hugetlb: unshare some PMDs when splitting VMAs
[platform/kernel/linux-rpi.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34
35 #include <asm/page.h>
36 #include <asm/pgalloc.h>
37 #include <asm/tlb.h>
38
39 #include <linux/io.h>
40 #include <linux/hugetlb.h>
41 #include <linux/hugetlb_cgroup.h>
42 #include <linux/node.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45 #include "hugetlb_vmemmap.h"
46
47 int hugetlb_max_hstate __read_mostly;
48 unsigned int default_hstate_idx;
49 struct hstate hstates[HUGE_MAX_HSTATE];
50
51 #ifdef CONFIG_CMA
52 static struct cma *hugetlb_cma[MAX_NUMNODES];
53 #endif
54 static unsigned long hugetlb_cma_size __initdata;
55
56 /*
57  * Minimum page order among possible hugepage sizes, set to a proper value
58  * at boot time.
59  */
60 static unsigned int minimum_order __read_mostly = UINT_MAX;
61
62 __initdata LIST_HEAD(huge_boot_pages);
63
64 /* for command line parsing */
65 static struct hstate * __initdata parsed_hstate;
66 static unsigned long __initdata default_hstate_max_huge_pages;
67 static bool __initdata parsed_valid_hugepagesz = true;
68 static bool __initdata parsed_default_hugepagesz;
69
70 /*
71  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
72  * free_huge_pages, and surplus_huge_pages.
73  */
74 DEFINE_SPINLOCK(hugetlb_lock);
75
76 /*
77  * Serializes faults on the same logical page.  This is used to
78  * prevent spurious OOMs when the hugepage pool is fully utilized.
79  */
80 static int num_fault_mutexes;
81 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
82
83 /* Forward declaration */
84 static int hugetlb_acct_memory(struct hstate *h, long delta);
85 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
86                 unsigned long start, unsigned long end);
87
88 static inline bool subpool_is_free(struct hugepage_subpool *spool)
89 {
90         if (spool->count)
91                 return false;
92         if (spool->max_hpages != -1)
93                 return spool->used_hpages == 0;
94         if (spool->min_hpages != -1)
95                 return spool->rsv_hpages == spool->min_hpages;
96
97         return true;
98 }
99
100 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
101                                                 unsigned long irq_flags)
102 {
103         spin_unlock_irqrestore(&spool->lock, irq_flags);
104
105         /* If no pages are used, and no other handles to the subpool
106          * remain, give up any reservations based on minimum size and
107          * free the subpool */
108         if (subpool_is_free(spool)) {
109                 if (spool->min_hpages != -1)
110                         hugetlb_acct_memory(spool->hstate,
111                                                 -spool->min_hpages);
112                 kfree(spool);
113         }
114 }
115
116 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
117                                                 long min_hpages)
118 {
119         struct hugepage_subpool *spool;
120
121         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
122         if (!spool)
123                 return NULL;
124
125         spin_lock_init(&spool->lock);
126         spool->count = 1;
127         spool->max_hpages = max_hpages;
128         spool->hstate = h;
129         spool->min_hpages = min_hpages;
130
131         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
132                 kfree(spool);
133                 return NULL;
134         }
135         spool->rsv_hpages = min_hpages;
136
137         return spool;
138 }
139
140 void hugepage_put_subpool(struct hugepage_subpool *spool)
141 {
142         unsigned long flags;
143
144         spin_lock_irqsave(&spool->lock, flags);
145         BUG_ON(!spool->count);
146         spool->count--;
147         unlock_or_release_subpool(spool, flags);
148 }
149
150 /*
151  * Subpool accounting for allocating and reserving pages.
152  * Return -ENOMEM if there are not enough resources to satisfy the
153  * request.  Otherwise, return the number of pages by which the
154  * global pools must be adjusted (upward).  The returned value may
155  * only be different than the passed value (delta) in the case where
156  * a subpool minimum size must be maintained.
157  */
158 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
159                                       long delta)
160 {
161         long ret = delta;
162
163         if (!spool)
164                 return ret;
165
166         spin_lock_irq(&spool->lock);
167
168         if (spool->max_hpages != -1) {          /* maximum size accounting */
169                 if ((spool->used_hpages + delta) <= spool->max_hpages)
170                         spool->used_hpages += delta;
171                 else {
172                         ret = -ENOMEM;
173                         goto unlock_ret;
174                 }
175         }
176
177         /* minimum size accounting */
178         if (spool->min_hpages != -1 && spool->rsv_hpages) {
179                 if (delta > spool->rsv_hpages) {
180                         /*
181                          * Asking for more reserves than those already taken on
182                          * behalf of subpool.  Return difference.
183                          */
184                         ret = delta - spool->rsv_hpages;
185                         spool->rsv_hpages = 0;
186                 } else {
187                         ret = 0;        /* reserves already accounted for */
188                         spool->rsv_hpages -= delta;
189                 }
190         }
191
192 unlock_ret:
193         spin_unlock_irq(&spool->lock);
194         return ret;
195 }
196
197 /*
198  * Subpool accounting for freeing and unreserving pages.
199  * Return the number of global page reservations that must be dropped.
200  * The return value may only be different than the passed value (delta)
201  * in the case where a subpool minimum size must be maintained.
202  */
203 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
204                                        long delta)
205 {
206         long ret = delta;
207         unsigned long flags;
208
209         if (!spool)
210                 return delta;
211
212         spin_lock_irqsave(&spool->lock, flags);
213
214         if (spool->max_hpages != -1)            /* maximum size accounting */
215                 spool->used_hpages -= delta;
216
217          /* minimum size accounting */
218         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
219                 if (spool->rsv_hpages + delta <= spool->min_hpages)
220                         ret = 0;
221                 else
222                         ret = spool->rsv_hpages + delta - spool->min_hpages;
223
224                 spool->rsv_hpages += delta;
225                 if (spool->rsv_hpages > spool->min_hpages)
226                         spool->rsv_hpages = spool->min_hpages;
227         }
228
229         /*
230          * If hugetlbfs_put_super couldn't free spool due to an outstanding
231          * quota reference, free it now.
232          */
233         unlock_or_release_subpool(spool, flags);
234
235         return ret;
236 }
237
238 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
239 {
240         return HUGETLBFS_SB(inode->i_sb)->spool;
241 }
242
243 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
244 {
245         return subpool_inode(file_inode(vma->vm_file));
246 }
247
248 /* Helper that removes a struct file_region from the resv_map cache and returns
249  * it for use.
250  */
251 static struct file_region *
252 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
253 {
254         struct file_region *nrg = NULL;
255
256         VM_BUG_ON(resv->region_cache_count <= 0);
257
258         resv->region_cache_count--;
259         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
260         list_del(&nrg->link);
261
262         nrg->from = from;
263         nrg->to = to;
264
265         return nrg;
266 }
267
268 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
269                                               struct file_region *rg)
270 {
271 #ifdef CONFIG_CGROUP_HUGETLB
272         nrg->reservation_counter = rg->reservation_counter;
273         nrg->css = rg->css;
274         if (rg->css)
275                 css_get(rg->css);
276 #endif
277 }
278
279 /* Helper that records hugetlb_cgroup uncharge info. */
280 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
281                                                 struct hstate *h,
282                                                 struct resv_map *resv,
283                                                 struct file_region *nrg)
284 {
285 #ifdef CONFIG_CGROUP_HUGETLB
286         if (h_cg) {
287                 nrg->reservation_counter =
288                         &h_cg->rsvd_hugepage[hstate_index(h)];
289                 nrg->css = &h_cg->css;
290                 /*
291                  * The caller will hold exactly one h_cg->css reference for the
292                  * whole contiguous reservation region. But this area might be
293                  * scattered when there are already some file_regions reside in
294                  * it. As a result, many file_regions may share only one css
295                  * reference. In order to ensure that one file_region must hold
296                  * exactly one h_cg->css reference, we should do css_get for
297                  * each file_region and leave the reference held by caller
298                  * untouched.
299                  */
300                 css_get(&h_cg->css);
301                 if (!resv->pages_per_hpage)
302                         resv->pages_per_hpage = pages_per_huge_page(h);
303                 /* pages_per_hpage should be the same for all entries in
304                  * a resv_map.
305                  */
306                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
307         } else {
308                 nrg->reservation_counter = NULL;
309                 nrg->css = NULL;
310         }
311 #endif
312 }
313
314 static void put_uncharge_info(struct file_region *rg)
315 {
316 #ifdef CONFIG_CGROUP_HUGETLB
317         if (rg->css)
318                 css_put(rg->css);
319 #endif
320 }
321
322 static bool has_same_uncharge_info(struct file_region *rg,
323                                    struct file_region *org)
324 {
325 #ifdef CONFIG_CGROUP_HUGETLB
326         return rg && org &&
327                rg->reservation_counter == org->reservation_counter &&
328                rg->css == org->css;
329
330 #else
331         return true;
332 #endif
333 }
334
335 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
336 {
337         struct file_region *nrg = NULL, *prg = NULL;
338
339         prg = list_prev_entry(rg, link);
340         if (&prg->link != &resv->regions && prg->to == rg->from &&
341             has_same_uncharge_info(prg, rg)) {
342                 prg->to = rg->to;
343
344                 list_del(&rg->link);
345                 put_uncharge_info(rg);
346                 kfree(rg);
347
348                 rg = prg;
349         }
350
351         nrg = list_next_entry(rg, link);
352         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
353             has_same_uncharge_info(nrg, rg)) {
354                 nrg->from = rg->from;
355
356                 list_del(&rg->link);
357                 put_uncharge_info(rg);
358                 kfree(rg);
359         }
360 }
361
362 static inline long
363 hugetlb_resv_map_add(struct resv_map *map, struct file_region *rg, long from,
364                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
365                      long *regions_needed)
366 {
367         struct file_region *nrg;
368
369         if (!regions_needed) {
370                 nrg = get_file_region_entry_from_cache(map, from, to);
371                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
372                 list_add(&nrg->link, rg->link.prev);
373                 coalesce_file_region(map, nrg);
374         } else
375                 *regions_needed += 1;
376
377         return to - from;
378 }
379
380 /*
381  * Must be called with resv->lock held.
382  *
383  * Calling this with regions_needed != NULL will count the number of pages
384  * to be added but will not modify the linked list. And regions_needed will
385  * indicate the number of file_regions needed in the cache to carry out to add
386  * the regions for this range.
387  */
388 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
389                                      struct hugetlb_cgroup *h_cg,
390                                      struct hstate *h, long *regions_needed)
391 {
392         long add = 0;
393         struct list_head *head = &resv->regions;
394         long last_accounted_offset = f;
395         struct file_region *rg = NULL, *trg = NULL;
396
397         if (regions_needed)
398                 *regions_needed = 0;
399
400         /* In this loop, we essentially handle an entry for the range
401          * [last_accounted_offset, rg->from), at every iteration, with some
402          * bounds checking.
403          */
404         list_for_each_entry_safe(rg, trg, head, link) {
405                 /* Skip irrelevant regions that start before our range. */
406                 if (rg->from < f) {
407                         /* If this region ends after the last accounted offset,
408                          * then we need to update last_accounted_offset.
409                          */
410                         if (rg->to > last_accounted_offset)
411                                 last_accounted_offset = rg->to;
412                         continue;
413                 }
414
415                 /* When we find a region that starts beyond our range, we've
416                  * finished.
417                  */
418                 if (rg->from >= t)
419                         break;
420
421                 /* Add an entry for last_accounted_offset -> rg->from, and
422                  * update last_accounted_offset.
423                  */
424                 if (rg->from > last_accounted_offset)
425                         add += hugetlb_resv_map_add(resv, rg,
426                                                     last_accounted_offset,
427                                                     rg->from, h, h_cg,
428                                                     regions_needed);
429
430                 last_accounted_offset = rg->to;
431         }
432
433         /* Handle the case where our range extends beyond
434          * last_accounted_offset.
435          */
436         if (last_accounted_offset < t)
437                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
438                                             t, h, h_cg, regions_needed);
439
440         VM_BUG_ON(add < 0);
441         return add;
442 }
443
444 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
445  */
446 static int allocate_file_region_entries(struct resv_map *resv,
447                                         int regions_needed)
448         __must_hold(&resv->lock)
449 {
450         struct list_head allocated_regions;
451         int to_allocate = 0, i = 0;
452         struct file_region *trg = NULL, *rg = NULL;
453
454         VM_BUG_ON(regions_needed < 0);
455
456         INIT_LIST_HEAD(&allocated_regions);
457
458         /*
459          * Check for sufficient descriptors in the cache to accommodate
460          * the number of in progress add operations plus regions_needed.
461          *
462          * This is a while loop because when we drop the lock, some other call
463          * to region_add or region_del may have consumed some region_entries,
464          * so we keep looping here until we finally have enough entries for
465          * (adds_in_progress + regions_needed).
466          */
467         while (resv->region_cache_count <
468                (resv->adds_in_progress + regions_needed)) {
469                 to_allocate = resv->adds_in_progress + regions_needed -
470                               resv->region_cache_count;
471
472                 /* At this point, we should have enough entries in the cache
473                  * for all the existing adds_in_progress. We should only be
474                  * needing to allocate for regions_needed.
475                  */
476                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
477
478                 spin_unlock(&resv->lock);
479                 for (i = 0; i < to_allocate; i++) {
480                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
481                         if (!trg)
482                                 goto out_of_memory;
483                         list_add(&trg->link, &allocated_regions);
484                 }
485
486                 spin_lock(&resv->lock);
487
488                 list_splice(&allocated_regions, &resv->region_cache);
489                 resv->region_cache_count += to_allocate;
490         }
491
492         return 0;
493
494 out_of_memory:
495         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
496                 list_del(&rg->link);
497                 kfree(rg);
498         }
499         return -ENOMEM;
500 }
501
502 /*
503  * Add the huge page range represented by [f, t) to the reserve
504  * map.  Regions will be taken from the cache to fill in this range.
505  * Sufficient regions should exist in the cache due to the previous
506  * call to region_chg with the same range, but in some cases the cache will not
507  * have sufficient entries due to races with other code doing region_add or
508  * region_del.  The extra needed entries will be allocated.
509  *
510  * regions_needed is the out value provided by a previous call to region_chg.
511  *
512  * Return the number of new huge pages added to the map.  This number is greater
513  * than or equal to zero.  If file_region entries needed to be allocated for
514  * this operation and we were not able to allocate, it returns -ENOMEM.
515  * region_add of regions of length 1 never allocate file_regions and cannot
516  * fail; region_chg will always allocate at least 1 entry and a region_add for
517  * 1 page will only require at most 1 entry.
518  */
519 static long region_add(struct resv_map *resv, long f, long t,
520                        long in_regions_needed, struct hstate *h,
521                        struct hugetlb_cgroup *h_cg)
522 {
523         long add = 0, actual_regions_needed = 0;
524
525         spin_lock(&resv->lock);
526 retry:
527
528         /* Count how many regions are actually needed to execute this add. */
529         add_reservation_in_range(resv, f, t, NULL, NULL,
530                                  &actual_regions_needed);
531
532         /*
533          * Check for sufficient descriptors in the cache to accommodate
534          * this add operation. Note that actual_regions_needed may be greater
535          * than in_regions_needed, as the resv_map may have been modified since
536          * the region_chg call. In this case, we need to make sure that we
537          * allocate extra entries, such that we have enough for all the
538          * existing adds_in_progress, plus the excess needed for this
539          * operation.
540          */
541         if (actual_regions_needed > in_regions_needed &&
542             resv->region_cache_count <
543                     resv->adds_in_progress +
544                             (actual_regions_needed - in_regions_needed)) {
545                 /* region_add operation of range 1 should never need to
546                  * allocate file_region entries.
547                  */
548                 VM_BUG_ON(t - f <= 1);
549
550                 if (allocate_file_region_entries(
551                             resv, actual_regions_needed - in_regions_needed)) {
552                         return -ENOMEM;
553                 }
554
555                 goto retry;
556         }
557
558         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
559
560         resv->adds_in_progress -= in_regions_needed;
561
562         spin_unlock(&resv->lock);
563         return add;
564 }
565
566 /*
567  * Examine the existing reserve map and determine how many
568  * huge pages in the specified range [f, t) are NOT currently
569  * represented.  This routine is called before a subsequent
570  * call to region_add that will actually modify the reserve
571  * map to add the specified range [f, t).  region_chg does
572  * not change the number of huge pages represented by the
573  * map.  A number of new file_region structures is added to the cache as a
574  * placeholder, for the subsequent region_add call to use. At least 1
575  * file_region structure is added.
576  *
577  * out_regions_needed is the number of regions added to the
578  * resv->adds_in_progress.  This value needs to be provided to a follow up call
579  * to region_add or region_abort for proper accounting.
580  *
581  * Returns the number of huge pages that need to be added to the existing
582  * reservation map for the range [f, t).  This number is greater or equal to
583  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
584  * is needed and can not be allocated.
585  */
586 static long region_chg(struct resv_map *resv, long f, long t,
587                        long *out_regions_needed)
588 {
589         long chg = 0;
590
591         spin_lock(&resv->lock);
592
593         /* Count how many hugepages in this range are NOT represented. */
594         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
595                                        out_regions_needed);
596
597         if (*out_regions_needed == 0)
598                 *out_regions_needed = 1;
599
600         if (allocate_file_region_entries(resv, *out_regions_needed))
601                 return -ENOMEM;
602
603         resv->adds_in_progress += *out_regions_needed;
604
605         spin_unlock(&resv->lock);
606         return chg;
607 }
608
609 /*
610  * Abort the in progress add operation.  The adds_in_progress field
611  * of the resv_map keeps track of the operations in progress between
612  * calls to region_chg and region_add.  Operations are sometimes
613  * aborted after the call to region_chg.  In such cases, region_abort
614  * is called to decrement the adds_in_progress counter. regions_needed
615  * is the value returned by the region_chg call, it is used to decrement
616  * the adds_in_progress counter.
617  *
618  * NOTE: The range arguments [f, t) are not needed or used in this
619  * routine.  They are kept to make reading the calling code easier as
620  * arguments will match the associated region_chg call.
621  */
622 static void region_abort(struct resv_map *resv, long f, long t,
623                          long regions_needed)
624 {
625         spin_lock(&resv->lock);
626         VM_BUG_ON(!resv->region_cache_count);
627         resv->adds_in_progress -= regions_needed;
628         spin_unlock(&resv->lock);
629 }
630
631 /*
632  * Delete the specified range [f, t) from the reserve map.  If the
633  * t parameter is LONG_MAX, this indicates that ALL regions after f
634  * should be deleted.  Locate the regions which intersect [f, t)
635  * and either trim, delete or split the existing regions.
636  *
637  * Returns the number of huge pages deleted from the reserve map.
638  * In the normal case, the return value is zero or more.  In the
639  * case where a region must be split, a new region descriptor must
640  * be allocated.  If the allocation fails, -ENOMEM will be returned.
641  * NOTE: If the parameter t == LONG_MAX, then we will never split
642  * a region and possibly return -ENOMEM.  Callers specifying
643  * t == LONG_MAX do not need to check for -ENOMEM error.
644  */
645 static long region_del(struct resv_map *resv, long f, long t)
646 {
647         struct list_head *head = &resv->regions;
648         struct file_region *rg, *trg;
649         struct file_region *nrg = NULL;
650         long del = 0;
651
652 retry:
653         spin_lock(&resv->lock);
654         list_for_each_entry_safe(rg, trg, head, link) {
655                 /*
656                  * Skip regions before the range to be deleted.  file_region
657                  * ranges are normally of the form [from, to).  However, there
658                  * may be a "placeholder" entry in the map which is of the form
659                  * (from, to) with from == to.  Check for placeholder entries
660                  * at the beginning of the range to be deleted.
661                  */
662                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
663                         continue;
664
665                 if (rg->from >= t)
666                         break;
667
668                 if (f > rg->from && t < rg->to) { /* Must split region */
669                         /*
670                          * Check for an entry in the cache before dropping
671                          * lock and attempting allocation.
672                          */
673                         if (!nrg &&
674                             resv->region_cache_count > resv->adds_in_progress) {
675                                 nrg = list_first_entry(&resv->region_cache,
676                                                         struct file_region,
677                                                         link);
678                                 list_del(&nrg->link);
679                                 resv->region_cache_count--;
680                         }
681
682                         if (!nrg) {
683                                 spin_unlock(&resv->lock);
684                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
685                                 if (!nrg)
686                                         return -ENOMEM;
687                                 goto retry;
688                         }
689
690                         del += t - f;
691                         hugetlb_cgroup_uncharge_file_region(
692                                 resv, rg, t - f, false);
693
694                         /* New entry for end of split region */
695                         nrg->from = t;
696                         nrg->to = rg->to;
697
698                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
699
700                         INIT_LIST_HEAD(&nrg->link);
701
702                         /* Original entry is trimmed */
703                         rg->to = f;
704
705                         list_add(&nrg->link, &rg->link);
706                         nrg = NULL;
707                         break;
708                 }
709
710                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
711                         del += rg->to - rg->from;
712                         hugetlb_cgroup_uncharge_file_region(resv, rg,
713                                                             rg->to - rg->from, true);
714                         list_del(&rg->link);
715                         kfree(rg);
716                         continue;
717                 }
718
719                 if (f <= rg->from) {    /* Trim beginning of region */
720                         hugetlb_cgroup_uncharge_file_region(resv, rg,
721                                                             t - rg->from, false);
722
723                         del += t - rg->from;
724                         rg->from = t;
725                 } else {                /* Trim end of region */
726                         hugetlb_cgroup_uncharge_file_region(resv, rg,
727                                                             rg->to - f, false);
728
729                         del += rg->to - f;
730                         rg->to = f;
731                 }
732         }
733
734         spin_unlock(&resv->lock);
735         kfree(nrg);
736         return del;
737 }
738
739 /*
740  * A rare out of memory error was encountered which prevented removal of
741  * the reserve map region for a page.  The huge page itself was free'ed
742  * and removed from the page cache.  This routine will adjust the subpool
743  * usage count, and the global reserve count if needed.  By incrementing
744  * these counts, the reserve map entry which could not be deleted will
745  * appear as a "reserved" entry instead of simply dangling with incorrect
746  * counts.
747  */
748 void hugetlb_fix_reserve_counts(struct inode *inode)
749 {
750         struct hugepage_subpool *spool = subpool_inode(inode);
751         long rsv_adjust;
752         bool reserved = false;
753
754         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
755         if (rsv_adjust > 0) {
756                 struct hstate *h = hstate_inode(inode);
757
758                 if (!hugetlb_acct_memory(h, 1))
759                         reserved = true;
760         } else if (!rsv_adjust) {
761                 reserved = true;
762         }
763
764         if (!reserved)
765                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
766 }
767
768 /*
769  * Count and return the number of huge pages in the reserve map
770  * that intersect with the range [f, t).
771  */
772 static long region_count(struct resv_map *resv, long f, long t)
773 {
774         struct list_head *head = &resv->regions;
775         struct file_region *rg;
776         long chg = 0;
777
778         spin_lock(&resv->lock);
779         /* Locate each segment we overlap with, and count that overlap. */
780         list_for_each_entry(rg, head, link) {
781                 long seg_from;
782                 long seg_to;
783
784                 if (rg->to <= f)
785                         continue;
786                 if (rg->from >= t)
787                         break;
788
789                 seg_from = max(rg->from, f);
790                 seg_to = min(rg->to, t);
791
792                 chg += seg_to - seg_from;
793         }
794         spin_unlock(&resv->lock);
795
796         return chg;
797 }
798
799 /*
800  * Convert the address within this vma to the page offset within
801  * the mapping, in pagecache page units; huge pages here.
802  */
803 static pgoff_t vma_hugecache_offset(struct hstate *h,
804                         struct vm_area_struct *vma, unsigned long address)
805 {
806         return ((address - vma->vm_start) >> huge_page_shift(h)) +
807                         (vma->vm_pgoff >> huge_page_order(h));
808 }
809
810 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
811                                      unsigned long address)
812 {
813         return vma_hugecache_offset(hstate_vma(vma), vma, address);
814 }
815 EXPORT_SYMBOL_GPL(linear_hugepage_index);
816
817 /*
818  * Return the size of the pages allocated when backing a VMA. In the majority
819  * cases this will be same size as used by the page table entries.
820  */
821 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
822 {
823         if (vma->vm_ops && vma->vm_ops->pagesize)
824                 return vma->vm_ops->pagesize(vma);
825         return PAGE_SIZE;
826 }
827 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
828
829 /*
830  * Return the page size being used by the MMU to back a VMA. In the majority
831  * of cases, the page size used by the kernel matches the MMU size. On
832  * architectures where it differs, an architecture-specific 'strong'
833  * version of this symbol is required.
834  */
835 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
836 {
837         return vma_kernel_pagesize(vma);
838 }
839
840 /*
841  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
842  * bits of the reservation map pointer, which are always clear due to
843  * alignment.
844  */
845 #define HPAGE_RESV_OWNER    (1UL << 0)
846 #define HPAGE_RESV_UNMAPPED (1UL << 1)
847 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
848
849 /*
850  * These helpers are used to track how many pages are reserved for
851  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
852  * is guaranteed to have their future faults succeed.
853  *
854  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
855  * the reserve counters are updated with the hugetlb_lock held. It is safe
856  * to reset the VMA at fork() time as it is not in use yet and there is no
857  * chance of the global counters getting corrupted as a result of the values.
858  *
859  * The private mapping reservation is represented in a subtly different
860  * manner to a shared mapping.  A shared mapping has a region map associated
861  * with the underlying file, this region map represents the backing file
862  * pages which have ever had a reservation assigned which this persists even
863  * after the page is instantiated.  A private mapping has a region map
864  * associated with the original mmap which is attached to all VMAs which
865  * reference it, this region map represents those offsets which have consumed
866  * reservation ie. where pages have been instantiated.
867  */
868 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
869 {
870         return (unsigned long)vma->vm_private_data;
871 }
872
873 static void set_vma_private_data(struct vm_area_struct *vma,
874                                                         unsigned long value)
875 {
876         vma->vm_private_data = (void *)value;
877 }
878
879 static void
880 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
881                                           struct hugetlb_cgroup *h_cg,
882                                           struct hstate *h)
883 {
884 #ifdef CONFIG_CGROUP_HUGETLB
885         if (!h_cg || !h) {
886                 resv_map->reservation_counter = NULL;
887                 resv_map->pages_per_hpage = 0;
888                 resv_map->css = NULL;
889         } else {
890                 resv_map->reservation_counter =
891                         &h_cg->rsvd_hugepage[hstate_index(h)];
892                 resv_map->pages_per_hpage = pages_per_huge_page(h);
893                 resv_map->css = &h_cg->css;
894         }
895 #endif
896 }
897
898 struct resv_map *resv_map_alloc(void)
899 {
900         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
901         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
902
903         if (!resv_map || !rg) {
904                 kfree(resv_map);
905                 kfree(rg);
906                 return NULL;
907         }
908
909         kref_init(&resv_map->refs);
910         spin_lock_init(&resv_map->lock);
911         INIT_LIST_HEAD(&resv_map->regions);
912
913         resv_map->adds_in_progress = 0;
914         /*
915          * Initialize these to 0. On shared mappings, 0's here indicate these
916          * fields don't do cgroup accounting. On private mappings, these will be
917          * re-initialized to the proper values, to indicate that hugetlb cgroup
918          * reservations are to be un-charged from here.
919          */
920         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
921
922         INIT_LIST_HEAD(&resv_map->region_cache);
923         list_add(&rg->link, &resv_map->region_cache);
924         resv_map->region_cache_count = 1;
925
926         return resv_map;
927 }
928
929 void resv_map_release(struct kref *ref)
930 {
931         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
932         struct list_head *head = &resv_map->region_cache;
933         struct file_region *rg, *trg;
934
935         /* Clear out any active regions before we release the map. */
936         region_del(resv_map, 0, LONG_MAX);
937
938         /* ... and any entries left in the cache */
939         list_for_each_entry_safe(rg, trg, head, link) {
940                 list_del(&rg->link);
941                 kfree(rg);
942         }
943
944         VM_BUG_ON(resv_map->adds_in_progress);
945
946         kfree(resv_map);
947 }
948
949 static inline struct resv_map *inode_resv_map(struct inode *inode)
950 {
951         /*
952          * At inode evict time, i_mapping may not point to the original
953          * address space within the inode.  This original address space
954          * contains the pointer to the resv_map.  So, always use the
955          * address space embedded within the inode.
956          * The VERY common case is inode->mapping == &inode->i_data but,
957          * this may not be true for device special inodes.
958          */
959         return (struct resv_map *)(&inode->i_data)->private_data;
960 }
961
962 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
963 {
964         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
965         if (vma->vm_flags & VM_MAYSHARE) {
966                 struct address_space *mapping = vma->vm_file->f_mapping;
967                 struct inode *inode = mapping->host;
968
969                 return inode_resv_map(inode);
970
971         } else {
972                 return (struct resv_map *)(get_vma_private_data(vma) &
973                                                         ~HPAGE_RESV_MASK);
974         }
975 }
976
977 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
978 {
979         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
980         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
981
982         set_vma_private_data(vma, (get_vma_private_data(vma) &
983                                 HPAGE_RESV_MASK) | (unsigned long)map);
984 }
985
986 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
987 {
988         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
989         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
990
991         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
992 }
993
994 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
995 {
996         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
997
998         return (get_vma_private_data(vma) & flag) != 0;
999 }
1000
1001 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
1002 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
1003 {
1004         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1005         if (!(vma->vm_flags & VM_MAYSHARE))
1006                 vma->vm_private_data = (void *)0;
1007 }
1008
1009 /* Returns true if the VMA has associated reserve pages */
1010 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1011 {
1012         if (vma->vm_flags & VM_NORESERVE) {
1013                 /*
1014                  * This address is already reserved by other process(chg == 0),
1015                  * so, we should decrement reserved count. Without decrementing,
1016                  * reserve count remains after releasing inode, because this
1017                  * allocated page will go into page cache and is regarded as
1018                  * coming from reserved pool in releasing step.  Currently, we
1019                  * don't have any other solution to deal with this situation
1020                  * properly, so add work-around here.
1021                  */
1022                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1023                         return true;
1024                 else
1025                         return false;
1026         }
1027
1028         /* Shared mappings always use reserves */
1029         if (vma->vm_flags & VM_MAYSHARE) {
1030                 /*
1031                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1032                  * be a region map for all pages.  The only situation where
1033                  * there is no region map is if a hole was punched via
1034                  * fallocate.  In this case, there really are no reserves to
1035                  * use.  This situation is indicated if chg != 0.
1036                  */
1037                 if (chg)
1038                         return false;
1039                 else
1040                         return true;
1041         }
1042
1043         /*
1044          * Only the process that called mmap() has reserves for
1045          * private mappings.
1046          */
1047         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1048                 /*
1049                  * Like the shared case above, a hole punch or truncate
1050                  * could have been performed on the private mapping.
1051                  * Examine the value of chg to determine if reserves
1052                  * actually exist or were previously consumed.
1053                  * Very Subtle - The value of chg comes from a previous
1054                  * call to vma_needs_reserves().  The reserve map for
1055                  * private mappings has different (opposite) semantics
1056                  * than that of shared mappings.  vma_needs_reserves()
1057                  * has already taken this difference in semantics into
1058                  * account.  Therefore, the meaning of chg is the same
1059                  * as in the shared case above.  Code could easily be
1060                  * combined, but keeping it separate draws attention to
1061                  * subtle differences.
1062                  */
1063                 if (chg)
1064                         return false;
1065                 else
1066                         return true;
1067         }
1068
1069         return false;
1070 }
1071
1072 static void enqueue_huge_page(struct hstate *h, struct page *page)
1073 {
1074         int nid = page_to_nid(page);
1075
1076         lockdep_assert_held(&hugetlb_lock);
1077         VM_BUG_ON_PAGE(page_count(page), page);
1078
1079         list_move(&page->lru, &h->hugepage_freelists[nid]);
1080         h->free_huge_pages++;
1081         h->free_huge_pages_node[nid]++;
1082         SetHPageFreed(page);
1083 }
1084
1085 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1086 {
1087         struct page *page;
1088         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1089
1090         lockdep_assert_held(&hugetlb_lock);
1091         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1092                 if (pin && !is_pinnable_page(page))
1093                         continue;
1094
1095                 if (PageHWPoison(page))
1096                         continue;
1097
1098                 list_move(&page->lru, &h->hugepage_activelist);
1099                 set_page_refcounted(page);
1100                 ClearHPageFreed(page);
1101                 h->free_huge_pages--;
1102                 h->free_huge_pages_node[nid]--;
1103                 return page;
1104         }
1105
1106         return NULL;
1107 }
1108
1109 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1110                 nodemask_t *nmask)
1111 {
1112         unsigned int cpuset_mems_cookie;
1113         struct zonelist *zonelist;
1114         struct zone *zone;
1115         struct zoneref *z;
1116         int node = NUMA_NO_NODE;
1117
1118         zonelist = node_zonelist(nid, gfp_mask);
1119
1120 retry_cpuset:
1121         cpuset_mems_cookie = read_mems_allowed_begin();
1122         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1123                 struct page *page;
1124
1125                 if (!cpuset_zone_allowed(zone, gfp_mask))
1126                         continue;
1127                 /*
1128                  * no need to ask again on the same node. Pool is node rather than
1129                  * zone aware
1130                  */
1131                 if (zone_to_nid(zone) == node)
1132                         continue;
1133                 node = zone_to_nid(zone);
1134
1135                 page = dequeue_huge_page_node_exact(h, node);
1136                 if (page)
1137                         return page;
1138         }
1139         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1140                 goto retry_cpuset;
1141
1142         return NULL;
1143 }
1144
1145 static struct page *dequeue_huge_page_vma(struct hstate *h,
1146                                 struct vm_area_struct *vma,
1147                                 unsigned long address, int avoid_reserve,
1148                                 long chg)
1149 {
1150         struct page *page = NULL;
1151         struct mempolicy *mpol;
1152         gfp_t gfp_mask;
1153         nodemask_t *nodemask;
1154         int nid;
1155
1156         /*
1157          * A child process with MAP_PRIVATE mappings created by their parent
1158          * have no page reserves. This check ensures that reservations are
1159          * not "stolen". The child may still get SIGKILLed
1160          */
1161         if (!vma_has_reserves(vma, chg) &&
1162                         h->free_huge_pages - h->resv_huge_pages == 0)
1163                 goto err;
1164
1165         /* If reserves cannot be used, ensure enough pages are in the pool */
1166         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1167                 goto err;
1168
1169         gfp_mask = htlb_alloc_mask(h);
1170         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1171
1172         if (mpol_is_preferred_many(mpol)) {
1173                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1174
1175                 /* Fallback to all nodes if page==NULL */
1176                 nodemask = NULL;
1177         }
1178
1179         if (!page)
1180                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1181
1182         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1183                 SetHPageRestoreReserve(page);
1184                 h->resv_huge_pages--;
1185         }
1186
1187         mpol_cond_put(mpol);
1188         return page;
1189
1190 err:
1191         return NULL;
1192 }
1193
1194 /*
1195  * common helper functions for hstate_next_node_to_{alloc|free}.
1196  * We may have allocated or freed a huge page based on a different
1197  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1198  * be outside of *nodes_allowed.  Ensure that we use an allowed
1199  * node for alloc or free.
1200  */
1201 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1202 {
1203         nid = next_node_in(nid, *nodes_allowed);
1204         VM_BUG_ON(nid >= MAX_NUMNODES);
1205
1206         return nid;
1207 }
1208
1209 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1210 {
1211         if (!node_isset(nid, *nodes_allowed))
1212                 nid = next_node_allowed(nid, nodes_allowed);
1213         return nid;
1214 }
1215
1216 /*
1217  * returns the previously saved node ["this node"] from which to
1218  * allocate a persistent huge page for the pool and advance the
1219  * next node from which to allocate, handling wrap at end of node
1220  * mask.
1221  */
1222 static int hstate_next_node_to_alloc(struct hstate *h,
1223                                         nodemask_t *nodes_allowed)
1224 {
1225         int nid;
1226
1227         VM_BUG_ON(!nodes_allowed);
1228
1229         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1230         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1231
1232         return nid;
1233 }
1234
1235 /*
1236  * helper for remove_pool_huge_page() - return the previously saved
1237  * node ["this node"] from which to free a huge page.  Advance the
1238  * next node id whether or not we find a free huge page to free so
1239  * that the next attempt to free addresses the next node.
1240  */
1241 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1242 {
1243         int nid;
1244
1245         VM_BUG_ON(!nodes_allowed);
1246
1247         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1248         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1249
1250         return nid;
1251 }
1252
1253 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1254         for (nr_nodes = nodes_weight(*mask);                            \
1255                 nr_nodes > 0 &&                                         \
1256                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1257                 nr_nodes--)
1258
1259 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1260         for (nr_nodes = nodes_weight(*mask);                            \
1261                 nr_nodes > 0 &&                                         \
1262                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1263                 nr_nodes--)
1264
1265 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1266 static void destroy_compound_gigantic_page(struct page *page,
1267                                         unsigned int order)
1268 {
1269         int i;
1270         int nr_pages = 1 << order;
1271         struct page *p = page + 1;
1272
1273         atomic_set(compound_mapcount_ptr(page), 0);
1274         atomic_set(compound_pincount_ptr(page), 0);
1275
1276         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1277                 clear_compound_head(p);
1278                 set_page_refcounted(p);
1279         }
1280
1281         set_compound_order(page, 0);
1282         page[1].compound_nr = 0;
1283         __ClearPageHead(page);
1284 }
1285
1286 static void free_gigantic_page(struct page *page, unsigned int order)
1287 {
1288         /*
1289          * If the page isn't allocated using the cma allocator,
1290          * cma_release() returns false.
1291          */
1292 #ifdef CONFIG_CMA
1293         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1294                 return;
1295 #endif
1296
1297         free_contig_range(page_to_pfn(page), 1 << order);
1298 }
1299
1300 #ifdef CONFIG_CONTIG_ALLOC
1301 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1302                 int nid, nodemask_t *nodemask)
1303 {
1304         unsigned long nr_pages = pages_per_huge_page(h);
1305         if (nid == NUMA_NO_NODE)
1306                 nid = numa_mem_id();
1307
1308 #ifdef CONFIG_CMA
1309         {
1310                 struct page *page;
1311                 int node;
1312
1313                 if (hugetlb_cma[nid]) {
1314                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1315                                         huge_page_order(h), true);
1316                         if (page)
1317                                 return page;
1318                 }
1319
1320                 if (!(gfp_mask & __GFP_THISNODE)) {
1321                         for_each_node_mask(node, *nodemask) {
1322                                 if (node == nid || !hugetlb_cma[node])
1323                                         continue;
1324
1325                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1326                                                 huge_page_order(h), true);
1327                                 if (page)
1328                                         return page;
1329                         }
1330                 }
1331         }
1332 #endif
1333
1334         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1335 }
1336
1337 #else /* !CONFIG_CONTIG_ALLOC */
1338 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1339                                         int nid, nodemask_t *nodemask)
1340 {
1341         return NULL;
1342 }
1343 #endif /* CONFIG_CONTIG_ALLOC */
1344
1345 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1346 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1347                                         int nid, nodemask_t *nodemask)
1348 {
1349         return NULL;
1350 }
1351 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1352 static inline void destroy_compound_gigantic_page(struct page *page,
1353                                                 unsigned int order) { }
1354 #endif
1355
1356 /*
1357  * Remove hugetlb page from lists, and update dtor so that page appears
1358  * as just a compound page.  A reference is held on the page.
1359  *
1360  * Must be called with hugetlb lock held.
1361  */
1362 static void remove_hugetlb_page(struct hstate *h, struct page *page,
1363                                                         bool adjust_surplus)
1364 {
1365         int nid = page_to_nid(page);
1366
1367         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1368         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1369
1370         lockdep_assert_held(&hugetlb_lock);
1371         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1372                 return;
1373
1374         list_del(&page->lru);
1375
1376         if (HPageFreed(page)) {
1377                 h->free_huge_pages--;
1378                 h->free_huge_pages_node[nid]--;
1379         }
1380         if (adjust_surplus) {
1381                 h->surplus_huge_pages--;
1382                 h->surplus_huge_pages_node[nid]--;
1383         }
1384
1385         /*
1386          * Very subtle
1387          *
1388          * For non-gigantic pages set the destructor to the normal compound
1389          * page dtor.  This is needed in case someone takes an additional
1390          * temporary ref to the page, and freeing is delayed until they drop
1391          * their reference.
1392          *
1393          * For gigantic pages set the destructor to the null dtor.  This
1394          * destructor will never be called.  Before freeing the gigantic
1395          * page destroy_compound_gigantic_page will turn the compound page
1396          * into a simple group of pages.  After this the destructor does not
1397          * apply.
1398          *
1399          * This handles the case where more than one ref is held when and
1400          * after update_and_free_page is called.
1401          */
1402         set_page_refcounted(page);
1403         if (hstate_is_gigantic(h))
1404                 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1405         else
1406                 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
1407
1408         h->nr_huge_pages--;
1409         h->nr_huge_pages_node[nid]--;
1410 }
1411
1412 static void add_hugetlb_page(struct hstate *h, struct page *page,
1413                              bool adjust_surplus)
1414 {
1415         int zeroed;
1416         int nid = page_to_nid(page);
1417
1418         VM_BUG_ON_PAGE(!HPageVmemmapOptimized(page), page);
1419
1420         lockdep_assert_held(&hugetlb_lock);
1421
1422         INIT_LIST_HEAD(&page->lru);
1423         h->nr_huge_pages++;
1424         h->nr_huge_pages_node[nid]++;
1425
1426         if (adjust_surplus) {
1427                 h->surplus_huge_pages++;
1428                 h->surplus_huge_pages_node[nid]++;
1429         }
1430
1431         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1432         set_page_private(page, 0);
1433         SetHPageVmemmapOptimized(page);
1434
1435         /*
1436          * This page is about to be managed by the hugetlb allocator and
1437          * should have no users.  Drop our reference, and check for others
1438          * just in case.
1439          */
1440         zeroed = put_page_testzero(page);
1441         if (!zeroed)
1442                 /*
1443                  * It is VERY unlikely soneone else has taken a ref on
1444                  * the page.  In this case, we simply return as the
1445                  * hugetlb destructor (free_huge_page) will be called
1446                  * when this other ref is dropped.
1447                  */
1448                 return;
1449
1450         arch_clear_hugepage_flags(page);
1451         enqueue_huge_page(h, page);
1452 }
1453
1454 static void __update_and_free_page(struct hstate *h, struct page *page)
1455 {
1456         int i;
1457         struct page *subpage = page;
1458
1459         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1460                 return;
1461
1462         if (alloc_huge_page_vmemmap(h, page)) {
1463                 spin_lock_irq(&hugetlb_lock);
1464                 /*
1465                  * If we cannot allocate vmemmap pages, just refuse to free the
1466                  * page and put the page back on the hugetlb free list and treat
1467                  * as a surplus page.
1468                  */
1469                 add_hugetlb_page(h, page, true);
1470                 spin_unlock_irq(&hugetlb_lock);
1471                 return;
1472         }
1473
1474         for (i = 0; i < pages_per_huge_page(h);
1475              i++, subpage = mem_map_next(subpage, page, i)) {
1476                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1477                                 1 << PG_referenced | 1 << PG_dirty |
1478                                 1 << PG_active | 1 << PG_private |
1479                                 1 << PG_writeback);
1480         }
1481         if (hstate_is_gigantic(h)) {
1482                 destroy_compound_gigantic_page(page, huge_page_order(h));
1483                 free_gigantic_page(page, huge_page_order(h));
1484         } else {
1485                 __free_pages(page, huge_page_order(h));
1486         }
1487 }
1488
1489 /*
1490  * As update_and_free_page() can be called under any context, so we cannot
1491  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1492  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1493  * the vmemmap pages.
1494  *
1495  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1496  * freed and frees them one-by-one. As the page->mapping pointer is going
1497  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1498  * structure of a lockless linked list of huge pages to be freed.
1499  */
1500 static LLIST_HEAD(hpage_freelist);
1501
1502 static void free_hpage_workfn(struct work_struct *work)
1503 {
1504         struct llist_node *node;
1505
1506         node = llist_del_all(&hpage_freelist);
1507
1508         while (node) {
1509                 struct page *page;
1510                 struct hstate *h;
1511
1512                 page = container_of((struct address_space **)node,
1513                                      struct page, mapping);
1514                 node = node->next;
1515                 page->mapping = NULL;
1516                 /*
1517                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1518                  * is going to trigger because a previous call to
1519                  * remove_hugetlb_page() will set_compound_page_dtor(page,
1520                  * NULL_COMPOUND_DTOR), so do not use page_hstate() directly.
1521                  */
1522                 h = size_to_hstate(page_size(page));
1523
1524                 __update_and_free_page(h, page);
1525
1526                 cond_resched();
1527         }
1528 }
1529 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1530
1531 static inline void flush_free_hpage_work(struct hstate *h)
1532 {
1533         if (free_vmemmap_pages_per_hpage(h))
1534                 flush_work(&free_hpage_work);
1535 }
1536
1537 static void update_and_free_page(struct hstate *h, struct page *page,
1538                                  bool atomic)
1539 {
1540         if (!HPageVmemmapOptimized(page) || !atomic) {
1541                 __update_and_free_page(h, page);
1542                 return;
1543         }
1544
1545         /*
1546          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1547          *
1548          * Only call schedule_work() if hpage_freelist is previously
1549          * empty. Otherwise, schedule_work() had been called but the workfn
1550          * hasn't retrieved the list yet.
1551          */
1552         if (llist_add((struct llist_node *)&page->mapping, &hpage_freelist))
1553                 schedule_work(&free_hpage_work);
1554 }
1555
1556 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1557 {
1558         struct page *page, *t_page;
1559
1560         list_for_each_entry_safe(page, t_page, list, lru) {
1561                 update_and_free_page(h, page, false);
1562                 cond_resched();
1563         }
1564 }
1565
1566 struct hstate *size_to_hstate(unsigned long size)
1567 {
1568         struct hstate *h;
1569
1570         for_each_hstate(h) {
1571                 if (huge_page_size(h) == size)
1572                         return h;
1573         }
1574         return NULL;
1575 }
1576
1577 void free_huge_page(struct page *page)
1578 {
1579         /*
1580          * Can't pass hstate in here because it is called from the
1581          * compound page destructor.
1582          */
1583         struct hstate *h = page_hstate(page);
1584         int nid = page_to_nid(page);
1585         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1586         bool restore_reserve;
1587         unsigned long flags;
1588
1589         VM_BUG_ON_PAGE(page_count(page), page);
1590         VM_BUG_ON_PAGE(page_mapcount(page), page);
1591
1592         hugetlb_set_page_subpool(page, NULL);
1593         page->mapping = NULL;
1594         restore_reserve = HPageRestoreReserve(page);
1595         ClearHPageRestoreReserve(page);
1596
1597         /*
1598          * If HPageRestoreReserve was set on page, page allocation consumed a
1599          * reservation.  If the page was associated with a subpool, there
1600          * would have been a page reserved in the subpool before allocation
1601          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1602          * reservation, do not call hugepage_subpool_put_pages() as this will
1603          * remove the reserved page from the subpool.
1604          */
1605         if (!restore_reserve) {
1606                 /*
1607                  * A return code of zero implies that the subpool will be
1608                  * under its minimum size if the reservation is not restored
1609                  * after page is free.  Therefore, force restore_reserve
1610                  * operation.
1611                  */
1612                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1613                         restore_reserve = true;
1614         }
1615
1616         spin_lock_irqsave(&hugetlb_lock, flags);
1617         ClearHPageMigratable(page);
1618         hugetlb_cgroup_uncharge_page(hstate_index(h),
1619                                      pages_per_huge_page(h), page);
1620         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1621                                           pages_per_huge_page(h), page);
1622         if (restore_reserve)
1623                 h->resv_huge_pages++;
1624
1625         if (HPageTemporary(page)) {
1626                 remove_hugetlb_page(h, page, false);
1627                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1628                 update_and_free_page(h, page, true);
1629         } else if (h->surplus_huge_pages_node[nid]) {
1630                 /* remove the page from active list */
1631                 remove_hugetlb_page(h, page, true);
1632                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1633                 update_and_free_page(h, page, true);
1634         } else {
1635                 arch_clear_hugepage_flags(page);
1636                 enqueue_huge_page(h, page);
1637                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1638         }
1639 }
1640
1641 /*
1642  * Must be called with the hugetlb lock held
1643  */
1644 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1645 {
1646         lockdep_assert_held(&hugetlb_lock);
1647         h->nr_huge_pages++;
1648         h->nr_huge_pages_node[nid]++;
1649 }
1650
1651 static void __prep_new_huge_page(struct hstate *h, struct page *page)
1652 {
1653         free_huge_page_vmemmap(h, page);
1654         INIT_LIST_HEAD(&page->lru);
1655         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1656         hugetlb_set_page_subpool(page, NULL);
1657         set_hugetlb_cgroup(page, NULL);
1658         set_hugetlb_cgroup_rsvd(page, NULL);
1659 }
1660
1661 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1662 {
1663         __prep_new_huge_page(h, page);
1664         spin_lock_irq(&hugetlb_lock);
1665         __prep_account_new_huge_page(h, nid);
1666         spin_unlock_irq(&hugetlb_lock);
1667 }
1668
1669 static bool prep_compound_gigantic_page(struct page *page, unsigned int order)
1670 {
1671         int i, j;
1672         int nr_pages = 1 << order;
1673         struct page *p = page + 1;
1674
1675         /* we rely on prep_new_huge_page to set the destructor */
1676         set_compound_order(page, order);
1677         __ClearPageReserved(page);
1678         __SetPageHead(page);
1679         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1680                 /*
1681                  * For gigantic hugepages allocated through bootmem at
1682                  * boot, it's safer to be consistent with the not-gigantic
1683                  * hugepages and clear the PG_reserved bit from all tail pages
1684                  * too.  Otherwise drivers using get_user_pages() to access tail
1685                  * pages may get the reference counting wrong if they see
1686                  * PG_reserved set on a tail page (despite the head page not
1687                  * having PG_reserved set).  Enforcing this consistency between
1688                  * head and tail pages allows drivers to optimize away a check
1689                  * on the head page when they need know if put_page() is needed
1690                  * after get_user_pages().
1691                  */
1692                 __ClearPageReserved(p);
1693                 /*
1694                  * Subtle and very unlikely
1695                  *
1696                  * Gigantic 'page allocators' such as memblock or cma will
1697                  * return a set of pages with each page ref counted.  We need
1698                  * to turn this set of pages into a compound page with tail
1699                  * page ref counts set to zero.  Code such as speculative page
1700                  * cache adding could take a ref on a 'to be' tail page.
1701                  * We need to respect any increased ref count, and only set
1702                  * the ref count to zero if count is currently 1.  If count
1703                  * is not 1, we return an error.  An error return indicates
1704                  * the set of pages can not be converted to a gigantic page.
1705                  * The caller who allocated the pages should then discard the
1706                  * pages using the appropriate free interface.
1707                  */
1708                 if (!page_ref_freeze(p, 1)) {
1709                         pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1710                         goto out_error;
1711                 }
1712                 set_page_count(p, 0);
1713                 set_compound_head(p, page);
1714         }
1715         atomic_set(compound_mapcount_ptr(page), -1);
1716         atomic_set(compound_pincount_ptr(page), 0);
1717         return true;
1718
1719 out_error:
1720         /* undo tail page modifications made above */
1721         p = page + 1;
1722         for (j = 1; j < i; j++, p = mem_map_next(p, page, j)) {
1723                 clear_compound_head(p);
1724                 set_page_refcounted(p);
1725         }
1726         /* need to clear PG_reserved on remaining tail pages  */
1727         for (; j < nr_pages; j++, p = mem_map_next(p, page, j))
1728                 __ClearPageReserved(p);
1729         set_compound_order(page, 0);
1730         page[1].compound_nr = 0;
1731         __ClearPageHead(page);
1732         return false;
1733 }
1734
1735 /*
1736  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1737  * transparent huge pages.  See the PageTransHuge() documentation for more
1738  * details.
1739  */
1740 int PageHuge(struct page *page)
1741 {
1742         if (!PageCompound(page))
1743                 return 0;
1744
1745         page = compound_head(page);
1746         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1747 }
1748 EXPORT_SYMBOL_GPL(PageHuge);
1749
1750 /*
1751  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1752  * normal or transparent huge pages.
1753  */
1754 int PageHeadHuge(struct page *page_head)
1755 {
1756         if (!PageHead(page_head))
1757                 return 0;
1758
1759         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1760 }
1761
1762 /*
1763  * Find and lock address space (mapping) in write mode.
1764  *
1765  * Upon entry, the page is locked which means that page_mapping() is
1766  * stable.  Due to locking order, we can only trylock_write.  If we can
1767  * not get the lock, simply return NULL to caller.
1768  */
1769 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1770 {
1771         struct address_space *mapping = page_mapping(hpage);
1772
1773         if (!mapping)
1774                 return mapping;
1775
1776         if (i_mmap_trylock_write(mapping))
1777                 return mapping;
1778
1779         return NULL;
1780 }
1781
1782 pgoff_t hugetlb_basepage_index(struct page *page)
1783 {
1784         struct page *page_head = compound_head(page);
1785         pgoff_t index = page_index(page_head);
1786         unsigned long compound_idx;
1787
1788         if (compound_order(page_head) >= MAX_ORDER)
1789                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1790         else
1791                 compound_idx = page - page_head;
1792
1793         return (index << compound_order(page_head)) + compound_idx;
1794 }
1795
1796 static struct page *alloc_buddy_huge_page(struct hstate *h,
1797                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1798                 nodemask_t *node_alloc_noretry)
1799 {
1800         int order = huge_page_order(h);
1801         struct page *page;
1802         bool alloc_try_hard = true;
1803
1804         /*
1805          * By default we always try hard to allocate the page with
1806          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1807          * a loop (to adjust global huge page counts) and previous allocation
1808          * failed, do not continue to try hard on the same node.  Use the
1809          * node_alloc_noretry bitmap to manage this state information.
1810          */
1811         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1812                 alloc_try_hard = false;
1813         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1814         if (alloc_try_hard)
1815                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1816         if (nid == NUMA_NO_NODE)
1817                 nid = numa_mem_id();
1818         page = __alloc_pages(gfp_mask, order, nid, nmask);
1819         if (page)
1820                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1821         else
1822                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1823
1824         /*
1825          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1826          * indicates an overall state change.  Clear bit so that we resume
1827          * normal 'try hard' allocations.
1828          */
1829         if (node_alloc_noretry && page && !alloc_try_hard)
1830                 node_clear(nid, *node_alloc_noretry);
1831
1832         /*
1833          * If we tried hard to get a page but failed, set bit so that
1834          * subsequent attempts will not try as hard until there is an
1835          * overall state change.
1836          */
1837         if (node_alloc_noretry && !page && alloc_try_hard)
1838                 node_set(nid, *node_alloc_noretry);
1839
1840         return page;
1841 }
1842
1843 /*
1844  * Common helper to allocate a fresh hugetlb page. All specific allocators
1845  * should use this function to get new hugetlb pages
1846  */
1847 static struct page *alloc_fresh_huge_page(struct hstate *h,
1848                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1849                 nodemask_t *node_alloc_noretry)
1850 {
1851         struct page *page;
1852         bool retry = false;
1853
1854 retry:
1855         if (hstate_is_gigantic(h))
1856                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1857         else
1858                 page = alloc_buddy_huge_page(h, gfp_mask,
1859                                 nid, nmask, node_alloc_noretry);
1860         if (!page)
1861                 return NULL;
1862
1863         if (hstate_is_gigantic(h)) {
1864                 if (!prep_compound_gigantic_page(page, huge_page_order(h))) {
1865                         /*
1866                          * Rare failure to convert pages to compound page.
1867                          * Free pages and try again - ONCE!
1868                          */
1869                         free_gigantic_page(page, huge_page_order(h));
1870                         if (!retry) {
1871                                 retry = true;
1872                                 goto retry;
1873                         }
1874                         return NULL;
1875                 }
1876         }
1877         prep_new_huge_page(h, page, page_to_nid(page));
1878
1879         return page;
1880 }
1881
1882 /*
1883  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1884  * manner.
1885  */
1886 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1887                                 nodemask_t *node_alloc_noretry)
1888 {
1889         struct page *page;
1890         int nr_nodes, node;
1891         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1892
1893         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1894                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1895                                                 node_alloc_noretry);
1896                 if (page)
1897                         break;
1898         }
1899
1900         if (!page)
1901                 return 0;
1902
1903         put_page(page); /* free it into the hugepage allocator */
1904
1905         return 1;
1906 }
1907
1908 /*
1909  * Remove huge page from pool from next node to free.  Attempt to keep
1910  * persistent huge pages more or less balanced over allowed nodes.
1911  * This routine only 'removes' the hugetlb page.  The caller must make
1912  * an additional call to free the page to low level allocators.
1913  * Called with hugetlb_lock locked.
1914  */
1915 static struct page *remove_pool_huge_page(struct hstate *h,
1916                                                 nodemask_t *nodes_allowed,
1917                                                  bool acct_surplus)
1918 {
1919         int nr_nodes, node;
1920         struct page *page = NULL;
1921
1922         lockdep_assert_held(&hugetlb_lock);
1923         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1924                 /*
1925                  * If we're returning unused surplus pages, only examine
1926                  * nodes with surplus pages.
1927                  */
1928                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1929                     !list_empty(&h->hugepage_freelists[node])) {
1930                         page = list_entry(h->hugepage_freelists[node].next,
1931                                           struct page, lru);
1932                         remove_hugetlb_page(h, page, acct_surplus);
1933                         break;
1934                 }
1935         }
1936
1937         return page;
1938 }
1939
1940 /*
1941  * Dissolve a given free hugepage into free buddy pages. This function does
1942  * nothing for in-use hugepages and non-hugepages.
1943  * This function returns values like below:
1944  *
1945  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
1946  *           when the system is under memory pressure and the feature of
1947  *           freeing unused vmemmap pages associated with each hugetlb page
1948  *           is enabled.
1949  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
1950  *           (allocated or reserved.)
1951  *       0:  successfully dissolved free hugepages or the page is not a
1952  *           hugepage (considered as already dissolved)
1953  */
1954 int dissolve_free_huge_page(struct page *page)
1955 {
1956         int rc = -EBUSY;
1957
1958 retry:
1959         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1960         if (!PageHuge(page))
1961                 return 0;
1962
1963         spin_lock_irq(&hugetlb_lock);
1964         if (!PageHuge(page)) {
1965                 rc = 0;
1966                 goto out;
1967         }
1968
1969         if (!page_count(page)) {
1970                 struct page *head = compound_head(page);
1971                 struct hstate *h = page_hstate(head);
1972                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1973                         goto out;
1974
1975                 /*
1976                  * We should make sure that the page is already on the free list
1977                  * when it is dissolved.
1978                  */
1979                 if (unlikely(!HPageFreed(head))) {
1980                         spin_unlock_irq(&hugetlb_lock);
1981                         cond_resched();
1982
1983                         /*
1984                          * Theoretically, we should return -EBUSY when we
1985                          * encounter this race. In fact, we have a chance
1986                          * to successfully dissolve the page if we do a
1987                          * retry. Because the race window is quite small.
1988                          * If we seize this opportunity, it is an optimization
1989                          * for increasing the success rate of dissolving page.
1990                          */
1991                         goto retry;
1992                 }
1993
1994                 remove_hugetlb_page(h, head, false);
1995                 h->max_huge_pages--;
1996                 spin_unlock_irq(&hugetlb_lock);
1997
1998                 /*
1999                  * Normally update_and_free_page will allocate required vmemmmap
2000                  * before freeing the page.  update_and_free_page will fail to
2001                  * free the page if it can not allocate required vmemmap.  We
2002                  * need to adjust max_huge_pages if the page is not freed.
2003                  * Attempt to allocate vmemmmap here so that we can take
2004                  * appropriate action on failure.
2005                  */
2006                 rc = alloc_huge_page_vmemmap(h, head);
2007                 if (!rc) {
2008                         /*
2009                          * Move PageHWPoison flag from head page to the raw
2010                          * error page, which makes any subpages rather than
2011                          * the error page reusable.
2012                          */
2013                         if (PageHWPoison(head) && page != head) {
2014                                 SetPageHWPoison(page);
2015                                 ClearPageHWPoison(head);
2016                         }
2017                         update_and_free_page(h, head, false);
2018                 } else {
2019                         spin_lock_irq(&hugetlb_lock);
2020                         add_hugetlb_page(h, head, false);
2021                         h->max_huge_pages++;
2022                         spin_unlock_irq(&hugetlb_lock);
2023                 }
2024
2025                 return rc;
2026         }
2027 out:
2028         spin_unlock_irq(&hugetlb_lock);
2029         return rc;
2030 }
2031
2032 /*
2033  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2034  * make specified memory blocks removable from the system.
2035  * Note that this will dissolve a free gigantic hugepage completely, if any
2036  * part of it lies within the given range.
2037  * Also note that if dissolve_free_huge_page() returns with an error, all
2038  * free hugepages that were dissolved before that error are lost.
2039  */
2040 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2041 {
2042         unsigned long pfn;
2043         struct page *page;
2044         int rc = 0;
2045
2046         if (!hugepages_supported())
2047                 return rc;
2048
2049         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
2050                 page = pfn_to_page(pfn);
2051                 rc = dissolve_free_huge_page(page);
2052                 if (rc)
2053                         break;
2054         }
2055
2056         return rc;
2057 }
2058
2059 /*
2060  * Allocates a fresh surplus page from the page allocator.
2061  */
2062 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2063                 int nid, nodemask_t *nmask, bool zero_ref)
2064 {
2065         struct page *page = NULL;
2066         bool retry = false;
2067
2068         if (hstate_is_gigantic(h))
2069                 return NULL;
2070
2071         spin_lock_irq(&hugetlb_lock);
2072         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2073                 goto out_unlock;
2074         spin_unlock_irq(&hugetlb_lock);
2075
2076 retry:
2077         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2078         if (!page)
2079                 return NULL;
2080
2081         spin_lock_irq(&hugetlb_lock);
2082         /*
2083          * We could have raced with the pool size change.
2084          * Double check that and simply deallocate the new page
2085          * if we would end up overcommiting the surpluses. Abuse
2086          * temporary page to workaround the nasty free_huge_page
2087          * codeflow
2088          */
2089         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2090                 SetHPageTemporary(page);
2091                 spin_unlock_irq(&hugetlb_lock);
2092                 put_page(page);
2093                 return NULL;
2094         }
2095
2096         if (zero_ref) {
2097                 /*
2098                  * Caller requires a page with zero ref count.
2099                  * We will drop ref count here.  If someone else is holding
2100                  * a ref, the page will be freed when they drop it.  Abuse
2101                  * temporary page flag to accomplish this.
2102                  */
2103                 SetHPageTemporary(page);
2104                 if (!put_page_testzero(page)) {
2105                         /*
2106                          * Unexpected inflated ref count on freshly allocated
2107                          * huge.  Retry once.
2108                          */
2109                         pr_info("HugeTLB unexpected inflated ref count on freshly allocated page\n");
2110                         spin_unlock_irq(&hugetlb_lock);
2111                         if (retry)
2112                                 return NULL;
2113
2114                         retry = true;
2115                         goto retry;
2116                 }
2117                 ClearHPageTemporary(page);
2118         }
2119
2120         h->surplus_huge_pages++;
2121         h->surplus_huge_pages_node[page_to_nid(page)]++;
2122
2123 out_unlock:
2124         spin_unlock_irq(&hugetlb_lock);
2125
2126         return page;
2127 }
2128
2129 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2130                                      int nid, nodemask_t *nmask)
2131 {
2132         struct page *page;
2133
2134         if (hstate_is_gigantic(h))
2135                 return NULL;
2136
2137         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
2138         if (!page)
2139                 return NULL;
2140
2141         /*
2142          * We do not account these pages as surplus because they are only
2143          * temporary and will be released properly on the last reference
2144          */
2145         SetHPageTemporary(page);
2146
2147         return page;
2148 }
2149
2150 /*
2151  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2152  */
2153 static
2154 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2155                 struct vm_area_struct *vma, unsigned long addr)
2156 {
2157         struct page *page = NULL;
2158         struct mempolicy *mpol;
2159         gfp_t gfp_mask = htlb_alloc_mask(h);
2160         int nid;
2161         nodemask_t *nodemask;
2162
2163         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2164         if (mpol_is_preferred_many(mpol)) {
2165                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2166
2167                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2168                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask, false);
2169
2170                 /* Fallback to all nodes if page==NULL */
2171                 nodemask = NULL;
2172         }
2173
2174         if (!page)
2175                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask, false);
2176         mpol_cond_put(mpol);
2177         return page;
2178 }
2179
2180 /* page migration callback function */
2181 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2182                 nodemask_t *nmask, gfp_t gfp_mask)
2183 {
2184         spin_lock_irq(&hugetlb_lock);
2185         if (h->free_huge_pages - h->resv_huge_pages > 0) {
2186                 struct page *page;
2187
2188                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2189                 if (page) {
2190                         spin_unlock_irq(&hugetlb_lock);
2191                         return page;
2192                 }
2193         }
2194         spin_unlock_irq(&hugetlb_lock);
2195
2196         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2197 }
2198
2199 /* mempolicy aware migration callback */
2200 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2201                 unsigned long address)
2202 {
2203         struct mempolicy *mpol;
2204         nodemask_t *nodemask;
2205         struct page *page;
2206         gfp_t gfp_mask;
2207         int node;
2208
2209         gfp_mask = htlb_alloc_mask(h);
2210         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2211         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2212         mpol_cond_put(mpol);
2213
2214         return page;
2215 }
2216
2217 /*
2218  * Increase the hugetlb pool such that it can accommodate a reservation
2219  * of size 'delta'.
2220  */
2221 static int gather_surplus_pages(struct hstate *h, long delta)
2222         __must_hold(&hugetlb_lock)
2223 {
2224         struct list_head surplus_list;
2225         struct page *page, *tmp;
2226         int ret;
2227         long i;
2228         long needed, allocated;
2229         bool alloc_ok = true;
2230
2231         lockdep_assert_held(&hugetlb_lock);
2232         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2233         if (needed <= 0) {
2234                 h->resv_huge_pages += delta;
2235                 return 0;
2236         }
2237
2238         allocated = 0;
2239         INIT_LIST_HEAD(&surplus_list);
2240
2241         ret = -ENOMEM;
2242 retry:
2243         spin_unlock_irq(&hugetlb_lock);
2244         for (i = 0; i < needed; i++) {
2245                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2246                                 NUMA_NO_NODE, NULL, true);
2247                 if (!page) {
2248                         alloc_ok = false;
2249                         break;
2250                 }
2251                 list_add(&page->lru, &surplus_list);
2252                 cond_resched();
2253         }
2254         allocated += i;
2255
2256         /*
2257          * After retaking hugetlb_lock, we need to recalculate 'needed'
2258          * because either resv_huge_pages or free_huge_pages may have changed.
2259          */
2260         spin_lock_irq(&hugetlb_lock);
2261         needed = (h->resv_huge_pages + delta) -
2262                         (h->free_huge_pages + allocated);
2263         if (needed > 0) {
2264                 if (alloc_ok)
2265                         goto retry;
2266                 /*
2267                  * We were not able to allocate enough pages to
2268                  * satisfy the entire reservation so we free what
2269                  * we've allocated so far.
2270                  */
2271                 goto free;
2272         }
2273         /*
2274          * The surplus_list now contains _at_least_ the number of extra pages
2275          * needed to accommodate the reservation.  Add the appropriate number
2276          * of pages to the hugetlb pool and free the extras back to the buddy
2277          * allocator.  Commit the entire reservation here to prevent another
2278          * process from stealing the pages as they are added to the pool but
2279          * before they are reserved.
2280          */
2281         needed += allocated;
2282         h->resv_huge_pages += delta;
2283         ret = 0;
2284
2285         /* Free the needed pages to the hugetlb pool */
2286         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2287                 if ((--needed) < 0)
2288                         break;
2289                 /* Add the page to the hugetlb allocator */
2290                 enqueue_huge_page(h, page);
2291         }
2292 free:
2293         spin_unlock_irq(&hugetlb_lock);
2294
2295         /*
2296          * Free unnecessary surplus pages to the buddy allocator.
2297          * Pages have no ref count, call free_huge_page directly.
2298          */
2299         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2300                 free_huge_page(page);
2301         spin_lock_irq(&hugetlb_lock);
2302
2303         return ret;
2304 }
2305
2306 /*
2307  * This routine has two main purposes:
2308  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2309  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2310  *    to the associated reservation map.
2311  * 2) Free any unused surplus pages that may have been allocated to satisfy
2312  *    the reservation.  As many as unused_resv_pages may be freed.
2313  */
2314 static void return_unused_surplus_pages(struct hstate *h,
2315                                         unsigned long unused_resv_pages)
2316 {
2317         unsigned long nr_pages;
2318         struct page *page;
2319         LIST_HEAD(page_list);
2320
2321         lockdep_assert_held(&hugetlb_lock);
2322         /* Uncommit the reservation */
2323         h->resv_huge_pages -= unused_resv_pages;
2324
2325         /* Cannot return gigantic pages currently */
2326         if (hstate_is_gigantic(h))
2327                 goto out;
2328
2329         /*
2330          * Part (or even all) of the reservation could have been backed
2331          * by pre-allocated pages. Only free surplus pages.
2332          */
2333         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2334
2335         /*
2336          * We want to release as many surplus pages as possible, spread
2337          * evenly across all nodes with memory. Iterate across these nodes
2338          * until we can no longer free unreserved surplus pages. This occurs
2339          * when the nodes with surplus pages have no free pages.
2340          * remove_pool_huge_page() will balance the freed pages across the
2341          * on-line nodes with memory and will handle the hstate accounting.
2342          */
2343         while (nr_pages--) {
2344                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2345                 if (!page)
2346                         goto out;
2347
2348                 list_add(&page->lru, &page_list);
2349         }
2350
2351 out:
2352         spin_unlock_irq(&hugetlb_lock);
2353         update_and_free_pages_bulk(h, &page_list);
2354         spin_lock_irq(&hugetlb_lock);
2355 }
2356
2357
2358 /*
2359  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2360  * are used by the huge page allocation routines to manage reservations.
2361  *
2362  * vma_needs_reservation is called to determine if the huge page at addr
2363  * within the vma has an associated reservation.  If a reservation is
2364  * needed, the value 1 is returned.  The caller is then responsible for
2365  * managing the global reservation and subpool usage counts.  After
2366  * the huge page has been allocated, vma_commit_reservation is called
2367  * to add the page to the reservation map.  If the page allocation fails,
2368  * the reservation must be ended instead of committed.  vma_end_reservation
2369  * is called in such cases.
2370  *
2371  * In the normal case, vma_commit_reservation returns the same value
2372  * as the preceding vma_needs_reservation call.  The only time this
2373  * is not the case is if a reserve map was changed between calls.  It
2374  * is the responsibility of the caller to notice the difference and
2375  * take appropriate action.
2376  *
2377  * vma_add_reservation is used in error paths where a reservation must
2378  * be restored when a newly allocated huge page must be freed.  It is
2379  * to be called after calling vma_needs_reservation to determine if a
2380  * reservation exists.
2381  *
2382  * vma_del_reservation is used in error paths where an entry in the reserve
2383  * map was created during huge page allocation and must be removed.  It is to
2384  * be called after calling vma_needs_reservation to determine if a reservation
2385  * exists.
2386  */
2387 enum vma_resv_mode {
2388         VMA_NEEDS_RESV,
2389         VMA_COMMIT_RESV,
2390         VMA_END_RESV,
2391         VMA_ADD_RESV,
2392         VMA_DEL_RESV,
2393 };
2394 static long __vma_reservation_common(struct hstate *h,
2395                                 struct vm_area_struct *vma, unsigned long addr,
2396                                 enum vma_resv_mode mode)
2397 {
2398         struct resv_map *resv;
2399         pgoff_t idx;
2400         long ret;
2401         long dummy_out_regions_needed;
2402
2403         resv = vma_resv_map(vma);
2404         if (!resv)
2405                 return 1;
2406
2407         idx = vma_hugecache_offset(h, vma, addr);
2408         switch (mode) {
2409         case VMA_NEEDS_RESV:
2410                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2411                 /* We assume that vma_reservation_* routines always operate on
2412                  * 1 page, and that adding to resv map a 1 page entry can only
2413                  * ever require 1 region.
2414                  */
2415                 VM_BUG_ON(dummy_out_regions_needed != 1);
2416                 break;
2417         case VMA_COMMIT_RESV:
2418                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2419                 /* region_add calls of range 1 should never fail. */
2420                 VM_BUG_ON(ret < 0);
2421                 break;
2422         case VMA_END_RESV:
2423                 region_abort(resv, idx, idx + 1, 1);
2424                 ret = 0;
2425                 break;
2426         case VMA_ADD_RESV:
2427                 if (vma->vm_flags & VM_MAYSHARE) {
2428                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2429                         /* region_add calls of range 1 should never fail. */
2430                         VM_BUG_ON(ret < 0);
2431                 } else {
2432                         region_abort(resv, idx, idx + 1, 1);
2433                         ret = region_del(resv, idx, idx + 1);
2434                 }
2435                 break;
2436         case VMA_DEL_RESV:
2437                 if (vma->vm_flags & VM_MAYSHARE) {
2438                         region_abort(resv, idx, idx + 1, 1);
2439                         ret = region_del(resv, idx, idx + 1);
2440                 } else {
2441                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2442                         /* region_add calls of range 1 should never fail. */
2443                         VM_BUG_ON(ret < 0);
2444                 }
2445                 break;
2446         default:
2447                 BUG();
2448         }
2449
2450         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2451                 return ret;
2452         /*
2453          * We know private mapping must have HPAGE_RESV_OWNER set.
2454          *
2455          * In most cases, reserves always exist for private mappings.
2456          * However, a file associated with mapping could have been
2457          * hole punched or truncated after reserves were consumed.
2458          * As subsequent fault on such a range will not use reserves.
2459          * Subtle - The reserve map for private mappings has the
2460          * opposite meaning than that of shared mappings.  If NO
2461          * entry is in the reserve map, it means a reservation exists.
2462          * If an entry exists in the reserve map, it means the
2463          * reservation has already been consumed.  As a result, the
2464          * return value of this routine is the opposite of the
2465          * value returned from reserve map manipulation routines above.
2466          */
2467         if (ret > 0)
2468                 return 0;
2469         if (ret == 0)
2470                 return 1;
2471         return ret;
2472 }
2473
2474 static long vma_needs_reservation(struct hstate *h,
2475                         struct vm_area_struct *vma, unsigned long addr)
2476 {
2477         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2478 }
2479
2480 static long vma_commit_reservation(struct hstate *h,
2481                         struct vm_area_struct *vma, unsigned long addr)
2482 {
2483         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2484 }
2485
2486 static void vma_end_reservation(struct hstate *h,
2487                         struct vm_area_struct *vma, unsigned long addr)
2488 {
2489         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2490 }
2491
2492 static long vma_add_reservation(struct hstate *h,
2493                         struct vm_area_struct *vma, unsigned long addr)
2494 {
2495         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2496 }
2497
2498 static long vma_del_reservation(struct hstate *h,
2499                         struct vm_area_struct *vma, unsigned long addr)
2500 {
2501         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2502 }
2503
2504 /*
2505  * This routine is called to restore reservation information on error paths.
2506  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2507  * the hugetlb mutex should remain held when calling this routine.
2508  *
2509  * It handles two specific cases:
2510  * 1) A reservation was in place and the page consumed the reservation.
2511  *    HPageRestoreReserve is set in the page.
2512  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2513  *    not set.  However, alloc_huge_page always updates the reserve map.
2514  *
2515  * In case 1, free_huge_page later in the error path will increment the
2516  * global reserve count.  But, free_huge_page does not have enough context
2517  * to adjust the reservation map.  This case deals primarily with private
2518  * mappings.  Adjust the reserve map here to be consistent with global
2519  * reserve count adjustments to be made by free_huge_page.  Make sure the
2520  * reserve map indicates there is a reservation present.
2521  *
2522  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2523  */
2524 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2525                         unsigned long address, struct page *page)
2526 {
2527         long rc = vma_needs_reservation(h, vma, address);
2528
2529         if (HPageRestoreReserve(page)) {
2530                 if (unlikely(rc < 0))
2531                         /*
2532                          * Rare out of memory condition in reserve map
2533                          * manipulation.  Clear HPageRestoreReserve so that
2534                          * global reserve count will not be incremented
2535                          * by free_huge_page.  This will make it appear
2536                          * as though the reservation for this page was
2537                          * consumed.  This may prevent the task from
2538                          * faulting in the page at a later time.  This
2539                          * is better than inconsistent global huge page
2540                          * accounting of reserve counts.
2541                          */
2542                         ClearHPageRestoreReserve(page);
2543                 else if (rc)
2544                         (void)vma_add_reservation(h, vma, address);
2545                 else
2546                         vma_end_reservation(h, vma, address);
2547         } else {
2548                 if (!rc) {
2549                         /*
2550                          * This indicates there is an entry in the reserve map
2551                          * not added by alloc_huge_page.  We know it was added
2552                          * before the alloc_huge_page call, otherwise
2553                          * HPageRestoreReserve would be set on the page.
2554                          * Remove the entry so that a subsequent allocation
2555                          * does not consume a reservation.
2556                          */
2557                         rc = vma_del_reservation(h, vma, address);
2558                         if (rc < 0)
2559                                 /*
2560                                  * VERY rare out of memory condition.  Since
2561                                  * we can not delete the entry, set
2562                                  * HPageRestoreReserve so that the reserve
2563                                  * count will be incremented when the page
2564                                  * is freed.  This reserve will be consumed
2565                                  * on a subsequent allocation.
2566                                  */
2567                                 SetHPageRestoreReserve(page);
2568                 } else if (rc < 0) {
2569                         /*
2570                          * Rare out of memory condition from
2571                          * vma_needs_reservation call.  Memory allocation is
2572                          * only attempted if a new entry is needed.  Therefore,
2573                          * this implies there is not an entry in the
2574                          * reserve map.
2575                          *
2576                          * For shared mappings, no entry in the map indicates
2577                          * no reservation.  We are done.
2578                          */
2579                         if (!(vma->vm_flags & VM_MAYSHARE))
2580                                 /*
2581                                  * For private mappings, no entry indicates
2582                                  * a reservation is present.  Since we can
2583                                  * not add an entry, set SetHPageRestoreReserve
2584                                  * on the page so reserve count will be
2585                                  * incremented when freed.  This reserve will
2586                                  * be consumed on a subsequent allocation.
2587                                  */
2588                                 SetHPageRestoreReserve(page);
2589                 } else
2590                         /*
2591                          * No reservation present, do nothing
2592                          */
2593                          vma_end_reservation(h, vma, address);
2594         }
2595 }
2596
2597 /*
2598  * alloc_and_dissolve_huge_page - Allocate a new page and dissolve the old one
2599  * @h: struct hstate old page belongs to
2600  * @old_page: Old page to dissolve
2601  * @list: List to isolate the page in case we need to
2602  * Returns 0 on success, otherwise negated error.
2603  */
2604 static int alloc_and_dissolve_huge_page(struct hstate *h, struct page *old_page,
2605                                         struct list_head *list)
2606 {
2607         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2608         int nid = page_to_nid(old_page);
2609         bool alloc_retry = false;
2610         struct page *new_page;
2611         int ret = 0;
2612
2613         /*
2614          * Before dissolving the page, we need to allocate a new one for the
2615          * pool to remain stable.  Here, we allocate the page and 'prep' it
2616          * by doing everything but actually updating counters and adding to
2617          * the pool.  This simplifies and let us do most of the processing
2618          * under the lock.
2619          */
2620 alloc_retry:
2621         new_page = alloc_buddy_huge_page(h, gfp_mask, nid, NULL, NULL);
2622         if (!new_page)
2623                 return -ENOMEM;
2624         /*
2625          * If all goes well, this page will be directly added to the free
2626          * list in the pool.  For this the ref count needs to be zero.
2627          * Attempt to drop now, and retry once if needed.  It is VERY
2628          * unlikely there is another ref on the page.
2629          *
2630          * If someone else has a reference to the page, it will be freed
2631          * when they drop their ref.  Abuse temporary page flag to accomplish
2632          * this.  Retry once if there is an inflated ref count.
2633          */
2634         SetHPageTemporary(new_page);
2635         if (!put_page_testzero(new_page)) {
2636                 if (alloc_retry)
2637                         return -EBUSY;
2638
2639                 alloc_retry = true;
2640                 goto alloc_retry;
2641         }
2642         ClearHPageTemporary(new_page);
2643
2644         __prep_new_huge_page(h, new_page);
2645
2646 retry:
2647         spin_lock_irq(&hugetlb_lock);
2648         if (!PageHuge(old_page)) {
2649                 /*
2650                  * Freed from under us. Drop new_page too.
2651                  */
2652                 goto free_new;
2653         } else if (page_count(old_page)) {
2654                 /*
2655                  * Someone has grabbed the page, try to isolate it here.
2656                  * Fail with -EBUSY if not possible.
2657                  */
2658                 spin_unlock_irq(&hugetlb_lock);
2659                 if (!isolate_huge_page(old_page, list))
2660                         ret = -EBUSY;
2661                 spin_lock_irq(&hugetlb_lock);
2662                 goto free_new;
2663         } else if (!HPageFreed(old_page)) {
2664                 /*
2665                  * Page's refcount is 0 but it has not been enqueued in the
2666                  * freelist yet. Race window is small, so we can succeed here if
2667                  * we retry.
2668                  */
2669                 spin_unlock_irq(&hugetlb_lock);
2670                 cond_resched();
2671                 goto retry;
2672         } else {
2673                 /*
2674                  * Ok, old_page is still a genuine free hugepage. Remove it from
2675                  * the freelist and decrease the counters. These will be
2676                  * incremented again when calling __prep_account_new_huge_page()
2677                  * and enqueue_huge_page() for new_page. The counters will remain
2678                  * stable since this happens under the lock.
2679                  */
2680                 remove_hugetlb_page(h, old_page, false);
2681
2682                 /*
2683                  * Ref count on new page is already zero as it was dropped
2684                  * earlier.  It can be directly added to the pool free list.
2685                  */
2686                 __prep_account_new_huge_page(h, nid);
2687                 enqueue_huge_page(h, new_page);
2688
2689                 /*
2690                  * Pages have been replaced, we can safely free the old one.
2691                  */
2692                 spin_unlock_irq(&hugetlb_lock);
2693                 update_and_free_page(h, old_page, false);
2694         }
2695
2696         return ret;
2697
2698 free_new:
2699         spin_unlock_irq(&hugetlb_lock);
2700         /* Page has a zero ref count, but needs a ref to be freed */
2701         set_page_refcounted(new_page);
2702         update_and_free_page(h, new_page, false);
2703
2704         return ret;
2705 }
2706
2707 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2708 {
2709         struct hstate *h;
2710         struct page *head;
2711         int ret = -EBUSY;
2712
2713         /*
2714          * The page might have been dissolved from under our feet, so make sure
2715          * to carefully check the state under the lock.
2716          * Return success when racing as if we dissolved the page ourselves.
2717          */
2718         spin_lock_irq(&hugetlb_lock);
2719         if (PageHuge(page)) {
2720                 head = compound_head(page);
2721                 h = page_hstate(head);
2722         } else {
2723                 spin_unlock_irq(&hugetlb_lock);
2724                 return 0;
2725         }
2726         spin_unlock_irq(&hugetlb_lock);
2727
2728         /*
2729          * Fence off gigantic pages as there is a cyclic dependency between
2730          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2731          * of bailing out right away without further retrying.
2732          */
2733         if (hstate_is_gigantic(h))
2734                 return -ENOMEM;
2735
2736         if (page_count(head) && isolate_huge_page(head, list))
2737                 ret = 0;
2738         else if (!page_count(head))
2739                 ret = alloc_and_dissolve_huge_page(h, head, list);
2740
2741         return ret;
2742 }
2743
2744 struct page *alloc_huge_page(struct vm_area_struct *vma,
2745                                     unsigned long addr, int avoid_reserve)
2746 {
2747         struct hugepage_subpool *spool = subpool_vma(vma);
2748         struct hstate *h = hstate_vma(vma);
2749         struct page *page;
2750         long map_chg, map_commit;
2751         long gbl_chg;
2752         int ret, idx;
2753         struct hugetlb_cgroup *h_cg;
2754         bool deferred_reserve;
2755
2756         idx = hstate_index(h);
2757         /*
2758          * Examine the region/reserve map to determine if the process
2759          * has a reservation for the page to be allocated.  A return
2760          * code of zero indicates a reservation exists (no change).
2761          */
2762         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2763         if (map_chg < 0)
2764                 return ERR_PTR(-ENOMEM);
2765
2766         /*
2767          * Processes that did not create the mapping will have no
2768          * reserves as indicated by the region/reserve map. Check
2769          * that the allocation will not exceed the subpool limit.
2770          * Allocations for MAP_NORESERVE mappings also need to be
2771          * checked against any subpool limit.
2772          */
2773         if (map_chg || avoid_reserve) {
2774                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2775                 if (gbl_chg < 0) {
2776                         vma_end_reservation(h, vma, addr);
2777                         return ERR_PTR(-ENOSPC);
2778                 }
2779
2780                 /*
2781                  * Even though there was no reservation in the region/reserve
2782                  * map, there could be reservations associated with the
2783                  * subpool that can be used.  This would be indicated if the
2784                  * return value of hugepage_subpool_get_pages() is zero.
2785                  * However, if avoid_reserve is specified we still avoid even
2786                  * the subpool reservations.
2787                  */
2788                 if (avoid_reserve)
2789                         gbl_chg = 1;
2790         }
2791
2792         /* If this allocation is not consuming a reservation, charge it now.
2793          */
2794         deferred_reserve = map_chg || avoid_reserve;
2795         if (deferred_reserve) {
2796                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2797                         idx, pages_per_huge_page(h), &h_cg);
2798                 if (ret)
2799                         goto out_subpool_put;
2800         }
2801
2802         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2803         if (ret)
2804                 goto out_uncharge_cgroup_reservation;
2805
2806         spin_lock_irq(&hugetlb_lock);
2807         /*
2808          * glb_chg is passed to indicate whether or not a page must be taken
2809          * from the global free pool (global change).  gbl_chg == 0 indicates
2810          * a reservation exists for the allocation.
2811          */
2812         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2813         if (!page) {
2814                 spin_unlock_irq(&hugetlb_lock);
2815                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2816                 if (!page)
2817                         goto out_uncharge_cgroup;
2818                 spin_lock_irq(&hugetlb_lock);
2819                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2820                         SetHPageRestoreReserve(page);
2821                         h->resv_huge_pages--;
2822                 }
2823                 list_add(&page->lru, &h->hugepage_activelist);
2824                 /* Fall through */
2825         }
2826         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2827         /* If allocation is not consuming a reservation, also store the
2828          * hugetlb_cgroup pointer on the page.
2829          */
2830         if (deferred_reserve) {
2831                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2832                                                   h_cg, page);
2833         }
2834
2835         spin_unlock_irq(&hugetlb_lock);
2836
2837         hugetlb_set_page_subpool(page, spool);
2838
2839         map_commit = vma_commit_reservation(h, vma, addr);
2840         if (unlikely(map_chg > map_commit)) {
2841                 /*
2842                  * The page was added to the reservation map between
2843                  * vma_needs_reservation and vma_commit_reservation.
2844                  * This indicates a race with hugetlb_reserve_pages.
2845                  * Adjust for the subpool count incremented above AND
2846                  * in hugetlb_reserve_pages for the same page.  Also,
2847                  * the reservation count added in hugetlb_reserve_pages
2848                  * no longer applies.
2849                  */
2850                 long rsv_adjust;
2851
2852                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2853                 hugetlb_acct_memory(h, -rsv_adjust);
2854                 if (deferred_reserve)
2855                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2856                                         pages_per_huge_page(h), page);
2857         }
2858         return page;
2859
2860 out_uncharge_cgroup:
2861         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2862 out_uncharge_cgroup_reservation:
2863         if (deferred_reserve)
2864                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2865                                                     h_cg);
2866 out_subpool_put:
2867         if (map_chg || avoid_reserve)
2868                 hugepage_subpool_put_pages(spool, 1);
2869         vma_end_reservation(h, vma, addr);
2870         return ERR_PTR(-ENOSPC);
2871 }
2872
2873 int alloc_bootmem_huge_page(struct hstate *h)
2874         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2875 int __alloc_bootmem_huge_page(struct hstate *h)
2876 {
2877         struct huge_bootmem_page *m;
2878         int nr_nodes, node;
2879
2880         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2881                 void *addr;
2882
2883                 addr = memblock_alloc_try_nid_raw(
2884                                 huge_page_size(h), huge_page_size(h),
2885                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2886                 if (addr) {
2887                         /*
2888                          * Use the beginning of the huge page to store the
2889                          * huge_bootmem_page struct (until gather_bootmem
2890                          * puts them into the mem_map).
2891                          */
2892                         m = addr;
2893                         goto found;
2894                 }
2895         }
2896         return 0;
2897
2898 found:
2899         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2900         /* Put them into a private list first because mem_map is not up yet */
2901         INIT_LIST_HEAD(&m->list);
2902         list_add(&m->list, &huge_boot_pages);
2903         m->hstate = h;
2904         return 1;
2905 }
2906
2907 /*
2908  * Put bootmem huge pages into the standard lists after mem_map is up.
2909  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
2910  */
2911 static void __init gather_bootmem_prealloc(void)
2912 {
2913         struct huge_bootmem_page *m;
2914
2915         list_for_each_entry(m, &huge_boot_pages, list) {
2916                 struct page *page = virt_to_page(m);
2917                 struct hstate *h = m->hstate;
2918
2919                 VM_BUG_ON(!hstate_is_gigantic(h));
2920                 WARN_ON(page_count(page) != 1);
2921                 if (prep_compound_gigantic_page(page, huge_page_order(h))) {
2922                         WARN_ON(PageReserved(page));
2923                         prep_new_huge_page(h, page, page_to_nid(page));
2924                         put_page(page); /* add to the hugepage allocator */
2925                 } else {
2926                         /* VERY unlikely inflated ref count on a tail page */
2927                         free_gigantic_page(page, huge_page_order(h));
2928                 }
2929
2930                 /*
2931                  * We need to restore the 'stolen' pages to totalram_pages
2932                  * in order to fix confusing memory reports from free(1) and
2933                  * other side-effects, like CommitLimit going negative.
2934                  */
2935                 adjust_managed_page_count(page, pages_per_huge_page(h));
2936                 cond_resched();
2937         }
2938 }
2939
2940 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2941 {
2942         unsigned long i;
2943         nodemask_t *node_alloc_noretry;
2944
2945         if (!hstate_is_gigantic(h)) {
2946                 /*
2947                  * Bit mask controlling how hard we retry per-node allocations.
2948                  * Ignore errors as lower level routines can deal with
2949                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2950                  * time, we are likely in bigger trouble.
2951                  */
2952                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2953                                                 GFP_KERNEL);
2954         } else {
2955                 /* allocations done at boot time */
2956                 node_alloc_noretry = NULL;
2957         }
2958
2959         /* bit mask controlling how hard we retry per-node allocations */
2960         if (node_alloc_noretry)
2961                 nodes_clear(*node_alloc_noretry);
2962
2963         for (i = 0; i < h->max_huge_pages; ++i) {
2964                 if (hstate_is_gigantic(h)) {
2965                         if (hugetlb_cma_size) {
2966                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2967                                 goto free;
2968                         }
2969                         if (!alloc_bootmem_huge_page(h))
2970                                 break;
2971                 } else if (!alloc_pool_huge_page(h,
2972                                          &node_states[N_MEMORY],
2973                                          node_alloc_noretry))
2974                         break;
2975                 cond_resched();
2976         }
2977         if (i < h->max_huge_pages) {
2978                 char buf[32];
2979
2980                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2981                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2982                         h->max_huge_pages, buf, i);
2983                 h->max_huge_pages = i;
2984         }
2985 free:
2986         kfree(node_alloc_noretry);
2987 }
2988
2989 static void __init hugetlb_init_hstates(void)
2990 {
2991         struct hstate *h;
2992
2993         for_each_hstate(h) {
2994                 if (minimum_order > huge_page_order(h))
2995                         minimum_order = huge_page_order(h);
2996
2997                 /* oversize hugepages were init'ed in early boot */
2998                 if (!hstate_is_gigantic(h))
2999                         hugetlb_hstate_alloc_pages(h);
3000         }
3001         VM_BUG_ON(minimum_order == UINT_MAX);
3002 }
3003
3004 static void __init report_hugepages(void)
3005 {
3006         struct hstate *h;
3007
3008         for_each_hstate(h) {
3009                 char buf[32];
3010
3011                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3012                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
3013                         buf, h->free_huge_pages);
3014         }
3015 }
3016
3017 #ifdef CONFIG_HIGHMEM
3018 static void try_to_free_low(struct hstate *h, unsigned long count,
3019                                                 nodemask_t *nodes_allowed)
3020 {
3021         int i;
3022         LIST_HEAD(page_list);
3023
3024         lockdep_assert_held(&hugetlb_lock);
3025         if (hstate_is_gigantic(h))
3026                 return;
3027
3028         /*
3029          * Collect pages to be freed on a list, and free after dropping lock
3030          */
3031         for_each_node_mask(i, *nodes_allowed) {
3032                 struct page *page, *next;
3033                 struct list_head *freel = &h->hugepage_freelists[i];
3034                 list_for_each_entry_safe(page, next, freel, lru) {
3035                         if (count >= h->nr_huge_pages)
3036                                 goto out;
3037                         if (PageHighMem(page))
3038                                 continue;
3039                         remove_hugetlb_page(h, page, false);
3040                         list_add(&page->lru, &page_list);
3041                 }
3042         }
3043
3044 out:
3045         spin_unlock_irq(&hugetlb_lock);
3046         update_and_free_pages_bulk(h, &page_list);
3047         spin_lock_irq(&hugetlb_lock);
3048 }
3049 #else
3050 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3051                                                 nodemask_t *nodes_allowed)
3052 {
3053 }
3054 #endif
3055
3056 /*
3057  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3058  * balanced by operating on them in a round-robin fashion.
3059  * Returns 1 if an adjustment was made.
3060  */
3061 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3062                                 int delta)
3063 {
3064         int nr_nodes, node;
3065
3066         lockdep_assert_held(&hugetlb_lock);
3067         VM_BUG_ON(delta != -1 && delta != 1);
3068
3069         if (delta < 0) {
3070                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3071                         if (h->surplus_huge_pages_node[node])
3072                                 goto found;
3073                 }
3074         } else {
3075                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3076                         if (h->surplus_huge_pages_node[node] <
3077                                         h->nr_huge_pages_node[node])
3078                                 goto found;
3079                 }
3080         }
3081         return 0;
3082
3083 found:
3084         h->surplus_huge_pages += delta;
3085         h->surplus_huge_pages_node[node] += delta;
3086         return 1;
3087 }
3088
3089 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3090 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3091                               nodemask_t *nodes_allowed)
3092 {
3093         unsigned long min_count, ret;
3094         struct page *page;
3095         LIST_HEAD(page_list);
3096         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3097
3098         /*
3099          * Bit mask controlling how hard we retry per-node allocations.
3100          * If we can not allocate the bit mask, do not attempt to allocate
3101          * the requested huge pages.
3102          */
3103         if (node_alloc_noretry)
3104                 nodes_clear(*node_alloc_noretry);
3105         else
3106                 return -ENOMEM;
3107
3108         /*
3109          * resize_lock mutex prevents concurrent adjustments to number of
3110          * pages in hstate via the proc/sysfs interfaces.
3111          */
3112         mutex_lock(&h->resize_lock);
3113         flush_free_hpage_work(h);
3114         spin_lock_irq(&hugetlb_lock);
3115
3116         /*
3117          * Check for a node specific request.
3118          * Changing node specific huge page count may require a corresponding
3119          * change to the global count.  In any case, the passed node mask
3120          * (nodes_allowed) will restrict alloc/free to the specified node.
3121          */
3122         if (nid != NUMA_NO_NODE) {
3123                 unsigned long old_count = count;
3124
3125                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3126                 /*
3127                  * User may have specified a large count value which caused the
3128                  * above calculation to overflow.  In this case, they wanted
3129                  * to allocate as many huge pages as possible.  Set count to
3130                  * largest possible value to align with their intention.
3131                  */
3132                 if (count < old_count)
3133                         count = ULONG_MAX;
3134         }
3135
3136         /*
3137          * Gigantic pages runtime allocation depend on the capability for large
3138          * page range allocation.
3139          * If the system does not provide this feature, return an error when
3140          * the user tries to allocate gigantic pages but let the user free the
3141          * boottime allocated gigantic pages.
3142          */
3143         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3144                 if (count > persistent_huge_pages(h)) {
3145                         spin_unlock_irq(&hugetlb_lock);
3146                         mutex_unlock(&h->resize_lock);
3147                         NODEMASK_FREE(node_alloc_noretry);
3148                         return -EINVAL;
3149                 }
3150                 /* Fall through to decrease pool */
3151         }
3152
3153         /*
3154          * Increase the pool size
3155          * First take pages out of surplus state.  Then make up the
3156          * remaining difference by allocating fresh huge pages.
3157          *
3158          * We might race with alloc_surplus_huge_page() here and be unable
3159          * to convert a surplus huge page to a normal huge page. That is
3160          * not critical, though, it just means the overall size of the
3161          * pool might be one hugepage larger than it needs to be, but
3162          * within all the constraints specified by the sysctls.
3163          */
3164         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3165                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3166                         break;
3167         }
3168
3169         while (count > persistent_huge_pages(h)) {
3170                 /*
3171                  * If this allocation races such that we no longer need the
3172                  * page, free_huge_page will handle it by freeing the page
3173                  * and reducing the surplus.
3174                  */
3175                 spin_unlock_irq(&hugetlb_lock);
3176
3177                 /* yield cpu to avoid soft lockup */
3178                 cond_resched();
3179
3180                 ret = alloc_pool_huge_page(h, nodes_allowed,
3181                                                 node_alloc_noretry);
3182                 spin_lock_irq(&hugetlb_lock);
3183                 if (!ret)
3184                         goto out;
3185
3186                 /* Bail for signals. Probably ctrl-c from user */
3187                 if (signal_pending(current))
3188                         goto out;
3189         }
3190
3191         /*
3192          * Decrease the pool size
3193          * First return free pages to the buddy allocator (being careful
3194          * to keep enough around to satisfy reservations).  Then place
3195          * pages into surplus state as needed so the pool will shrink
3196          * to the desired size as pages become free.
3197          *
3198          * By placing pages into the surplus state independent of the
3199          * overcommit value, we are allowing the surplus pool size to
3200          * exceed overcommit. There are few sane options here. Since
3201          * alloc_surplus_huge_page() is checking the global counter,
3202          * though, we'll note that we're not allowed to exceed surplus
3203          * and won't grow the pool anywhere else. Not until one of the
3204          * sysctls are changed, or the surplus pages go out of use.
3205          */
3206         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3207         min_count = max(count, min_count);
3208         try_to_free_low(h, min_count, nodes_allowed);
3209
3210         /*
3211          * Collect pages to be removed on list without dropping lock
3212          */
3213         while (min_count < persistent_huge_pages(h)) {
3214                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3215                 if (!page)
3216                         break;
3217
3218                 list_add(&page->lru, &page_list);
3219         }
3220         /* free the pages after dropping lock */
3221         spin_unlock_irq(&hugetlb_lock);
3222         update_and_free_pages_bulk(h, &page_list);
3223         flush_free_hpage_work(h);
3224         spin_lock_irq(&hugetlb_lock);
3225
3226         while (count < persistent_huge_pages(h)) {
3227                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3228                         break;
3229         }
3230 out:
3231         h->max_huge_pages = persistent_huge_pages(h);
3232         spin_unlock_irq(&hugetlb_lock);
3233         mutex_unlock(&h->resize_lock);
3234
3235         NODEMASK_FREE(node_alloc_noretry);
3236
3237         return 0;
3238 }
3239
3240 #define HSTATE_ATTR_RO(_name) \
3241         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3242
3243 #define HSTATE_ATTR(_name) \
3244         static struct kobj_attribute _name##_attr = \
3245                 __ATTR(_name, 0644, _name##_show, _name##_store)
3246
3247 static struct kobject *hugepages_kobj;
3248 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3249
3250 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3251
3252 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3253 {
3254         int i;
3255
3256         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3257                 if (hstate_kobjs[i] == kobj) {
3258                         if (nidp)
3259                                 *nidp = NUMA_NO_NODE;
3260                         return &hstates[i];
3261                 }
3262
3263         return kobj_to_node_hstate(kobj, nidp);
3264 }
3265
3266 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3267                                         struct kobj_attribute *attr, char *buf)
3268 {
3269         struct hstate *h;
3270         unsigned long nr_huge_pages;
3271         int nid;
3272
3273         h = kobj_to_hstate(kobj, &nid);
3274         if (nid == NUMA_NO_NODE)
3275                 nr_huge_pages = h->nr_huge_pages;
3276         else
3277                 nr_huge_pages = h->nr_huge_pages_node[nid];
3278
3279         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3280 }
3281
3282 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3283                                            struct hstate *h, int nid,
3284                                            unsigned long count, size_t len)
3285 {
3286         int err;
3287         nodemask_t nodes_allowed, *n_mask;
3288
3289         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3290                 return -EINVAL;
3291
3292         if (nid == NUMA_NO_NODE) {
3293                 /*
3294                  * global hstate attribute
3295                  */
3296                 if (!(obey_mempolicy &&
3297                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3298                         n_mask = &node_states[N_MEMORY];
3299                 else
3300                         n_mask = &nodes_allowed;
3301         } else {
3302                 /*
3303                  * Node specific request.  count adjustment happens in
3304                  * set_max_huge_pages() after acquiring hugetlb_lock.
3305                  */
3306                 init_nodemask_of_node(&nodes_allowed, nid);
3307                 n_mask = &nodes_allowed;
3308         }
3309
3310         err = set_max_huge_pages(h, count, nid, n_mask);
3311
3312         return err ? err : len;
3313 }
3314
3315 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3316                                          struct kobject *kobj, const char *buf,
3317                                          size_t len)
3318 {
3319         struct hstate *h;
3320         unsigned long count;
3321         int nid;
3322         int err;
3323
3324         err = kstrtoul(buf, 10, &count);
3325         if (err)
3326                 return err;
3327
3328         h = kobj_to_hstate(kobj, &nid);
3329         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3330 }
3331
3332 static ssize_t nr_hugepages_show(struct kobject *kobj,
3333                                        struct kobj_attribute *attr, char *buf)
3334 {
3335         return nr_hugepages_show_common(kobj, attr, buf);
3336 }
3337
3338 static ssize_t nr_hugepages_store(struct kobject *kobj,
3339                struct kobj_attribute *attr, const char *buf, size_t len)
3340 {
3341         return nr_hugepages_store_common(false, kobj, buf, len);
3342 }
3343 HSTATE_ATTR(nr_hugepages);
3344
3345 #ifdef CONFIG_NUMA
3346
3347 /*
3348  * hstate attribute for optionally mempolicy-based constraint on persistent
3349  * huge page alloc/free.
3350  */
3351 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3352                                            struct kobj_attribute *attr,
3353                                            char *buf)
3354 {
3355         return nr_hugepages_show_common(kobj, attr, buf);
3356 }
3357
3358 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3359                struct kobj_attribute *attr, const char *buf, size_t len)
3360 {
3361         return nr_hugepages_store_common(true, kobj, buf, len);
3362 }
3363 HSTATE_ATTR(nr_hugepages_mempolicy);
3364 #endif
3365
3366
3367 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3368                                         struct kobj_attribute *attr, char *buf)
3369 {
3370         struct hstate *h = kobj_to_hstate(kobj, NULL);
3371         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3372 }
3373
3374 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3375                 struct kobj_attribute *attr, const char *buf, size_t count)
3376 {
3377         int err;
3378         unsigned long input;
3379         struct hstate *h = kobj_to_hstate(kobj, NULL);
3380
3381         if (hstate_is_gigantic(h))
3382                 return -EINVAL;
3383
3384         err = kstrtoul(buf, 10, &input);
3385         if (err)
3386                 return err;
3387
3388         spin_lock_irq(&hugetlb_lock);
3389         h->nr_overcommit_huge_pages = input;
3390         spin_unlock_irq(&hugetlb_lock);
3391
3392         return count;
3393 }
3394 HSTATE_ATTR(nr_overcommit_hugepages);
3395
3396 static ssize_t free_hugepages_show(struct kobject *kobj,
3397                                         struct kobj_attribute *attr, char *buf)
3398 {
3399         struct hstate *h;
3400         unsigned long free_huge_pages;
3401         int nid;
3402
3403         h = kobj_to_hstate(kobj, &nid);
3404         if (nid == NUMA_NO_NODE)
3405                 free_huge_pages = h->free_huge_pages;
3406         else
3407                 free_huge_pages = h->free_huge_pages_node[nid];
3408
3409         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3410 }
3411 HSTATE_ATTR_RO(free_hugepages);
3412
3413 static ssize_t resv_hugepages_show(struct kobject *kobj,
3414                                         struct kobj_attribute *attr, char *buf)
3415 {
3416         struct hstate *h = kobj_to_hstate(kobj, NULL);
3417         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3418 }
3419 HSTATE_ATTR_RO(resv_hugepages);
3420
3421 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3422                                         struct kobj_attribute *attr, char *buf)
3423 {
3424         struct hstate *h;
3425         unsigned long surplus_huge_pages;
3426         int nid;
3427
3428         h = kobj_to_hstate(kobj, &nid);
3429         if (nid == NUMA_NO_NODE)
3430                 surplus_huge_pages = h->surplus_huge_pages;
3431         else
3432                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3433
3434         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3435 }
3436 HSTATE_ATTR_RO(surplus_hugepages);
3437
3438 static struct attribute *hstate_attrs[] = {
3439         &nr_hugepages_attr.attr,
3440         &nr_overcommit_hugepages_attr.attr,
3441         &free_hugepages_attr.attr,
3442         &resv_hugepages_attr.attr,
3443         &surplus_hugepages_attr.attr,
3444 #ifdef CONFIG_NUMA
3445         &nr_hugepages_mempolicy_attr.attr,
3446 #endif
3447         NULL,
3448 };
3449
3450 static const struct attribute_group hstate_attr_group = {
3451         .attrs = hstate_attrs,
3452 };
3453
3454 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3455                                     struct kobject **hstate_kobjs,
3456                                     const struct attribute_group *hstate_attr_group)
3457 {
3458         int retval;
3459         int hi = hstate_index(h);
3460
3461         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3462         if (!hstate_kobjs[hi])
3463                 return -ENOMEM;
3464
3465         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3466         if (retval) {
3467                 kobject_put(hstate_kobjs[hi]);
3468                 hstate_kobjs[hi] = NULL;
3469         }
3470
3471         return retval;
3472 }
3473
3474 static void __init hugetlb_sysfs_init(void)
3475 {
3476         struct hstate *h;
3477         int err;
3478
3479         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
3480         if (!hugepages_kobj)
3481                 return;
3482
3483         for_each_hstate(h) {
3484                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
3485                                          hstate_kobjs, &hstate_attr_group);
3486                 if (err)
3487                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
3488         }
3489 }
3490
3491 #ifdef CONFIG_NUMA
3492
3493 /*
3494  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3495  * with node devices in node_devices[] using a parallel array.  The array
3496  * index of a node device or _hstate == node id.
3497  * This is here to avoid any static dependency of the node device driver, in
3498  * the base kernel, on the hugetlb module.
3499  */
3500 struct node_hstate {
3501         struct kobject          *hugepages_kobj;
3502         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3503 };
3504 static struct node_hstate node_hstates[MAX_NUMNODES];
3505
3506 /*
3507  * A subset of global hstate attributes for node devices
3508  */
3509 static struct attribute *per_node_hstate_attrs[] = {
3510         &nr_hugepages_attr.attr,
3511         &free_hugepages_attr.attr,
3512         &surplus_hugepages_attr.attr,
3513         NULL,
3514 };
3515
3516 static const struct attribute_group per_node_hstate_attr_group = {
3517         .attrs = per_node_hstate_attrs,
3518 };
3519
3520 /*
3521  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3522  * Returns node id via non-NULL nidp.
3523  */
3524 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3525 {
3526         int nid;
3527
3528         for (nid = 0; nid < nr_node_ids; nid++) {
3529                 struct node_hstate *nhs = &node_hstates[nid];
3530                 int i;
3531                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3532                         if (nhs->hstate_kobjs[i] == kobj) {
3533                                 if (nidp)
3534                                         *nidp = nid;
3535                                 return &hstates[i];
3536                         }
3537         }
3538
3539         BUG();
3540         return NULL;
3541 }
3542
3543 /*
3544  * Unregister hstate attributes from a single node device.
3545  * No-op if no hstate attributes attached.
3546  */
3547 static void hugetlb_unregister_node(struct node *node)
3548 {
3549         struct hstate *h;
3550         struct node_hstate *nhs = &node_hstates[node->dev.id];
3551
3552         if (!nhs->hugepages_kobj)
3553                 return;         /* no hstate attributes */
3554
3555         for_each_hstate(h) {
3556                 int idx = hstate_index(h);
3557                 if (nhs->hstate_kobjs[idx]) {
3558                         kobject_put(nhs->hstate_kobjs[idx]);
3559                         nhs->hstate_kobjs[idx] = NULL;
3560                 }
3561         }
3562
3563         kobject_put(nhs->hugepages_kobj);
3564         nhs->hugepages_kobj = NULL;
3565 }
3566
3567
3568 /*
3569  * Register hstate attributes for a single node device.
3570  * No-op if attributes already registered.
3571  */
3572 static void hugetlb_register_node(struct node *node)
3573 {
3574         struct hstate *h;
3575         struct node_hstate *nhs = &node_hstates[node->dev.id];
3576         int err;
3577
3578         if (nhs->hugepages_kobj)
3579                 return;         /* already allocated */
3580
3581         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3582                                                         &node->dev.kobj);
3583         if (!nhs->hugepages_kobj)
3584                 return;
3585
3586         for_each_hstate(h) {
3587                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3588                                                 nhs->hstate_kobjs,
3589                                                 &per_node_hstate_attr_group);
3590                 if (err) {
3591                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3592                                 h->name, node->dev.id);
3593                         hugetlb_unregister_node(node);
3594                         break;
3595                 }
3596         }
3597 }
3598
3599 /*
3600  * hugetlb init time:  register hstate attributes for all registered node
3601  * devices of nodes that have memory.  All on-line nodes should have
3602  * registered their associated device by this time.
3603  */
3604 static void __init hugetlb_register_all_nodes(void)
3605 {
3606         int nid;
3607
3608         for_each_node_state(nid, N_MEMORY) {
3609                 struct node *node = node_devices[nid];
3610                 if (node->dev.id == nid)
3611                         hugetlb_register_node(node);
3612         }
3613
3614         /*
3615          * Let the node device driver know we're here so it can
3616          * [un]register hstate attributes on node hotplug.
3617          */
3618         register_hugetlbfs_with_node(hugetlb_register_node,
3619                                      hugetlb_unregister_node);
3620 }
3621 #else   /* !CONFIG_NUMA */
3622
3623 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3624 {
3625         BUG();
3626         if (nidp)
3627                 *nidp = -1;
3628         return NULL;
3629 }
3630
3631 static void hugetlb_register_all_nodes(void) { }
3632
3633 #endif
3634
3635 static int __init hugetlb_init(void)
3636 {
3637         int i;
3638
3639         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3640                         __NR_HPAGEFLAGS);
3641
3642         if (!hugepages_supported()) {
3643                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3644                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3645                 return 0;
3646         }
3647
3648         /*
3649          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3650          * architectures depend on setup being done here.
3651          */
3652         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3653         if (!parsed_default_hugepagesz) {
3654                 /*
3655                  * If we did not parse a default huge page size, set
3656                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3657                  * number of huge pages for this default size was implicitly
3658                  * specified, set that here as well.
3659                  * Note that the implicit setting will overwrite an explicit
3660                  * setting.  A warning will be printed in this case.
3661                  */
3662                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3663                 if (default_hstate_max_huge_pages) {
3664                         if (default_hstate.max_huge_pages) {
3665                                 char buf[32];
3666
3667                                 string_get_size(huge_page_size(&default_hstate),
3668                                         1, STRING_UNITS_2, buf, 32);
3669                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3670                                         default_hstate.max_huge_pages, buf);
3671                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3672                                         default_hstate_max_huge_pages);
3673                         }
3674                         default_hstate.max_huge_pages =
3675                                 default_hstate_max_huge_pages;
3676                 }
3677         }
3678
3679         hugetlb_cma_check();
3680         hugetlb_init_hstates();
3681         gather_bootmem_prealloc();
3682         report_hugepages();
3683
3684         hugetlb_sysfs_init();
3685         hugetlb_register_all_nodes();
3686         hugetlb_cgroup_file_init();
3687
3688 #ifdef CONFIG_SMP
3689         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3690 #else
3691         num_fault_mutexes = 1;
3692 #endif
3693         hugetlb_fault_mutex_table =
3694                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3695                               GFP_KERNEL);
3696         BUG_ON(!hugetlb_fault_mutex_table);
3697
3698         for (i = 0; i < num_fault_mutexes; i++)
3699                 mutex_init(&hugetlb_fault_mutex_table[i]);
3700         return 0;
3701 }
3702 subsys_initcall(hugetlb_init);
3703
3704 /* Overwritten by architectures with more huge page sizes */
3705 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3706 {
3707         return size == HPAGE_SIZE;
3708 }
3709
3710 void __init hugetlb_add_hstate(unsigned int order)
3711 {
3712         struct hstate *h;
3713         unsigned long i;
3714
3715         if (size_to_hstate(PAGE_SIZE << order)) {
3716                 return;
3717         }
3718         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3719         BUG_ON(order == 0);
3720         h = &hstates[hugetlb_max_hstate++];
3721         mutex_init(&h->resize_lock);
3722         h->order = order;
3723         h->mask = ~(huge_page_size(h) - 1);
3724         for (i = 0; i < MAX_NUMNODES; ++i)
3725                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3726         INIT_LIST_HEAD(&h->hugepage_activelist);
3727         h->next_nid_to_alloc = first_memory_node;
3728         h->next_nid_to_free = first_memory_node;
3729         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3730                                         huge_page_size(h)/1024);
3731         hugetlb_vmemmap_init(h);
3732
3733         parsed_hstate = h;
3734 }
3735
3736 /*
3737  * hugepages command line processing
3738  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3739  * specification.  If not, ignore the hugepages value.  hugepages can also
3740  * be the first huge page command line  option in which case it implicitly
3741  * specifies the number of huge pages for the default size.
3742  */
3743 static int __init hugepages_setup(char *s)
3744 {
3745         unsigned long *mhp;
3746         static unsigned long *last_mhp;
3747
3748         if (!parsed_valid_hugepagesz) {
3749                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3750                 parsed_valid_hugepagesz = true;
3751                 return 0;
3752         }
3753
3754         /*
3755          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3756          * yet, so this hugepages= parameter goes to the "default hstate".
3757          * Otherwise, it goes with the previously parsed hugepagesz or
3758          * default_hugepagesz.
3759          */
3760         else if (!hugetlb_max_hstate)
3761                 mhp = &default_hstate_max_huge_pages;
3762         else
3763                 mhp = &parsed_hstate->max_huge_pages;
3764
3765         if (mhp == last_mhp) {
3766                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3767                 return 0;
3768         }
3769
3770         if (sscanf(s, "%lu", mhp) <= 0)
3771                 *mhp = 0;
3772
3773         /*
3774          * Global state is always initialized later in hugetlb_init.
3775          * But we need to allocate gigantic hstates here early to still
3776          * use the bootmem allocator.
3777          */
3778         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
3779                 hugetlb_hstate_alloc_pages(parsed_hstate);
3780
3781         last_mhp = mhp;
3782
3783         return 1;
3784 }
3785 __setup("hugepages=", hugepages_setup);
3786
3787 /*
3788  * hugepagesz command line processing
3789  * A specific huge page size can only be specified once with hugepagesz.
3790  * hugepagesz is followed by hugepages on the command line.  The global
3791  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3792  * hugepagesz argument was valid.
3793  */
3794 static int __init hugepagesz_setup(char *s)
3795 {
3796         unsigned long size;
3797         struct hstate *h;
3798
3799         parsed_valid_hugepagesz = false;
3800         size = (unsigned long)memparse(s, NULL);
3801
3802         if (!arch_hugetlb_valid_size(size)) {
3803                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3804                 return 0;
3805         }
3806
3807         h = size_to_hstate(size);
3808         if (h) {
3809                 /*
3810                  * hstate for this size already exists.  This is normally
3811                  * an error, but is allowed if the existing hstate is the
3812                  * default hstate.  More specifically, it is only allowed if
3813                  * the number of huge pages for the default hstate was not
3814                  * previously specified.
3815                  */
3816                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3817                     default_hstate.max_huge_pages) {
3818                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3819                         return 0;
3820                 }
3821
3822                 /*
3823                  * No need to call hugetlb_add_hstate() as hstate already
3824                  * exists.  But, do set parsed_hstate so that a following
3825                  * hugepages= parameter will be applied to this hstate.
3826                  */
3827                 parsed_hstate = h;
3828                 parsed_valid_hugepagesz = true;
3829                 return 1;
3830         }
3831
3832         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3833         parsed_valid_hugepagesz = true;
3834         return 1;
3835 }
3836 __setup("hugepagesz=", hugepagesz_setup);
3837
3838 /*
3839  * default_hugepagesz command line input
3840  * Only one instance of default_hugepagesz allowed on command line.
3841  */
3842 static int __init default_hugepagesz_setup(char *s)
3843 {
3844         unsigned long size;
3845
3846         parsed_valid_hugepagesz = false;
3847         if (parsed_default_hugepagesz) {
3848                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3849                 return 0;
3850         }
3851
3852         size = (unsigned long)memparse(s, NULL);
3853
3854         if (!arch_hugetlb_valid_size(size)) {
3855                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3856                 return 0;
3857         }
3858
3859         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3860         parsed_valid_hugepagesz = true;
3861         parsed_default_hugepagesz = true;
3862         default_hstate_idx = hstate_index(size_to_hstate(size));
3863
3864         /*
3865          * The number of default huge pages (for this size) could have been
3866          * specified as the first hugetlb parameter: hugepages=X.  If so,
3867          * then default_hstate_max_huge_pages is set.  If the default huge
3868          * page size is gigantic (>= MAX_ORDER), then the pages must be
3869          * allocated here from bootmem allocator.
3870          */
3871         if (default_hstate_max_huge_pages) {
3872                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3873                 if (hstate_is_gigantic(&default_hstate))
3874                         hugetlb_hstate_alloc_pages(&default_hstate);
3875                 default_hstate_max_huge_pages = 0;
3876         }
3877
3878         return 1;
3879 }
3880 __setup("default_hugepagesz=", default_hugepagesz_setup);
3881
3882 static unsigned int allowed_mems_nr(struct hstate *h)
3883 {
3884         int node;
3885         unsigned int nr = 0;
3886         nodemask_t *mpol_allowed;
3887         unsigned int *array = h->free_huge_pages_node;
3888         gfp_t gfp_mask = htlb_alloc_mask(h);
3889
3890         mpol_allowed = policy_nodemask_current(gfp_mask);
3891
3892         for_each_node_mask(node, cpuset_current_mems_allowed) {
3893                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3894                         nr += array[node];
3895         }
3896
3897         return nr;
3898 }
3899
3900 #ifdef CONFIG_SYSCTL
3901 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3902                                           void *buffer, size_t *length,
3903                                           loff_t *ppos, unsigned long *out)
3904 {
3905         struct ctl_table dup_table;
3906
3907         /*
3908          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3909          * can duplicate the @table and alter the duplicate of it.
3910          */
3911         dup_table = *table;
3912         dup_table.data = out;
3913
3914         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3915 }
3916
3917 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3918                          struct ctl_table *table, int write,
3919                          void *buffer, size_t *length, loff_t *ppos)
3920 {
3921         struct hstate *h = &default_hstate;
3922         unsigned long tmp = h->max_huge_pages;
3923         int ret;
3924
3925         if (!hugepages_supported())
3926                 return -EOPNOTSUPP;
3927
3928         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3929                                              &tmp);
3930         if (ret)
3931                 goto out;
3932
3933         if (write)
3934                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3935                                                   NUMA_NO_NODE, tmp, *length);
3936 out:
3937         return ret;
3938 }
3939
3940 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3941                           void *buffer, size_t *length, loff_t *ppos)
3942 {
3943
3944         return hugetlb_sysctl_handler_common(false, table, write,
3945                                                         buffer, length, ppos);
3946 }
3947
3948 #ifdef CONFIG_NUMA
3949 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3950                           void *buffer, size_t *length, loff_t *ppos)
3951 {
3952         return hugetlb_sysctl_handler_common(true, table, write,
3953                                                         buffer, length, ppos);
3954 }
3955 #endif /* CONFIG_NUMA */
3956
3957 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3958                 void *buffer, size_t *length, loff_t *ppos)
3959 {
3960         struct hstate *h = &default_hstate;
3961         unsigned long tmp;
3962         int ret;
3963
3964         if (!hugepages_supported())
3965                 return -EOPNOTSUPP;
3966
3967         tmp = h->nr_overcommit_huge_pages;
3968
3969         if (write && hstate_is_gigantic(h))
3970                 return -EINVAL;
3971
3972         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3973                                              &tmp);
3974         if (ret)
3975                 goto out;
3976
3977         if (write) {
3978                 spin_lock_irq(&hugetlb_lock);
3979                 h->nr_overcommit_huge_pages = tmp;
3980                 spin_unlock_irq(&hugetlb_lock);
3981         }
3982 out:
3983         return ret;
3984 }
3985
3986 #endif /* CONFIG_SYSCTL */
3987
3988 void hugetlb_report_meminfo(struct seq_file *m)
3989 {
3990         struct hstate *h;
3991         unsigned long total = 0;
3992
3993         if (!hugepages_supported())
3994                 return;
3995
3996         for_each_hstate(h) {
3997                 unsigned long count = h->nr_huge_pages;
3998
3999                 total += huge_page_size(h) * count;
4000
4001                 if (h == &default_hstate)
4002                         seq_printf(m,
4003                                    "HugePages_Total:   %5lu\n"
4004                                    "HugePages_Free:    %5lu\n"
4005                                    "HugePages_Rsvd:    %5lu\n"
4006                                    "HugePages_Surp:    %5lu\n"
4007                                    "Hugepagesize:   %8lu kB\n",
4008                                    count,
4009                                    h->free_huge_pages,
4010                                    h->resv_huge_pages,
4011                                    h->surplus_huge_pages,
4012                                    huge_page_size(h) / SZ_1K);
4013         }
4014
4015         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4016 }
4017
4018 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4019 {
4020         struct hstate *h = &default_hstate;
4021
4022         if (!hugepages_supported())
4023                 return 0;
4024
4025         return sysfs_emit_at(buf, len,
4026                              "Node %d HugePages_Total: %5u\n"
4027                              "Node %d HugePages_Free:  %5u\n"
4028                              "Node %d HugePages_Surp:  %5u\n",
4029                              nid, h->nr_huge_pages_node[nid],
4030                              nid, h->free_huge_pages_node[nid],
4031                              nid, h->surplus_huge_pages_node[nid]);
4032 }
4033
4034 void hugetlb_show_meminfo(void)
4035 {
4036         struct hstate *h;
4037         int nid;
4038
4039         if (!hugepages_supported())
4040                 return;
4041
4042         for_each_node_state(nid, N_MEMORY)
4043                 for_each_hstate(h)
4044                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4045                                 nid,
4046                                 h->nr_huge_pages_node[nid],
4047                                 h->free_huge_pages_node[nid],
4048                                 h->surplus_huge_pages_node[nid],
4049                                 huge_page_size(h) / SZ_1K);
4050 }
4051
4052 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4053 {
4054         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4055                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4056 }
4057
4058 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4059 unsigned long hugetlb_total_pages(void)
4060 {
4061         struct hstate *h;
4062         unsigned long nr_total_pages = 0;
4063
4064         for_each_hstate(h)
4065                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4066         return nr_total_pages;
4067 }
4068
4069 static int hugetlb_acct_memory(struct hstate *h, long delta)
4070 {
4071         int ret = -ENOMEM;
4072
4073         if (!delta)
4074                 return 0;
4075
4076         spin_lock_irq(&hugetlb_lock);
4077         /*
4078          * When cpuset is configured, it breaks the strict hugetlb page
4079          * reservation as the accounting is done on a global variable. Such
4080          * reservation is completely rubbish in the presence of cpuset because
4081          * the reservation is not checked against page availability for the
4082          * current cpuset. Application can still potentially OOM'ed by kernel
4083          * with lack of free htlb page in cpuset that the task is in.
4084          * Attempt to enforce strict accounting with cpuset is almost
4085          * impossible (or too ugly) because cpuset is too fluid that
4086          * task or memory node can be dynamically moved between cpusets.
4087          *
4088          * The change of semantics for shared hugetlb mapping with cpuset is
4089          * undesirable. However, in order to preserve some of the semantics,
4090          * we fall back to check against current free page availability as
4091          * a best attempt and hopefully to minimize the impact of changing
4092          * semantics that cpuset has.
4093          *
4094          * Apart from cpuset, we also have memory policy mechanism that
4095          * also determines from which node the kernel will allocate memory
4096          * in a NUMA system. So similar to cpuset, we also should consider
4097          * the memory policy of the current task. Similar to the description
4098          * above.
4099          */
4100         if (delta > 0) {
4101                 if (gather_surplus_pages(h, delta) < 0)
4102                         goto out;
4103
4104                 if (delta > allowed_mems_nr(h)) {
4105                         return_unused_surplus_pages(h, delta);
4106                         goto out;
4107                 }
4108         }
4109
4110         ret = 0;
4111         if (delta < 0)
4112                 return_unused_surplus_pages(h, (unsigned long) -delta);
4113
4114 out:
4115         spin_unlock_irq(&hugetlb_lock);
4116         return ret;
4117 }
4118
4119 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4120 {
4121         struct resv_map *resv = vma_resv_map(vma);
4122
4123         /*
4124          * This new VMA should share its siblings reservation map if present.
4125          * The VMA will only ever have a valid reservation map pointer where
4126          * it is being copied for another still existing VMA.  As that VMA
4127          * has a reference to the reservation map it cannot disappear until
4128          * after this open call completes.  It is therefore safe to take a
4129          * new reference here without additional locking.
4130          */
4131         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4132                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4133                 kref_get(&resv->refs);
4134         }
4135 }
4136
4137 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4138 {
4139         struct hstate *h = hstate_vma(vma);
4140         struct resv_map *resv = vma_resv_map(vma);
4141         struct hugepage_subpool *spool = subpool_vma(vma);
4142         unsigned long reserve, start, end;
4143         long gbl_reserve;
4144
4145         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4146                 return;
4147
4148         start = vma_hugecache_offset(h, vma, vma->vm_start);
4149         end = vma_hugecache_offset(h, vma, vma->vm_end);
4150
4151         reserve = (end - start) - region_count(resv, start, end);
4152         hugetlb_cgroup_uncharge_counter(resv, start, end);
4153         if (reserve) {
4154                 /*
4155                  * Decrement reserve counts.  The global reserve count may be
4156                  * adjusted if the subpool has a minimum size.
4157                  */
4158                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4159                 hugetlb_acct_memory(h, -gbl_reserve);
4160         }
4161
4162         kref_put(&resv->refs, resv_map_release);
4163 }
4164
4165 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4166 {
4167         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4168                 return -EINVAL;
4169
4170         /*
4171          * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4172          * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4173          * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4174          */
4175         if (addr & ~PUD_MASK) {
4176                 /*
4177                  * hugetlb_vm_op_split is called right before we attempt to
4178                  * split the VMA. We will need to unshare PMDs in the old and
4179                  * new VMAs, so let's unshare before we split.
4180                  */
4181                 unsigned long floor = addr & PUD_MASK;
4182                 unsigned long ceil = floor + PUD_SIZE;
4183
4184                 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4185                         hugetlb_unshare_pmds(vma, floor, ceil);
4186         }
4187
4188         return 0;
4189 }
4190
4191 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4192 {
4193         return huge_page_size(hstate_vma(vma));
4194 }
4195
4196 /*
4197  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4198  * handle_mm_fault() to try to instantiate regular-sized pages in the
4199  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4200  * this far.
4201  */
4202 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4203 {
4204         BUG();
4205         return 0;
4206 }
4207
4208 /*
4209  * When a new function is introduced to vm_operations_struct and added
4210  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4211  * This is because under System V memory model, mappings created via
4212  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4213  * their original vm_ops are overwritten with shm_vm_ops.
4214  */
4215 const struct vm_operations_struct hugetlb_vm_ops = {
4216         .fault = hugetlb_vm_op_fault,
4217         .open = hugetlb_vm_op_open,
4218         .close = hugetlb_vm_op_close,
4219         .may_split = hugetlb_vm_op_split,
4220         .pagesize = hugetlb_vm_op_pagesize,
4221 };
4222
4223 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4224                                 int writable)
4225 {
4226         pte_t entry;
4227         unsigned int shift = huge_page_shift(hstate_vma(vma));
4228
4229         if (writable) {
4230                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4231                                          vma->vm_page_prot)));
4232         } else {
4233                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4234                                            vma->vm_page_prot));
4235         }
4236         entry = pte_mkyoung(entry);
4237         entry = pte_mkhuge(entry);
4238         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4239
4240         return entry;
4241 }
4242
4243 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4244                                    unsigned long address, pte_t *ptep)
4245 {
4246         pte_t entry;
4247
4248         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4249         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4250                 update_mmu_cache(vma, address, ptep);
4251 }
4252
4253 bool is_hugetlb_entry_migration(pte_t pte)
4254 {
4255         swp_entry_t swp;
4256
4257         if (huge_pte_none(pte) || pte_present(pte))
4258                 return false;
4259         swp = pte_to_swp_entry(pte);
4260         if (is_migration_entry(swp))
4261                 return true;
4262         else
4263                 return false;
4264 }
4265
4266 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4267 {
4268         swp_entry_t swp;
4269
4270         if (huge_pte_none(pte) || pte_present(pte))
4271                 return false;
4272         swp = pte_to_swp_entry(pte);
4273         if (is_hwpoison_entry(swp))
4274                 return true;
4275         else
4276                 return false;
4277 }
4278
4279 static void
4280 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4281                      struct page *new_page)
4282 {
4283         __SetPageUptodate(new_page);
4284         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4285         hugepage_add_new_anon_rmap(new_page, vma, addr);
4286         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4287         ClearHPageRestoreReserve(new_page);
4288         SetHPageMigratable(new_page);
4289 }
4290
4291 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4292                             struct vm_area_struct *vma)
4293 {
4294         pte_t *src_pte, *dst_pte, entry, dst_entry;
4295         struct page *ptepage;
4296         unsigned long addr;
4297         bool cow = is_cow_mapping(vma->vm_flags);
4298         struct hstate *h = hstate_vma(vma);
4299         unsigned long sz = huge_page_size(h);
4300         unsigned long npages = pages_per_huge_page(h);
4301         struct address_space *mapping = vma->vm_file->f_mapping;
4302         struct mmu_notifier_range range;
4303         int ret = 0;
4304
4305         if (cow) {
4306                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
4307                                         vma->vm_start,
4308                                         vma->vm_end);
4309                 mmu_notifier_invalidate_range_start(&range);
4310         } else {
4311                 /*
4312                  * For shared mappings i_mmap_rwsem must be held to call
4313                  * huge_pte_alloc, otherwise the returned ptep could go
4314                  * away if part of a shared pmd and another thread calls
4315                  * huge_pmd_unshare.
4316                  */
4317                 i_mmap_lock_read(mapping);
4318         }
4319
4320         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
4321                 spinlock_t *src_ptl, *dst_ptl;
4322                 src_pte = huge_pte_offset(src, addr, sz);
4323                 if (!src_pte)
4324                         continue;
4325                 dst_pte = huge_pte_alloc(dst, vma, addr, sz);
4326                 if (!dst_pte) {
4327                         ret = -ENOMEM;
4328                         break;
4329                 }
4330
4331                 /*
4332                  * If the pagetables are shared don't copy or take references.
4333                  * dst_pte == src_pte is the common case of src/dest sharing.
4334                  *
4335                  * However, src could have 'unshared' and dst shares with
4336                  * another vma.  If dst_pte !none, this implies sharing.
4337                  * Check here before taking page table lock, and once again
4338                  * after taking the lock below.
4339                  */
4340                 dst_entry = huge_ptep_get(dst_pte);
4341                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
4342                         continue;
4343
4344                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4345                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4346                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4347                 entry = huge_ptep_get(src_pte);
4348                 dst_entry = huge_ptep_get(dst_pte);
4349 again:
4350                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
4351                         /*
4352                          * Skip if src entry none.  Also, skip in the
4353                          * unlikely case dst entry !none as this implies
4354                          * sharing with another vma.
4355                          */
4356                         ;
4357                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
4358                                     is_hugetlb_entry_hwpoisoned(entry))) {
4359                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4360
4361                         if (is_writable_migration_entry(swp_entry) && cow) {
4362                                 /*
4363                                  * COW mappings require pages in both
4364                                  * parent and child to be set to read.
4365                                  */
4366                                 swp_entry = make_readable_migration_entry(
4367                                                         swp_offset(swp_entry));
4368                                 entry = swp_entry_to_pte(swp_entry);
4369                                 set_huge_swap_pte_at(src, addr, src_pte,
4370                                                      entry, sz);
4371                         }
4372                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4373                 } else {
4374                         entry = huge_ptep_get(src_pte);
4375                         ptepage = pte_page(entry);
4376                         get_page(ptepage);
4377
4378                         /*
4379                          * This is a rare case where we see pinned hugetlb
4380                          * pages while they're prone to COW.  We need to do the
4381                          * COW earlier during fork.
4382                          *
4383                          * When pre-allocating the page or copying data, we
4384                          * need to be without the pgtable locks since we could
4385                          * sleep during the process.
4386                          */
4387                         if (unlikely(page_needs_cow_for_dma(vma, ptepage))) {
4388                                 pte_t src_pte_old = entry;
4389                                 struct page *new;
4390
4391                                 spin_unlock(src_ptl);
4392                                 spin_unlock(dst_ptl);
4393                                 /* Do not use reserve as it's private owned */
4394                                 new = alloc_huge_page(vma, addr, 1);
4395                                 if (IS_ERR(new)) {
4396                                         put_page(ptepage);
4397                                         ret = PTR_ERR(new);
4398                                         break;
4399                                 }
4400                                 copy_user_huge_page(new, ptepage, addr, vma,
4401                                                     npages);
4402                                 put_page(ptepage);
4403
4404                                 /* Install the new huge page if src pte stable */
4405                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4406                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4407                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4408                                 entry = huge_ptep_get(src_pte);
4409                                 if (!pte_same(src_pte_old, entry)) {
4410                                         restore_reserve_on_error(h, vma, addr,
4411                                                                 new);
4412                                         put_page(new);
4413                                         /* dst_entry won't change as in child */
4414                                         goto again;
4415                                 }
4416                                 hugetlb_install_page(vma, dst_pte, addr, new);
4417                                 spin_unlock(src_ptl);
4418                                 spin_unlock(dst_ptl);
4419                                 continue;
4420                         }
4421
4422                         if (cow) {
4423                                 /*
4424                                  * No need to notify as we are downgrading page
4425                                  * table protection not changing it to point
4426                                  * to a new page.
4427                                  *
4428                                  * See Documentation/vm/mmu_notifier.rst
4429                                  */
4430                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4431                                 entry = huge_pte_wrprotect(entry);
4432                         }
4433
4434                         page_dup_rmap(ptepage, true);
4435                         set_huge_pte_at(dst, addr, dst_pte, entry);
4436                         hugetlb_count_add(npages, dst);
4437                 }
4438                 spin_unlock(src_ptl);
4439                 spin_unlock(dst_ptl);
4440         }
4441
4442         if (cow)
4443                 mmu_notifier_invalidate_range_end(&range);
4444         else
4445                 i_mmap_unlock_read(mapping);
4446
4447         return ret;
4448 }
4449
4450 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
4451                             unsigned long start, unsigned long end,
4452                             struct page *ref_page)
4453 {
4454         struct mm_struct *mm = vma->vm_mm;
4455         unsigned long address;
4456         pte_t *ptep;
4457         pte_t pte;
4458         spinlock_t *ptl;
4459         struct page *page;
4460         struct hstate *h = hstate_vma(vma);
4461         unsigned long sz = huge_page_size(h);
4462         struct mmu_notifier_range range;
4463         bool force_flush = false;
4464
4465         WARN_ON(!is_vm_hugetlb_page(vma));
4466         BUG_ON(start & ~huge_page_mask(h));
4467         BUG_ON(end & ~huge_page_mask(h));
4468
4469         /*
4470          * This is a hugetlb vma, all the pte entries should point
4471          * to huge page.
4472          */
4473         tlb_change_page_size(tlb, sz);
4474         tlb_start_vma(tlb, vma);
4475
4476         /*
4477          * If sharing possible, alert mmu notifiers of worst case.
4478          */
4479         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
4480                                 end);
4481         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4482         mmu_notifier_invalidate_range_start(&range);
4483         address = start;
4484         for (; address < end; address += sz) {
4485                 ptep = huge_pte_offset(mm, address, sz);
4486                 if (!ptep)
4487                         continue;
4488
4489                 ptl = huge_pte_lock(h, mm, ptep);
4490                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4491                         spin_unlock(ptl);
4492                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
4493                         force_flush = true;
4494                         continue;
4495                 }
4496
4497                 pte = huge_ptep_get(ptep);
4498                 if (huge_pte_none(pte)) {
4499                         spin_unlock(ptl);
4500                         continue;
4501                 }
4502
4503                 /*
4504                  * Migrating hugepage or HWPoisoned hugepage is already
4505                  * unmapped and its refcount is dropped, so just clear pte here.
4506                  */
4507                 if (unlikely(!pte_present(pte))) {
4508                         huge_pte_clear(mm, address, ptep, sz);
4509                         spin_unlock(ptl);
4510                         continue;
4511                 }
4512
4513                 page = pte_page(pte);
4514                 /*
4515                  * If a reference page is supplied, it is because a specific
4516                  * page is being unmapped, not a range. Ensure the page we
4517                  * are about to unmap is the actual page of interest.
4518                  */
4519                 if (ref_page) {
4520                         if (page != ref_page) {
4521                                 spin_unlock(ptl);
4522                                 continue;
4523                         }
4524                         /*
4525                          * Mark the VMA as having unmapped its page so that
4526                          * future faults in this VMA will fail rather than
4527                          * looking like data was lost
4528                          */
4529                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
4530                 }
4531
4532                 pte = huge_ptep_get_and_clear(mm, address, ptep);
4533                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
4534                 if (huge_pte_dirty(pte))
4535                         set_page_dirty(page);
4536
4537                 hugetlb_count_sub(pages_per_huge_page(h), mm);
4538                 page_remove_rmap(page, true);
4539
4540                 spin_unlock(ptl);
4541                 tlb_remove_page_size(tlb, page, huge_page_size(h));
4542                 /*
4543                  * Bail out after unmapping reference page if supplied
4544                  */
4545                 if (ref_page)
4546                         break;
4547         }
4548         mmu_notifier_invalidate_range_end(&range);
4549         tlb_end_vma(tlb, vma);
4550
4551         /*
4552          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
4553          * could defer the flush until now, since by holding i_mmap_rwsem we
4554          * guaranteed that the last refernece would not be dropped. But we must
4555          * do the flushing before we return, as otherwise i_mmap_rwsem will be
4556          * dropped and the last reference to the shared PMDs page might be
4557          * dropped as well.
4558          *
4559          * In theory we could defer the freeing of the PMD pages as well, but
4560          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
4561          * detect sharing, so we cannot defer the release of the page either.
4562          * Instead, do flush now.
4563          */
4564         if (force_flush)
4565                 tlb_flush_mmu_tlbonly(tlb);
4566 }
4567
4568 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
4569                           struct vm_area_struct *vma, unsigned long start,
4570                           unsigned long end, struct page *ref_page)
4571 {
4572         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
4573
4574         /*
4575          * Clear this flag so that x86's huge_pmd_share page_table_shareable
4576          * test will fail on a vma being torn down, and not grab a page table
4577          * on its way out.  We're lucky that the flag has such an appropriate
4578          * name, and can in fact be safely cleared here. We could clear it
4579          * before the __unmap_hugepage_range above, but all that's necessary
4580          * is to clear it before releasing the i_mmap_rwsem. This works
4581          * because in the context this is called, the VMA is about to be
4582          * destroyed and the i_mmap_rwsem is held.
4583          */
4584         vma->vm_flags &= ~VM_MAYSHARE;
4585 }
4586
4587 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
4588                           unsigned long end, struct page *ref_page)
4589 {
4590         struct mmu_gather tlb;
4591
4592         tlb_gather_mmu(&tlb, vma->vm_mm);
4593         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
4594         tlb_finish_mmu(&tlb);
4595 }
4596
4597 /*
4598  * This is called when the original mapper is failing to COW a MAP_PRIVATE
4599  * mapping it owns the reserve page for. The intention is to unmap the page
4600  * from other VMAs and let the children be SIGKILLed if they are faulting the
4601  * same region.
4602  */
4603 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
4604                               struct page *page, unsigned long address)
4605 {
4606         struct hstate *h = hstate_vma(vma);
4607         struct vm_area_struct *iter_vma;
4608         struct address_space *mapping;
4609         pgoff_t pgoff;
4610
4611         /*
4612          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
4613          * from page cache lookup which is in HPAGE_SIZE units.
4614          */
4615         address = address & huge_page_mask(h);
4616         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
4617                         vma->vm_pgoff;
4618         mapping = vma->vm_file->f_mapping;
4619
4620         /*
4621          * Take the mapping lock for the duration of the table walk. As
4622          * this mapping should be shared between all the VMAs,
4623          * __unmap_hugepage_range() is called as the lock is already held
4624          */
4625         i_mmap_lock_write(mapping);
4626         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4627                 /* Do not unmap the current VMA */
4628                 if (iter_vma == vma)
4629                         continue;
4630
4631                 /*
4632                  * Shared VMAs have their own reserves and do not affect
4633                  * MAP_PRIVATE accounting but it is possible that a shared
4634                  * VMA is using the same page so check and skip such VMAs.
4635                  */
4636                 if (iter_vma->vm_flags & VM_MAYSHARE)
4637                         continue;
4638
4639                 /*
4640                  * Unmap the page from other VMAs without their own reserves.
4641                  * They get marked to be SIGKILLed if they fault in these
4642                  * areas. This is because a future no-page fault on this VMA
4643                  * could insert a zeroed page instead of the data existing
4644                  * from the time of fork. This would look like data corruption
4645                  */
4646                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4647                         unmap_hugepage_range(iter_vma, address,
4648                                              address + huge_page_size(h), page);
4649         }
4650         i_mmap_unlock_write(mapping);
4651 }
4652
4653 /*
4654  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4655  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4656  * cannot race with other handlers or page migration.
4657  * Keep the pte_same checks anyway to make transition from the mutex easier.
4658  */
4659 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4660                        unsigned long address, pte_t *ptep,
4661                        struct page *pagecache_page, spinlock_t *ptl)
4662 {
4663         pte_t pte;
4664         struct hstate *h = hstate_vma(vma);
4665         struct page *old_page, *new_page;
4666         int outside_reserve = 0;
4667         vm_fault_t ret = 0;
4668         unsigned long haddr = address & huge_page_mask(h);
4669         struct mmu_notifier_range range;
4670
4671         pte = huge_ptep_get(ptep);
4672         old_page = pte_page(pte);
4673
4674 retry_avoidcopy:
4675         /* If no-one else is actually using this page, avoid the copy
4676          * and just make the page writable */
4677         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4678                 page_move_anon_rmap(old_page, vma);
4679                 set_huge_ptep_writable(vma, haddr, ptep);
4680                 return 0;
4681         }
4682
4683         /*
4684          * If the process that created a MAP_PRIVATE mapping is about to
4685          * perform a COW due to a shared page count, attempt to satisfy
4686          * the allocation without using the existing reserves. The pagecache
4687          * page is used to determine if the reserve at this address was
4688          * consumed or not. If reserves were used, a partial faulted mapping
4689          * at the time of fork() could consume its reserves on COW instead
4690          * of the full address range.
4691          */
4692         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4693                         old_page != pagecache_page)
4694                 outside_reserve = 1;
4695
4696         get_page(old_page);
4697
4698         /*
4699          * Drop page table lock as buddy allocator may be called. It will
4700          * be acquired again before returning to the caller, as expected.
4701          */
4702         spin_unlock(ptl);
4703         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4704
4705         if (IS_ERR(new_page)) {
4706                 /*
4707                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4708                  * it is due to references held by a child and an insufficient
4709                  * huge page pool. To guarantee the original mappers
4710                  * reliability, unmap the page from child processes. The child
4711                  * may get SIGKILLed if it later faults.
4712                  */
4713                 if (outside_reserve) {
4714                         struct address_space *mapping = vma->vm_file->f_mapping;
4715                         pgoff_t idx;
4716                         u32 hash;
4717
4718                         put_page(old_page);
4719                         BUG_ON(huge_pte_none(pte));
4720                         /*
4721                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4722                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4723                          * in write mode.  Dropping i_mmap_rwsem in read mode
4724                          * here is OK as COW mappings do not interact with
4725                          * PMD sharing.
4726                          *
4727                          * Reacquire both after unmap operation.
4728                          */
4729                         idx = vma_hugecache_offset(h, vma, haddr);
4730                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4731                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4732                         i_mmap_unlock_read(mapping);
4733
4734                         unmap_ref_private(mm, vma, old_page, haddr);
4735
4736                         i_mmap_lock_read(mapping);
4737                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4738                         spin_lock(ptl);
4739                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4740                         if (likely(ptep &&
4741                                    pte_same(huge_ptep_get(ptep), pte)))
4742                                 goto retry_avoidcopy;
4743                         /*
4744                          * race occurs while re-acquiring page table
4745                          * lock, and our job is done.
4746                          */
4747                         return 0;
4748                 }
4749
4750                 ret = vmf_error(PTR_ERR(new_page));
4751                 goto out_release_old;
4752         }
4753
4754         /*
4755          * When the original hugepage is shared one, it does not have
4756          * anon_vma prepared.
4757          */
4758         if (unlikely(anon_vma_prepare(vma))) {
4759                 ret = VM_FAULT_OOM;
4760                 goto out_release_all;
4761         }
4762
4763         copy_user_huge_page(new_page, old_page, address, vma,
4764                             pages_per_huge_page(h));
4765         __SetPageUptodate(new_page);
4766
4767         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4768                                 haddr + huge_page_size(h));
4769         mmu_notifier_invalidate_range_start(&range);
4770
4771         /*
4772          * Retake the page table lock to check for racing updates
4773          * before the page tables are altered
4774          */
4775         spin_lock(ptl);
4776         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4777         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4778                 ClearHPageRestoreReserve(new_page);
4779
4780                 /* Break COW */
4781                 huge_ptep_clear_flush(vma, haddr, ptep);
4782                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4783                 set_huge_pte_at(mm, haddr, ptep,
4784                                 make_huge_pte(vma, new_page, 1));
4785                 page_remove_rmap(old_page, true);
4786                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4787                 SetHPageMigratable(new_page);
4788                 /* Make the old page be freed below */
4789                 new_page = old_page;
4790         }
4791         spin_unlock(ptl);
4792         mmu_notifier_invalidate_range_end(&range);
4793 out_release_all:
4794         /* No restore in case of successful pagetable update (Break COW) */
4795         if (new_page != old_page)
4796                 restore_reserve_on_error(h, vma, haddr, new_page);
4797         put_page(new_page);
4798 out_release_old:
4799         put_page(old_page);
4800
4801         spin_lock(ptl); /* Caller expects lock to be held */
4802         return ret;
4803 }
4804
4805 /* Return the pagecache page at a given address within a VMA */
4806 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4807                         struct vm_area_struct *vma, unsigned long address)
4808 {
4809         struct address_space *mapping;
4810         pgoff_t idx;
4811
4812         mapping = vma->vm_file->f_mapping;
4813         idx = vma_hugecache_offset(h, vma, address);
4814
4815         return find_lock_page(mapping, idx);
4816 }
4817
4818 /*
4819  * Return whether there is a pagecache page to back given address within VMA.
4820  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4821  */
4822 static bool hugetlbfs_pagecache_present(struct hstate *h,
4823                         struct vm_area_struct *vma, unsigned long address)
4824 {
4825         struct address_space *mapping;
4826         pgoff_t idx;
4827         struct page *page;
4828
4829         mapping = vma->vm_file->f_mapping;
4830         idx = vma_hugecache_offset(h, vma, address);
4831
4832         page = find_get_page(mapping, idx);
4833         if (page)
4834                 put_page(page);
4835         return page != NULL;
4836 }
4837
4838 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4839                            pgoff_t idx)
4840 {
4841         struct inode *inode = mapping->host;
4842         struct hstate *h = hstate_inode(inode);
4843         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4844
4845         if (err)
4846                 return err;
4847         ClearHPageRestoreReserve(page);
4848
4849         /*
4850          * set page dirty so that it will not be removed from cache/file
4851          * by non-hugetlbfs specific code paths.
4852          */
4853         set_page_dirty(page);
4854
4855         spin_lock(&inode->i_lock);
4856         inode->i_blocks += blocks_per_huge_page(h);
4857         spin_unlock(&inode->i_lock);
4858         return 0;
4859 }
4860
4861 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
4862                                                   struct address_space *mapping,
4863                                                   pgoff_t idx,
4864                                                   unsigned int flags,
4865                                                   unsigned long haddr,
4866                                                   unsigned long reason)
4867 {
4868         u32 hash;
4869         struct vm_fault vmf = {
4870                 .vma = vma,
4871                 .address = haddr,
4872                 .flags = flags,
4873
4874                 /*
4875                  * Hard to debug if it ends up being
4876                  * used by a callee that assumes
4877                  * something about the other
4878                  * uninitialized fields... same as in
4879                  * memory.c
4880                  */
4881         };
4882
4883         /*
4884          * vma_lock and hugetlb_fault_mutex must be dropped before handling
4885          * userfault. Also mmap_lock will be dropped during handling
4886          * userfault, any vma operation should be careful from here.
4887          */
4888         hash = hugetlb_fault_mutex_hash(mapping, idx);
4889         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4890         i_mmap_unlock_read(mapping);
4891         return handle_userfault(&vmf, reason);
4892 }
4893
4894 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4895                         struct vm_area_struct *vma,
4896                         struct address_space *mapping, pgoff_t idx,
4897                         unsigned long address, pte_t *ptep, unsigned int flags)
4898 {
4899         struct hstate *h = hstate_vma(vma);
4900         vm_fault_t ret = VM_FAULT_SIGBUS;
4901         int anon_rmap = 0;
4902         unsigned long size;
4903         struct page *page;
4904         pte_t new_pte;
4905         spinlock_t *ptl;
4906         unsigned long haddr = address & huge_page_mask(h);
4907         bool new_page, new_pagecache_page = false;
4908         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
4909
4910         /*
4911          * Currently, we are forced to kill the process in the event the
4912          * original mapper has unmapped pages from the child due to a failed
4913          * COW. Warn that such a situation has occurred as it may not be obvious
4914          */
4915         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4916                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4917                            current->pid);
4918                 goto out;
4919         }
4920
4921         /*
4922          * We can not race with truncation due to holding i_mmap_rwsem.
4923          * i_size is modified when holding i_mmap_rwsem, so check here
4924          * once for faults beyond end of file.
4925          */
4926         size = i_size_read(mapping->host) >> huge_page_shift(h);
4927         if (idx >= size)
4928                 goto out;
4929
4930 retry:
4931         new_page = false;
4932         page = find_lock_page(mapping, idx);
4933         if (!page) {
4934                 /* Check for page in userfault range */
4935                 if (userfaultfd_missing(vma))
4936                         return hugetlb_handle_userfault(vma, mapping, idx,
4937                                                        flags, haddr,
4938                                                        VM_UFFD_MISSING);
4939
4940                 page = alloc_huge_page(vma, haddr, 0);
4941                 if (IS_ERR(page)) {
4942                         /*
4943                          * Returning error will result in faulting task being
4944                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4945                          * tasks from racing to fault in the same page which
4946                          * could result in false unable to allocate errors.
4947                          * Page migration does not take the fault mutex, but
4948                          * does a clear then write of pte's under page table
4949                          * lock.  Page fault code could race with migration,
4950                          * notice the clear pte and try to allocate a page
4951                          * here.  Before returning error, get ptl and make
4952                          * sure there really is no pte entry.
4953                          */
4954                         ptl = huge_pte_lock(h, mm, ptep);
4955                         ret = 0;
4956                         if (huge_pte_none(huge_ptep_get(ptep)))
4957                                 ret = vmf_error(PTR_ERR(page));
4958                         spin_unlock(ptl);
4959                         goto out;
4960                 }
4961                 clear_huge_page(page, address, pages_per_huge_page(h));
4962                 __SetPageUptodate(page);
4963                 new_page = true;
4964
4965                 if (vma->vm_flags & VM_MAYSHARE) {
4966                         int err = huge_add_to_page_cache(page, mapping, idx);
4967                         if (err) {
4968                                 put_page(page);
4969                                 if (err == -EEXIST)
4970                                         goto retry;
4971                                 goto out;
4972                         }
4973                         new_pagecache_page = true;
4974                 } else {
4975                         lock_page(page);
4976                         if (unlikely(anon_vma_prepare(vma))) {
4977                                 ret = VM_FAULT_OOM;
4978                                 goto backout_unlocked;
4979                         }
4980                         anon_rmap = 1;
4981                 }
4982         } else {
4983                 /*
4984                  * If memory error occurs between mmap() and fault, some process
4985                  * don't have hwpoisoned swap entry for errored virtual address.
4986                  * So we need to block hugepage fault by PG_hwpoison bit check.
4987                  */
4988                 if (unlikely(PageHWPoison(page))) {
4989                         ret = VM_FAULT_HWPOISON_LARGE |
4990                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4991                         goto backout_unlocked;
4992                 }
4993
4994                 /* Check for page in userfault range. */
4995                 if (userfaultfd_minor(vma)) {
4996                         unlock_page(page);
4997                         put_page(page);
4998                         return hugetlb_handle_userfault(vma, mapping, idx,
4999                                                        flags, haddr,
5000                                                        VM_UFFD_MINOR);
5001                 }
5002         }
5003
5004         /*
5005          * If we are going to COW a private mapping later, we examine the
5006          * pending reservations for this page now. This will ensure that
5007          * any allocations necessary to record that reservation occur outside
5008          * the spinlock.
5009          */
5010         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5011                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5012                         ret = VM_FAULT_OOM;
5013                         goto backout_unlocked;
5014                 }
5015                 /* Just decrements count, does not deallocate */
5016                 vma_end_reservation(h, vma, haddr);
5017         }
5018
5019         ptl = huge_pte_lock(h, mm, ptep);
5020         ret = 0;
5021         if (!huge_pte_none(huge_ptep_get(ptep)))
5022                 goto backout;
5023
5024         if (anon_rmap) {
5025                 ClearHPageRestoreReserve(page);
5026                 hugepage_add_new_anon_rmap(page, vma, haddr);
5027         } else
5028                 page_dup_rmap(page, true);
5029         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5030                                 && (vma->vm_flags & VM_SHARED)));
5031         set_huge_pte_at(mm, haddr, ptep, new_pte);
5032
5033         hugetlb_count_add(pages_per_huge_page(h), mm);
5034         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5035                 /* Optimization, do the COW without a second fault */
5036                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
5037         }
5038
5039         spin_unlock(ptl);
5040
5041         /*
5042          * Only set HPageMigratable in newly allocated pages.  Existing pages
5043          * found in the pagecache may not have HPageMigratableset if they have
5044          * been isolated for migration.
5045          */
5046         if (new_page)
5047                 SetHPageMigratable(page);
5048
5049         unlock_page(page);
5050 out:
5051         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5052         i_mmap_unlock_read(mapping);
5053         return ret;
5054
5055 backout:
5056         spin_unlock(ptl);
5057 backout_unlocked:
5058         unlock_page(page);
5059         /* restore reserve for newly allocated pages not in page cache */
5060         if (new_page && !new_pagecache_page)
5061                 restore_reserve_on_error(h, vma, haddr, page);
5062         put_page(page);
5063         goto out;
5064 }
5065
5066 #ifdef CONFIG_SMP
5067 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5068 {
5069         unsigned long key[2];
5070         u32 hash;
5071
5072         key[0] = (unsigned long) mapping;
5073         key[1] = idx;
5074
5075         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5076
5077         return hash & (num_fault_mutexes - 1);
5078 }
5079 #else
5080 /*
5081  * For uniprocessor systems we always use a single mutex, so just
5082  * return 0 and avoid the hashing overhead.
5083  */
5084 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5085 {
5086         return 0;
5087 }
5088 #endif
5089
5090 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5091                         unsigned long address, unsigned int flags)
5092 {
5093         pte_t *ptep, entry;
5094         spinlock_t *ptl;
5095         vm_fault_t ret;
5096         u32 hash;
5097         pgoff_t idx;
5098         struct page *page = NULL;
5099         struct page *pagecache_page = NULL;
5100         struct hstate *h = hstate_vma(vma);
5101         struct address_space *mapping;
5102         int need_wait_lock = 0;
5103         unsigned long haddr = address & huge_page_mask(h);
5104
5105         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5106         if (ptep) {
5107                 /*
5108                  * Since we hold no locks, ptep could be stale.  That is
5109                  * OK as we are only making decisions based on content and
5110                  * not actually modifying content here.
5111                  */
5112                 entry = huge_ptep_get(ptep);
5113                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5114                         migration_entry_wait_huge(vma, mm, ptep);
5115                         return 0;
5116                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5117                         return VM_FAULT_HWPOISON_LARGE |
5118                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5119         }
5120
5121         /*
5122          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
5123          * until finished with ptep.  This serves two purposes:
5124          * 1) It prevents huge_pmd_unshare from being called elsewhere
5125          *    and making the ptep no longer valid.
5126          * 2) It synchronizes us with i_size modifications during truncation.
5127          *
5128          * ptep could have already be assigned via huge_pte_offset.  That
5129          * is OK, as huge_pte_alloc will return the same value unless
5130          * something has changed.
5131          */
5132         mapping = vma->vm_file->f_mapping;
5133         i_mmap_lock_read(mapping);
5134         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5135         if (!ptep) {
5136                 i_mmap_unlock_read(mapping);
5137                 return VM_FAULT_OOM;
5138         }
5139
5140         /*
5141          * Serialize hugepage allocation and instantiation, so that we don't
5142          * get spurious allocation failures if two CPUs race to instantiate
5143          * the same page in the page cache.
5144          */
5145         idx = vma_hugecache_offset(h, vma, haddr);
5146         hash = hugetlb_fault_mutex_hash(mapping, idx);
5147         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5148
5149         entry = huge_ptep_get(ptep);
5150         if (huge_pte_none(entry))
5151                 /*
5152                  * hugetlb_no_page will drop vma lock and hugetlb fault
5153                  * mutex internally, which make us return immediately.
5154                  */
5155                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
5156
5157         ret = 0;
5158
5159         /*
5160          * entry could be a migration/hwpoison entry at this point, so this
5161          * check prevents the kernel from going below assuming that we have
5162          * an active hugepage in pagecache. This goto expects the 2nd page
5163          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5164          * properly handle it.
5165          */
5166         if (!pte_present(entry))
5167                 goto out_mutex;
5168
5169         /*
5170          * If we are going to COW the mapping later, we examine the pending
5171          * reservations for this page now. This will ensure that any
5172          * allocations necessary to record that reservation occur outside the
5173          * spinlock. For private mappings, we also lookup the pagecache
5174          * page now as it is used to determine if a reservation has been
5175          * consumed.
5176          */
5177         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5178                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5179                         ret = VM_FAULT_OOM;
5180                         goto out_mutex;
5181                 }
5182                 /* Just decrements count, does not deallocate */
5183                 vma_end_reservation(h, vma, haddr);
5184
5185                 if (!(vma->vm_flags & VM_MAYSHARE))
5186                         pagecache_page = hugetlbfs_pagecache_page(h,
5187                                                                 vma, haddr);
5188         }
5189
5190         ptl = huge_pte_lock(h, mm, ptep);
5191
5192         /* Check for a racing update before calling hugetlb_cow */
5193         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5194                 goto out_ptl;
5195
5196         /*
5197          * hugetlb_cow() requires page locks of pte_page(entry) and
5198          * pagecache_page, so here we need take the former one
5199          * when page != pagecache_page or !pagecache_page.
5200          */
5201         page = pte_page(entry);
5202         if (page != pagecache_page)
5203                 if (!trylock_page(page)) {
5204                         need_wait_lock = 1;
5205                         goto out_ptl;
5206                 }
5207
5208         get_page(page);
5209
5210         if (flags & FAULT_FLAG_WRITE) {
5211                 if (!huge_pte_write(entry)) {
5212                         ret = hugetlb_cow(mm, vma, address, ptep,
5213                                           pagecache_page, ptl);
5214                         goto out_put_page;
5215                 }
5216                 entry = huge_pte_mkdirty(entry);
5217         }
5218         entry = pte_mkyoung(entry);
5219         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5220                                                 flags & FAULT_FLAG_WRITE))
5221                 update_mmu_cache(vma, haddr, ptep);
5222 out_put_page:
5223         if (page != pagecache_page)
5224                 unlock_page(page);
5225         put_page(page);
5226 out_ptl:
5227         spin_unlock(ptl);
5228
5229         if (pagecache_page) {
5230                 unlock_page(pagecache_page);
5231                 put_page(pagecache_page);
5232         }
5233 out_mutex:
5234         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5235         i_mmap_unlock_read(mapping);
5236         /*
5237          * Generally it's safe to hold refcount during waiting page lock. But
5238          * here we just wait to defer the next page fault to avoid busy loop and
5239          * the page is not used after unlocked before returning from the current
5240          * page fault. So we are safe from accessing freed page, even if we wait
5241          * here without taking refcount.
5242          */
5243         if (need_wait_lock)
5244                 wait_on_page_locked(page);
5245         return ret;
5246 }
5247
5248 #ifdef CONFIG_USERFAULTFD
5249 /*
5250  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5251  * modifications for huge pages.
5252  */
5253 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5254                             pte_t *dst_pte,
5255                             struct vm_area_struct *dst_vma,
5256                             unsigned long dst_addr,
5257                             unsigned long src_addr,
5258                             enum mcopy_atomic_mode mode,
5259                             struct page **pagep)
5260 {
5261         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
5262         struct hstate *h = hstate_vma(dst_vma);
5263         struct address_space *mapping = dst_vma->vm_file->f_mapping;
5264         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
5265         unsigned long size;
5266         int vm_shared = dst_vma->vm_flags & VM_SHARED;
5267         pte_t _dst_pte;
5268         spinlock_t *ptl;
5269         int ret = -ENOMEM;
5270         struct page *page;
5271         int writable;
5272         bool page_in_pagecache = false;
5273
5274         if (is_continue) {
5275                 ret = -EFAULT;
5276                 page = find_lock_page(mapping, idx);
5277                 if (!page)
5278                         goto out;
5279                 page_in_pagecache = true;
5280         } else if (!*pagep) {
5281                 /* If a page already exists, then it's UFFDIO_COPY for
5282                  * a non-missing case. Return -EEXIST.
5283                  */
5284                 if (vm_shared &&
5285                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5286                         ret = -EEXIST;
5287                         goto out;
5288                 }
5289
5290                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5291                 if (IS_ERR(page)) {
5292                         ret = -ENOMEM;
5293                         goto out;
5294                 }
5295
5296                 ret = copy_huge_page_from_user(page,
5297                                                 (const void __user *) src_addr,
5298                                                 pages_per_huge_page(h), false);
5299
5300                 /* fallback to copy_from_user outside mmap_lock */
5301                 if (unlikely(ret)) {
5302                         ret = -ENOENT;
5303                         /* Free the allocated page which may have
5304                          * consumed a reservation.
5305                          */
5306                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
5307                         put_page(page);
5308
5309                         /* Allocate a temporary page to hold the copied
5310                          * contents.
5311                          */
5312                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
5313                         if (!page) {
5314                                 ret = -ENOMEM;
5315                                 goto out;
5316                         }
5317                         *pagep = page;
5318                         /* Set the outparam pagep and return to the caller to
5319                          * copy the contents outside the lock. Don't free the
5320                          * page.
5321                          */
5322                         goto out;
5323                 }
5324         } else {
5325                 if (vm_shared &&
5326                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
5327                         put_page(*pagep);
5328                         ret = -EEXIST;
5329                         *pagep = NULL;
5330                         goto out;
5331                 }
5332
5333                 page = alloc_huge_page(dst_vma, dst_addr, 0);
5334                 if (IS_ERR(page)) {
5335                         put_page(*pagep);
5336                         ret = -ENOMEM;
5337                         *pagep = NULL;
5338                         goto out;
5339                 }
5340                 copy_huge_page(page, *pagep);
5341                 put_page(*pagep);
5342                 *pagep = NULL;
5343         }
5344
5345         /*
5346          * The memory barrier inside __SetPageUptodate makes sure that
5347          * preceding stores to the page contents become visible before
5348          * the set_pte_at() write.
5349          */
5350         __SetPageUptodate(page);
5351
5352         /* Add shared, newly allocated pages to the page cache. */
5353         if (vm_shared && !is_continue) {
5354                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5355                 ret = -EFAULT;
5356                 if (idx >= size)
5357                         goto out_release_nounlock;
5358
5359                 /*
5360                  * Serialization between remove_inode_hugepages() and
5361                  * huge_add_to_page_cache() below happens through the
5362                  * hugetlb_fault_mutex_table that here must be hold by
5363                  * the caller.
5364                  */
5365                 ret = huge_add_to_page_cache(page, mapping, idx);
5366                 if (ret)
5367                         goto out_release_nounlock;
5368                 page_in_pagecache = true;
5369         }
5370
5371         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
5372         spin_lock(ptl);
5373
5374         ret = -EIO;
5375         if (PageHWPoison(page))
5376                 goto out_release_unlock;
5377
5378         /*
5379          * Recheck the i_size after holding PT lock to make sure not
5380          * to leave any page mapped (as page_mapped()) beyond the end
5381          * of the i_size (remove_inode_hugepages() is strict about
5382          * enforcing that). If we bail out here, we'll also leave a
5383          * page in the radix tree in the vm_shared case beyond the end
5384          * of the i_size, but remove_inode_hugepages() will take care
5385          * of it as soon as we drop the hugetlb_fault_mutex_table.
5386          */
5387         size = i_size_read(mapping->host) >> huge_page_shift(h);
5388         ret = -EFAULT;
5389         if (idx >= size)
5390                 goto out_release_unlock;
5391
5392         ret = -EEXIST;
5393         if (!huge_pte_none(huge_ptep_get(dst_pte)))
5394                 goto out_release_unlock;
5395
5396         if (page_in_pagecache) {
5397                 page_dup_rmap(page, true);
5398         } else {
5399                 ClearHPageRestoreReserve(page);
5400                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
5401         }
5402
5403         /* For CONTINUE on a non-shared VMA, don't set VM_WRITE for CoW. */
5404         if (is_continue && !vm_shared)
5405                 writable = 0;
5406         else
5407                 writable = dst_vma->vm_flags & VM_WRITE;
5408
5409         _dst_pte = make_huge_pte(dst_vma, page, writable);
5410         if (writable)
5411                 _dst_pte = huge_pte_mkdirty(_dst_pte);
5412         _dst_pte = pte_mkyoung(_dst_pte);
5413
5414         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
5415
5416         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
5417                                         dst_vma->vm_flags & VM_WRITE);
5418         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
5419
5420         /* No need to invalidate - it was non-present before */
5421         update_mmu_cache(dst_vma, dst_addr, dst_pte);
5422
5423         spin_unlock(ptl);
5424         if (!is_continue)
5425                 SetHPageMigratable(page);
5426         if (vm_shared || is_continue)
5427                 unlock_page(page);
5428         ret = 0;
5429 out:
5430         return ret;
5431 out_release_unlock:
5432         spin_unlock(ptl);
5433         if (vm_shared || is_continue)
5434                 unlock_page(page);
5435 out_release_nounlock:
5436         if (!page_in_pagecache)
5437                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
5438         put_page(page);
5439         goto out;
5440 }
5441 #endif /* CONFIG_USERFAULTFD */
5442
5443 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
5444                                  int refs, struct page **pages,
5445                                  struct vm_area_struct **vmas)
5446 {
5447         int nr;
5448
5449         for (nr = 0; nr < refs; nr++) {
5450                 if (likely(pages))
5451                         pages[nr] = mem_map_offset(page, nr);
5452                 if (vmas)
5453                         vmas[nr] = vma;
5454         }
5455 }
5456
5457 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
5458                          struct page **pages, struct vm_area_struct **vmas,
5459                          unsigned long *position, unsigned long *nr_pages,
5460                          long i, unsigned int flags, int *locked)
5461 {
5462         unsigned long pfn_offset;
5463         unsigned long vaddr = *position;
5464         unsigned long remainder = *nr_pages;
5465         struct hstate *h = hstate_vma(vma);
5466         int err = -EFAULT, refs;
5467
5468         while (vaddr < vma->vm_end && remainder) {
5469                 pte_t *pte;
5470                 spinlock_t *ptl = NULL;
5471                 int absent;
5472                 struct page *page;
5473
5474                 /*
5475                  * If we have a pending SIGKILL, don't keep faulting pages and
5476                  * potentially allocating memory.
5477                  */
5478                 if (fatal_signal_pending(current)) {
5479                         remainder = 0;
5480                         break;
5481                 }
5482
5483                 /*
5484                  * Some archs (sparc64, sh*) have multiple pte_ts to
5485                  * each hugepage.  We have to make sure we get the
5486                  * first, for the page indexing below to work.
5487                  *
5488                  * Note that page table lock is not held when pte is null.
5489                  */
5490                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
5491                                       huge_page_size(h));
5492                 if (pte)
5493                         ptl = huge_pte_lock(h, mm, pte);
5494                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
5495
5496                 /*
5497                  * When coredumping, it suits get_dump_page if we just return
5498                  * an error where there's an empty slot with no huge pagecache
5499                  * to back it.  This way, we avoid allocating a hugepage, and
5500                  * the sparse dumpfile avoids allocating disk blocks, but its
5501                  * huge holes still show up with zeroes where they need to be.
5502                  */
5503                 if (absent && (flags & FOLL_DUMP) &&
5504                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
5505                         if (pte)
5506                                 spin_unlock(ptl);
5507                         remainder = 0;
5508                         break;
5509                 }
5510
5511                 /*
5512                  * We need call hugetlb_fault for both hugepages under migration
5513                  * (in which case hugetlb_fault waits for the migration,) and
5514                  * hwpoisoned hugepages (in which case we need to prevent the
5515                  * caller from accessing to them.) In order to do this, we use
5516                  * here is_swap_pte instead of is_hugetlb_entry_migration and
5517                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
5518                  * both cases, and because we can't follow correct pages
5519                  * directly from any kind of swap entries.
5520                  */
5521                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
5522                     ((flags & FOLL_WRITE) &&
5523                       !huge_pte_write(huge_ptep_get(pte)))) {
5524                         vm_fault_t ret;
5525                         unsigned int fault_flags = 0;
5526
5527                         if (pte)
5528                                 spin_unlock(ptl);
5529                         if (flags & FOLL_WRITE)
5530                                 fault_flags |= FAULT_FLAG_WRITE;
5531                         if (locked)
5532                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5533                                         FAULT_FLAG_KILLABLE;
5534                         if (flags & FOLL_NOWAIT)
5535                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
5536                                         FAULT_FLAG_RETRY_NOWAIT;
5537                         if (flags & FOLL_TRIED) {
5538                                 /*
5539                                  * Note: FAULT_FLAG_ALLOW_RETRY and
5540                                  * FAULT_FLAG_TRIED can co-exist
5541                                  */
5542                                 fault_flags |= FAULT_FLAG_TRIED;
5543                         }
5544                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
5545                         if (ret & VM_FAULT_ERROR) {
5546                                 err = vm_fault_to_errno(ret, flags);
5547                                 remainder = 0;
5548                                 break;
5549                         }
5550                         if (ret & VM_FAULT_RETRY) {
5551                                 if (locked &&
5552                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
5553                                         *locked = 0;
5554                                 *nr_pages = 0;
5555                                 /*
5556                                  * VM_FAULT_RETRY must not return an
5557                                  * error, it will return zero
5558                                  * instead.
5559                                  *
5560                                  * No need to update "position" as the
5561                                  * caller will not check it after
5562                                  * *nr_pages is set to 0.
5563                                  */
5564                                 return i;
5565                         }
5566                         continue;
5567                 }
5568
5569                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
5570                 page = pte_page(huge_ptep_get(pte));
5571
5572                 /*
5573                  * If subpage information not requested, update counters
5574                  * and skip the same_page loop below.
5575                  */
5576                 if (!pages && !vmas && !pfn_offset &&
5577                     (vaddr + huge_page_size(h) < vma->vm_end) &&
5578                     (remainder >= pages_per_huge_page(h))) {
5579                         vaddr += huge_page_size(h);
5580                         remainder -= pages_per_huge_page(h);
5581                         i += pages_per_huge_page(h);
5582                         spin_unlock(ptl);
5583                         continue;
5584                 }
5585
5586                 /* vaddr may not be aligned to PAGE_SIZE */
5587                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
5588                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
5589
5590                 if (pages || vmas)
5591                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
5592                                              vma, refs,
5593                                              likely(pages) ? pages + i : NULL,
5594                                              vmas ? vmas + i : NULL);
5595
5596                 if (pages) {
5597                         /*
5598                          * try_grab_compound_head() should always succeed here,
5599                          * because: a) we hold the ptl lock, and b) we've just
5600                          * checked that the huge page is present in the page
5601                          * tables. If the huge page is present, then the tail
5602                          * pages must also be present. The ptl prevents the
5603                          * head page and tail pages from being rearranged in
5604                          * any way. So this page must be available at this
5605                          * point, unless the page refcount overflowed:
5606                          */
5607                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
5608                                                                  refs,
5609                                                                  flags))) {
5610                                 spin_unlock(ptl);
5611                                 remainder = 0;
5612                                 err = -ENOMEM;
5613                                 break;
5614                         }
5615                 }
5616
5617                 vaddr += (refs << PAGE_SHIFT);
5618                 remainder -= refs;
5619                 i += refs;
5620
5621                 spin_unlock(ptl);
5622         }
5623         *nr_pages = remainder;
5624         /*
5625          * setting position is actually required only if remainder is
5626          * not zero but it's faster not to add a "if (remainder)"
5627          * branch.
5628          */
5629         *position = vaddr;
5630
5631         return i ? i : err;
5632 }
5633
5634 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
5635                 unsigned long address, unsigned long end, pgprot_t newprot)
5636 {
5637         struct mm_struct *mm = vma->vm_mm;
5638         unsigned long start = address;
5639         pte_t *ptep;
5640         pte_t pte;
5641         struct hstate *h = hstate_vma(vma);
5642         unsigned long pages = 0;
5643         bool shared_pmd = false;
5644         struct mmu_notifier_range range;
5645
5646         /*
5647          * In the case of shared PMDs, the area to flush could be beyond
5648          * start/end.  Set range.start/range.end to cover the maximum possible
5649          * range if PMD sharing is possible.
5650          */
5651         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
5652                                 0, vma, mm, start, end);
5653         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5654
5655         BUG_ON(address >= end);
5656         flush_cache_range(vma, range.start, range.end);
5657
5658         mmu_notifier_invalidate_range_start(&range);
5659         i_mmap_lock_write(vma->vm_file->f_mapping);
5660         for (; address < end; address += huge_page_size(h)) {
5661                 spinlock_t *ptl;
5662                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
5663                 if (!ptep)
5664                         continue;
5665                 ptl = huge_pte_lock(h, mm, ptep);
5666                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
5667                         pages++;
5668                         spin_unlock(ptl);
5669                         shared_pmd = true;
5670                         continue;
5671                 }
5672                 pte = huge_ptep_get(ptep);
5673                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
5674                         spin_unlock(ptl);
5675                         continue;
5676                 }
5677                 if (unlikely(is_hugetlb_entry_migration(pte))) {
5678                         swp_entry_t entry = pte_to_swp_entry(pte);
5679
5680                         if (is_writable_migration_entry(entry)) {
5681                                 pte_t newpte;
5682
5683                                 entry = make_readable_migration_entry(
5684                                                         swp_offset(entry));
5685                                 newpte = swp_entry_to_pte(entry);
5686                                 set_huge_swap_pte_at(mm, address, ptep,
5687                                                      newpte, huge_page_size(h));
5688                                 pages++;
5689                         }
5690                         spin_unlock(ptl);
5691                         continue;
5692                 }
5693                 if (!huge_pte_none(pte)) {
5694                         pte_t old_pte;
5695                         unsigned int shift = huge_page_shift(hstate_vma(vma));
5696
5697                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
5698                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
5699                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
5700                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
5701                         pages++;
5702                 }
5703                 spin_unlock(ptl);
5704         }
5705         /*
5706          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
5707          * may have cleared our pud entry and done put_page on the page table:
5708          * once we release i_mmap_rwsem, another task can do the final put_page
5709          * and that page table be reused and filled with junk.  If we actually
5710          * did unshare a page of pmds, flush the range corresponding to the pud.
5711          */
5712         if (shared_pmd)
5713                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5714         else
5715                 flush_hugetlb_tlb_range(vma, start, end);
5716         /*
5717          * No need to call mmu_notifier_invalidate_range() we are downgrading
5718          * page table protection not changing it to point to a new page.
5719          *
5720          * See Documentation/vm/mmu_notifier.rst
5721          */
5722         i_mmap_unlock_write(vma->vm_file->f_mapping);
5723         mmu_notifier_invalidate_range_end(&range);
5724
5725         return pages << h->order;
5726 }
5727
5728 /* Return true if reservation was successful, false otherwise.  */
5729 bool hugetlb_reserve_pages(struct inode *inode,
5730                                         long from, long to,
5731                                         struct vm_area_struct *vma,
5732                                         vm_flags_t vm_flags)
5733 {
5734         long chg, add = -1;
5735         struct hstate *h = hstate_inode(inode);
5736         struct hugepage_subpool *spool = subpool_inode(inode);
5737         struct resv_map *resv_map;
5738         struct hugetlb_cgroup *h_cg = NULL;
5739         long gbl_reserve, regions_needed = 0;
5740
5741         /* This should never happen */
5742         if (from > to) {
5743                 VM_WARN(1, "%s called with a negative range\n", __func__);
5744                 return false;
5745         }
5746
5747         /*
5748          * Only apply hugepage reservation if asked. At fault time, an
5749          * attempt will be made for VM_NORESERVE to allocate a page
5750          * without using reserves
5751          */
5752         if (vm_flags & VM_NORESERVE)
5753                 return true;
5754
5755         /*
5756          * Shared mappings base their reservation on the number of pages that
5757          * are already allocated on behalf of the file. Private mappings need
5758          * to reserve the full area even if read-only as mprotect() may be
5759          * called to make the mapping read-write. Assume !vma is a shm mapping
5760          */
5761         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5762                 /*
5763                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5764                  * called for inodes for which resv_maps were created (see
5765                  * hugetlbfs_get_inode).
5766                  */
5767                 resv_map = inode_resv_map(inode);
5768
5769                 chg = region_chg(resv_map, from, to, &regions_needed);
5770
5771         } else {
5772                 /* Private mapping. */
5773                 resv_map = resv_map_alloc();
5774                 if (!resv_map)
5775                         return false;
5776
5777                 chg = to - from;
5778
5779                 set_vma_resv_map(vma, resv_map);
5780                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5781         }
5782
5783         if (chg < 0)
5784                 goto out_err;
5785
5786         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5787                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5788                 goto out_err;
5789
5790         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5791                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5792                  * of the resv_map.
5793                  */
5794                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5795         }
5796
5797         /*
5798          * There must be enough pages in the subpool for the mapping. If
5799          * the subpool has a minimum size, there may be some global
5800          * reservations already in place (gbl_reserve).
5801          */
5802         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5803         if (gbl_reserve < 0)
5804                 goto out_uncharge_cgroup;
5805
5806         /*
5807          * Check enough hugepages are available for the reservation.
5808          * Hand the pages back to the subpool if there are not
5809          */
5810         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5811                 goto out_put_pages;
5812
5813         /*
5814          * Account for the reservations made. Shared mappings record regions
5815          * that have reservations as they are shared by multiple VMAs.
5816          * When the last VMA disappears, the region map says how much
5817          * the reservation was and the page cache tells how much of
5818          * the reservation was consumed. Private mappings are per-VMA and
5819          * only the consumed reservations are tracked. When the VMA
5820          * disappears, the original reservation is the VMA size and the
5821          * consumed reservations are stored in the map. Hence, nothing
5822          * else has to be done for private mappings here
5823          */
5824         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5825                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5826
5827                 if (unlikely(add < 0)) {
5828                         hugetlb_acct_memory(h, -gbl_reserve);
5829                         goto out_put_pages;
5830                 } else if (unlikely(chg > add)) {
5831                         /*
5832                          * pages in this range were added to the reserve
5833                          * map between region_chg and region_add.  This
5834                          * indicates a race with alloc_huge_page.  Adjust
5835                          * the subpool and reserve counts modified above
5836                          * based on the difference.
5837                          */
5838                         long rsv_adjust;
5839
5840                         /*
5841                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
5842                          * reference to h_cg->css. See comment below for detail.
5843                          */
5844                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5845                                 hstate_index(h),
5846                                 (chg - add) * pages_per_huge_page(h), h_cg);
5847
5848                         rsv_adjust = hugepage_subpool_put_pages(spool,
5849                                                                 chg - add);
5850                         hugetlb_acct_memory(h, -rsv_adjust);
5851                 } else if (h_cg) {
5852                         /*
5853                          * The file_regions will hold their own reference to
5854                          * h_cg->css. So we should release the reference held
5855                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
5856                          * done.
5857                          */
5858                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
5859                 }
5860         }
5861         return true;
5862
5863 out_put_pages:
5864         /* put back original number of pages, chg */
5865         (void)hugepage_subpool_put_pages(spool, chg);
5866 out_uncharge_cgroup:
5867         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5868                                             chg * pages_per_huge_page(h), h_cg);
5869 out_err:
5870         if (!vma || vma->vm_flags & VM_MAYSHARE)
5871                 /* Only call region_abort if the region_chg succeeded but the
5872                  * region_add failed or didn't run.
5873                  */
5874                 if (chg >= 0 && add < 0)
5875                         region_abort(resv_map, from, to, regions_needed);
5876         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5877                 kref_put(&resv_map->refs, resv_map_release);
5878         return false;
5879 }
5880
5881 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5882                                                                 long freed)
5883 {
5884         struct hstate *h = hstate_inode(inode);
5885         struct resv_map *resv_map = inode_resv_map(inode);
5886         long chg = 0;
5887         struct hugepage_subpool *spool = subpool_inode(inode);
5888         long gbl_reserve;
5889
5890         /*
5891          * Since this routine can be called in the evict inode path for all
5892          * hugetlbfs inodes, resv_map could be NULL.
5893          */
5894         if (resv_map) {
5895                 chg = region_del(resv_map, start, end);
5896                 /*
5897                  * region_del() can fail in the rare case where a region
5898                  * must be split and another region descriptor can not be
5899                  * allocated.  If end == LONG_MAX, it will not fail.
5900                  */
5901                 if (chg < 0)
5902                         return chg;
5903         }
5904
5905         spin_lock(&inode->i_lock);
5906         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5907         spin_unlock(&inode->i_lock);
5908
5909         /*
5910          * If the subpool has a minimum size, the number of global
5911          * reservations to be released may be adjusted.
5912          *
5913          * Note that !resv_map implies freed == 0. So (chg - freed)
5914          * won't go negative.
5915          */
5916         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5917         hugetlb_acct_memory(h, -gbl_reserve);
5918
5919         return 0;
5920 }
5921
5922 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5923 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5924                                 struct vm_area_struct *vma,
5925                                 unsigned long addr, pgoff_t idx)
5926 {
5927         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5928                                 svma->vm_start;
5929         unsigned long sbase = saddr & PUD_MASK;
5930         unsigned long s_end = sbase + PUD_SIZE;
5931
5932         /* Allow segments to share if only one is marked locked */
5933         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5934         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5935
5936         /*
5937          * match the virtual addresses, permission and the alignment of the
5938          * page table page.
5939          */
5940         if (pmd_index(addr) != pmd_index(saddr) ||
5941             vm_flags != svm_flags ||
5942             !range_in_vma(svma, sbase, s_end))
5943                 return 0;
5944
5945         return saddr;
5946 }
5947
5948 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5949 {
5950         unsigned long base = addr & PUD_MASK;
5951         unsigned long end = base + PUD_SIZE;
5952
5953         /*
5954          * check on proper vm_flags and page table alignment
5955          */
5956         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5957                 return true;
5958         return false;
5959 }
5960
5961 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
5962 {
5963 #ifdef CONFIG_USERFAULTFD
5964         if (uffd_disable_huge_pmd_share(vma))
5965                 return false;
5966 #endif
5967         return vma_shareable(vma, addr);
5968 }
5969
5970 /*
5971  * Determine if start,end range within vma could be mapped by shared pmd.
5972  * If yes, adjust start and end to cover range associated with possible
5973  * shared pmd mappings.
5974  */
5975 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5976                                 unsigned long *start, unsigned long *end)
5977 {
5978         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5979                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5980
5981         /*
5982          * vma needs to span at least one aligned PUD size, and the range
5983          * must be at least partially within in.
5984          */
5985         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5986                 (*end <= v_start) || (*start >= v_end))
5987                 return;
5988
5989         /* Extend the range to be PUD aligned for a worst case scenario */
5990         if (*start > v_start)
5991                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5992
5993         if (*end < v_end)
5994                 *end = ALIGN(*end, PUD_SIZE);
5995 }
5996
5997 /*
5998  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5999  * and returns the corresponding pte. While this is not necessary for the
6000  * !shared pmd case because we can allocate the pmd later as well, it makes the
6001  * code much cleaner.
6002  *
6003  * This routine must be called with i_mmap_rwsem held in at least read mode if
6004  * sharing is possible.  For hugetlbfs, this prevents removal of any page
6005  * table entries associated with the address space.  This is important as we
6006  * are setting up sharing based on existing page table entries (mappings).
6007  *
6008  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
6009  * huge_pte_alloc know that sharing is not possible and do not take
6010  * i_mmap_rwsem as a performance optimization.  This is handled by the
6011  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
6012  * only required for subsequent processing.
6013  */
6014 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6015                       unsigned long addr, pud_t *pud)
6016 {
6017         struct address_space *mapping = vma->vm_file->f_mapping;
6018         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6019                         vma->vm_pgoff;
6020         struct vm_area_struct *svma;
6021         unsigned long saddr;
6022         pte_t *spte = NULL;
6023         pte_t *pte;
6024         spinlock_t *ptl;
6025
6026         i_mmap_assert_locked(mapping);
6027         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6028                 if (svma == vma)
6029                         continue;
6030
6031                 saddr = page_table_shareable(svma, vma, addr, idx);
6032                 if (saddr) {
6033                         spte = huge_pte_offset(svma->vm_mm, saddr,
6034                                                vma_mmu_pagesize(svma));
6035                         if (spte) {
6036                                 get_page(virt_to_page(spte));
6037                                 break;
6038                         }
6039                 }
6040         }
6041
6042         if (!spte)
6043                 goto out;
6044
6045         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
6046         if (pud_none(*pud)) {
6047                 pud_populate(mm, pud,
6048                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6049                 mm_inc_nr_pmds(mm);
6050         } else {
6051                 put_page(virt_to_page(spte));
6052         }
6053         spin_unlock(ptl);
6054 out:
6055         pte = (pte_t *)pmd_alloc(mm, pud, addr);
6056         return pte;
6057 }
6058
6059 /*
6060  * unmap huge page backed by shared pte.
6061  *
6062  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
6063  * indicated by page_count > 1, unmap is achieved by clearing pud and
6064  * decrementing the ref count. If count == 1, the pte page is not shared.
6065  *
6066  * Called with page table lock held and i_mmap_rwsem held in write mode.
6067  *
6068  * returns: 1 successfully unmapped a shared pte page
6069  *          0 the underlying pte page is not shared, or it is the last user
6070  */
6071 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6072                                         unsigned long *addr, pte_t *ptep)
6073 {
6074         pgd_t *pgd = pgd_offset(mm, *addr);
6075         p4d_t *p4d = p4d_offset(pgd, *addr);
6076         pud_t *pud = pud_offset(p4d, *addr);
6077
6078         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
6079         BUG_ON(page_count(virt_to_page(ptep)) == 0);
6080         if (page_count(virt_to_page(ptep)) == 1)
6081                 return 0;
6082
6083         pud_clear(pud);
6084         put_page(virt_to_page(ptep));
6085         mm_dec_nr_pmds(mm);
6086         /*
6087          * This update of passed address optimizes loops sequentially
6088          * processing addresses in increments of huge page size (PMD_SIZE
6089          * in this case).  By clearing the pud, a PUD_SIZE area is unmapped.
6090          * Update address to the 'last page' in the cleared area so that
6091          * calling loop can move to first page past this area.
6092          */
6093         *addr |= PUD_SIZE - PMD_SIZE;
6094         return 1;
6095 }
6096
6097 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6098 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6099                       unsigned long addr, pud_t *pud)
6100 {
6101         return NULL;
6102 }
6103
6104 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
6105                                 unsigned long *addr, pte_t *ptep)
6106 {
6107         return 0;
6108 }
6109
6110 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6111                                 unsigned long *start, unsigned long *end)
6112 {
6113 }
6114
6115 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6116 {
6117         return false;
6118 }
6119 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
6120
6121 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
6122 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
6123                         unsigned long addr, unsigned long sz)
6124 {
6125         pgd_t *pgd;
6126         p4d_t *p4d;
6127         pud_t *pud;
6128         pte_t *pte = NULL;
6129
6130         pgd = pgd_offset(mm, addr);
6131         p4d = p4d_alloc(mm, pgd, addr);
6132         if (!p4d)
6133                 return NULL;
6134         pud = pud_alloc(mm, p4d, addr);
6135         if (pud) {
6136                 if (sz == PUD_SIZE) {
6137                         pte = (pte_t *)pud;
6138                 } else {
6139                         BUG_ON(sz != PMD_SIZE);
6140                         if (want_pmd_share(vma, addr) && pud_none(*pud))
6141                                 pte = huge_pmd_share(mm, vma, addr, pud);
6142                         else
6143                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6144                 }
6145         }
6146         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
6147
6148         return pte;
6149 }
6150
6151 /*
6152  * huge_pte_offset() - Walk the page table to resolve the hugepage
6153  * entry at address @addr
6154  *
6155  * Return: Pointer to page table entry (PUD or PMD) for
6156  * address @addr, or NULL if a !p*d_present() entry is encountered and the
6157  * size @sz doesn't match the hugepage size at this level of the page
6158  * table.
6159  */
6160 pte_t *huge_pte_offset(struct mm_struct *mm,
6161                        unsigned long addr, unsigned long sz)
6162 {
6163         pgd_t *pgd;
6164         p4d_t *p4d;
6165         pud_t *pud;
6166         pmd_t *pmd;
6167
6168         pgd = pgd_offset(mm, addr);
6169         if (!pgd_present(*pgd))
6170                 return NULL;
6171         p4d = p4d_offset(pgd, addr);
6172         if (!p4d_present(*p4d))
6173                 return NULL;
6174
6175         pud = pud_offset(p4d, addr);
6176         if (sz == PUD_SIZE)
6177                 /* must be pud huge, non-present or none */
6178                 return (pte_t *)pud;
6179         if (!pud_present(*pud))
6180                 return NULL;
6181         /* must have a valid entry and size to go further */
6182
6183         pmd = pmd_offset(pud, addr);
6184         /* must be pmd huge, non-present or none */
6185         return (pte_t *)pmd;
6186 }
6187
6188 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
6189
6190 /*
6191  * These functions are overwritable if your architecture needs its own
6192  * behavior.
6193  */
6194 struct page * __weak
6195 follow_huge_addr(struct mm_struct *mm, unsigned long address,
6196                               int write)
6197 {
6198         return ERR_PTR(-EINVAL);
6199 }
6200
6201 struct page * __weak
6202 follow_huge_pd(struct vm_area_struct *vma,
6203                unsigned long address, hugepd_t hpd, int flags, int pdshift)
6204 {
6205         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
6206         return NULL;
6207 }
6208
6209 struct page * __weak
6210 follow_huge_pmd_pte(struct vm_area_struct *vma, unsigned long address, int flags)
6211 {
6212         struct hstate *h = hstate_vma(vma);
6213         struct mm_struct *mm = vma->vm_mm;
6214         struct page *page = NULL;
6215         spinlock_t *ptl;
6216         pte_t *ptep, pte;
6217
6218         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
6219         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
6220                          (FOLL_PIN | FOLL_GET)))
6221                 return NULL;
6222
6223 retry:
6224         ptep = huge_pte_offset(mm, address, huge_page_size(h));
6225         if (!ptep)
6226                 return NULL;
6227
6228         ptl = huge_pte_lock(h, mm, ptep);
6229         pte = huge_ptep_get(ptep);
6230         if (pte_present(pte)) {
6231                 page = pte_page(pte) +
6232                         ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6233                 /*
6234                  * try_grab_page() should always succeed here, because: a) we
6235                  * hold the pmd (ptl) lock, and b) we've just checked that the
6236                  * huge pmd (head) page is present in the page tables. The ptl
6237                  * prevents the head page and tail pages from being rearranged
6238                  * in any way. So this page must be available at this point,
6239                  * unless the page refcount overflowed:
6240                  */
6241                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
6242                         page = NULL;
6243                         goto out;
6244                 }
6245         } else {
6246                 if (is_hugetlb_entry_migration(pte)) {
6247                         spin_unlock(ptl);
6248                         __migration_entry_wait(mm, ptep, ptl);
6249                         goto retry;
6250                 }
6251                 /*
6252                  * hwpoisoned entry is treated as no_page_table in
6253                  * follow_page_mask().
6254                  */
6255         }
6256 out:
6257         spin_unlock(ptl);
6258         return page;
6259 }
6260
6261 struct page * __weak
6262 follow_huge_pud(struct mm_struct *mm, unsigned long address,
6263                 pud_t *pud, int flags)
6264 {
6265         if (flags & (FOLL_GET | FOLL_PIN))
6266                 return NULL;
6267
6268         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
6269 }
6270
6271 struct page * __weak
6272 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
6273 {
6274         if (flags & (FOLL_GET | FOLL_PIN))
6275                 return NULL;
6276
6277         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
6278 }
6279
6280 bool isolate_huge_page(struct page *page, struct list_head *list)
6281 {
6282         bool ret = true;
6283
6284         spin_lock_irq(&hugetlb_lock);
6285         if (!PageHeadHuge(page) ||
6286             !HPageMigratable(page) ||
6287             !get_page_unless_zero(page)) {
6288                 ret = false;
6289                 goto unlock;
6290         }
6291         ClearHPageMigratable(page);
6292         list_move_tail(&page->lru, list);
6293 unlock:
6294         spin_unlock_irq(&hugetlb_lock);
6295         return ret;
6296 }
6297
6298 int get_hwpoison_huge_page(struct page *page, bool *hugetlb)
6299 {
6300         int ret = 0;
6301
6302         *hugetlb = false;
6303         spin_lock_irq(&hugetlb_lock);
6304         if (PageHeadHuge(page)) {
6305                 *hugetlb = true;
6306                 if (HPageFreed(page) || HPageMigratable(page))
6307                         ret = get_page_unless_zero(page);
6308                 else
6309                         ret = -EBUSY;
6310         }
6311         spin_unlock_irq(&hugetlb_lock);
6312         return ret;
6313 }
6314
6315 int get_huge_page_for_hwpoison(unsigned long pfn, int flags)
6316 {
6317         int ret;
6318
6319         spin_lock_irq(&hugetlb_lock);
6320         ret = __get_huge_page_for_hwpoison(pfn, flags);
6321         spin_unlock_irq(&hugetlb_lock);
6322         return ret;
6323 }
6324
6325 void putback_active_hugepage(struct page *page)
6326 {
6327         spin_lock_irq(&hugetlb_lock);
6328         SetHPageMigratable(page);
6329         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
6330         spin_unlock_irq(&hugetlb_lock);
6331         put_page(page);
6332 }
6333
6334 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
6335 {
6336         struct hstate *h = page_hstate(oldpage);
6337
6338         hugetlb_cgroup_migrate(oldpage, newpage);
6339         set_page_owner_migrate_reason(newpage, reason);
6340
6341         /*
6342          * transfer temporary state of the new huge page. This is
6343          * reverse to other transitions because the newpage is going to
6344          * be final while the old one will be freed so it takes over
6345          * the temporary status.
6346          *
6347          * Also note that we have to transfer the per-node surplus state
6348          * here as well otherwise the global surplus count will not match
6349          * the per-node's.
6350          */
6351         if (HPageTemporary(newpage)) {
6352                 int old_nid = page_to_nid(oldpage);
6353                 int new_nid = page_to_nid(newpage);
6354
6355                 SetHPageTemporary(oldpage);
6356                 ClearHPageTemporary(newpage);
6357
6358                 /*
6359                  * There is no need to transfer the per-node surplus state
6360                  * when we do not cross the node.
6361                  */
6362                 if (new_nid == old_nid)
6363                         return;
6364                 spin_lock_irq(&hugetlb_lock);
6365                 if (h->surplus_huge_pages_node[old_nid]) {
6366                         h->surplus_huge_pages_node[old_nid]--;
6367                         h->surplus_huge_pages_node[new_nid]++;
6368                 }
6369                 spin_unlock_irq(&hugetlb_lock);
6370         }
6371 }
6372
6373 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
6374                                    unsigned long start,
6375                                    unsigned long end)
6376 {
6377         struct hstate *h = hstate_vma(vma);
6378         unsigned long sz = huge_page_size(h);
6379         struct mm_struct *mm = vma->vm_mm;
6380         struct mmu_notifier_range range;
6381         unsigned long address;
6382         spinlock_t *ptl;
6383         pte_t *ptep;
6384
6385         if (!(vma->vm_flags & VM_MAYSHARE))
6386                 return;
6387
6388         if (start >= end)
6389                 return;
6390
6391         /*
6392          * No need to call adjust_range_if_pmd_sharing_possible(), because
6393          * we have already done the PUD_SIZE alignment.
6394          */
6395         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
6396                                 start, end);
6397         mmu_notifier_invalidate_range_start(&range);
6398         i_mmap_lock_write(vma->vm_file->f_mapping);
6399         for (address = start; address < end; address += PUD_SIZE) {
6400                 unsigned long tmp = address;
6401
6402                 ptep = huge_pte_offset(mm, address, sz);
6403                 if (!ptep)
6404                         continue;
6405                 ptl = huge_pte_lock(h, mm, ptep);
6406                 /* We don't want 'address' to be changed */
6407                 huge_pmd_unshare(mm, vma, &tmp, ptep);
6408                 spin_unlock(ptl);
6409         }
6410         flush_hugetlb_tlb_range(vma, start, end);
6411         i_mmap_unlock_write(vma->vm_file->f_mapping);
6412         /*
6413          * No need to call mmu_notifier_invalidate_range(), see
6414          * Documentation/vm/mmu_notifier.rst.
6415          */
6416         mmu_notifier_invalidate_range_end(&range);
6417 }
6418
6419 /*
6420  * This function will unconditionally remove all the shared pmd pgtable entries
6421  * within the specific vma for a hugetlbfs memory range.
6422  */
6423 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
6424 {
6425         hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
6426                         ALIGN_DOWN(vma->vm_end, PUD_SIZE));
6427 }
6428
6429 #ifdef CONFIG_CMA
6430 static bool cma_reserve_called __initdata;
6431
6432 static int __init cmdline_parse_hugetlb_cma(char *p)
6433 {
6434         hugetlb_cma_size = memparse(p, &p);
6435         return 0;
6436 }
6437
6438 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
6439
6440 void __init hugetlb_cma_reserve(int order)
6441 {
6442         unsigned long size, reserved, per_node;
6443         int nid;
6444
6445         cma_reserve_called = true;
6446
6447         if (!hugetlb_cma_size)
6448                 return;
6449
6450         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
6451                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
6452                         (PAGE_SIZE << order) / SZ_1M);
6453                 return;
6454         }
6455
6456         /*
6457          * If 3 GB area is requested on a machine with 4 numa nodes,
6458          * let's allocate 1 GB on first three nodes and ignore the last one.
6459          */
6460         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
6461         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
6462                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
6463
6464         reserved = 0;
6465         for_each_node_state(nid, N_ONLINE) {
6466                 int res;
6467                 char name[CMA_MAX_NAME];
6468
6469                 size = min(per_node, hugetlb_cma_size - reserved);
6470                 size = round_up(size, PAGE_SIZE << order);
6471
6472                 snprintf(name, sizeof(name), "hugetlb%d", nid);
6473                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
6474                                                  0, false, name,
6475                                                  &hugetlb_cma[nid], nid);
6476                 if (res) {
6477                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
6478                                 res, nid);
6479                         continue;
6480                 }
6481
6482                 reserved += size;
6483                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
6484                         size / SZ_1M, nid);
6485
6486                 if (reserved >= hugetlb_cma_size)
6487                         break;
6488         }
6489 }
6490
6491 void __init hugetlb_cma_check(void)
6492 {
6493         if (!hugetlb_cma_size || cma_reserve_called)
6494                 return;
6495
6496         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
6497 }
6498
6499 #endif /* CONFIG_CMA */