
4089 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4090 default_hstate.max_huge_pages, buf);
4091 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4092 default_hstate_max_huge_pages);
4094 default_hstate.max_huge_pages =
4095 default_hstate_max_huge_pages;
4097 for_each_online_node(i)
4098 default_hstate.max_huge_pages_node[i] =
4099 default_hugepages_in_node[i];
4103 hugetlb_cma_check();
4104 hugetlb_init_hstates();
4105 gather_bootmem_prealloc();
4108 hugetlb_sysfs_init();
4109 hugetlb_cgroup_file_init();
4112 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4114 num_fault_mutexes = 1;
4116 hugetlb_fault_mutex_table =
4117 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4119 BUG_ON(!hugetlb_fault_mutex_table);
4121 for (i = 0; i < num_fault_mutexes; i++)
4122 mutex_init(&hugetlb_fault_mutex_table[i]);
4125 subsys_initcall(hugetlb_init);
4127 /* Overwritten by architectures with more huge page sizes */
4128 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4130 return size == HPAGE_SIZE;
4133 void __init hugetlb_add_hstate(unsigned int order)
4138 if (size_to_hstate(PAGE_SIZE << order)) {
4141 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4143 h = &hstates[hugetlb_max_hstate++];
4144 mutex_init(&h->resize_lock);
4146 h->mask = ~(huge_page_size(h) - 1);
4147 for (i = 0; i < MAX_NUMNODES; ++i)
4148 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4149 INIT_LIST_HEAD(&h->hugepage_activelist);
4150 h->next_nid_to_alloc = first_memory_node;
4151 h->next_nid_to_free = first_memory_node;
4152 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4153 huge_page_size(h)/SZ_1K);
4158 bool __init __weak hugetlb_node_alloc_supported(void)
4163 static void __init hugepages_clear_pages_in_node(void)
4165 if (!hugetlb_max_hstate) {
4166 default_hstate_max_huge_pages = 0;
4167 memset(default_hugepages_in_node, 0,
4168 sizeof(default_hugepages_in_node));
4170 parsed_hstate->max_huge_pages = 0;
4171 memset(parsed_hstate->max_huge_pages_node, 0,
4172 sizeof(parsed_hstate->max_huge_pages_node));
4177 * hugepages command line processing
4178 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4179 * specification. If not, ignore the hugepages value. hugepages can also
4180 * be the first huge page command line option in which case it implicitly
4181 * specifies the number of huge pages for the default size.
4183 static int __init hugepages_setup(char *s)
4186 static unsigned long *last_mhp;
4187 int node = NUMA_NO_NODE;
4192 if (!parsed_valid_hugepagesz) {
4193 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4194 parsed_valid_hugepagesz = true;
4199 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4200 * yet, so this hugepages= parameter goes to the "default hstate".
4201 * Otherwise, it goes with the previously parsed hugepagesz or
4202 * default_hugepagesz.
4204 else if (!hugetlb_max_hstate)
4205 mhp = &default_hstate_max_huge_pages;
4207 mhp = &parsed_hstate->max_huge_pages;
4209 if (mhp == last_mhp) {
4210 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4216 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4218 /* Parameter is node format */
4219 if (p[count] == ':') {
4220 if (!hugetlb_node_alloc_supported()) {
4221 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4224 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4226 node = array_index_nospec(tmp, MAX_NUMNODES);
4228 /* Parse hugepages */
4229 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4231 if (!hugetlb_max_hstate)
4232 default_hugepages_in_node[node] = tmp;
4234 parsed_hstate->max_huge_pages_node[node] = tmp;
4236 /* Go to parse next node*/
4237 if (p[count] == ',')
4250 * Global state is always initialized later in hugetlb_init.
4251 * But we need to allocate gigantic hstates here early to still
4252 * use the bootmem allocator.
4254 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4255 hugetlb_hstate_alloc_pages(parsed_hstate);
4262 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4263 hugepages_clear_pages_in_node();
4266 __setup("hugepages=", hugepages_setup);
4269 * hugepagesz command line processing
4270 * A specific huge page size can only be specified once with hugepagesz.
4271 * hugepagesz is followed by hugepages on the command line. The global
4272 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4273 * hugepagesz argument was valid.
4275 static int __init hugepagesz_setup(char *s)
4280 parsed_valid_hugepagesz = false;
4281 size = (unsigned long)memparse(s, NULL);
4283 if (!arch_hugetlb_valid_size(size)) {
4284 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4288 h = size_to_hstate(size);
4291 * hstate for this size already exists. This is normally
4292 * an error, but is allowed if the existing hstate is the
4293 * default hstate. More specifically, it is only allowed if
4294 * the number of huge pages for the default hstate was not
4295 * previously specified.
4297 if (!parsed_default_hugepagesz || h != &default_hstate ||
4298 default_hstate.max_huge_pages) {
4299 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4304 * No need to call hugetlb_add_hstate() as hstate already
4305 * exists. But, do set parsed_hstate so that a following
4306 * hugepages= parameter will be applied to this hstate.
4309 parsed_valid_hugepagesz = true;
4313 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4314 parsed_valid_hugepagesz = true;
4317 __setup("hugepagesz=", hugepagesz_setup);
4320 * default_hugepagesz command line input
4321 * Only one instance of default_hugepagesz allowed on command line.
4323 static int __init default_hugepagesz_setup(char *s)
4328 parsed_valid_hugepagesz = false;
4329 if (parsed_default_hugepagesz) {
4330 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4334 size = (unsigned long)memparse(s, NULL);
4336 if (!arch_hugetlb_valid_size(size)) {
4337 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4341 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4342 parsed_valid_hugepagesz = true;
4343 parsed_default_hugepagesz = true;
4344 default_hstate_idx = hstate_index(size_to_hstate(size));
4347 * The number of default huge pages (for this size) could have been
4348 * specified as the first hugetlb parameter: hugepages=X. If so,
4349 * then default_hstate_max_huge_pages is set. If the default huge
4350 * page size is gigantic (>= MAX_ORDER), then the pages must be
4351 * allocated here from bootmem allocator.
4353 if (default_hstate_max_huge_pages) {
4354 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4355 for_each_online_node(i)
4356 default_hstate.max_huge_pages_node[i] =
4357 default_hugepages_in_node[i];
4358 if (hstate_is_gigantic(&default_hstate))
4359 hugetlb_hstate_alloc_pages(&default_hstate);
4360 default_hstate_max_huge_pages = 0;
4365 __setup("default_hugepagesz=", default_hugepagesz_setup);
4367 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4370 struct mempolicy *mpol = get_task_policy(current);
4373 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4374 * (from policy_nodemask) specifically for hugetlb case
4376 if (mpol->mode == MPOL_BIND &&
4377 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4378 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4379 return &mpol->nodes;
4384 static unsigned int allowed_mems_nr(struct hstate *h)
4387 unsigned int nr = 0;
4388 nodemask_t *mbind_nodemask;
4389 unsigned int *array = h->free_huge_pages_node;
4390 gfp_t gfp_mask = htlb_alloc_mask(h);
4392 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4393 for_each_node_mask(node, cpuset_current_mems_allowed) {
4394 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4401 #ifdef CONFIG_SYSCTL
4402 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4403 void *buffer, size_t *length,
4404 loff_t *ppos, unsigned long *out)
4406 struct ctl_table dup_table;
4409 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4410 * can duplicate the @table and alter the duplicate of it.
4413 dup_table.data = out;
4415 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4418 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4419 struct ctl_table *table, int write,
4420 void *buffer, size_t *length, loff_t *ppos)
4422 struct hstate *h = &default_hstate;
4423 unsigned long tmp = h->max_huge_pages;
4426 if (!hugepages_supported())
4429 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4435 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4436 NUMA_NO_NODE, tmp, *length);
4441 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4442 void *buffer, size_t *length, loff_t *ppos)
4445 return hugetlb_sysctl_handler_common(false, table, write,
4446 buffer, length, ppos);
4450 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4451 void *buffer, size_t *length, loff_t *ppos)
4453 return hugetlb_sysctl_handler_common(true, table, write,
4454 buffer, length, ppos);
4456 #endif /* CONFIG_NUMA */
4458 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4459 void *buffer, size_t *length, loff_t *ppos)
4461 struct hstate *h = &default_hstate;
4465 if (!hugepages_supported())
4468 tmp = h->nr_overcommit_huge_pages;
4470 if (write && hstate_is_gigantic(h))
4473 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4479 spin_lock_irq(&hugetlb_lock);
4480 h->nr_overcommit_huge_pages = tmp;
4481 spin_unlock_irq(&hugetlb_lock);
4487 #endif /* CONFIG_SYSCTL */
4489 void hugetlb_report_meminfo(struct seq_file *m)
4492 unsigned long total = 0;
4494 if (!hugepages_supported())
4497 for_each_hstate(h) {
4498 unsigned long count = h->nr_huge_pages;
4500 total += huge_page_size(h) * count;
4502 if (h == &default_hstate)
4504 "HugePages_Total: %5lu\n"
4505 "HugePages_Free: %5lu\n"
4506 "HugePages_Rsvd: %5lu\n"
4507 "HugePages_Surp: %5lu\n"
4508 "Hugepagesize: %8lu kB\n",
4512 h->surplus_huge_pages,
4513 huge_page_size(h) / SZ_1K);
4516 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4519 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4521 struct hstate *h = &default_hstate;
4523 if (!hugepages_supported())
4526 return sysfs_emit_at(buf, len,
4527 "Node %d HugePages_Total: %5u\n"
4528 "Node %d HugePages_Free: %5u\n"
4529 "Node %d HugePages_Surp: %5u\n",
4530 nid, h->nr_huge_pages_node[nid],
4531 nid, h->free_huge_pages_node[nid],
4532 nid, h->surplus_huge_pages_node[nid]);
4535 void hugetlb_show_meminfo_node(int nid)
4539 if (!hugepages_supported())
4543 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4545 h->nr_huge_pages_node[nid],
4546 h->free_huge_pages_node[nid],
4547 h->surplus_huge_pages_node[nid],
4548 huge_page_size(h) / SZ_1K);
4551 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4553 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4554 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4557 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4558 unsigned long hugetlb_total_pages(void)
4561 unsigned long nr_total_pages = 0;
4564 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4565 return nr_total_pages;
4568 static int hugetlb_acct_memory(struct hstate *h, long delta)
4575 spin_lock_irq(&hugetlb_lock);
4577 * When cpuset is configured, it breaks the strict hugetlb page
4578 * reservation as the accounting is done on a global variable. Such
4579 * reservation is completely rubbish in the presence of cpuset because
4580 * the reservation is not checked against page availability for the
4581 * current cpuset. Application can still potentially OOM'ed by kernel
4582 * with lack of free htlb page in cpuset that the task is in.
4583 * Attempt to enforce strict accounting with cpuset is almost
4584 * impossible (or too ugly) because cpuset is too fluid that
4585 * task or memory node can be dynamically moved between cpusets.
4587 * The change of semantics for shared hugetlb mapping with cpuset is
4588 * undesirable. However, in order to preserve some of the semantics,
4589 * we fall back to check against current free page availability as
4590 * a best attempt and hopefully to minimize the impact of changing
4591 * semantics that cpuset has.
4593 * Apart from cpuset, we also have memory policy mechanism that
4594 * also determines from which node the kernel will allocate memory
4595 * in a NUMA system. So similar to cpuset, we also should consider
4596 * the memory policy of the current task. Similar to the description
4600 if (gather_surplus_pages(h, delta) < 0)
4603 if (delta > allowed_mems_nr(h)) {
4604 return_unused_surplus_pages(h, delta);
4611 return_unused_surplus_pages(h, (unsigned long) -delta);
4614 spin_unlock_irq(&hugetlb_lock);
4618 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4620 struct resv_map *resv = vma_resv_map(vma);
4623 * HPAGE_RESV_OWNER indicates a private mapping.
4624 * This new VMA should share its siblings reservation map if present.
4625 * The VMA will only ever have a valid reservation map pointer where
4626 * it is being copied for another still existing VMA. As that VMA
4627 * has a reference to the reservation map it cannot disappear until
4628 * after this open call completes. It is therefore safe to take a
4629 * new reference here without additional locking.
4631 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4632 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4633 kref_get(&resv->refs);
4637 * vma_lock structure for sharable mappings is vma specific.
4638 * Clear old pointer (if copied via vm_area_dup) and allocate
4639 * new structure. Before clearing, make sure vma_lock is not
4642 if (vma->vm_flags & VM_MAYSHARE) {
4643 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4646 if (vma_lock->vma != vma) {
4647 vma->vm_private_data = NULL;
4648 hugetlb_vma_lock_alloc(vma);
4650 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4652 hugetlb_vma_lock_alloc(vma);
4656 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4658 struct hstate *h = hstate_vma(vma);
4659 struct resv_map *resv;
4660 struct hugepage_subpool *spool = subpool_vma(vma);
4661 unsigned long reserve, start, end;
4664 hugetlb_vma_lock_free(vma);
4666 resv = vma_resv_map(vma);
4667 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4670 start = vma_hugecache_offset(h, vma, vma->vm_start);
4671 end = vma_hugecache_offset(h, vma, vma->vm_end);
4673 reserve = (end - start) - region_count(resv, start, end);
4674 hugetlb_cgroup_uncharge_counter(resv, start, end);
4677 * Decrement reserve counts. The global reserve count may be
4678 * adjusted if the subpool has a minimum size.
4680 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4681 hugetlb_acct_memory(h, -gbl_reserve);
4684 kref_put(&resv->refs, resv_map_release);
4687 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4689 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4694 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4696 return huge_page_size(hstate_vma(vma));
4700 * We cannot handle pagefaults against hugetlb pages at all. They cause
4701 * handle_mm_fault() to try to instantiate regular-sized pages in the
4702 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4705 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4712 * When a new function is introduced to vm_operations_struct and added
4713 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4714 * This is because under System V memory model, mappings created via
4715 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4716 * their original vm_ops are overwritten with shm_vm_ops.
4718 const struct vm_operations_struct hugetlb_vm_ops = {
4719 .fault = hugetlb_vm_op_fault,
4720 .open = hugetlb_vm_op_open,
4721 .close = hugetlb_vm_op_close,
4722 .may_split = hugetlb_vm_op_split,
4723 .pagesize = hugetlb_vm_op_pagesize,
4726 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4730 unsigned int shift = huge_page_shift(hstate_vma(vma));
4733 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4734 vma->vm_page_prot)));
4736 entry = huge_pte_wrprotect(mk_huge_pte(page,
4737 vma->vm_page_prot));
4739 entry = pte_mkyoung(entry);
4740 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4745 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4746 unsigned long address, pte_t *ptep)
4750 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4751 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4752 update_mmu_cache(vma, address, ptep);
4755 bool is_hugetlb_entry_migration(pte_t pte)
4759 if (huge_pte_none(pte) || pte_present(pte))
4761 swp = pte_to_swp_entry(pte);
4762 if (is_migration_entry(swp))
4768 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4772 if (huge_pte_none(pte) || pte_present(pte))
4774 swp = pte_to_swp_entry(pte);
4775 if (is_hwpoison_entry(swp))
4782 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4783 struct page *new_page)
4785 __SetPageUptodate(new_page);
4786 hugepage_add_new_anon_rmap(new_page, vma, addr);
4787 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4788 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4789 SetHPageMigratable(new_page);
4792 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4793 struct vm_area_struct *dst_vma,
4794 struct vm_area_struct *src_vma)
4796 pte_t *src_pte, *dst_pte, entry;
4797 struct page *ptepage;
4799 bool cow = is_cow_mapping(src_vma->vm_flags);
4800 struct hstate *h = hstate_vma(src_vma);
4801 unsigned long sz = huge_page_size(h);
4802 unsigned long npages = pages_per_huge_page(h);
4803 struct mmu_notifier_range range;
4804 unsigned long last_addr_mask;
4808 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4811 mmu_notifier_invalidate_range_start(&range);
4812 mmap_assert_write_locked(src);
4813 raw_write_seqcount_begin(&src->write_protect_seq);
4816 * For shared mappings the vma lock must be held before
4817 * calling huge_pte_offset in the src vma. Otherwise, the
4818 * returned ptep could go away if part of a shared pmd and
4819 * another thread calls huge_pmd_unshare.
4821 hugetlb_vma_lock_read(src_vma);
4824 last_addr_mask = hugetlb_mask_last_page(h);
4825 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4826 spinlock_t *src_ptl, *dst_ptl;
4827 src_pte = huge_pte_offset(src, addr, sz);
4829 addr |= last_addr_mask;
4832 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4839 * If the pagetables are shared don't copy or take references.
4841 * dst_pte == src_pte is the common case of src/dest sharing.
4842 * However, src could have 'unshared' and dst shares with
4843 * another vma. So page_count of ptep page is checked instead
4844 * to reliably determine whether pte is shared.
4846 if (page_count(virt_to_page(dst_pte)) > 1) {
4847 addr |= last_addr_mask;
4851 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4852 src_ptl = huge_pte_lockptr(h, src, src_pte);
4853 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4854 entry = huge_ptep_get(src_pte);
4856 if (huge_pte_none(entry)) {
4858 * Skip if src entry none.
4861 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4862 bool uffd_wp = huge_pte_uffd_wp(entry);
4864 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4865 entry = huge_pte_clear_uffd_wp(entry);
4866 set_huge_pte_at(dst, addr, dst_pte, entry);
4867 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4868 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4869 bool uffd_wp = huge_pte_uffd_wp(entry);
4871 if (!is_readable_migration_entry(swp_entry) && cow) {
4873 * COW mappings require pages in both
4874 * parent and child to be set to read.
4876 swp_entry = make_readable_migration_entry(
4877 swp_offset(swp_entry));
4878 entry = swp_entry_to_pte(swp_entry);
4879 if (userfaultfd_wp(src_vma) && uffd_wp)
4880 entry = huge_pte_mkuffd_wp(entry);
4881 set_huge_pte_at(src, addr, src_pte, entry);
4883 if (!userfaultfd_wp(dst_vma) && uffd_wp)
4884 entry = huge_pte_clear_uffd_wp(entry);
4885 set_huge_pte_at(dst, addr, dst_pte, entry);
4886 } else if (unlikely(is_pte_marker(entry))) {
4888 * We copy the pte marker only if the dst vma has
4891 if (userfaultfd_wp(dst_vma))
4892 set_huge_pte_at(dst, addr, dst_pte, entry);
4894 entry = huge_ptep_get(src_pte);
4895 ptepage = pte_page(entry);
4899 * Failing to duplicate the anon rmap is a rare case
4900 * where we see pinned hugetlb pages while they're
4901 * prone to COW. We need to do the COW earlier during
4904 * When pre-allocating the page or copying data, we
4905 * need to be without the pgtable locks since we could
4906 * sleep during the process.
4908 if (!PageAnon(ptepage)) {
4909 page_dup_file_rmap(ptepage, true);
4910 } else if (page_try_dup_anon_rmap(ptepage, true,
4912 pte_t src_pte_old = entry;
4915 spin_unlock(src_ptl);
4916 spin_unlock(dst_ptl);
4917 /* Do not use reserve as it's private owned */
4918 new = alloc_huge_page(dst_vma, addr, 1);
4924 copy_user_huge_page(new, ptepage, addr, dst_vma,
4928 /* Install the new huge page if src pte stable */
4929 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4930 src_ptl = huge_pte_lockptr(h, src, src_pte);
4931 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4932 entry = huge_ptep_get(src_pte);
4933 if (!pte_same(src_pte_old, entry)) {
4934 restore_reserve_on_error(h, dst_vma, addr,
4937 /* huge_ptep of dst_pte won't change as in child */
4940 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4941 spin_unlock(src_ptl);
4942 spin_unlock(dst_ptl);
4948 * No need to notify as we are downgrading page
4949 * table protection not changing it to point
4952 * See Documentation/mm/mmu_notifier.rst
4954 huge_ptep_set_wrprotect(src, addr, src_pte);
4955 entry = huge_pte_wrprotect(entry);
4958 set_huge_pte_at(dst, addr, dst_pte, entry);
4959 hugetlb_count_add(npages, dst);
4961 spin_unlock(src_ptl);
4962 spin_unlock(dst_ptl);
4966 raw_write_seqcount_end(&src->write_protect_seq);
4967 mmu_notifier_invalidate_range_end(&range);
4969 hugetlb_vma_unlock_read(src_vma);
4975 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4976 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4978 struct hstate *h = hstate_vma(vma);
4979 struct mm_struct *mm = vma->vm_mm;
4980 spinlock_t *src_ptl, *dst_ptl;
4983 dst_ptl = huge_pte_lock(h, mm, dst_pte);
4984 src_ptl = huge_pte_lockptr(h, mm, src_pte);
4987 * We don't have to worry about the ordering of src and dst ptlocks
4988 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4990 if (src_ptl != dst_ptl)
4991 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4993 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4994 set_huge_pte_at(mm, new_addr, dst_pte, pte);
4996 if (src_ptl != dst_ptl)
4997 spin_unlock(src_ptl);
4998 spin_unlock(dst_ptl);
5001 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5002 struct vm_area_struct *new_vma,
5003 unsigned long old_addr, unsigned long new_addr,
5006 struct hstate *h = hstate_vma(vma);
5007 struct address_space *mapping = vma->vm_file->f_mapping;
5008 unsigned long sz = huge_page_size(h);
5009 struct mm_struct *mm = vma->vm_mm;
5010 unsigned long old_end = old_addr + len;
5011 unsigned long last_addr_mask;
5012 pte_t *src_pte, *dst_pte;
5013 struct mmu_notifier_range range;
5014 bool shared_pmd = false;
5016 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5018 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5020 * In case of shared PMDs, we should cover the maximum possible
5023 flush_cache_range(vma, range.start, range.end);
5025 mmu_notifier_invalidate_range_start(&range);
5026 last_addr_mask = hugetlb_mask_last_page(h);
5027 /* Prevent race with file truncation */
5028 hugetlb_vma_lock_write(vma);
5029 i_mmap_lock_write(mapping);
5030 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5031 src_pte = huge_pte_offset(mm, old_addr, sz);
5033 old_addr |= last_addr_mask;
5034 new_addr |= last_addr_mask;
5037 if (huge_pte_none(huge_ptep_get(src_pte)))
5040 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5042 old_addr |= last_addr_mask;
5043 new_addr |= last_addr_mask;
5047 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5051 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5055 flush_tlb_range(vma, range.start, range.end);
5057 flush_tlb_range(vma, old_end - len, old_end);
5058 mmu_notifier_invalidate_range_end(&range);
5059 i_mmap_unlock_write(mapping);
5060 hugetlb_vma_unlock_write(vma);
5062 return len + old_addr - old_end;
5065 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5066 unsigned long start, unsigned long end,
5067 struct page *ref_page, zap_flags_t zap_flags)
5069 struct mm_struct *mm = vma->vm_mm;
5070 unsigned long address;
5075 struct hstate *h = hstate_vma(vma);
5076 unsigned long sz = huge_page_size(h);
5077 unsigned long last_addr_mask;
5078 bool force_flush = false;
5080 WARN_ON(!is_vm_hugetlb_page(vma));
5081 BUG_ON(start & ~huge_page_mask(h));
5082 BUG_ON(end & ~huge_page_mask(h));
5085 * This is a hugetlb vma, all the pte entries should point
5088 tlb_change_page_size(tlb, sz);
5089 tlb_start_vma(tlb, vma);
5091 last_addr_mask = hugetlb_mask_last_page(h);
5093 for (; address < end; address += sz) {
5094 ptep = huge_pte_offset(mm, address, sz);
5096 address |= last_addr_mask;
5100 ptl = huge_pte_lock(h, mm, ptep);
5101 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5103 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5105 address |= last_addr_mask;
5109 pte = huge_ptep_get(ptep);
5110 if (huge_pte_none(pte)) {
5116 * Migrating hugepage or HWPoisoned hugepage is already
5117 * unmapped and its refcount is dropped, so just clear pte here.
5119 if (unlikely(!pte_present(pte))) {
5121 * If the pte was wr-protected by uffd-wp in any of the
5122 * swap forms, meanwhile the caller does not want to
5123 * drop the uffd-wp bit in this zap, then replace the
5124 * pte with a marker.
5126 if (pte_swp_uffd_wp_any(pte) &&
5127 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5128 set_huge_pte_at(mm, address, ptep,
5129 make_pte_marker(PTE_MARKER_UFFD_WP));
5131 huge_pte_clear(mm, address, ptep, sz);
5136 page = pte_page(pte);
5138 * If a reference page is supplied, it is because a specific
5139 * page is being unmapped, not a range. Ensure the page we
5140 * are about to unmap is the actual page of interest.
5143 if (page != ref_page) {
5148 * Mark the VMA as having unmapped its page so that
5149 * future faults in this VMA will fail rather than
5150 * looking like data was lost
5152 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5155 pte = huge_ptep_get_and_clear(mm, address, ptep);
5156 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5157 if (huge_pte_dirty(pte))
5158 set_page_dirty(page);
5159 /* Leave a uffd-wp pte marker if needed */
5160 if (huge_pte_uffd_wp(pte) &&
5161 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5162 set_huge_pte_at(mm, address, ptep,
5163 make_pte_marker(PTE_MARKER_UFFD_WP));
5164 hugetlb_count_sub(pages_per_huge_page(h), mm);
5165 page_remove_rmap(page, vma, true);
5168 tlb_remove_page_size(tlb, page, huge_page_size(h));
5170 * Bail out after unmapping reference page if supplied
5175 tlb_end_vma(tlb, vma);
5178 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5179 * could defer the flush until now, since by holding i_mmap_rwsem we
5180 * guaranteed that the last refernece would not be dropped. But we must
5181 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5182 * dropped and the last reference to the shared PMDs page might be
5185 * In theory we could defer the freeing of the PMD pages as well, but
5186 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5187 * detect sharing, so we cannot defer the release of the page either.
5188 * Instead, do flush now.
5191 tlb_flush_mmu_tlbonly(tlb);
5194 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5195 struct vm_area_struct *vma, unsigned long start,
5196 unsigned long end, struct page *ref_page,
5197 zap_flags_t zap_flags)
5199 hugetlb_vma_lock_write(vma);
5200 i_mmap_lock_write(vma->vm_file->f_mapping);
5202 /* mmu notification performed in caller */
5203 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5205 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5207 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5208 * When the vma_lock is freed, this makes the vma ineligible
5209 * for pmd sharing. And, i_mmap_rwsem is required to set up
5210 * pmd sharing. This is important as page tables for this
5211 * unmapped range will be asynchrously deleted. If the page
5212 * tables are shared, there will be issues when accessed by
5215 __hugetlb_vma_unlock_write_free(vma);
5216 i_mmap_unlock_write(vma->vm_file->f_mapping);
5218 i_mmap_unlock_write(vma->vm_file->f_mapping);
5219 hugetlb_vma_unlock_write(vma);
5223 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5224 unsigned long end, struct page *ref_page,
5225 zap_flags_t zap_flags)
5227 struct mmu_notifier_range range;
5228 struct mmu_gather tlb;
5230 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5232 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5233 mmu_notifier_invalidate_range_start(&range);
5234 tlb_gather_mmu(&tlb, vma->vm_mm);
5236 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5238 mmu_notifier_invalidate_range_end(&range);
5239 tlb_finish_mmu(&tlb);
5243 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5244 * mapping it owns the reserve page for. The intention is to unmap the page
5245 * from other VMAs and let the children be SIGKILLed if they are faulting the
5248 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5249 struct page *page, unsigned long address)
5251 struct hstate *h = hstate_vma(vma);
5252 struct vm_area_struct *iter_vma;
5253 struct address_space *mapping;
5257 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5258 * from page cache lookup which is in HPAGE_SIZE units.
5260 address = address & huge_page_mask(h);
5261 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5263 mapping = vma->vm_file->f_mapping;
5266 * Take the mapping lock for the duration of the table walk. As
5267 * this mapping should be shared between all the VMAs,
5268 * __unmap_hugepage_range() is called as the lock is already held
5270 i_mmap_lock_write(mapping);
5271 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5272 /* Do not unmap the current VMA */
5273 if (iter_vma == vma)
5277 * Shared VMAs have their own reserves and do not affect
5278 * MAP_PRIVATE accounting but it is possible that a shared
5279 * VMA is using the same page so check and skip such VMAs.
5281 if (iter_vma->vm_flags & VM_MAYSHARE)
5285 * Unmap the page from other VMAs without their own reserves.
5286 * They get marked to be SIGKILLed if they fault in these
5287 * areas. This is because a future no-page fault on this VMA
5288 * could insert a zeroed page instead of the data existing
5289 * from the time of fork. This would look like data corruption
5291 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5292 unmap_hugepage_range(iter_vma, address,
5293 address + huge_page_size(h), page, 0);
5295 i_mmap_unlock_write(mapping);
5299 * hugetlb_wp() should be called with page lock of the original hugepage held.
5300 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5301 * cannot race with other handlers or page migration.
5302 * Keep the pte_same checks anyway to make transition from the mutex easier.
5304 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5305 unsigned long address, pte_t *ptep, unsigned int flags,
5306 struct page *pagecache_page, spinlock_t *ptl)
5308 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5310 struct hstate *h = hstate_vma(vma);
5311 struct page *old_page, *new_page;
5312 int outside_reserve = 0;
5314 unsigned long haddr = address & huge_page_mask(h);
5315 struct mmu_notifier_range range;
5318 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5319 * PTE mapped R/O such as maybe_mkwrite() would do.
5321 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5322 return VM_FAULT_SIGSEGV;
5324 /* Let's take out MAP_SHARED mappings first. */
5325 if (vma->vm_flags & VM_MAYSHARE) {
5326 set_huge_ptep_writable(vma, haddr, ptep);
5330 pte = huge_ptep_get(ptep);
5331 old_page = pte_page(pte);
5333 delayacct_wpcopy_start();
5337 * If no-one else is actually using this page, we're the exclusive
5338 * owner and can reuse this page.
5340 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5341 if (!PageAnonExclusive(old_page))
5342 page_move_anon_rmap(old_page, vma);
5343 if (likely(!unshare))
5344 set_huge_ptep_writable(vma, haddr, ptep);
5346 delayacct_wpcopy_end();
5349 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5353 * If the process that created a MAP_PRIVATE mapping is about to
5354 * perform a COW due to a shared page count, attempt to satisfy
5355 * the allocation without using the existing reserves. The pagecache
5356 * page is used to determine if the reserve at this address was
5357 * consumed or not. If reserves were used, a partial faulted mapping
5358 * at the time of fork() could consume its reserves on COW instead
5359 * of the full address range.
5361 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5362 old_page != pagecache_page)
5363 outside_reserve = 1;
5368 * Drop page table lock as buddy allocator may be called. It will
5369 * be acquired again before returning to the caller, as expected.
5372 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5374 if (IS_ERR(new_page)) {
5376 * If a process owning a MAP_PRIVATE mapping fails to COW,
5377 * it is due to references held by a child and an insufficient
5378 * huge page pool. To guarantee the original mappers
5379 * reliability, unmap the page from child processes. The child
5380 * may get SIGKILLed if it later faults.
5382 if (outside_reserve) {
5383 struct address_space *mapping = vma->vm_file->f_mapping;
5389 * Drop hugetlb_fault_mutex and vma_lock before
5390 * unmapping. unmapping needs to hold vma_lock
5391 * in write mode. Dropping vma_lock in read mode
5392 * here is OK as COW mappings do not interact with
5395 * Reacquire both after unmap operation.
5397 idx = vma_hugecache_offset(h, vma, haddr);
5398 hash = hugetlb_fault_mutex_hash(mapping, idx);
5399 hugetlb_vma_unlock_read(vma);
5400 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5402 unmap_ref_private(mm, vma, old_page, haddr);
5404 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5405 hugetlb_vma_lock_read(vma);
5407 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5409 pte_same(huge_ptep_get(ptep), pte)))
5410 goto retry_avoidcopy;
5412 * race occurs while re-acquiring page table
5413 * lock, and our job is done.
5415 delayacct_wpcopy_end();
5419 ret = vmf_error(PTR_ERR(new_page));
5420 goto out_release_old;
5424 * When the original hugepage is shared one, it does not have
5425 * anon_vma prepared.
5427 if (unlikely(anon_vma_prepare(vma))) {
5429 goto out_release_all;
5432 copy_user_huge_page(new_page, old_page, address, vma,
5433 pages_per_huge_page(h));
5434 __SetPageUptodate(new_page);
5436 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5437 haddr + huge_page_size(h));
5438 mmu_notifier_invalidate_range_start(&range);
5441 * Retake the page table lock to check for racing updates
5442 * before the page tables are altered
5445 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5446 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5447 /* Break COW or unshare */
5448 huge_ptep_clear_flush(vma, haddr, ptep);
5449 mmu_notifier_invalidate_range(mm, range.start, range.end);
5450 page_remove_rmap(old_page, vma, true);
5451 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5452 set_huge_pte_at(mm, haddr, ptep,
5453 make_huge_pte(vma, new_page, !unshare));
5454 SetHPageMigratable(new_page);
5455 /* Make the old page be freed below */
5456 new_page = old_page;
5459 mmu_notifier_invalidate_range_end(&range);
5462 * No restore in case of successful pagetable update (Break COW or
5465 if (new_page != old_page)
5466 restore_reserve_on_error(h, vma, haddr, new_page);
5471 spin_lock(ptl); /* Caller expects lock to be held */
5473 delayacct_wpcopy_end();
5478 * Return whether there is a pagecache page to back given address within VMA.
5479 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5481 static bool hugetlbfs_pagecache_present(struct hstate *h,
5482 struct vm_area_struct *vma, unsigned long address)
5484 struct address_space *mapping;
5488 mapping = vma->vm_file->f_mapping;
5489 idx = vma_hugecache_offset(h, vma, address);
5491 page = find_get_page(mapping, idx);
5494 return page != NULL;
5497 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5500 struct folio *folio = page_folio(page);
5501 struct inode *inode = mapping->host;
5502 struct hstate *h = hstate_inode(inode);
5505 __folio_set_locked(folio);
5506 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5508 if (unlikely(err)) {
5509 __folio_clear_locked(folio);
5512 ClearHPageRestoreReserve(page);
5515 * mark folio dirty so that it will not be removed from cache/file
5516 * by non-hugetlbfs specific code paths.
5518 folio_mark_dirty(folio);
5520 spin_lock(&inode->i_lock);
5521 inode->i_blocks += blocks_per_huge_page(h);
5522 spin_unlock(&inode->i_lock);
5526 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5527 struct address_space *mapping,
5530 unsigned long haddr,
5532 unsigned long reason)
5535 struct vm_fault vmf = {
5538 .real_address = addr,
5542 * Hard to debug if it ends up being
5543 * used by a callee that assumes
5544 * something about the other
5545 * uninitialized fields... same as in
5551 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5552 * userfault. Also mmap_lock could be dropped due to handling
5553 * userfault, any vma operation should be careful from here.
5555 hugetlb_vma_unlock_read(vma);
5556 hash = hugetlb_fault_mutex_hash(mapping, idx);
5557 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5558 return handle_userfault(&vmf, reason);
5562 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5563 * false if pte changed or is changing.
5565 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5566 pte_t *ptep, pte_t old_pte)
5571 ptl = huge_pte_lock(h, mm, ptep);
5572 same = pte_same(huge_ptep_get(ptep), old_pte);
5578 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5579 struct vm_area_struct *vma,
5580 struct address_space *mapping, pgoff_t idx,
5581 unsigned long address, pte_t *ptep,
5582 pte_t old_pte, unsigned int flags)
5584 struct hstate *h = hstate_vma(vma);
5585 vm_fault_t ret = VM_FAULT_SIGBUS;
5591 unsigned long haddr = address & huge_page_mask(h);
5592 bool new_page, new_pagecache_page = false;
5593 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5596 * Currently, we are forced to kill the process in the event the
5597 * original mapper has unmapped pages from the child due to a failed
5598 * COW/unsharing. Warn that such a situation has occurred as it may not
5601 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5602 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5608 * Use page lock to guard against racing truncation
5609 * before we get page_table_lock.
5612 page = find_lock_page(mapping, idx);
5614 size = i_size_read(mapping->host) >> huge_page_shift(h);
5617 /* Check for page in userfault range */
5618 if (userfaultfd_missing(vma)) {
5620 * Since hugetlb_no_page() was examining pte
5621 * without pgtable lock, we need to re-test under
5622 * lock because the pte may not be stable and could
5623 * have changed from under us. Try to detect
5624 * either changed or during-changing ptes and retry
5625 * properly when needed.
5627 * Note that userfaultfd is actually fine with
5628 * false positives (e.g. caused by pte changed),
5629 * but not wrong logical events (e.g. caused by
5630 * reading a pte during changing). The latter can
5631 * confuse the userspace, so the strictness is very
5632 * much preferred. E.g., MISSING event should
5633 * never happen on the page after UFFDIO_COPY has
5634 * correctly installed the page and returned.
5636 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5641 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5646 page = alloc_huge_page(vma, haddr, 0);
5649 * Returning error will result in faulting task being
5650 * sent SIGBUS. The hugetlb fault mutex prevents two
5651 * tasks from racing to fault in the same page which
5652 * could result in false unable to allocate errors.
5653 * Page migration does not take the fault mutex, but
5654 * does a clear then write of pte's under page table
5655 * lock. Page fault code could race with migration,
5656 * notice the clear pte and try to allocate a page
5657 * here. Before returning error, get ptl and make
5658 * sure there really is no pte entry.
5660 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5661 ret = vmf_error(PTR_ERR(page));
5666 clear_huge_page(page, address, pages_per_huge_page(h));
5667 __SetPageUptodate(page);
5670 if (vma->vm_flags & VM_MAYSHARE) {
5671 int err = hugetlb_add_to_page_cache(page, mapping, idx);
5674 * err can't be -EEXIST which implies someone
5675 * else consumed the reservation since hugetlb
5676 * fault mutex is held when add a hugetlb page
5677 * to the page cache. So it's safe to call
5678 * restore_reserve_on_error() here.
5680 restore_reserve_on_error(h, vma, haddr, page);
5684 new_pagecache_page = true;
5687 if (unlikely(anon_vma_prepare(vma))) {
5689 goto backout_unlocked;
5695 * If memory error occurs between mmap() and fault, some process
5696 * don't have hwpoisoned swap entry for errored virtual address.
5697 * So we need to block hugepage fault by PG_hwpoison bit check.
5699 if (unlikely(PageHWPoison(page))) {
5700 ret = VM_FAULT_HWPOISON_LARGE |
5701 VM_FAULT_SET_HINDEX(hstate_index(h));
5702 goto backout_unlocked;
5705 /* Check for page in userfault range. */
5706 if (userfaultfd_minor(vma)) {
5709 /* See comment in userfaultfd_missing() block above */
5710 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5714 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5721 * If we are going to COW a private mapping later, we examine the
5722 * pending reservations for this page now. This will ensure that
5723 * any allocations necessary to record that reservation occur outside
5726 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5727 if (vma_needs_reservation(h, vma, haddr) < 0) {
5729 goto backout_unlocked;
5731 /* Just decrements count, does not deallocate */
5732 vma_end_reservation(h, vma, haddr);
5735 ptl = huge_pte_lock(h, mm, ptep);
5737 /* If pte changed from under us, retry */
5738 if (!pte_same(huge_ptep_get(ptep), old_pte))
5742 hugepage_add_new_anon_rmap(page, vma, haddr);
5744 page_dup_file_rmap(page, true);
5745 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5746 && (vma->vm_flags & VM_SHARED)));
5748 * If this pte was previously wr-protected, keep it wr-protected even
5751 if (unlikely(pte_marker_uffd_wp(old_pte)))
5752 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5753 set_huge_pte_at(mm, haddr, ptep, new_pte);
5755 hugetlb_count_add(pages_per_huge_page(h), mm);
5756 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5757 /* Optimization, do the COW without a second fault */
5758 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5764 * Only set HPageMigratable in newly allocated pages. Existing pages
5765 * found in the pagecache may not have HPageMigratableset if they have
5766 * been isolated for migration.
5769 SetHPageMigratable(page);
5773 hugetlb_vma_unlock_read(vma);
5774 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5780 if (new_page && !new_pagecache_page)
5781 restore_reserve_on_error(h, vma, haddr, page);
5789 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5791 unsigned long key[2];
5794 key[0] = (unsigned long) mapping;
5797 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5799 return hash & (num_fault_mutexes - 1);
5803 * For uniprocessor systems we always use a single mutex, so just
5804 * return 0 and avoid the hashing overhead.
5806 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5812 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5813 unsigned long address, unsigned int flags)
5820 struct page *page = NULL;
5821 struct page *pagecache_page = NULL;
5822 struct hstate *h = hstate_vma(vma);
5823 struct address_space *mapping;
5824 int need_wait_lock = 0;
5825 unsigned long haddr = address & huge_page_mask(h);
5827 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5830 * Since we hold no locks, ptep could be stale. That is
5831 * OK as we are only making decisions based on content and
5832 * not actually modifying content here.
5834 entry = huge_ptep_get(ptep);
5835 if (unlikely(is_hugetlb_entry_migration(entry))) {
5836 migration_entry_wait_huge(vma, ptep);
5838 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5839 return VM_FAULT_HWPOISON_LARGE |
5840 VM_FAULT_SET_HINDEX(hstate_index(h));
5844 * Serialize hugepage allocation and instantiation, so that we don't
5845 * get spurious allocation failures if two CPUs race to instantiate
5846 * the same page in the page cache.
5848 mapping = vma->vm_file->f_mapping;
5849 idx = vma_hugecache_offset(h, vma, haddr);
5850 hash = hugetlb_fault_mutex_hash(mapping, idx);
5851 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5854 * Acquire vma lock before calling huge_pte_alloc and hold
5855 * until finished with ptep. This prevents huge_pmd_unshare from
5856 * being called elsewhere and making the ptep no longer valid.
5858 * ptep could have already be assigned via huge_pte_offset. That
5859 * is OK, as huge_pte_alloc will return the same value unless
5860 * something has changed.
5862 hugetlb_vma_lock_read(vma);
5863 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5865 hugetlb_vma_unlock_read(vma);
5866 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5867 return VM_FAULT_OOM;
5870 entry = huge_ptep_get(ptep);
5871 /* PTE markers should be handled the same way as none pte */
5872 if (huge_pte_none_mostly(entry))
5874 * hugetlb_no_page will drop vma lock and hugetlb fault
5875 * mutex internally, which make us return immediately.
5877 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5883 * entry could be a migration/hwpoison entry at this point, so this
5884 * check prevents the kernel from going below assuming that we have
5885 * an active hugepage in pagecache. This goto expects the 2nd page
5886 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5887 * properly handle it.
5889 if (!pte_present(entry))
5893 * If we are going to COW/unshare the mapping later, we examine the
5894 * pending reservations for this page now. This will ensure that any
5895 * allocations necessary to record that reservation occur outside the
5896 * spinlock. Also lookup the pagecache page now as it is used to
5897 * determine if a reservation has been consumed.
5899 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5900 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5901 if (vma_needs_reservation(h, vma, haddr) < 0) {
5905 /* Just decrements count, does not deallocate */
5906 vma_end_reservation(h, vma, haddr);
5908 pagecache_page = find_lock_page(mapping, idx);
5911 ptl = huge_pte_lock(h, mm, ptep);
5913 /* Check for a racing update before calling hugetlb_wp() */
5914 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5917 /* Handle userfault-wp first, before trying to lock more pages */
5918 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5919 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5920 struct vm_fault vmf = {
5923 .real_address = address,
5928 if (pagecache_page) {
5929 unlock_page(pagecache_page);
5930 put_page(pagecache_page);
5932 hugetlb_vma_unlock_read(vma);
5933 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5934 return handle_userfault(&vmf, VM_UFFD_WP);
5938 * hugetlb_wp() requires page locks of pte_page(entry) and
5939 * pagecache_page, so here we need take the former one
5940 * when page != pagecache_page or !pagecache_page.
5942 page = pte_page(entry);
5943 if (page != pagecache_page)
5944 if (!trylock_page(page)) {
5951 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5952 if (!huge_pte_write(entry)) {
5953 ret = hugetlb_wp(mm, vma, address, ptep, flags,
5954 pagecache_page, ptl);
5956 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5957 entry = huge_pte_mkdirty(entry);
5960 entry = pte_mkyoung(entry);
5961 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5962 flags & FAULT_FLAG_WRITE))
5963 update_mmu_cache(vma, haddr, ptep);
5965 if (page != pagecache_page)
5971 if (pagecache_page) {
5972 unlock_page(pagecache_page);
5973 put_page(pagecache_page);
5976 hugetlb_vma_unlock_read(vma);
5977 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5979 * Generally it's safe to hold refcount during waiting page lock. But
5980 * here we just wait to defer the next page fault to avoid busy loop and
5981 * the page is not used after unlocked before returning from the current
5982 * page fault. So we are safe from accessing freed page, even if we wait
5983 * here without taking refcount.
5986 wait_on_page_locked(page);
5990 #ifdef CONFIG_USERFAULTFD
5992 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5993 * modifications for huge pages.
5995 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5997 struct vm_area_struct *dst_vma,
5998 unsigned long dst_addr,
5999 unsigned long src_addr,
6000 enum mcopy_atomic_mode mode,
6001 struct page **pagep,
6004 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6005 struct hstate *h = hstate_vma(dst_vma);
6006 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6007 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6009 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6015 bool page_in_pagecache = false;
6019 page = find_lock_page(mapping, idx);
6022 page_in_pagecache = true;
6023 } else if (!*pagep) {
6024 /* If a page already exists, then it's UFFDIO_COPY for
6025 * a non-missing case. Return -EEXIST.
6028 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6033 page = alloc_huge_page(dst_vma, dst_addr, 0);
6039 ret = copy_huge_page_from_user(page,
6040 (const void __user *) src_addr,
6041 pages_per_huge_page(h), false);
6043 /* fallback to copy_from_user outside mmap_lock */
6044 if (unlikely(ret)) {
6046 /* Free the allocated page which may have
6047 * consumed a reservation.
6049 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6052 /* Allocate a temporary page to hold the copied
6055 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6061 /* Set the outparam pagep and return to the caller to
6062 * copy the contents outside the lock. Don't free the
6069 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6076 page = alloc_huge_page(dst_vma, dst_addr, 0);
6083 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6084 pages_per_huge_page(h));
6090 * The memory barrier inside __SetPageUptodate makes sure that
6091 * preceding stores to the page contents become visible before
6092 * the set_pte_at() write.
6094 __SetPageUptodate(page);
6096 /* Add shared, newly allocated pages to the page cache. */
6097 if (vm_shared && !is_continue) {
6098 size = i_size_read(mapping->host) >> huge_page_shift(h);
6101 goto out_release_nounlock;
6104 * Serialization between remove_inode_hugepages() and
6105 * hugetlb_add_to_page_cache() below happens through the
6106 * hugetlb_fault_mutex_table that here must be hold by
6109 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6111 goto out_release_nounlock;
6112 page_in_pagecache = true;
6115 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6118 if (PageHWPoison(page))
6119 goto out_release_unlock;
6122 * We allow to overwrite a pte marker: consider when both MISSING|WP
6123 * registered, we firstly wr-protect a none pte which has no page cache
6124 * page backing it, then access the page.
6127 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6128 goto out_release_unlock;
6130 if (page_in_pagecache)
6131 page_dup_file_rmap(page, true);
6133 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6136 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6137 * with wp flag set, don't set pte write bit.
6139 if (wp_copy || (is_continue && !vm_shared))
6142 writable = dst_vma->vm_flags & VM_WRITE;
6144 _dst_pte = make_huge_pte(dst_vma, page, writable);
6146 * Always mark UFFDIO_COPY page dirty; note that this may not be
6147 * extremely important for hugetlbfs for now since swapping is not
6148 * supported, but we should still be clear in that this page cannot be
6149 * thrown away at will, even if write bit not set.
6151 _dst_pte = huge_pte_mkdirty(_dst_pte);
6152 _dst_pte = pte_mkyoung(_dst_pte);
6155 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6157 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6159 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6161 /* No need to invalidate - it was non-present before */
6162 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6166 SetHPageMigratable(page);
6167 if (vm_shared || is_continue)
6174 if (vm_shared || is_continue)
6176 out_release_nounlock:
6177 if (!page_in_pagecache)
6178 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6182 #endif /* CONFIG_USERFAULTFD */
6184 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6185 int refs, struct page **pages,
6186 struct vm_area_struct **vmas)
6190 for (nr = 0; nr < refs; nr++) {
6192 pages[nr] = nth_page(page, nr);
6198 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6199 unsigned int flags, pte_t *pte,
6202 pte_t pteval = huge_ptep_get(pte);
6205 if (is_swap_pte(pteval))
6207 if (huge_pte_write(pteval))
6209 if (flags & FOLL_WRITE)
6211 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6218 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6219 unsigned long address, unsigned int flags)
6221 struct hstate *h = hstate_vma(vma);
6222 struct mm_struct *mm = vma->vm_mm;
6223 unsigned long haddr = address & huge_page_mask(h);
6224 struct page *page = NULL;
6229 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6230 * follow_hugetlb_page().
6232 if (WARN_ON_ONCE(flags & FOLL_PIN))
6236 pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6240 ptl = huge_pte_lock(h, mm, pte);
6241 entry = huge_ptep_get(pte);
6242 if (pte_present(entry)) {
6243 page = pte_page(entry) +
6244 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6246 * Note that page may be a sub-page, and with vmemmap
6247 * optimizations the page struct may be read only.
6248 * try_grab_page() will increase the ref count on the
6249 * head page, so this will be OK.
6251 * try_grab_page() should always be able to get the page here,
6252 * because we hold the ptl lock and have verified pte_present().
6254 if (try_grab_page(page, flags)) {
6259 if (is_hugetlb_entry_migration(entry)) {
6261 __migration_entry_wait_huge(pte, ptl);
6265 * hwpoisoned entry is treated as no_page_table in
6266 * follow_page_mask().
6274 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6275 struct page **pages, struct vm_area_struct **vmas,
6276 unsigned long *position, unsigned long *nr_pages,
6277 long i, unsigned int flags, int *locked)
6279 unsigned long pfn_offset;
6280 unsigned long vaddr = *position;
6281 unsigned long remainder = *nr_pages;
6282 struct hstate *h = hstate_vma(vma);
6283 int err = -EFAULT, refs;
6285 while (vaddr < vma->vm_end && remainder) {
6287 spinlock_t *ptl = NULL;
6288 bool unshare = false;
6293 * If we have a pending SIGKILL, don't keep faulting pages and
6294 * potentially allocating memory.
6296 if (fatal_signal_pending(current)) {
6302 * Some archs (sparc64, sh*) have multiple pte_ts to
6303 * each hugepage. We have to make sure we get the
6304 * first, for the page indexing below to work.
6306 * Note that page table lock is not held when pte is null.
6308 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6311 ptl = huge_pte_lock(h, mm, pte);
6312 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6315 * When coredumping, it suits get_dump_page if we just return
6316 * an error where there's an empty slot with no huge pagecache
6317 * to back it. This way, we avoid allocating a hugepage, and
6318 * the sparse dumpfile avoids allocating disk blocks, but its
6319 * huge holes still show up with zeroes where they need to be.
6321 if (absent && (flags & FOLL_DUMP) &&
6322 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6330 * We need call hugetlb_fault for both hugepages under migration
6331 * (in which case hugetlb_fault waits for the migration,) and
6332 * hwpoisoned hugepages (in which case we need to prevent the
6333 * caller from accessing to them.) In order to do this, we use
6334 * here is_swap_pte instead of is_hugetlb_entry_migration and
6335 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6336 * both cases, and because we can't follow correct pages
6337 * directly from any kind of swap entries.
6340 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6342 unsigned int fault_flags = 0;
6346 if (flags & FOLL_WRITE)
6347 fault_flags |= FAULT_FLAG_WRITE;
6349 fault_flags |= FAULT_FLAG_UNSHARE;
6351 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6352 FAULT_FLAG_KILLABLE;
6353 if (flags & FOLL_INTERRUPTIBLE)
6354 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6356 if (flags & FOLL_NOWAIT)
6357 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6358 FAULT_FLAG_RETRY_NOWAIT;
6359 if (flags & FOLL_TRIED) {
6361 * Note: FAULT_FLAG_ALLOW_RETRY and
6362 * FAULT_FLAG_TRIED can co-exist
6364 fault_flags |= FAULT_FLAG_TRIED;
6366 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6367 if (ret & VM_FAULT_ERROR) {
6368 err = vm_fault_to_errno(ret, flags);
6372 if (ret & VM_FAULT_RETRY) {
6374 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6378 * VM_FAULT_RETRY must not return an
6379 * error, it will return zero
6382 * No need to update "position" as the
6383 * caller will not check it after
6384 * *nr_pages is set to 0.
6391 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6392 page = pte_page(huge_ptep_get(pte));
6394 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6395 !PageAnonExclusive(page), page);
6398 * If subpage information not requested, update counters
6399 * and skip the same_page loop below.
6401 if (!pages && !vmas && !pfn_offset &&
6402 (vaddr + huge_page_size(h) < vma->vm_end) &&
6403 (remainder >= pages_per_huge_page(h))) {
6404 vaddr += huge_page_size(h);
6405 remainder -= pages_per_huge_page(h);
6406 i += pages_per_huge_page(h);
6411 /* vaddr may not be aligned to PAGE_SIZE */
6412 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6413 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6416 record_subpages_vmas(nth_page(page, pfn_offset),
6418 likely(pages) ? pages + i : NULL,
6419 vmas ? vmas + i : NULL);
6423 * try_grab_folio() should always succeed here,
6424 * because: a) we hold the ptl lock, and b) we've just
6425 * checked that the huge page is present in the page
6426 * tables. If the huge page is present, then the tail
6427 * pages must also be present. The ptl prevents the
6428 * head page and tail pages from being rearranged in
6429 * any way. As this is hugetlb, the pages will never
6430 * be p2pdma or not longterm pinable. So this page
6431 * must be available at this point, unless the page
6432 * refcount overflowed:
6434 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6443 vaddr += (refs << PAGE_SHIFT);
6449 *nr_pages = remainder;
6451 * setting position is actually required only if remainder is
6452 * not zero but it's faster not to add a "if (remainder)"
6460 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6461 unsigned long address, unsigned long end,
6462 pgprot_t newprot, unsigned long cp_flags)
6464 struct mm_struct *mm = vma->vm_mm;
6465 unsigned long start = address;
6468 struct hstate *h = hstate_vma(vma);
6469 unsigned long pages = 0, psize = huge_page_size(h);
6470 bool shared_pmd = false;
6471 struct mmu_notifier_range range;
6472 unsigned long last_addr_mask;
6473 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6474 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6477 * In the case of shared PMDs, the area to flush could be beyond
6478 * start/end. Set range.start/range.end to cover the maximum possible
6479 * range if PMD sharing is possible.
6481 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6482 0, vma, mm, start, end);
6483 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6485 BUG_ON(address >= end);
6486 flush_cache_range(vma, range.start, range.end);
6488 mmu_notifier_invalidate_range_start(&range);
6489 hugetlb_vma_lock_write(vma);
6490 i_mmap_lock_write(vma->vm_file->f_mapping);
6491 last_addr_mask = hugetlb_mask_last_page(h);
6492 for (; address < end; address += psize) {
6494 ptep = huge_pte_offset(mm, address, psize);
6496 address |= last_addr_mask;
6499 ptl = huge_pte_lock(h, mm, ptep);
6500 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6502 * When uffd-wp is enabled on the vma, unshare
6503 * shouldn't happen at all. Warn about it if it
6504 * happened due to some reason.
6506 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6510 address |= last_addr_mask;
6513 pte = huge_ptep_get(ptep);
6514 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6518 if (unlikely(is_hugetlb_entry_migration(pte))) {
6519 swp_entry_t entry = pte_to_swp_entry(pte);
6520 struct page *page = pfn_swap_entry_to_page(entry);
6522 if (!is_readable_migration_entry(entry)) {
6526 entry = make_readable_exclusive_migration_entry(
6529 entry = make_readable_migration_entry(
6531 newpte = swp_entry_to_pte(entry);
6533 newpte = pte_swp_mkuffd_wp(newpte);
6534 else if (uffd_wp_resolve)
6535 newpte = pte_swp_clear_uffd_wp(newpte);
6536 set_huge_pte_at(mm, address, ptep, newpte);
6542 if (unlikely(pte_marker_uffd_wp(pte))) {
6544 * This is changing a non-present pte into a none pte,
6545 * no need for huge_ptep_modify_prot_start/commit().
6547 if (uffd_wp_resolve)
6548 huge_pte_clear(mm, address, ptep, psize);
6550 if (!huge_pte_none(pte)) {
6552 unsigned int shift = huge_page_shift(hstate_vma(vma));
6554 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6555 pte = huge_pte_modify(old_pte, newprot);
6556 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6558 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6559 else if (uffd_wp_resolve)
6560 pte = huge_pte_clear_uffd_wp(pte);
6561 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6565 if (unlikely(uffd_wp))
6566 /* Safe to modify directly (none->non-present). */
6567 set_huge_pte_at(mm, address, ptep,
6568 make_pte_marker(PTE_MARKER_UFFD_WP));
6573 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6574 * may have cleared our pud entry and done put_page on the page table:
6575 * once we release i_mmap_rwsem, another task can do the final put_page
6576 * and that page table be reused and filled with junk. If we actually
6577 * did unshare a page of pmds, flush the range corresponding to the pud.
6580 flush_hugetlb_tlb_range(vma, range.start, range.end);
6582 flush_hugetlb_tlb_range(vma, start, end);
6584 * No need to call mmu_notifier_invalidate_range() we are downgrading
6585 * page table protection not changing it to point to a new page.
6587 * See Documentation/mm/mmu_notifier.rst
6589 i_mmap_unlock_write(vma->vm_file->f_mapping);
6590 hugetlb_vma_unlock_write(vma);
6591 mmu_notifier_invalidate_range_end(&range);
6593 return pages << h->order;
6596 /* Return true if reservation was successful, false otherwise. */
6597 bool hugetlb_reserve_pages(struct inode *inode,
6599 struct vm_area_struct *vma,
6600 vm_flags_t vm_flags)
6603 struct hstate *h = hstate_inode(inode);
6604 struct hugepage_subpool *spool = subpool_inode(inode);
6605 struct resv_map *resv_map;
6606 struct hugetlb_cgroup *h_cg = NULL;
6607 long gbl_reserve, regions_needed = 0;
6609 /* This should never happen */
6611 VM_WARN(1, "%s called with a negative range\n", __func__);
6616 * vma specific semaphore used for pmd sharing synchronization
6618 hugetlb_vma_lock_alloc(vma);
6621 * Only apply hugepage reservation if asked. At fault time, an
6622 * attempt will be made for VM_NORESERVE to allocate a page
6623 * without using reserves
6625 if (vm_flags & VM_NORESERVE)
6629 * Shared mappings base their reservation on the number of pages that
6630 * are already allocated on behalf of the file. Private mappings need
6631 * to reserve the full area even if read-only as mprotect() may be
6632 * called to make the mapping read-write. Assume !vma is a shm mapping
6634 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6636 * resv_map can not be NULL as hugetlb_reserve_pages is only
6637 * called for inodes for which resv_maps were created (see
6638 * hugetlbfs_get_inode).
6640 resv_map = inode_resv_map(inode);
6642 chg = region_chg(resv_map, from, to, ®ions_needed);
6644 /* Private mapping. */
6645 resv_map = resv_map_alloc();
6651 set_vma_resv_map(vma, resv_map);
6652 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6658 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6659 chg * pages_per_huge_page(h), &h_cg) < 0)
6662 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6663 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6666 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6670 * There must be enough pages in the subpool for the mapping. If
6671 * the subpool has a minimum size, there may be some global
6672 * reservations already in place (gbl_reserve).
6674 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6675 if (gbl_reserve < 0)
6676 goto out_uncharge_cgroup;
6679 * Check enough hugepages are available for the reservation.
6680 * Hand the pages back to the subpool if there are not
6682 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6686 * Account for the reservations made. Shared mappings record regions
6687 * that have reservations as they are shared by multiple VMAs.
6688 * When the last VMA disappears, the region map says how much
6689 * the reservation was and the page cache tells how much of
6690 * the reservation was consumed. Private mappings are per-VMA and
6691 * only the consumed reservations are tracked. When the VMA
6692 * disappears, the original reservation is the VMA size and the
6693 * consumed reservations are stored in the map. Hence, nothing
6694 * else has to be done for private mappings here
6696 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6697 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6699 if (unlikely(add < 0)) {
6700 hugetlb_acct_memory(h, -gbl_reserve);
6702 } else if (unlikely(chg > add)) {
6704 * pages in this range were added to the reserve
6705 * map between region_chg and region_add. This
6706 * indicates a race with alloc_huge_page. Adjust
6707 * the subpool and reserve counts modified above
6708 * based on the difference.
6713 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6714 * reference to h_cg->css. See comment below for detail.
6716 hugetlb_cgroup_uncharge_cgroup_rsvd(
6718 (chg - add) * pages_per_huge_page(h), h_cg);
6720 rsv_adjust = hugepage_subpool_put_pages(spool,
6722 hugetlb_acct_memory(h, -rsv_adjust);
6725 * The file_regions will hold their own reference to
6726 * h_cg->css. So we should release the reference held
6727 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6730 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6736 /* put back original number of pages, chg */
6737 (void)hugepage_subpool_put_pages(spool, chg);
6738 out_uncharge_cgroup:
6739 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6740 chg * pages_per_huge_page(h), h_cg);
6742 hugetlb_vma_lock_free(vma);
6743 if (!vma || vma->vm_flags & VM_MAYSHARE)
6744 /* Only call region_abort if the region_chg succeeded but the
6745 * region_add failed or didn't run.
6747 if (chg >= 0 && add < 0)
6748 region_abort(resv_map, from, to, regions_needed);
6749 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6750 kref_put(&resv_map->refs, resv_map_release);
6754 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6757 struct hstate *h = hstate_inode(inode);
6758 struct resv_map *resv_map = inode_resv_map(inode);
6760 struct hugepage_subpool *spool = subpool_inode(inode);
6764 * Since this routine can be called in the evict inode path for all
6765 * hugetlbfs inodes, resv_map could be NULL.
6768 chg = region_del(resv_map, start, end);
6770 * region_del() can fail in the rare case where a region
6771 * must be split and another region descriptor can not be
6772 * allocated. If end == LONG_MAX, it will not fail.
6778 spin_lock(&inode->i_lock);
6779 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6780 spin_unlock(&inode->i_lock);
6783 * If the subpool has a minimum size, the number of global
6784 * reservations to be released may be adjusted.
6786 * Note that !resv_map implies freed == 0. So (chg - freed)
6787 * won't go negative.
6789 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6790 hugetlb_acct_memory(h, -gbl_reserve);
6795 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6796 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6797 struct vm_area_struct *vma,
6798 unsigned long addr, pgoff_t idx)
6800 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6802 unsigned long sbase = saddr & PUD_MASK;
6803 unsigned long s_end = sbase + PUD_SIZE;
6805 /* Allow segments to share if only one is marked locked */
6806 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6807 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6810 * match the virtual addresses, permission and the alignment of the
6813 * Also, vma_lock (vm_private_data) is required for sharing.
6815 if (pmd_index(addr) != pmd_index(saddr) ||
6816 vm_flags != svm_flags ||
6817 !range_in_vma(svma, sbase, s_end) ||
6818 !svma->vm_private_data)
6824 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6826 unsigned long start = addr & PUD_MASK;
6827 unsigned long end = start + PUD_SIZE;
6829 #ifdef CONFIG_USERFAULTFD
6830 if (uffd_disable_huge_pmd_share(vma))
6834 * check on proper vm_flags and page table alignment
6836 if (!(vma->vm_flags & VM_MAYSHARE))
6838 if (!vma->vm_private_data) /* vma lock required for sharing */
6840 if (!range_in_vma(vma, start, end))
6846 * Determine if start,end range within vma could be mapped by shared pmd.
6847 * If yes, adjust start and end to cover range associated with possible
6848 * shared pmd mappings.
6850 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6851 unsigned long *start, unsigned long *end)
6853 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6854 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6857 * vma needs to span at least one aligned PUD size, and the range
6858 * must be at least partially within in.
6860 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6861 (*end <= v_start) || (*start >= v_end))
6864 /* Extend the range to be PUD aligned for a worst case scenario */
6865 if (*start > v_start)
6866 *start = ALIGN_DOWN(*start, PUD_SIZE);
6869 *end = ALIGN(*end, PUD_SIZE);
6872 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6874 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6875 vma->vm_private_data;
6878 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6880 if (__vma_shareable_flags_pmd(vma)) {
6881 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6883 down_read(&vma_lock->rw_sema);
6887 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6889 if (__vma_shareable_flags_pmd(vma)) {
6890 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6892 up_read(&vma_lock->rw_sema);
6896 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6898 if (__vma_shareable_flags_pmd(vma)) {
6899 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6901 down_write(&vma_lock->rw_sema);
6905 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6907 if (__vma_shareable_flags_pmd(vma)) {
6908 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6910 up_write(&vma_lock->rw_sema);
6914 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6916 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6918 if (!__vma_shareable_flags_pmd(vma))
6921 return down_write_trylock(&vma_lock->rw_sema);
6924 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6926 if (__vma_shareable_flags_pmd(vma)) {
6927 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6929 lockdep_assert_held(&vma_lock->rw_sema);
6933 void hugetlb_vma_lock_release(struct kref *kref)
6935 struct hugetlb_vma_lock *vma_lock = container_of(kref,
6936 struct hugetlb_vma_lock, refs);
6941 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6943 struct vm_area_struct *vma = vma_lock->vma;
6946 * vma_lock structure may or not be released as a result of put,
6947 * it certainly will no longer be attached to vma so clear pointer.
6948 * Semaphore synchronizes access to vma_lock->vma field.
6950 vma_lock->vma = NULL;
6951 vma->vm_private_data = NULL;
6952 up_write(&vma_lock->rw_sema);
6953 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6956 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6958 if (__vma_shareable_flags_pmd(vma)) {
6959 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6961 __hugetlb_vma_unlock_write_put(vma_lock);
6965 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6968 * Only present in sharable vmas.
6970 if (!vma || !__vma_shareable_flags_pmd(vma))
6973 if (vma->vm_private_data) {
6974 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6976 down_write(&vma_lock->rw_sema);
6977 __hugetlb_vma_unlock_write_put(vma_lock);
6981 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6983 struct hugetlb_vma_lock *vma_lock;
6985 /* Only establish in (flags) sharable vmas */
6986 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6989 /* Should never get here with non-NULL vm_private_data */
6990 if (vma->vm_private_data)
6993 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6996 * If we can not allocate structure, then vma can not
6997 * participate in pmd sharing. This is only a possible
6998 * performance enhancement and memory saving issue.
6999 * However, the lock is also used to synchronize page
7000 * faults with truncation. If the lock is not present,
7001 * unlikely races could leave pages in a file past i_size
7002 * until the file is removed. Warn in the unlikely case of
7003 * allocation failure.
7005 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
7009 kref_init(&vma_lock->refs);
7010 init_rwsem(&vma_lock->rw_sema);
7011 vma_lock->vma = vma;
7012 vma->vm_private_data = vma_lock;
7016 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7017 * and returns the corresponding pte. While this is not necessary for the
7018 * !shared pmd case because we can allocate the pmd later as well, it makes the
7019 * code much cleaner. pmd allocation is essential for the shared case because
7020 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7021 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7022 * bad pmd for sharing.
7024 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7025 unsigned long addr, pud_t *pud)
7027 struct address_space *mapping = vma->vm_file->f_mapping;
7028 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7030 struct vm_area_struct *svma;
7031 unsigned long saddr;
7036 i_mmap_lock_read(mapping);
7037 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7041 saddr = page_table_shareable(svma, vma, addr, idx);
7043 spte = huge_pte_offset(svma->vm_mm, saddr,
7044 vma_mmu_pagesize(svma));
7046 get_page(virt_to_page(spte));
7055 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7056 if (pud_none(*pud)) {
7057 pud_populate(mm, pud,
7058 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7061 put_page(virt_to_page(spte));
7065 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7066 i_mmap_unlock_read(mapping);
7071 * unmap huge page backed by shared pte.
7073 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7074 * indicated by page_count > 1, unmap is achieved by clearing pud and
7075 * decrementing the ref count. If count == 1, the pte page is not shared.
7077 * Called with page table lock held.
7079 * returns: 1 successfully unmapped a shared pte page
7080 * 0 the underlying pte page is not shared, or it is the last user
7082 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7083 unsigned long addr, pte_t *ptep)
7085 pgd_t *pgd = pgd_offset(mm, addr);
7086 p4d_t *p4d = p4d_offset(pgd, addr);
7087 pud_t *pud = pud_offset(p4d, addr);
7089 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7090 hugetlb_vma_assert_locked(vma);
7091 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7092 if (page_count(virt_to_page(ptep)) == 1)
7096 put_page(virt_to_page(ptep));
7101 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7103 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7107 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7111 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7115 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7119 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7124 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7128 void hugetlb_vma_lock_release(struct kref *kref)
7132 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7136 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7140 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7144 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7145 unsigned long addr, pud_t *pud)
7150 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7151 unsigned long addr, pte_t *ptep)
7156 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7157 unsigned long *start, unsigned long *end)
7161 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7165 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7167 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7168 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7169 unsigned long addr, unsigned long sz)
7176 pgd = pgd_offset(mm, addr);
7177 p4d = p4d_alloc(mm, pgd, addr);
7180 pud = pud_alloc(mm, p4d, addr);
7182 if (sz == PUD_SIZE) {
7185 BUG_ON(sz != PMD_SIZE);
7186 if (want_pmd_share(vma, addr) && pud_none(*pud))
7187 pte = huge_pmd_share(mm, vma, addr, pud);
7189 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7192 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7198 * huge_pte_offset() - Walk the page table to resolve the hugepage
7199 * entry at address @addr
7201 * Return: Pointer to page table entry (PUD or PMD) for
7202 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7203 * size @sz doesn't match the hugepage size at this level of the page
7206 pte_t *huge_pte_offset(struct mm_struct *mm,
7207 unsigned long addr, unsigned long sz)
7214 pgd = pgd_offset(mm, addr);
7215 if (!pgd_present(*pgd))
7217 p4d = p4d_offset(pgd, addr);
7218 if (!p4d_present(*p4d))
7221 pud = pud_offset(p4d, addr);
7223 /* must be pud huge, non-present or none */
7224 return (pte_t *)pud;
7225 if (!pud_present(*pud))
7227 /* must have a valid entry and size to go further */
7229 pmd = pmd_offset(pud, addr);
7230 /* must be pmd huge, non-present or none */
7231 return (pte_t *)pmd;
7235 * Return a mask that can be used to update an address to the last huge
7236 * page in a page table page mapping size. Used to skip non-present
7237 * page table entries when linearly scanning address ranges. Architectures
7238 * with unique huge page to page table relationships can define their own
7239 * version of this routine.
7241 unsigned long hugetlb_mask_last_page(struct hstate *h)
7243 unsigned long hp_size = huge_page_size(h);
7245 if (hp_size == PUD_SIZE)
7246 return P4D_SIZE - PUD_SIZE;
7247 else if (hp_size == PMD_SIZE)
7248 return PUD_SIZE - PMD_SIZE;
7255 /* See description above. Architectures can provide their own version. */
7256 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7258 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7259 if (huge_page_size(h) == PMD_SIZE)
7260 return PUD_SIZE - PMD_SIZE;
7265 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7268 * These functions are overwritable if your architecture needs its own
7271 int isolate_hugetlb(struct page *page, struct list_head *list)
7275 spin_lock_irq(&hugetlb_lock);
7276 if (!PageHeadHuge(page) ||
7277 !HPageMigratable(page) ||
7278 !get_page_unless_zero(page)) {
7282 ClearHPageMigratable(page);
7283 list_move_tail(&page->lru, list);
7285 spin_unlock_irq(&hugetlb_lock);
7289 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7294 spin_lock_irq(&hugetlb_lock);
7295 if (PageHeadHuge(page)) {
7297 if (HPageFreed(page))
7299 else if (HPageMigratable(page) || unpoison)
7300 ret = get_page_unless_zero(page);
7304 spin_unlock_irq(&hugetlb_lock);
7308 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7309 bool *migratable_cleared)
7313 spin_lock_irq(&hugetlb_lock);
7314 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7315 spin_unlock_irq(&hugetlb_lock);
7319 void putback_active_hugepage(struct page *page)
7321 spin_lock_irq(&hugetlb_lock);
7322 SetHPageMigratable(page);
7323 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7324 spin_unlock_irq(&hugetlb_lock);
7328 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7330 struct hstate *h = folio_hstate(old_folio);
7332 hugetlb_cgroup_migrate(old_folio, new_folio);
7333 set_page_owner_migrate_reason(&new_folio->page, reason);
7336 * transfer temporary state of the new hugetlb folio. This is
7337 * reverse to other transitions because the newpage is going to
7338 * be final while the old one will be freed so it takes over
7339 * the temporary status.
7341 * Also note that we have to transfer the per-node surplus state
7342 * here as well otherwise the global surplus count will not match
7345 if (folio_test_hugetlb_temporary(new_folio)) {
7346 int old_nid = folio_nid(old_folio);
7347 int new_nid = folio_nid(new_folio);
7349 folio_set_hugetlb_temporary(old_folio);
7350 folio_clear_hugetlb_temporary(new_folio);
7354 * There is no need to transfer the per-node surplus state
7355 * when we do not cross the node.
7357 if (new_nid == old_nid)
7359 spin_lock_irq(&hugetlb_lock);
7360 if (h->surplus_huge_pages_node[old_nid]) {
7361 h->surplus_huge_pages_node[old_nid]--;
7362 h->surplus_huge_pages_node[new_nid]++;
7364 spin_unlock_irq(&hugetlb_lock);
7369 * This function will unconditionally remove all the shared pmd pgtable entries
7370 * within the specific vma for a hugetlbfs memory range.
7372 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7374 struct hstate *h = hstate_vma(vma);
7375 unsigned long sz = huge_page_size(h);
7376 struct mm_struct *mm = vma->vm_mm;
7377 struct mmu_notifier_range range;
7378 unsigned long address, start, end;
7382 if (!(vma->vm_flags & VM_MAYSHARE))
7385 start = ALIGN(vma->vm_start, PUD_SIZE);
7386 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7391 flush_cache_range(vma, start, end);
7393 * No need to call adjust_range_if_pmd_sharing_possible(), because
7394 * we have already done the PUD_SIZE alignment.
7396 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7398 mmu_notifier_invalidate_range_start(&range);
7399 hugetlb_vma_lock_write(vma);
7400 i_mmap_lock_write(vma->vm_file->f_mapping);
7401 for (address = start; address < end; address += PUD_SIZE) {
7402 ptep = huge_pte_offset(mm, address, sz);
7405 ptl = huge_pte_lock(h, mm, ptep);
7406 huge_pmd_unshare(mm, vma, address, ptep);
7409 flush_hugetlb_tlb_range(vma, start, end);
7410 i_mmap_unlock_write(vma->vm_file->f_mapping);
7411 hugetlb_vma_unlock_write(vma);
7413 * No need to call mmu_notifier_invalidate_range(), see
7414 * Documentation/mm/mmu_notifier.rst.
7416 mmu_notifier_invalidate_range_end(&range);
7420 static bool cma_reserve_called __initdata;
7422 static int __init cmdline_parse_hugetlb_cma(char *p)
7429 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7432 if (s[count] == ':') {
7433 if (tmp >= MAX_NUMNODES)
7435 nid = array_index_nospec(tmp, MAX_NUMNODES);
7438 tmp = memparse(s, &s);
7439 hugetlb_cma_size_in_node[nid] = tmp;
7440 hugetlb_cma_size += tmp;
7443 * Skip the separator if have one, otherwise
7444 * break the parsing.
7451 hugetlb_cma_size = memparse(p, &p);
7459 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7461 void __init hugetlb_cma_reserve(int order)
7463 unsigned long size, reserved, per_node;
7464 bool node_specific_cma_alloc = false;
7467 cma_reserve_called = true;
7469 if (!hugetlb_cma_size)
7472 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7473 if (hugetlb_cma_size_in_node[nid] == 0)
7476 if (!node_online(nid)) {
7477 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7478 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7479 hugetlb_cma_size_in_node[nid] = 0;
7483 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7484 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7485 nid, (PAGE_SIZE << order) / SZ_1M);
7486 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7487 hugetlb_cma_size_in_node[nid] = 0;
7489 node_specific_cma_alloc = true;
7493 /* Validate the CMA size again in case some invalid nodes specified. */
7494 if (!hugetlb_cma_size)
7497 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7498 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7499 (PAGE_SIZE << order) / SZ_1M);
7500 hugetlb_cma_size = 0;
7504 if (!node_specific_cma_alloc) {
7506 * If 3 GB area is requested on a machine with 4 numa nodes,
7507 * let's allocate 1 GB on first three nodes and ignore the last one.
7509 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7510 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7511 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7515 for_each_online_node(nid) {
7517 char name[CMA_MAX_NAME];
7519 if (node_specific_cma_alloc) {
7520 if (hugetlb_cma_size_in_node[nid] == 0)
7523 size = hugetlb_cma_size_in_node[nid];
7525 size = min(per_node, hugetlb_cma_size - reserved);
7528 size = round_up(size, PAGE_SIZE << order);
7530 snprintf(name, sizeof(name), "hugetlb%d", nid);
7532 * Note that 'order per bit' is based on smallest size that
7533 * may be returned to CMA allocator in the case of
7534 * huge page demotion.
7536 res = cma_declare_contiguous_nid(0, size, 0,
7537 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7539 &hugetlb_cma[nid], nid);
7541 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7547 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7550 if (reserved >= hugetlb_cma_size)
7556 * hugetlb_cma_size is used to determine if allocations from
7557 * cma are possible. Set to zero if no cma regions are set up.
7559 hugetlb_cma_size = 0;
7562 static void __init hugetlb_cma_check(void)
7564 if (!hugetlb_cma_size || cma_reserve_called)
7567 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7570 #endif /* CONFIG_CMA */