Merge tag 'hsi-for-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-hsi
[platform/kernel/linux-rpi.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
98                 unsigned long start, unsigned long end);
99
100 static inline bool subpool_is_free(struct hugepage_subpool *spool)
101 {
102         if (spool->count)
103                 return false;
104         if (spool->max_hpages != -1)
105                 return spool->used_hpages == 0;
106         if (spool->min_hpages != -1)
107                 return spool->rsv_hpages == spool->min_hpages;
108
109         return true;
110 }
111
112 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
113                                                 unsigned long irq_flags)
114 {
115         spin_unlock_irqrestore(&spool->lock, irq_flags);
116
117         /* If no pages are used, and no other handles to the subpool
118          * remain, give up any reservations based on minimum size and
119          * free the subpool */
120         if (subpool_is_free(spool)) {
121                 if (spool->min_hpages != -1)
122                         hugetlb_acct_memory(spool->hstate,
123                                                 -spool->min_hpages);
124                 kfree(spool);
125         }
126 }
127
128 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129                                                 long min_hpages)
130 {
131         struct hugepage_subpool *spool;
132
133         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
134         if (!spool)
135                 return NULL;
136
137         spin_lock_init(&spool->lock);
138         spool->count = 1;
139         spool->max_hpages = max_hpages;
140         spool->hstate = h;
141         spool->min_hpages = min_hpages;
142
143         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
144                 kfree(spool);
145                 return NULL;
146         }
147         spool->rsv_hpages = min_hpages;
148
149         return spool;
150 }
151
152 void hugepage_put_subpool(struct hugepage_subpool *spool)
153 {
154         unsigned long flags;
155
156         spin_lock_irqsave(&spool->lock, flags);
157         BUG_ON(!spool->count);
158         spool->count--;
159         unlock_or_release_subpool(spool, flags);
160 }
161
162 /*
163  * Subpool accounting for allocating and reserving pages.
164  * Return -ENOMEM if there are not enough resources to satisfy the
165  * request.  Otherwise, return the number of pages by which the
166  * global pools must be adjusted (upward).  The returned value may
167  * only be different than the passed value (delta) in the case where
168  * a subpool minimum size must be maintained.
169  */
170 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
171                                       long delta)
172 {
173         long ret = delta;
174
175         if (!spool)
176                 return ret;
177
178         spin_lock_irq(&spool->lock);
179
180         if (spool->max_hpages != -1) {          /* maximum size accounting */
181                 if ((spool->used_hpages + delta) <= spool->max_hpages)
182                         spool->used_hpages += delta;
183                 else {
184                         ret = -ENOMEM;
185                         goto unlock_ret;
186                 }
187         }
188
189         /* minimum size accounting */
190         if (spool->min_hpages != -1 && spool->rsv_hpages) {
191                 if (delta > spool->rsv_hpages) {
192                         /*
193                          * Asking for more reserves than those already taken on
194                          * behalf of subpool.  Return difference.
195                          */
196                         ret = delta - spool->rsv_hpages;
197                         spool->rsv_hpages = 0;
198                 } else {
199                         ret = 0;        /* reserves already accounted for */
200                         spool->rsv_hpages -= delta;
201                 }
202         }
203
204 unlock_ret:
205         spin_unlock_irq(&spool->lock);
206         return ret;
207 }
208
209 /*
210  * Subpool accounting for freeing and unreserving pages.
211  * Return the number of global page reservations that must be dropped.
212  * The return value may only be different than the passed value (delta)
213  * in the case where a subpool minimum size must be maintained.
214  */
215 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
216                                        long delta)
217 {
218         long ret = delta;
219         unsigned long flags;
220
221         if (!spool)
222                 return delta;
223
224         spin_lock_irqsave(&spool->lock, flags);
225
226         if (spool->max_hpages != -1)            /* maximum size accounting */
227                 spool->used_hpages -= delta;
228
229          /* minimum size accounting */
230         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
231                 if (spool->rsv_hpages + delta <= spool->min_hpages)
232                         ret = 0;
233                 else
234                         ret = spool->rsv_hpages + delta - spool->min_hpages;
235
236                 spool->rsv_hpages += delta;
237                 if (spool->rsv_hpages > spool->min_hpages)
238                         spool->rsv_hpages = spool->min_hpages;
239         }
240
241         /*
242          * If hugetlbfs_put_super couldn't free spool due to an outstanding
243          * quota reference, free it now.
244          */
245         unlock_or_release_subpool(spool, flags);
246
247         return ret;
248 }
249
250 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
251 {
252         return HUGETLBFS_SB(inode->i_sb)->spool;
253 }
254
255 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
256 {
257         return subpool_inode(file_inode(vma->vm_file));
258 }
259
260 /*
261  * hugetlb vma_lock helper routines
262  */
263 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
264 {
265         if (__vma_shareable_lock(vma)) {
266                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
267
268                 down_read(&vma_lock->rw_sema);
269         }
270 }
271
272 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
273 {
274         if (__vma_shareable_lock(vma)) {
275                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
276
277                 up_read(&vma_lock->rw_sema);
278         }
279 }
280
281 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
282 {
283         if (__vma_shareable_lock(vma)) {
284                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
285
286                 down_write(&vma_lock->rw_sema);
287         }
288 }
289
290 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
291 {
292         if (__vma_shareable_lock(vma)) {
293                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
294
295                 up_write(&vma_lock->rw_sema);
296         }
297 }
298
299 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
300 {
301         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
302
303         if (!__vma_shareable_lock(vma))
304                 return 1;
305
306         return down_write_trylock(&vma_lock->rw_sema);
307 }
308
309 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
310 {
311         if (__vma_shareable_lock(vma)) {
312                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
313
314                 lockdep_assert_held(&vma_lock->rw_sema);
315         }
316 }
317
318 void hugetlb_vma_lock_release(struct kref *kref)
319 {
320         struct hugetlb_vma_lock *vma_lock = container_of(kref,
321                         struct hugetlb_vma_lock, refs);
322
323         kfree(vma_lock);
324 }
325
326 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
327 {
328         struct vm_area_struct *vma = vma_lock->vma;
329
330         /*
331          * vma_lock structure may or not be released as a result of put,
332          * it certainly will no longer be attached to vma so clear pointer.
333          * Semaphore synchronizes access to vma_lock->vma field.
334          */
335         vma_lock->vma = NULL;
336         vma->vm_private_data = NULL;
337         up_write(&vma_lock->rw_sema);
338         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
339 }
340
341 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
342 {
343         if (__vma_shareable_lock(vma)) {
344                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
345
346                 __hugetlb_vma_unlock_write_put(vma_lock);
347         }
348 }
349
350 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
351 {
352         /*
353          * Only present in sharable vmas.
354          */
355         if (!vma || !__vma_shareable_lock(vma))
356                 return;
357
358         if (vma->vm_private_data) {
359                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
360
361                 down_write(&vma_lock->rw_sema);
362                 __hugetlb_vma_unlock_write_put(vma_lock);
363         }
364 }
365
366 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
367 {
368         struct hugetlb_vma_lock *vma_lock;
369
370         /* Only establish in (flags) sharable vmas */
371         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
372                 return;
373
374         /* Should never get here with non-NULL vm_private_data */
375         if (vma->vm_private_data)
376                 return;
377
378         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
379         if (!vma_lock) {
380                 /*
381                  * If we can not allocate structure, then vma can not
382                  * participate in pmd sharing.  This is only a possible
383                  * performance enhancement and memory saving issue.
384                  * However, the lock is also used to synchronize page
385                  * faults with truncation.  If the lock is not present,
386                  * unlikely races could leave pages in a file past i_size
387                  * until the file is removed.  Warn in the unlikely case of
388                  * allocation failure.
389                  */
390                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
391                 return;
392         }
393
394         kref_init(&vma_lock->refs);
395         init_rwsem(&vma_lock->rw_sema);
396         vma_lock->vma = vma;
397         vma->vm_private_data = vma_lock;
398 }
399
400 /* Helper that removes a struct file_region from the resv_map cache and returns
401  * it for use.
402  */
403 static struct file_region *
404 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
405 {
406         struct file_region *nrg;
407
408         VM_BUG_ON(resv->region_cache_count <= 0);
409
410         resv->region_cache_count--;
411         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
412         list_del(&nrg->link);
413
414         nrg->from = from;
415         nrg->to = to;
416
417         return nrg;
418 }
419
420 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
421                                               struct file_region *rg)
422 {
423 #ifdef CONFIG_CGROUP_HUGETLB
424         nrg->reservation_counter = rg->reservation_counter;
425         nrg->css = rg->css;
426         if (rg->css)
427                 css_get(rg->css);
428 #endif
429 }
430
431 /* Helper that records hugetlb_cgroup uncharge info. */
432 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
433                                                 struct hstate *h,
434                                                 struct resv_map *resv,
435                                                 struct file_region *nrg)
436 {
437 #ifdef CONFIG_CGROUP_HUGETLB
438         if (h_cg) {
439                 nrg->reservation_counter =
440                         &h_cg->rsvd_hugepage[hstate_index(h)];
441                 nrg->css = &h_cg->css;
442                 /*
443                  * The caller will hold exactly one h_cg->css reference for the
444                  * whole contiguous reservation region. But this area might be
445                  * scattered when there are already some file_regions reside in
446                  * it. As a result, many file_regions may share only one css
447                  * reference. In order to ensure that one file_region must hold
448                  * exactly one h_cg->css reference, we should do css_get for
449                  * each file_region and leave the reference held by caller
450                  * untouched.
451                  */
452                 css_get(&h_cg->css);
453                 if (!resv->pages_per_hpage)
454                         resv->pages_per_hpage = pages_per_huge_page(h);
455                 /* pages_per_hpage should be the same for all entries in
456                  * a resv_map.
457                  */
458                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
459         } else {
460                 nrg->reservation_counter = NULL;
461                 nrg->css = NULL;
462         }
463 #endif
464 }
465
466 static void put_uncharge_info(struct file_region *rg)
467 {
468 #ifdef CONFIG_CGROUP_HUGETLB
469         if (rg->css)
470                 css_put(rg->css);
471 #endif
472 }
473
474 static bool has_same_uncharge_info(struct file_region *rg,
475                                    struct file_region *org)
476 {
477 #ifdef CONFIG_CGROUP_HUGETLB
478         return rg->reservation_counter == org->reservation_counter &&
479                rg->css == org->css;
480
481 #else
482         return true;
483 #endif
484 }
485
486 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
487 {
488         struct file_region *nrg, *prg;
489
490         prg = list_prev_entry(rg, link);
491         if (&prg->link != &resv->regions && prg->to == rg->from &&
492             has_same_uncharge_info(prg, rg)) {
493                 prg->to = rg->to;
494
495                 list_del(&rg->link);
496                 put_uncharge_info(rg);
497                 kfree(rg);
498
499                 rg = prg;
500         }
501
502         nrg = list_next_entry(rg, link);
503         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
504             has_same_uncharge_info(nrg, rg)) {
505                 nrg->from = rg->from;
506
507                 list_del(&rg->link);
508                 put_uncharge_info(rg);
509                 kfree(rg);
510         }
511 }
512
513 static inline long
514 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
515                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
516                      long *regions_needed)
517 {
518         struct file_region *nrg;
519
520         if (!regions_needed) {
521                 nrg = get_file_region_entry_from_cache(map, from, to);
522                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
523                 list_add(&nrg->link, rg);
524                 coalesce_file_region(map, nrg);
525         } else
526                 *regions_needed += 1;
527
528         return to - from;
529 }
530
531 /*
532  * Must be called with resv->lock held.
533  *
534  * Calling this with regions_needed != NULL will count the number of pages
535  * to be added but will not modify the linked list. And regions_needed will
536  * indicate the number of file_regions needed in the cache to carry out to add
537  * the regions for this range.
538  */
539 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
540                                      struct hugetlb_cgroup *h_cg,
541                                      struct hstate *h, long *regions_needed)
542 {
543         long add = 0;
544         struct list_head *head = &resv->regions;
545         long last_accounted_offset = f;
546         struct file_region *iter, *trg = NULL;
547         struct list_head *rg = NULL;
548
549         if (regions_needed)
550                 *regions_needed = 0;
551
552         /* In this loop, we essentially handle an entry for the range
553          * [last_accounted_offset, iter->from), at every iteration, with some
554          * bounds checking.
555          */
556         list_for_each_entry_safe(iter, trg, head, link) {
557                 /* Skip irrelevant regions that start before our range. */
558                 if (iter->from < f) {
559                         /* If this region ends after the last accounted offset,
560                          * then we need to update last_accounted_offset.
561                          */
562                         if (iter->to > last_accounted_offset)
563                                 last_accounted_offset = iter->to;
564                         continue;
565                 }
566
567                 /* When we find a region that starts beyond our range, we've
568                  * finished.
569                  */
570                 if (iter->from >= t) {
571                         rg = iter->link.prev;
572                         break;
573                 }
574
575                 /* Add an entry for last_accounted_offset -> iter->from, and
576                  * update last_accounted_offset.
577                  */
578                 if (iter->from > last_accounted_offset)
579                         add += hugetlb_resv_map_add(resv, iter->link.prev,
580                                                     last_accounted_offset,
581                                                     iter->from, h, h_cg,
582                                                     regions_needed);
583
584                 last_accounted_offset = iter->to;
585         }
586
587         /* Handle the case where our range extends beyond
588          * last_accounted_offset.
589          */
590         if (!rg)
591                 rg = head->prev;
592         if (last_accounted_offset < t)
593                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
594                                             t, h, h_cg, regions_needed);
595
596         return add;
597 }
598
599 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
600  */
601 static int allocate_file_region_entries(struct resv_map *resv,
602                                         int regions_needed)
603         __must_hold(&resv->lock)
604 {
605         LIST_HEAD(allocated_regions);
606         int to_allocate = 0, i = 0;
607         struct file_region *trg = NULL, *rg = NULL;
608
609         VM_BUG_ON(regions_needed < 0);
610
611         /*
612          * Check for sufficient descriptors in the cache to accommodate
613          * the number of in progress add operations plus regions_needed.
614          *
615          * This is a while loop because when we drop the lock, some other call
616          * to region_add or region_del may have consumed some region_entries,
617          * so we keep looping here until we finally have enough entries for
618          * (adds_in_progress + regions_needed).
619          */
620         while (resv->region_cache_count <
621                (resv->adds_in_progress + regions_needed)) {
622                 to_allocate = resv->adds_in_progress + regions_needed -
623                               resv->region_cache_count;
624
625                 /* At this point, we should have enough entries in the cache
626                  * for all the existing adds_in_progress. We should only be
627                  * needing to allocate for regions_needed.
628                  */
629                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
630
631                 spin_unlock(&resv->lock);
632                 for (i = 0; i < to_allocate; i++) {
633                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
634                         if (!trg)
635                                 goto out_of_memory;
636                         list_add(&trg->link, &allocated_regions);
637                 }
638
639                 spin_lock(&resv->lock);
640
641                 list_splice(&allocated_regions, &resv->region_cache);
642                 resv->region_cache_count += to_allocate;
643         }
644
645         return 0;
646
647 out_of_memory:
648         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
649                 list_del(&rg->link);
650                 kfree(rg);
651         }
652         return -ENOMEM;
653 }
654
655 /*
656  * Add the huge page range represented by [f, t) to the reserve
657  * map.  Regions will be taken from the cache to fill in this range.
658  * Sufficient regions should exist in the cache due to the previous
659  * call to region_chg with the same range, but in some cases the cache will not
660  * have sufficient entries due to races with other code doing region_add or
661  * region_del.  The extra needed entries will be allocated.
662  *
663  * regions_needed is the out value provided by a previous call to region_chg.
664  *
665  * Return the number of new huge pages added to the map.  This number is greater
666  * than or equal to zero.  If file_region entries needed to be allocated for
667  * this operation and we were not able to allocate, it returns -ENOMEM.
668  * region_add of regions of length 1 never allocate file_regions and cannot
669  * fail; region_chg will always allocate at least 1 entry and a region_add for
670  * 1 page will only require at most 1 entry.
671  */
672 static long region_add(struct resv_map *resv, long f, long t,
673                        long in_regions_needed, struct hstate *h,
674                        struct hugetlb_cgroup *h_cg)
675 {
676         long add = 0, actual_regions_needed = 0;
677
678         spin_lock(&resv->lock);
679 retry:
680
681         /* Count how many regions are actually needed to execute this add. */
682         add_reservation_in_range(resv, f, t, NULL, NULL,
683                                  &actual_regions_needed);
684
685         /*
686          * Check for sufficient descriptors in the cache to accommodate
687          * this add operation. Note that actual_regions_needed may be greater
688          * than in_regions_needed, as the resv_map may have been modified since
689          * the region_chg call. In this case, we need to make sure that we
690          * allocate extra entries, such that we have enough for all the
691          * existing adds_in_progress, plus the excess needed for this
692          * operation.
693          */
694         if (actual_regions_needed > in_regions_needed &&
695             resv->region_cache_count <
696                     resv->adds_in_progress +
697                             (actual_regions_needed - in_regions_needed)) {
698                 /* region_add operation of range 1 should never need to
699                  * allocate file_region entries.
700                  */
701                 VM_BUG_ON(t - f <= 1);
702
703                 if (allocate_file_region_entries(
704                             resv, actual_regions_needed - in_regions_needed)) {
705                         return -ENOMEM;
706                 }
707
708                 goto retry;
709         }
710
711         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
712
713         resv->adds_in_progress -= in_regions_needed;
714
715         spin_unlock(&resv->lock);
716         return add;
717 }
718
719 /*
720  * Examine the existing reserve map and determine how many
721  * huge pages in the specified range [f, t) are NOT currently
722  * represented.  This routine is called before a subsequent
723  * call to region_add that will actually modify the reserve
724  * map to add the specified range [f, t).  region_chg does
725  * not change the number of huge pages represented by the
726  * map.  A number of new file_region structures is added to the cache as a
727  * placeholder, for the subsequent region_add call to use. At least 1
728  * file_region structure is added.
729  *
730  * out_regions_needed is the number of regions added to the
731  * resv->adds_in_progress.  This value needs to be provided to a follow up call
732  * to region_add or region_abort for proper accounting.
733  *
734  * Returns the number of huge pages that need to be added to the existing
735  * reservation map for the range [f, t).  This number is greater or equal to
736  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
737  * is needed and can not be allocated.
738  */
739 static long region_chg(struct resv_map *resv, long f, long t,
740                        long *out_regions_needed)
741 {
742         long chg = 0;
743
744         spin_lock(&resv->lock);
745
746         /* Count how many hugepages in this range are NOT represented. */
747         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
748                                        out_regions_needed);
749
750         if (*out_regions_needed == 0)
751                 *out_regions_needed = 1;
752
753         if (allocate_file_region_entries(resv, *out_regions_needed))
754                 return -ENOMEM;
755
756         resv->adds_in_progress += *out_regions_needed;
757
758         spin_unlock(&resv->lock);
759         return chg;
760 }
761
762 /*
763  * Abort the in progress add operation.  The adds_in_progress field
764  * of the resv_map keeps track of the operations in progress between
765  * calls to region_chg and region_add.  Operations are sometimes
766  * aborted after the call to region_chg.  In such cases, region_abort
767  * is called to decrement the adds_in_progress counter. regions_needed
768  * is the value returned by the region_chg call, it is used to decrement
769  * the adds_in_progress counter.
770  *
771  * NOTE: The range arguments [f, t) are not needed or used in this
772  * routine.  They are kept to make reading the calling code easier as
773  * arguments will match the associated region_chg call.
774  */
775 static void region_abort(struct resv_map *resv, long f, long t,
776                          long regions_needed)
777 {
778         spin_lock(&resv->lock);
779         VM_BUG_ON(!resv->region_cache_count);
780         resv->adds_in_progress -= regions_needed;
781         spin_unlock(&resv->lock);
782 }
783
784 /*
785  * Delete the specified range [f, t) from the reserve map.  If the
786  * t parameter is LONG_MAX, this indicates that ALL regions after f
787  * should be deleted.  Locate the regions which intersect [f, t)
788  * and either trim, delete or split the existing regions.
789  *
790  * Returns the number of huge pages deleted from the reserve map.
791  * In the normal case, the return value is zero or more.  In the
792  * case where a region must be split, a new region descriptor must
793  * be allocated.  If the allocation fails, -ENOMEM will be returned.
794  * NOTE: If the parameter t == LONG_MAX, then we will never split
795  * a region and possibly return -ENOMEM.  Callers specifying
796  * t == LONG_MAX do not need to check for -ENOMEM error.
797  */
798 static long region_del(struct resv_map *resv, long f, long t)
799 {
800         struct list_head *head = &resv->regions;
801         struct file_region *rg, *trg;
802         struct file_region *nrg = NULL;
803         long del = 0;
804
805 retry:
806         spin_lock(&resv->lock);
807         list_for_each_entry_safe(rg, trg, head, link) {
808                 /*
809                  * Skip regions before the range to be deleted.  file_region
810                  * ranges are normally of the form [from, to).  However, there
811                  * may be a "placeholder" entry in the map which is of the form
812                  * (from, to) with from == to.  Check for placeholder entries
813                  * at the beginning of the range to be deleted.
814                  */
815                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
816                         continue;
817
818                 if (rg->from >= t)
819                         break;
820
821                 if (f > rg->from && t < rg->to) { /* Must split region */
822                         /*
823                          * Check for an entry in the cache before dropping
824                          * lock and attempting allocation.
825                          */
826                         if (!nrg &&
827                             resv->region_cache_count > resv->adds_in_progress) {
828                                 nrg = list_first_entry(&resv->region_cache,
829                                                         struct file_region,
830                                                         link);
831                                 list_del(&nrg->link);
832                                 resv->region_cache_count--;
833                         }
834
835                         if (!nrg) {
836                                 spin_unlock(&resv->lock);
837                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
838                                 if (!nrg)
839                                         return -ENOMEM;
840                                 goto retry;
841                         }
842
843                         del += t - f;
844                         hugetlb_cgroup_uncharge_file_region(
845                                 resv, rg, t - f, false);
846
847                         /* New entry for end of split region */
848                         nrg->from = t;
849                         nrg->to = rg->to;
850
851                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
852
853                         INIT_LIST_HEAD(&nrg->link);
854
855                         /* Original entry is trimmed */
856                         rg->to = f;
857
858                         list_add(&nrg->link, &rg->link);
859                         nrg = NULL;
860                         break;
861                 }
862
863                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
864                         del += rg->to - rg->from;
865                         hugetlb_cgroup_uncharge_file_region(resv, rg,
866                                                             rg->to - rg->from, true);
867                         list_del(&rg->link);
868                         kfree(rg);
869                         continue;
870                 }
871
872                 if (f <= rg->from) {    /* Trim beginning of region */
873                         hugetlb_cgroup_uncharge_file_region(resv, rg,
874                                                             t - rg->from, false);
875
876                         del += t - rg->from;
877                         rg->from = t;
878                 } else {                /* Trim end of region */
879                         hugetlb_cgroup_uncharge_file_region(resv, rg,
880                                                             rg->to - f, false);
881
882                         del += rg->to - f;
883                         rg->to = f;
884                 }
885         }
886
887         spin_unlock(&resv->lock);
888         kfree(nrg);
889         return del;
890 }
891
892 /*
893  * A rare out of memory error was encountered which prevented removal of
894  * the reserve map region for a page.  The huge page itself was free'ed
895  * and removed from the page cache.  This routine will adjust the subpool
896  * usage count, and the global reserve count if needed.  By incrementing
897  * these counts, the reserve map entry which could not be deleted will
898  * appear as a "reserved" entry instead of simply dangling with incorrect
899  * counts.
900  */
901 void hugetlb_fix_reserve_counts(struct inode *inode)
902 {
903         struct hugepage_subpool *spool = subpool_inode(inode);
904         long rsv_adjust;
905         bool reserved = false;
906
907         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
908         if (rsv_adjust > 0) {
909                 struct hstate *h = hstate_inode(inode);
910
911                 if (!hugetlb_acct_memory(h, 1))
912                         reserved = true;
913         } else if (!rsv_adjust) {
914                 reserved = true;
915         }
916
917         if (!reserved)
918                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
919 }
920
921 /*
922  * Count and return the number of huge pages in the reserve map
923  * that intersect with the range [f, t).
924  */
925 static long region_count(struct resv_map *resv, long f, long t)
926 {
927         struct list_head *head = &resv->regions;
928         struct file_region *rg;
929         long chg = 0;
930
931         spin_lock(&resv->lock);
932         /* Locate each segment we overlap with, and count that overlap. */
933         list_for_each_entry(rg, head, link) {
934                 long seg_from;
935                 long seg_to;
936
937                 if (rg->to <= f)
938                         continue;
939                 if (rg->from >= t)
940                         break;
941
942                 seg_from = max(rg->from, f);
943                 seg_to = min(rg->to, t);
944
945                 chg += seg_to - seg_from;
946         }
947         spin_unlock(&resv->lock);
948
949         return chg;
950 }
951
952 /*
953  * Convert the address within this vma to the page offset within
954  * the mapping, in pagecache page units; huge pages here.
955  */
956 static pgoff_t vma_hugecache_offset(struct hstate *h,
957                         struct vm_area_struct *vma, unsigned long address)
958 {
959         return ((address - vma->vm_start) >> huge_page_shift(h)) +
960                         (vma->vm_pgoff >> huge_page_order(h));
961 }
962
963 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
964                                      unsigned long address)
965 {
966         return vma_hugecache_offset(hstate_vma(vma), vma, address);
967 }
968 EXPORT_SYMBOL_GPL(linear_hugepage_index);
969
970 /*
971  * Return the size of the pages allocated when backing a VMA. In the majority
972  * cases this will be same size as used by the page table entries.
973  */
974 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
975 {
976         if (vma->vm_ops && vma->vm_ops->pagesize)
977                 return vma->vm_ops->pagesize(vma);
978         return PAGE_SIZE;
979 }
980 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
981
982 /*
983  * Return the page size being used by the MMU to back a VMA. In the majority
984  * of cases, the page size used by the kernel matches the MMU size. On
985  * architectures where it differs, an architecture-specific 'strong'
986  * version of this symbol is required.
987  */
988 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
989 {
990         return vma_kernel_pagesize(vma);
991 }
992
993 /*
994  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
995  * bits of the reservation map pointer, which are always clear due to
996  * alignment.
997  */
998 #define HPAGE_RESV_OWNER    (1UL << 0)
999 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1000 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1001
1002 /*
1003  * These helpers are used to track how many pages are reserved for
1004  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1005  * is guaranteed to have their future faults succeed.
1006  *
1007  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1008  * the reserve counters are updated with the hugetlb_lock held. It is safe
1009  * to reset the VMA at fork() time as it is not in use yet and there is no
1010  * chance of the global counters getting corrupted as a result of the values.
1011  *
1012  * The private mapping reservation is represented in a subtly different
1013  * manner to a shared mapping.  A shared mapping has a region map associated
1014  * with the underlying file, this region map represents the backing file
1015  * pages which have ever had a reservation assigned which this persists even
1016  * after the page is instantiated.  A private mapping has a region map
1017  * associated with the original mmap which is attached to all VMAs which
1018  * reference it, this region map represents those offsets which have consumed
1019  * reservation ie. where pages have been instantiated.
1020  */
1021 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1022 {
1023         return (unsigned long)vma->vm_private_data;
1024 }
1025
1026 static void set_vma_private_data(struct vm_area_struct *vma,
1027                                                         unsigned long value)
1028 {
1029         vma->vm_private_data = (void *)value;
1030 }
1031
1032 static void
1033 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1034                                           struct hugetlb_cgroup *h_cg,
1035                                           struct hstate *h)
1036 {
1037 #ifdef CONFIG_CGROUP_HUGETLB
1038         if (!h_cg || !h) {
1039                 resv_map->reservation_counter = NULL;
1040                 resv_map->pages_per_hpage = 0;
1041                 resv_map->css = NULL;
1042         } else {
1043                 resv_map->reservation_counter =
1044                         &h_cg->rsvd_hugepage[hstate_index(h)];
1045                 resv_map->pages_per_hpage = pages_per_huge_page(h);
1046                 resv_map->css = &h_cg->css;
1047         }
1048 #endif
1049 }
1050
1051 struct resv_map *resv_map_alloc(void)
1052 {
1053         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1054         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1055
1056         if (!resv_map || !rg) {
1057                 kfree(resv_map);
1058                 kfree(rg);
1059                 return NULL;
1060         }
1061
1062         kref_init(&resv_map->refs);
1063         spin_lock_init(&resv_map->lock);
1064         INIT_LIST_HEAD(&resv_map->regions);
1065
1066         resv_map->adds_in_progress = 0;
1067         /*
1068          * Initialize these to 0. On shared mappings, 0's here indicate these
1069          * fields don't do cgroup accounting. On private mappings, these will be
1070          * re-initialized to the proper values, to indicate that hugetlb cgroup
1071          * reservations are to be un-charged from here.
1072          */
1073         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1074
1075         INIT_LIST_HEAD(&resv_map->region_cache);
1076         list_add(&rg->link, &resv_map->region_cache);
1077         resv_map->region_cache_count = 1;
1078
1079         return resv_map;
1080 }
1081
1082 void resv_map_release(struct kref *ref)
1083 {
1084         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1085         struct list_head *head = &resv_map->region_cache;
1086         struct file_region *rg, *trg;
1087
1088         /* Clear out any active regions before we release the map. */
1089         region_del(resv_map, 0, LONG_MAX);
1090
1091         /* ... and any entries left in the cache */
1092         list_for_each_entry_safe(rg, trg, head, link) {
1093                 list_del(&rg->link);
1094                 kfree(rg);
1095         }
1096
1097         VM_BUG_ON(resv_map->adds_in_progress);
1098
1099         kfree(resv_map);
1100 }
1101
1102 static inline struct resv_map *inode_resv_map(struct inode *inode)
1103 {
1104         /*
1105          * At inode evict time, i_mapping may not point to the original
1106          * address space within the inode.  This original address space
1107          * contains the pointer to the resv_map.  So, always use the
1108          * address space embedded within the inode.
1109          * The VERY common case is inode->mapping == &inode->i_data but,
1110          * this may not be true for device special inodes.
1111          */
1112         return (struct resv_map *)(&inode->i_data)->private_data;
1113 }
1114
1115 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1116 {
1117         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1118         if (vma->vm_flags & VM_MAYSHARE) {
1119                 struct address_space *mapping = vma->vm_file->f_mapping;
1120                 struct inode *inode = mapping->host;
1121
1122                 return inode_resv_map(inode);
1123
1124         } else {
1125                 return (struct resv_map *)(get_vma_private_data(vma) &
1126                                                         ~HPAGE_RESV_MASK);
1127         }
1128 }
1129
1130 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1131 {
1132         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1133         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1134
1135         set_vma_private_data(vma, (get_vma_private_data(vma) &
1136                                 HPAGE_RESV_MASK) | (unsigned long)map);
1137 }
1138
1139 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1140 {
1141         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1142         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1143
1144         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1145 }
1146
1147 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1148 {
1149         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1150
1151         return (get_vma_private_data(vma) & flag) != 0;
1152 }
1153
1154 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1155 {
1156         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157         /*
1158          * Clear vm_private_data
1159          * - For shared mappings this is a per-vma semaphore that may be
1160          *   allocated in a subsequent call to hugetlb_vm_op_open.
1161          *   Before clearing, make sure pointer is not associated with vma
1162          *   as this will leak the structure.  This is the case when called
1163          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1164          *   been called to allocate a new structure.
1165          * - For MAP_PRIVATE mappings, this is the reserve map which does
1166          *   not apply to children.  Faults generated by the children are
1167          *   not guaranteed to succeed, even if read-only.
1168          */
1169         if (vma->vm_flags & VM_MAYSHARE) {
1170                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1171
1172                 if (vma_lock && vma_lock->vma != vma)
1173                         vma->vm_private_data = NULL;
1174         } else
1175                 vma->vm_private_data = NULL;
1176 }
1177
1178 /*
1179  * Reset and decrement one ref on hugepage private reservation.
1180  * Called with mm->mmap_lock writer semaphore held.
1181  * This function should be only used by move_vma() and operate on
1182  * same sized vma. It should never come here with last ref on the
1183  * reservation.
1184  */
1185 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1186 {
1187         /*
1188          * Clear the old hugetlb private page reservation.
1189          * It has already been transferred to new_vma.
1190          *
1191          * During a mremap() operation of a hugetlb vma we call move_vma()
1192          * which copies vma into new_vma and unmaps vma. After the copy
1193          * operation both new_vma and vma share a reference to the resv_map
1194          * struct, and at that point vma is about to be unmapped. We don't
1195          * want to return the reservation to the pool at unmap of vma because
1196          * the reservation still lives on in new_vma, so simply decrement the
1197          * ref here and remove the resv_map reference from this vma.
1198          */
1199         struct resv_map *reservations = vma_resv_map(vma);
1200
1201         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1202                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1203                 kref_put(&reservations->refs, resv_map_release);
1204         }
1205
1206         hugetlb_dup_vma_private(vma);
1207 }
1208
1209 /* Returns true if the VMA has associated reserve pages */
1210 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1211 {
1212         if (vma->vm_flags & VM_NORESERVE) {
1213                 /*
1214                  * This address is already reserved by other process(chg == 0),
1215                  * so, we should decrement reserved count. Without decrementing,
1216                  * reserve count remains after releasing inode, because this
1217                  * allocated page will go into page cache and is regarded as
1218                  * coming from reserved pool in releasing step.  Currently, we
1219                  * don't have any other solution to deal with this situation
1220                  * properly, so add work-around here.
1221                  */
1222                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1223                         return true;
1224                 else
1225                         return false;
1226         }
1227
1228         /* Shared mappings always use reserves */
1229         if (vma->vm_flags & VM_MAYSHARE) {
1230                 /*
1231                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1232                  * be a region map for all pages.  The only situation where
1233                  * there is no region map is if a hole was punched via
1234                  * fallocate.  In this case, there really are no reserves to
1235                  * use.  This situation is indicated if chg != 0.
1236                  */
1237                 if (chg)
1238                         return false;
1239                 else
1240                         return true;
1241         }
1242
1243         /*
1244          * Only the process that called mmap() has reserves for
1245          * private mappings.
1246          */
1247         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1248                 /*
1249                  * Like the shared case above, a hole punch or truncate
1250                  * could have been performed on the private mapping.
1251                  * Examine the value of chg to determine if reserves
1252                  * actually exist or were previously consumed.
1253                  * Very Subtle - The value of chg comes from a previous
1254                  * call to vma_needs_reserves().  The reserve map for
1255                  * private mappings has different (opposite) semantics
1256                  * than that of shared mappings.  vma_needs_reserves()
1257                  * has already taken this difference in semantics into
1258                  * account.  Therefore, the meaning of chg is the same
1259                  * as in the shared case above.  Code could easily be
1260                  * combined, but keeping it separate draws attention to
1261                  * subtle differences.
1262                  */
1263                 if (chg)
1264                         return false;
1265                 else
1266                         return true;
1267         }
1268
1269         return false;
1270 }
1271
1272 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1273 {
1274         int nid = folio_nid(folio);
1275
1276         lockdep_assert_held(&hugetlb_lock);
1277         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1278
1279         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1280         h->free_huge_pages++;
1281         h->free_huge_pages_node[nid]++;
1282         folio_set_hugetlb_freed(folio);
1283 }
1284
1285 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1286                                                                 int nid)
1287 {
1288         struct folio *folio;
1289         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1290
1291         lockdep_assert_held(&hugetlb_lock);
1292         list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1293                 if (pin && !folio_is_longterm_pinnable(folio))
1294                         continue;
1295
1296                 if (folio_test_hwpoison(folio))
1297                         continue;
1298
1299                 list_move(&folio->lru, &h->hugepage_activelist);
1300                 folio_ref_unfreeze(folio, 1);
1301                 folio_clear_hugetlb_freed(folio);
1302                 h->free_huge_pages--;
1303                 h->free_huge_pages_node[nid]--;
1304                 return folio;
1305         }
1306
1307         return NULL;
1308 }
1309
1310 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1311                                                         int nid, nodemask_t *nmask)
1312 {
1313         unsigned int cpuset_mems_cookie;
1314         struct zonelist *zonelist;
1315         struct zone *zone;
1316         struct zoneref *z;
1317         int node = NUMA_NO_NODE;
1318
1319         zonelist = node_zonelist(nid, gfp_mask);
1320
1321 retry_cpuset:
1322         cpuset_mems_cookie = read_mems_allowed_begin();
1323         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1324                 struct folio *folio;
1325
1326                 if (!cpuset_zone_allowed(zone, gfp_mask))
1327                         continue;
1328                 /*
1329                  * no need to ask again on the same node. Pool is node rather than
1330                  * zone aware
1331                  */
1332                 if (zone_to_nid(zone) == node)
1333                         continue;
1334                 node = zone_to_nid(zone);
1335
1336                 folio = dequeue_hugetlb_folio_node_exact(h, node);
1337                 if (folio)
1338                         return folio;
1339         }
1340         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1341                 goto retry_cpuset;
1342
1343         return NULL;
1344 }
1345
1346 static unsigned long available_huge_pages(struct hstate *h)
1347 {
1348         return h->free_huge_pages - h->resv_huge_pages;
1349 }
1350
1351 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1352                                 struct vm_area_struct *vma,
1353                                 unsigned long address, int avoid_reserve,
1354                                 long chg)
1355 {
1356         struct folio *folio = NULL;
1357         struct mempolicy *mpol;
1358         gfp_t gfp_mask;
1359         nodemask_t *nodemask;
1360         int nid;
1361
1362         /*
1363          * A child process with MAP_PRIVATE mappings created by their parent
1364          * have no page reserves. This check ensures that reservations are
1365          * not "stolen". The child may still get SIGKILLed
1366          */
1367         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1368                 goto err;
1369
1370         /* If reserves cannot be used, ensure enough pages are in the pool */
1371         if (avoid_reserve && !available_huge_pages(h))
1372                 goto err;
1373
1374         gfp_mask = htlb_alloc_mask(h);
1375         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1376
1377         if (mpol_is_preferred_many(mpol)) {
1378                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1379                                                         nid, nodemask);
1380
1381                 /* Fallback to all nodes if page==NULL */
1382                 nodemask = NULL;
1383         }
1384
1385         if (!folio)
1386                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387                                                         nid, nodemask);
1388
1389         if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1390                 folio_set_hugetlb_restore_reserve(folio);
1391                 h->resv_huge_pages--;
1392         }
1393
1394         mpol_cond_put(mpol);
1395         return folio;
1396
1397 err:
1398         return NULL;
1399 }
1400
1401 /*
1402  * common helper functions for hstate_next_node_to_{alloc|free}.
1403  * We may have allocated or freed a huge page based on a different
1404  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1405  * be outside of *nodes_allowed.  Ensure that we use an allowed
1406  * node for alloc or free.
1407  */
1408 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1409 {
1410         nid = next_node_in(nid, *nodes_allowed);
1411         VM_BUG_ON(nid >= MAX_NUMNODES);
1412
1413         return nid;
1414 }
1415
1416 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1417 {
1418         if (!node_isset(nid, *nodes_allowed))
1419                 nid = next_node_allowed(nid, nodes_allowed);
1420         return nid;
1421 }
1422
1423 /*
1424  * returns the previously saved node ["this node"] from which to
1425  * allocate a persistent huge page for the pool and advance the
1426  * next node from which to allocate, handling wrap at end of node
1427  * mask.
1428  */
1429 static int hstate_next_node_to_alloc(struct hstate *h,
1430                                         nodemask_t *nodes_allowed)
1431 {
1432         int nid;
1433
1434         VM_BUG_ON(!nodes_allowed);
1435
1436         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1437         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1438
1439         return nid;
1440 }
1441
1442 /*
1443  * helper for remove_pool_huge_page() - return the previously saved
1444  * node ["this node"] from which to free a huge page.  Advance the
1445  * next node id whether or not we find a free huge page to free so
1446  * that the next attempt to free addresses the next node.
1447  */
1448 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1449 {
1450         int nid;
1451
1452         VM_BUG_ON(!nodes_allowed);
1453
1454         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1455         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1456
1457         return nid;
1458 }
1459
1460 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1461         for (nr_nodes = nodes_weight(*mask);                            \
1462                 nr_nodes > 0 &&                                         \
1463                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1464                 nr_nodes--)
1465
1466 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1467         for (nr_nodes = nodes_weight(*mask);                            \
1468                 nr_nodes > 0 &&                                         \
1469                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1470                 nr_nodes--)
1471
1472 /* used to demote non-gigantic_huge pages as well */
1473 static void __destroy_compound_gigantic_folio(struct folio *folio,
1474                                         unsigned int order, bool demote)
1475 {
1476         int i;
1477         int nr_pages = 1 << order;
1478         struct page *p;
1479
1480         atomic_set(&folio->_entire_mapcount, 0);
1481         atomic_set(&folio->_nr_pages_mapped, 0);
1482         atomic_set(&folio->_pincount, 0);
1483
1484         for (i = 1; i < nr_pages; i++) {
1485                 p = folio_page(folio, i);
1486                 p->mapping = NULL;
1487                 clear_compound_head(p);
1488                 if (!demote)
1489                         set_page_refcounted(p);
1490         }
1491
1492         __folio_clear_head(folio);
1493 }
1494
1495 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1496                                         unsigned int order)
1497 {
1498         __destroy_compound_gigantic_folio(folio, order, true);
1499 }
1500
1501 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1502 static void destroy_compound_gigantic_folio(struct folio *folio,
1503                                         unsigned int order)
1504 {
1505         __destroy_compound_gigantic_folio(folio, order, false);
1506 }
1507
1508 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1509 {
1510         /*
1511          * If the page isn't allocated using the cma allocator,
1512          * cma_release() returns false.
1513          */
1514 #ifdef CONFIG_CMA
1515         int nid = folio_nid(folio);
1516
1517         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1518                 return;
1519 #endif
1520
1521         free_contig_range(folio_pfn(folio), 1 << order);
1522 }
1523
1524 #ifdef CONFIG_CONTIG_ALLOC
1525 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1526                 int nid, nodemask_t *nodemask)
1527 {
1528         struct page *page;
1529         unsigned long nr_pages = pages_per_huge_page(h);
1530         if (nid == NUMA_NO_NODE)
1531                 nid = numa_mem_id();
1532
1533 #ifdef CONFIG_CMA
1534         {
1535                 int node;
1536
1537                 if (hugetlb_cma[nid]) {
1538                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1539                                         huge_page_order(h), true);
1540                         if (page)
1541                                 return page_folio(page);
1542                 }
1543
1544                 if (!(gfp_mask & __GFP_THISNODE)) {
1545                         for_each_node_mask(node, *nodemask) {
1546                                 if (node == nid || !hugetlb_cma[node])
1547                                         continue;
1548
1549                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1550                                                 huge_page_order(h), true);
1551                                 if (page)
1552                                         return page_folio(page);
1553                         }
1554                 }
1555         }
1556 #endif
1557
1558         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1559         return page ? page_folio(page) : NULL;
1560 }
1561
1562 #else /* !CONFIG_CONTIG_ALLOC */
1563 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1564                                         int nid, nodemask_t *nodemask)
1565 {
1566         return NULL;
1567 }
1568 #endif /* CONFIG_CONTIG_ALLOC */
1569
1570 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1571 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1572                                         int nid, nodemask_t *nodemask)
1573 {
1574         return NULL;
1575 }
1576 static inline void free_gigantic_folio(struct folio *folio,
1577                                                 unsigned int order) { }
1578 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1579                                                 unsigned int order) { }
1580 #endif
1581
1582 static inline void __clear_hugetlb_destructor(struct hstate *h,
1583                                                 struct folio *folio)
1584 {
1585         lockdep_assert_held(&hugetlb_lock);
1586
1587         /*
1588          * Very subtle
1589          *
1590          * For non-gigantic pages set the destructor to the normal compound
1591          * page dtor.  This is needed in case someone takes an additional
1592          * temporary ref to the page, and freeing is delayed until they drop
1593          * their reference.
1594          *
1595          * For gigantic pages set the destructor to the null dtor.  This
1596          * destructor will never be called.  Before freeing the gigantic
1597          * page destroy_compound_gigantic_folio will turn the folio into a
1598          * simple group of pages.  After this the destructor does not
1599          * apply.
1600          *
1601          */
1602         if (hstate_is_gigantic(h))
1603                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1604         else
1605                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1606 }
1607
1608 /*
1609  * Remove hugetlb folio from lists.
1610  * If vmemmap exists for the folio, update dtor so that the folio appears
1611  * as just a compound page.  Otherwise, wait until after allocating vmemmap
1612  * to update dtor.
1613  *
1614  * A reference is held on the folio, except in the case of demote.
1615  *
1616  * Must be called with hugetlb lock held.
1617  */
1618 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1619                                                         bool adjust_surplus,
1620                                                         bool demote)
1621 {
1622         int nid = folio_nid(folio);
1623
1624         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1625         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1626
1627         lockdep_assert_held(&hugetlb_lock);
1628         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1629                 return;
1630
1631         list_del(&folio->lru);
1632
1633         if (folio_test_hugetlb_freed(folio)) {
1634                 h->free_huge_pages--;
1635                 h->free_huge_pages_node[nid]--;
1636         }
1637         if (adjust_surplus) {
1638                 h->surplus_huge_pages--;
1639                 h->surplus_huge_pages_node[nid]--;
1640         }
1641
1642         /*
1643          * We can only clear the hugetlb destructor after allocating vmemmap
1644          * pages.  Otherwise, someone (memory error handling) may try to write
1645          * to tail struct pages.
1646          */
1647         if (!folio_test_hugetlb_vmemmap_optimized(folio))
1648                 __clear_hugetlb_destructor(h, folio);
1649
1650          /*
1651           * In the case of demote we do not ref count the page as it will soon
1652           * be turned into a page of smaller size.
1653          */
1654         if (!demote)
1655                 folio_ref_unfreeze(folio, 1);
1656
1657         h->nr_huge_pages--;
1658         h->nr_huge_pages_node[nid]--;
1659 }
1660
1661 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1662                                                         bool adjust_surplus)
1663 {
1664         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1665 }
1666
1667 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1668                                                         bool adjust_surplus)
1669 {
1670         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1671 }
1672
1673 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1674                              bool adjust_surplus)
1675 {
1676         int zeroed;
1677         int nid = folio_nid(folio);
1678
1679         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1680
1681         lockdep_assert_held(&hugetlb_lock);
1682
1683         INIT_LIST_HEAD(&folio->lru);
1684         h->nr_huge_pages++;
1685         h->nr_huge_pages_node[nid]++;
1686
1687         if (adjust_surplus) {
1688                 h->surplus_huge_pages++;
1689                 h->surplus_huge_pages_node[nid]++;
1690         }
1691
1692         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1693         folio_change_private(folio, NULL);
1694         /*
1695          * We have to set hugetlb_vmemmap_optimized again as above
1696          * folio_change_private(folio, NULL) cleared it.
1697          */
1698         folio_set_hugetlb_vmemmap_optimized(folio);
1699
1700         /*
1701          * This folio is about to be managed by the hugetlb allocator and
1702          * should have no users.  Drop our reference, and check for others
1703          * just in case.
1704          */
1705         zeroed = folio_put_testzero(folio);
1706         if (unlikely(!zeroed))
1707                 /*
1708                  * It is VERY unlikely soneone else has taken a ref on
1709                  * the page.  In this case, we simply return as the
1710                  * hugetlb destructor (free_huge_page) will be called
1711                  * when this other ref is dropped.
1712                  */
1713                 return;
1714
1715         arch_clear_hugepage_flags(&folio->page);
1716         enqueue_hugetlb_folio(h, folio);
1717 }
1718
1719 static void __update_and_free_hugetlb_folio(struct hstate *h,
1720                                                 struct folio *folio)
1721 {
1722         int i;
1723         struct page *subpage;
1724         bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1725
1726         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1727                 return;
1728
1729         /*
1730          * If we don't know which subpages are hwpoisoned, we can't free
1731          * the hugepage, so it's leaked intentionally.
1732          */
1733         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1734                 return;
1735
1736         if (hugetlb_vmemmap_restore(h, &folio->page)) {
1737                 spin_lock_irq(&hugetlb_lock);
1738                 /*
1739                  * If we cannot allocate vmemmap pages, just refuse to free the
1740                  * page and put the page back on the hugetlb free list and treat
1741                  * as a surplus page.
1742                  */
1743                 add_hugetlb_folio(h, folio, true);
1744                 spin_unlock_irq(&hugetlb_lock);
1745                 return;
1746         }
1747
1748         /*
1749          * Move PageHWPoison flag from head page to the raw error pages,
1750          * which makes any healthy subpages reusable.
1751          */
1752         if (unlikely(folio_test_hwpoison(folio)))
1753                 folio_clear_hugetlb_hwpoison(folio);
1754
1755         /*
1756          * If vmemmap pages were allocated above, then we need to clear the
1757          * hugetlb destructor under the hugetlb lock.
1758          */
1759         if (clear_dtor) {
1760                 spin_lock_irq(&hugetlb_lock);
1761                 __clear_hugetlb_destructor(h, folio);
1762                 spin_unlock_irq(&hugetlb_lock);
1763         }
1764
1765         for (i = 0; i < pages_per_huge_page(h); i++) {
1766                 subpage = folio_page(folio, i);
1767                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1768                                 1 << PG_referenced | 1 << PG_dirty |
1769                                 1 << PG_active | 1 << PG_private |
1770                                 1 << PG_writeback);
1771         }
1772
1773         /*
1774          * Non-gigantic pages demoted from CMA allocated gigantic pages
1775          * need to be given back to CMA in free_gigantic_folio.
1776          */
1777         if (hstate_is_gigantic(h) ||
1778             hugetlb_cma_folio(folio, huge_page_order(h))) {
1779                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1780                 free_gigantic_folio(folio, huge_page_order(h));
1781         } else {
1782                 __free_pages(&folio->page, huge_page_order(h));
1783         }
1784 }
1785
1786 /*
1787  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1788  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1789  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1790  * the vmemmap pages.
1791  *
1792  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1793  * freed and frees them one-by-one. As the page->mapping pointer is going
1794  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1795  * structure of a lockless linked list of huge pages to be freed.
1796  */
1797 static LLIST_HEAD(hpage_freelist);
1798
1799 static void free_hpage_workfn(struct work_struct *work)
1800 {
1801         struct llist_node *node;
1802
1803         node = llist_del_all(&hpage_freelist);
1804
1805         while (node) {
1806                 struct page *page;
1807                 struct hstate *h;
1808
1809                 page = container_of((struct address_space **)node,
1810                                      struct page, mapping);
1811                 node = node->next;
1812                 page->mapping = NULL;
1813                 /*
1814                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1815                  * is going to trigger because a previous call to
1816                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1817                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1818                  * directly.
1819                  */
1820                 h = size_to_hstate(page_size(page));
1821
1822                 __update_and_free_hugetlb_folio(h, page_folio(page));
1823
1824                 cond_resched();
1825         }
1826 }
1827 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1828
1829 static inline void flush_free_hpage_work(struct hstate *h)
1830 {
1831         if (hugetlb_vmemmap_optimizable(h))
1832                 flush_work(&free_hpage_work);
1833 }
1834
1835 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1836                                  bool atomic)
1837 {
1838         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1839                 __update_and_free_hugetlb_folio(h, folio);
1840                 return;
1841         }
1842
1843         /*
1844          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1845          *
1846          * Only call schedule_work() if hpage_freelist is previously
1847          * empty. Otherwise, schedule_work() had been called but the workfn
1848          * hasn't retrieved the list yet.
1849          */
1850         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1851                 schedule_work(&free_hpage_work);
1852 }
1853
1854 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1855 {
1856         struct page *page, *t_page;
1857         struct folio *folio;
1858
1859         list_for_each_entry_safe(page, t_page, list, lru) {
1860                 folio = page_folio(page);
1861                 update_and_free_hugetlb_folio(h, folio, false);
1862                 cond_resched();
1863         }
1864 }
1865
1866 struct hstate *size_to_hstate(unsigned long size)
1867 {
1868         struct hstate *h;
1869
1870         for_each_hstate(h) {
1871                 if (huge_page_size(h) == size)
1872                         return h;
1873         }
1874         return NULL;
1875 }
1876
1877 void free_huge_page(struct page *page)
1878 {
1879         /*
1880          * Can't pass hstate in here because it is called from the
1881          * compound page destructor.
1882          */
1883         struct folio *folio = page_folio(page);
1884         struct hstate *h = folio_hstate(folio);
1885         int nid = folio_nid(folio);
1886         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1887         bool restore_reserve;
1888         unsigned long flags;
1889
1890         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1891         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1892
1893         hugetlb_set_folio_subpool(folio, NULL);
1894         if (folio_test_anon(folio))
1895                 __ClearPageAnonExclusive(&folio->page);
1896         folio->mapping = NULL;
1897         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1898         folio_clear_hugetlb_restore_reserve(folio);
1899
1900         /*
1901          * If HPageRestoreReserve was set on page, page allocation consumed a
1902          * reservation.  If the page was associated with a subpool, there
1903          * would have been a page reserved in the subpool before allocation
1904          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1905          * reservation, do not call hugepage_subpool_put_pages() as this will
1906          * remove the reserved page from the subpool.
1907          */
1908         if (!restore_reserve) {
1909                 /*
1910                  * A return code of zero implies that the subpool will be
1911                  * under its minimum size if the reservation is not restored
1912                  * after page is free.  Therefore, force restore_reserve
1913                  * operation.
1914                  */
1915                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1916                         restore_reserve = true;
1917         }
1918
1919         spin_lock_irqsave(&hugetlb_lock, flags);
1920         folio_clear_hugetlb_migratable(folio);
1921         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1922                                      pages_per_huge_page(h), folio);
1923         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1924                                           pages_per_huge_page(h), folio);
1925         if (restore_reserve)
1926                 h->resv_huge_pages++;
1927
1928         if (folio_test_hugetlb_temporary(folio)) {
1929                 remove_hugetlb_folio(h, folio, false);
1930                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1931                 update_and_free_hugetlb_folio(h, folio, true);
1932         } else if (h->surplus_huge_pages_node[nid]) {
1933                 /* remove the page from active list */
1934                 remove_hugetlb_folio(h, folio, true);
1935                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1936                 update_and_free_hugetlb_folio(h, folio, true);
1937         } else {
1938                 arch_clear_hugepage_flags(page);
1939                 enqueue_hugetlb_folio(h, folio);
1940                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1941         }
1942 }
1943
1944 /*
1945  * Must be called with the hugetlb lock held
1946  */
1947 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1948 {
1949         lockdep_assert_held(&hugetlb_lock);
1950         h->nr_huge_pages++;
1951         h->nr_huge_pages_node[nid]++;
1952 }
1953
1954 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1955 {
1956         hugetlb_vmemmap_optimize(h, &folio->page);
1957         INIT_LIST_HEAD(&folio->lru);
1958         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1959         hugetlb_set_folio_subpool(folio, NULL);
1960         set_hugetlb_cgroup(folio, NULL);
1961         set_hugetlb_cgroup_rsvd(folio, NULL);
1962 }
1963
1964 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1965 {
1966         __prep_new_hugetlb_folio(h, folio);
1967         spin_lock_irq(&hugetlb_lock);
1968         __prep_account_new_huge_page(h, nid);
1969         spin_unlock_irq(&hugetlb_lock);
1970 }
1971
1972 static bool __prep_compound_gigantic_folio(struct folio *folio,
1973                                         unsigned int order, bool demote)
1974 {
1975         int i, j;
1976         int nr_pages = 1 << order;
1977         struct page *p;
1978
1979         __folio_clear_reserved(folio);
1980         for (i = 0; i < nr_pages; i++) {
1981                 p = folio_page(folio, i);
1982
1983                 /*
1984                  * For gigantic hugepages allocated through bootmem at
1985                  * boot, it's safer to be consistent with the not-gigantic
1986                  * hugepages and clear the PG_reserved bit from all tail pages
1987                  * too.  Otherwise drivers using get_user_pages() to access tail
1988                  * pages may get the reference counting wrong if they see
1989                  * PG_reserved set on a tail page (despite the head page not
1990                  * having PG_reserved set).  Enforcing this consistency between
1991                  * head and tail pages allows drivers to optimize away a check
1992                  * on the head page when they need know if put_page() is needed
1993                  * after get_user_pages().
1994                  */
1995                 if (i != 0)     /* head page cleared above */
1996                         __ClearPageReserved(p);
1997                 /*
1998                  * Subtle and very unlikely
1999                  *
2000                  * Gigantic 'page allocators' such as memblock or cma will
2001                  * return a set of pages with each page ref counted.  We need
2002                  * to turn this set of pages into a compound page with tail
2003                  * page ref counts set to zero.  Code such as speculative page
2004                  * cache adding could take a ref on a 'to be' tail page.
2005                  * We need to respect any increased ref count, and only set
2006                  * the ref count to zero if count is currently 1.  If count
2007                  * is not 1, we return an error.  An error return indicates
2008                  * the set of pages can not be converted to a gigantic page.
2009                  * The caller who allocated the pages should then discard the
2010                  * pages using the appropriate free interface.
2011                  *
2012                  * In the case of demote, the ref count will be zero.
2013                  */
2014                 if (!demote) {
2015                         if (!page_ref_freeze(p, 1)) {
2016                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
2017                                 goto out_error;
2018                         }
2019                 } else {
2020                         VM_BUG_ON_PAGE(page_count(p), p);
2021                 }
2022                 if (i != 0)
2023                         set_compound_head(p, &folio->page);
2024         }
2025         __folio_set_head(folio);
2026         /* we rely on prep_new_hugetlb_folio to set the destructor */
2027         folio_set_order(folio, order);
2028         atomic_set(&folio->_entire_mapcount, -1);
2029         atomic_set(&folio->_nr_pages_mapped, 0);
2030         atomic_set(&folio->_pincount, 0);
2031         return true;
2032
2033 out_error:
2034         /* undo page modifications made above */
2035         for (j = 0; j < i; j++) {
2036                 p = folio_page(folio, j);
2037                 if (j != 0)
2038                         clear_compound_head(p);
2039                 set_page_refcounted(p);
2040         }
2041         /* need to clear PG_reserved on remaining tail pages  */
2042         for (; j < nr_pages; j++) {
2043                 p = folio_page(folio, j);
2044                 __ClearPageReserved(p);
2045         }
2046         return false;
2047 }
2048
2049 static bool prep_compound_gigantic_folio(struct folio *folio,
2050                                                         unsigned int order)
2051 {
2052         return __prep_compound_gigantic_folio(folio, order, false);
2053 }
2054
2055 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2056                                                         unsigned int order)
2057 {
2058         return __prep_compound_gigantic_folio(folio, order, true);
2059 }
2060
2061 /*
2062  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2063  * transparent huge pages.  See the PageTransHuge() documentation for more
2064  * details.
2065  */
2066 int PageHuge(struct page *page)
2067 {
2068         struct folio *folio;
2069
2070         if (!PageCompound(page))
2071                 return 0;
2072         folio = page_folio(page);
2073         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2074 }
2075 EXPORT_SYMBOL_GPL(PageHuge);
2076
2077 /**
2078  * folio_test_hugetlb - Determine if the folio belongs to hugetlbfs
2079  * @folio: The folio to test.
2080  *
2081  * Context: Any context.  Caller should have a reference on the folio to
2082  * prevent it from being turned into a tail page.
2083  * Return: True for hugetlbfs folios, false for anon folios or folios
2084  * belonging to other filesystems.
2085  */
2086 bool folio_test_hugetlb(struct folio *folio)
2087 {
2088         if (!folio_test_large(folio))
2089                 return false;
2090
2091         return folio->_folio_dtor == HUGETLB_PAGE_DTOR;
2092 }
2093 EXPORT_SYMBOL_GPL(folio_test_hugetlb);
2094
2095 /*
2096  * Find and lock address space (mapping) in write mode.
2097  *
2098  * Upon entry, the page is locked which means that page_mapping() is
2099  * stable.  Due to locking order, we can only trylock_write.  If we can
2100  * not get the lock, simply return NULL to caller.
2101  */
2102 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2103 {
2104         struct address_space *mapping = page_mapping(hpage);
2105
2106         if (!mapping)
2107                 return mapping;
2108
2109         if (i_mmap_trylock_write(mapping))
2110                 return mapping;
2111
2112         return NULL;
2113 }
2114
2115 pgoff_t hugetlb_basepage_index(struct page *page)
2116 {
2117         struct page *page_head = compound_head(page);
2118         pgoff_t index = page_index(page_head);
2119         unsigned long compound_idx;
2120
2121         if (compound_order(page_head) > MAX_ORDER)
2122                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2123         else
2124                 compound_idx = page - page_head;
2125
2126         return (index << compound_order(page_head)) + compound_idx;
2127 }
2128
2129 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2130                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2131                 nodemask_t *node_alloc_noretry)
2132 {
2133         int order = huge_page_order(h);
2134         struct page *page;
2135         bool alloc_try_hard = true;
2136         bool retry = true;
2137
2138         /*
2139          * By default we always try hard to allocate the page with
2140          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
2141          * a loop (to adjust global huge page counts) and previous allocation
2142          * failed, do not continue to try hard on the same node.  Use the
2143          * node_alloc_noretry bitmap to manage this state information.
2144          */
2145         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2146                 alloc_try_hard = false;
2147         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2148         if (alloc_try_hard)
2149                 gfp_mask |= __GFP_RETRY_MAYFAIL;
2150         if (nid == NUMA_NO_NODE)
2151                 nid = numa_mem_id();
2152 retry:
2153         page = __alloc_pages(gfp_mask, order, nid, nmask);
2154
2155         /* Freeze head page */
2156         if (page && !page_ref_freeze(page, 1)) {
2157                 __free_pages(page, order);
2158                 if (retry) {    /* retry once */
2159                         retry = false;
2160                         goto retry;
2161                 }
2162                 /* WOW!  twice in a row. */
2163                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2164                 page = NULL;
2165         }
2166
2167         /*
2168          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2169          * indicates an overall state change.  Clear bit so that we resume
2170          * normal 'try hard' allocations.
2171          */
2172         if (node_alloc_noretry && page && !alloc_try_hard)
2173                 node_clear(nid, *node_alloc_noretry);
2174
2175         /*
2176          * If we tried hard to get a page but failed, set bit so that
2177          * subsequent attempts will not try as hard until there is an
2178          * overall state change.
2179          */
2180         if (node_alloc_noretry && !page && alloc_try_hard)
2181                 node_set(nid, *node_alloc_noretry);
2182
2183         if (!page) {
2184                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2185                 return NULL;
2186         }
2187
2188         __count_vm_event(HTLB_BUDDY_PGALLOC);
2189         return page_folio(page);
2190 }
2191
2192 /*
2193  * Common helper to allocate a fresh hugetlb page. All specific allocators
2194  * should use this function to get new hugetlb pages
2195  *
2196  * Note that returned page is 'frozen':  ref count of head page and all tail
2197  * pages is zero.
2198  */
2199 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2200                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2201                 nodemask_t *node_alloc_noretry)
2202 {
2203         struct folio *folio;
2204         bool retry = false;
2205
2206 retry:
2207         if (hstate_is_gigantic(h))
2208                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2209         else
2210                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2211                                 nid, nmask, node_alloc_noretry);
2212         if (!folio)
2213                 return NULL;
2214         if (hstate_is_gigantic(h)) {
2215                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2216                         /*
2217                          * Rare failure to convert pages to compound page.
2218                          * Free pages and try again - ONCE!
2219                          */
2220                         free_gigantic_folio(folio, huge_page_order(h));
2221                         if (!retry) {
2222                                 retry = true;
2223                                 goto retry;
2224                         }
2225                         return NULL;
2226                 }
2227         }
2228         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2229
2230         return folio;
2231 }
2232
2233 /*
2234  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2235  * manner.
2236  */
2237 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2238                                 nodemask_t *node_alloc_noretry)
2239 {
2240         struct folio *folio;
2241         int nr_nodes, node;
2242         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2243
2244         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2245                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2246                                         nodes_allowed, node_alloc_noretry);
2247                 if (folio) {
2248                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2249                         return 1;
2250                 }
2251         }
2252
2253         return 0;
2254 }
2255
2256 /*
2257  * Remove huge page from pool from next node to free.  Attempt to keep
2258  * persistent huge pages more or less balanced over allowed nodes.
2259  * This routine only 'removes' the hugetlb page.  The caller must make
2260  * an additional call to free the page to low level allocators.
2261  * Called with hugetlb_lock locked.
2262  */
2263 static struct page *remove_pool_huge_page(struct hstate *h,
2264                                                 nodemask_t *nodes_allowed,
2265                                                  bool acct_surplus)
2266 {
2267         int nr_nodes, node;
2268         struct page *page = NULL;
2269         struct folio *folio;
2270
2271         lockdep_assert_held(&hugetlb_lock);
2272         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2273                 /*
2274                  * If we're returning unused surplus pages, only examine
2275                  * nodes with surplus pages.
2276                  */
2277                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2278                     !list_empty(&h->hugepage_freelists[node])) {
2279                         page = list_entry(h->hugepage_freelists[node].next,
2280                                           struct page, lru);
2281                         folio = page_folio(page);
2282                         remove_hugetlb_folio(h, folio, acct_surplus);
2283                         break;
2284                 }
2285         }
2286
2287         return page;
2288 }
2289
2290 /*
2291  * Dissolve a given free hugepage into free buddy pages. This function does
2292  * nothing for in-use hugepages and non-hugepages.
2293  * This function returns values like below:
2294  *
2295  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2296  *           when the system is under memory pressure and the feature of
2297  *           freeing unused vmemmap pages associated with each hugetlb page
2298  *           is enabled.
2299  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2300  *           (allocated or reserved.)
2301  *       0:  successfully dissolved free hugepages or the page is not a
2302  *           hugepage (considered as already dissolved)
2303  */
2304 int dissolve_free_huge_page(struct page *page)
2305 {
2306         int rc = -EBUSY;
2307         struct folio *folio = page_folio(page);
2308
2309 retry:
2310         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2311         if (!folio_test_hugetlb(folio))
2312                 return 0;
2313
2314         spin_lock_irq(&hugetlb_lock);
2315         if (!folio_test_hugetlb(folio)) {
2316                 rc = 0;
2317                 goto out;
2318         }
2319
2320         if (!folio_ref_count(folio)) {
2321                 struct hstate *h = folio_hstate(folio);
2322                 if (!available_huge_pages(h))
2323                         goto out;
2324
2325                 /*
2326                  * We should make sure that the page is already on the free list
2327                  * when it is dissolved.
2328                  */
2329                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2330                         spin_unlock_irq(&hugetlb_lock);
2331                         cond_resched();
2332
2333                         /*
2334                          * Theoretically, we should return -EBUSY when we
2335                          * encounter this race. In fact, we have a chance
2336                          * to successfully dissolve the page if we do a
2337                          * retry. Because the race window is quite small.
2338                          * If we seize this opportunity, it is an optimization
2339                          * for increasing the success rate of dissolving page.
2340                          */
2341                         goto retry;
2342                 }
2343
2344                 remove_hugetlb_folio(h, folio, false);
2345                 h->max_huge_pages--;
2346                 spin_unlock_irq(&hugetlb_lock);
2347
2348                 /*
2349                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2350                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2351                  * free the page if it can not allocate required vmemmap.  We
2352                  * need to adjust max_huge_pages if the page is not freed.
2353                  * Attempt to allocate vmemmmap here so that we can take
2354                  * appropriate action on failure.
2355                  */
2356                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2357                 if (!rc) {
2358                         update_and_free_hugetlb_folio(h, folio, false);
2359                 } else {
2360                         spin_lock_irq(&hugetlb_lock);
2361                         add_hugetlb_folio(h, folio, false);
2362                         h->max_huge_pages++;
2363                         spin_unlock_irq(&hugetlb_lock);
2364                 }
2365
2366                 return rc;
2367         }
2368 out:
2369         spin_unlock_irq(&hugetlb_lock);
2370         return rc;
2371 }
2372
2373 /*
2374  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2375  * make specified memory blocks removable from the system.
2376  * Note that this will dissolve a free gigantic hugepage completely, if any
2377  * part of it lies within the given range.
2378  * Also note that if dissolve_free_huge_page() returns with an error, all
2379  * free hugepages that were dissolved before that error are lost.
2380  */
2381 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2382 {
2383         unsigned long pfn;
2384         struct page *page;
2385         int rc = 0;
2386         unsigned int order;
2387         struct hstate *h;
2388
2389         if (!hugepages_supported())
2390                 return rc;
2391
2392         order = huge_page_order(&default_hstate);
2393         for_each_hstate(h)
2394                 order = min(order, huge_page_order(h));
2395
2396         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2397                 page = pfn_to_page(pfn);
2398                 rc = dissolve_free_huge_page(page);
2399                 if (rc)
2400                         break;
2401         }
2402
2403         return rc;
2404 }
2405
2406 /*
2407  * Allocates a fresh surplus page from the page allocator.
2408  */
2409 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2410                                 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2411 {
2412         struct folio *folio = NULL;
2413
2414         if (hstate_is_gigantic(h))
2415                 return NULL;
2416
2417         spin_lock_irq(&hugetlb_lock);
2418         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2419                 goto out_unlock;
2420         spin_unlock_irq(&hugetlb_lock);
2421
2422         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2423         if (!folio)
2424                 return NULL;
2425
2426         spin_lock_irq(&hugetlb_lock);
2427         /*
2428          * We could have raced with the pool size change.
2429          * Double check that and simply deallocate the new page
2430          * if we would end up overcommiting the surpluses. Abuse
2431          * temporary page to workaround the nasty free_huge_page
2432          * codeflow
2433          */
2434         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2435                 folio_set_hugetlb_temporary(folio);
2436                 spin_unlock_irq(&hugetlb_lock);
2437                 free_huge_page(&folio->page);
2438                 return NULL;
2439         }
2440
2441         h->surplus_huge_pages++;
2442         h->surplus_huge_pages_node[folio_nid(folio)]++;
2443
2444 out_unlock:
2445         spin_unlock_irq(&hugetlb_lock);
2446
2447         return folio;
2448 }
2449
2450 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2451                                      int nid, nodemask_t *nmask)
2452 {
2453         struct folio *folio;
2454
2455         if (hstate_is_gigantic(h))
2456                 return NULL;
2457
2458         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2459         if (!folio)
2460                 return NULL;
2461
2462         /* fresh huge pages are frozen */
2463         folio_ref_unfreeze(folio, 1);
2464         /*
2465          * We do not account these pages as surplus because they are only
2466          * temporary and will be released properly on the last reference
2467          */
2468         folio_set_hugetlb_temporary(folio);
2469
2470         return folio;
2471 }
2472
2473 /*
2474  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2475  */
2476 static
2477 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2478                 struct vm_area_struct *vma, unsigned long addr)
2479 {
2480         struct folio *folio = NULL;
2481         struct mempolicy *mpol;
2482         gfp_t gfp_mask = htlb_alloc_mask(h);
2483         int nid;
2484         nodemask_t *nodemask;
2485
2486         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2487         if (mpol_is_preferred_many(mpol)) {
2488                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2489
2490                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2491                 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2492
2493                 /* Fallback to all nodes if page==NULL */
2494                 nodemask = NULL;
2495         }
2496
2497         if (!folio)
2498                 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2499         mpol_cond_put(mpol);
2500         return folio;
2501 }
2502
2503 /* folio migration callback function */
2504 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2505                 nodemask_t *nmask, gfp_t gfp_mask)
2506 {
2507         spin_lock_irq(&hugetlb_lock);
2508         if (available_huge_pages(h)) {
2509                 struct folio *folio;
2510
2511                 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2512                                                 preferred_nid, nmask);
2513                 if (folio) {
2514                         spin_unlock_irq(&hugetlb_lock);
2515                         return folio;
2516                 }
2517         }
2518         spin_unlock_irq(&hugetlb_lock);
2519
2520         return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2521 }
2522
2523 /* mempolicy aware migration callback */
2524 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2525                 unsigned long address)
2526 {
2527         struct mempolicy *mpol;
2528         nodemask_t *nodemask;
2529         struct folio *folio;
2530         gfp_t gfp_mask;
2531         int node;
2532
2533         gfp_mask = htlb_alloc_mask(h);
2534         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2535         folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2536         mpol_cond_put(mpol);
2537
2538         return folio;
2539 }
2540
2541 /*
2542  * Increase the hugetlb pool such that it can accommodate a reservation
2543  * of size 'delta'.
2544  */
2545 static int gather_surplus_pages(struct hstate *h, long delta)
2546         __must_hold(&hugetlb_lock)
2547 {
2548         LIST_HEAD(surplus_list);
2549         struct folio *folio;
2550         struct page *page, *tmp;
2551         int ret;
2552         long i;
2553         long needed, allocated;
2554         bool alloc_ok = true;
2555
2556         lockdep_assert_held(&hugetlb_lock);
2557         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2558         if (needed <= 0) {
2559                 h->resv_huge_pages += delta;
2560                 return 0;
2561         }
2562
2563         allocated = 0;
2564
2565         ret = -ENOMEM;
2566 retry:
2567         spin_unlock_irq(&hugetlb_lock);
2568         for (i = 0; i < needed; i++) {
2569                 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2570                                 NUMA_NO_NODE, NULL);
2571                 if (!folio) {
2572                         alloc_ok = false;
2573                         break;
2574                 }
2575                 list_add(&folio->lru, &surplus_list);
2576                 cond_resched();
2577         }
2578         allocated += i;
2579
2580         /*
2581          * After retaking hugetlb_lock, we need to recalculate 'needed'
2582          * because either resv_huge_pages or free_huge_pages may have changed.
2583          */
2584         spin_lock_irq(&hugetlb_lock);
2585         needed = (h->resv_huge_pages + delta) -
2586                         (h->free_huge_pages + allocated);
2587         if (needed > 0) {
2588                 if (alloc_ok)
2589                         goto retry;
2590                 /*
2591                  * We were not able to allocate enough pages to
2592                  * satisfy the entire reservation so we free what
2593                  * we've allocated so far.
2594                  */
2595                 goto free;
2596         }
2597         /*
2598          * The surplus_list now contains _at_least_ the number of extra pages
2599          * needed to accommodate the reservation.  Add the appropriate number
2600          * of pages to the hugetlb pool and free the extras back to the buddy
2601          * allocator.  Commit the entire reservation here to prevent another
2602          * process from stealing the pages as they are added to the pool but
2603          * before they are reserved.
2604          */
2605         needed += allocated;
2606         h->resv_huge_pages += delta;
2607         ret = 0;
2608
2609         /* Free the needed pages to the hugetlb pool */
2610         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2611                 if ((--needed) < 0)
2612                         break;
2613                 /* Add the page to the hugetlb allocator */
2614                 enqueue_hugetlb_folio(h, page_folio(page));
2615         }
2616 free:
2617         spin_unlock_irq(&hugetlb_lock);
2618
2619         /*
2620          * Free unnecessary surplus pages to the buddy allocator.
2621          * Pages have no ref count, call free_huge_page directly.
2622          */
2623         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2624                 free_huge_page(page);
2625         spin_lock_irq(&hugetlb_lock);
2626
2627         return ret;
2628 }
2629
2630 /*
2631  * This routine has two main purposes:
2632  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2633  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2634  *    to the associated reservation map.
2635  * 2) Free any unused surplus pages that may have been allocated to satisfy
2636  *    the reservation.  As many as unused_resv_pages may be freed.
2637  */
2638 static void return_unused_surplus_pages(struct hstate *h,
2639                                         unsigned long unused_resv_pages)
2640 {
2641         unsigned long nr_pages;
2642         struct page *page;
2643         LIST_HEAD(page_list);
2644
2645         lockdep_assert_held(&hugetlb_lock);
2646         /* Uncommit the reservation */
2647         h->resv_huge_pages -= unused_resv_pages;
2648
2649         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2650                 goto out;
2651
2652         /*
2653          * Part (or even all) of the reservation could have been backed
2654          * by pre-allocated pages. Only free surplus pages.
2655          */
2656         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2657
2658         /*
2659          * We want to release as many surplus pages as possible, spread
2660          * evenly across all nodes with memory. Iterate across these nodes
2661          * until we can no longer free unreserved surplus pages. This occurs
2662          * when the nodes with surplus pages have no free pages.
2663          * remove_pool_huge_page() will balance the freed pages across the
2664          * on-line nodes with memory and will handle the hstate accounting.
2665          */
2666         while (nr_pages--) {
2667                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2668                 if (!page)
2669                         goto out;
2670
2671                 list_add(&page->lru, &page_list);
2672         }
2673
2674 out:
2675         spin_unlock_irq(&hugetlb_lock);
2676         update_and_free_pages_bulk(h, &page_list);
2677         spin_lock_irq(&hugetlb_lock);
2678 }
2679
2680
2681 /*
2682  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2683  * are used by the huge page allocation routines to manage reservations.
2684  *
2685  * vma_needs_reservation is called to determine if the huge page at addr
2686  * within the vma has an associated reservation.  If a reservation is
2687  * needed, the value 1 is returned.  The caller is then responsible for
2688  * managing the global reservation and subpool usage counts.  After
2689  * the huge page has been allocated, vma_commit_reservation is called
2690  * to add the page to the reservation map.  If the page allocation fails,
2691  * the reservation must be ended instead of committed.  vma_end_reservation
2692  * is called in such cases.
2693  *
2694  * In the normal case, vma_commit_reservation returns the same value
2695  * as the preceding vma_needs_reservation call.  The only time this
2696  * is not the case is if a reserve map was changed between calls.  It
2697  * is the responsibility of the caller to notice the difference and
2698  * take appropriate action.
2699  *
2700  * vma_add_reservation is used in error paths where a reservation must
2701  * be restored when a newly allocated huge page must be freed.  It is
2702  * to be called after calling vma_needs_reservation to determine if a
2703  * reservation exists.
2704  *
2705  * vma_del_reservation is used in error paths where an entry in the reserve
2706  * map was created during huge page allocation and must be removed.  It is to
2707  * be called after calling vma_needs_reservation to determine if a reservation
2708  * exists.
2709  */
2710 enum vma_resv_mode {
2711         VMA_NEEDS_RESV,
2712         VMA_COMMIT_RESV,
2713         VMA_END_RESV,
2714         VMA_ADD_RESV,
2715         VMA_DEL_RESV,
2716 };
2717 static long __vma_reservation_common(struct hstate *h,
2718                                 struct vm_area_struct *vma, unsigned long addr,
2719                                 enum vma_resv_mode mode)
2720 {
2721         struct resv_map *resv;
2722         pgoff_t idx;
2723         long ret;
2724         long dummy_out_regions_needed;
2725
2726         resv = vma_resv_map(vma);
2727         if (!resv)
2728                 return 1;
2729
2730         idx = vma_hugecache_offset(h, vma, addr);
2731         switch (mode) {
2732         case VMA_NEEDS_RESV:
2733                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2734                 /* We assume that vma_reservation_* routines always operate on
2735                  * 1 page, and that adding to resv map a 1 page entry can only
2736                  * ever require 1 region.
2737                  */
2738                 VM_BUG_ON(dummy_out_regions_needed != 1);
2739                 break;
2740         case VMA_COMMIT_RESV:
2741                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2742                 /* region_add calls of range 1 should never fail. */
2743                 VM_BUG_ON(ret < 0);
2744                 break;
2745         case VMA_END_RESV:
2746                 region_abort(resv, idx, idx + 1, 1);
2747                 ret = 0;
2748                 break;
2749         case VMA_ADD_RESV:
2750                 if (vma->vm_flags & VM_MAYSHARE) {
2751                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2752                         /* region_add calls of range 1 should never fail. */
2753                         VM_BUG_ON(ret < 0);
2754                 } else {
2755                         region_abort(resv, idx, idx + 1, 1);
2756                         ret = region_del(resv, idx, idx + 1);
2757                 }
2758                 break;
2759         case VMA_DEL_RESV:
2760                 if (vma->vm_flags & VM_MAYSHARE) {
2761                         region_abort(resv, idx, idx + 1, 1);
2762                         ret = region_del(resv, idx, idx + 1);
2763                 } else {
2764                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2765                         /* region_add calls of range 1 should never fail. */
2766                         VM_BUG_ON(ret < 0);
2767                 }
2768                 break;
2769         default:
2770                 BUG();
2771         }
2772
2773         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2774                 return ret;
2775         /*
2776          * We know private mapping must have HPAGE_RESV_OWNER set.
2777          *
2778          * In most cases, reserves always exist for private mappings.
2779          * However, a file associated with mapping could have been
2780          * hole punched or truncated after reserves were consumed.
2781          * As subsequent fault on such a range will not use reserves.
2782          * Subtle - The reserve map for private mappings has the
2783          * opposite meaning than that of shared mappings.  If NO
2784          * entry is in the reserve map, it means a reservation exists.
2785          * If an entry exists in the reserve map, it means the
2786          * reservation has already been consumed.  As a result, the
2787          * return value of this routine is the opposite of the
2788          * value returned from reserve map manipulation routines above.
2789          */
2790         if (ret > 0)
2791                 return 0;
2792         if (ret == 0)
2793                 return 1;
2794         return ret;
2795 }
2796
2797 static long vma_needs_reservation(struct hstate *h,
2798                         struct vm_area_struct *vma, unsigned long addr)
2799 {
2800         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2801 }
2802
2803 static long vma_commit_reservation(struct hstate *h,
2804                         struct vm_area_struct *vma, unsigned long addr)
2805 {
2806         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2807 }
2808
2809 static void vma_end_reservation(struct hstate *h,
2810                         struct vm_area_struct *vma, unsigned long addr)
2811 {
2812         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2813 }
2814
2815 static long vma_add_reservation(struct hstate *h,
2816                         struct vm_area_struct *vma, unsigned long addr)
2817 {
2818         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2819 }
2820
2821 static long vma_del_reservation(struct hstate *h,
2822                         struct vm_area_struct *vma, unsigned long addr)
2823 {
2824         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2825 }
2826
2827 /*
2828  * This routine is called to restore reservation information on error paths.
2829  * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2830  * and the hugetlb mutex should remain held when calling this routine.
2831  *
2832  * It handles two specific cases:
2833  * 1) A reservation was in place and the folio consumed the reservation.
2834  *    hugetlb_restore_reserve is set in the folio.
2835  * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2836  *    not set.  However, alloc_hugetlb_folio always updates the reserve map.
2837  *
2838  * In case 1, free_huge_page later in the error path will increment the
2839  * global reserve count.  But, free_huge_page does not have enough context
2840  * to adjust the reservation map.  This case deals primarily with private
2841  * mappings.  Adjust the reserve map here to be consistent with global
2842  * reserve count adjustments to be made by free_huge_page.  Make sure the
2843  * reserve map indicates there is a reservation present.
2844  *
2845  * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2846  */
2847 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2848                         unsigned long address, struct folio *folio)
2849 {
2850         long rc = vma_needs_reservation(h, vma, address);
2851
2852         if (folio_test_hugetlb_restore_reserve(folio)) {
2853                 if (unlikely(rc < 0))
2854                         /*
2855                          * Rare out of memory condition in reserve map
2856                          * manipulation.  Clear hugetlb_restore_reserve so
2857                          * that global reserve count will not be incremented
2858                          * by free_huge_page.  This will make it appear
2859                          * as though the reservation for this folio was
2860                          * consumed.  This may prevent the task from
2861                          * faulting in the folio at a later time.  This
2862                          * is better than inconsistent global huge page
2863                          * accounting of reserve counts.
2864                          */
2865                         folio_clear_hugetlb_restore_reserve(folio);
2866                 else if (rc)
2867                         (void)vma_add_reservation(h, vma, address);
2868                 else
2869                         vma_end_reservation(h, vma, address);
2870         } else {
2871                 if (!rc) {
2872                         /*
2873                          * This indicates there is an entry in the reserve map
2874                          * not added by alloc_hugetlb_folio.  We know it was added
2875                          * before the alloc_hugetlb_folio call, otherwise
2876                          * hugetlb_restore_reserve would be set on the folio.
2877                          * Remove the entry so that a subsequent allocation
2878                          * does not consume a reservation.
2879                          */
2880                         rc = vma_del_reservation(h, vma, address);
2881                         if (rc < 0)
2882                                 /*
2883                                  * VERY rare out of memory condition.  Since
2884                                  * we can not delete the entry, set
2885                                  * hugetlb_restore_reserve so that the reserve
2886                                  * count will be incremented when the folio
2887                                  * is freed.  This reserve will be consumed
2888                                  * on a subsequent allocation.
2889                                  */
2890                                 folio_set_hugetlb_restore_reserve(folio);
2891                 } else if (rc < 0) {
2892                         /*
2893                          * Rare out of memory condition from
2894                          * vma_needs_reservation call.  Memory allocation is
2895                          * only attempted if a new entry is needed.  Therefore,
2896                          * this implies there is not an entry in the
2897                          * reserve map.
2898                          *
2899                          * For shared mappings, no entry in the map indicates
2900                          * no reservation.  We are done.
2901                          */
2902                         if (!(vma->vm_flags & VM_MAYSHARE))
2903                                 /*
2904                                  * For private mappings, no entry indicates
2905                                  * a reservation is present.  Since we can
2906                                  * not add an entry, set hugetlb_restore_reserve
2907                                  * on the folio so reserve count will be
2908                                  * incremented when freed.  This reserve will
2909                                  * be consumed on a subsequent allocation.
2910                                  */
2911                                 folio_set_hugetlb_restore_reserve(folio);
2912                 } else
2913                         /*
2914                          * No reservation present, do nothing
2915                          */
2916                          vma_end_reservation(h, vma, address);
2917         }
2918 }
2919
2920 /*
2921  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2922  * the old one
2923  * @h: struct hstate old page belongs to
2924  * @old_folio: Old folio to dissolve
2925  * @list: List to isolate the page in case we need to
2926  * Returns 0 on success, otherwise negated error.
2927  */
2928 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2929                         struct folio *old_folio, struct list_head *list)
2930 {
2931         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2932         int nid = folio_nid(old_folio);
2933         struct folio *new_folio;
2934         int ret = 0;
2935
2936         /*
2937          * Before dissolving the folio, we need to allocate a new one for the
2938          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2939          * by doing everything but actually updating counters and adding to
2940          * the pool.  This simplifies and let us do most of the processing
2941          * under the lock.
2942          */
2943         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2944         if (!new_folio)
2945                 return -ENOMEM;
2946         __prep_new_hugetlb_folio(h, new_folio);
2947
2948 retry:
2949         spin_lock_irq(&hugetlb_lock);
2950         if (!folio_test_hugetlb(old_folio)) {
2951                 /*
2952                  * Freed from under us. Drop new_folio too.
2953                  */
2954                 goto free_new;
2955         } else if (folio_ref_count(old_folio)) {
2956                 bool isolated;
2957
2958                 /*
2959                  * Someone has grabbed the folio, try to isolate it here.
2960                  * Fail with -EBUSY if not possible.
2961                  */
2962                 spin_unlock_irq(&hugetlb_lock);
2963                 isolated = isolate_hugetlb(old_folio, list);
2964                 ret = isolated ? 0 : -EBUSY;
2965                 spin_lock_irq(&hugetlb_lock);
2966                 goto free_new;
2967         } else if (!folio_test_hugetlb_freed(old_folio)) {
2968                 /*
2969                  * Folio's refcount is 0 but it has not been enqueued in the
2970                  * freelist yet. Race window is small, so we can succeed here if
2971                  * we retry.
2972                  */
2973                 spin_unlock_irq(&hugetlb_lock);
2974                 cond_resched();
2975                 goto retry;
2976         } else {
2977                 /*
2978                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2979                  * the freelist and decrease the counters. These will be
2980                  * incremented again when calling __prep_account_new_huge_page()
2981                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2982                  * remain stable since this happens under the lock.
2983                  */
2984                 remove_hugetlb_folio(h, old_folio, false);
2985
2986                 /*
2987                  * Ref count on new_folio is already zero as it was dropped
2988                  * earlier.  It can be directly added to the pool free list.
2989                  */
2990                 __prep_account_new_huge_page(h, nid);
2991                 enqueue_hugetlb_folio(h, new_folio);
2992
2993                 /*
2994                  * Folio has been replaced, we can safely free the old one.
2995                  */
2996                 spin_unlock_irq(&hugetlb_lock);
2997                 update_and_free_hugetlb_folio(h, old_folio, false);
2998         }
2999
3000         return ret;
3001
3002 free_new:
3003         spin_unlock_irq(&hugetlb_lock);
3004         /* Folio has a zero ref count, but needs a ref to be freed */
3005         folio_ref_unfreeze(new_folio, 1);
3006         update_and_free_hugetlb_folio(h, new_folio, false);
3007
3008         return ret;
3009 }
3010
3011 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
3012 {
3013         struct hstate *h;
3014         struct folio *folio = page_folio(page);
3015         int ret = -EBUSY;
3016
3017         /*
3018          * The page might have been dissolved from under our feet, so make sure
3019          * to carefully check the state under the lock.
3020          * Return success when racing as if we dissolved the page ourselves.
3021          */
3022         spin_lock_irq(&hugetlb_lock);
3023         if (folio_test_hugetlb(folio)) {
3024                 h = folio_hstate(folio);
3025         } else {
3026                 spin_unlock_irq(&hugetlb_lock);
3027                 return 0;
3028         }
3029         spin_unlock_irq(&hugetlb_lock);
3030
3031         /*
3032          * Fence off gigantic pages as there is a cyclic dependency between
3033          * alloc_contig_range and them. Return -ENOMEM as this has the effect
3034          * of bailing out right away without further retrying.
3035          */
3036         if (hstate_is_gigantic(h))
3037                 return -ENOMEM;
3038
3039         if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
3040                 ret = 0;
3041         else if (!folio_ref_count(folio))
3042                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3043
3044         return ret;
3045 }
3046
3047 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3048                                     unsigned long addr, int avoid_reserve)
3049 {
3050         struct hugepage_subpool *spool = subpool_vma(vma);
3051         struct hstate *h = hstate_vma(vma);
3052         struct folio *folio;
3053         long map_chg, map_commit;
3054         long gbl_chg;
3055         int ret, idx;
3056         struct hugetlb_cgroup *h_cg = NULL;
3057         bool deferred_reserve;
3058
3059         idx = hstate_index(h);
3060         /*
3061          * Examine the region/reserve map to determine if the process
3062          * has a reservation for the page to be allocated.  A return
3063          * code of zero indicates a reservation exists (no change).
3064          */
3065         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3066         if (map_chg < 0)
3067                 return ERR_PTR(-ENOMEM);
3068
3069         /*
3070          * Processes that did not create the mapping will have no
3071          * reserves as indicated by the region/reserve map. Check
3072          * that the allocation will not exceed the subpool limit.
3073          * Allocations for MAP_NORESERVE mappings also need to be
3074          * checked against any subpool limit.
3075          */
3076         if (map_chg || avoid_reserve) {
3077                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3078                 if (gbl_chg < 0) {
3079                         vma_end_reservation(h, vma, addr);
3080                         return ERR_PTR(-ENOSPC);
3081                 }
3082
3083                 /*
3084                  * Even though there was no reservation in the region/reserve
3085                  * map, there could be reservations associated with the
3086                  * subpool that can be used.  This would be indicated if the
3087                  * return value of hugepage_subpool_get_pages() is zero.
3088                  * However, if avoid_reserve is specified we still avoid even
3089                  * the subpool reservations.
3090                  */
3091                 if (avoid_reserve)
3092                         gbl_chg = 1;
3093         }
3094
3095         /* If this allocation is not consuming a reservation, charge it now.
3096          */
3097         deferred_reserve = map_chg || avoid_reserve;
3098         if (deferred_reserve) {
3099                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3100                         idx, pages_per_huge_page(h), &h_cg);
3101                 if (ret)
3102                         goto out_subpool_put;
3103         }
3104
3105         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3106         if (ret)
3107                 goto out_uncharge_cgroup_reservation;
3108
3109         spin_lock_irq(&hugetlb_lock);
3110         /*
3111          * glb_chg is passed to indicate whether or not a page must be taken
3112          * from the global free pool (global change).  gbl_chg == 0 indicates
3113          * a reservation exists for the allocation.
3114          */
3115         folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3116         if (!folio) {
3117                 spin_unlock_irq(&hugetlb_lock);
3118                 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3119                 if (!folio)
3120                         goto out_uncharge_cgroup;
3121                 spin_lock_irq(&hugetlb_lock);
3122                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3123                         folio_set_hugetlb_restore_reserve(folio);
3124                         h->resv_huge_pages--;
3125                 }
3126                 list_add(&folio->lru, &h->hugepage_activelist);
3127                 folio_ref_unfreeze(folio, 1);
3128                 /* Fall through */
3129         }
3130
3131         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3132         /* If allocation is not consuming a reservation, also store the
3133          * hugetlb_cgroup pointer on the page.
3134          */
3135         if (deferred_reserve) {
3136                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3137                                                   h_cg, folio);
3138         }
3139
3140         spin_unlock_irq(&hugetlb_lock);
3141
3142         hugetlb_set_folio_subpool(folio, spool);
3143
3144         map_commit = vma_commit_reservation(h, vma, addr);
3145         if (unlikely(map_chg > map_commit)) {
3146                 /*
3147                  * The page was added to the reservation map between
3148                  * vma_needs_reservation and vma_commit_reservation.
3149                  * This indicates a race with hugetlb_reserve_pages.
3150                  * Adjust for the subpool count incremented above AND
3151                  * in hugetlb_reserve_pages for the same page.  Also,
3152                  * the reservation count added in hugetlb_reserve_pages
3153                  * no longer applies.
3154                  */
3155                 long rsv_adjust;
3156
3157                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3158                 hugetlb_acct_memory(h, -rsv_adjust);
3159                 if (deferred_reserve)
3160                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3161                                         pages_per_huge_page(h), folio);
3162         }
3163         return folio;
3164
3165 out_uncharge_cgroup:
3166         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3167 out_uncharge_cgroup_reservation:
3168         if (deferred_reserve)
3169                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3170                                                     h_cg);
3171 out_subpool_put:
3172         if (map_chg || avoid_reserve)
3173                 hugepage_subpool_put_pages(spool, 1);
3174         vma_end_reservation(h, vma, addr);
3175         return ERR_PTR(-ENOSPC);
3176 }
3177
3178 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3179         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3180 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3181 {
3182         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3183         int nr_nodes, node;
3184
3185         /* do node specific alloc */
3186         if (nid != NUMA_NO_NODE) {
3187                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3188                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3189                 if (!m)
3190                         return 0;
3191                 goto found;
3192         }
3193         /* allocate from next node when distributing huge pages */
3194         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3195                 m = memblock_alloc_try_nid_raw(
3196                                 huge_page_size(h), huge_page_size(h),
3197                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3198                 /*
3199                  * Use the beginning of the huge page to store the
3200                  * huge_bootmem_page struct (until gather_bootmem
3201                  * puts them into the mem_map).
3202                  */
3203                 if (!m)
3204                         return 0;
3205                 goto found;
3206         }
3207
3208 found:
3209         /* Put them into a private list first because mem_map is not up yet */
3210         INIT_LIST_HEAD(&m->list);
3211         list_add(&m->list, &huge_boot_pages);
3212         m->hstate = h;
3213         return 1;
3214 }
3215
3216 /*
3217  * Put bootmem huge pages into the standard lists after mem_map is up.
3218  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3219  */
3220 static void __init gather_bootmem_prealloc(void)
3221 {
3222         struct huge_bootmem_page *m;
3223
3224         list_for_each_entry(m, &huge_boot_pages, list) {
3225                 struct page *page = virt_to_page(m);
3226                 struct folio *folio = page_folio(page);
3227                 struct hstate *h = m->hstate;
3228
3229                 VM_BUG_ON(!hstate_is_gigantic(h));
3230                 WARN_ON(folio_ref_count(folio) != 1);
3231                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3232                         WARN_ON(folio_test_reserved(folio));
3233                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3234                         free_huge_page(page); /* add to the hugepage allocator */
3235                 } else {
3236                         /* VERY unlikely inflated ref count on a tail page */
3237                         free_gigantic_folio(folio, huge_page_order(h));
3238                 }
3239
3240                 /*
3241                  * We need to restore the 'stolen' pages to totalram_pages
3242                  * in order to fix confusing memory reports from free(1) and
3243                  * other side-effects, like CommitLimit going negative.
3244                  */
3245                 adjust_managed_page_count(page, pages_per_huge_page(h));
3246                 cond_resched();
3247         }
3248 }
3249 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3250 {
3251         unsigned long i;
3252         char buf[32];
3253
3254         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3255                 if (hstate_is_gigantic(h)) {
3256                         if (!alloc_bootmem_huge_page(h, nid))
3257                                 break;
3258                 } else {
3259                         struct folio *folio;
3260                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3261
3262                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3263                                         &node_states[N_MEMORY], NULL);
3264                         if (!folio)
3265                                 break;
3266                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3267                 }
3268                 cond_resched();
3269         }
3270         if (i == h->max_huge_pages_node[nid])
3271                 return;
3272
3273         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3274         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3275                 h->max_huge_pages_node[nid], buf, nid, i);
3276         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3277         h->max_huge_pages_node[nid] = i;
3278 }
3279
3280 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3281 {
3282         unsigned long i;
3283         nodemask_t *node_alloc_noretry;
3284         bool node_specific_alloc = false;
3285
3286         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3287         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3288                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3289                 return;
3290         }
3291
3292         /* do node specific alloc */
3293         for_each_online_node(i) {
3294                 if (h->max_huge_pages_node[i] > 0) {
3295                         hugetlb_hstate_alloc_pages_onenode(h, i);
3296                         node_specific_alloc = true;
3297                 }
3298         }
3299
3300         if (node_specific_alloc)
3301                 return;
3302
3303         /* below will do all node balanced alloc */
3304         if (!hstate_is_gigantic(h)) {
3305                 /*
3306                  * Bit mask controlling how hard we retry per-node allocations.
3307                  * Ignore errors as lower level routines can deal with
3308                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3309                  * time, we are likely in bigger trouble.
3310                  */
3311                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3312                                                 GFP_KERNEL);
3313         } else {
3314                 /* allocations done at boot time */
3315                 node_alloc_noretry = NULL;
3316         }
3317
3318         /* bit mask controlling how hard we retry per-node allocations */
3319         if (node_alloc_noretry)
3320                 nodes_clear(*node_alloc_noretry);
3321
3322         for (i = 0; i < h->max_huge_pages; ++i) {
3323                 if (hstate_is_gigantic(h)) {
3324                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3325                                 break;
3326                 } else if (!alloc_pool_huge_page(h,
3327                                          &node_states[N_MEMORY],
3328                                          node_alloc_noretry))
3329                         break;
3330                 cond_resched();
3331         }
3332         if (i < h->max_huge_pages) {
3333                 char buf[32];
3334
3335                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3336                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3337                         h->max_huge_pages, buf, i);
3338                 h->max_huge_pages = i;
3339         }
3340         kfree(node_alloc_noretry);
3341 }
3342
3343 static void __init hugetlb_init_hstates(void)
3344 {
3345         struct hstate *h, *h2;
3346
3347         for_each_hstate(h) {
3348                 /* oversize hugepages were init'ed in early boot */
3349                 if (!hstate_is_gigantic(h))
3350                         hugetlb_hstate_alloc_pages(h);
3351
3352                 /*
3353                  * Set demote order for each hstate.  Note that
3354                  * h->demote_order is initially 0.
3355                  * - We can not demote gigantic pages if runtime freeing
3356                  *   is not supported, so skip this.
3357                  * - If CMA allocation is possible, we can not demote
3358                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3359                  */
3360                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3361                         continue;
3362                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3363                         continue;
3364                 for_each_hstate(h2) {
3365                         if (h2 == h)
3366                                 continue;
3367                         if (h2->order < h->order &&
3368                             h2->order > h->demote_order)
3369                                 h->demote_order = h2->order;
3370                 }
3371         }
3372 }
3373
3374 static void __init report_hugepages(void)
3375 {
3376         struct hstate *h;
3377
3378         for_each_hstate(h) {
3379                 char buf[32];
3380
3381                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3382                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3383                         buf, h->free_huge_pages);
3384                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3385                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3386         }
3387 }
3388
3389 #ifdef CONFIG_HIGHMEM
3390 static void try_to_free_low(struct hstate *h, unsigned long count,
3391                                                 nodemask_t *nodes_allowed)
3392 {
3393         int i;
3394         LIST_HEAD(page_list);
3395
3396         lockdep_assert_held(&hugetlb_lock);
3397         if (hstate_is_gigantic(h))
3398                 return;
3399
3400         /*
3401          * Collect pages to be freed on a list, and free after dropping lock
3402          */
3403         for_each_node_mask(i, *nodes_allowed) {
3404                 struct page *page, *next;
3405                 struct list_head *freel = &h->hugepage_freelists[i];
3406                 list_for_each_entry_safe(page, next, freel, lru) {
3407                         if (count >= h->nr_huge_pages)
3408                                 goto out;
3409                         if (PageHighMem(page))
3410                                 continue;
3411                         remove_hugetlb_folio(h, page_folio(page), false);
3412                         list_add(&page->lru, &page_list);
3413                 }
3414         }
3415
3416 out:
3417         spin_unlock_irq(&hugetlb_lock);
3418         update_and_free_pages_bulk(h, &page_list);
3419         spin_lock_irq(&hugetlb_lock);
3420 }
3421 #else
3422 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3423                                                 nodemask_t *nodes_allowed)
3424 {
3425 }
3426 #endif
3427
3428 /*
3429  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3430  * balanced by operating on them in a round-robin fashion.
3431  * Returns 1 if an adjustment was made.
3432  */
3433 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3434                                 int delta)
3435 {
3436         int nr_nodes, node;
3437
3438         lockdep_assert_held(&hugetlb_lock);
3439         VM_BUG_ON(delta != -1 && delta != 1);
3440
3441         if (delta < 0) {
3442                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3443                         if (h->surplus_huge_pages_node[node])
3444                                 goto found;
3445                 }
3446         } else {
3447                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3448                         if (h->surplus_huge_pages_node[node] <
3449                                         h->nr_huge_pages_node[node])
3450                                 goto found;
3451                 }
3452         }
3453         return 0;
3454
3455 found:
3456         h->surplus_huge_pages += delta;
3457         h->surplus_huge_pages_node[node] += delta;
3458         return 1;
3459 }
3460
3461 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3462 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3463                               nodemask_t *nodes_allowed)
3464 {
3465         unsigned long min_count, ret;
3466         struct page *page;
3467         LIST_HEAD(page_list);
3468         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3469
3470         /*
3471          * Bit mask controlling how hard we retry per-node allocations.
3472          * If we can not allocate the bit mask, do not attempt to allocate
3473          * the requested huge pages.
3474          */
3475         if (node_alloc_noretry)
3476                 nodes_clear(*node_alloc_noretry);
3477         else
3478                 return -ENOMEM;
3479
3480         /*
3481          * resize_lock mutex prevents concurrent adjustments to number of
3482          * pages in hstate via the proc/sysfs interfaces.
3483          */
3484         mutex_lock(&h->resize_lock);
3485         flush_free_hpage_work(h);
3486         spin_lock_irq(&hugetlb_lock);
3487
3488         /*
3489          * Check for a node specific request.
3490          * Changing node specific huge page count may require a corresponding
3491          * change to the global count.  In any case, the passed node mask
3492          * (nodes_allowed) will restrict alloc/free to the specified node.
3493          */
3494         if (nid != NUMA_NO_NODE) {
3495                 unsigned long old_count = count;
3496
3497                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3498                 /*
3499                  * User may have specified a large count value which caused the
3500                  * above calculation to overflow.  In this case, they wanted
3501                  * to allocate as many huge pages as possible.  Set count to
3502                  * largest possible value to align with their intention.
3503                  */
3504                 if (count < old_count)
3505                         count = ULONG_MAX;
3506         }
3507
3508         /*
3509          * Gigantic pages runtime allocation depend on the capability for large
3510          * page range allocation.
3511          * If the system does not provide this feature, return an error when
3512          * the user tries to allocate gigantic pages but let the user free the
3513          * boottime allocated gigantic pages.
3514          */
3515         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3516                 if (count > persistent_huge_pages(h)) {
3517                         spin_unlock_irq(&hugetlb_lock);
3518                         mutex_unlock(&h->resize_lock);
3519                         NODEMASK_FREE(node_alloc_noretry);
3520                         return -EINVAL;
3521                 }
3522                 /* Fall through to decrease pool */
3523         }
3524
3525         /*
3526          * Increase the pool size
3527          * First take pages out of surplus state.  Then make up the
3528          * remaining difference by allocating fresh huge pages.
3529          *
3530          * We might race with alloc_surplus_hugetlb_folio() here and be unable
3531          * to convert a surplus huge page to a normal huge page. That is
3532          * not critical, though, it just means the overall size of the
3533          * pool might be one hugepage larger than it needs to be, but
3534          * within all the constraints specified by the sysctls.
3535          */
3536         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3537                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3538                         break;
3539         }
3540
3541         while (count > persistent_huge_pages(h)) {
3542                 /*
3543                  * If this allocation races such that we no longer need the
3544                  * page, free_huge_page will handle it by freeing the page
3545                  * and reducing the surplus.
3546                  */
3547                 spin_unlock_irq(&hugetlb_lock);
3548
3549                 /* yield cpu to avoid soft lockup */
3550                 cond_resched();
3551
3552                 ret = alloc_pool_huge_page(h, nodes_allowed,
3553                                                 node_alloc_noretry);
3554                 spin_lock_irq(&hugetlb_lock);
3555                 if (!ret)
3556                         goto out;
3557
3558                 /* Bail for signals. Probably ctrl-c from user */
3559                 if (signal_pending(current))
3560                         goto out;
3561         }
3562
3563         /*
3564          * Decrease the pool size
3565          * First return free pages to the buddy allocator (being careful
3566          * to keep enough around to satisfy reservations).  Then place
3567          * pages into surplus state as needed so the pool will shrink
3568          * to the desired size as pages become free.
3569          *
3570          * By placing pages into the surplus state independent of the
3571          * overcommit value, we are allowing the surplus pool size to
3572          * exceed overcommit. There are few sane options here. Since
3573          * alloc_surplus_hugetlb_folio() is checking the global counter,
3574          * though, we'll note that we're not allowed to exceed surplus
3575          * and won't grow the pool anywhere else. Not until one of the
3576          * sysctls are changed, or the surplus pages go out of use.
3577          */
3578         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3579         min_count = max(count, min_count);
3580         try_to_free_low(h, min_count, nodes_allowed);
3581
3582         /*
3583          * Collect pages to be removed on list without dropping lock
3584          */
3585         while (min_count < persistent_huge_pages(h)) {
3586                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3587                 if (!page)
3588                         break;
3589
3590                 list_add(&page->lru, &page_list);
3591         }
3592         /* free the pages after dropping lock */
3593         spin_unlock_irq(&hugetlb_lock);
3594         update_and_free_pages_bulk(h, &page_list);
3595         flush_free_hpage_work(h);
3596         spin_lock_irq(&hugetlb_lock);
3597
3598         while (count < persistent_huge_pages(h)) {
3599                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3600                         break;
3601         }
3602 out:
3603         h->max_huge_pages = persistent_huge_pages(h);
3604         spin_unlock_irq(&hugetlb_lock);
3605         mutex_unlock(&h->resize_lock);
3606
3607         NODEMASK_FREE(node_alloc_noretry);
3608
3609         return 0;
3610 }
3611
3612 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3613 {
3614         int i, nid = folio_nid(folio);
3615         struct hstate *target_hstate;
3616         struct page *subpage;
3617         struct folio *inner_folio;
3618         int rc = 0;
3619
3620         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3621
3622         remove_hugetlb_folio_for_demote(h, folio, false);
3623         spin_unlock_irq(&hugetlb_lock);
3624
3625         rc = hugetlb_vmemmap_restore(h, &folio->page);
3626         if (rc) {
3627                 /* Allocation of vmemmmap failed, we can not demote folio */
3628                 spin_lock_irq(&hugetlb_lock);
3629                 folio_ref_unfreeze(folio, 1);
3630                 add_hugetlb_folio(h, folio, false);
3631                 return rc;
3632         }
3633
3634         /*
3635          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3636          * sizes as it will not ref count folios.
3637          */
3638         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3639
3640         /*
3641          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3642          * Without the mutex, pages added to target hstate could be marked
3643          * as surplus.
3644          *
3645          * Note that we already hold h->resize_lock.  To prevent deadlock,
3646          * use the convention of always taking larger size hstate mutex first.
3647          */
3648         mutex_lock(&target_hstate->resize_lock);
3649         for (i = 0; i < pages_per_huge_page(h);
3650                                 i += pages_per_huge_page(target_hstate)) {
3651                 subpage = folio_page(folio, i);
3652                 inner_folio = page_folio(subpage);
3653                 if (hstate_is_gigantic(target_hstate))
3654                         prep_compound_gigantic_folio_for_demote(inner_folio,
3655                                                         target_hstate->order);
3656                 else
3657                         prep_compound_page(subpage, target_hstate->order);
3658                 folio_change_private(inner_folio, NULL);
3659                 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3660                 free_huge_page(subpage);
3661         }
3662         mutex_unlock(&target_hstate->resize_lock);
3663
3664         spin_lock_irq(&hugetlb_lock);
3665
3666         /*
3667          * Not absolutely necessary, but for consistency update max_huge_pages
3668          * based on pool changes for the demoted page.
3669          */
3670         h->max_huge_pages--;
3671         target_hstate->max_huge_pages +=
3672                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3673
3674         return rc;
3675 }
3676
3677 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3678         __must_hold(&hugetlb_lock)
3679 {
3680         int nr_nodes, node;
3681         struct folio *folio;
3682
3683         lockdep_assert_held(&hugetlb_lock);
3684
3685         /* We should never get here if no demote order */
3686         if (!h->demote_order) {
3687                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3688                 return -EINVAL;         /* internal error */
3689         }
3690
3691         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3692                 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3693                         if (folio_test_hwpoison(folio))
3694                                 continue;
3695                         return demote_free_hugetlb_folio(h, folio);
3696                 }
3697         }
3698
3699         /*
3700          * Only way to get here is if all pages on free lists are poisoned.
3701          * Return -EBUSY so that caller will not retry.
3702          */
3703         return -EBUSY;
3704 }
3705
3706 #define HSTATE_ATTR_RO(_name) \
3707         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3708
3709 #define HSTATE_ATTR_WO(_name) \
3710         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3711
3712 #define HSTATE_ATTR(_name) \
3713         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3714
3715 static struct kobject *hugepages_kobj;
3716 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3717
3718 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3719
3720 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3721 {
3722         int i;
3723
3724         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3725                 if (hstate_kobjs[i] == kobj) {
3726                         if (nidp)
3727                                 *nidp = NUMA_NO_NODE;
3728                         return &hstates[i];
3729                 }
3730
3731         return kobj_to_node_hstate(kobj, nidp);
3732 }
3733
3734 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3735                                         struct kobj_attribute *attr, char *buf)
3736 {
3737         struct hstate *h;
3738         unsigned long nr_huge_pages;
3739         int nid;
3740
3741         h = kobj_to_hstate(kobj, &nid);
3742         if (nid == NUMA_NO_NODE)
3743                 nr_huge_pages = h->nr_huge_pages;
3744         else
3745                 nr_huge_pages = h->nr_huge_pages_node[nid];
3746
3747         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3748 }
3749
3750 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3751                                            struct hstate *h, int nid,
3752                                            unsigned long count, size_t len)
3753 {
3754         int err;
3755         nodemask_t nodes_allowed, *n_mask;
3756
3757         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3758                 return -EINVAL;
3759
3760         if (nid == NUMA_NO_NODE) {
3761                 /*
3762                  * global hstate attribute
3763                  */
3764                 if (!(obey_mempolicy &&
3765                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3766                         n_mask = &node_states[N_MEMORY];
3767                 else
3768                         n_mask = &nodes_allowed;
3769         } else {
3770                 /*
3771                  * Node specific request.  count adjustment happens in
3772                  * set_max_huge_pages() after acquiring hugetlb_lock.
3773                  */
3774                 init_nodemask_of_node(&nodes_allowed, nid);
3775                 n_mask = &nodes_allowed;
3776         }
3777
3778         err = set_max_huge_pages(h, count, nid, n_mask);
3779
3780         return err ? err : len;
3781 }
3782
3783 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3784                                          struct kobject *kobj, const char *buf,
3785                                          size_t len)
3786 {
3787         struct hstate *h;
3788         unsigned long count;
3789         int nid;
3790         int err;
3791
3792         err = kstrtoul(buf, 10, &count);
3793         if (err)
3794                 return err;
3795
3796         h = kobj_to_hstate(kobj, &nid);
3797         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3798 }
3799
3800 static ssize_t nr_hugepages_show(struct kobject *kobj,
3801                                        struct kobj_attribute *attr, char *buf)
3802 {
3803         return nr_hugepages_show_common(kobj, attr, buf);
3804 }
3805
3806 static ssize_t nr_hugepages_store(struct kobject *kobj,
3807                struct kobj_attribute *attr, const char *buf, size_t len)
3808 {
3809         return nr_hugepages_store_common(false, kobj, buf, len);
3810 }
3811 HSTATE_ATTR(nr_hugepages);
3812
3813 #ifdef CONFIG_NUMA
3814
3815 /*
3816  * hstate attribute for optionally mempolicy-based constraint on persistent
3817  * huge page alloc/free.
3818  */
3819 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3820                                            struct kobj_attribute *attr,
3821                                            char *buf)
3822 {
3823         return nr_hugepages_show_common(kobj, attr, buf);
3824 }
3825
3826 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3827                struct kobj_attribute *attr, const char *buf, size_t len)
3828 {
3829         return nr_hugepages_store_common(true, kobj, buf, len);
3830 }
3831 HSTATE_ATTR(nr_hugepages_mempolicy);
3832 #endif
3833
3834
3835 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3836                                         struct kobj_attribute *attr, char *buf)
3837 {
3838         struct hstate *h = kobj_to_hstate(kobj, NULL);
3839         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3840 }
3841
3842 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3843                 struct kobj_attribute *attr, const char *buf, size_t count)
3844 {
3845         int err;
3846         unsigned long input;
3847         struct hstate *h = kobj_to_hstate(kobj, NULL);
3848
3849         if (hstate_is_gigantic(h))
3850                 return -EINVAL;
3851
3852         err = kstrtoul(buf, 10, &input);
3853         if (err)
3854                 return err;
3855
3856         spin_lock_irq(&hugetlb_lock);
3857         h->nr_overcommit_huge_pages = input;
3858         spin_unlock_irq(&hugetlb_lock);
3859
3860         return count;
3861 }
3862 HSTATE_ATTR(nr_overcommit_hugepages);
3863
3864 static ssize_t free_hugepages_show(struct kobject *kobj,
3865                                         struct kobj_attribute *attr, char *buf)
3866 {
3867         struct hstate *h;
3868         unsigned long free_huge_pages;
3869         int nid;
3870
3871         h = kobj_to_hstate(kobj, &nid);
3872         if (nid == NUMA_NO_NODE)
3873                 free_huge_pages = h->free_huge_pages;
3874         else
3875                 free_huge_pages = h->free_huge_pages_node[nid];
3876
3877         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3878 }
3879 HSTATE_ATTR_RO(free_hugepages);
3880
3881 static ssize_t resv_hugepages_show(struct kobject *kobj,
3882                                         struct kobj_attribute *attr, char *buf)
3883 {
3884         struct hstate *h = kobj_to_hstate(kobj, NULL);
3885         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3886 }
3887 HSTATE_ATTR_RO(resv_hugepages);
3888
3889 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3890                                         struct kobj_attribute *attr, char *buf)
3891 {
3892         struct hstate *h;
3893         unsigned long surplus_huge_pages;
3894         int nid;
3895
3896         h = kobj_to_hstate(kobj, &nid);
3897         if (nid == NUMA_NO_NODE)
3898                 surplus_huge_pages = h->surplus_huge_pages;
3899         else
3900                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3901
3902         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3903 }
3904 HSTATE_ATTR_RO(surplus_hugepages);
3905
3906 static ssize_t demote_store(struct kobject *kobj,
3907                struct kobj_attribute *attr, const char *buf, size_t len)
3908 {
3909         unsigned long nr_demote;
3910         unsigned long nr_available;
3911         nodemask_t nodes_allowed, *n_mask;
3912         struct hstate *h;
3913         int err;
3914         int nid;
3915
3916         err = kstrtoul(buf, 10, &nr_demote);
3917         if (err)
3918                 return err;
3919         h = kobj_to_hstate(kobj, &nid);
3920
3921         if (nid != NUMA_NO_NODE) {
3922                 init_nodemask_of_node(&nodes_allowed, nid);
3923                 n_mask = &nodes_allowed;
3924         } else {
3925                 n_mask = &node_states[N_MEMORY];
3926         }
3927
3928         /* Synchronize with other sysfs operations modifying huge pages */
3929         mutex_lock(&h->resize_lock);
3930         spin_lock_irq(&hugetlb_lock);
3931
3932         while (nr_demote) {
3933                 /*
3934                  * Check for available pages to demote each time thorough the
3935                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3936                  */
3937                 if (nid != NUMA_NO_NODE)
3938                         nr_available = h->free_huge_pages_node[nid];
3939                 else
3940                         nr_available = h->free_huge_pages;
3941                 nr_available -= h->resv_huge_pages;
3942                 if (!nr_available)
3943                         break;
3944
3945                 err = demote_pool_huge_page(h, n_mask);
3946                 if (err)
3947                         break;
3948
3949                 nr_demote--;
3950         }
3951
3952         spin_unlock_irq(&hugetlb_lock);
3953         mutex_unlock(&h->resize_lock);
3954
3955         if (err)
3956                 return err;
3957         return len;
3958 }
3959 HSTATE_ATTR_WO(demote);
3960
3961 static ssize_t demote_size_show(struct kobject *kobj,
3962                                         struct kobj_attribute *attr, char *buf)
3963 {
3964         struct hstate *h = kobj_to_hstate(kobj, NULL);
3965         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3966
3967         return sysfs_emit(buf, "%lukB\n", demote_size);
3968 }
3969
3970 static ssize_t demote_size_store(struct kobject *kobj,
3971                                         struct kobj_attribute *attr,
3972                                         const char *buf, size_t count)
3973 {
3974         struct hstate *h, *demote_hstate;
3975         unsigned long demote_size;
3976         unsigned int demote_order;
3977
3978         demote_size = (unsigned long)memparse(buf, NULL);
3979
3980         demote_hstate = size_to_hstate(demote_size);
3981         if (!demote_hstate)
3982                 return -EINVAL;
3983         demote_order = demote_hstate->order;
3984         if (demote_order < HUGETLB_PAGE_ORDER)
3985                 return -EINVAL;
3986
3987         /* demote order must be smaller than hstate order */
3988         h = kobj_to_hstate(kobj, NULL);
3989         if (demote_order >= h->order)
3990                 return -EINVAL;
3991
3992         /* resize_lock synchronizes access to demote size and writes */
3993         mutex_lock(&h->resize_lock);
3994         h->demote_order = demote_order;
3995         mutex_unlock(&h->resize_lock);
3996
3997         return count;
3998 }
3999 HSTATE_ATTR(demote_size);
4000
4001 static struct attribute *hstate_attrs[] = {
4002         &nr_hugepages_attr.attr,
4003         &nr_overcommit_hugepages_attr.attr,
4004         &free_hugepages_attr.attr,
4005         &resv_hugepages_attr.attr,
4006         &surplus_hugepages_attr.attr,
4007 #ifdef CONFIG_NUMA
4008         &nr_hugepages_mempolicy_attr.attr,
4009 #endif
4010         NULL,
4011 };
4012
4013 static const struct attribute_group hstate_attr_group = {
4014         .attrs = hstate_attrs,
4015 };
4016
4017 static struct attribute *hstate_demote_attrs[] = {
4018         &demote_size_attr.attr,
4019         &demote_attr.attr,
4020         NULL,
4021 };
4022
4023 static const struct attribute_group hstate_demote_attr_group = {
4024         .attrs = hstate_demote_attrs,
4025 };
4026
4027 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
4028                                     struct kobject **hstate_kobjs,
4029                                     const struct attribute_group *hstate_attr_group)
4030 {
4031         int retval;
4032         int hi = hstate_index(h);
4033
4034         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4035         if (!hstate_kobjs[hi])
4036                 return -ENOMEM;
4037
4038         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4039         if (retval) {
4040                 kobject_put(hstate_kobjs[hi]);
4041                 hstate_kobjs[hi] = NULL;
4042                 return retval;
4043         }
4044
4045         if (h->demote_order) {
4046                 retval = sysfs_create_group(hstate_kobjs[hi],
4047                                             &hstate_demote_attr_group);
4048                 if (retval) {
4049                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4050                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4051                         kobject_put(hstate_kobjs[hi]);
4052                         hstate_kobjs[hi] = NULL;
4053                         return retval;
4054                 }
4055         }
4056
4057         return 0;
4058 }
4059
4060 #ifdef CONFIG_NUMA
4061 static bool hugetlb_sysfs_initialized __ro_after_init;
4062
4063 /*
4064  * node_hstate/s - associate per node hstate attributes, via their kobjects,
4065  * with node devices in node_devices[] using a parallel array.  The array
4066  * index of a node device or _hstate == node id.
4067  * This is here to avoid any static dependency of the node device driver, in
4068  * the base kernel, on the hugetlb module.
4069  */
4070 struct node_hstate {
4071         struct kobject          *hugepages_kobj;
4072         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
4073 };
4074 static struct node_hstate node_hstates[MAX_NUMNODES];
4075
4076 /*
4077  * A subset of global hstate attributes for node devices
4078  */
4079 static struct attribute *per_node_hstate_attrs[] = {
4080         &nr_hugepages_attr.attr,
4081         &free_hugepages_attr.attr,
4082         &surplus_hugepages_attr.attr,
4083         NULL,
4084 };
4085
4086 static const struct attribute_group per_node_hstate_attr_group = {
4087         .attrs = per_node_hstate_attrs,
4088 };
4089
4090 /*
4091  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4092  * Returns node id via non-NULL nidp.
4093  */
4094 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4095 {
4096         int nid;
4097
4098         for (nid = 0; nid < nr_node_ids; nid++) {
4099                 struct node_hstate *nhs = &node_hstates[nid];
4100                 int i;
4101                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4102                         if (nhs->hstate_kobjs[i] == kobj) {
4103                                 if (nidp)
4104                                         *nidp = nid;
4105                                 return &hstates[i];
4106                         }
4107         }
4108
4109         BUG();
4110         return NULL;
4111 }
4112
4113 /*
4114  * Unregister hstate attributes from a single node device.
4115  * No-op if no hstate attributes attached.
4116  */
4117 void hugetlb_unregister_node(struct node *node)
4118 {
4119         struct hstate *h;
4120         struct node_hstate *nhs = &node_hstates[node->dev.id];
4121
4122         if (!nhs->hugepages_kobj)
4123                 return;         /* no hstate attributes */
4124
4125         for_each_hstate(h) {
4126                 int idx = hstate_index(h);
4127                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4128
4129                 if (!hstate_kobj)
4130                         continue;
4131                 if (h->demote_order)
4132                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4133                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4134                 kobject_put(hstate_kobj);
4135                 nhs->hstate_kobjs[idx] = NULL;
4136         }
4137
4138         kobject_put(nhs->hugepages_kobj);
4139         nhs->hugepages_kobj = NULL;
4140 }
4141
4142
4143 /*
4144  * Register hstate attributes for a single node device.
4145  * No-op if attributes already registered.
4146  */
4147 void hugetlb_register_node(struct node *node)
4148 {
4149         struct hstate *h;
4150         struct node_hstate *nhs = &node_hstates[node->dev.id];
4151         int err;
4152
4153         if (!hugetlb_sysfs_initialized)
4154                 return;
4155
4156         if (nhs->hugepages_kobj)
4157                 return;         /* already allocated */
4158
4159         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4160                                                         &node->dev.kobj);
4161         if (!nhs->hugepages_kobj)
4162                 return;
4163
4164         for_each_hstate(h) {
4165                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4166                                                 nhs->hstate_kobjs,
4167                                                 &per_node_hstate_attr_group);
4168                 if (err) {
4169                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4170                                 h->name, node->dev.id);
4171                         hugetlb_unregister_node(node);
4172                         break;
4173                 }
4174         }
4175 }
4176
4177 /*
4178  * hugetlb init time:  register hstate attributes for all registered node
4179  * devices of nodes that have memory.  All on-line nodes should have
4180  * registered their associated device by this time.
4181  */
4182 static void __init hugetlb_register_all_nodes(void)
4183 {
4184         int nid;
4185
4186         for_each_online_node(nid)
4187                 hugetlb_register_node(node_devices[nid]);
4188 }
4189 #else   /* !CONFIG_NUMA */
4190
4191 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4192 {
4193         BUG();
4194         if (nidp)
4195                 *nidp = -1;
4196         return NULL;
4197 }
4198
4199 static void hugetlb_register_all_nodes(void) { }
4200
4201 #endif
4202
4203 #ifdef CONFIG_CMA
4204 static void __init hugetlb_cma_check(void);
4205 #else
4206 static inline __init void hugetlb_cma_check(void)
4207 {
4208 }
4209 #endif
4210
4211 static void __init hugetlb_sysfs_init(void)
4212 {
4213         struct hstate *h;
4214         int err;
4215
4216         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4217         if (!hugepages_kobj)
4218                 return;
4219
4220         for_each_hstate(h) {
4221                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4222                                          hstate_kobjs, &hstate_attr_group);
4223                 if (err)
4224                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4225         }
4226
4227 #ifdef CONFIG_NUMA
4228         hugetlb_sysfs_initialized = true;
4229 #endif
4230         hugetlb_register_all_nodes();
4231 }
4232
4233 #ifdef CONFIG_SYSCTL
4234 static void hugetlb_sysctl_init(void);
4235 #else
4236 static inline void hugetlb_sysctl_init(void) { }
4237 #endif
4238
4239 static int __init hugetlb_init(void)
4240 {
4241         int i;
4242
4243         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4244                         __NR_HPAGEFLAGS);
4245
4246         if (!hugepages_supported()) {
4247                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4248                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4249                 return 0;
4250         }
4251
4252         /*
4253          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4254          * architectures depend on setup being done here.
4255          */
4256         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4257         if (!parsed_default_hugepagesz) {
4258                 /*
4259                  * If we did not parse a default huge page size, set
4260                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4261                  * number of huge pages for this default size was implicitly
4262                  * specified, set that here as well.
4263                  * Note that the implicit setting will overwrite an explicit
4264                  * setting.  A warning will be printed in this case.
4265                  */
4266                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4267                 if (default_hstate_max_huge_pages) {
4268                         if (default_hstate.max_huge_pages) {
4269                                 char buf[32];
4270
4271                                 string_get_size(huge_page_size(&default_hstate),
4272                                         1, STRING_UNITS_2, buf, 32);
4273                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4274                                         default_hstate.max_huge_pages, buf);
4275                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4276                                         default_hstate_max_huge_pages);
4277                         }
4278                         default_hstate.max_huge_pages =
4279                                 default_hstate_max_huge_pages;
4280
4281                         for_each_online_node(i)
4282                                 default_hstate.max_huge_pages_node[i] =
4283                                         default_hugepages_in_node[i];
4284                 }
4285         }
4286
4287         hugetlb_cma_check();
4288         hugetlb_init_hstates();
4289         gather_bootmem_prealloc();
4290         report_hugepages();
4291
4292         hugetlb_sysfs_init();
4293         hugetlb_cgroup_file_init();
4294         hugetlb_sysctl_init();
4295
4296 #ifdef CONFIG_SMP
4297         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4298 #else
4299         num_fault_mutexes = 1;
4300 #endif
4301         hugetlb_fault_mutex_table =
4302                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4303                               GFP_KERNEL);
4304         BUG_ON(!hugetlb_fault_mutex_table);
4305
4306         for (i = 0; i < num_fault_mutexes; i++)
4307                 mutex_init(&hugetlb_fault_mutex_table[i]);
4308         return 0;
4309 }
4310 subsys_initcall(hugetlb_init);
4311
4312 /* Overwritten by architectures with more huge page sizes */
4313 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4314 {
4315         return size == HPAGE_SIZE;
4316 }
4317
4318 void __init hugetlb_add_hstate(unsigned int order)
4319 {
4320         struct hstate *h;
4321         unsigned long i;
4322
4323         if (size_to_hstate(PAGE_SIZE << order)) {
4324                 return;
4325         }
4326         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4327         BUG_ON(order == 0);
4328         h = &hstates[hugetlb_max_hstate++];
4329         mutex_init(&h->resize_lock);
4330         h->order = order;
4331         h->mask = ~(huge_page_size(h) - 1);
4332         for (i = 0; i < MAX_NUMNODES; ++i)
4333                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4334         INIT_LIST_HEAD(&h->hugepage_activelist);
4335         h->next_nid_to_alloc = first_memory_node;
4336         h->next_nid_to_free = first_memory_node;
4337         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4338                                         huge_page_size(h)/SZ_1K);
4339
4340         parsed_hstate = h;
4341 }
4342
4343 bool __init __weak hugetlb_node_alloc_supported(void)
4344 {
4345         return true;
4346 }
4347
4348 static void __init hugepages_clear_pages_in_node(void)
4349 {
4350         if (!hugetlb_max_hstate) {
4351                 default_hstate_max_huge_pages = 0;
4352                 memset(default_hugepages_in_node, 0,
4353                         sizeof(default_hugepages_in_node));
4354         } else {
4355                 parsed_hstate->max_huge_pages = 0;
4356                 memset(parsed_hstate->max_huge_pages_node, 0,
4357                         sizeof(parsed_hstate->max_huge_pages_node));
4358         }
4359 }
4360
4361 /*
4362  * hugepages command line processing
4363  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4364  * specification.  If not, ignore the hugepages value.  hugepages can also
4365  * be the first huge page command line  option in which case it implicitly
4366  * specifies the number of huge pages for the default size.
4367  */
4368 static int __init hugepages_setup(char *s)
4369 {
4370         unsigned long *mhp;
4371         static unsigned long *last_mhp;
4372         int node = NUMA_NO_NODE;
4373         int count;
4374         unsigned long tmp;
4375         char *p = s;
4376
4377         if (!parsed_valid_hugepagesz) {
4378                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4379                 parsed_valid_hugepagesz = true;
4380                 return 1;
4381         }
4382
4383         /*
4384          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4385          * yet, so this hugepages= parameter goes to the "default hstate".
4386          * Otherwise, it goes with the previously parsed hugepagesz or
4387          * default_hugepagesz.
4388          */
4389         else if (!hugetlb_max_hstate)
4390                 mhp = &default_hstate_max_huge_pages;
4391         else
4392                 mhp = &parsed_hstate->max_huge_pages;
4393
4394         if (mhp == last_mhp) {
4395                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4396                 return 1;
4397         }
4398
4399         while (*p) {
4400                 count = 0;
4401                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4402                         goto invalid;
4403                 /* Parameter is node format */
4404                 if (p[count] == ':') {
4405                         if (!hugetlb_node_alloc_supported()) {
4406                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4407                                 return 1;
4408                         }
4409                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4410                                 goto invalid;
4411                         node = array_index_nospec(tmp, MAX_NUMNODES);
4412                         p += count + 1;
4413                         /* Parse hugepages */
4414                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4415                                 goto invalid;
4416                         if (!hugetlb_max_hstate)
4417                                 default_hugepages_in_node[node] = tmp;
4418                         else
4419                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4420                         *mhp += tmp;
4421                         /* Go to parse next node*/
4422                         if (p[count] == ',')
4423                                 p += count + 1;
4424                         else
4425                                 break;
4426                 } else {
4427                         if (p != s)
4428                                 goto invalid;
4429                         *mhp = tmp;
4430                         break;
4431                 }
4432         }
4433
4434         /*
4435          * Global state is always initialized later in hugetlb_init.
4436          * But we need to allocate gigantic hstates here early to still
4437          * use the bootmem allocator.
4438          */
4439         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4440                 hugetlb_hstate_alloc_pages(parsed_hstate);
4441
4442         last_mhp = mhp;
4443
4444         return 1;
4445
4446 invalid:
4447         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4448         hugepages_clear_pages_in_node();
4449         return 1;
4450 }
4451 __setup("hugepages=", hugepages_setup);
4452
4453 /*
4454  * hugepagesz command line processing
4455  * A specific huge page size can only be specified once with hugepagesz.
4456  * hugepagesz is followed by hugepages on the command line.  The global
4457  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4458  * hugepagesz argument was valid.
4459  */
4460 static int __init hugepagesz_setup(char *s)
4461 {
4462         unsigned long size;
4463         struct hstate *h;
4464
4465         parsed_valid_hugepagesz = false;
4466         size = (unsigned long)memparse(s, NULL);
4467
4468         if (!arch_hugetlb_valid_size(size)) {
4469                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4470                 return 1;
4471         }
4472
4473         h = size_to_hstate(size);
4474         if (h) {
4475                 /*
4476                  * hstate for this size already exists.  This is normally
4477                  * an error, but is allowed if the existing hstate is the
4478                  * default hstate.  More specifically, it is only allowed if
4479                  * the number of huge pages for the default hstate was not
4480                  * previously specified.
4481                  */
4482                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4483                     default_hstate.max_huge_pages) {
4484                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4485                         return 1;
4486                 }
4487
4488                 /*
4489                  * No need to call hugetlb_add_hstate() as hstate already
4490                  * exists.  But, do set parsed_hstate so that a following
4491                  * hugepages= parameter will be applied to this hstate.
4492                  */
4493                 parsed_hstate = h;
4494                 parsed_valid_hugepagesz = true;
4495                 return 1;
4496         }
4497
4498         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4499         parsed_valid_hugepagesz = true;
4500         return 1;
4501 }
4502 __setup("hugepagesz=", hugepagesz_setup);
4503
4504 /*
4505  * default_hugepagesz command line input
4506  * Only one instance of default_hugepagesz allowed on command line.
4507  */
4508 static int __init default_hugepagesz_setup(char *s)
4509 {
4510         unsigned long size;
4511         int i;
4512
4513         parsed_valid_hugepagesz = false;
4514         if (parsed_default_hugepagesz) {
4515                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4516                 return 1;
4517         }
4518
4519         size = (unsigned long)memparse(s, NULL);
4520
4521         if (!arch_hugetlb_valid_size(size)) {
4522                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4523                 return 1;
4524         }
4525
4526         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4527         parsed_valid_hugepagesz = true;
4528         parsed_default_hugepagesz = true;
4529         default_hstate_idx = hstate_index(size_to_hstate(size));
4530
4531         /*
4532          * The number of default huge pages (for this size) could have been
4533          * specified as the first hugetlb parameter: hugepages=X.  If so,
4534          * then default_hstate_max_huge_pages is set.  If the default huge
4535          * page size is gigantic (> MAX_ORDER), then the pages must be
4536          * allocated here from bootmem allocator.
4537          */
4538         if (default_hstate_max_huge_pages) {
4539                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4540                 for_each_online_node(i)
4541                         default_hstate.max_huge_pages_node[i] =
4542                                 default_hugepages_in_node[i];
4543                 if (hstate_is_gigantic(&default_hstate))
4544                         hugetlb_hstate_alloc_pages(&default_hstate);
4545                 default_hstate_max_huge_pages = 0;
4546         }
4547
4548         return 1;
4549 }
4550 __setup("default_hugepagesz=", default_hugepagesz_setup);
4551
4552 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4553 {
4554 #ifdef CONFIG_NUMA
4555         struct mempolicy *mpol = get_task_policy(current);
4556
4557         /*
4558          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4559          * (from policy_nodemask) specifically for hugetlb case
4560          */
4561         if (mpol->mode == MPOL_BIND &&
4562                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4563                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4564                 return &mpol->nodes;
4565 #endif
4566         return NULL;
4567 }
4568
4569 static unsigned int allowed_mems_nr(struct hstate *h)
4570 {
4571         int node;
4572         unsigned int nr = 0;
4573         nodemask_t *mbind_nodemask;
4574         unsigned int *array = h->free_huge_pages_node;
4575         gfp_t gfp_mask = htlb_alloc_mask(h);
4576
4577         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4578         for_each_node_mask(node, cpuset_current_mems_allowed) {
4579                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4580                         nr += array[node];
4581         }
4582
4583         return nr;
4584 }
4585
4586 #ifdef CONFIG_SYSCTL
4587 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4588                                           void *buffer, size_t *length,
4589                                           loff_t *ppos, unsigned long *out)
4590 {
4591         struct ctl_table dup_table;
4592
4593         /*
4594          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4595          * can duplicate the @table and alter the duplicate of it.
4596          */
4597         dup_table = *table;
4598         dup_table.data = out;
4599
4600         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4601 }
4602
4603 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4604                          struct ctl_table *table, int write,
4605                          void *buffer, size_t *length, loff_t *ppos)
4606 {
4607         struct hstate *h = &default_hstate;
4608         unsigned long tmp = h->max_huge_pages;
4609         int ret;
4610
4611         if (!hugepages_supported())
4612                 return -EOPNOTSUPP;
4613
4614         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4615                                              &tmp);
4616         if (ret)
4617                 goto out;
4618
4619         if (write)
4620                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4621                                                   NUMA_NO_NODE, tmp, *length);
4622 out:
4623         return ret;
4624 }
4625
4626 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4627                           void *buffer, size_t *length, loff_t *ppos)
4628 {
4629
4630         return hugetlb_sysctl_handler_common(false, table, write,
4631                                                         buffer, length, ppos);
4632 }
4633
4634 #ifdef CONFIG_NUMA
4635 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4636                           void *buffer, size_t *length, loff_t *ppos)
4637 {
4638         return hugetlb_sysctl_handler_common(true, table, write,
4639                                                         buffer, length, ppos);
4640 }
4641 #endif /* CONFIG_NUMA */
4642
4643 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4644                 void *buffer, size_t *length, loff_t *ppos)
4645 {
4646         struct hstate *h = &default_hstate;
4647         unsigned long tmp;
4648         int ret;
4649
4650         if (!hugepages_supported())
4651                 return -EOPNOTSUPP;
4652
4653         tmp = h->nr_overcommit_huge_pages;
4654
4655         if (write && hstate_is_gigantic(h))
4656                 return -EINVAL;
4657
4658         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4659                                              &tmp);
4660         if (ret)
4661                 goto out;
4662
4663         if (write) {
4664                 spin_lock_irq(&hugetlb_lock);
4665                 h->nr_overcommit_huge_pages = tmp;
4666                 spin_unlock_irq(&hugetlb_lock);
4667         }
4668 out:
4669         return ret;
4670 }
4671
4672 static struct ctl_table hugetlb_table[] = {
4673         {
4674                 .procname       = "nr_hugepages",
4675                 .data           = NULL,
4676                 .maxlen         = sizeof(unsigned long),
4677                 .mode           = 0644,
4678                 .proc_handler   = hugetlb_sysctl_handler,
4679         },
4680 #ifdef CONFIG_NUMA
4681         {
4682                 .procname       = "nr_hugepages_mempolicy",
4683                 .data           = NULL,
4684                 .maxlen         = sizeof(unsigned long),
4685                 .mode           = 0644,
4686                 .proc_handler   = &hugetlb_mempolicy_sysctl_handler,
4687         },
4688 #endif
4689         {
4690                 .procname       = "hugetlb_shm_group",
4691                 .data           = &sysctl_hugetlb_shm_group,
4692                 .maxlen         = sizeof(gid_t),
4693                 .mode           = 0644,
4694                 .proc_handler   = proc_dointvec,
4695         },
4696         {
4697                 .procname       = "nr_overcommit_hugepages",
4698                 .data           = NULL,
4699                 .maxlen         = sizeof(unsigned long),
4700                 .mode           = 0644,
4701                 .proc_handler   = hugetlb_overcommit_handler,
4702         },
4703         { }
4704 };
4705
4706 static void hugetlb_sysctl_init(void)
4707 {
4708         register_sysctl_init("vm", hugetlb_table);
4709 }
4710 #endif /* CONFIG_SYSCTL */
4711
4712 void hugetlb_report_meminfo(struct seq_file *m)
4713 {
4714         struct hstate *h;
4715         unsigned long total = 0;
4716
4717         if (!hugepages_supported())
4718                 return;
4719
4720         for_each_hstate(h) {
4721                 unsigned long count = h->nr_huge_pages;
4722
4723                 total += huge_page_size(h) * count;
4724
4725                 if (h == &default_hstate)
4726                         seq_printf(m,
4727                                    "HugePages_Total:   %5lu\n"
4728                                    "HugePages_Free:    %5lu\n"
4729                                    "HugePages_Rsvd:    %5lu\n"
4730                                    "HugePages_Surp:    %5lu\n"
4731                                    "Hugepagesize:   %8lu kB\n",
4732                                    count,
4733                                    h->free_huge_pages,
4734                                    h->resv_huge_pages,
4735                                    h->surplus_huge_pages,
4736                                    huge_page_size(h) / SZ_1K);
4737         }
4738
4739         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4740 }
4741
4742 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4743 {
4744         struct hstate *h = &default_hstate;
4745
4746         if (!hugepages_supported())
4747                 return 0;
4748
4749         return sysfs_emit_at(buf, len,
4750                              "Node %d HugePages_Total: %5u\n"
4751                              "Node %d HugePages_Free:  %5u\n"
4752                              "Node %d HugePages_Surp:  %5u\n",
4753                              nid, h->nr_huge_pages_node[nid],
4754                              nid, h->free_huge_pages_node[nid],
4755                              nid, h->surplus_huge_pages_node[nid]);
4756 }
4757
4758 void hugetlb_show_meminfo_node(int nid)
4759 {
4760         struct hstate *h;
4761
4762         if (!hugepages_supported())
4763                 return;
4764
4765         for_each_hstate(h)
4766                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4767                         nid,
4768                         h->nr_huge_pages_node[nid],
4769                         h->free_huge_pages_node[nid],
4770                         h->surplus_huge_pages_node[nid],
4771                         huge_page_size(h) / SZ_1K);
4772 }
4773
4774 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4775 {
4776         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4777                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4778 }
4779
4780 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4781 unsigned long hugetlb_total_pages(void)
4782 {
4783         struct hstate *h;
4784         unsigned long nr_total_pages = 0;
4785
4786         for_each_hstate(h)
4787                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4788         return nr_total_pages;
4789 }
4790
4791 static int hugetlb_acct_memory(struct hstate *h, long delta)
4792 {
4793         int ret = -ENOMEM;
4794
4795         if (!delta)
4796                 return 0;
4797
4798         spin_lock_irq(&hugetlb_lock);
4799         /*
4800          * When cpuset is configured, it breaks the strict hugetlb page
4801          * reservation as the accounting is done on a global variable. Such
4802          * reservation is completely rubbish in the presence of cpuset because
4803          * the reservation is not checked against page availability for the
4804          * current cpuset. Application can still potentially OOM'ed by kernel
4805          * with lack of free htlb page in cpuset that the task is in.
4806          * Attempt to enforce strict accounting with cpuset is almost
4807          * impossible (or too ugly) because cpuset is too fluid that
4808          * task or memory node can be dynamically moved between cpusets.
4809          *
4810          * The change of semantics for shared hugetlb mapping with cpuset is
4811          * undesirable. However, in order to preserve some of the semantics,
4812          * we fall back to check against current free page availability as
4813          * a best attempt and hopefully to minimize the impact of changing
4814          * semantics that cpuset has.
4815          *
4816          * Apart from cpuset, we also have memory policy mechanism that
4817          * also determines from which node the kernel will allocate memory
4818          * in a NUMA system. So similar to cpuset, we also should consider
4819          * the memory policy of the current task. Similar to the description
4820          * above.
4821          */
4822         if (delta > 0) {
4823                 if (gather_surplus_pages(h, delta) < 0)
4824                         goto out;
4825
4826                 if (delta > allowed_mems_nr(h)) {
4827                         return_unused_surplus_pages(h, delta);
4828                         goto out;
4829                 }
4830         }
4831
4832         ret = 0;
4833         if (delta < 0)
4834                 return_unused_surplus_pages(h, (unsigned long) -delta);
4835
4836 out:
4837         spin_unlock_irq(&hugetlb_lock);
4838         return ret;
4839 }
4840
4841 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4842 {
4843         struct resv_map *resv = vma_resv_map(vma);
4844
4845         /*
4846          * HPAGE_RESV_OWNER indicates a private mapping.
4847          * This new VMA should share its siblings reservation map if present.
4848          * The VMA will only ever have a valid reservation map pointer where
4849          * it is being copied for another still existing VMA.  As that VMA
4850          * has a reference to the reservation map it cannot disappear until
4851          * after this open call completes.  It is therefore safe to take a
4852          * new reference here without additional locking.
4853          */
4854         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4855                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4856                 kref_get(&resv->refs);
4857         }
4858
4859         /*
4860          * vma_lock structure for sharable mappings is vma specific.
4861          * Clear old pointer (if copied via vm_area_dup) and allocate
4862          * new structure.  Before clearing, make sure vma_lock is not
4863          * for this vma.
4864          */
4865         if (vma->vm_flags & VM_MAYSHARE) {
4866                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4867
4868                 if (vma_lock) {
4869                         if (vma_lock->vma != vma) {
4870                                 vma->vm_private_data = NULL;
4871                                 hugetlb_vma_lock_alloc(vma);
4872                         } else
4873                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4874                 } else
4875                         hugetlb_vma_lock_alloc(vma);
4876         }
4877 }
4878
4879 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4880 {
4881         struct hstate *h = hstate_vma(vma);
4882         struct resv_map *resv;
4883         struct hugepage_subpool *spool = subpool_vma(vma);
4884         unsigned long reserve, start, end;
4885         long gbl_reserve;
4886
4887         hugetlb_vma_lock_free(vma);
4888
4889         resv = vma_resv_map(vma);
4890         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4891                 return;
4892
4893         start = vma_hugecache_offset(h, vma, vma->vm_start);
4894         end = vma_hugecache_offset(h, vma, vma->vm_end);
4895
4896         reserve = (end - start) - region_count(resv, start, end);
4897         hugetlb_cgroup_uncharge_counter(resv, start, end);
4898         if (reserve) {
4899                 /*
4900                  * Decrement reserve counts.  The global reserve count may be
4901                  * adjusted if the subpool has a minimum size.
4902                  */
4903                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4904                 hugetlb_acct_memory(h, -gbl_reserve);
4905         }
4906
4907         kref_put(&resv->refs, resv_map_release);
4908 }
4909
4910 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4911 {
4912         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4913                 return -EINVAL;
4914
4915         /*
4916          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4917          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4918          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4919          */
4920         if (addr & ~PUD_MASK) {
4921                 /*
4922                  * hugetlb_vm_op_split is called right before we attempt to
4923                  * split the VMA. We will need to unshare PMDs in the old and
4924                  * new VMAs, so let's unshare before we split.
4925                  */
4926                 unsigned long floor = addr & PUD_MASK;
4927                 unsigned long ceil = floor + PUD_SIZE;
4928
4929                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4930                         hugetlb_unshare_pmds(vma, floor, ceil);
4931         }
4932
4933         return 0;
4934 }
4935
4936 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4937 {
4938         return huge_page_size(hstate_vma(vma));
4939 }
4940
4941 /*
4942  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4943  * handle_mm_fault() to try to instantiate regular-sized pages in the
4944  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4945  * this far.
4946  */
4947 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4948 {
4949         BUG();
4950         return 0;
4951 }
4952
4953 /*
4954  * When a new function is introduced to vm_operations_struct and added
4955  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4956  * This is because under System V memory model, mappings created via
4957  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4958  * their original vm_ops are overwritten with shm_vm_ops.
4959  */
4960 const struct vm_operations_struct hugetlb_vm_ops = {
4961         .fault = hugetlb_vm_op_fault,
4962         .open = hugetlb_vm_op_open,
4963         .close = hugetlb_vm_op_close,
4964         .may_split = hugetlb_vm_op_split,
4965         .pagesize = hugetlb_vm_op_pagesize,
4966 };
4967
4968 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4969                                 int writable)
4970 {
4971         pte_t entry;
4972         unsigned int shift = huge_page_shift(hstate_vma(vma));
4973
4974         if (writable) {
4975                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4976                                          vma->vm_page_prot)));
4977         } else {
4978                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4979                                            vma->vm_page_prot));
4980         }
4981         entry = pte_mkyoung(entry);
4982         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4983
4984         return entry;
4985 }
4986
4987 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4988                                    unsigned long address, pte_t *ptep)
4989 {
4990         pte_t entry;
4991
4992         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4993         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4994                 update_mmu_cache(vma, address, ptep);
4995 }
4996
4997 bool is_hugetlb_entry_migration(pte_t pte)
4998 {
4999         swp_entry_t swp;
5000
5001         if (huge_pte_none(pte) || pte_present(pte))
5002                 return false;
5003         swp = pte_to_swp_entry(pte);
5004         if (is_migration_entry(swp))
5005                 return true;
5006         else
5007                 return false;
5008 }
5009
5010 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
5011 {
5012         swp_entry_t swp;
5013
5014         if (huge_pte_none(pte) || pte_present(pte))
5015                 return false;
5016         swp = pte_to_swp_entry(pte);
5017         if (is_hwpoison_entry(swp))
5018                 return true;
5019         else
5020                 return false;
5021 }
5022
5023 static void
5024 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
5025                       struct folio *new_folio, pte_t old)
5026 {
5027         pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
5028
5029         __folio_mark_uptodate(new_folio);
5030         hugepage_add_new_anon_rmap(new_folio, vma, addr);
5031         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
5032                 newpte = huge_pte_mkuffd_wp(newpte);
5033         set_huge_pte_at(vma->vm_mm, addr, ptep, newpte);
5034         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
5035         folio_set_hugetlb_migratable(new_folio);
5036 }
5037
5038 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
5039                             struct vm_area_struct *dst_vma,
5040                             struct vm_area_struct *src_vma)
5041 {
5042         pte_t *src_pte, *dst_pte, entry;
5043         struct folio *pte_folio;
5044         unsigned long addr;
5045         bool cow = is_cow_mapping(src_vma->vm_flags);
5046         struct hstate *h = hstate_vma(src_vma);
5047         unsigned long sz = huge_page_size(h);
5048         unsigned long npages = pages_per_huge_page(h);
5049         struct mmu_notifier_range range;
5050         unsigned long last_addr_mask;
5051         int ret = 0;
5052
5053         if (cow) {
5054                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5055                                         src_vma->vm_start,
5056                                         src_vma->vm_end);
5057                 mmu_notifier_invalidate_range_start(&range);
5058                 mmap_assert_write_locked(src);
5059                 raw_write_seqcount_begin(&src->write_protect_seq);
5060         } else {
5061                 /*
5062                  * For shared mappings the vma lock must be held before
5063                  * calling hugetlb_walk() in the src vma. Otherwise, the
5064                  * returned ptep could go away if part of a shared pmd and
5065                  * another thread calls huge_pmd_unshare.
5066                  */
5067                 hugetlb_vma_lock_read(src_vma);
5068         }
5069
5070         last_addr_mask = hugetlb_mask_last_page(h);
5071         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5072                 spinlock_t *src_ptl, *dst_ptl;
5073                 src_pte = hugetlb_walk(src_vma, addr, sz);
5074                 if (!src_pte) {
5075                         addr |= last_addr_mask;
5076                         continue;
5077                 }
5078                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5079                 if (!dst_pte) {
5080                         ret = -ENOMEM;
5081                         break;
5082                 }
5083
5084                 /*
5085                  * If the pagetables are shared don't copy or take references.
5086                  *
5087                  * dst_pte == src_pte is the common case of src/dest sharing.
5088                  * However, src could have 'unshared' and dst shares with
5089                  * another vma. So page_count of ptep page is checked instead
5090                  * to reliably determine whether pte is shared.
5091                  */
5092                 if (page_count(virt_to_page(dst_pte)) > 1) {
5093                         addr |= last_addr_mask;
5094                         continue;
5095                 }
5096
5097                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5098                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5099                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5100                 entry = huge_ptep_get(src_pte);
5101 again:
5102                 if (huge_pte_none(entry)) {
5103                         /*
5104                          * Skip if src entry none.
5105                          */
5106                         ;
5107                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5108                         if (!userfaultfd_wp(dst_vma))
5109                                 entry = huge_pte_clear_uffd_wp(entry);
5110                         set_huge_pte_at(dst, addr, dst_pte, entry);
5111                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5112                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
5113                         bool uffd_wp = pte_swp_uffd_wp(entry);
5114
5115                         if (!is_readable_migration_entry(swp_entry) && cow) {
5116                                 /*
5117                                  * COW mappings require pages in both
5118                                  * parent and child to be set to read.
5119                                  */
5120                                 swp_entry = make_readable_migration_entry(
5121                                                         swp_offset(swp_entry));
5122                                 entry = swp_entry_to_pte(swp_entry);
5123                                 if (userfaultfd_wp(src_vma) && uffd_wp)
5124                                         entry = pte_swp_mkuffd_wp(entry);
5125                                 set_huge_pte_at(src, addr, src_pte, entry);
5126                         }
5127                         if (!userfaultfd_wp(dst_vma))
5128                                 entry = huge_pte_clear_uffd_wp(entry);
5129                         set_huge_pte_at(dst, addr, dst_pte, entry);
5130                 } else if (unlikely(is_pte_marker(entry))) {
5131                         /* No swap on hugetlb */
5132                         WARN_ON_ONCE(
5133                             is_swapin_error_entry(pte_to_swp_entry(entry)));
5134                         /*
5135                          * We copy the pte marker only if the dst vma has
5136                          * uffd-wp enabled.
5137                          */
5138                         if (userfaultfd_wp(dst_vma))
5139                                 set_huge_pte_at(dst, addr, dst_pte, entry);
5140                 } else {
5141                         entry = huge_ptep_get(src_pte);
5142                         pte_folio = page_folio(pte_page(entry));
5143                         folio_get(pte_folio);
5144
5145                         /*
5146                          * Failing to duplicate the anon rmap is a rare case
5147                          * where we see pinned hugetlb pages while they're
5148                          * prone to COW. We need to do the COW earlier during
5149                          * fork.
5150                          *
5151                          * When pre-allocating the page or copying data, we
5152                          * need to be without the pgtable locks since we could
5153                          * sleep during the process.
5154                          */
5155                         if (!folio_test_anon(pte_folio)) {
5156                                 page_dup_file_rmap(&pte_folio->page, true);
5157                         } else if (page_try_dup_anon_rmap(&pte_folio->page,
5158                                                           true, src_vma)) {
5159                                 pte_t src_pte_old = entry;
5160                                 struct folio *new_folio;
5161
5162                                 spin_unlock(src_ptl);
5163                                 spin_unlock(dst_ptl);
5164                                 /* Do not use reserve as it's private owned */
5165                                 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5166                                 if (IS_ERR(new_folio)) {
5167                                         folio_put(pte_folio);
5168                                         ret = PTR_ERR(new_folio);
5169                                         break;
5170                                 }
5171                                 ret = copy_user_large_folio(new_folio,
5172                                                             pte_folio,
5173                                                             addr, dst_vma);
5174                                 folio_put(pte_folio);
5175                                 if (ret) {
5176                                         folio_put(new_folio);
5177                                         break;
5178                                 }
5179
5180                                 /* Install the new hugetlb folio if src pte stable */
5181                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5182                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
5183                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5184                                 entry = huge_ptep_get(src_pte);
5185                                 if (!pte_same(src_pte_old, entry)) {
5186                                         restore_reserve_on_error(h, dst_vma, addr,
5187                                                                 new_folio);
5188                                         folio_put(new_folio);
5189                                         /* huge_ptep of dst_pte won't change as in child */
5190                                         goto again;
5191                                 }
5192                                 hugetlb_install_folio(dst_vma, dst_pte, addr,
5193                                                       new_folio, src_pte_old);
5194                                 spin_unlock(src_ptl);
5195                                 spin_unlock(dst_ptl);
5196                                 continue;
5197                         }
5198
5199                         if (cow) {
5200                                 /*
5201                                  * No need to notify as we are downgrading page
5202                                  * table protection not changing it to point
5203                                  * to a new page.
5204                                  *
5205                                  * See Documentation/mm/mmu_notifier.rst
5206                                  */
5207                                 huge_ptep_set_wrprotect(src, addr, src_pte);
5208                                 entry = huge_pte_wrprotect(entry);
5209                         }
5210
5211                         if (!userfaultfd_wp(dst_vma))
5212                                 entry = huge_pte_clear_uffd_wp(entry);
5213
5214                         set_huge_pte_at(dst, addr, dst_pte, entry);
5215                         hugetlb_count_add(npages, dst);
5216                 }
5217                 spin_unlock(src_ptl);
5218                 spin_unlock(dst_ptl);
5219         }
5220
5221         if (cow) {
5222                 raw_write_seqcount_end(&src->write_protect_seq);
5223                 mmu_notifier_invalidate_range_end(&range);
5224         } else {
5225                 hugetlb_vma_unlock_read(src_vma);
5226         }
5227
5228         return ret;
5229 }
5230
5231 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5232                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5233 {
5234         struct hstate *h = hstate_vma(vma);
5235         struct mm_struct *mm = vma->vm_mm;
5236         spinlock_t *src_ptl, *dst_ptl;
5237         pte_t pte;
5238
5239         dst_ptl = huge_pte_lock(h, mm, dst_pte);
5240         src_ptl = huge_pte_lockptr(h, mm, src_pte);
5241
5242         /*
5243          * We don't have to worry about the ordering of src and dst ptlocks
5244          * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5245          */
5246         if (src_ptl != dst_ptl)
5247                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5248
5249         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5250         set_huge_pte_at(mm, new_addr, dst_pte, pte);
5251
5252         if (src_ptl != dst_ptl)
5253                 spin_unlock(src_ptl);
5254         spin_unlock(dst_ptl);
5255 }
5256
5257 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5258                              struct vm_area_struct *new_vma,
5259                              unsigned long old_addr, unsigned long new_addr,
5260                              unsigned long len)
5261 {
5262         struct hstate *h = hstate_vma(vma);
5263         struct address_space *mapping = vma->vm_file->f_mapping;
5264         unsigned long sz = huge_page_size(h);
5265         struct mm_struct *mm = vma->vm_mm;
5266         unsigned long old_end = old_addr + len;
5267         unsigned long last_addr_mask;
5268         pte_t *src_pte, *dst_pte;
5269         struct mmu_notifier_range range;
5270         bool shared_pmd = false;
5271
5272         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5273                                 old_end);
5274         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5275         /*
5276          * In case of shared PMDs, we should cover the maximum possible
5277          * range.
5278          */
5279         flush_cache_range(vma, range.start, range.end);
5280
5281         mmu_notifier_invalidate_range_start(&range);
5282         last_addr_mask = hugetlb_mask_last_page(h);
5283         /* Prevent race with file truncation */
5284         hugetlb_vma_lock_write(vma);
5285         i_mmap_lock_write(mapping);
5286         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5287                 src_pte = hugetlb_walk(vma, old_addr, sz);
5288                 if (!src_pte) {
5289                         old_addr |= last_addr_mask;
5290                         new_addr |= last_addr_mask;
5291                         continue;
5292                 }
5293                 if (huge_pte_none(huge_ptep_get(src_pte)))
5294                         continue;
5295
5296                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5297                         shared_pmd = true;
5298                         old_addr |= last_addr_mask;
5299                         new_addr |= last_addr_mask;
5300                         continue;
5301                 }
5302
5303                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5304                 if (!dst_pte)
5305                         break;
5306
5307                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5308         }
5309
5310         if (shared_pmd)
5311                 flush_tlb_range(vma, range.start, range.end);
5312         else
5313                 flush_tlb_range(vma, old_end - len, old_end);
5314         mmu_notifier_invalidate_range_end(&range);
5315         i_mmap_unlock_write(mapping);
5316         hugetlb_vma_unlock_write(vma);
5317
5318         return len + old_addr - old_end;
5319 }
5320
5321 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5322                                    unsigned long start, unsigned long end,
5323                                    struct page *ref_page, zap_flags_t zap_flags)
5324 {
5325         struct mm_struct *mm = vma->vm_mm;
5326         unsigned long address;
5327         pte_t *ptep;
5328         pte_t pte;
5329         spinlock_t *ptl;
5330         struct page *page;
5331         struct hstate *h = hstate_vma(vma);
5332         unsigned long sz = huge_page_size(h);
5333         unsigned long last_addr_mask;
5334         bool force_flush = false;
5335
5336         WARN_ON(!is_vm_hugetlb_page(vma));
5337         BUG_ON(start & ~huge_page_mask(h));
5338         BUG_ON(end & ~huge_page_mask(h));
5339
5340         /*
5341          * This is a hugetlb vma, all the pte entries should point
5342          * to huge page.
5343          */
5344         tlb_change_page_size(tlb, sz);
5345         tlb_start_vma(tlb, vma);
5346
5347         last_addr_mask = hugetlb_mask_last_page(h);
5348         address = start;
5349         for (; address < end; address += sz) {
5350                 ptep = hugetlb_walk(vma, address, sz);
5351                 if (!ptep) {
5352                         address |= last_addr_mask;
5353                         continue;
5354                 }
5355
5356                 ptl = huge_pte_lock(h, mm, ptep);
5357                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5358                         spin_unlock(ptl);
5359                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5360                         force_flush = true;
5361                         address |= last_addr_mask;
5362                         continue;
5363                 }
5364
5365                 pte = huge_ptep_get(ptep);
5366                 if (huge_pte_none(pte)) {
5367                         spin_unlock(ptl);
5368                         continue;
5369                 }
5370
5371                 /*
5372                  * Migrating hugepage or HWPoisoned hugepage is already
5373                  * unmapped and its refcount is dropped, so just clear pte here.
5374                  */
5375                 if (unlikely(!pte_present(pte))) {
5376                         /*
5377                          * If the pte was wr-protected by uffd-wp in any of the
5378                          * swap forms, meanwhile the caller does not want to
5379                          * drop the uffd-wp bit in this zap, then replace the
5380                          * pte with a marker.
5381                          */
5382                         if (pte_swp_uffd_wp_any(pte) &&
5383                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5384                                 set_huge_pte_at(mm, address, ptep,
5385                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5386                         else
5387                                 huge_pte_clear(mm, address, ptep, sz);
5388                         spin_unlock(ptl);
5389                         continue;
5390                 }
5391
5392                 page = pte_page(pte);
5393                 /*
5394                  * If a reference page is supplied, it is because a specific
5395                  * page is being unmapped, not a range. Ensure the page we
5396                  * are about to unmap is the actual page of interest.
5397                  */
5398                 if (ref_page) {
5399                         if (page != ref_page) {
5400                                 spin_unlock(ptl);
5401                                 continue;
5402                         }
5403                         /*
5404                          * Mark the VMA as having unmapped its page so that
5405                          * future faults in this VMA will fail rather than
5406                          * looking like data was lost
5407                          */
5408                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5409                 }
5410
5411                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5412                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5413                 if (huge_pte_dirty(pte))
5414                         set_page_dirty(page);
5415                 /* Leave a uffd-wp pte marker if needed */
5416                 if (huge_pte_uffd_wp(pte) &&
5417                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5418                         set_huge_pte_at(mm, address, ptep,
5419                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5420                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5421                 page_remove_rmap(page, vma, true);
5422
5423                 spin_unlock(ptl);
5424                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5425                 /*
5426                  * Bail out after unmapping reference page if supplied
5427                  */
5428                 if (ref_page)
5429                         break;
5430         }
5431         tlb_end_vma(tlb, vma);
5432
5433         /*
5434          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5435          * could defer the flush until now, since by holding i_mmap_rwsem we
5436          * guaranteed that the last refernece would not be dropped. But we must
5437          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5438          * dropped and the last reference to the shared PMDs page might be
5439          * dropped as well.
5440          *
5441          * In theory we could defer the freeing of the PMD pages as well, but
5442          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5443          * detect sharing, so we cannot defer the release of the page either.
5444          * Instead, do flush now.
5445          */
5446         if (force_flush)
5447                 tlb_flush_mmu_tlbonly(tlb);
5448 }
5449
5450 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5451                           struct vm_area_struct *vma, unsigned long start,
5452                           unsigned long end, struct page *ref_page,
5453                           zap_flags_t zap_flags)
5454 {
5455         hugetlb_vma_lock_write(vma);
5456         i_mmap_lock_write(vma->vm_file->f_mapping);
5457
5458         /* mmu notification performed in caller */
5459         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5460
5461         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5462                 /*
5463                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5464                  * When the vma_lock is freed, this makes the vma ineligible
5465                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5466                  * pmd sharing.  This is important as page tables for this
5467                  * unmapped range will be asynchrously deleted.  If the page
5468                  * tables are shared, there will be issues when accessed by
5469                  * someone else.
5470                  */
5471                 __hugetlb_vma_unlock_write_free(vma);
5472                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5473         } else {
5474                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5475                 hugetlb_vma_unlock_write(vma);
5476         }
5477 }
5478
5479 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5480                           unsigned long end, struct page *ref_page,
5481                           zap_flags_t zap_flags)
5482 {
5483         struct mmu_notifier_range range;
5484         struct mmu_gather tlb;
5485
5486         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5487                                 start, end);
5488         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5489         mmu_notifier_invalidate_range_start(&range);
5490         tlb_gather_mmu(&tlb, vma->vm_mm);
5491
5492         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5493
5494         mmu_notifier_invalidate_range_end(&range);
5495         tlb_finish_mmu(&tlb);
5496 }
5497
5498 /*
5499  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5500  * mapping it owns the reserve page for. The intention is to unmap the page
5501  * from other VMAs and let the children be SIGKILLed if they are faulting the
5502  * same region.
5503  */
5504 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5505                               struct page *page, unsigned long address)
5506 {
5507         struct hstate *h = hstate_vma(vma);
5508         struct vm_area_struct *iter_vma;
5509         struct address_space *mapping;
5510         pgoff_t pgoff;
5511
5512         /*
5513          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5514          * from page cache lookup which is in HPAGE_SIZE units.
5515          */
5516         address = address & huge_page_mask(h);
5517         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5518                         vma->vm_pgoff;
5519         mapping = vma->vm_file->f_mapping;
5520
5521         /*
5522          * Take the mapping lock for the duration of the table walk. As
5523          * this mapping should be shared between all the VMAs,
5524          * __unmap_hugepage_range() is called as the lock is already held
5525          */
5526         i_mmap_lock_write(mapping);
5527         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5528                 /* Do not unmap the current VMA */
5529                 if (iter_vma == vma)
5530                         continue;
5531
5532                 /*
5533                  * Shared VMAs have their own reserves and do not affect
5534                  * MAP_PRIVATE accounting but it is possible that a shared
5535                  * VMA is using the same page so check and skip such VMAs.
5536                  */
5537                 if (iter_vma->vm_flags & VM_MAYSHARE)
5538                         continue;
5539
5540                 /*
5541                  * Unmap the page from other VMAs without their own reserves.
5542                  * They get marked to be SIGKILLed if they fault in these
5543                  * areas. This is because a future no-page fault on this VMA
5544                  * could insert a zeroed page instead of the data existing
5545                  * from the time of fork. This would look like data corruption
5546                  */
5547                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5548                         unmap_hugepage_range(iter_vma, address,
5549                                              address + huge_page_size(h), page, 0);
5550         }
5551         i_mmap_unlock_write(mapping);
5552 }
5553
5554 /*
5555  * hugetlb_wp() should be called with page lock of the original hugepage held.
5556  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5557  * cannot race with other handlers or page migration.
5558  * Keep the pte_same checks anyway to make transition from the mutex easier.
5559  */
5560 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5561                        unsigned long address, pte_t *ptep, unsigned int flags,
5562                        struct folio *pagecache_folio, spinlock_t *ptl)
5563 {
5564         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5565         pte_t pte = huge_ptep_get(ptep);
5566         struct hstate *h = hstate_vma(vma);
5567         struct folio *old_folio;
5568         struct folio *new_folio;
5569         int outside_reserve = 0;
5570         vm_fault_t ret = 0;
5571         unsigned long haddr = address & huge_page_mask(h);
5572         struct mmu_notifier_range range;
5573
5574         /*
5575          * Never handle CoW for uffd-wp protected pages.  It should be only
5576          * handled when the uffd-wp protection is removed.
5577          *
5578          * Note that only the CoW optimization path (in hugetlb_no_page())
5579          * can trigger this, because hugetlb_fault() will always resolve
5580          * uffd-wp bit first.
5581          */
5582         if (!unshare && huge_pte_uffd_wp(pte))
5583                 return 0;
5584
5585         /*
5586          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5587          * PTE mapped R/O such as maybe_mkwrite() would do.
5588          */
5589         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5590                 return VM_FAULT_SIGSEGV;
5591
5592         /* Let's take out MAP_SHARED mappings first. */
5593         if (vma->vm_flags & VM_MAYSHARE) {
5594                 set_huge_ptep_writable(vma, haddr, ptep);
5595                 return 0;
5596         }
5597
5598         old_folio = page_folio(pte_page(pte));
5599
5600         delayacct_wpcopy_start();
5601
5602 retry_avoidcopy:
5603         /*
5604          * If no-one else is actually using this page, we're the exclusive
5605          * owner and can reuse this page.
5606          */
5607         if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5608                 if (!PageAnonExclusive(&old_folio->page))
5609                         page_move_anon_rmap(&old_folio->page, vma);
5610                 if (likely(!unshare))
5611                         set_huge_ptep_writable(vma, haddr, ptep);
5612
5613                 delayacct_wpcopy_end();
5614                 return 0;
5615         }
5616         VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5617                        PageAnonExclusive(&old_folio->page), &old_folio->page);
5618
5619         /*
5620          * If the process that created a MAP_PRIVATE mapping is about to
5621          * perform a COW due to a shared page count, attempt to satisfy
5622          * the allocation without using the existing reserves. The pagecache
5623          * page is used to determine if the reserve at this address was
5624          * consumed or not. If reserves were used, a partial faulted mapping
5625          * at the time of fork() could consume its reserves on COW instead
5626          * of the full address range.
5627          */
5628         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5629                         old_folio != pagecache_folio)
5630                 outside_reserve = 1;
5631
5632         folio_get(old_folio);
5633
5634         /*
5635          * Drop page table lock as buddy allocator may be called. It will
5636          * be acquired again before returning to the caller, as expected.
5637          */
5638         spin_unlock(ptl);
5639         new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5640
5641         if (IS_ERR(new_folio)) {
5642                 /*
5643                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5644                  * it is due to references held by a child and an insufficient
5645                  * huge page pool. To guarantee the original mappers
5646                  * reliability, unmap the page from child processes. The child
5647                  * may get SIGKILLed if it later faults.
5648                  */
5649                 if (outside_reserve) {
5650                         struct address_space *mapping = vma->vm_file->f_mapping;
5651                         pgoff_t idx;
5652                         u32 hash;
5653
5654                         folio_put(old_folio);
5655                         /*
5656                          * Drop hugetlb_fault_mutex and vma_lock before
5657                          * unmapping.  unmapping needs to hold vma_lock
5658                          * in write mode.  Dropping vma_lock in read mode
5659                          * here is OK as COW mappings do not interact with
5660                          * PMD sharing.
5661                          *
5662                          * Reacquire both after unmap operation.
5663                          */
5664                         idx = vma_hugecache_offset(h, vma, haddr);
5665                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5666                         hugetlb_vma_unlock_read(vma);
5667                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5668
5669                         unmap_ref_private(mm, vma, &old_folio->page, haddr);
5670
5671                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5672                         hugetlb_vma_lock_read(vma);
5673                         spin_lock(ptl);
5674                         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5675                         if (likely(ptep &&
5676                                    pte_same(huge_ptep_get(ptep), pte)))
5677                                 goto retry_avoidcopy;
5678                         /*
5679                          * race occurs while re-acquiring page table
5680                          * lock, and our job is done.
5681                          */
5682                         delayacct_wpcopy_end();
5683                         return 0;
5684                 }
5685
5686                 ret = vmf_error(PTR_ERR(new_folio));
5687                 goto out_release_old;
5688         }
5689
5690         /*
5691          * When the original hugepage is shared one, it does not have
5692          * anon_vma prepared.
5693          */
5694         if (unlikely(anon_vma_prepare(vma))) {
5695                 ret = VM_FAULT_OOM;
5696                 goto out_release_all;
5697         }
5698
5699         if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5700                 ret = VM_FAULT_HWPOISON_LARGE;
5701                 goto out_release_all;
5702         }
5703         __folio_mark_uptodate(new_folio);
5704
5705         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5706                                 haddr + huge_page_size(h));
5707         mmu_notifier_invalidate_range_start(&range);
5708
5709         /*
5710          * Retake the page table lock to check for racing updates
5711          * before the page tables are altered
5712          */
5713         spin_lock(ptl);
5714         ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5715         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5716                 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5717
5718                 /* Break COW or unshare */
5719                 huge_ptep_clear_flush(vma, haddr, ptep);
5720                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5721                 page_remove_rmap(&old_folio->page, vma, true);
5722                 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5723                 if (huge_pte_uffd_wp(pte))
5724                         newpte = huge_pte_mkuffd_wp(newpte);
5725                 set_huge_pte_at(mm, haddr, ptep, newpte);
5726                 folio_set_hugetlb_migratable(new_folio);
5727                 /* Make the old page be freed below */
5728                 new_folio = old_folio;
5729         }
5730         spin_unlock(ptl);
5731         mmu_notifier_invalidate_range_end(&range);
5732 out_release_all:
5733         /*
5734          * No restore in case of successful pagetable update (Break COW or
5735          * unshare)
5736          */
5737         if (new_folio != old_folio)
5738                 restore_reserve_on_error(h, vma, haddr, new_folio);
5739         folio_put(new_folio);
5740 out_release_old:
5741         folio_put(old_folio);
5742
5743         spin_lock(ptl); /* Caller expects lock to be held */
5744
5745         delayacct_wpcopy_end();
5746         return ret;
5747 }
5748
5749 /*
5750  * Return whether there is a pagecache page to back given address within VMA.
5751  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5752  */
5753 static bool hugetlbfs_pagecache_present(struct hstate *h,
5754                         struct vm_area_struct *vma, unsigned long address)
5755 {
5756         struct address_space *mapping = vma->vm_file->f_mapping;
5757         pgoff_t idx = vma_hugecache_offset(h, vma, address);
5758         struct folio *folio;
5759
5760         folio = filemap_get_folio(mapping, idx);
5761         if (IS_ERR(folio))
5762                 return false;
5763         folio_put(folio);
5764         return true;
5765 }
5766
5767 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5768                            pgoff_t idx)
5769 {
5770         struct inode *inode = mapping->host;
5771         struct hstate *h = hstate_inode(inode);
5772         int err;
5773
5774         __folio_set_locked(folio);
5775         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5776
5777         if (unlikely(err)) {
5778                 __folio_clear_locked(folio);
5779                 return err;
5780         }
5781         folio_clear_hugetlb_restore_reserve(folio);
5782
5783         /*
5784          * mark folio dirty so that it will not be removed from cache/file
5785          * by non-hugetlbfs specific code paths.
5786          */
5787         folio_mark_dirty(folio);
5788
5789         spin_lock(&inode->i_lock);
5790         inode->i_blocks += blocks_per_huge_page(h);
5791         spin_unlock(&inode->i_lock);
5792         return 0;
5793 }
5794
5795 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5796                                                   struct address_space *mapping,
5797                                                   pgoff_t idx,
5798                                                   unsigned int flags,
5799                                                   unsigned long haddr,
5800                                                   unsigned long addr,
5801                                                   unsigned long reason)
5802 {
5803         u32 hash;
5804         struct vm_fault vmf = {
5805                 .vma = vma,
5806                 .address = haddr,
5807                 .real_address = addr,
5808                 .flags = flags,
5809
5810                 /*
5811                  * Hard to debug if it ends up being
5812                  * used by a callee that assumes
5813                  * something about the other
5814                  * uninitialized fields... same as in
5815                  * memory.c
5816                  */
5817         };
5818
5819         /*
5820          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5821          * userfault. Also mmap_lock could be dropped due to handling
5822          * userfault, any vma operation should be careful from here.
5823          */
5824         hugetlb_vma_unlock_read(vma);
5825         hash = hugetlb_fault_mutex_hash(mapping, idx);
5826         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5827         return handle_userfault(&vmf, reason);
5828 }
5829
5830 /*
5831  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5832  * false if pte changed or is changing.
5833  */
5834 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5835                                pte_t *ptep, pte_t old_pte)
5836 {
5837         spinlock_t *ptl;
5838         bool same;
5839
5840         ptl = huge_pte_lock(h, mm, ptep);
5841         same = pte_same(huge_ptep_get(ptep), old_pte);
5842         spin_unlock(ptl);
5843
5844         return same;
5845 }
5846
5847 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5848                         struct vm_area_struct *vma,
5849                         struct address_space *mapping, pgoff_t idx,
5850                         unsigned long address, pte_t *ptep,
5851                         pte_t old_pte, unsigned int flags)
5852 {
5853         struct hstate *h = hstate_vma(vma);
5854         vm_fault_t ret = VM_FAULT_SIGBUS;
5855         int anon_rmap = 0;
5856         unsigned long size;
5857         struct folio *folio;
5858         pte_t new_pte;
5859         spinlock_t *ptl;
5860         unsigned long haddr = address & huge_page_mask(h);
5861         bool new_folio, new_pagecache_folio = false;
5862         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5863
5864         /*
5865          * Currently, we are forced to kill the process in the event the
5866          * original mapper has unmapped pages from the child due to a failed
5867          * COW/unsharing. Warn that such a situation has occurred as it may not
5868          * be obvious.
5869          */
5870         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5871                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5872                            current->pid);
5873                 goto out;
5874         }
5875
5876         /*
5877          * Use page lock to guard against racing truncation
5878          * before we get page_table_lock.
5879          */
5880         new_folio = false;
5881         folio = filemap_lock_folio(mapping, idx);
5882         if (IS_ERR(folio)) {
5883                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5884                 if (idx >= size)
5885                         goto out;
5886                 /* Check for page in userfault range */
5887                 if (userfaultfd_missing(vma)) {
5888                         /*
5889                          * Since hugetlb_no_page() was examining pte
5890                          * without pgtable lock, we need to re-test under
5891                          * lock because the pte may not be stable and could
5892                          * have changed from under us.  Try to detect
5893                          * either changed or during-changing ptes and retry
5894                          * properly when needed.
5895                          *
5896                          * Note that userfaultfd is actually fine with
5897                          * false positives (e.g. caused by pte changed),
5898                          * but not wrong logical events (e.g. caused by
5899                          * reading a pte during changing).  The latter can
5900                          * confuse the userspace, so the strictness is very
5901                          * much preferred.  E.g., MISSING event should
5902                          * never happen on the page after UFFDIO_COPY has
5903                          * correctly installed the page and returned.
5904                          */
5905                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5906                                 ret = 0;
5907                                 goto out;
5908                         }
5909
5910                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5911                                                         haddr, address,
5912                                                         VM_UFFD_MISSING);
5913                 }
5914
5915                 folio = alloc_hugetlb_folio(vma, haddr, 0);
5916                 if (IS_ERR(folio)) {
5917                         /*
5918                          * Returning error will result in faulting task being
5919                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5920                          * tasks from racing to fault in the same page which
5921                          * could result in false unable to allocate errors.
5922                          * Page migration does not take the fault mutex, but
5923                          * does a clear then write of pte's under page table
5924                          * lock.  Page fault code could race with migration,
5925                          * notice the clear pte and try to allocate a page
5926                          * here.  Before returning error, get ptl and make
5927                          * sure there really is no pte entry.
5928                          */
5929                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5930                                 ret = vmf_error(PTR_ERR(folio));
5931                         else
5932                                 ret = 0;
5933                         goto out;
5934                 }
5935                 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5936                 __folio_mark_uptodate(folio);
5937                 new_folio = true;
5938
5939                 if (vma->vm_flags & VM_MAYSHARE) {
5940                         int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5941                         if (err) {
5942                                 /*
5943                                  * err can't be -EEXIST which implies someone
5944                                  * else consumed the reservation since hugetlb
5945                                  * fault mutex is held when add a hugetlb page
5946                                  * to the page cache. So it's safe to call
5947                                  * restore_reserve_on_error() here.
5948                                  */
5949                                 restore_reserve_on_error(h, vma, haddr, folio);
5950                                 folio_put(folio);
5951                                 goto out;
5952                         }
5953                         new_pagecache_folio = true;
5954                 } else {
5955                         folio_lock(folio);
5956                         if (unlikely(anon_vma_prepare(vma))) {
5957                                 ret = VM_FAULT_OOM;
5958                                 goto backout_unlocked;
5959                         }
5960                         anon_rmap = 1;
5961                 }
5962         } else {
5963                 /*
5964                  * If memory error occurs between mmap() and fault, some process
5965                  * don't have hwpoisoned swap entry for errored virtual address.
5966                  * So we need to block hugepage fault by PG_hwpoison bit check.
5967                  */
5968                 if (unlikely(folio_test_hwpoison(folio))) {
5969                         ret = VM_FAULT_HWPOISON_LARGE |
5970                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5971                         goto backout_unlocked;
5972                 }
5973
5974                 /* Check for page in userfault range. */
5975                 if (userfaultfd_minor(vma)) {
5976                         folio_unlock(folio);
5977                         folio_put(folio);
5978                         /* See comment in userfaultfd_missing() block above */
5979                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5980                                 ret = 0;
5981                                 goto out;
5982                         }
5983                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5984                                                         haddr, address,
5985                                                         VM_UFFD_MINOR);
5986                 }
5987         }
5988
5989         /*
5990          * If we are going to COW a private mapping later, we examine the
5991          * pending reservations for this page now. This will ensure that
5992          * any allocations necessary to record that reservation occur outside
5993          * the spinlock.
5994          */
5995         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5996                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5997                         ret = VM_FAULT_OOM;
5998                         goto backout_unlocked;
5999                 }
6000                 /* Just decrements count, does not deallocate */
6001                 vma_end_reservation(h, vma, haddr);
6002         }
6003
6004         ptl = huge_pte_lock(h, mm, ptep);
6005         ret = 0;
6006         /* If pte changed from under us, retry */
6007         if (!pte_same(huge_ptep_get(ptep), old_pte))
6008                 goto backout;
6009
6010         if (anon_rmap)
6011                 hugepage_add_new_anon_rmap(folio, vma, haddr);
6012         else
6013                 page_dup_file_rmap(&folio->page, true);
6014         new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
6015                                 && (vma->vm_flags & VM_SHARED)));
6016         /*
6017          * If this pte was previously wr-protected, keep it wr-protected even
6018          * if populated.
6019          */
6020         if (unlikely(pte_marker_uffd_wp(old_pte)))
6021                 new_pte = huge_pte_mkuffd_wp(new_pte);
6022         set_huge_pte_at(mm, haddr, ptep, new_pte);
6023
6024         hugetlb_count_add(pages_per_huge_page(h), mm);
6025         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
6026                 /* Optimization, do the COW without a second fault */
6027                 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
6028         }
6029
6030         spin_unlock(ptl);
6031
6032         /*
6033          * Only set hugetlb_migratable in newly allocated pages.  Existing pages
6034          * found in the pagecache may not have hugetlb_migratable if they have
6035          * been isolated for migration.
6036          */
6037         if (new_folio)
6038                 folio_set_hugetlb_migratable(folio);
6039
6040         folio_unlock(folio);
6041 out:
6042         hugetlb_vma_unlock_read(vma);
6043         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6044         return ret;
6045
6046 backout:
6047         spin_unlock(ptl);
6048 backout_unlocked:
6049         if (new_folio && !new_pagecache_folio)
6050                 restore_reserve_on_error(h, vma, haddr, folio);
6051
6052         folio_unlock(folio);
6053         folio_put(folio);
6054         goto out;
6055 }
6056
6057 #ifdef CONFIG_SMP
6058 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6059 {
6060         unsigned long key[2];
6061         u32 hash;
6062
6063         key[0] = (unsigned long) mapping;
6064         key[1] = idx;
6065
6066         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6067
6068         return hash & (num_fault_mutexes - 1);
6069 }
6070 #else
6071 /*
6072  * For uniprocessor systems we always use a single mutex, so just
6073  * return 0 and avoid the hashing overhead.
6074  */
6075 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6076 {
6077         return 0;
6078 }
6079 #endif
6080
6081 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6082                         unsigned long address, unsigned int flags)
6083 {
6084         pte_t *ptep, entry;
6085         spinlock_t *ptl;
6086         vm_fault_t ret;
6087         u32 hash;
6088         pgoff_t idx;
6089         struct folio *folio = NULL;
6090         struct folio *pagecache_folio = NULL;
6091         struct hstate *h = hstate_vma(vma);
6092         struct address_space *mapping;
6093         int need_wait_lock = 0;
6094         unsigned long haddr = address & huge_page_mask(h);
6095
6096         /*
6097          * Serialize hugepage allocation and instantiation, so that we don't
6098          * get spurious allocation failures if two CPUs race to instantiate
6099          * the same page in the page cache.
6100          */
6101         mapping = vma->vm_file->f_mapping;
6102         idx = vma_hugecache_offset(h, vma, haddr);
6103         hash = hugetlb_fault_mutex_hash(mapping, idx);
6104         mutex_lock(&hugetlb_fault_mutex_table[hash]);
6105
6106         /*
6107          * Acquire vma lock before calling huge_pte_alloc and hold
6108          * until finished with ptep.  This prevents huge_pmd_unshare from
6109          * being called elsewhere and making the ptep no longer valid.
6110          */
6111         hugetlb_vma_lock_read(vma);
6112         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6113         if (!ptep) {
6114                 hugetlb_vma_unlock_read(vma);
6115                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6116                 return VM_FAULT_OOM;
6117         }
6118
6119         entry = huge_ptep_get(ptep);
6120         /* PTE markers should be handled the same way as none pte */
6121         if (huge_pte_none_mostly(entry))
6122                 /*
6123                  * hugetlb_no_page will drop vma lock and hugetlb fault
6124                  * mutex internally, which make us return immediately.
6125                  */
6126                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6127                                       entry, flags);
6128
6129         ret = 0;
6130
6131         /*
6132          * entry could be a migration/hwpoison entry at this point, so this
6133          * check prevents the kernel from going below assuming that we have
6134          * an active hugepage in pagecache. This goto expects the 2nd page
6135          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6136          * properly handle it.
6137          */
6138         if (!pte_present(entry)) {
6139                 if (unlikely(is_hugetlb_entry_migration(entry))) {
6140                         /*
6141                          * Release the hugetlb fault lock now, but retain
6142                          * the vma lock, because it is needed to guard the
6143                          * huge_pte_lockptr() later in
6144                          * migration_entry_wait_huge(). The vma lock will
6145                          * be released there.
6146                          */
6147                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6148                         migration_entry_wait_huge(vma, ptep);
6149                         return 0;
6150                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6151                         ret = VM_FAULT_HWPOISON_LARGE |
6152                             VM_FAULT_SET_HINDEX(hstate_index(h));
6153                 goto out_mutex;
6154         }
6155
6156         /*
6157          * If we are going to COW/unshare the mapping later, we examine the
6158          * pending reservations for this page now. This will ensure that any
6159          * allocations necessary to record that reservation occur outside the
6160          * spinlock. Also lookup the pagecache page now as it is used to
6161          * determine if a reservation has been consumed.
6162          */
6163         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6164             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6165                 if (vma_needs_reservation(h, vma, haddr) < 0) {
6166                         ret = VM_FAULT_OOM;
6167                         goto out_mutex;
6168                 }
6169                 /* Just decrements count, does not deallocate */
6170                 vma_end_reservation(h, vma, haddr);
6171
6172                 pagecache_folio = filemap_lock_folio(mapping, idx);
6173                 if (IS_ERR(pagecache_folio))
6174                         pagecache_folio = NULL;
6175         }
6176
6177         ptl = huge_pte_lock(h, mm, ptep);
6178
6179         /* Check for a racing update before calling hugetlb_wp() */
6180         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6181                 goto out_ptl;
6182
6183         /* Handle userfault-wp first, before trying to lock more pages */
6184         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6185             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6186                 struct vm_fault vmf = {
6187                         .vma = vma,
6188                         .address = haddr,
6189                         .real_address = address,
6190                         .flags = flags,
6191                 };
6192
6193                 spin_unlock(ptl);
6194                 if (pagecache_folio) {
6195                         folio_unlock(pagecache_folio);
6196                         folio_put(pagecache_folio);
6197                 }
6198                 hugetlb_vma_unlock_read(vma);
6199                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6200                 return handle_userfault(&vmf, VM_UFFD_WP);
6201         }
6202
6203         /*
6204          * hugetlb_wp() requires page locks of pte_page(entry) and
6205          * pagecache_folio, so here we need take the former one
6206          * when folio != pagecache_folio or !pagecache_folio.
6207          */
6208         folio = page_folio(pte_page(entry));
6209         if (folio != pagecache_folio)
6210                 if (!folio_trylock(folio)) {
6211                         need_wait_lock = 1;
6212                         goto out_ptl;
6213                 }
6214
6215         folio_get(folio);
6216
6217         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6218                 if (!huge_pte_write(entry)) {
6219                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
6220                                          pagecache_folio, ptl);
6221                         goto out_put_page;
6222                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6223                         entry = huge_pte_mkdirty(entry);
6224                 }
6225         }
6226         entry = pte_mkyoung(entry);
6227         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6228                                                 flags & FAULT_FLAG_WRITE))
6229                 update_mmu_cache(vma, haddr, ptep);
6230 out_put_page:
6231         if (folio != pagecache_folio)
6232                 folio_unlock(folio);
6233         folio_put(folio);
6234 out_ptl:
6235         spin_unlock(ptl);
6236
6237         if (pagecache_folio) {
6238                 folio_unlock(pagecache_folio);
6239                 folio_put(pagecache_folio);
6240         }
6241 out_mutex:
6242         hugetlb_vma_unlock_read(vma);
6243         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6244         /*
6245          * Generally it's safe to hold refcount during waiting page lock. But
6246          * here we just wait to defer the next page fault to avoid busy loop and
6247          * the page is not used after unlocked before returning from the current
6248          * page fault. So we are safe from accessing freed page, even if we wait
6249          * here without taking refcount.
6250          */
6251         if (need_wait_lock)
6252                 folio_wait_locked(folio);
6253         return ret;
6254 }
6255
6256 #ifdef CONFIG_USERFAULTFD
6257 /*
6258  * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6259  * with modifications for hugetlb pages.
6260  */
6261 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6262                              struct vm_area_struct *dst_vma,
6263                              unsigned long dst_addr,
6264                              unsigned long src_addr,
6265                              uffd_flags_t flags,
6266                              struct folio **foliop)
6267 {
6268         struct mm_struct *dst_mm = dst_vma->vm_mm;
6269         bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6270         bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6271         struct hstate *h = hstate_vma(dst_vma);
6272         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6273         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6274         unsigned long size;
6275         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6276         pte_t _dst_pte;
6277         spinlock_t *ptl;
6278         int ret = -ENOMEM;
6279         struct folio *folio;
6280         int writable;
6281         bool folio_in_pagecache = false;
6282
6283         if (is_continue) {
6284                 ret = -EFAULT;
6285                 folio = filemap_lock_folio(mapping, idx);
6286                 if (IS_ERR(folio))
6287                         goto out;
6288                 folio_in_pagecache = true;
6289         } else if (!*foliop) {
6290                 /* If a folio already exists, then it's UFFDIO_COPY for
6291                  * a non-missing case. Return -EEXIST.
6292                  */
6293                 if (vm_shared &&
6294                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6295                         ret = -EEXIST;
6296                         goto out;
6297                 }
6298
6299                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6300                 if (IS_ERR(folio)) {
6301                         ret = -ENOMEM;
6302                         goto out;
6303                 }
6304
6305                 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6306                                            false);
6307
6308                 /* fallback to copy_from_user outside mmap_lock */
6309                 if (unlikely(ret)) {
6310                         ret = -ENOENT;
6311                         /* Free the allocated folio which may have
6312                          * consumed a reservation.
6313                          */
6314                         restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6315                         folio_put(folio);
6316
6317                         /* Allocate a temporary folio to hold the copied
6318                          * contents.
6319                          */
6320                         folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6321                         if (!folio) {
6322                                 ret = -ENOMEM;
6323                                 goto out;
6324                         }
6325                         *foliop = folio;
6326                         /* Set the outparam foliop and return to the caller to
6327                          * copy the contents outside the lock. Don't free the
6328                          * folio.
6329                          */
6330                         goto out;
6331                 }
6332         } else {
6333                 if (vm_shared &&
6334                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6335                         folio_put(*foliop);
6336                         ret = -EEXIST;
6337                         *foliop = NULL;
6338                         goto out;
6339                 }
6340
6341                 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6342                 if (IS_ERR(folio)) {
6343                         folio_put(*foliop);
6344                         ret = -ENOMEM;
6345                         *foliop = NULL;
6346                         goto out;
6347                 }
6348                 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6349                 folio_put(*foliop);
6350                 *foliop = NULL;
6351                 if (ret) {
6352                         folio_put(folio);
6353                         goto out;
6354                 }
6355         }
6356
6357         /*
6358          * The memory barrier inside __folio_mark_uptodate makes sure that
6359          * preceding stores to the page contents become visible before
6360          * the set_pte_at() write.
6361          */
6362         __folio_mark_uptodate(folio);
6363
6364         /* Add shared, newly allocated pages to the page cache. */
6365         if (vm_shared && !is_continue) {
6366                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6367                 ret = -EFAULT;
6368                 if (idx >= size)
6369                         goto out_release_nounlock;
6370
6371                 /*
6372                  * Serialization between remove_inode_hugepages() and
6373                  * hugetlb_add_to_page_cache() below happens through the
6374                  * hugetlb_fault_mutex_table that here must be hold by
6375                  * the caller.
6376                  */
6377                 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6378                 if (ret)
6379                         goto out_release_nounlock;
6380                 folio_in_pagecache = true;
6381         }
6382
6383         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6384
6385         ret = -EIO;
6386         if (folio_test_hwpoison(folio))
6387                 goto out_release_unlock;
6388
6389         /*
6390          * We allow to overwrite a pte marker: consider when both MISSING|WP
6391          * registered, we firstly wr-protect a none pte which has no page cache
6392          * page backing it, then access the page.
6393          */
6394         ret = -EEXIST;
6395         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6396                 goto out_release_unlock;
6397
6398         if (folio_in_pagecache)
6399                 page_dup_file_rmap(&folio->page, true);
6400         else
6401                 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6402
6403         /*
6404          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6405          * with wp flag set, don't set pte write bit.
6406          */
6407         if (wp_enabled || (is_continue && !vm_shared))
6408                 writable = 0;
6409         else
6410                 writable = dst_vma->vm_flags & VM_WRITE;
6411
6412         _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6413         /*
6414          * Always mark UFFDIO_COPY page dirty; note that this may not be
6415          * extremely important for hugetlbfs for now since swapping is not
6416          * supported, but we should still be clear in that this page cannot be
6417          * thrown away at will, even if write bit not set.
6418          */
6419         _dst_pte = huge_pte_mkdirty(_dst_pte);
6420         _dst_pte = pte_mkyoung(_dst_pte);
6421
6422         if (wp_enabled)
6423                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6424
6425         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6426
6427         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6428
6429         /* No need to invalidate - it was non-present before */
6430         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6431
6432         spin_unlock(ptl);
6433         if (!is_continue)
6434                 folio_set_hugetlb_migratable(folio);
6435         if (vm_shared || is_continue)
6436                 folio_unlock(folio);
6437         ret = 0;
6438 out:
6439         return ret;
6440 out_release_unlock:
6441         spin_unlock(ptl);
6442         if (vm_shared || is_continue)
6443                 folio_unlock(folio);
6444 out_release_nounlock:
6445         if (!folio_in_pagecache)
6446                 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6447         folio_put(folio);
6448         goto out;
6449 }
6450 #endif /* CONFIG_USERFAULTFD */
6451
6452 static void record_subpages(struct page *page, struct vm_area_struct *vma,
6453                             int refs, struct page **pages)
6454 {
6455         int nr;
6456
6457         for (nr = 0; nr < refs; nr++) {
6458                 if (likely(pages))
6459                         pages[nr] = nth_page(page, nr);
6460         }
6461 }
6462
6463 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6464                                                unsigned int flags, pte_t *pte,
6465                                                bool *unshare)
6466 {
6467         pte_t pteval = huge_ptep_get(pte);
6468
6469         *unshare = false;
6470         if (is_swap_pte(pteval))
6471                 return true;
6472         if (huge_pte_write(pteval))
6473                 return false;
6474         if (flags & FOLL_WRITE)
6475                 return true;
6476         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6477                 *unshare = true;
6478                 return true;
6479         }
6480         return false;
6481 }
6482
6483 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6484                                 unsigned long address, unsigned int flags)
6485 {
6486         struct hstate *h = hstate_vma(vma);
6487         struct mm_struct *mm = vma->vm_mm;
6488         unsigned long haddr = address & huge_page_mask(h);
6489         struct page *page = NULL;
6490         spinlock_t *ptl;
6491         pte_t *pte, entry;
6492
6493         /*
6494          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6495          * follow_hugetlb_page().
6496          */
6497         if (WARN_ON_ONCE(flags & FOLL_PIN))
6498                 return NULL;
6499
6500         hugetlb_vma_lock_read(vma);
6501         pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6502         if (!pte)
6503                 goto out_unlock;
6504
6505         ptl = huge_pte_lock(h, mm, pte);
6506         entry = huge_ptep_get(pte);
6507         if (pte_present(entry)) {
6508                 page = pte_page(entry) +
6509                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6510                 /*
6511                  * Note that page may be a sub-page, and with vmemmap
6512                  * optimizations the page struct may be read only.
6513                  * try_grab_page() will increase the ref count on the
6514                  * head page, so this will be OK.
6515                  *
6516                  * try_grab_page() should always be able to get the page here,
6517                  * because we hold the ptl lock and have verified pte_present().
6518                  */
6519                 if (try_grab_page(page, flags)) {
6520                         page = NULL;
6521                         goto out;
6522                 }
6523         }
6524 out:
6525         spin_unlock(ptl);
6526 out_unlock:
6527         hugetlb_vma_unlock_read(vma);
6528         return page;
6529 }
6530
6531 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6532                          struct page **pages, unsigned long *position,
6533                          unsigned long *nr_pages, long i, unsigned int flags,
6534                          int *locked)
6535 {
6536         unsigned long pfn_offset;
6537         unsigned long vaddr = *position;
6538         unsigned long remainder = *nr_pages;
6539         struct hstate *h = hstate_vma(vma);
6540         int err = -EFAULT, refs;
6541
6542         while (vaddr < vma->vm_end && remainder) {
6543                 pte_t *pte;
6544                 spinlock_t *ptl = NULL;
6545                 bool unshare = false;
6546                 int absent;
6547                 struct page *page;
6548
6549                 /*
6550                  * If we have a pending SIGKILL, don't keep faulting pages and
6551                  * potentially allocating memory.
6552                  */
6553                 if (fatal_signal_pending(current)) {
6554                         remainder = 0;
6555                         break;
6556                 }
6557
6558                 hugetlb_vma_lock_read(vma);
6559                 /*
6560                  * Some archs (sparc64, sh*) have multiple pte_ts to
6561                  * each hugepage.  We have to make sure we get the
6562                  * first, for the page indexing below to work.
6563                  *
6564                  * Note that page table lock is not held when pte is null.
6565                  */
6566                 pte = hugetlb_walk(vma, vaddr & huge_page_mask(h),
6567                                    huge_page_size(h));
6568                 if (pte)
6569                         ptl = huge_pte_lock(h, mm, pte);
6570                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6571
6572                 /*
6573                  * When coredumping, it suits get_dump_page if we just return
6574                  * an error where there's an empty slot with no huge pagecache
6575                  * to back it.  This way, we avoid allocating a hugepage, and
6576                  * the sparse dumpfile avoids allocating disk blocks, but its
6577                  * huge holes still show up with zeroes where they need to be.
6578                  */
6579                 if (absent && (flags & FOLL_DUMP) &&
6580                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6581                         if (pte)
6582                                 spin_unlock(ptl);
6583                         hugetlb_vma_unlock_read(vma);
6584                         remainder = 0;
6585                         break;
6586                 }
6587
6588                 /*
6589                  * We need call hugetlb_fault for both hugepages under migration
6590                  * (in which case hugetlb_fault waits for the migration,) and
6591                  * hwpoisoned hugepages (in which case we need to prevent the
6592                  * caller from accessing to them.) In order to do this, we use
6593                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6594                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6595                  * both cases, and because we can't follow correct pages
6596                  * directly from any kind of swap entries.
6597                  */
6598                 if (absent ||
6599                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6600                         vm_fault_t ret;
6601                         unsigned int fault_flags = 0;
6602
6603                         if (pte)
6604                                 spin_unlock(ptl);
6605                         hugetlb_vma_unlock_read(vma);
6606
6607                         if (flags & FOLL_WRITE)
6608                                 fault_flags |= FAULT_FLAG_WRITE;
6609                         else if (unshare)
6610                                 fault_flags |= FAULT_FLAG_UNSHARE;
6611                         if (locked) {
6612                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6613                                         FAULT_FLAG_KILLABLE;
6614                                 if (flags & FOLL_INTERRUPTIBLE)
6615                                         fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6616                         }
6617                         if (flags & FOLL_NOWAIT)
6618                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6619                                         FAULT_FLAG_RETRY_NOWAIT;
6620                         if (flags & FOLL_TRIED) {
6621                                 /*
6622                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6623                                  * FAULT_FLAG_TRIED can co-exist
6624                                  */
6625                                 fault_flags |= FAULT_FLAG_TRIED;
6626                         }
6627                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6628                         if (ret & VM_FAULT_ERROR) {
6629                                 err = vm_fault_to_errno(ret, flags);
6630                                 remainder = 0;
6631                                 break;
6632                         }
6633                         if (ret & VM_FAULT_RETRY) {
6634                                 if (locked &&
6635                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6636                                         *locked = 0;
6637                                 *nr_pages = 0;
6638                                 /*
6639                                  * VM_FAULT_RETRY must not return an
6640                                  * error, it will return zero
6641                                  * instead.
6642                                  *
6643                                  * No need to update "position" as the
6644                                  * caller will not check it after
6645                                  * *nr_pages is set to 0.
6646                                  */
6647                                 return i;
6648                         }
6649                         continue;
6650                 }
6651
6652                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6653                 page = pte_page(huge_ptep_get(pte));
6654
6655                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6656                                !PageAnonExclusive(page), page);
6657
6658                 /*
6659                  * If subpage information not requested, update counters
6660                  * and skip the same_page loop below.
6661                  */
6662                 if (!pages && !pfn_offset &&
6663                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6664                     (remainder >= pages_per_huge_page(h))) {
6665                         vaddr += huge_page_size(h);
6666                         remainder -= pages_per_huge_page(h);
6667                         i += pages_per_huge_page(h);
6668                         spin_unlock(ptl);
6669                         hugetlb_vma_unlock_read(vma);
6670                         continue;
6671                 }
6672
6673                 /* vaddr may not be aligned to PAGE_SIZE */
6674                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6675                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6676
6677                 if (pages)
6678                         record_subpages(nth_page(page, pfn_offset),
6679                                         vma, refs,
6680                                         likely(pages) ? pages + i : NULL);
6681
6682                 if (pages) {
6683                         /*
6684                          * try_grab_folio() should always succeed here,
6685                          * because: a) we hold the ptl lock, and b) we've just
6686                          * checked that the huge page is present in the page
6687                          * tables. If the huge page is present, then the tail
6688                          * pages must also be present. The ptl prevents the
6689                          * head page and tail pages from being rearranged in
6690                          * any way. As this is hugetlb, the pages will never
6691                          * be p2pdma or not longterm pinable. So this page
6692                          * must be available at this point, unless the page
6693                          * refcount overflowed:
6694                          */
6695                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6696                                                          flags))) {
6697                                 spin_unlock(ptl);
6698                                 hugetlb_vma_unlock_read(vma);
6699                                 remainder = 0;
6700                                 err = -ENOMEM;
6701                                 break;
6702                         }
6703                 }
6704
6705                 vaddr += (refs << PAGE_SHIFT);
6706                 remainder -= refs;
6707                 i += refs;
6708
6709                 spin_unlock(ptl);
6710                 hugetlb_vma_unlock_read(vma);
6711         }
6712         *nr_pages = remainder;
6713         /*
6714          * setting position is actually required only if remainder is
6715          * not zero but it's faster not to add a "if (remainder)"
6716          * branch.
6717          */
6718         *position = vaddr;
6719
6720         return i ? i : err;
6721 }
6722
6723 long hugetlb_change_protection(struct vm_area_struct *vma,
6724                 unsigned long address, unsigned long end,
6725                 pgprot_t newprot, unsigned long cp_flags)
6726 {
6727         struct mm_struct *mm = vma->vm_mm;
6728         unsigned long start = address;
6729         pte_t *ptep;
6730         pte_t pte;
6731         struct hstate *h = hstate_vma(vma);
6732         long pages = 0, psize = huge_page_size(h);
6733         bool shared_pmd = false;
6734         struct mmu_notifier_range range;
6735         unsigned long last_addr_mask;
6736         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6737         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6738
6739         /*
6740          * In the case of shared PMDs, the area to flush could be beyond
6741          * start/end.  Set range.start/range.end to cover the maximum possible
6742          * range if PMD sharing is possible.
6743          */
6744         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6745                                 0, mm, start, end);
6746         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6747
6748         BUG_ON(address >= end);
6749         flush_cache_range(vma, range.start, range.end);
6750
6751         mmu_notifier_invalidate_range_start(&range);
6752         hugetlb_vma_lock_write(vma);
6753         i_mmap_lock_write(vma->vm_file->f_mapping);
6754         last_addr_mask = hugetlb_mask_last_page(h);
6755         for (; address < end; address += psize) {
6756                 spinlock_t *ptl;
6757                 ptep = hugetlb_walk(vma, address, psize);
6758                 if (!ptep) {
6759                         if (!uffd_wp) {
6760                                 address |= last_addr_mask;
6761                                 continue;
6762                         }
6763                         /*
6764                          * Userfaultfd wr-protect requires pgtable
6765                          * pre-allocations to install pte markers.
6766                          */
6767                         ptep = huge_pte_alloc(mm, vma, address, psize);
6768                         if (!ptep) {
6769                                 pages = -ENOMEM;
6770                                 break;
6771                         }
6772                 }
6773                 ptl = huge_pte_lock(h, mm, ptep);
6774                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6775                         /*
6776                          * When uffd-wp is enabled on the vma, unshare
6777                          * shouldn't happen at all.  Warn about it if it
6778                          * happened due to some reason.
6779                          */
6780                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6781                         pages++;
6782                         spin_unlock(ptl);
6783                         shared_pmd = true;
6784                         address |= last_addr_mask;
6785                         continue;
6786                 }
6787                 pte = huge_ptep_get(ptep);
6788                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6789                         /* Nothing to do. */
6790                 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6791                         swp_entry_t entry = pte_to_swp_entry(pte);
6792                         struct page *page = pfn_swap_entry_to_page(entry);
6793                         pte_t newpte = pte;
6794
6795                         if (is_writable_migration_entry(entry)) {
6796                                 if (PageAnon(page))
6797                                         entry = make_readable_exclusive_migration_entry(
6798                                                                 swp_offset(entry));
6799                                 else
6800                                         entry = make_readable_migration_entry(
6801                                                                 swp_offset(entry));
6802                                 newpte = swp_entry_to_pte(entry);
6803                                 pages++;
6804                         }
6805
6806                         if (uffd_wp)
6807                                 newpte = pte_swp_mkuffd_wp(newpte);
6808                         else if (uffd_wp_resolve)
6809                                 newpte = pte_swp_clear_uffd_wp(newpte);
6810                         if (!pte_same(pte, newpte))
6811                                 set_huge_pte_at(mm, address, ptep, newpte);
6812                 } else if (unlikely(is_pte_marker(pte))) {
6813                         /* No other markers apply for now. */
6814                         WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6815                         if (uffd_wp_resolve)
6816                                 /* Safe to modify directly (non-present->none). */
6817                                 huge_pte_clear(mm, address, ptep, psize);
6818                 } else if (!huge_pte_none(pte)) {
6819                         pte_t old_pte;
6820                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6821
6822                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6823                         pte = huge_pte_modify(old_pte, newprot);
6824                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6825                         if (uffd_wp)
6826                                 pte = huge_pte_mkuffd_wp(pte);
6827                         else if (uffd_wp_resolve)
6828                                 pte = huge_pte_clear_uffd_wp(pte);
6829                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6830                         pages++;
6831                 } else {
6832                         /* None pte */
6833                         if (unlikely(uffd_wp))
6834                                 /* Safe to modify directly (none->non-present). */
6835                                 set_huge_pte_at(mm, address, ptep,
6836                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6837                 }
6838                 spin_unlock(ptl);
6839         }
6840         /*
6841          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6842          * may have cleared our pud entry and done put_page on the page table:
6843          * once we release i_mmap_rwsem, another task can do the final put_page
6844          * and that page table be reused and filled with junk.  If we actually
6845          * did unshare a page of pmds, flush the range corresponding to the pud.
6846          */
6847         if (shared_pmd)
6848                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6849         else
6850                 flush_hugetlb_tlb_range(vma, start, end);
6851         /*
6852          * No need to call mmu_notifier_invalidate_range() we are downgrading
6853          * page table protection not changing it to point to a new page.
6854          *
6855          * See Documentation/mm/mmu_notifier.rst
6856          */
6857         i_mmap_unlock_write(vma->vm_file->f_mapping);
6858         hugetlb_vma_unlock_write(vma);
6859         mmu_notifier_invalidate_range_end(&range);
6860
6861         return pages > 0 ? (pages << h->order) : pages;
6862 }
6863
6864 /* Return true if reservation was successful, false otherwise.  */
6865 bool hugetlb_reserve_pages(struct inode *inode,
6866                                         long from, long to,
6867                                         struct vm_area_struct *vma,
6868                                         vm_flags_t vm_flags)
6869 {
6870         long chg = -1, add = -1;
6871         struct hstate *h = hstate_inode(inode);
6872         struct hugepage_subpool *spool = subpool_inode(inode);
6873         struct resv_map *resv_map;
6874         struct hugetlb_cgroup *h_cg = NULL;
6875         long gbl_reserve, regions_needed = 0;
6876
6877         /* This should never happen */
6878         if (from > to) {
6879                 VM_WARN(1, "%s called with a negative range\n", __func__);
6880                 return false;
6881         }
6882
6883         /*
6884          * vma specific semaphore used for pmd sharing and fault/truncation
6885          * synchronization
6886          */
6887         hugetlb_vma_lock_alloc(vma);
6888
6889         /*
6890          * Only apply hugepage reservation if asked. At fault time, an
6891          * attempt will be made for VM_NORESERVE to allocate a page
6892          * without using reserves
6893          */
6894         if (vm_flags & VM_NORESERVE)
6895                 return true;
6896
6897         /*
6898          * Shared mappings base their reservation on the number of pages that
6899          * are already allocated on behalf of the file. Private mappings need
6900          * to reserve the full area even if read-only as mprotect() may be
6901          * called to make the mapping read-write. Assume !vma is a shm mapping
6902          */
6903         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6904                 /*
6905                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6906                  * called for inodes for which resv_maps were created (see
6907                  * hugetlbfs_get_inode).
6908                  */
6909                 resv_map = inode_resv_map(inode);
6910
6911                 chg = region_chg(resv_map, from, to, &regions_needed);
6912         } else {
6913                 /* Private mapping. */
6914                 resv_map = resv_map_alloc();
6915                 if (!resv_map)
6916                         goto out_err;
6917
6918                 chg = to - from;
6919
6920                 set_vma_resv_map(vma, resv_map);
6921                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6922         }
6923
6924         if (chg < 0)
6925                 goto out_err;
6926
6927         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6928                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6929                 goto out_err;
6930
6931         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6932                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6933                  * of the resv_map.
6934                  */
6935                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6936         }
6937
6938         /*
6939          * There must be enough pages in the subpool for the mapping. If
6940          * the subpool has a minimum size, there may be some global
6941          * reservations already in place (gbl_reserve).
6942          */
6943         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6944         if (gbl_reserve < 0)
6945                 goto out_uncharge_cgroup;
6946
6947         /*
6948          * Check enough hugepages are available for the reservation.
6949          * Hand the pages back to the subpool if there are not
6950          */
6951         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6952                 goto out_put_pages;
6953
6954         /*
6955          * Account for the reservations made. Shared mappings record regions
6956          * that have reservations as they are shared by multiple VMAs.
6957          * When the last VMA disappears, the region map says how much
6958          * the reservation was and the page cache tells how much of
6959          * the reservation was consumed. Private mappings are per-VMA and
6960          * only the consumed reservations are tracked. When the VMA
6961          * disappears, the original reservation is the VMA size and the
6962          * consumed reservations are stored in the map. Hence, nothing
6963          * else has to be done for private mappings here
6964          */
6965         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6966                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6967
6968                 if (unlikely(add < 0)) {
6969                         hugetlb_acct_memory(h, -gbl_reserve);
6970                         goto out_put_pages;
6971                 } else if (unlikely(chg > add)) {
6972                         /*
6973                          * pages in this range were added to the reserve
6974                          * map between region_chg and region_add.  This
6975                          * indicates a race with alloc_hugetlb_folio.  Adjust
6976                          * the subpool and reserve counts modified above
6977                          * based on the difference.
6978                          */
6979                         long rsv_adjust;
6980
6981                         /*
6982                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6983                          * reference to h_cg->css. See comment below for detail.
6984                          */
6985                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6986                                 hstate_index(h),
6987                                 (chg - add) * pages_per_huge_page(h), h_cg);
6988
6989                         rsv_adjust = hugepage_subpool_put_pages(spool,
6990                                                                 chg - add);
6991                         hugetlb_acct_memory(h, -rsv_adjust);
6992                 } else if (h_cg) {
6993                         /*
6994                          * The file_regions will hold their own reference to
6995                          * h_cg->css. So we should release the reference held
6996                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6997                          * done.
6998                          */
6999                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
7000                 }
7001         }
7002         return true;
7003
7004 out_put_pages:
7005         /* put back original number of pages, chg */
7006         (void)hugepage_subpool_put_pages(spool, chg);
7007 out_uncharge_cgroup:
7008         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
7009                                             chg * pages_per_huge_page(h), h_cg);
7010 out_err:
7011         hugetlb_vma_lock_free(vma);
7012         if (!vma || vma->vm_flags & VM_MAYSHARE)
7013                 /* Only call region_abort if the region_chg succeeded but the
7014                  * region_add failed or didn't run.
7015                  */
7016                 if (chg >= 0 && add < 0)
7017                         region_abort(resv_map, from, to, regions_needed);
7018         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
7019                 kref_put(&resv_map->refs, resv_map_release);
7020         return false;
7021 }
7022
7023 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
7024                                                                 long freed)
7025 {
7026         struct hstate *h = hstate_inode(inode);
7027         struct resv_map *resv_map = inode_resv_map(inode);
7028         long chg = 0;
7029         struct hugepage_subpool *spool = subpool_inode(inode);
7030         long gbl_reserve;
7031
7032         /*
7033          * Since this routine can be called in the evict inode path for all
7034          * hugetlbfs inodes, resv_map could be NULL.
7035          */
7036         if (resv_map) {
7037                 chg = region_del(resv_map, start, end);
7038                 /*
7039                  * region_del() can fail in the rare case where a region
7040                  * must be split and another region descriptor can not be
7041                  * allocated.  If end == LONG_MAX, it will not fail.
7042                  */
7043                 if (chg < 0)
7044                         return chg;
7045         }
7046
7047         spin_lock(&inode->i_lock);
7048         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
7049         spin_unlock(&inode->i_lock);
7050
7051         /*
7052          * If the subpool has a minimum size, the number of global
7053          * reservations to be released may be adjusted.
7054          *
7055          * Note that !resv_map implies freed == 0. So (chg - freed)
7056          * won't go negative.
7057          */
7058         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
7059         hugetlb_acct_memory(h, -gbl_reserve);
7060
7061         return 0;
7062 }
7063
7064 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7065 static unsigned long page_table_shareable(struct vm_area_struct *svma,
7066                                 struct vm_area_struct *vma,
7067                                 unsigned long addr, pgoff_t idx)
7068 {
7069         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
7070                                 svma->vm_start;
7071         unsigned long sbase = saddr & PUD_MASK;
7072         unsigned long s_end = sbase + PUD_SIZE;
7073
7074         /* Allow segments to share if only one is marked locked */
7075         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
7076         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
7077
7078         /*
7079          * match the virtual addresses, permission and the alignment of the
7080          * page table page.
7081          *
7082          * Also, vma_lock (vm_private_data) is required for sharing.
7083          */
7084         if (pmd_index(addr) != pmd_index(saddr) ||
7085             vm_flags != svm_flags ||
7086             !range_in_vma(svma, sbase, s_end) ||
7087             !svma->vm_private_data)
7088                 return 0;
7089
7090         return saddr;
7091 }
7092
7093 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7094 {
7095         unsigned long start = addr & PUD_MASK;
7096         unsigned long end = start + PUD_SIZE;
7097
7098 #ifdef CONFIG_USERFAULTFD
7099         if (uffd_disable_huge_pmd_share(vma))
7100                 return false;
7101 #endif
7102         /*
7103          * check on proper vm_flags and page table alignment
7104          */
7105         if (!(vma->vm_flags & VM_MAYSHARE))
7106                 return false;
7107         if (!vma->vm_private_data)      /* vma lock required for sharing */
7108                 return false;
7109         if (!range_in_vma(vma, start, end))
7110                 return false;
7111         return true;
7112 }
7113
7114 /*
7115  * Determine if start,end range within vma could be mapped by shared pmd.
7116  * If yes, adjust start and end to cover range associated with possible
7117  * shared pmd mappings.
7118  */
7119 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7120                                 unsigned long *start, unsigned long *end)
7121 {
7122         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7123                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7124
7125         /*
7126          * vma needs to span at least one aligned PUD size, and the range
7127          * must be at least partially within in.
7128          */
7129         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7130                 (*end <= v_start) || (*start >= v_end))
7131                 return;
7132
7133         /* Extend the range to be PUD aligned for a worst case scenario */
7134         if (*start > v_start)
7135                 *start = ALIGN_DOWN(*start, PUD_SIZE);
7136
7137         if (*end < v_end)
7138                 *end = ALIGN(*end, PUD_SIZE);
7139 }
7140
7141 /*
7142  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7143  * and returns the corresponding pte. While this is not necessary for the
7144  * !shared pmd case because we can allocate the pmd later as well, it makes the
7145  * code much cleaner. pmd allocation is essential for the shared case because
7146  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7147  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7148  * bad pmd for sharing.
7149  */
7150 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7151                       unsigned long addr, pud_t *pud)
7152 {
7153         struct address_space *mapping = vma->vm_file->f_mapping;
7154         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7155                         vma->vm_pgoff;
7156         struct vm_area_struct *svma;
7157         unsigned long saddr;
7158         pte_t *spte = NULL;
7159         pte_t *pte;
7160
7161         i_mmap_lock_read(mapping);
7162         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7163                 if (svma == vma)
7164                         continue;
7165
7166                 saddr = page_table_shareable(svma, vma, addr, idx);
7167                 if (saddr) {
7168                         spte = hugetlb_walk(svma, saddr,
7169                                             vma_mmu_pagesize(svma));
7170                         if (spte) {
7171                                 get_page(virt_to_page(spte));
7172                                 break;
7173                         }
7174                 }
7175         }
7176
7177         if (!spte)
7178                 goto out;
7179
7180         spin_lock(&mm->page_table_lock);
7181         if (pud_none(*pud)) {
7182                 pud_populate(mm, pud,
7183                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7184                 mm_inc_nr_pmds(mm);
7185         } else {
7186                 put_page(virt_to_page(spte));
7187         }
7188         spin_unlock(&mm->page_table_lock);
7189 out:
7190         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7191         i_mmap_unlock_read(mapping);
7192         return pte;
7193 }
7194
7195 /*
7196  * unmap huge page backed by shared pte.
7197  *
7198  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7199  * indicated by page_count > 1, unmap is achieved by clearing pud and
7200  * decrementing the ref count. If count == 1, the pte page is not shared.
7201  *
7202  * Called with page table lock held.
7203  *
7204  * returns: 1 successfully unmapped a shared pte page
7205  *          0 the underlying pte page is not shared, or it is the last user
7206  */
7207 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7208                                         unsigned long addr, pte_t *ptep)
7209 {
7210         pgd_t *pgd = pgd_offset(mm, addr);
7211         p4d_t *p4d = p4d_offset(pgd, addr);
7212         pud_t *pud = pud_offset(p4d, addr);
7213
7214         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7215         hugetlb_vma_assert_locked(vma);
7216         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7217         if (page_count(virt_to_page(ptep)) == 1)
7218                 return 0;
7219
7220         pud_clear(pud);
7221         put_page(virt_to_page(ptep));
7222         mm_dec_nr_pmds(mm);
7223         return 1;
7224 }
7225
7226 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7227
7228 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7229                       unsigned long addr, pud_t *pud)
7230 {
7231         return NULL;
7232 }
7233
7234 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7235                                 unsigned long addr, pte_t *ptep)
7236 {
7237         return 0;
7238 }
7239
7240 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7241                                 unsigned long *start, unsigned long *end)
7242 {
7243 }
7244
7245 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7246 {
7247         return false;
7248 }
7249 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7250
7251 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7252 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7253                         unsigned long addr, unsigned long sz)
7254 {
7255         pgd_t *pgd;
7256         p4d_t *p4d;
7257         pud_t *pud;
7258         pte_t *pte = NULL;
7259
7260         pgd = pgd_offset(mm, addr);
7261         p4d = p4d_alloc(mm, pgd, addr);
7262         if (!p4d)
7263                 return NULL;
7264         pud = pud_alloc(mm, p4d, addr);
7265         if (pud) {
7266                 if (sz == PUD_SIZE) {
7267                         pte = (pte_t *)pud;
7268                 } else {
7269                         BUG_ON(sz != PMD_SIZE);
7270                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7271                                 pte = huge_pmd_share(mm, vma, addr, pud);
7272                         else
7273                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7274                 }
7275         }
7276
7277         if (pte) {
7278                 pte_t pteval = ptep_get_lockless(pte);
7279
7280                 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7281         }
7282
7283         return pte;
7284 }
7285
7286 /*
7287  * huge_pte_offset() - Walk the page table to resolve the hugepage
7288  * entry at address @addr
7289  *
7290  * Return: Pointer to page table entry (PUD or PMD) for
7291  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7292  * size @sz doesn't match the hugepage size at this level of the page
7293  * table.
7294  */
7295 pte_t *huge_pte_offset(struct mm_struct *mm,
7296                        unsigned long addr, unsigned long sz)
7297 {
7298         pgd_t *pgd;
7299         p4d_t *p4d;
7300         pud_t *pud;
7301         pmd_t *pmd;
7302
7303         pgd = pgd_offset(mm, addr);
7304         if (!pgd_present(*pgd))
7305                 return NULL;
7306         p4d = p4d_offset(pgd, addr);
7307         if (!p4d_present(*p4d))
7308                 return NULL;
7309
7310         pud = pud_offset(p4d, addr);
7311         if (sz == PUD_SIZE)
7312                 /* must be pud huge, non-present or none */
7313                 return (pte_t *)pud;
7314         if (!pud_present(*pud))
7315                 return NULL;
7316         /* must have a valid entry and size to go further */
7317
7318         pmd = pmd_offset(pud, addr);
7319         /* must be pmd huge, non-present or none */
7320         return (pte_t *)pmd;
7321 }
7322
7323 /*
7324  * Return a mask that can be used to update an address to the last huge
7325  * page in a page table page mapping size.  Used to skip non-present
7326  * page table entries when linearly scanning address ranges.  Architectures
7327  * with unique huge page to page table relationships can define their own
7328  * version of this routine.
7329  */
7330 unsigned long hugetlb_mask_last_page(struct hstate *h)
7331 {
7332         unsigned long hp_size = huge_page_size(h);
7333
7334         if (hp_size == PUD_SIZE)
7335                 return P4D_SIZE - PUD_SIZE;
7336         else if (hp_size == PMD_SIZE)
7337                 return PUD_SIZE - PMD_SIZE;
7338         else
7339                 return 0UL;
7340 }
7341
7342 #else
7343
7344 /* See description above.  Architectures can provide their own version. */
7345 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7346 {
7347 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7348         if (huge_page_size(h) == PMD_SIZE)
7349                 return PUD_SIZE - PMD_SIZE;
7350 #endif
7351         return 0UL;
7352 }
7353
7354 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7355
7356 /*
7357  * These functions are overwritable if your architecture needs its own
7358  * behavior.
7359  */
7360 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7361 {
7362         bool ret = true;
7363
7364         spin_lock_irq(&hugetlb_lock);
7365         if (!folio_test_hugetlb(folio) ||
7366             !folio_test_hugetlb_migratable(folio) ||
7367             !folio_try_get(folio)) {
7368                 ret = false;
7369                 goto unlock;
7370         }
7371         folio_clear_hugetlb_migratable(folio);
7372         list_move_tail(&folio->lru, list);
7373 unlock:
7374         spin_unlock_irq(&hugetlb_lock);
7375         return ret;
7376 }
7377
7378 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7379 {
7380         int ret = 0;
7381
7382         *hugetlb = false;
7383         spin_lock_irq(&hugetlb_lock);
7384         if (folio_test_hugetlb(folio)) {
7385                 *hugetlb = true;
7386                 if (folio_test_hugetlb_freed(folio))
7387                         ret = 0;
7388                 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7389                         ret = folio_try_get(folio);
7390                 else
7391                         ret = -EBUSY;
7392         }
7393         spin_unlock_irq(&hugetlb_lock);
7394         return ret;
7395 }
7396
7397 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7398                                 bool *migratable_cleared)
7399 {
7400         int ret;
7401
7402         spin_lock_irq(&hugetlb_lock);
7403         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7404         spin_unlock_irq(&hugetlb_lock);
7405         return ret;
7406 }
7407
7408 void folio_putback_active_hugetlb(struct folio *folio)
7409 {
7410         spin_lock_irq(&hugetlb_lock);
7411         folio_set_hugetlb_migratable(folio);
7412         list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7413         spin_unlock_irq(&hugetlb_lock);
7414         folio_put(folio);
7415 }
7416
7417 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7418 {
7419         struct hstate *h = folio_hstate(old_folio);
7420
7421         hugetlb_cgroup_migrate(old_folio, new_folio);
7422         set_page_owner_migrate_reason(&new_folio->page, reason);
7423
7424         /*
7425          * transfer temporary state of the new hugetlb folio. This is
7426          * reverse to other transitions because the newpage is going to
7427          * be final while the old one will be freed so it takes over
7428          * the temporary status.
7429          *
7430          * Also note that we have to transfer the per-node surplus state
7431          * here as well otherwise the global surplus count will not match
7432          * the per-node's.
7433          */
7434         if (folio_test_hugetlb_temporary(new_folio)) {
7435                 int old_nid = folio_nid(old_folio);
7436                 int new_nid = folio_nid(new_folio);
7437
7438                 folio_set_hugetlb_temporary(old_folio);
7439                 folio_clear_hugetlb_temporary(new_folio);
7440
7441
7442                 /*
7443                  * There is no need to transfer the per-node surplus state
7444                  * when we do not cross the node.
7445                  */
7446                 if (new_nid == old_nid)
7447                         return;
7448                 spin_lock_irq(&hugetlb_lock);
7449                 if (h->surplus_huge_pages_node[old_nid]) {
7450                         h->surplus_huge_pages_node[old_nid]--;
7451                         h->surplus_huge_pages_node[new_nid]++;
7452                 }
7453                 spin_unlock_irq(&hugetlb_lock);
7454         }
7455 }
7456
7457 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7458                                    unsigned long start,
7459                                    unsigned long end)
7460 {
7461         struct hstate *h = hstate_vma(vma);
7462         unsigned long sz = huge_page_size(h);
7463         struct mm_struct *mm = vma->vm_mm;
7464         struct mmu_notifier_range range;
7465         unsigned long address;
7466         spinlock_t *ptl;
7467         pte_t *ptep;
7468
7469         if (!(vma->vm_flags & VM_MAYSHARE))
7470                 return;
7471
7472         if (start >= end)
7473                 return;
7474
7475         flush_cache_range(vma, start, end);
7476         /*
7477          * No need to call adjust_range_if_pmd_sharing_possible(), because
7478          * we have already done the PUD_SIZE alignment.
7479          */
7480         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7481                                 start, end);
7482         mmu_notifier_invalidate_range_start(&range);
7483         hugetlb_vma_lock_write(vma);
7484         i_mmap_lock_write(vma->vm_file->f_mapping);
7485         for (address = start; address < end; address += PUD_SIZE) {
7486                 ptep = hugetlb_walk(vma, address, sz);
7487                 if (!ptep)
7488                         continue;
7489                 ptl = huge_pte_lock(h, mm, ptep);
7490                 huge_pmd_unshare(mm, vma, address, ptep);
7491                 spin_unlock(ptl);
7492         }
7493         flush_hugetlb_tlb_range(vma, start, end);
7494         i_mmap_unlock_write(vma->vm_file->f_mapping);
7495         hugetlb_vma_unlock_write(vma);
7496         /*
7497          * No need to call mmu_notifier_invalidate_range(), see
7498          * Documentation/mm/mmu_notifier.rst.
7499          */
7500         mmu_notifier_invalidate_range_end(&range);
7501 }
7502
7503 /*
7504  * This function will unconditionally remove all the shared pmd pgtable entries
7505  * within the specific vma for a hugetlbfs memory range.
7506  */
7507 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7508 {
7509         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7510                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7511 }
7512
7513 #ifdef CONFIG_CMA
7514 static bool cma_reserve_called __initdata;
7515
7516 static int __init cmdline_parse_hugetlb_cma(char *p)
7517 {
7518         int nid, count = 0;
7519         unsigned long tmp;
7520         char *s = p;
7521
7522         while (*s) {
7523                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7524                         break;
7525
7526                 if (s[count] == ':') {
7527                         if (tmp >= MAX_NUMNODES)
7528                                 break;
7529                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7530
7531                         s += count + 1;
7532                         tmp = memparse(s, &s);
7533                         hugetlb_cma_size_in_node[nid] = tmp;
7534                         hugetlb_cma_size += tmp;
7535
7536                         /*
7537                          * Skip the separator if have one, otherwise
7538                          * break the parsing.
7539                          */
7540                         if (*s == ',')
7541                                 s++;
7542                         else
7543                                 break;
7544                 } else {
7545                         hugetlb_cma_size = memparse(p, &p);
7546                         break;
7547                 }
7548         }
7549
7550         return 0;
7551 }
7552
7553 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7554
7555 void __init hugetlb_cma_reserve(int order)
7556 {
7557         unsigned long size, reserved, per_node;
7558         bool node_specific_cma_alloc = false;
7559         int nid;
7560
7561         cma_reserve_called = true;
7562
7563         if (!hugetlb_cma_size)
7564                 return;
7565
7566         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7567                 if (hugetlb_cma_size_in_node[nid] == 0)
7568                         continue;
7569
7570                 if (!node_online(nid)) {
7571                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7572                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7573                         hugetlb_cma_size_in_node[nid] = 0;
7574                         continue;
7575                 }
7576
7577                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7578                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7579                                 nid, (PAGE_SIZE << order) / SZ_1M);
7580                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7581                         hugetlb_cma_size_in_node[nid] = 0;
7582                 } else {
7583                         node_specific_cma_alloc = true;
7584                 }
7585         }
7586
7587         /* Validate the CMA size again in case some invalid nodes specified. */
7588         if (!hugetlb_cma_size)
7589                 return;
7590
7591         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7592                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7593                         (PAGE_SIZE << order) / SZ_1M);
7594                 hugetlb_cma_size = 0;
7595                 return;
7596         }
7597
7598         if (!node_specific_cma_alloc) {
7599                 /*
7600                  * If 3 GB area is requested on a machine with 4 numa nodes,
7601                  * let's allocate 1 GB on first three nodes and ignore the last one.
7602                  */
7603                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7604                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7605                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7606         }
7607
7608         reserved = 0;
7609         for_each_online_node(nid) {
7610                 int res;
7611                 char name[CMA_MAX_NAME];
7612
7613                 if (node_specific_cma_alloc) {
7614                         if (hugetlb_cma_size_in_node[nid] == 0)
7615                                 continue;
7616
7617                         size = hugetlb_cma_size_in_node[nid];
7618                 } else {
7619                         size = min(per_node, hugetlb_cma_size - reserved);
7620                 }
7621
7622                 size = round_up(size, PAGE_SIZE << order);
7623
7624                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7625                 /*
7626                  * Note that 'order per bit' is based on smallest size that
7627                  * may be returned to CMA allocator in the case of
7628                  * huge page demotion.
7629                  */
7630                 res = cma_declare_contiguous_nid(0, size, 0,
7631                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7632                                                  0, false, name,
7633                                                  &hugetlb_cma[nid], nid);
7634                 if (res) {
7635                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7636                                 res, nid);
7637                         continue;
7638                 }
7639
7640                 reserved += size;
7641                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7642                         size / SZ_1M, nid);
7643
7644                 if (reserved >= hugetlb_cma_size)
7645                         break;
7646         }
7647
7648         if (!reserved)
7649                 /*
7650                  * hugetlb_cma_size is used to determine if allocations from
7651                  * cma are possible.  Set to zero if no cma regions are set up.
7652                  */
7653                 hugetlb_cma_size = 0;
7654 }
7655
7656 static void __init hugetlb_cma_check(void)
7657 {
7658         if (!hugetlb_cma_size || cma_reserve_called)
7659                 return;
7660
7661         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7662 }
7663
7664 #endif /* CONFIG_CMA */