1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
36 #include <asm/pgalloc.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
45 #include "hugetlb_vmemmap.h"
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
54 static unsigned long hugetlb_cma_size __initdata;
57 * Minimum page order among possible hugepage sizes, set to a proper value
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
62 __initdata LIST_HEAD(huge_boot_pages);
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
71 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72 * free_huge_pages, and surplus_huge_pages.
74 DEFINE_SPINLOCK(hugetlb_lock);
77 * Serializes faults on the same logical page. This is used to
78 * prevent spurious OOMs when the hugepage pool is fully utilized.
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
86 unsigned long start, unsigned long end);
88 static inline bool subpool_is_free(struct hugepage_subpool *spool)
92 if (spool->max_hpages != -1)
93 return spool->used_hpages == 0;
94 if (spool->min_hpages != -1)
95 return spool->rsv_hpages == spool->min_hpages;
100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
101 unsigned long irq_flags)
103 spin_unlock_irqrestore(&spool->lock, irq_flags);
105 /* If no pages are used, and no other handles to the subpool
106 * remain, give up any reservations based on minimum size and
107 * free the subpool */
108 if (subpool_is_free(spool)) {
109 if (spool->min_hpages != -1)
110 hugetlb_acct_memory(spool->hstate,
116 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
119 struct hugepage_subpool *spool;
121 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
125 spin_lock_init(&spool->lock);
127 spool->max_hpages = max_hpages;
129 spool->min_hpages = min_hpages;
131 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
135 spool->rsv_hpages = min_hpages;
140 void hugepage_put_subpool(struct hugepage_subpool *spool)
144 spin_lock_irqsave(&spool->lock, flags);
145 BUG_ON(!spool->count);
147 unlock_or_release_subpool(spool, flags);
151 * Subpool accounting for allocating and reserving pages.
152 * Return -ENOMEM if there are not enough resources to satisfy the
153 * request. Otherwise, return the number of pages by which the
154 * global pools must be adjusted (upward). The returned value may
155 * only be different than the passed value (delta) in the case where
156 * a subpool minimum size must be maintained.
158 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
166 spin_lock_irq(&spool->lock);
168 if (spool->max_hpages != -1) { /* maximum size accounting */
169 if ((spool->used_hpages + delta) <= spool->max_hpages)
170 spool->used_hpages += delta;
177 /* minimum size accounting */
178 if (spool->min_hpages != -1 && spool->rsv_hpages) {
179 if (delta > spool->rsv_hpages) {
181 * Asking for more reserves than those already taken on
182 * behalf of subpool. Return difference.
184 ret = delta - spool->rsv_hpages;
185 spool->rsv_hpages = 0;
187 ret = 0; /* reserves already accounted for */
188 spool->rsv_hpages -= delta;
193 spin_unlock_irq(&spool->lock);
198 * Subpool accounting for freeing and unreserving pages.
199 * Return the number of global page reservations that must be dropped.
200 * The return value may only be different than the passed value (delta)
201 * in the case where a subpool minimum size must be maintained.
203 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
212 spin_lock_irqsave(&spool->lock, flags);
214 if (spool->max_hpages != -1) /* maximum size accounting */
215 spool->used_hpages -= delta;
217 /* minimum size accounting */
218 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
219 if (spool->rsv_hpages + delta <= spool->min_hpages)
222 ret = spool->rsv_hpages + delta - spool->min_hpages;
224 spool->rsv_hpages += delta;
225 if (spool->rsv_hpages > spool->min_hpages)
226 spool->rsv_hpages = spool->min_hpages;
230 * If hugetlbfs_put_super couldn't free spool due to an outstanding
231 * quota reference, free it now.
233 unlock_or_release_subpool(spool, flags);
238 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
240 return HUGETLBFS_SB(inode->i_sb)->spool;
243 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
245 return subpool_inode(file_inode(vma->vm_file));
248 /* Helper that removes a struct file_region from the resv_map cache and returns
251 static struct file_region *
252 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
254 struct file_region *nrg = NULL;
256 VM_BUG_ON(resv->region_cache_count <= 0);
258 resv->region_cache_count--;
259 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
260 list_del(&nrg->link);
268 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
269 struct file_region *rg)
271 #ifdef CONFIG_CGROUP_HUGETLB
272 nrg->reservation_counter = rg->reservation_counter;
279 /* Helper that records hugetlb_cgroup uncharge info. */
280 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
282 struct resv_map *resv,
283 struct file_region *nrg)
285 #ifdef CONFIG_CGROUP_HUGETLB
287 nrg->reservation_counter =
288 &h_cg->rsvd_hugepage[hstate_index(h)];
289 nrg->css = &h_cg->css;
291 * The caller will hold exactly one h_cg->css reference for the
292 * whole contiguous reservation region. But this area might be
293 * scattered when there are already some file_regions reside in
294 * it. As a result, many file_regions may share only one css
295 * reference. In order to ensure that one file_region must hold
296 * exactly one h_cg->css reference, we should do css_get for
297 * each file_region and leave the reference held by caller
301 if (!resv->pages_per_hpage)
302 resv->pages_per_hpage = pages_per_huge_page(h);
303 /* pages_per_hpage should be the same for all entries in
306 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
308 nrg->reservation_counter = NULL;
314 static void put_uncharge_info(struct file_region *rg)
316 #ifdef CONFIG_CGROUP_HUGETLB
322 static bool has_same_uncharge_info(struct file_region *rg,
323 struct file_region *org)
325 #ifdef CONFIG_CGROUP_HUGETLB
327 rg->reservation_counter == org->reservation_counter &&
335 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
337 struct file_region *nrg = NULL, *prg = NULL;
339 prg = list_prev_entry(rg, link);
340 if (&prg->link != &resv->regions && prg->to == rg->from &&
341 has_same_uncharge_info(prg, rg)) {
345 put_uncharge_info(rg);
351 nrg = list_next_entry(rg, link);
352 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
353 has_same_uncharge_info(nrg, rg)) {
354 nrg->from = rg->from;
357 put_uncharge_info(rg);
363 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
364 long to, struct hstate *h, struct hugetlb_cgroup *cg,
365 long *regions_needed)
367 struct file_region *nrg;
369 if (!regions_needed) {
370 nrg = get_file_region_entry_from_cache(map, from, to);
371 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
372 list_add(&nrg->link, rg->link.prev);
373 coalesce_file_region(map, nrg);
375 *regions_needed += 1;
381 * Must be called with resv->lock held.
383 * Calling this with regions_needed != NULL will count the number of pages
384 * to be added but will not modify the linked list. And regions_needed will
385 * indicate the number of file_regions needed in the cache to carry out to add
386 * the regions for this range.
388 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
389 struct hugetlb_cgroup *h_cg,
390 struct hstate *h, long *regions_needed)
393 struct list_head *head = &resv->regions;
394 long last_accounted_offset = f;
395 struct file_region *rg = NULL, *trg = NULL;
400 /* In this loop, we essentially handle an entry for the range
401 * [last_accounted_offset, rg->from), at every iteration, with some
404 list_for_each_entry_safe(rg, trg, head, link) {
405 /* Skip irrelevant regions that start before our range. */
407 /* If this region ends after the last accounted offset,
408 * then we need to update last_accounted_offset.
410 if (rg->to > last_accounted_offset)
411 last_accounted_offset = rg->to;
415 /* When we find a region that starts beyond our range, we've
421 /* Add an entry for last_accounted_offset -> rg->from, and
422 * update last_accounted_offset.
424 if (rg->from > last_accounted_offset)
425 add += hugetlb_resv_map_add(resv, rg,
426 last_accounted_offset,
430 last_accounted_offset = rg->to;
433 /* Handle the case where our range extends beyond
434 * last_accounted_offset.
436 if (last_accounted_offset < t)
437 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
438 t, h, h_cg, regions_needed);
444 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
446 static int allocate_file_region_entries(struct resv_map *resv,
448 __must_hold(&resv->lock)
450 struct list_head allocated_regions;
451 int to_allocate = 0, i = 0;
452 struct file_region *trg = NULL, *rg = NULL;
454 VM_BUG_ON(regions_needed < 0);
456 INIT_LIST_HEAD(&allocated_regions);
459 * Check for sufficient descriptors in the cache to accommodate
460 * the number of in progress add operations plus regions_needed.
462 * This is a while loop because when we drop the lock, some other call
463 * to region_add or region_del may have consumed some region_entries,
464 * so we keep looping here until we finally have enough entries for
465 * (adds_in_progress + regions_needed).
467 while (resv->region_cache_count <
468 (resv->adds_in_progress + regions_needed)) {
469 to_allocate = resv->adds_in_progress + regions_needed -
470 resv->region_cache_count;
472 /* At this point, we should have enough entries in the cache
473 * for all the existing adds_in_progress. We should only be
474 * needing to allocate for regions_needed.
476 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
478 spin_unlock(&resv->lock);
479 for (i = 0; i < to_allocate; i++) {
480 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
483 list_add(&trg->link, &allocated_regions);
486 spin_lock(&resv->lock);
488 list_splice(&allocated_regions, &resv->region_cache);
489 resv->region_cache_count += to_allocate;
495 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
503 * Add the huge page range represented by [f, t) to the reserve
504 * map. Regions will be taken from the cache to fill in this range.
505 * Sufficient regions should exist in the cache due to the previous
506 * call to region_chg with the same range, but in some cases the cache will not
507 * have sufficient entries due to races with other code doing region_add or
508 * region_del. The extra needed entries will be allocated.
510 * regions_needed is the out value provided by a previous call to region_chg.
512 * Return the number of new huge pages added to the map. This number is greater
513 * than or equal to zero. If file_region entries needed to be allocated for
514 * this operation and we were not able to allocate, it returns -ENOMEM.
515 * region_add of regions of length 1 never allocate file_regions and cannot
516 * fail; region_chg will always allocate at least 1 entry and a region_add for
517 * 1 page will only require at most 1 entry.
519 static long region_add(struct resv_map *resv, long f, long t,
520 long in_regions_needed, struct hstate *h,
521 struct hugetlb_cgroup *h_cg)
523 long add = 0, actual_regions_needed = 0;
525 spin_lock(&resv->lock);
528 /* Count how many regions are actually needed to execute this add. */
529 add_reservation_in_range(resv, f, t, NULL, NULL,
530 &actual_regions_needed);
533 * Check for sufficient descriptors in the cache to accommodate
534 * this add operation. Note that actual_regions_needed may be greater
535 * than in_regions_needed, as the resv_map may have been modified since
536 * the region_chg call. In this case, we need to make sure that we
537 * allocate extra entries, such that we have enough for all the
538 * existing adds_in_progress, plus the excess needed for this
541 if (actual_regions_needed > in_regions_needed &&
542 resv->region_cache_count <
543 resv->adds_in_progress +
544 (actual_regions_needed - in_regions_needed)) {
545 /* region_add operation of range 1 should never need to
546 * allocate file_region entries.
548 VM_BUG_ON(t - f <= 1);
550 if (allocate_file_region_entries(
551 resv, actual_regions_needed - in_regions_needed)) {
558 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
560 resv->adds_in_progress -= in_regions_needed;
562 spin_unlock(&resv->lock);
567 * Examine the existing reserve map and determine how many
568 * huge pages in the specified range [f, t) are NOT currently
569 * represented. This routine is called before a subsequent
570 * call to region_add that will actually modify the reserve
571 * map to add the specified range [f, t). region_chg does
572 * not change the number of huge pages represented by the
573 * map. A number of new file_region structures is added to the cache as a
574 * placeholder, for the subsequent region_add call to use. At least 1
575 * file_region structure is added.
577 * out_regions_needed is the number of regions added to the
578 * resv->adds_in_progress. This value needs to be provided to a follow up call
579 * to region_add or region_abort for proper accounting.
581 * Returns the number of huge pages that need to be added to the existing
582 * reservation map for the range [f, t). This number is greater or equal to
583 * zero. -ENOMEM is returned if a new file_region structure or cache entry
584 * is needed and can not be allocated.
586 static long region_chg(struct resv_map *resv, long f, long t,
587 long *out_regions_needed)
591 spin_lock(&resv->lock);
593 /* Count how many hugepages in this range are NOT represented. */
594 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
597 if (*out_regions_needed == 0)
598 *out_regions_needed = 1;
600 if (allocate_file_region_entries(resv, *out_regions_needed))
603 resv->adds_in_progress += *out_regions_needed;
605 spin_unlock(&resv->lock);
610 * Abort the in progress add operation. The adds_in_progress field
611 * of the resv_map keeps track of the operations in progress between
612 * calls to region_chg and region_add. Operations are sometimes
613 * aborted after the call to region_chg. In such cases, region_abort
614 * is called to decrement the adds_in_progress counter. regions_needed
615 * is the value returned by the region_chg call, it is used to decrement
616 * the adds_in_progress counter.
618 * NOTE: The range arguments [f, t) are not needed or used in this
619 * routine. They are kept to make reading the calling code easier as
620 * arguments will match the associated region_chg call.
622 static void region_abort(struct resv_map *resv, long f, long t,
625 spin_lock(&resv->lock);
626 VM_BUG_ON(!resv->region_cache_count);
627 resv->adds_in_progress -= regions_needed;
628 spin_unlock(&resv->lock);
632 * Delete the specified range [f, t) from the reserve map. If the
633 * t parameter is LONG_MAX, this indicates that ALL regions after f
634 * should be deleted. Locate the regions which intersect [f, t)
635 * and either trim, delete or split the existing regions.
637 * Returns the number of huge pages deleted from the reserve map.
638 * In the normal case, the return value is zero or more. In the
639 * case where a region must be split, a new region descriptor must
640 * be allocated. If the allocation fails, -ENOMEM will be returned.
641 * NOTE: If the parameter t == LONG_MAX, then we will never split
642 * a region and possibly return -ENOMEM. Callers specifying
643 * t == LONG_MAX do not need to check for -ENOMEM error.
645 static long region_del(struct resv_map *resv, long f, long t)
647 struct list_head *head = &resv->regions;
648 struct file_region *rg, *trg;
649 struct file_region *nrg = NULL;
653 spin_lock(&resv->lock);
654 list_for_each_entry_safe(rg, trg, head, link) {
656 * Skip regions before the range to be deleted. file_region
657 * ranges are normally of the form [from, to). However, there
658 * may be a "placeholder" entry in the map which is of the form
659 * (from, to) with from == to. Check for placeholder entries
660 * at the beginning of the range to be deleted.
662 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
668 if (f > rg->from && t < rg->to) { /* Must split region */
670 * Check for an entry in the cache before dropping
671 * lock and attempting allocation.
674 resv->region_cache_count > resv->adds_in_progress) {
675 nrg = list_first_entry(&resv->region_cache,
678 list_del(&nrg->link);
679 resv->region_cache_count--;
683 spin_unlock(&resv->lock);
684 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
691 hugetlb_cgroup_uncharge_file_region(
692 resv, rg, t - f, false);
694 /* New entry for end of split region */
698 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
700 INIT_LIST_HEAD(&nrg->link);
702 /* Original entry is trimmed */
705 list_add(&nrg->link, &rg->link);
710 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
711 del += rg->to - rg->from;
712 hugetlb_cgroup_uncharge_file_region(resv, rg,
713 rg->to - rg->from, true);
719 if (f <= rg->from) { /* Trim beginning of region */
720 hugetlb_cgroup_uncharge_file_region(resv, rg,
721 t - rg->from, false);
725 } else { /* Trim end of region */
726 hugetlb_cgroup_uncharge_file_region(resv, rg,
734 spin_unlock(&resv->lock);
740 * A rare out of memory error was encountered which prevented removal of
741 * the reserve map region for a page. The huge page itself was free'ed
742 * and removed from the page cache. This routine will adjust the subpool
743 * usage count, and the global reserve count if needed. By incrementing
744 * these counts, the reserve map entry which could not be deleted will
745 * appear as a "reserved" entry instead of simply dangling with incorrect
748 void hugetlb_fix_reserve_counts(struct inode *inode)
750 struct hugepage_subpool *spool = subpool_inode(inode);
752 bool reserved = false;
754 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
755 if (rsv_adjust > 0) {
756 struct hstate *h = hstate_inode(inode);
758 if (!hugetlb_acct_memory(h, 1))
760 } else if (!rsv_adjust) {
765 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
769 * Count and return the number of huge pages in the reserve map
770 * that intersect with the range [f, t).
772 static long region_count(struct resv_map *resv, long f, long t)
774 struct list_head *head = &resv->regions;
775 struct file_region *rg;
778 spin_lock(&resv->lock);
779 /* Locate each segment we overlap with, and count that overlap. */
780 list_for_each_entry(rg, head, link) {
789 seg_from = max(rg->from, f);
790 seg_to = min(rg->to, t);
792 chg += seg_to - seg_from;
794 spin_unlock(&resv->lock);
800 * Convert the address within this vma to the page offset within
801 * the mapping, in pagecache page units; huge pages here.
803 static pgoff_t vma_hugecache_offset(struct hstate *h,
804 struct vm_area_struct *vma, unsigned long address)
806 return ((address - vma->vm_start) >> huge_page_shift(h)) +
807 (vma->vm_pgoff >> huge_page_order(h));
810 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
811 unsigned long address)
813 return vma_hugecache_offset(hstate_vma(vma), vma, address);
815 EXPORT_SYMBOL_GPL(linear_hugepage_index);
818 * Return the size of the pages allocated when backing a VMA. In the majority
819 * cases this will be same size as used by the page table entries.
821 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
823 if (vma->vm_ops && vma->vm_ops->pagesize)
824 return vma->vm_ops->pagesize(vma);
827 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
830 * Return the page size being used by the MMU to back a VMA. In the majority
831 * of cases, the page size used by the kernel matches the MMU size. On
832 * architectures where it differs, an architecture-specific 'strong'
833 * version of this symbol is required.
835 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
837 return vma_kernel_pagesize(vma);
841 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
842 * bits of the reservation map pointer, which are always clear due to
845 #define HPAGE_RESV_OWNER (1UL << 0)
846 #define HPAGE_RESV_UNMAPPED (1UL << 1)
847 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
850 * These helpers are used to track how many pages are reserved for
851 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
852 * is guaranteed to have their future faults succeed.
854 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
855 * the reserve counters are updated with the hugetlb_lock held. It is safe
856 * to reset the VMA at fork() time as it is not in use yet and there is no
857 * chance of the global counters getting corrupted as a result of the values.
859 * The private mapping reservation is represented in a subtly different
860 * manner to a shared mapping. A shared mapping has a region map associated
861 * with the underlying file, this region map represents the backing file
862 * pages which have ever had a reservation assigned which this persists even
863 * after the page is instantiated. A private mapping has a region map
864 * associated with the original mmap which is attached to all VMAs which
865 * reference it, this region map represents those offsets which have consumed
866 * reservation ie. where pages have been instantiated.
868 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
870 return (unsigned long)vma->vm_private_data;
873 static void set_vma_private_data(struct vm_area_struct *vma,
876 vma->vm_private_data = (void *)value;
880 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
881 struct hugetlb_cgroup *h_cg,
884 #ifdef CONFIG_CGROUP_HUGETLB
886 resv_map->reservation_counter = NULL;
887 resv_map->pages_per_hpage = 0;
888 resv_map->css = NULL;
890 resv_map->reservation_counter =
891 &h_cg->rsvd_hugepage[hstate_index(h)];
892 resv_map->pages_per_hpage = pages_per_huge_page(h);
893 resv_map->css = &h_cg->css;
898 struct resv_map *resv_map_alloc(void)
900 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
901 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
903 if (!resv_map || !rg) {
909 kref_init(&resv_map->refs);
910 spin_lock_init(&resv_map->lock);
911 INIT_LIST_HEAD(&resv_map->regions);
913 resv_map->adds_in_progress = 0;
915 * Initialize these to 0. On shared mappings, 0's here indicate these
916 * fields don't do cgroup accounting. On private mappings, these will be
917 * re-initialized to the proper values, to indicate that hugetlb cgroup
918 * reservations are to be un-charged from here.
920 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
922 INIT_LIST_HEAD(&resv_map->region_cache);
923 list_add(&rg->link, &resv_map->region_cache);
924 resv_map->region_cache_count = 1;
929 void resv_map_release(struct kref *ref)
931 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
932 struct list_head *head = &resv_map->region_cache;
933 struct file_region *rg, *trg;
935 /* Clear out any active regions before we release the map. */
936 region_del(resv_map, 0, LONG_MAX);
938 /* ... and any entries left in the cache */
939 list_for_each_entry_safe(rg, trg, head, link) {
944 VM_BUG_ON(resv_map->adds_in_progress);
949 static inline struct resv_map *inode_resv_map(struct inode *inode)
952 * At inode evict time, i_mapping may not point to the original
953 * address space within the inode. This original address space
954 * contains the pointer to the resv_map. So, always use the
955 * address space embedded within the inode.
956 * The VERY common case is inode->mapping == &inode->i_data but,
957 * this may not be true for device special inodes.
959 return (struct resv_map *)(&inode->i_data)->private_data;
962 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
964 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965 if (vma->vm_flags & VM_MAYSHARE) {
966 struct address_space *mapping = vma->vm_file->f_mapping;
967 struct inode *inode = mapping->host;
969 return inode_resv_map(inode);
972 return (struct resv_map *)(get_vma_private_data(vma) &
977 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
979 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
980 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
982 set_vma_private_data(vma, (get_vma_private_data(vma) &
983 HPAGE_RESV_MASK) | (unsigned long)map);
986 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
988 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
991 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
994 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
996 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
998 return (get_vma_private_data(vma) & flag) != 0;
1001 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1002 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1004 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1005 if (!(vma->vm_flags & VM_MAYSHARE))
1006 vma->vm_private_data = (void *)0;
1009 /* Returns true if the VMA has associated reserve pages */
1010 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1012 if (vma->vm_flags & VM_NORESERVE) {
1014 * This address is already reserved by other process(chg == 0),
1015 * so, we should decrement reserved count. Without decrementing,
1016 * reserve count remains after releasing inode, because this
1017 * allocated page will go into page cache and is regarded as
1018 * coming from reserved pool in releasing step. Currently, we
1019 * don't have any other solution to deal with this situation
1020 * properly, so add work-around here.
1022 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1028 /* Shared mappings always use reserves */
1029 if (vma->vm_flags & VM_MAYSHARE) {
1031 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1032 * be a region map for all pages. The only situation where
1033 * there is no region map is if a hole was punched via
1034 * fallocate. In this case, there really are no reserves to
1035 * use. This situation is indicated if chg != 0.
1044 * Only the process that called mmap() has reserves for
1047 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1049 * Like the shared case above, a hole punch or truncate
1050 * could have been performed on the private mapping.
1051 * Examine the value of chg to determine if reserves
1052 * actually exist or were previously consumed.
1053 * Very Subtle - The value of chg comes from a previous
1054 * call to vma_needs_reserves(). The reserve map for
1055 * private mappings has different (opposite) semantics
1056 * than that of shared mappings. vma_needs_reserves()
1057 * has already taken this difference in semantics into
1058 * account. Therefore, the meaning of chg is the same
1059 * as in the shared case above. Code could easily be
1060 * combined, but keeping it separate draws attention to
1061 * subtle differences.
1072 static void enqueue_huge_page(struct hstate *h, struct page *page)
1074 int nid = page_to_nid(page);
1076 lockdep_assert_held(&hugetlb_lock);
1077 VM_BUG_ON_PAGE(page_count(page), page);
1079 list_move(&page->lru, &h->hugepage_freelists[nid]);
1080 h->free_huge_pages++;
1081 h->free_huge_pages_node[nid]++;
1082 SetHPageFreed(page);
1085 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1088 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1090 lockdep_assert_held(&hugetlb_lock);
1091 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1092 if (pin && !is_pinnable_page(page))
1095 if (PageHWPoison(page))
1098 list_move(&page->lru, &h->hugepage_activelist);
1099 set_page_refcounted(page);
1100 ClearHPageFreed(page);
1101 h->free_huge_pages--;
1102 h->free_huge_pages_node[nid]--;
1109 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1112 unsigned int cpuset_mems_cookie;
1113 struct zonelist *zonelist;
1116 int node = NUMA_NO_NODE;
1118 zonelist = node_zonelist(nid, gfp_mask);
1121 cpuset_mems_cookie = read_mems_allowed_begin();
1122 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1125 if (!cpuset_zone_allowed(zone, gfp_mask))
1128 * no need to ask again on the same node. Pool is node rather than
1131 if (zone_to_nid(zone) == node)
1133 node = zone_to_nid(zone);
1135 page = dequeue_huge_page_node_exact(h, node);
1139 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1145 static struct page *dequeue_huge_page_vma(struct hstate *h,
1146 struct vm_area_struct *vma,
1147 unsigned long address, int avoid_reserve,
1150 struct page *page = NULL;
1151 struct mempolicy *mpol;
1153 nodemask_t *nodemask;
1157 * A child process with MAP_PRIVATE mappings created by their parent
1158 * have no page reserves. This check ensures that reservations are
1159 * not "stolen". The child may still get SIGKILLed
1161 if (!vma_has_reserves(vma, chg) &&
1162 h->free_huge_pages - h->resv_huge_pages == 0)
1165 /* If reserves cannot be used, ensure enough pages are in the pool */
1166 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1169 gfp_mask = htlb_alloc_mask(h);
1170 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1172 if (mpol_is_preferred_many(mpol)) {
1173 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1175 /* Fallback to all nodes if page==NULL */
1180 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1182 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1183 SetHPageRestoreReserve(page);
1184 h->resv_huge_pages--;
1187 mpol_cond_put(mpol);
1195 * common helper functions for hstate_next_node_to_{alloc|free}.
1196 * We may have allocated or freed a huge page based on a different
1197 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1198 * be outside of *nodes_allowed. Ensure that we use an allowed
1199 * node for alloc or free.
1201 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1203 nid = next_node_in(nid, *nodes_allowed);
1204 VM_BUG_ON(nid >= MAX_NUMNODES);
1209 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1211 if (!node_isset(nid, *nodes_allowed))
1212 nid = next_node_allowed(nid, nodes_allowed);
1217 * returns the previously saved node ["this node"] from which to
1218 * allocate a persistent huge page for the pool and advance the
1219 * next node from which to allocate, handling wrap at end of node
1222 static int hstate_next_node_to_alloc(struct hstate *h,
1223 nodemask_t *nodes_allowed)
1227 VM_BUG_ON(!nodes_allowed);
1229 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1230 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1236 * helper for remove_pool_huge_page() - return the previously saved
1237 * node ["this node"] from which to free a huge page. Advance the
1238 * next node id whether or not we find a free huge page to free so
1239 * that the next attempt to free addresses the next node.
1241 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1245 VM_BUG_ON(!nodes_allowed);
1247 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1248 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1253 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1254 for (nr_nodes = nodes_weight(*mask); \
1256 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1259 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1260 for (nr_nodes = nodes_weight(*mask); \
1262 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1265 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1266 static void destroy_compound_gigantic_page(struct page *page,
1270 int nr_pages = 1 << order;
1271 struct page *p = page + 1;
1273 atomic_set(compound_mapcount_ptr(page), 0);
1274 atomic_set(compound_pincount_ptr(page), 0);
1276 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1277 clear_compound_head(p);
1278 set_page_refcounted(p);
1281 set_compound_order(page, 0);
1282 page[1].compound_nr = 0;
1283 __ClearPageHead(page);
1286 static void free_gigantic_page(struct page *page, unsigned int order)
1289 * If the page isn't allocated using the cma allocator,
1290 * cma_release() returns false.
1293 if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1297 free_contig_range(page_to_pfn(page), 1 << order);
1300 #ifdef CONFIG_CONTIG_ALLOC
1301 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1302 int nid, nodemask_t *nodemask)
1304 unsigned long nr_pages = pages_per_huge_page(h);
1305 if (nid == NUMA_NO_NODE)
1306 nid = numa_mem_id();
1313 if (hugetlb_cma[nid]) {
1314 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1315 huge_page_order(h), true);
1320 if (!(gfp_mask & __GFP_THISNODE)) {
1321 for_each_node_mask(node, *nodemask) {
1322 if (node == nid || !hugetlb_cma[node])
1325 page = cma_alloc(hugetlb_cma[node], nr_pages,
1326 huge_page_order(h), true);
1334 return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1337 #else /* !CONFIG_CONTIG_ALLOC */
1338 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1339 int nid, nodemask_t *nodemask)
1343 #endif /* CONFIG_CONTIG_ALLOC */
1345 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1346 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1347 int nid, nodemask_t *nodemask)
1351 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1352 static inline void destroy_compound_gigantic_page(struct page *page,
1353 unsigned int order) { }
1357 * Remove hugetlb page from lists, and update dtor so that page appears
1358 * as just a compound page. A reference is held on the page.
1360 * Must be called with hugetlb lock held.
1362 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1363 bool adjust_surplus)
1365 int nid = page_to_nid(page);
1367 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1368 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1370 lockdep_assert_held(&hugetlb_lock);
1371 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1374 list_del(&page->lru);
1376 if (HPageFreed(page)) {
1377 h->free_huge_pages--;
1378 h->free_huge_pages_node[nid]--;
1380 if (adjust_surplus) {
1381 h->surplus_huge_pages--;
1382 h->surplus_huge_pages_node[nid]--;
1388 * For non-gigantic pages set the destructor to the normal compound
1389 * page dtor. This is needed in case someone takes an additional
1390 * temporary ref to the page, and freeing is delayed until they drop
1393 * For gigantic pages set the destructor to the null dtor. This
1394 * destructor will never be called. Before freeing the gigantic
1395 * page destroy_compound_gigantic_page will turn the compound page
1396 * into a simple group of pages. After this the destructor does not
1399 * This handles the case where more than one ref is held when and
1400 * after update_and_free_page is called.
1402 set_page_refcounted(page);
1403 if (hstate_is_gigantic(h))
1404 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1406 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1409 h->nr_huge_pages_node[nid]--;
1412 static void add_hugetlb_page(struct hstate *h, struct page *page,
1413 bool adjust_surplus)
1416 int nid = page_to_nid(page);
1418 VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1420 lockdep_assert_held(&hugetlb_lock);
1422 INIT_LIST_HEAD(&page->lru);
1424 h->nr_huge_pages_node[nid]++;
1426 if (adjust_surplus) {
1427 h->surplus_huge_pages++;
1428 h->surplus_huge_pages_node[nid]++;
1431 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1432 set_page_private(page, 0);
1433 SetHPageVmemmapOptimized(page);
1436 * This page is about to be managed by the hugetlb allocator and
1437 * should have no users. Drop our reference, and check for others
1440 zeroed = put_page_testzero(page);
1443 * It is VERY unlikely soneone else has taken a ref on
1444 * the page. In this case, we simply return as the
1445 * hugetlb destructor (free_huge_page) will be called
1446 * when this other ref is dropped.
1450 arch_clear_hugepage_flags(page);
1451 enqueue_huge_page(h, page);
1454 static void __update_and_free_page(struct hstate *h, struct page *page)
1457 struct page *subpage = page;
1459 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1462 if (alloc_huge_page_vmemmap(h, page)) {
1463 spin_lock_irq(&hugetlb_lock);
1465 * If we cannot allocate vmemmap pages, just refuse to free the
1466 * page and put the page back on the hugetlb free list and treat
1467 * as a surplus page.
1469 add_hugetlb_page(h, page, true);
1470 spin_unlock_irq(&hugetlb_lock);
1474 for (i = 0; i < pages_per_huge_page(h);
1475 i++, subpage = mem_map_next(subpage, page, i)) {
1476 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1477 1 << PG_referenced | 1 << PG_dirty |
1478 1 << PG_active | 1 << PG_private |
1481 if (hstate_is_gigantic(h)) {
1482 destroy_compound_gigantic_page(page, huge_page_order(h));
1483 free_gigantic_page(page, huge_page_order(h));
1485 __free_pages(page, huge_page_order(h));
1490 * As update_and_free_page() can be called under any context, so we cannot
1491 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1492 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1493 * the vmemmap pages.
1495 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1496 * freed and frees them one-by-one. As the page->mapping pointer is going
1497 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1498 * structure of a lockless linked list of huge pages to be freed.
1500 static LLIST_HEAD(hpage_freelist);
1502 static void free_hpage_workfn(struct work_struct *work)
1504 struct llist_node *node;
1506 node = llist_del_all(&hpage_freelist);
1512 page = container_of((struct address_space **)node,
1513 struct page, mapping);
1515 page->mapping = NULL;
1517 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1518 * is going to trigger because a previous call to
1519 * remove_hugetlb_page() will set_compound_page_dtor(page,
1520 * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1522 h = size_to_hstate(page_size(page));
1524 __update_and_free_page(h, page);
1529 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1531 static inline void flush_free_hpage_work(struct hstate *h)
1533 if (free_vmemmap_pages_per_hpage(h))
1534 flush_work(&free_hpage_work);
1537 static void update_and_free_page(struct hstate *h, struct page *page,
1540 if (!HPageVmemmapOptimized(page) || !atomic) {
1541 __update_and_free_page(h, page);
1546 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1548 * Only call schedule_work() if hpage_freelist is previously
1549 * empty. Otherwise, schedule_work() had been called but the workfn
1550 * hasn't retrieved the list yet.
1552 if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1553 schedule_work(&free_hpage_work);
1556 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1558 struct page *page, *t_page;
1560 list_for_each_entry_safe(page, t_page, list, lru) {
1561 update_and_free_page(h, page, false);
1566 struct hstate *size_to_hstate(unsigned long size)
1570 for_each_hstate(h) {
1571 if (huge_page_size(h) == size)
1577 void free_huge_page(struct page *page)
1580 * Can't pass hstate in here because it is called from the
1581 * compound page destructor.
1583 struct hstate *h = page_hstate(page);
1584 int nid = page_to_nid(page);
1585 struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1586 bool restore_reserve;
1587 unsigned long flags;
1589 VM_BUG_ON_PAGE(page_count(page), page);
1590 VM_BUG_ON_PAGE(page_mapcount(page), page);
1592 hugetlb_set_page_subpool(page, NULL);
1593 page->mapping = NULL;
1594 restore_reserve = HPageRestoreReserve(page);
1595 ClearHPageRestoreReserve(page);
1598 * If HPageRestoreReserve was set on page, page allocation consumed a
1599 * reservation. If the page was associated with a subpool, there
1600 * would have been a page reserved in the subpool before allocation
1601 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1602 * reservation, do not call hugepage_subpool_put_pages() as this will
1603 * remove the reserved page from the subpool.
1605 if (!restore_reserve) {
1607 * A return code of zero implies that the subpool will be
1608 * under its minimum size if the reservation is not restored
1609 * after page is free. Therefore, force restore_reserve
1612 if (hugepage_subpool_put_pages(spool, 1) == 0)
1613 restore_reserve = true;
1616 spin_lock_irqsave(&hugetlb_lock, flags);
1617 ClearHPageMigratable(page);
1618 hugetlb_cgroup_uncharge_page(hstate_index(h),
1619 pages_per_huge_page(h), page);
1620 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1621 pages_per_huge_page(h), page);
1622 if (restore_reserve)
1623 h->resv_huge_pages++;
1625 if (HPageTemporary(page)) {
1626 remove_hugetlb_page(h, page, false);
1627 spin_unlock_irqrestore(&hugetlb_lock, flags);
1628 update_and_free_page(h, page, true);
1629 } else if (h->surplus_huge_pages_node[nid]) {
1630 /* remove the page from active list */
1631 remove_hugetlb_page(h, page, true);
1632 spin_unlock_irqrestore(&hugetlb_lock, flags);
1633 update_and_free_page(h, page, true);
1635 arch_clear_hugepage_flags(page);
1636 enqueue_huge_page(h, page);
1637 spin_unlock_irqrestore(&hugetlb_lock, flags);
1642 * Must be called with the hugetlb lock held
1644 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1646 lockdep_assert_held(&hugetlb_lock);
1648 h->nr_huge_pages_node[nid]++;
1651 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1653 free_huge_page_vmemmap(h, page);
1654 INIT_LIST_HEAD(&page->lru);
1655 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1656 hugetlb_set_page_subpool(page, NULL);
1657 set_hugetlb_cgroup(page, NULL);
1658 set_hugetlb_cgroup_rsvd(page, NULL);
1661 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1663 __prep_new_huge_page(h, page);
1664 spin_lock_irq(&hugetlb_lock);
1665 __prep_account_new_huge_page(h, nid);
1666 spin_unlock_irq(&hugetlb_lock);
1669 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1672 int nr_pages = 1 << order;
1673 struct page *p = page + 1;
1675 /* we rely on prep_new_huge_page to set the destructor */
1676 set_compound_order(page, order);
1677 __ClearPageReserved(page);
1678 __SetPageHead(page);
1679 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1681 * For gigantic hugepages allocated through bootmem at
1682 * boot, it's safer to be consistent with the not-gigantic
1683 * hugepages and clear the PG_reserved bit from all tail pages
1684 * too. Otherwise drivers using get_user_pages() to access tail
1685 * pages may get the reference counting wrong if they see
1686 * PG_reserved set on a tail page (despite the head page not
1687 * having PG_reserved set). Enforcing this consistency between
1688 * head and tail pages allows drivers to optimize away a check
1689 * on the head page when they need know if put_page() is needed
1690 * after get_user_pages().
1692 __ClearPageReserved(p);
1694 * Subtle and very unlikely
1696 * Gigantic 'page allocators' such as memblock or cma will
1697 * return a set of pages with each page ref counted. We need
1698 * to turn this set of pages into a compound page with tail
1699 * page ref counts set to zero. Code such as speculative page
1700 * cache adding could take a ref on a 'to be' tail page.
1701 * We need to respect any increased ref count, and only set
1702 * the ref count to zero if count is currently 1. If count
1703 * is not 1, we return an error. An error return indicates
1704 * the set of pages can not be converted to a gigantic page.
1705 * The caller who allocated the pages should then discard the
1706 * pages using the appropriate free interface.
1708 if (!page_ref_freeze(p, 1)) {
1709 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1712 set_page_count(p, 0);
1713 set_compound_head(p, page);
1715 atomic_set(compound_mapcount_ptr(page), -1);
1716 atomic_set(compound_pincount_ptr(page), 0);
1720 /* undo tail page modifications made above */
1722 for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1723 clear_compound_head(p);
1724 set_page_refcounted(p);
1726 /* need to clear PG_reserved on remaining tail pages */
1727 for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1728 __ClearPageReserved(p);
1729 set_compound_order(page, 0);
1730 page[1].compound_nr = 0;
1731 __ClearPageHead(page);
1736 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1737 * transparent huge pages. See the PageTransHuge() documentation for more
1740 int PageHuge(struct page *page)
1742 if (!PageCompound(page))
1745 page = compound_head(page);
1746 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1748 EXPORT_SYMBOL_GPL(PageHuge);
1751 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1752 * normal or transparent huge pages.
1754 int PageHeadHuge(struct page *page_head)
1756 if (!PageHead(page_head))
1759 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1763 * Find and lock address space (mapping) in write mode.
1765 * Upon entry, the page is locked which means that page_mapping() is
1766 * stable. Due to locking order, we can only trylock_write. If we can
1767 * not get the lock, simply return NULL to caller.
1769 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1771 struct address_space *mapping = page_mapping(hpage);
1776 if (i_mmap_trylock_write(mapping))
1782 pgoff_t hugetlb_basepage_index(struct page *page)
1784 struct page *page_head = compound_head(page);
1785 pgoff_t index = page_index(page_head);
1786 unsigned long compound_idx;
1788 if (compound_order(page_head) >= MAX_ORDER)
1789 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1791 compound_idx = page - page_head;
1793 return (index << compound_order(page_head)) + compound_idx;
1796 static struct page *alloc_buddy_huge_page(struct hstate *h,
1797 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1798 nodemask_t *node_alloc_noretry)
1800 int order = huge_page_order(h);
1802 bool alloc_try_hard = true;
1805 * By default we always try hard to allocate the page with
1806 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
1807 * a loop (to adjust global huge page counts) and previous allocation
1808 * failed, do not continue to try hard on the same node. Use the
1809 * node_alloc_noretry bitmap to manage this state information.
1811 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1812 alloc_try_hard = false;
1813 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1815 gfp_mask |= __GFP_RETRY_MAYFAIL;
1816 if (nid == NUMA_NO_NODE)
1817 nid = numa_mem_id();
1818 page = __alloc_pages(gfp_mask, order, nid, nmask);
1820 __count_vm_event(HTLB_BUDDY_PGALLOC);
1822 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1825 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1826 * indicates an overall state change. Clear bit so that we resume
1827 * normal 'try hard' allocations.
1829 if (node_alloc_noretry && page && !alloc_try_hard)
1830 node_clear(nid, *node_alloc_noretry);
1833 * If we tried hard to get a page but failed, set bit so that
1834 * subsequent attempts will not try as hard until there is an
1835 * overall state change.
1837 if (node_alloc_noretry && !page && alloc_try_hard)
1838 node_set(nid, *node_alloc_noretry);
1844 * Common helper to allocate a fresh hugetlb page. All specific allocators
1845 * should use this function to get new hugetlb pages
1847 static struct page *alloc_fresh_huge_page(struct hstate *h,
1848 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1849 nodemask_t *node_alloc_noretry)
1855 if (hstate_is_gigantic(h))
1856 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1858 page = alloc_buddy_huge_page(h, gfp_mask,
1859 nid, nmask, node_alloc_noretry);
1863 if (hstate_is_gigantic(h)) {
1864 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1866 * Rare failure to convert pages to compound page.
1867 * Free pages and try again - ONCE!
1869 free_gigantic_page(page, huge_page_order(h));
1877 prep_new_huge_page(h, page, page_to_nid(page));
1883 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1886 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1887 nodemask_t *node_alloc_noretry)
1891 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1893 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1894 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1895 node_alloc_noretry);
1903 put_page(page); /* free it into the hugepage allocator */
1909 * Remove huge page from pool from next node to free. Attempt to keep
1910 * persistent huge pages more or less balanced over allowed nodes.
1911 * This routine only 'removes' the hugetlb page. The caller must make
1912 * an additional call to free the page to low level allocators.
1913 * Called with hugetlb_lock locked.
1915 static struct page *remove_pool_huge_page(struct hstate *h,
1916 nodemask_t *nodes_allowed,
1920 struct page *page = NULL;
1922 lockdep_assert_held(&hugetlb_lock);
1923 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1925 * If we're returning unused surplus pages, only examine
1926 * nodes with surplus pages.
1928 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1929 !list_empty(&h->hugepage_freelists[node])) {
1930 page = list_entry(h->hugepage_freelists[node].next,
1932 remove_hugetlb_page(h, page, acct_surplus);
1941 * Dissolve a given free hugepage into free buddy pages. This function does
1942 * nothing for in-use hugepages and non-hugepages.
1943 * This function returns values like below:
1945 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1946 * when the system is under memory pressure and the feature of
1947 * freeing unused vmemmap pages associated with each hugetlb page
1949 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1950 * (allocated or reserved.)
1951 * 0: successfully dissolved free hugepages or the page is not a
1952 * hugepage (considered as already dissolved)
1954 int dissolve_free_huge_page(struct page *page)
1959 /* Not to disrupt normal path by vainly holding hugetlb_lock */
1960 if (!PageHuge(page))
1963 spin_lock_irq(&hugetlb_lock);
1964 if (!PageHuge(page)) {
1969 if (!page_count(page)) {
1970 struct page *head = compound_head(page);
1971 struct hstate *h = page_hstate(head);
1972 if (h->free_huge_pages - h->resv_huge_pages == 0)
1976 * We should make sure that the page is already on the free list
1977 * when it is dissolved.
1979 if (unlikely(!HPageFreed(head))) {
1980 spin_unlock_irq(&hugetlb_lock);
1984 * Theoretically, we should return -EBUSY when we
1985 * encounter this race. In fact, we have a chance
1986 * to successfully dissolve the page if we do a
1987 * retry. Because the race window is quite small.
1988 * If we seize this opportunity, it is an optimization
1989 * for increasing the success rate of dissolving page.
1994 remove_hugetlb_page(h, head, false);
1995 h->max_huge_pages--;
1996 spin_unlock_irq(&hugetlb_lock);
1999 * Normally update_and_free_page will allocate required vmemmmap
2000 * before freeing the page. update_and_free_page will fail to
2001 * free the page if it can not allocate required vmemmap. We
2002 * need to adjust max_huge_pages if the page is not freed.
2003 * Attempt to allocate vmemmmap here so that we can take
2004 * appropriate action on failure.
2006 rc = alloc_huge_page_vmemmap(h, head);
2009 * Move PageHWPoison flag from head page to the raw
2010 * error page, which makes any subpages rather than
2011 * the error page reusable.
2013 if (PageHWPoison(head) && page != head) {
2014 SetPageHWPoison(page);
2015 ClearPageHWPoison(head);
2017 update_and_free_page(h, head, false);
2019 spin_lock_irq(&hugetlb_lock);
2020 add_hugetlb_page(h, head, false);
2021 h->max_huge_pages++;
2022 spin_unlock_irq(&hugetlb_lock);
2028 spin_unlock_irq(&hugetlb_lock);
2033 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2034 * make specified memory blocks removable from the system.
2035 * Note that this will dissolve a free gigantic hugepage completely, if any
2036 * part of it lies within the given range.
2037 * Also note that if dissolve_free_huge_page() returns with an error, all
2038 * free hugepages that were dissolved before that error are lost.
2040 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2046 if (!hugepages_supported())
2049 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2050 page = pfn_to_page(pfn);
2051 rc = dissolve_free_huge_page(page);
2060 * Allocates a fresh surplus page from the page allocator.
2062 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2063 int nid, nodemask_t *nmask, bool zero_ref)
2065 struct page *page = NULL;
2068 if (hstate_is_gigantic(h))
2071 spin_lock_irq(&hugetlb_lock);
2072 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2074 spin_unlock_irq(&hugetlb_lock);
2077 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2081 spin_lock_irq(&hugetlb_lock);
2083 * We could have raced with the pool size change.
2084 * Double check that and simply deallocate the new page
2085 * if we would end up overcommiting the surpluses. Abuse
2086 * temporary page to workaround the nasty free_huge_page
2089 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2090 SetHPageTemporary(page);
2091 spin_unlock_irq(&hugetlb_lock);
2098 * Caller requires a page with zero ref count.
2099 * We will drop ref count here. If someone else is holding
2100 * a ref, the page will be freed when they drop it. Abuse
2101 * temporary page flag to accomplish this.
2103 SetHPageTemporary(page);
2104 if (!put_page_testzero(page)) {
2106 * Unexpected inflated ref count on freshly allocated
2109 pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2110 spin_unlock_irq(&hugetlb_lock);
2117 ClearHPageTemporary(page);
2120 h->surplus_huge_pages++;
2121 h->surplus_huge_pages_node[page_to_nid(page)]++;
2124 spin_unlock_irq(&hugetlb_lock);
2129 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2130 int nid, nodemask_t *nmask)
2134 if (hstate_is_gigantic(h))
2137 page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2142 * We do not account these pages as surplus because they are only
2143 * temporary and will be released properly on the last reference
2145 SetHPageTemporary(page);
2151 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2154 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2155 struct vm_area_struct *vma, unsigned long addr)
2157 struct page *page = NULL;
2158 struct mempolicy *mpol;
2159 gfp_t gfp_mask = htlb_alloc_mask(h);
2161 nodemask_t *nodemask;
2163 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2164 if (mpol_is_preferred_many(mpol)) {
2165 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2167 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2168 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2170 /* Fallback to all nodes if page==NULL */
2175 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2176 mpol_cond_put(mpol);
2180 /* page migration callback function */
2181 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2182 nodemask_t *nmask, gfp_t gfp_mask)
2184 spin_lock_irq(&hugetlb_lock);
2185 if (h->free_huge_pages - h->resv_huge_pages > 0) {
2188 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2190 spin_unlock_irq(&hugetlb_lock);
2194 spin_unlock_irq(&hugetlb_lock);
2196 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2199 /* mempolicy aware migration callback */
2200 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2201 unsigned long address)
2203 struct mempolicy *mpol;
2204 nodemask_t *nodemask;
2209 gfp_mask = htlb_alloc_mask(h);
2210 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2211 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2212 mpol_cond_put(mpol);
2218 * Increase the hugetlb pool such that it can accommodate a reservation
2221 static int gather_surplus_pages(struct hstate *h, long delta)
2222 __must_hold(&hugetlb_lock)
2224 struct list_head surplus_list;
2225 struct page *page, *tmp;
2228 long needed, allocated;
2229 bool alloc_ok = true;
2231 lockdep_assert_held(&hugetlb_lock);
2232 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2234 h->resv_huge_pages += delta;
2239 INIT_LIST_HEAD(&surplus_list);
2243 spin_unlock_irq(&hugetlb_lock);
2244 for (i = 0; i < needed; i++) {
2245 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2246 NUMA_NO_NODE, NULL, true);
2251 list_add(&page->lru, &surplus_list);
2257 * After retaking hugetlb_lock, we need to recalculate 'needed'
2258 * because either resv_huge_pages or free_huge_pages may have changed.
2260 spin_lock_irq(&hugetlb_lock);
2261 needed = (h->resv_huge_pages + delta) -
2262 (h->free_huge_pages + allocated);
2267 * We were not able to allocate enough pages to
2268 * satisfy the entire reservation so we free what
2269 * we've allocated so far.
2274 * The surplus_list now contains _at_least_ the number of extra pages
2275 * needed to accommodate the reservation. Add the appropriate number
2276 * of pages to the hugetlb pool and free the extras back to the buddy
2277 * allocator. Commit the entire reservation here to prevent another
2278 * process from stealing the pages as they are added to the pool but
2279 * before they are reserved.
2281 needed += allocated;
2282 h->resv_huge_pages += delta;
2285 /* Free the needed pages to the hugetlb pool */
2286 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2289 /* Add the page to the hugetlb allocator */
2290 enqueue_huge_page(h, page);
2293 spin_unlock_irq(&hugetlb_lock);
2296 * Free unnecessary surplus pages to the buddy allocator.
2297 * Pages have no ref count, call free_huge_page directly.
2299 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2300 free_huge_page(page);
2301 spin_lock_irq(&hugetlb_lock);
2307 * This routine has two main purposes:
2308 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2309 * in unused_resv_pages. This corresponds to the prior adjustments made
2310 * to the associated reservation map.
2311 * 2) Free any unused surplus pages that may have been allocated to satisfy
2312 * the reservation. As many as unused_resv_pages may be freed.
2314 static void return_unused_surplus_pages(struct hstate *h,
2315 unsigned long unused_resv_pages)
2317 unsigned long nr_pages;
2319 LIST_HEAD(page_list);
2321 lockdep_assert_held(&hugetlb_lock);
2322 /* Uncommit the reservation */
2323 h->resv_huge_pages -= unused_resv_pages;
2325 /* Cannot return gigantic pages currently */
2326 if (hstate_is_gigantic(h))
2330 * Part (or even all) of the reservation could have been backed
2331 * by pre-allocated pages. Only free surplus pages.
2333 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2336 * We want to release as many surplus pages as possible, spread
2337 * evenly across all nodes with memory. Iterate across these nodes
2338 * until we can no longer free unreserved surplus pages. This occurs
2339 * when the nodes with surplus pages have no free pages.
2340 * remove_pool_huge_page() will balance the freed pages across the
2341 * on-line nodes with memory and will handle the hstate accounting.
2343 while (nr_pages--) {
2344 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2348 list_add(&page->lru, &page_list);
2352 spin_unlock_irq(&hugetlb_lock);
2353 update_and_free_pages_bulk(h, &page_list);
2354 spin_lock_irq(&hugetlb_lock);
2359 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2360 * are used by the huge page allocation routines to manage reservations.
2362 * vma_needs_reservation is called to determine if the huge page at addr
2363 * within the vma has an associated reservation. If a reservation is
2364 * needed, the value 1 is returned. The caller is then responsible for
2365 * managing the global reservation and subpool usage counts. After
2366 * the huge page has been allocated, vma_commit_reservation is called
2367 * to add the page to the reservation map. If the page allocation fails,
2368 * the reservation must be ended instead of committed. vma_end_reservation
2369 * is called in such cases.
2371 * In the normal case, vma_commit_reservation returns the same value
2372 * as the preceding vma_needs_reservation call. The only time this
2373 * is not the case is if a reserve map was changed between calls. It
2374 * is the responsibility of the caller to notice the difference and
2375 * take appropriate action.
2377 * vma_add_reservation is used in error paths where a reservation must
2378 * be restored when a newly allocated huge page must be freed. It is
2379 * to be called after calling vma_needs_reservation to determine if a
2380 * reservation exists.
2382 * vma_del_reservation is used in error paths where an entry in the reserve
2383 * map was created during huge page allocation and must be removed. It is to
2384 * be called after calling vma_needs_reservation to determine if a reservation
2387 enum vma_resv_mode {
2394 static long __vma_reservation_common(struct hstate *h,
2395 struct vm_area_struct *vma, unsigned long addr,
2396 enum vma_resv_mode mode)
2398 struct resv_map *resv;
2401 long dummy_out_regions_needed;
2403 resv = vma_resv_map(vma);
2407 idx = vma_hugecache_offset(h, vma, addr);
2409 case VMA_NEEDS_RESV:
2410 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2411 /* We assume that vma_reservation_* routines always operate on
2412 * 1 page, and that adding to resv map a 1 page entry can only
2413 * ever require 1 region.
2415 VM_BUG_ON(dummy_out_regions_needed != 1);
2417 case VMA_COMMIT_RESV:
2418 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2419 /* region_add calls of range 1 should never fail. */
2423 region_abort(resv, idx, idx + 1, 1);
2427 if (vma->vm_flags & VM_MAYSHARE) {
2428 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2429 /* region_add calls of range 1 should never fail. */
2432 region_abort(resv, idx, idx + 1, 1);
2433 ret = region_del(resv, idx, idx + 1);
2437 if (vma->vm_flags & VM_MAYSHARE) {
2438 region_abort(resv, idx, idx + 1, 1);
2439 ret = region_del(resv, idx, idx + 1);
2441 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2442 /* region_add calls of range 1 should never fail. */
2450 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2453 * We know private mapping must have HPAGE_RESV_OWNER set.
2455 * In most cases, reserves always exist for private mappings.
2456 * However, a file associated with mapping could have been
2457 * hole punched or truncated after reserves were consumed.
2458 * As subsequent fault on such a range will not use reserves.
2459 * Subtle - The reserve map for private mappings has the
2460 * opposite meaning than that of shared mappings. If NO
2461 * entry is in the reserve map, it means a reservation exists.
2462 * If an entry exists in the reserve map, it means the
2463 * reservation has already been consumed. As a result, the
2464 * return value of this routine is the opposite of the
2465 * value returned from reserve map manipulation routines above.
2474 static long vma_needs_reservation(struct hstate *h,
2475 struct vm_area_struct *vma, unsigned long addr)
2477 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2480 static long vma_commit_reservation(struct hstate *h,
2481 struct vm_area_struct *vma, unsigned long addr)
2483 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2486 static void vma_end_reservation(struct hstate *h,
2487 struct vm_area_struct *vma, unsigned long addr)
2489 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2492 static long vma_add_reservation(struct hstate *h,
2493 struct vm_area_struct *vma, unsigned long addr)
2495 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2498 static long vma_del_reservation(struct hstate *h,
2499 struct vm_area_struct *vma, unsigned long addr)
2501 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2505 * This routine is called to restore reservation information on error paths.
2506 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2507 * the hugetlb mutex should remain held when calling this routine.
2509 * It handles two specific cases:
2510 * 1) A reservation was in place and the page consumed the reservation.
2511 * HPageRestoreReserve is set in the page.
2512 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2513 * not set. However, alloc_huge_page always updates the reserve map.
2515 * In case 1, free_huge_page later in the error path will increment the
2516 * global reserve count. But, free_huge_page does not have enough context
2517 * to adjust the reservation map. This case deals primarily with private
2518 * mappings. Adjust the reserve map here to be consistent with global
2519 * reserve count adjustments to be made by free_huge_page. Make sure the
2520 * reserve map indicates there is a reservation present.
2522 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2524 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2525 unsigned long address, struct page *page)
2527 long rc = vma_needs_reservation(h, vma, address);
2529 if (HPageRestoreReserve(page)) {
2530 if (unlikely(rc < 0))
2532 * Rare out of memory condition in reserve map
2533 * manipulation. Clear HPageRestoreReserve so that
2534 * global reserve count will not be incremented
2535 * by free_huge_page. This will make it appear
2536 * as though the reservation for this page was
2537 * consumed. This may prevent the task from
2538 * faulting in the page at a later time. This
2539 * is better than inconsistent global huge page
2540 * accounting of reserve counts.
2542 ClearHPageRestoreReserve(page);
2544 (void)vma_add_reservation(h, vma, address);
2546 vma_end_reservation(h, vma, address);
2550 * This indicates there is an entry in the reserve map
2551 * not added by alloc_huge_page. We know it was added
2552 * before the alloc_huge_page call, otherwise
2553 * HPageRestoreReserve would be set on the page.
2554 * Remove the entry so that a subsequent allocation
2555 * does not consume a reservation.
2557 rc = vma_del_reservation(h, vma, address);
2560 * VERY rare out of memory condition. Since
2561 * we can not delete the entry, set
2562 * HPageRestoreReserve so that the reserve
2563 * count will be incremented when the page
2564 * is freed. This reserve will be consumed
2565 * on a subsequent allocation.
2567 SetHPageRestoreReserve(page);
2568 } else if (rc < 0) {
2570 * Rare out of memory condition from
2571 * vma_needs_reservation call. Memory allocation is
2572 * only attempted if a new entry is needed. Therefore,
2573 * this implies there is not an entry in the
2576 * For shared mappings, no entry in the map indicates
2577 * no reservation. We are done.
2579 if (!(vma->vm_flags & VM_MAYSHARE))
2581 * For private mappings, no entry indicates
2582 * a reservation is present. Since we can
2583 * not add an entry, set SetHPageRestoreReserve
2584 * on the page so reserve count will be
2585 * incremented when freed. This reserve will
2586 * be consumed on a subsequent allocation.
2588 SetHPageRestoreReserve(page);
2591 * No reservation present, do nothing
2593 vma_end_reservation(h, vma, address);
2598 * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2599 * @h: struct hstate old page belongs to
2600 * @old_page: Old page to dissolve
2601 * @list: List to isolate the page in case we need to
2602 * Returns 0 on success, otherwise negated error.
2604 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2605 struct list_head *list)
2607 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2608 int nid = page_to_nid(old_page);
2609 bool alloc_retry = false;
2610 struct page *new_page;
2614 * Before dissolving the page, we need to allocate a new one for the
2615 * pool to remain stable. Here, we allocate the page and 'prep' it
2616 * by doing everything but actually updating counters and adding to
2617 * the pool. This simplifies and let us do most of the processing
2621 new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2625 * If all goes well, this page will be directly added to the free
2626 * list in the pool. For this the ref count needs to be zero.
2627 * Attempt to drop now, and retry once if needed. It is VERY
2628 * unlikely there is another ref on the page.
2630 * If someone else has a reference to the page, it will be freed
2631 * when they drop their ref. Abuse temporary page flag to accomplish
2632 * this. Retry once if there is an inflated ref count.
2634 SetHPageTemporary(new_page);
2635 if (!put_page_testzero(new_page)) {
2642 ClearHPageTemporary(new_page);
2644 __prep_new_huge_page(h, new_page);
2647 spin_lock_irq(&hugetlb_lock);
2648 if (!PageHuge(old_page)) {
2650 * Freed from under us. Drop new_page too.
2653 } else if (page_count(old_page)) {
2655 * Someone has grabbed the page, try to isolate it here.
2656 * Fail with -EBUSY if not possible.
2658 spin_unlock_irq(&hugetlb_lock);
2659 if (!isolate_huge_page(old_page, list))
2661 spin_lock_irq(&hugetlb_lock);
2663 } else if (!HPageFreed(old_page)) {
2665 * Page's refcount is 0 but it has not been enqueued in the
2666 * freelist yet. Race window is small, so we can succeed here if
2669 spin_unlock_irq(&hugetlb_lock);
2674 * Ok, old_page is still a genuine free hugepage. Remove it from
2675 * the freelist and decrease the counters. These will be
2676 * incremented again when calling __prep_account_new_huge_page()
2677 * and enqueue_huge_page() for new_page. The counters will remain
2678 * stable since this happens under the lock.
2680 remove_hugetlb_page(h, old_page, false);
2683 * Ref count on new page is already zero as it was dropped
2684 * earlier. It can be directly added to the pool free list.
2686 __prep_account_new_huge_page(h, nid);
2687 enqueue_huge_page(h, new_page);
2690 * Pages have been replaced, we can safely free the old one.
2692 spin_unlock_irq(&hugetlb_lock);
2693 update_and_free_page(h, old_page, false);
2699 spin_unlock_irq(&hugetlb_lock);
2700 /* Page has a zero ref count, but needs a ref to be freed */
2701 set_page_refcounted(new_page);
2702 update_and_free_page(h, new_page, false);
2707 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2714 * The page might have been dissolved from under our feet, so make sure
2715 * to carefully check the state under the lock.
2716 * Return success when racing as if we dissolved the page ourselves.
2718 spin_lock_irq(&hugetlb_lock);
2719 if (PageHuge(page)) {
2720 head = compound_head(page);
2721 h = page_hstate(head);
2723 spin_unlock_irq(&hugetlb_lock);
2726 spin_unlock_irq(&hugetlb_lock);
2729 * Fence off gigantic pages as there is a cyclic dependency between
2730 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2731 * of bailing out right away without further retrying.
2733 if (hstate_is_gigantic(h))
2736 if (page_count(head) && isolate_huge_page(head, list))
2738 else if (!page_count(head))
2739 ret = alloc_and_dissolve_huge_page(h, head, list);
2744 struct page *alloc_huge_page(struct vm_area_struct *vma,
2745 unsigned long addr, int avoid_reserve)
2747 struct hugepage_subpool *spool = subpool_vma(vma);
2748 struct hstate *h = hstate_vma(vma);
2750 long map_chg, map_commit;
2753 struct hugetlb_cgroup *h_cg;
2754 bool deferred_reserve;
2756 idx = hstate_index(h);
2758 * Examine the region/reserve map to determine if the process
2759 * has a reservation for the page to be allocated. A return
2760 * code of zero indicates a reservation exists (no change).
2762 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2764 return ERR_PTR(-ENOMEM);
2767 * Processes that did not create the mapping will have no
2768 * reserves as indicated by the region/reserve map. Check
2769 * that the allocation will not exceed the subpool limit.
2770 * Allocations for MAP_NORESERVE mappings also need to be
2771 * checked against any subpool limit.
2773 if (map_chg || avoid_reserve) {
2774 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2776 vma_end_reservation(h, vma, addr);
2777 return ERR_PTR(-ENOSPC);
2781 * Even though there was no reservation in the region/reserve
2782 * map, there could be reservations associated with the
2783 * subpool that can be used. This would be indicated if the
2784 * return value of hugepage_subpool_get_pages() is zero.
2785 * However, if avoid_reserve is specified we still avoid even
2786 * the subpool reservations.
2792 /* If this allocation is not consuming a reservation, charge it now.
2794 deferred_reserve = map_chg || avoid_reserve;
2795 if (deferred_reserve) {
2796 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2797 idx, pages_per_huge_page(h), &h_cg);
2799 goto out_subpool_put;
2802 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2804 goto out_uncharge_cgroup_reservation;
2806 spin_lock_irq(&hugetlb_lock);
2808 * glb_chg is passed to indicate whether or not a page must be taken
2809 * from the global free pool (global change). gbl_chg == 0 indicates
2810 * a reservation exists for the allocation.
2812 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2814 spin_unlock_irq(&hugetlb_lock);
2815 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2817 goto out_uncharge_cgroup;
2818 spin_lock_irq(&hugetlb_lock);
2819 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2820 SetHPageRestoreReserve(page);
2821 h->resv_huge_pages--;
2823 list_add(&page->lru, &h->hugepage_activelist);
2826 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2827 /* If allocation is not consuming a reservation, also store the
2828 * hugetlb_cgroup pointer on the page.
2830 if (deferred_reserve) {
2831 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2835 spin_unlock_irq(&hugetlb_lock);
2837 hugetlb_set_page_subpool(page, spool);
2839 map_commit = vma_commit_reservation(h, vma, addr);
2840 if (unlikely(map_chg > map_commit)) {
2842 * The page was added to the reservation map between
2843 * vma_needs_reservation and vma_commit_reservation.
2844 * This indicates a race with hugetlb_reserve_pages.
2845 * Adjust for the subpool count incremented above AND
2846 * in hugetlb_reserve_pages for the same page. Also,
2847 * the reservation count added in hugetlb_reserve_pages
2848 * no longer applies.
2852 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2853 hugetlb_acct_memory(h, -rsv_adjust);
2854 if (deferred_reserve)
2855 hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2856 pages_per_huge_page(h), page);
2860 out_uncharge_cgroup:
2861 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2862 out_uncharge_cgroup_reservation:
2863 if (deferred_reserve)
2864 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2867 if (map_chg || avoid_reserve)
2868 hugepage_subpool_put_pages(spool, 1);
2869 vma_end_reservation(h, vma, addr);
2870 return ERR_PTR(-ENOSPC);
2873 int alloc_bootmem_huge_page(struct hstate *h)
2874 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2875 int __alloc_bootmem_huge_page(struct hstate *h)
2877 struct huge_bootmem_page *m;
2880 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2883 addr = memblock_alloc_try_nid_raw(
2884 huge_page_size(h), huge_page_size(h),
2885 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2888 * Use the beginning of the huge page to store the
2889 * huge_bootmem_page struct (until gather_bootmem
2890 * puts them into the mem_map).
2899 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2900 /* Put them into a private list first because mem_map is not up yet */
2901 INIT_LIST_HEAD(&m->list);
2902 list_add(&m->list, &huge_boot_pages);
2908 * Put bootmem huge pages into the standard lists after mem_map is up.
2909 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2911 static void __init gather_bootmem_prealloc(void)
2913 struct huge_bootmem_page *m;
2915 list_for_each_entry(m, &huge_boot_pages, list) {
2916 struct page *page = virt_to_page(m);
2917 struct hstate *h = m->hstate;
2919 VM_BUG_ON(!hstate_is_gigantic(h));
2920 WARN_ON(page_count(page) != 1);
2921 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2922 WARN_ON(PageReserved(page));
2923 prep_new_huge_page(h, page, page_to_nid(page));
2924 put_page(page); /* add to the hugepage allocator */
2926 /* VERY unlikely inflated ref count on a tail page */
2927 free_gigantic_page(page, huge_page_order(h));
2931 * We need to restore the 'stolen' pages to totalram_pages
2932 * in order to fix confusing memory reports from free(1) and
2933 * other side-effects, like CommitLimit going negative.
2935 adjust_managed_page_count(page, pages_per_huge_page(h));
2940 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2943 nodemask_t *node_alloc_noretry;
2945 if (!hstate_is_gigantic(h)) {
2947 * Bit mask controlling how hard we retry per-node allocations.
2948 * Ignore errors as lower level routines can deal with
2949 * node_alloc_noretry == NULL. If this kmalloc fails at boot
2950 * time, we are likely in bigger trouble.
2952 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2955 /* allocations done at boot time */
2956 node_alloc_noretry = NULL;
2959 /* bit mask controlling how hard we retry per-node allocations */
2960 if (node_alloc_noretry)
2961 nodes_clear(*node_alloc_noretry);
2963 for (i = 0; i < h->max_huge_pages; ++i) {
2964 if (hstate_is_gigantic(h)) {
2965 if (hugetlb_cma_size) {
2966 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2969 if (!alloc_bootmem_huge_page(h))
2971 } else if (!alloc_pool_huge_page(h,
2972 &node_states[N_MEMORY],
2973 node_alloc_noretry))
2977 if (i < h->max_huge_pages) {
2980 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2981 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2982 h->max_huge_pages, buf, i);
2983 h->max_huge_pages = i;
2986 kfree(node_alloc_noretry);
2989 static void __init hugetlb_init_hstates(void)
2993 for_each_hstate(h) {
2994 if (minimum_order > huge_page_order(h))
2995 minimum_order = huge_page_order(h);
2997 /* oversize hugepages were init'ed in early boot */
2998 if (!hstate_is_gigantic(h))
2999 hugetlb_hstate_alloc_pages(h);
3001 VM_BUG_ON(minimum_order == UINT_MAX);
3004 static void __init report_hugepages(void)
3008 for_each_hstate(h) {
3011 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3012 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3013 buf, h->free_huge_pages);
3017 #ifdef CONFIG_HIGHMEM
3018 static void try_to_free_low(struct hstate *h, unsigned long count,
3019 nodemask_t *nodes_allowed)
3022 LIST_HEAD(page_list);
3024 lockdep_assert_held(&hugetlb_lock);
3025 if (hstate_is_gigantic(h))
3029 * Collect pages to be freed on a list, and free after dropping lock
3031 for_each_node_mask(i, *nodes_allowed) {
3032 struct page *page, *next;
3033 struct list_head *freel = &h->hugepage_freelists[i];
3034 list_for_each_entry_safe(page, next, freel, lru) {
3035 if (count >= h->nr_huge_pages)
3037 if (PageHighMem(page))
3039 remove_hugetlb_page(h, page, false);
3040 list_add(&page->lru, &page_list);
3045 spin_unlock_irq(&hugetlb_lock);
3046 update_and_free_pages_bulk(h, &page_list);
3047 spin_lock_irq(&hugetlb_lock);
3050 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3051 nodemask_t *nodes_allowed)
3057 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3058 * balanced by operating on them in a round-robin fashion.
3059 * Returns 1 if an adjustment was made.
3061 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3066 lockdep_assert_held(&hugetlb_lock);
3067 VM_BUG_ON(delta != -1 && delta != 1);
3070 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3071 if (h->surplus_huge_pages_node[node])
3075 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3076 if (h->surplus_huge_pages_node[node] <
3077 h->nr_huge_pages_node[node])
3084 h->surplus_huge_pages += delta;
3085 h->surplus_huge_pages_node[node] += delta;
3089 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3090 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3091 nodemask_t *nodes_allowed)
3093 unsigned long min_count, ret;
3095 LIST_HEAD(page_list);
3096 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3099 * Bit mask controlling how hard we retry per-node allocations.
3100 * If we can not allocate the bit mask, do not attempt to allocate
3101 * the requested huge pages.
3103 if (node_alloc_noretry)
3104 nodes_clear(*node_alloc_noretry);
3109 * resize_lock mutex prevents concurrent adjustments to number of
3110 * pages in hstate via the proc/sysfs interfaces.
3112 mutex_lock(&h->resize_lock);
3113 flush_free_hpage_work(h);
3114 spin_lock_irq(&hugetlb_lock);
3117 * Check for a node specific request.
3118 * Changing node specific huge page count may require a corresponding
3119 * change to the global count. In any case, the passed node mask
3120 * (nodes_allowed) will restrict alloc/free to the specified node.
3122 if (nid != NUMA_NO_NODE) {
3123 unsigned long old_count = count;
3125 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3127 * User may have specified a large count value which caused the
3128 * above calculation to overflow. In this case, they wanted
3129 * to allocate as many huge pages as possible. Set count to
3130 * largest possible value to align with their intention.
3132 if (count < old_count)
3137 * Gigantic pages runtime allocation depend on the capability for large
3138 * page range allocation.
3139 * If the system does not provide this feature, return an error when
3140 * the user tries to allocate gigantic pages but let the user free the
3141 * boottime allocated gigantic pages.
3143 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3144 if (count > persistent_huge_pages(h)) {
3145 spin_unlock_irq(&hugetlb_lock);
3146 mutex_unlock(&h->resize_lock);
3147 NODEMASK_FREE(node_alloc_noretry);
3150 /* Fall through to decrease pool */
3154 * Increase the pool size
3155 * First take pages out of surplus state. Then make up the
3156 * remaining difference by allocating fresh huge pages.
3158 * We might race with alloc_surplus_huge_page() here and be unable
3159 * to convert a surplus huge page to a normal huge page. That is
3160 * not critical, though, it just means the overall size of the
3161 * pool might be one hugepage larger than it needs to be, but
3162 * within all the constraints specified by the sysctls.
3164 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3165 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3169 while (count > persistent_huge_pages(h)) {
3171 * If this allocation races such that we no longer need the
3172 * page, free_huge_page will handle it by freeing the page
3173 * and reducing the surplus.
3175 spin_unlock_irq(&hugetlb_lock);
3177 /* yield cpu to avoid soft lockup */
3180 ret = alloc_pool_huge_page(h, nodes_allowed,
3181 node_alloc_noretry);
3182 spin_lock_irq(&hugetlb_lock);
3186 /* Bail for signals. Probably ctrl-c from user */
3187 if (signal_pending(current))
3192 * Decrease the pool size
3193 * First return free pages to the buddy allocator (being careful
3194 * to keep enough around to satisfy reservations). Then place
3195 * pages into surplus state as needed so the pool will shrink
3196 * to the desired size as pages become free.
3198 * By placing pages into the surplus state independent of the
3199 * overcommit value, we are allowing the surplus pool size to
3200 * exceed overcommit. There are few sane options here. Since
3201 * alloc_surplus_huge_page() is checking the global counter,
3202 * though, we'll note that we're not allowed to exceed surplus
3203 * and won't grow the pool anywhere else. Not until one of the
3204 * sysctls are changed, or the surplus pages go out of use.
3206 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3207 min_count = max(count, min_count);
3208 try_to_free_low(h, min_count, nodes_allowed);
3211 * Collect pages to be removed on list without dropping lock
3213 while (min_count < persistent_huge_pages(h)) {
3214 page = remove_pool_huge_page(h, nodes_allowed, 0);
3218 list_add(&page->lru, &page_list);
3220 /* free the pages after dropping lock */
3221 spin_unlock_irq(&hugetlb_lock);
3222 update_and_free_pages_bulk(h, &page_list);
3223 flush_free_hpage_work(h);
3224 spin_lock_irq(&hugetlb_lock);
3226 while (count < persistent_huge_pages(h)) {
3227 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3231 h->max_huge_pages = persistent_huge_pages(h);
3232 spin_unlock_irq(&hugetlb_lock);
3233 mutex_unlock(&h->resize_lock);
3235 NODEMASK_FREE(node_alloc_noretry);
3240 #define HSTATE_ATTR_RO(_name) \
3241 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3243 #define HSTATE_ATTR(_name) \
3244 static struct kobj_attribute _name##_attr = \
3245 __ATTR(_name, 0644, _name##_show, _name##_store)
3247 static struct kobject *hugepages_kobj;
3248 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3250 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3252 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3256 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3257 if (hstate_kobjs[i] == kobj) {
3259 *nidp = NUMA_NO_NODE;
3263 return kobj_to_node_hstate(kobj, nidp);
3266 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3267 struct kobj_attribute *attr, char *buf)
3270 unsigned long nr_huge_pages;
3273 h = kobj_to_hstate(kobj, &nid);
3274 if (nid == NUMA_NO_NODE)
3275 nr_huge_pages = h->nr_huge_pages;
3277 nr_huge_pages = h->nr_huge_pages_node[nid];
3279 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3282 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3283 struct hstate *h, int nid,
3284 unsigned long count, size_t len)
3287 nodemask_t nodes_allowed, *n_mask;
3289 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3292 if (nid == NUMA_NO_NODE) {
3294 * global hstate attribute
3296 if (!(obey_mempolicy &&
3297 init_nodemask_of_mempolicy(&nodes_allowed)))
3298 n_mask = &node_states[N_MEMORY];
3300 n_mask = &nodes_allowed;
3303 * Node specific request. count adjustment happens in
3304 * set_max_huge_pages() after acquiring hugetlb_lock.
3306 init_nodemask_of_node(&nodes_allowed, nid);
3307 n_mask = &nodes_allowed;
3310 err = set_max_huge_pages(h, count, nid, n_mask);
3312 return err ? err : len;
3315 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3316 struct kobject *kobj, const char *buf,
3320 unsigned long count;
3324 err = kstrtoul(buf, 10, &count);
3328 h = kobj_to_hstate(kobj, &nid);
3329 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3332 static ssize_t nr_hugepages_show(struct kobject *kobj,
3333 struct kobj_attribute *attr, char *buf)
3335 return nr_hugepages_show_common(kobj, attr, buf);
3338 static ssize_t nr_hugepages_store(struct kobject *kobj,
3339 struct kobj_attribute *attr, const char *buf, size_t len)
3341 return nr_hugepages_store_common(false, kobj, buf, len);
3343 HSTATE_ATTR(nr_hugepages);
3348 * hstate attribute for optionally mempolicy-based constraint on persistent
3349 * huge page alloc/free.
3351 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3352 struct kobj_attribute *attr,
3355 return nr_hugepages_show_common(kobj, attr, buf);
3358 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3359 struct kobj_attribute *attr, const char *buf, size_t len)
3361 return nr_hugepages_store_common(true, kobj, buf, len);
3363 HSTATE_ATTR(nr_hugepages_mempolicy);
3367 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3368 struct kobj_attribute *attr, char *buf)
3370 struct hstate *h = kobj_to_hstate(kobj, NULL);
3371 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3374 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3375 struct kobj_attribute *attr, const char *buf, size_t count)
3378 unsigned long input;
3379 struct hstate *h = kobj_to_hstate(kobj, NULL);
3381 if (hstate_is_gigantic(h))
3384 err = kstrtoul(buf, 10, &input);
3388 spin_lock_irq(&hugetlb_lock);
3389 h->nr_overcommit_huge_pages = input;
3390 spin_unlock_irq(&hugetlb_lock);
3394 HSTATE_ATTR(nr_overcommit_hugepages);
3396 static ssize_t free_hugepages_show(struct kobject *kobj,
3397 struct kobj_attribute *attr, char *buf)
3400 unsigned long free_huge_pages;
3403 h = kobj_to_hstate(kobj, &nid);
3404 if (nid == NUMA_NO_NODE)
3405 free_huge_pages = h->free_huge_pages;
3407 free_huge_pages = h->free_huge_pages_node[nid];
3409 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3411 HSTATE_ATTR_RO(free_hugepages);
3413 static ssize_t resv_hugepages_show(struct kobject *kobj,
3414 struct kobj_attribute *attr, char *buf)
3416 struct hstate *h = kobj_to_hstate(kobj, NULL);
3417 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3419 HSTATE_ATTR_RO(resv_hugepages);
3421 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3422 struct kobj_attribute *attr, char *buf)
3425 unsigned long surplus_huge_pages;
3428 h = kobj_to_hstate(kobj, &nid);
3429 if (nid == NUMA_NO_NODE)
3430 surplus_huge_pages = h->surplus_huge_pages;
3432 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3434 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3436 HSTATE_ATTR_RO(surplus_hugepages);
3438 static struct attribute *hstate_attrs[] = {
3439 &nr_hugepages_attr.attr,
3440 &nr_overcommit_hugepages_attr.attr,
3441 &free_hugepages_attr.attr,
3442 &resv_hugepages_attr.attr,
3443 &surplus_hugepages_attr.attr,
3445 &nr_hugepages_mempolicy_attr.attr,
3450 static const struct attribute_group hstate_attr_group = {
3451 .attrs = hstate_attrs,
3454 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3455 struct kobject **hstate_kobjs,
3456 const struct attribute_group *hstate_attr_group)
3459 int hi = hstate_index(h);
3461 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3462 if (!hstate_kobjs[hi])
3465 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3467 kobject_put(hstate_kobjs[hi]);
3468 hstate_kobjs[hi] = NULL;
3474 static void __init hugetlb_sysfs_init(void)
3479 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3480 if (!hugepages_kobj)
3483 for_each_hstate(h) {
3484 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3485 hstate_kobjs, &hstate_attr_group);
3487 pr_err("HugeTLB: Unable to add hstate %s", h->name);
3494 * node_hstate/s - associate per node hstate attributes, via their kobjects,
3495 * with node devices in node_devices[] using a parallel array. The array
3496 * index of a node device or _hstate == node id.
3497 * This is here to avoid any static dependency of the node device driver, in
3498 * the base kernel, on the hugetlb module.
3500 struct node_hstate {
3501 struct kobject *hugepages_kobj;
3502 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3504 static struct node_hstate node_hstates[MAX_NUMNODES];
3507 * A subset of global hstate attributes for node devices
3509 static struct attribute *per_node_hstate_attrs[] = {
3510 &nr_hugepages_attr.attr,
3511 &free_hugepages_attr.attr,
3512 &surplus_hugepages_attr.attr,
3516 static const struct attribute_group per_node_hstate_attr_group = {
3517 .attrs = per_node_hstate_attrs,
3521 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3522 * Returns node id via non-NULL nidp.
3524 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3528 for (nid = 0; nid < nr_node_ids; nid++) {
3529 struct node_hstate *nhs = &node_hstates[nid];
3531 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3532 if (nhs->hstate_kobjs[i] == kobj) {
3544 * Unregister hstate attributes from a single node device.
3545 * No-op if no hstate attributes attached.
3547 static void hugetlb_unregister_node(struct node *node)
3550 struct node_hstate *nhs = &node_hstates[node->dev.id];
3552 if (!nhs->hugepages_kobj)
3553 return; /* no hstate attributes */
3555 for_each_hstate(h) {
3556 int idx = hstate_index(h);
3557 if (nhs->hstate_kobjs[idx]) {
3558 kobject_put(nhs->hstate_kobjs[idx]);
3559 nhs->hstate_kobjs[idx] = NULL;
3563 kobject_put(nhs->hugepages_kobj);
3564 nhs->hugepages_kobj = NULL;
3569 * Register hstate attributes for a single node device.
3570 * No-op if attributes already registered.
3572 static void hugetlb_register_node(struct node *node)
3575 struct node_hstate *nhs = &node_hstates[node->dev.id];
3578 if (nhs->hugepages_kobj)
3579 return; /* already allocated */
3581 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3583 if (!nhs->hugepages_kobj)
3586 for_each_hstate(h) {
3587 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3589 &per_node_hstate_attr_group);
3591 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3592 h->name, node->dev.id);
3593 hugetlb_unregister_node(node);
3600 * hugetlb init time: register hstate attributes for all registered node
3601 * devices of nodes that have memory. All on-line nodes should have
3602 * registered their associated device by this time.
3604 static void __init hugetlb_register_all_nodes(void)
3608 for_each_node_state(nid, N_MEMORY) {
3609 struct node *node = node_devices[nid];
3610 if (node->dev.id == nid)
3611 hugetlb_register_node(node);
3615 * Let the node device driver know we're here so it can
3616 * [un]register hstate attributes on node hotplug.
3618 register_hugetlbfs_with_node(hugetlb_register_node,
3619 hugetlb_unregister_node);
3621 #else /* !CONFIG_NUMA */
3623 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3631 static void hugetlb_register_all_nodes(void) { }
3635 static int __init hugetlb_init(void)
3639 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3642 if (!hugepages_supported()) {
3643 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3644 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3649 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
3650 * architectures depend on setup being done here.
3652 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3653 if (!parsed_default_hugepagesz) {
3655 * If we did not parse a default huge page size, set
3656 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3657 * number of huge pages for this default size was implicitly
3658 * specified, set that here as well.
3659 * Note that the implicit setting will overwrite an explicit
3660 * setting. A warning will be printed in this case.
3662 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3663 if (default_hstate_max_huge_pages) {
3664 if (default_hstate.max_huge_pages) {
3667 string_get_size(huge_page_size(&default_hstate),
3668 1, STRING_UNITS_2, buf, 32);
3669 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3670 default_hstate.max_huge_pages, buf);
3671 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3672 default_hstate_max_huge_pages);
3674 default_hstate.max_huge_pages =
3675 default_hstate_max_huge_pages;
3679 hugetlb_cma_check();
3680 hugetlb_init_hstates();
3681 gather_bootmem_prealloc();
3684 hugetlb_sysfs_init();
3685 hugetlb_register_all_nodes();
3686 hugetlb_cgroup_file_init();
3689 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3691 num_fault_mutexes = 1;
3693 hugetlb_fault_mutex_table =
3694 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3696 BUG_ON(!hugetlb_fault_mutex_table);
3698 for (i = 0; i < num_fault_mutexes; i++)
3699 mutex_init(&hugetlb_fault_mutex_table[i]);
3702 subsys_initcall(hugetlb_init);
3704 /* Overwritten by architectures with more huge page sizes */
3705 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3707 return size == HPAGE_SIZE;
3710 void __init hugetlb_add_hstate(unsigned int order)
3715 if (size_to_hstate(PAGE_SIZE << order)) {
3718 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3720 h = &hstates[hugetlb_max_hstate++];
3721 mutex_init(&h->resize_lock);
3723 h->mask = ~(huge_page_size(h) - 1);
3724 for (i = 0; i < MAX_NUMNODES; ++i)
3725 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3726 INIT_LIST_HEAD(&h->hugepage_activelist);
3727 h->next_nid_to_alloc = first_memory_node;
3728 h->next_nid_to_free = first_memory_node;
3729 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3730 huge_page_size(h)/1024);
3731 hugetlb_vmemmap_init(h);
3737 * hugepages command line processing
3738 * hugepages normally follows a valid hugepagsz or default_hugepagsz
3739 * specification. If not, ignore the hugepages value. hugepages can also
3740 * be the first huge page command line option in which case it implicitly
3741 * specifies the number of huge pages for the default size.
3743 static int __init hugepages_setup(char *s)
3746 static unsigned long *last_mhp;
3748 if (!parsed_valid_hugepagesz) {
3749 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3750 parsed_valid_hugepagesz = true;
3755 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3756 * yet, so this hugepages= parameter goes to the "default hstate".
3757 * Otherwise, it goes with the previously parsed hugepagesz or
3758 * default_hugepagesz.
3760 else if (!hugetlb_max_hstate)
3761 mhp = &default_hstate_max_huge_pages;
3763 mhp = &parsed_hstate->max_huge_pages;
3765 if (mhp == last_mhp) {
3766 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3770 if (sscanf(s, "%lu", mhp) <= 0)
3774 * Global state is always initialized later in hugetlb_init.
3775 * But we need to allocate gigantic hstates here early to still
3776 * use the bootmem allocator.
3778 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3779 hugetlb_hstate_alloc_pages(parsed_hstate);
3785 __setup("hugepages=", hugepages_setup);
3788 * hugepagesz command line processing
3789 * A specific huge page size can only be specified once with hugepagesz.
3790 * hugepagesz is followed by hugepages on the command line. The global
3791 * variable 'parsed_valid_hugepagesz' is used to determine if prior
3792 * hugepagesz argument was valid.
3794 static int __init hugepagesz_setup(char *s)
3799 parsed_valid_hugepagesz = false;
3800 size = (unsigned long)memparse(s, NULL);
3802 if (!arch_hugetlb_valid_size(size)) {
3803 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3807 h = size_to_hstate(size);
3810 * hstate for this size already exists. This is normally
3811 * an error, but is allowed if the existing hstate is the
3812 * default hstate. More specifically, it is only allowed if
3813 * the number of huge pages for the default hstate was not
3814 * previously specified.
3816 if (!parsed_default_hugepagesz || h != &default_hstate ||
3817 default_hstate.max_huge_pages) {
3818 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3823 * No need to call hugetlb_add_hstate() as hstate already
3824 * exists. But, do set parsed_hstate so that a following
3825 * hugepages= parameter will be applied to this hstate.
3828 parsed_valid_hugepagesz = true;
3832 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3833 parsed_valid_hugepagesz = true;
3836 __setup("hugepagesz=", hugepagesz_setup);
3839 * default_hugepagesz command line input
3840 * Only one instance of default_hugepagesz allowed on command line.
3842 static int __init default_hugepagesz_setup(char *s)
3846 parsed_valid_hugepagesz = false;
3847 if (parsed_default_hugepagesz) {
3848 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3852 size = (unsigned long)memparse(s, NULL);
3854 if (!arch_hugetlb_valid_size(size)) {
3855 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3859 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3860 parsed_valid_hugepagesz = true;
3861 parsed_default_hugepagesz = true;
3862 default_hstate_idx = hstate_index(size_to_hstate(size));
3865 * The number of default huge pages (for this size) could have been
3866 * specified as the first hugetlb parameter: hugepages=X. If so,
3867 * then default_hstate_max_huge_pages is set. If the default huge
3868 * page size is gigantic (>= MAX_ORDER), then the pages must be
3869 * allocated here from bootmem allocator.
3871 if (default_hstate_max_huge_pages) {
3872 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3873 if (hstate_is_gigantic(&default_hstate))
3874 hugetlb_hstate_alloc_pages(&default_hstate);
3875 default_hstate_max_huge_pages = 0;
3880 __setup("default_hugepagesz=", default_hugepagesz_setup);
3882 static unsigned int allowed_mems_nr(struct hstate *h)
3885 unsigned int nr = 0;
3886 nodemask_t *mpol_allowed;
3887 unsigned int *array = h->free_huge_pages_node;
3888 gfp_t gfp_mask = htlb_alloc_mask(h);
3890 mpol_allowed = policy_nodemask_current(gfp_mask);
3892 for_each_node_mask(node, cpuset_current_mems_allowed) {
3893 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3900 #ifdef CONFIG_SYSCTL
3901 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3902 void *buffer, size_t *length,
3903 loff_t *ppos, unsigned long *out)
3905 struct ctl_table dup_table;
3908 * In order to avoid races with __do_proc_doulongvec_minmax(), we
3909 * can duplicate the @table and alter the duplicate of it.
3912 dup_table.data = out;
3914 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3917 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3918 struct ctl_table *table, int write,
3919 void *buffer, size_t *length, loff_t *ppos)
3921 struct hstate *h = &default_hstate;
3922 unsigned long tmp = h->max_huge_pages;
3925 if (!hugepages_supported())
3928 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3934 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3935 NUMA_NO_NODE, tmp, *length);
3940 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3941 void *buffer, size_t *length, loff_t *ppos)
3944 return hugetlb_sysctl_handler_common(false, table, write,
3945 buffer, length, ppos);
3949 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3950 void *buffer, size_t *length, loff_t *ppos)
3952 return hugetlb_sysctl_handler_common(true, table, write,
3953 buffer, length, ppos);
3955 #endif /* CONFIG_NUMA */
3957 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3958 void *buffer, size_t *length, loff_t *ppos)
3960 struct hstate *h = &default_hstate;
3964 if (!hugepages_supported())
3967 tmp = h->nr_overcommit_huge_pages;
3969 if (write && hstate_is_gigantic(h))
3972 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3978 spin_lock_irq(&hugetlb_lock);
3979 h->nr_overcommit_huge_pages = tmp;
3980 spin_unlock_irq(&hugetlb_lock);
3986 #endif /* CONFIG_SYSCTL */
3988 void hugetlb_report_meminfo(struct seq_file *m)
3991 unsigned long total = 0;
3993 if (!hugepages_supported())
3996 for_each_hstate(h) {
3997 unsigned long count = h->nr_huge_pages;
3999 total += huge_page_size(h) * count;
4001 if (h == &default_hstate)
4003 "HugePages_Total: %5lu\n"
4004 "HugePages_Free: %5lu\n"
4005 "HugePages_Rsvd: %5lu\n"
4006 "HugePages_Surp: %5lu\n"
4007 "Hugepagesize: %8lu kB\n",
4011 h->surplus_huge_pages,
4012 huge_page_size(h) / SZ_1K);
4015 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4018 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4020 struct hstate *h = &default_hstate;
4022 if (!hugepages_supported())
4025 return sysfs_emit_at(buf, len,
4026 "Node %d HugePages_Total: %5u\n"
4027 "Node %d HugePages_Free: %5u\n"
4028 "Node %d HugePages_Surp: %5u\n",
4029 nid, h->nr_huge_pages_node[nid],
4030 nid, h->free_huge_pages_node[nid],
4031 nid, h->surplus_huge_pages_node[nid]);
4034 void hugetlb_show_meminfo(void)
4039 if (!hugepages_supported())
4042 for_each_node_state(nid, N_MEMORY)
4044 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4046 h->nr_huge_pages_node[nid],
4047 h->free_huge_pages_node[nid],
4048 h->surplus_huge_pages_node[nid],
4049 huge_page_size(h) / SZ_1K);
4052 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4054 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4055 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4058 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4059 unsigned long hugetlb_total_pages(void)
4062 unsigned long nr_total_pages = 0;
4065 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4066 return nr_total_pages;
4069 static int hugetlb_acct_memory(struct hstate *h, long delta)
4076 spin_lock_irq(&hugetlb_lock);
4078 * When cpuset is configured, it breaks the strict hugetlb page
4079 * reservation as the accounting is done on a global variable. Such
4080 * reservation is completely rubbish in the presence of cpuset because
4081 * the reservation is not checked against page availability for the
4082 * current cpuset. Application can still potentially OOM'ed by kernel
4083 * with lack of free htlb page in cpuset that the task is in.
4084 * Attempt to enforce strict accounting with cpuset is almost
4085 * impossible (or too ugly) because cpuset is too fluid that
4086 * task or memory node can be dynamically moved between cpusets.
4088 * The change of semantics for shared hugetlb mapping with cpuset is
4089 * undesirable. However, in order to preserve some of the semantics,
4090 * we fall back to check against current free page availability as
4091 * a best attempt and hopefully to minimize the impact of changing
4092 * semantics that cpuset has.
4094 * Apart from cpuset, we also have memory policy mechanism that
4095 * also determines from which node the kernel will allocate memory
4096 * in a NUMA system. So similar to cpuset, we also should consider
4097 * the memory policy of the current task. Similar to the description
4101 if (gather_surplus_pages(h, delta) < 0)
4104 if (delta > allowed_mems_nr(h)) {
4105 return_unused_surplus_pages(h, delta);
4112 return_unused_surplus_pages(h, (unsigned long) -delta);
4115 spin_unlock_irq(&hugetlb_lock);
4119 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4121 struct resv_map *resv = vma_resv_map(vma);
4124 * This new VMA should share its siblings reservation map if present.
4125 * The VMA will only ever have a valid reservation map pointer where
4126 * it is being copied for another still existing VMA. As that VMA
4127 * has a reference to the reservation map it cannot disappear until
4128 * after this open call completes. It is therefore safe to take a
4129 * new reference here without additional locking.
4131 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4132 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4133 kref_get(&resv->refs);
4137 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4139 struct hstate *h = hstate_vma(vma);
4140 struct resv_map *resv = vma_resv_map(vma);
4141 struct hugepage_subpool *spool = subpool_vma(vma);
4142 unsigned long reserve, start, end;
4145 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4148 start = vma_hugecache_offset(h, vma, vma->vm_start);
4149 end = vma_hugecache_offset(h, vma, vma->vm_end);
4151 reserve = (end - start) - region_count(resv, start, end);
4152 hugetlb_cgroup_uncharge_counter(resv, start, end);
4155 * Decrement reserve counts. The global reserve count may be
4156 * adjusted if the subpool has a minimum size.
4158 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4159 hugetlb_acct_memory(h, -gbl_reserve);
4162 kref_put(&resv->refs, resv_map_release);
4165 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4167 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4171 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4172 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4173 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4175 if (addr & ~PUD_MASK) {
4177 * hugetlb_vm_op_split is called right before we attempt to
4178 * split the VMA. We will need to unshare PMDs in the old and
4179 * new VMAs, so let's unshare before we split.
4181 unsigned long floor = addr & PUD_MASK;
4182 unsigned long ceil = floor + PUD_SIZE;
4184 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4185 hugetlb_unshare_pmds(vma, floor, ceil);
4191 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4193 return huge_page_size(hstate_vma(vma));
4197 * We cannot handle pagefaults against hugetlb pages at all. They cause
4198 * handle_mm_fault() to try to instantiate regular-sized pages in the
4199 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4202 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4209 * When a new function is introduced to vm_operations_struct and added
4210 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4211 * This is because under System V memory model, mappings created via
4212 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4213 * their original vm_ops are overwritten with shm_vm_ops.
4215 const struct vm_operations_struct hugetlb_vm_ops = {
4216 .fault = hugetlb_vm_op_fault,
4217 .open = hugetlb_vm_op_open,
4218 .close = hugetlb_vm_op_close,
4219 .may_split = hugetlb_vm_op_split,
4220 .pagesize = hugetlb_vm_op_pagesize,
4223 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4227 unsigned int shift = huge_page_shift(hstate_vma(vma));
4230 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4231 vma->vm_page_prot)));
4233 entry = huge_pte_wrprotect(mk_huge_pte(page,
4234 vma->vm_page_prot));
4236 entry = pte_mkyoung(entry);
4237 entry = pte_mkhuge(entry);
4238 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4243 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4244 unsigned long address, pte_t *ptep)
4248 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4249 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4250 update_mmu_cache(vma, address, ptep);
4253 bool is_hugetlb_entry_migration(pte_t pte)
4257 if (huge_pte_none(pte) || pte_present(pte))
4259 swp = pte_to_swp_entry(pte);
4260 if (is_migration_entry(swp))
4266 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4270 if (huge_pte_none(pte) || pte_present(pte))
4272 swp = pte_to_swp_entry(pte);
4273 if (is_hwpoison_entry(swp))
4280 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4281 struct page *new_page)
4283 __SetPageUptodate(new_page);
4284 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4285 hugepage_add_new_anon_rmap(new_page, vma, addr);
4286 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4287 ClearHPageRestoreReserve(new_page);
4288 SetHPageMigratable(new_page);
4291 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4292 struct vm_area_struct *vma)
4294 pte_t *src_pte, *dst_pte, entry, dst_entry;
4295 struct page *ptepage;
4297 bool cow = is_cow_mapping(vma->vm_flags);
4298 struct hstate *h = hstate_vma(vma);
4299 unsigned long sz = huge_page_size(h);
4300 unsigned long npages = pages_per_huge_page(h);
4301 struct address_space *mapping = vma->vm_file->f_mapping;
4302 struct mmu_notifier_range range;
4306 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4309 mmu_notifier_invalidate_range_start(&range);
4312 * For shared mappings i_mmap_rwsem must be held to call
4313 * huge_pte_alloc, otherwise the returned ptep could go
4314 * away if part of a shared pmd and another thread calls
4317 i_mmap_lock_read(mapping);
4320 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4321 spinlock_t *src_ptl, *dst_ptl;
4322 src_pte = huge_pte_offset(src, addr, sz);
4325 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4332 * If the pagetables are shared don't copy or take references.
4333 * dst_pte == src_pte is the common case of src/dest sharing.
4335 * However, src could have 'unshared' and dst shares with
4336 * another vma. If dst_pte !none, this implies sharing.
4337 * Check here before taking page table lock, and once again
4338 * after taking the lock below.
4340 dst_entry = huge_ptep_get(dst_pte);
4341 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4344 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4345 src_ptl = huge_pte_lockptr(h, src, src_pte);
4346 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4347 entry = huge_ptep_get(src_pte);
4348 dst_entry = huge_ptep_get(dst_pte);
4350 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4352 * Skip if src entry none. Also, skip in the
4353 * unlikely case dst entry !none as this implies
4354 * sharing with another vma.
4357 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4358 is_hugetlb_entry_hwpoisoned(entry))) {
4359 swp_entry_t swp_entry = pte_to_swp_entry(entry);
4361 if (is_writable_migration_entry(swp_entry) && cow) {
4363 * COW mappings require pages in both
4364 * parent and child to be set to read.
4366 swp_entry = make_readable_migration_entry(
4367 swp_offset(swp_entry));
4368 entry = swp_entry_to_pte(swp_entry);
4369 set_huge_swap_pte_at(src, addr, src_pte,
4372 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4374 entry = huge_ptep_get(src_pte);
4375 ptepage = pte_page(entry);
4379 * This is a rare case where we see pinned hugetlb
4380 * pages while they're prone to COW. We need to do the
4381 * COW earlier during fork.
4383 * When pre-allocating the page or copying data, we
4384 * need to be without the pgtable locks since we could
4385 * sleep during the process.
4387 if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4388 pte_t src_pte_old = entry;
4391 spin_unlock(src_ptl);
4392 spin_unlock(dst_ptl);
4393 /* Do not use reserve as it's private owned */
4394 new = alloc_huge_page(vma, addr, 1);
4400 copy_user_huge_page(new, ptepage, addr, vma,
4404 /* Install the new huge page if src pte stable */
4405 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4406 src_ptl = huge_pte_lockptr(h, src, src_pte);
4407 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4408 entry = huge_ptep_get(src_pte);
4409 if (!pte_same(src_pte_old, entry)) {
4410 restore_reserve_on_error(h, vma, addr,
4413 /* dst_entry won't change as in child */
4416 hugetlb_install_page(vma, dst_pte, addr, new);
4417 spin_unlock(src_ptl);
4418 spin_unlock(dst_ptl);
4424 * No need to notify as we are downgrading page
4425 * table protection not changing it to point
4428 * See Documentation/vm/mmu_notifier.rst
4430 huge_ptep_set_wrprotect(src, addr, src_pte);
4431 entry = huge_pte_wrprotect(entry);
4434 page_dup_rmap(ptepage, true);
4435 set_huge_pte_at(dst, addr, dst_pte, entry);
4436 hugetlb_count_add(npages, dst);
4438 spin_unlock(src_ptl);
4439 spin_unlock(dst_ptl);
4443 mmu_notifier_invalidate_range_end(&range);
4445 i_mmap_unlock_read(mapping);
4450 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4451 unsigned long start, unsigned long end,
4452 struct page *ref_page)
4454 struct mm_struct *mm = vma->vm_mm;
4455 unsigned long address;
4460 struct hstate *h = hstate_vma(vma);
4461 unsigned long sz = huge_page_size(h);
4462 struct mmu_notifier_range range;
4463 bool force_flush = false;
4465 WARN_ON(!is_vm_hugetlb_page(vma));
4466 BUG_ON(start & ~huge_page_mask(h));
4467 BUG_ON(end & ~huge_page_mask(h));
4470 * This is a hugetlb vma, all the pte entries should point
4473 tlb_change_page_size(tlb, sz);
4474 tlb_start_vma(tlb, vma);
4477 * If sharing possible, alert mmu notifiers of worst case.
4479 mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4481 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4482 mmu_notifier_invalidate_range_start(&range);
4484 for (; address < end; address += sz) {
4485 ptep = huge_pte_offset(mm, address, sz);
4489 ptl = huge_pte_lock(h, mm, ptep);
4490 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4492 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4497 pte = huge_ptep_get(ptep);
4498 if (huge_pte_none(pte)) {
4504 * Migrating hugepage or HWPoisoned hugepage is already
4505 * unmapped and its refcount is dropped, so just clear pte here.
4507 if (unlikely(!pte_present(pte))) {
4508 huge_pte_clear(mm, address, ptep, sz);
4513 page = pte_page(pte);
4515 * If a reference page is supplied, it is because a specific
4516 * page is being unmapped, not a range. Ensure the page we
4517 * are about to unmap is the actual page of interest.
4520 if (page != ref_page) {
4525 * Mark the VMA as having unmapped its page so that
4526 * future faults in this VMA will fail rather than
4527 * looking like data was lost
4529 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4532 pte = huge_ptep_get_and_clear(mm, address, ptep);
4533 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4534 if (huge_pte_dirty(pte))
4535 set_page_dirty(page);
4537 hugetlb_count_sub(pages_per_huge_page(h), mm);
4538 page_remove_rmap(page, true);
4541 tlb_remove_page_size(tlb, page, huge_page_size(h));
4543 * Bail out after unmapping reference page if supplied
4548 mmu_notifier_invalidate_range_end(&range);
4549 tlb_end_vma(tlb, vma);
4552 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4553 * could defer the flush until now, since by holding i_mmap_rwsem we
4554 * guaranteed that the last refernece would not be dropped. But we must
4555 * do the flushing before we return, as otherwise i_mmap_rwsem will be
4556 * dropped and the last reference to the shared PMDs page might be
4559 * In theory we could defer the freeing of the PMD pages as well, but
4560 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4561 * detect sharing, so we cannot defer the release of the page either.
4562 * Instead, do flush now.
4565 tlb_flush_mmu_tlbonly(tlb);
4568 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4569 struct vm_area_struct *vma, unsigned long start,
4570 unsigned long end, struct page *ref_page)
4572 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4575 * Clear this flag so that x86's huge_pmd_share page_table_shareable
4576 * test will fail on a vma being torn down, and not grab a page table
4577 * on its way out. We're lucky that the flag has such an appropriate
4578 * name, and can in fact be safely cleared here. We could clear it
4579 * before the __unmap_hugepage_range above, but all that's necessary
4580 * is to clear it before releasing the i_mmap_rwsem. This works
4581 * because in the context this is called, the VMA is about to be
4582 * destroyed and the i_mmap_rwsem is held.
4584 vma->vm_flags &= ~VM_MAYSHARE;
4587 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4588 unsigned long end, struct page *ref_page)
4590 struct mmu_gather tlb;
4592 tlb_gather_mmu(&tlb, vma->vm_mm);
4593 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4594 tlb_finish_mmu(&tlb);
4598 * This is called when the original mapper is failing to COW a MAP_PRIVATE
4599 * mapping it owns the reserve page for. The intention is to unmap the page
4600 * from other VMAs and let the children be SIGKILLed if they are faulting the
4603 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4604 struct page *page, unsigned long address)
4606 struct hstate *h = hstate_vma(vma);
4607 struct vm_area_struct *iter_vma;
4608 struct address_space *mapping;
4612 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4613 * from page cache lookup which is in HPAGE_SIZE units.
4615 address = address & huge_page_mask(h);
4616 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4618 mapping = vma->vm_file->f_mapping;
4621 * Take the mapping lock for the duration of the table walk. As
4622 * this mapping should be shared between all the VMAs,
4623 * __unmap_hugepage_range() is called as the lock is already held
4625 i_mmap_lock_write(mapping);
4626 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4627 /* Do not unmap the current VMA */
4628 if (iter_vma == vma)
4632 * Shared VMAs have their own reserves and do not affect
4633 * MAP_PRIVATE accounting but it is possible that a shared
4634 * VMA is using the same page so check and skip such VMAs.
4636 if (iter_vma->vm_flags & VM_MAYSHARE)
4640 * Unmap the page from other VMAs without their own reserves.
4641 * They get marked to be SIGKILLed if they fault in these
4642 * areas. This is because a future no-page fault on this VMA
4643 * could insert a zeroed page instead of the data existing
4644 * from the time of fork. This would look like data corruption
4646 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4647 unmap_hugepage_range(iter_vma, address,
4648 address + huge_page_size(h), page);
4650 i_mmap_unlock_write(mapping);
4654 * Hugetlb_cow() should be called with page lock of the original hugepage held.
4655 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4656 * cannot race with other handlers or page migration.
4657 * Keep the pte_same checks anyway to make transition from the mutex easier.
4659 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4660 unsigned long address, pte_t *ptep,
4661 struct page *pagecache_page, spinlock_t *ptl)
4664 struct hstate *h = hstate_vma(vma);
4665 struct page *old_page, *new_page;
4666 int outside_reserve = 0;
4668 unsigned long haddr = address & huge_page_mask(h);
4669 struct mmu_notifier_range range;
4671 pte = huge_ptep_get(ptep);
4672 old_page = pte_page(pte);
4675 /* If no-one else is actually using this page, avoid the copy
4676 * and just make the page writable */
4677 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4678 page_move_anon_rmap(old_page, vma);
4679 set_huge_ptep_writable(vma, haddr, ptep);
4684 * If the process that created a MAP_PRIVATE mapping is about to
4685 * perform a COW due to a shared page count, attempt to satisfy
4686 * the allocation without using the existing reserves. The pagecache
4687 * page is used to determine if the reserve at this address was
4688 * consumed or not. If reserves were used, a partial faulted mapping
4689 * at the time of fork() could consume its reserves on COW instead
4690 * of the full address range.
4692 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4693 old_page != pagecache_page)
4694 outside_reserve = 1;
4699 * Drop page table lock as buddy allocator may be called. It will
4700 * be acquired again before returning to the caller, as expected.
4703 new_page = alloc_huge_page(vma, haddr, outside_reserve);
4705 if (IS_ERR(new_page)) {
4707 * If a process owning a MAP_PRIVATE mapping fails to COW,
4708 * it is due to references held by a child and an insufficient
4709 * huge page pool. To guarantee the original mappers
4710 * reliability, unmap the page from child processes. The child
4711 * may get SIGKILLed if it later faults.
4713 if (outside_reserve) {
4714 struct address_space *mapping = vma->vm_file->f_mapping;
4719 BUG_ON(huge_pte_none(pte));
4721 * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4722 * unmapping. unmapping needs to hold i_mmap_rwsem
4723 * in write mode. Dropping i_mmap_rwsem in read mode
4724 * here is OK as COW mappings do not interact with
4727 * Reacquire both after unmap operation.
4729 idx = vma_hugecache_offset(h, vma, haddr);
4730 hash = hugetlb_fault_mutex_hash(mapping, idx);
4731 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4732 i_mmap_unlock_read(mapping);
4734 unmap_ref_private(mm, vma, old_page, haddr);
4736 i_mmap_lock_read(mapping);
4737 mutex_lock(&hugetlb_fault_mutex_table[hash]);
4739 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4741 pte_same(huge_ptep_get(ptep), pte)))
4742 goto retry_avoidcopy;
4744 * race occurs while re-acquiring page table
4745 * lock, and our job is done.
4750 ret = vmf_error(PTR_ERR(new_page));
4751 goto out_release_old;
4755 * When the original hugepage is shared one, it does not have
4756 * anon_vma prepared.
4758 if (unlikely(anon_vma_prepare(vma))) {
4760 goto out_release_all;
4763 copy_user_huge_page(new_page, old_page, address, vma,
4764 pages_per_huge_page(h));
4765 __SetPageUptodate(new_page);
4767 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4768 haddr + huge_page_size(h));
4769 mmu_notifier_invalidate_range_start(&range);
4772 * Retake the page table lock to check for racing updates
4773 * before the page tables are altered
4776 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4777 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4778 ClearHPageRestoreReserve(new_page);
4781 huge_ptep_clear_flush(vma, haddr, ptep);
4782 mmu_notifier_invalidate_range(mm, range.start, range.end);
4783 set_huge_pte_at(mm, haddr, ptep,
4784 make_huge_pte(vma, new_page, 1));
4785 page_remove_rmap(old_page, true);
4786 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4787 SetHPageMigratable(new_page);
4788 /* Make the old page be freed below */
4789 new_page = old_page;
4792 mmu_notifier_invalidate_range_end(&range);
4794 /* No restore in case of successful pagetable update (Break COW) */
4795 if (new_page != old_page)
4796 restore_reserve_on_error(h, vma, haddr, new_page);
4801 spin_lock(ptl); /* Caller expects lock to be held */
4805 /* Return the pagecache page at a given address within a VMA */
4806 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4807 struct vm_area_struct *vma, unsigned long address)
4809 struct address_space *mapping;
4812 mapping = vma->vm_file->f_mapping;
4813 idx = vma_hugecache_offset(h, vma, address);
4815 return find_lock_page(mapping, idx);
4819 * Return whether there is a pagecache page to back given address within VMA.
4820 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4822 static bool hugetlbfs_pagecache_present(struct hstate *h,
4823 struct vm_area_struct *vma, unsigned long address)
4825 struct address_space *mapping;
4829 mapping = vma->vm_file->f_mapping;
4830 idx = vma_hugecache_offset(h, vma, address);
4832 page = find_get_page(mapping, idx);
4835 return page != NULL;
4838 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4841 struct inode *inode = mapping->host;
4842 struct hstate *h = hstate_inode(inode);
4843 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4847 ClearHPageRestoreReserve(page);
4850 * set page dirty so that it will not be removed from cache/file
4851 * by non-hugetlbfs specific code paths.
4853 set_page_dirty(page);
4855 spin_lock(&inode->i_lock);
4856 inode->i_blocks += blocks_per_huge_page(h);
4857 spin_unlock(&inode->i_lock);
4861 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4862 struct address_space *mapping,
4865 unsigned long haddr,
4866 unsigned long reason)
4869 struct vm_fault vmf = {
4875 * Hard to debug if it ends up being
4876 * used by a callee that assumes
4877 * something about the other
4878 * uninitialized fields... same as in
4884 * vma_lock and hugetlb_fault_mutex must be dropped before handling
4885 * userfault. Also mmap_lock will be dropped during handling
4886 * userfault, any vma operation should be careful from here.
4888 hash = hugetlb_fault_mutex_hash(mapping, idx);
4889 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4890 i_mmap_unlock_read(mapping);
4891 return handle_userfault(&vmf, reason);
4894 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4895 struct vm_area_struct *vma,
4896 struct address_space *mapping, pgoff_t idx,
4897 unsigned long address, pte_t *ptep, unsigned int flags)
4899 struct hstate *h = hstate_vma(vma);
4900 vm_fault_t ret = VM_FAULT_SIGBUS;
4906 unsigned long haddr = address & huge_page_mask(h);
4907 bool new_page, new_pagecache_page = false;
4908 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4911 * Currently, we are forced to kill the process in the event the
4912 * original mapper has unmapped pages from the child due to a failed
4913 * COW. Warn that such a situation has occurred as it may not be obvious
4915 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4916 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4922 * We can not race with truncation due to holding i_mmap_rwsem.
4923 * i_size is modified when holding i_mmap_rwsem, so check here
4924 * once for faults beyond end of file.
4926 size = i_size_read(mapping->host) >> huge_page_shift(h);
4932 page = find_lock_page(mapping, idx);
4934 /* Check for page in userfault range */
4935 if (userfaultfd_missing(vma))
4936 return hugetlb_handle_userfault(vma, mapping, idx,
4940 page = alloc_huge_page(vma, haddr, 0);
4943 * Returning error will result in faulting task being
4944 * sent SIGBUS. The hugetlb fault mutex prevents two
4945 * tasks from racing to fault in the same page which
4946 * could result in false unable to allocate errors.
4947 * Page migration does not take the fault mutex, but
4948 * does a clear then write of pte's under page table
4949 * lock. Page fault code could race with migration,
4950 * notice the clear pte and try to allocate a page
4951 * here. Before returning error, get ptl and make
4952 * sure there really is no pte entry.
4954 ptl = huge_pte_lock(h, mm, ptep);
4956 if (huge_pte_none(huge_ptep_get(ptep)))
4957 ret = vmf_error(PTR_ERR(page));
4961 clear_huge_page(page, address, pages_per_huge_page(h));
4962 __SetPageUptodate(page);
4965 if (vma->vm_flags & VM_MAYSHARE) {
4966 int err = huge_add_to_page_cache(page, mapping, idx);
4973 new_pagecache_page = true;
4976 if (unlikely(anon_vma_prepare(vma))) {
4978 goto backout_unlocked;
4984 * If memory error occurs between mmap() and fault, some process
4985 * don't have hwpoisoned swap entry for errored virtual address.
4986 * So we need to block hugepage fault by PG_hwpoison bit check.
4988 if (unlikely(PageHWPoison(page))) {
4989 ret = VM_FAULT_HWPOISON_LARGE |
4990 VM_FAULT_SET_HINDEX(hstate_index(h));
4991 goto backout_unlocked;
4994 /* Check for page in userfault range. */
4995 if (userfaultfd_minor(vma)) {
4998 return hugetlb_handle_userfault(vma, mapping, idx,
5005 * If we are going to COW a private mapping later, we examine the
5006 * pending reservations for this page now. This will ensure that
5007 * any allocations necessary to record that reservation occur outside
5010 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5011 if (vma_needs_reservation(h, vma, haddr) < 0) {
5013 goto backout_unlocked;
5015 /* Just decrements count, does not deallocate */
5016 vma_end_reservation(h, vma, haddr);
5019 ptl = huge_pte_lock(h, mm, ptep);
5021 if (!huge_pte_none(huge_ptep_get(ptep)))
5025 ClearHPageRestoreReserve(page);
5026 hugepage_add_new_anon_rmap(page, vma, haddr);
5028 page_dup_rmap(page, true);
5029 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5030 && (vma->vm_flags & VM_SHARED)));
5031 set_huge_pte_at(mm, haddr, ptep, new_pte);
5033 hugetlb_count_add(pages_per_huge_page(h), mm);
5034 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5035 /* Optimization, do the COW without a second fault */
5036 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5042 * Only set HPageMigratable in newly allocated pages. Existing pages
5043 * found in the pagecache may not have HPageMigratableset if they have
5044 * been isolated for migration.
5047 SetHPageMigratable(page);
5051 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5052 i_mmap_unlock_read(mapping);
5059 /* restore reserve for newly allocated pages not in page cache */
5060 if (new_page && !new_pagecache_page)
5061 restore_reserve_on_error(h, vma, haddr, page);
5067 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5069 unsigned long key[2];
5072 key[0] = (unsigned long) mapping;
5075 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5077 return hash & (num_fault_mutexes - 1);
5081 * For uniprocessor systems we always use a single mutex, so just
5082 * return 0 and avoid the hashing overhead.
5084 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5090 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5091 unsigned long address, unsigned int flags)
5098 struct page *page = NULL;
5099 struct page *pagecache_page = NULL;
5100 struct hstate *h = hstate_vma(vma);
5101 struct address_space *mapping;
5102 int need_wait_lock = 0;
5103 unsigned long haddr = address & huge_page_mask(h);
5105 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5108 * Since we hold no locks, ptep could be stale. That is
5109 * OK as we are only making decisions based on content and
5110 * not actually modifying content here.
5112 entry = huge_ptep_get(ptep);
5113 if (unlikely(is_hugetlb_entry_migration(entry))) {
5114 migration_entry_wait_huge(vma, mm, ptep);
5116 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5117 return VM_FAULT_HWPOISON_LARGE |
5118 VM_FAULT_SET_HINDEX(hstate_index(h));
5122 * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5123 * until finished with ptep. This serves two purposes:
5124 * 1) It prevents huge_pmd_unshare from being called elsewhere
5125 * and making the ptep no longer valid.
5126 * 2) It synchronizes us with i_size modifications during truncation.
5128 * ptep could have already be assigned via huge_pte_offset. That
5129 * is OK, as huge_pte_alloc will return the same value unless
5130 * something has changed.
5132 mapping = vma->vm_file->f_mapping;
5133 i_mmap_lock_read(mapping);
5134 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5136 i_mmap_unlock_read(mapping);
5137 return VM_FAULT_OOM;
5141 * Serialize hugepage allocation and instantiation, so that we don't
5142 * get spurious allocation failures if two CPUs race to instantiate
5143 * the same page in the page cache.
5145 idx = vma_hugecache_offset(h, vma, haddr);
5146 hash = hugetlb_fault_mutex_hash(mapping, idx);
5147 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5149 entry = huge_ptep_get(ptep);
5150 if (huge_pte_none(entry))
5152 * hugetlb_no_page will drop vma lock and hugetlb fault
5153 * mutex internally, which make us return immediately.
5155 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5160 * entry could be a migration/hwpoison entry at this point, so this
5161 * check prevents the kernel from going below assuming that we have
5162 * an active hugepage in pagecache. This goto expects the 2nd page
5163 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5164 * properly handle it.
5166 if (!pte_present(entry))
5170 * If we are going to COW the mapping later, we examine the pending
5171 * reservations for this page now. This will ensure that any
5172 * allocations necessary to record that reservation occur outside the
5173 * spinlock. For private mappings, we also lookup the pagecache
5174 * page now as it is used to determine if a reservation has been
5177 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5178 if (vma_needs_reservation(h, vma, haddr) < 0) {
5182 /* Just decrements count, does not deallocate */
5183 vma_end_reservation(h, vma, haddr);
5185 if (!(vma->vm_flags & VM_MAYSHARE))
5186 pagecache_page = hugetlbfs_pagecache_page(h,
5190 ptl = huge_pte_lock(h, mm, ptep);
5192 /* Check for a racing update before calling hugetlb_cow */
5193 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5197 * hugetlb_cow() requires page locks of pte_page(entry) and
5198 * pagecache_page, so here we need take the former one
5199 * when page != pagecache_page or !pagecache_page.
5201 page = pte_page(entry);
5202 if (page != pagecache_page)
5203 if (!trylock_page(page)) {
5210 if (flags & FAULT_FLAG_WRITE) {
5211 if (!huge_pte_write(entry)) {
5212 ret = hugetlb_cow(mm, vma, address, ptep,
5213 pagecache_page, ptl);
5216 entry = huge_pte_mkdirty(entry);
5218 entry = pte_mkyoung(entry);
5219 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5220 flags & FAULT_FLAG_WRITE))
5221 update_mmu_cache(vma, haddr, ptep);
5223 if (page != pagecache_page)
5229 if (pagecache_page) {
5230 unlock_page(pagecache_page);
5231 put_page(pagecache_page);
5234 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5235 i_mmap_unlock_read(mapping);
5237 * Generally it's safe to hold refcount during waiting page lock. But
5238 * here we just wait to defer the next page fault to avoid busy loop and
5239 * the page is not used after unlocked before returning from the current
5240 * page fault. So we are safe from accessing freed page, even if we wait
5241 * here without taking refcount.
5244 wait_on_page_locked(page);
5248 #ifdef CONFIG_USERFAULTFD
5250 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
5251 * modifications for huge pages.
5253 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5255 struct vm_area_struct *dst_vma,
5256 unsigned long dst_addr,
5257 unsigned long src_addr,
5258 enum mcopy_atomic_mode mode,
5259 struct page **pagep)
5261 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5262 struct hstate *h = hstate_vma(dst_vma);
5263 struct address_space *mapping = dst_vma->vm_file->f_mapping;
5264 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5266 int vm_shared = dst_vma->vm_flags & VM_SHARED;
5272 bool page_in_pagecache = false;
5276 page = find_lock_page(mapping, idx);
5279 page_in_pagecache = true;
5280 } else if (!*pagep) {
5281 /* If a page already exists, then it's UFFDIO_COPY for
5282 * a non-missing case. Return -EEXIST.
5285 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5290 page = alloc_huge_page(dst_vma, dst_addr, 0);
5296 ret = copy_huge_page_from_user(page,
5297 (const void __user *) src_addr,
5298 pages_per_huge_page(h), false);
5300 /* fallback to copy_from_user outside mmap_lock */
5301 if (unlikely(ret)) {
5303 /* Free the allocated page which may have
5304 * consumed a reservation.
5306 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5309 /* Allocate a temporary page to hold the copied
5312 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5318 /* Set the outparam pagep and return to the caller to
5319 * copy the contents outside the lock. Don't free the
5326 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5333 page = alloc_huge_page(dst_vma, dst_addr, 0);
5340 copy_huge_page(page, *pagep);
5346 * The memory barrier inside __SetPageUptodate makes sure that
5347 * preceding stores to the page contents become visible before
5348 * the set_pte_at() write.
5350 __SetPageUptodate(page);
5352 /* Add shared, newly allocated pages to the page cache. */
5353 if (vm_shared && !is_continue) {
5354 size = i_size_read(mapping->host) >> huge_page_shift(h);
5357 goto out_release_nounlock;
5360 * Serialization between remove_inode_hugepages() and
5361 * huge_add_to_page_cache() below happens through the
5362 * hugetlb_fault_mutex_table that here must be hold by
5365 ret = huge_add_to_page_cache(page, mapping, idx);
5367 goto out_release_nounlock;
5368 page_in_pagecache = true;
5371 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5375 if (PageHWPoison(page))
5376 goto out_release_unlock;
5379 * Recheck the i_size after holding PT lock to make sure not
5380 * to leave any page mapped (as page_mapped()) beyond the end
5381 * of the i_size (remove_inode_hugepages() is strict about
5382 * enforcing that). If we bail out here, we'll also leave a
5383 * page in the radix tree in the vm_shared case beyond the end
5384 * of the i_size, but remove_inode_hugepages() will take care
5385 * of it as soon as we drop the hugetlb_fault_mutex_table.
5387 size = i_size_read(mapping->host) >> huge_page_shift(h);
5390 goto out_release_unlock;
5393 if (!huge_pte_none(huge_ptep_get(dst_pte)))
5394 goto out_release_unlock;
5396 if (page_in_pagecache) {
5397 page_dup_rmap(page, true);
5399 ClearHPageRestoreReserve(page);
5400 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5403 /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5404 if (is_continue && !vm_shared)
5407 writable = dst_vma->vm_flags & VM_WRITE;
5409 _dst_pte = make_huge_pte(dst_vma, page, writable);
5411 _dst_pte = huge_pte_mkdirty(_dst_pte);
5412 _dst_pte = pte_mkyoung(_dst_pte);
5414 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5416 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5417 dst_vma->vm_flags & VM_WRITE);
5418 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5420 /* No need to invalidate - it was non-present before */
5421 update_mmu_cache(dst_vma, dst_addr, dst_pte);
5425 SetHPageMigratable(page);
5426 if (vm_shared || is_continue)
5433 if (vm_shared || is_continue)
5435 out_release_nounlock:
5436 if (!page_in_pagecache)
5437 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5441 #endif /* CONFIG_USERFAULTFD */
5443 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5444 int refs, struct page **pages,
5445 struct vm_area_struct **vmas)
5449 for (nr = 0; nr < refs; nr++) {
5451 pages[nr] = mem_map_offset(page, nr);
5457 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5458 struct page **pages, struct vm_area_struct **vmas,
5459 unsigned long *position, unsigned long *nr_pages,
5460 long i, unsigned int flags, int *locked)
5462 unsigned long pfn_offset;
5463 unsigned long vaddr = *position;
5464 unsigned long remainder = *nr_pages;
5465 struct hstate *h = hstate_vma(vma);
5466 int err = -EFAULT, refs;
5468 while (vaddr < vma->vm_end && remainder) {
5470 spinlock_t *ptl = NULL;
5475 * If we have a pending SIGKILL, don't keep faulting pages and
5476 * potentially allocating memory.
5478 if (fatal_signal_pending(current)) {
5484 * Some archs (sparc64, sh*) have multiple pte_ts to
5485 * each hugepage. We have to make sure we get the
5486 * first, for the page indexing below to work.
5488 * Note that page table lock is not held when pte is null.
5490 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5493 ptl = huge_pte_lock(h, mm, pte);
5494 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5497 * When coredumping, it suits get_dump_page if we just return
5498 * an error where there's an empty slot with no huge pagecache
5499 * to back it. This way, we avoid allocating a hugepage, and
5500 * the sparse dumpfile avoids allocating disk blocks, but its
5501 * huge holes still show up with zeroes where they need to be.
5503 if (absent && (flags & FOLL_DUMP) &&
5504 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5512 * We need call hugetlb_fault for both hugepages under migration
5513 * (in which case hugetlb_fault waits for the migration,) and
5514 * hwpoisoned hugepages (in which case we need to prevent the
5515 * caller from accessing to them.) In order to do this, we use
5516 * here is_swap_pte instead of is_hugetlb_entry_migration and
5517 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5518 * both cases, and because we can't follow correct pages
5519 * directly from any kind of swap entries.
5521 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5522 ((flags & FOLL_WRITE) &&
5523 !huge_pte_write(huge_ptep_get(pte)))) {
5525 unsigned int fault_flags = 0;
5529 if (flags & FOLL_WRITE)
5530 fault_flags |= FAULT_FLAG_WRITE;
5532 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5533 FAULT_FLAG_KILLABLE;
5534 if (flags & FOLL_NOWAIT)
5535 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5536 FAULT_FLAG_RETRY_NOWAIT;
5537 if (flags & FOLL_TRIED) {
5539 * Note: FAULT_FLAG_ALLOW_RETRY and
5540 * FAULT_FLAG_TRIED can co-exist
5542 fault_flags |= FAULT_FLAG_TRIED;
5544 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5545 if (ret & VM_FAULT_ERROR) {
5546 err = vm_fault_to_errno(ret, flags);
5550 if (ret & VM_FAULT_RETRY) {
5552 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5556 * VM_FAULT_RETRY must not return an
5557 * error, it will return zero
5560 * No need to update "position" as the
5561 * caller will not check it after
5562 * *nr_pages is set to 0.
5569 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5570 page = pte_page(huge_ptep_get(pte));
5573 * If subpage information not requested, update counters
5574 * and skip the same_page loop below.
5576 if (!pages && !vmas && !pfn_offset &&
5577 (vaddr + huge_page_size(h) < vma->vm_end) &&
5578 (remainder >= pages_per_huge_page(h))) {
5579 vaddr += huge_page_size(h);
5580 remainder -= pages_per_huge_page(h);
5581 i += pages_per_huge_page(h);
5586 /* vaddr may not be aligned to PAGE_SIZE */
5587 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5588 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5591 record_subpages_vmas(mem_map_offset(page, pfn_offset),
5593 likely(pages) ? pages + i : NULL,
5594 vmas ? vmas + i : NULL);
5598 * try_grab_compound_head() should always succeed here,
5599 * because: a) we hold the ptl lock, and b) we've just
5600 * checked that the huge page is present in the page
5601 * tables. If the huge page is present, then the tail
5602 * pages must also be present. The ptl prevents the
5603 * head page and tail pages from being rearranged in
5604 * any way. So this page must be available at this
5605 * point, unless the page refcount overflowed:
5607 if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5617 vaddr += (refs << PAGE_SHIFT);
5623 *nr_pages = remainder;
5625 * setting position is actually required only if remainder is
5626 * not zero but it's faster not to add a "if (remainder)"
5634 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5635 unsigned long address, unsigned long end, pgprot_t newprot)
5637 struct mm_struct *mm = vma->vm_mm;
5638 unsigned long start = address;
5641 struct hstate *h = hstate_vma(vma);
5642 unsigned long pages = 0;
5643 bool shared_pmd = false;
5644 struct mmu_notifier_range range;
5647 * In the case of shared PMDs, the area to flush could be beyond
5648 * start/end. Set range.start/range.end to cover the maximum possible
5649 * range if PMD sharing is possible.
5651 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5652 0, vma, mm, start, end);
5653 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5655 BUG_ON(address >= end);
5656 flush_cache_range(vma, range.start, range.end);
5658 mmu_notifier_invalidate_range_start(&range);
5659 i_mmap_lock_write(vma->vm_file->f_mapping);
5660 for (; address < end; address += huge_page_size(h)) {
5662 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5665 ptl = huge_pte_lock(h, mm, ptep);
5666 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5672 pte = huge_ptep_get(ptep);
5673 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5677 if (unlikely(is_hugetlb_entry_migration(pte))) {
5678 swp_entry_t entry = pte_to_swp_entry(pte);
5680 if (is_writable_migration_entry(entry)) {
5683 entry = make_readable_migration_entry(
5685 newpte = swp_entry_to_pte(entry);
5686 set_huge_swap_pte_at(mm, address, ptep,
5687 newpte, huge_page_size(h));
5693 if (!huge_pte_none(pte)) {
5695 unsigned int shift = huge_page_shift(hstate_vma(vma));
5697 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5698 pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5699 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5700 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5706 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5707 * may have cleared our pud entry and done put_page on the page table:
5708 * once we release i_mmap_rwsem, another task can do the final put_page
5709 * and that page table be reused and filled with junk. If we actually
5710 * did unshare a page of pmds, flush the range corresponding to the pud.
5713 flush_hugetlb_tlb_range(vma, range.start, range.end);
5715 flush_hugetlb_tlb_range(vma, start, end);
5717 * No need to call mmu_notifier_invalidate_range() we are downgrading
5718 * page table protection not changing it to point to a new page.
5720 * See Documentation/vm/mmu_notifier.rst
5722 i_mmap_unlock_write(vma->vm_file->f_mapping);
5723 mmu_notifier_invalidate_range_end(&range);
5725 return pages << h->order;
5728 /* Return true if reservation was successful, false otherwise. */
5729 bool hugetlb_reserve_pages(struct inode *inode,
5731 struct vm_area_struct *vma,
5732 vm_flags_t vm_flags)
5735 struct hstate *h = hstate_inode(inode);
5736 struct hugepage_subpool *spool = subpool_inode(inode);
5737 struct resv_map *resv_map;
5738 struct hugetlb_cgroup *h_cg = NULL;
5739 long gbl_reserve, regions_needed = 0;
5741 /* This should never happen */
5743 VM_WARN(1, "%s called with a negative range\n", __func__);
5748 * Only apply hugepage reservation if asked. At fault time, an
5749 * attempt will be made for VM_NORESERVE to allocate a page
5750 * without using reserves
5752 if (vm_flags & VM_NORESERVE)
5756 * Shared mappings base their reservation on the number of pages that
5757 * are already allocated on behalf of the file. Private mappings need
5758 * to reserve the full area even if read-only as mprotect() may be
5759 * called to make the mapping read-write. Assume !vma is a shm mapping
5761 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5763 * resv_map can not be NULL as hugetlb_reserve_pages is only
5764 * called for inodes for which resv_maps were created (see
5765 * hugetlbfs_get_inode).
5767 resv_map = inode_resv_map(inode);
5769 chg = region_chg(resv_map, from, to, ®ions_needed);
5772 /* Private mapping. */
5773 resv_map = resv_map_alloc();
5779 set_vma_resv_map(vma, resv_map);
5780 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5786 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5787 chg * pages_per_huge_page(h), &h_cg) < 0)
5790 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5791 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5794 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5798 * There must be enough pages in the subpool for the mapping. If
5799 * the subpool has a minimum size, there may be some global
5800 * reservations already in place (gbl_reserve).
5802 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5803 if (gbl_reserve < 0)
5804 goto out_uncharge_cgroup;
5807 * Check enough hugepages are available for the reservation.
5808 * Hand the pages back to the subpool if there are not
5810 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5814 * Account for the reservations made. Shared mappings record regions
5815 * that have reservations as they are shared by multiple VMAs.
5816 * When the last VMA disappears, the region map says how much
5817 * the reservation was and the page cache tells how much of
5818 * the reservation was consumed. Private mappings are per-VMA and
5819 * only the consumed reservations are tracked. When the VMA
5820 * disappears, the original reservation is the VMA size and the
5821 * consumed reservations are stored in the map. Hence, nothing
5822 * else has to be done for private mappings here
5824 if (!vma || vma->vm_flags & VM_MAYSHARE) {
5825 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5827 if (unlikely(add < 0)) {
5828 hugetlb_acct_memory(h, -gbl_reserve);
5830 } else if (unlikely(chg > add)) {
5832 * pages in this range were added to the reserve
5833 * map between region_chg and region_add. This
5834 * indicates a race with alloc_huge_page. Adjust
5835 * the subpool and reserve counts modified above
5836 * based on the difference.
5841 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5842 * reference to h_cg->css. See comment below for detail.
5844 hugetlb_cgroup_uncharge_cgroup_rsvd(
5846 (chg - add) * pages_per_huge_page(h), h_cg);
5848 rsv_adjust = hugepage_subpool_put_pages(spool,
5850 hugetlb_acct_memory(h, -rsv_adjust);
5853 * The file_regions will hold their own reference to
5854 * h_cg->css. So we should release the reference held
5855 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5858 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5864 /* put back original number of pages, chg */
5865 (void)hugepage_subpool_put_pages(spool, chg);
5866 out_uncharge_cgroup:
5867 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5868 chg * pages_per_huge_page(h), h_cg);
5870 if (!vma || vma->vm_flags & VM_MAYSHARE)
5871 /* Only call region_abort if the region_chg succeeded but the
5872 * region_add failed or didn't run.
5874 if (chg >= 0 && add < 0)
5875 region_abort(resv_map, from, to, regions_needed);
5876 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5877 kref_put(&resv_map->refs, resv_map_release);
5881 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5884 struct hstate *h = hstate_inode(inode);
5885 struct resv_map *resv_map = inode_resv_map(inode);
5887 struct hugepage_subpool *spool = subpool_inode(inode);
5891 * Since this routine can be called in the evict inode path for all
5892 * hugetlbfs inodes, resv_map could be NULL.
5895 chg = region_del(resv_map, start, end);
5897 * region_del() can fail in the rare case where a region
5898 * must be split and another region descriptor can not be
5899 * allocated. If end == LONG_MAX, it will not fail.
5905 spin_lock(&inode->i_lock);
5906 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5907 spin_unlock(&inode->i_lock);
5910 * If the subpool has a minimum size, the number of global
5911 * reservations to be released may be adjusted.
5913 * Note that !resv_map implies freed == 0. So (chg - freed)
5914 * won't go negative.
5916 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5917 hugetlb_acct_memory(h, -gbl_reserve);
5922 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5923 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5924 struct vm_area_struct *vma,
5925 unsigned long addr, pgoff_t idx)
5927 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5929 unsigned long sbase = saddr & PUD_MASK;
5930 unsigned long s_end = sbase + PUD_SIZE;
5932 /* Allow segments to share if only one is marked locked */
5933 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5934 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5937 * match the virtual addresses, permission and the alignment of the
5940 if (pmd_index(addr) != pmd_index(saddr) ||
5941 vm_flags != svm_flags ||
5942 !range_in_vma(svma, sbase, s_end))
5948 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5950 unsigned long base = addr & PUD_MASK;
5951 unsigned long end = base + PUD_SIZE;
5954 * check on proper vm_flags and page table alignment
5956 if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5961 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5963 #ifdef CONFIG_USERFAULTFD
5964 if (uffd_disable_huge_pmd_share(vma))
5967 return vma_shareable(vma, addr);
5971 * Determine if start,end range within vma could be mapped by shared pmd.
5972 * If yes, adjust start and end to cover range associated with possible
5973 * shared pmd mappings.
5975 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5976 unsigned long *start, unsigned long *end)
5978 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5979 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5982 * vma needs to span at least one aligned PUD size, and the range
5983 * must be at least partially within in.
5985 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5986 (*end <= v_start) || (*start >= v_end))
5989 /* Extend the range to be PUD aligned for a worst case scenario */
5990 if (*start > v_start)
5991 *start = ALIGN_DOWN(*start, PUD_SIZE);
5994 *end = ALIGN(*end, PUD_SIZE);
5998 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5999 * and returns the corresponding pte. While this is not necessary for the
6000 * !shared pmd case because we can allocate the pmd later as well, it makes the
6001 * code much cleaner.
6003 * This routine must be called with i_mmap_rwsem held in at least read mode if
6004 * sharing is possible. For hugetlbfs, this prevents removal of any page
6005 * table entries associated with the address space. This is important as we
6006 * are setting up sharing based on existing page table entries (mappings).
6008 * NOTE: This routine is only called from huge_pte_alloc. Some callers of
6009 * huge_pte_alloc know that sharing is not possible and do not take
6010 * i_mmap_rwsem as a performance optimization. This is handled by the
6011 * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
6012 * only required for subsequent processing.
6014 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6015 unsigned long addr, pud_t *pud)
6017 struct address_space *mapping = vma->vm_file->f_mapping;
6018 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6020 struct vm_area_struct *svma;
6021 unsigned long saddr;
6026 i_mmap_assert_locked(mapping);
6027 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6031 saddr = page_table_shareable(svma, vma, addr, idx);
6033 spte = huge_pte_offset(svma->vm_mm, saddr,
6034 vma_mmu_pagesize(svma));
6036 get_page(virt_to_page(spte));
6045 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6046 if (pud_none(*pud)) {
6047 pud_populate(mm, pud,
6048 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6051 put_page(virt_to_page(spte));
6055 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6060 * unmap huge page backed by shared pte.
6062 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6063 * indicated by page_count > 1, unmap is achieved by clearing pud and
6064 * decrementing the ref count. If count == 1, the pte page is not shared.
6066 * Called with page table lock held and i_mmap_rwsem held in write mode.
6068 * returns: 1 successfully unmapped a shared pte page
6069 * 0 the underlying pte page is not shared, or it is the last user
6071 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6072 unsigned long *addr, pte_t *ptep)
6074 pgd_t *pgd = pgd_offset(mm, *addr);
6075 p4d_t *p4d = p4d_offset(pgd, *addr);
6076 pud_t *pud = pud_offset(p4d, *addr);
6078 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6079 BUG_ON(page_count(virt_to_page(ptep)) == 0);
6080 if (page_count(virt_to_page(ptep)) == 1)
6084 put_page(virt_to_page(ptep));
6087 * This update of passed address optimizes loops sequentially
6088 * processing addresses in increments of huge page size (PMD_SIZE
6089 * in this case). By clearing the pud, a PUD_SIZE area is unmapped.
6090 * Update address to the 'last page' in the cleared area so that
6091 * calling loop can move to first page past this area.
6093 *addr |= PUD_SIZE - PMD_SIZE;
6097 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6098 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6099 unsigned long addr, pud_t *pud)
6104 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6105 unsigned long *addr, pte_t *ptep)
6110 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6111 unsigned long *start, unsigned long *end)
6115 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6119 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6121 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6122 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6123 unsigned long addr, unsigned long sz)
6130 pgd = pgd_offset(mm, addr);
6131 p4d = p4d_alloc(mm, pgd, addr);
6134 pud = pud_alloc(mm, p4d, addr);
6136 if (sz == PUD_SIZE) {
6139 BUG_ON(sz != PMD_SIZE);
6140 if (want_pmd_share(vma, addr) && pud_none(*pud))
6141 pte = huge_pmd_share(mm, vma, addr, pud);
6143 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6146 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6152 * huge_pte_offset() - Walk the page table to resolve the hugepage
6153 * entry at address @addr
6155 * Return: Pointer to page table entry (PUD or PMD) for
6156 * address @addr, or NULL if a !p*d_present() entry is encountered and the
6157 * size @sz doesn't match the hugepage size at this level of the page
6160 pte_t *huge_pte_offset(struct mm_struct *mm,
6161 unsigned long addr, unsigned long sz)
6168 pgd = pgd_offset(mm, addr);
6169 if (!pgd_present(*pgd))
6171 p4d = p4d_offset(pgd, addr);
6172 if (!p4d_present(*p4d))
6175 pud = pud_offset(p4d, addr);
6177 /* must be pud huge, non-present or none */
6178 return (pte_t *)pud;
6179 if (!pud_present(*pud))
6181 /* must have a valid entry and size to go further */
6183 pmd = pmd_offset(pud, addr);
6184 /* must be pmd huge, non-present or none */
6185 return (pte_t *)pmd;
6188 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6191 * These functions are overwritable if your architecture needs its own
6194 struct page * __weak
6195 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6198 return ERR_PTR(-EINVAL);
6201 struct page * __weak
6202 follow_huge_pd(struct vm_area_struct *vma,
6203 unsigned long address, hugepd_t hpd, int flags, int pdshift)
6205 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6209 struct page * __weak
6210 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
6212 struct hstate *h = hstate_vma(vma);
6213 struct mm_struct *mm = vma->vm_mm;
6214 struct page *page = NULL;
6218 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6219 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6220 (FOLL_PIN | FOLL_GET)))
6224 ptep = huge_pte_offset(mm, address, huge_page_size(h));
6228 ptl = huge_pte_lock(h, mm, ptep);
6229 pte = huge_ptep_get(ptep);
6230 if (pte_present(pte)) {
6231 page = pte_page(pte) +
6232 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6234 * try_grab_page() should always succeed here, because: a) we
6235 * hold the pmd (ptl) lock, and b) we've just checked that the
6236 * huge pmd (head) page is present in the page tables. The ptl
6237 * prevents the head page and tail pages from being rearranged
6238 * in any way. So this page must be available at this point,
6239 * unless the page refcount overflowed:
6241 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6246 if (is_hugetlb_entry_migration(pte)) {
6248 __migration_entry_wait(mm, ptep, ptl);
6252 * hwpoisoned entry is treated as no_page_table in
6253 * follow_page_mask().
6261 struct page * __weak
6262 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6263 pud_t *pud, int flags)
6265 if (flags & (FOLL_GET | FOLL_PIN))
6268 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6271 struct page * __weak
6272 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6274 if (flags & (FOLL_GET | FOLL_PIN))
6277 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6280 bool isolate_huge_page(struct page *page, struct list_head *list)
6284 spin_lock_irq(&hugetlb_lock);
6285 if (!PageHeadHuge(page) ||
6286 !HPageMigratable(page) ||
6287 !get_page_unless_zero(page)) {
6291 ClearHPageMigratable(page);
6292 list_move_tail(&page->lru, list);
6294 spin_unlock_irq(&hugetlb_lock);
6298 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6303 spin_lock_irq(&hugetlb_lock);
6304 if (PageHeadHuge(page)) {
6306 if (HPageFreed(page) || HPageMigratable(page))
6307 ret = get_page_unless_zero(page);
6311 spin_unlock_irq(&hugetlb_lock);
6315 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6319 spin_lock_irq(&hugetlb_lock);
6320 ret = __get_huge_page_for_hwpoison(pfn, flags);
6321 spin_unlock_irq(&hugetlb_lock);
6325 void putback_active_hugepage(struct page *page)
6327 spin_lock_irq(&hugetlb_lock);
6328 SetHPageMigratable(page);
6329 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6330 spin_unlock_irq(&hugetlb_lock);
6334 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6336 struct hstate *h = page_hstate(oldpage);
6338 hugetlb_cgroup_migrate(oldpage, newpage);
6339 set_page_owner_migrate_reason(newpage, reason);
6342 * transfer temporary state of the new huge page. This is
6343 * reverse to other transitions because the newpage is going to
6344 * be final while the old one will be freed so it takes over
6345 * the temporary status.
6347 * Also note that we have to transfer the per-node surplus state
6348 * here as well otherwise the global surplus count will not match
6351 if (HPageTemporary(newpage)) {
6352 int old_nid = page_to_nid(oldpage);
6353 int new_nid = page_to_nid(newpage);
6355 SetHPageTemporary(oldpage);
6356 ClearHPageTemporary(newpage);
6359 * There is no need to transfer the per-node surplus state
6360 * when we do not cross the node.
6362 if (new_nid == old_nid)
6364 spin_lock_irq(&hugetlb_lock);
6365 if (h->surplus_huge_pages_node[old_nid]) {
6366 h->surplus_huge_pages_node[old_nid]--;
6367 h->surplus_huge_pages_node[new_nid]++;
6369 spin_unlock_irq(&hugetlb_lock);
6373 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
6374 unsigned long start,
6377 struct hstate *h = hstate_vma(vma);
6378 unsigned long sz = huge_page_size(h);
6379 struct mm_struct *mm = vma->vm_mm;
6380 struct mmu_notifier_range range;
6381 unsigned long address;
6385 if (!(vma->vm_flags & VM_MAYSHARE))
6392 * No need to call adjust_range_if_pmd_sharing_possible(), because
6393 * we have already done the PUD_SIZE alignment.
6395 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6397 mmu_notifier_invalidate_range_start(&range);
6398 i_mmap_lock_write(vma->vm_file->f_mapping);
6399 for (address = start; address < end; address += PUD_SIZE) {
6400 unsigned long tmp = address;
6402 ptep = huge_pte_offset(mm, address, sz);
6405 ptl = huge_pte_lock(h, mm, ptep);
6406 /* We don't want 'address' to be changed */
6407 huge_pmd_unshare(mm, vma, &tmp, ptep);
6410 flush_hugetlb_tlb_range(vma, start, end);
6411 i_mmap_unlock_write(vma->vm_file->f_mapping);
6413 * No need to call mmu_notifier_invalidate_range(), see
6414 * Documentation/vm/mmu_notifier.rst.
6416 mmu_notifier_invalidate_range_end(&range);
6420 * This function will unconditionally remove all the shared pmd pgtable entries
6421 * within the specific vma for a hugetlbfs memory range.
6423 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6425 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
6426 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
6430 static bool cma_reserve_called __initdata;
6432 static int __init cmdline_parse_hugetlb_cma(char *p)
6434 hugetlb_cma_size = memparse(p, &p);
6438 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6440 void __init hugetlb_cma_reserve(int order)
6442 unsigned long size, reserved, per_node;
6445 cma_reserve_called = true;
6447 if (!hugetlb_cma_size)
6450 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6451 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6452 (PAGE_SIZE << order) / SZ_1M);
6457 * If 3 GB area is requested on a machine with 4 numa nodes,
6458 * let's allocate 1 GB on first three nodes and ignore the last one.
6460 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6461 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6462 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6465 for_each_node_state(nid, N_ONLINE) {
6467 char name[CMA_MAX_NAME];
6469 size = min(per_node, hugetlb_cma_size - reserved);
6470 size = round_up(size, PAGE_SIZE << order);
6472 snprintf(name, sizeof(name), "hugetlb%d", nid);
6473 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6475 &hugetlb_cma[nid], nid);
6477 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6483 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6486 if (reserved >= hugetlb_cma_size)
6491 void __init hugetlb_cma_check(void)
6493 if (!hugetlb_cma_size || cma_reserve_called)
6496 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6499 #endif /* CONFIG_CMA */