1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37 #include <linux/mm_inline.h>
40 #include <asm/pgalloc.h>
44 #include <linux/hugetlb.h>
45 #include <linux/hugetlb_cgroup.h>
46 #include <linux/node.h>
47 #include <linux/page_owner.h>
49 #include "hugetlb_vmemmap.h"
51 int hugetlb_max_hstate __read_mostly;
52 unsigned int default_hstate_idx;
53 struct hstate hstates[HUGE_MAX_HSTATE];
56 static struct cma *hugetlb_cma[MAX_NUMNODES];
57 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
58 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
60 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
64 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
69 static unsigned long hugetlb_cma_size __initdata;
71 __initdata LIST_HEAD(huge_boot_pages);
73 /* for command line parsing */
74 static struct hstate * __initdata parsed_hstate;
75 static unsigned long __initdata default_hstate_max_huge_pages;
76 static bool __initdata parsed_valid_hugepagesz = true;
77 static bool __initdata parsed_default_hugepagesz;
78 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
81 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
82 * free_huge_pages, and surplus_huge_pages.
84 DEFINE_SPINLOCK(hugetlb_lock);
87 * Serializes faults on the same logical page. This is used to
88 * prevent spurious OOMs when the hugepage pool is fully utilized.
90 static int num_fault_mutexes;
91 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
93 /* Forward declaration */
94 static int hugetlb_acct_memory(struct hstate *h, long delta);
95 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
96 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
97 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
99 unsigned long start, unsigned long end);
101 static inline bool subpool_is_free(struct hugepage_subpool *spool)
105 if (spool->max_hpages != -1)
106 return spool->used_hpages == 0;
107 if (spool->min_hpages != -1)
108 return spool->rsv_hpages == spool->min_hpages;
113 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
114 unsigned long irq_flags)
116 spin_unlock_irqrestore(&spool->lock, irq_flags);
118 /* If no pages are used, and no other handles to the subpool
119 * remain, give up any reservations based on minimum size and
120 * free the subpool */
121 if (subpool_is_free(spool)) {
122 if (spool->min_hpages != -1)
123 hugetlb_acct_memory(spool->hstate,
129 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
132 struct hugepage_subpool *spool;
134 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
138 spin_lock_init(&spool->lock);
140 spool->max_hpages = max_hpages;
142 spool->min_hpages = min_hpages;
144 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
148 spool->rsv_hpages = min_hpages;
153 void hugepage_put_subpool(struct hugepage_subpool *spool)
157 spin_lock_irqsave(&spool->lock, flags);
158 BUG_ON(!spool->count);
160 unlock_or_release_subpool(spool, flags);
164 * Subpool accounting for allocating and reserving pages.
165 * Return -ENOMEM if there are not enough resources to satisfy the
166 * request. Otherwise, return the number of pages by which the
167 * global pools must be adjusted (upward). The returned value may
168 * only be different than the passed value (delta) in the case where
169 * a subpool minimum size must be maintained.
171 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
179 spin_lock_irq(&spool->lock);
181 if (spool->max_hpages != -1) { /* maximum size accounting */
182 if ((spool->used_hpages + delta) <= spool->max_hpages)
183 spool->used_hpages += delta;
190 /* minimum size accounting */
191 if (spool->min_hpages != -1 && spool->rsv_hpages) {
192 if (delta > spool->rsv_hpages) {
194 * Asking for more reserves than those already taken on
195 * behalf of subpool. Return difference.
197 ret = delta - spool->rsv_hpages;
198 spool->rsv_hpages = 0;
200 ret = 0; /* reserves already accounted for */
201 spool->rsv_hpages -= delta;
206 spin_unlock_irq(&spool->lock);
211 * Subpool accounting for freeing and unreserving pages.
212 * Return the number of global page reservations that must be dropped.
213 * The return value may only be different than the passed value (delta)
214 * in the case where a subpool minimum size must be maintained.
216 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
225 spin_lock_irqsave(&spool->lock, flags);
227 if (spool->max_hpages != -1) /* maximum size accounting */
228 spool->used_hpages -= delta;
230 /* minimum size accounting */
231 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
232 if (spool->rsv_hpages + delta <= spool->min_hpages)
235 ret = spool->rsv_hpages + delta - spool->min_hpages;
237 spool->rsv_hpages += delta;
238 if (spool->rsv_hpages > spool->min_hpages)
239 spool->rsv_hpages = spool->min_hpages;
243 * If hugetlbfs_put_super couldn't free spool due to an outstanding
244 * quota reference, free it now.
246 unlock_or_release_subpool(spool, flags);
251 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
253 return HUGETLBFS_SB(inode->i_sb)->spool;
256 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
258 return subpool_inode(file_inode(vma->vm_file));
262 * hugetlb vma_lock helper routines
264 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
266 if (__vma_shareable_lock(vma)) {
267 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
269 down_read(&vma_lock->rw_sema);
273 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
275 if (__vma_shareable_lock(vma)) {
276 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
278 up_read(&vma_lock->rw_sema);
282 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
284 if (__vma_shareable_lock(vma)) {
285 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
287 down_write(&vma_lock->rw_sema);
291 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
293 if (__vma_shareable_lock(vma)) {
294 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
296 up_write(&vma_lock->rw_sema);
300 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
302 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
304 if (!__vma_shareable_lock(vma))
307 return down_write_trylock(&vma_lock->rw_sema);
310 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
312 if (__vma_shareable_lock(vma)) {
313 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
315 lockdep_assert_held(&vma_lock->rw_sema);
319 void hugetlb_vma_lock_release(struct kref *kref)
321 struct hugetlb_vma_lock *vma_lock = container_of(kref,
322 struct hugetlb_vma_lock, refs);
327 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
329 struct vm_area_struct *vma = vma_lock->vma;
332 * vma_lock structure may or not be released as a result of put,
333 * it certainly will no longer be attached to vma so clear pointer.
334 * Semaphore synchronizes access to vma_lock->vma field.
336 vma_lock->vma = NULL;
337 vma->vm_private_data = NULL;
338 up_write(&vma_lock->rw_sema);
339 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
342 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
344 if (__vma_shareable_lock(vma)) {
345 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
347 __hugetlb_vma_unlock_write_put(vma_lock);
351 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
354 * Only present in sharable vmas.
356 if (!vma || !__vma_shareable_lock(vma))
359 if (vma->vm_private_data) {
360 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
362 down_write(&vma_lock->rw_sema);
363 __hugetlb_vma_unlock_write_put(vma_lock);
367 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
369 struct hugetlb_vma_lock *vma_lock;
371 /* Only establish in (flags) sharable vmas */
372 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
375 /* Should never get here with non-NULL vm_private_data */
376 if (vma->vm_private_data)
379 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
382 * If we can not allocate structure, then vma can not
383 * participate in pmd sharing. This is only a possible
384 * performance enhancement and memory saving issue.
385 * However, the lock is also used to synchronize page
386 * faults with truncation. If the lock is not present,
387 * unlikely races could leave pages in a file past i_size
388 * until the file is removed. Warn in the unlikely case of
389 * allocation failure.
391 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
395 kref_init(&vma_lock->refs);
396 init_rwsem(&vma_lock->rw_sema);
398 vma->vm_private_data = vma_lock;
401 /* Helper that removes a struct file_region from the resv_map cache and returns
404 static struct file_region *
405 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
407 struct file_region *nrg;
409 VM_BUG_ON(resv->region_cache_count <= 0);
411 resv->region_cache_count--;
412 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
413 list_del(&nrg->link);
421 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
422 struct file_region *rg)
424 #ifdef CONFIG_CGROUP_HUGETLB
425 nrg->reservation_counter = rg->reservation_counter;
432 /* Helper that records hugetlb_cgroup uncharge info. */
433 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
435 struct resv_map *resv,
436 struct file_region *nrg)
438 #ifdef CONFIG_CGROUP_HUGETLB
440 nrg->reservation_counter =
441 &h_cg->rsvd_hugepage[hstate_index(h)];
442 nrg->css = &h_cg->css;
444 * The caller will hold exactly one h_cg->css reference for the
445 * whole contiguous reservation region. But this area might be
446 * scattered when there are already some file_regions reside in
447 * it. As a result, many file_regions may share only one css
448 * reference. In order to ensure that one file_region must hold
449 * exactly one h_cg->css reference, we should do css_get for
450 * each file_region and leave the reference held by caller
454 if (!resv->pages_per_hpage)
455 resv->pages_per_hpage = pages_per_huge_page(h);
456 /* pages_per_hpage should be the same for all entries in
459 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
461 nrg->reservation_counter = NULL;
467 static void put_uncharge_info(struct file_region *rg)
469 #ifdef CONFIG_CGROUP_HUGETLB
475 static bool has_same_uncharge_info(struct file_region *rg,
476 struct file_region *org)
478 #ifdef CONFIG_CGROUP_HUGETLB
479 return rg->reservation_counter == org->reservation_counter &&
487 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
489 struct file_region *nrg, *prg;
491 prg = list_prev_entry(rg, link);
492 if (&prg->link != &resv->regions && prg->to == rg->from &&
493 has_same_uncharge_info(prg, rg)) {
497 put_uncharge_info(rg);
503 nrg = list_next_entry(rg, link);
504 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
505 has_same_uncharge_info(nrg, rg)) {
506 nrg->from = rg->from;
509 put_uncharge_info(rg);
515 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
516 long to, struct hstate *h, struct hugetlb_cgroup *cg,
517 long *regions_needed)
519 struct file_region *nrg;
521 if (!regions_needed) {
522 nrg = get_file_region_entry_from_cache(map, from, to);
523 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
524 list_add(&nrg->link, rg);
525 coalesce_file_region(map, nrg);
527 *regions_needed += 1;
533 * Must be called with resv->lock held.
535 * Calling this with regions_needed != NULL will count the number of pages
536 * to be added but will not modify the linked list. And regions_needed will
537 * indicate the number of file_regions needed in the cache to carry out to add
538 * the regions for this range.
540 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
541 struct hugetlb_cgroup *h_cg,
542 struct hstate *h, long *regions_needed)
545 struct list_head *head = &resv->regions;
546 long last_accounted_offset = f;
547 struct file_region *iter, *trg = NULL;
548 struct list_head *rg = NULL;
553 /* In this loop, we essentially handle an entry for the range
554 * [last_accounted_offset, iter->from), at every iteration, with some
557 list_for_each_entry_safe(iter, trg, head, link) {
558 /* Skip irrelevant regions that start before our range. */
559 if (iter->from < f) {
560 /* If this region ends after the last accounted offset,
561 * then we need to update last_accounted_offset.
563 if (iter->to > last_accounted_offset)
564 last_accounted_offset = iter->to;
568 /* When we find a region that starts beyond our range, we've
571 if (iter->from >= t) {
572 rg = iter->link.prev;
576 /* Add an entry for last_accounted_offset -> iter->from, and
577 * update last_accounted_offset.
579 if (iter->from > last_accounted_offset)
580 add += hugetlb_resv_map_add(resv, iter->link.prev,
581 last_accounted_offset,
585 last_accounted_offset = iter->to;
588 /* Handle the case where our range extends beyond
589 * last_accounted_offset.
593 if (last_accounted_offset < t)
594 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
595 t, h, h_cg, regions_needed);
600 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
602 static int allocate_file_region_entries(struct resv_map *resv,
604 __must_hold(&resv->lock)
606 LIST_HEAD(allocated_regions);
607 int to_allocate = 0, i = 0;
608 struct file_region *trg = NULL, *rg = NULL;
610 VM_BUG_ON(regions_needed < 0);
613 * Check for sufficient descriptors in the cache to accommodate
614 * the number of in progress add operations plus regions_needed.
616 * This is a while loop because when we drop the lock, some other call
617 * to region_add or region_del may have consumed some region_entries,
618 * so we keep looping here until we finally have enough entries for
619 * (adds_in_progress + regions_needed).
621 while (resv->region_cache_count <
622 (resv->adds_in_progress + regions_needed)) {
623 to_allocate = resv->adds_in_progress + regions_needed -
624 resv->region_cache_count;
626 /* At this point, we should have enough entries in the cache
627 * for all the existing adds_in_progress. We should only be
628 * needing to allocate for regions_needed.
630 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
632 spin_unlock(&resv->lock);
633 for (i = 0; i < to_allocate; i++) {
634 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
637 list_add(&trg->link, &allocated_regions);
640 spin_lock(&resv->lock);
642 list_splice(&allocated_regions, &resv->region_cache);
643 resv->region_cache_count += to_allocate;
649 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
657 * Add the huge page range represented by [f, t) to the reserve
658 * map. Regions will be taken from the cache to fill in this range.
659 * Sufficient regions should exist in the cache due to the previous
660 * call to region_chg with the same range, but in some cases the cache will not
661 * have sufficient entries due to races with other code doing region_add or
662 * region_del. The extra needed entries will be allocated.
664 * regions_needed is the out value provided by a previous call to region_chg.
666 * Return the number of new huge pages added to the map. This number is greater
667 * than or equal to zero. If file_region entries needed to be allocated for
668 * this operation and we were not able to allocate, it returns -ENOMEM.
669 * region_add of regions of length 1 never allocate file_regions and cannot
670 * fail; region_chg will always allocate at least 1 entry and a region_add for
671 * 1 page will only require at most 1 entry.
673 static long region_add(struct resv_map *resv, long f, long t,
674 long in_regions_needed, struct hstate *h,
675 struct hugetlb_cgroup *h_cg)
677 long add = 0, actual_regions_needed = 0;
679 spin_lock(&resv->lock);
682 /* Count how many regions are actually needed to execute this add. */
683 add_reservation_in_range(resv, f, t, NULL, NULL,
684 &actual_regions_needed);
687 * Check for sufficient descriptors in the cache to accommodate
688 * this add operation. Note that actual_regions_needed may be greater
689 * than in_regions_needed, as the resv_map may have been modified since
690 * the region_chg call. In this case, we need to make sure that we
691 * allocate extra entries, such that we have enough for all the
692 * existing adds_in_progress, plus the excess needed for this
695 if (actual_regions_needed > in_regions_needed &&
696 resv->region_cache_count <
697 resv->adds_in_progress +
698 (actual_regions_needed - in_regions_needed)) {
699 /* region_add operation of range 1 should never need to
700 * allocate file_region entries.
702 VM_BUG_ON(t - f <= 1);
704 if (allocate_file_region_entries(
705 resv, actual_regions_needed - in_regions_needed)) {
712 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
714 resv->adds_in_progress -= in_regions_needed;
716 spin_unlock(&resv->lock);
721 * Examine the existing reserve map and determine how many
722 * huge pages in the specified range [f, t) are NOT currently
723 * represented. This routine is called before a subsequent
724 * call to region_add that will actually modify the reserve
725 * map to add the specified range [f, t). region_chg does
726 * not change the number of huge pages represented by the
727 * map. A number of new file_region structures is added to the cache as a
728 * placeholder, for the subsequent region_add call to use. At least 1
729 * file_region structure is added.
731 * out_regions_needed is the number of regions added to the
732 * resv->adds_in_progress. This value needs to be provided to a follow up call
733 * to region_add or region_abort for proper accounting.
735 * Returns the number of huge pages that need to be added to the existing
736 * reservation map for the range [f, t). This number is greater or equal to
737 * zero. -ENOMEM is returned if a new file_region structure or cache entry
738 * is needed and can not be allocated.
740 static long region_chg(struct resv_map *resv, long f, long t,
741 long *out_regions_needed)
745 spin_lock(&resv->lock);
747 /* Count how many hugepages in this range are NOT represented. */
748 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
751 if (*out_regions_needed == 0)
752 *out_regions_needed = 1;
754 if (allocate_file_region_entries(resv, *out_regions_needed))
757 resv->adds_in_progress += *out_regions_needed;
759 spin_unlock(&resv->lock);
764 * Abort the in progress add operation. The adds_in_progress field
765 * of the resv_map keeps track of the operations in progress between
766 * calls to region_chg and region_add. Operations are sometimes
767 * aborted after the call to region_chg. In such cases, region_abort
768 * is called to decrement the adds_in_progress counter. regions_needed
769 * is the value returned by the region_chg call, it is used to decrement
770 * the adds_in_progress counter.
772 * NOTE: The range arguments [f, t) are not needed or used in this
773 * routine. They are kept to make reading the calling code easier as
774 * arguments will match the associated region_chg call.
776 static void region_abort(struct resv_map *resv, long f, long t,
779 spin_lock(&resv->lock);
780 VM_BUG_ON(!resv->region_cache_count);
781 resv->adds_in_progress -= regions_needed;
782 spin_unlock(&resv->lock);
786 * Delete the specified range [f, t) from the reserve map. If the
787 * t parameter is LONG_MAX, this indicates that ALL regions after f
788 * should be deleted. Locate the regions which intersect [f, t)
789 * and either trim, delete or split the existing regions.
791 * Returns the number of huge pages deleted from the reserve map.
792 * In the normal case, the return value is zero or more. In the
793 * case where a region must be split, a new region descriptor must
794 * be allocated. If the allocation fails, -ENOMEM will be returned.
795 * NOTE: If the parameter t == LONG_MAX, then we will never split
796 * a region and possibly return -ENOMEM. Callers specifying
797 * t == LONG_MAX do not need to check for -ENOMEM error.
799 static long region_del(struct resv_map *resv, long f, long t)
801 struct list_head *head = &resv->regions;
802 struct file_region *rg, *trg;
803 struct file_region *nrg = NULL;
807 spin_lock(&resv->lock);
808 list_for_each_entry_safe(rg, trg, head, link) {
810 * Skip regions before the range to be deleted. file_region
811 * ranges are normally of the form [from, to). However, there
812 * may be a "placeholder" entry in the map which is of the form
813 * (from, to) with from == to. Check for placeholder entries
814 * at the beginning of the range to be deleted.
816 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
822 if (f > rg->from && t < rg->to) { /* Must split region */
824 * Check for an entry in the cache before dropping
825 * lock and attempting allocation.
828 resv->region_cache_count > resv->adds_in_progress) {
829 nrg = list_first_entry(&resv->region_cache,
832 list_del(&nrg->link);
833 resv->region_cache_count--;
837 spin_unlock(&resv->lock);
838 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
845 hugetlb_cgroup_uncharge_file_region(
846 resv, rg, t - f, false);
848 /* New entry for end of split region */
852 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
854 INIT_LIST_HEAD(&nrg->link);
856 /* Original entry is trimmed */
859 list_add(&nrg->link, &rg->link);
864 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
865 del += rg->to - rg->from;
866 hugetlb_cgroup_uncharge_file_region(resv, rg,
867 rg->to - rg->from, true);
873 if (f <= rg->from) { /* Trim beginning of region */
874 hugetlb_cgroup_uncharge_file_region(resv, rg,
875 t - rg->from, false);
879 } else { /* Trim end of region */
880 hugetlb_cgroup_uncharge_file_region(resv, rg,
888 spin_unlock(&resv->lock);
894 * A rare out of memory error was encountered which prevented removal of
895 * the reserve map region for a page. The huge page itself was free'ed
896 * and removed from the page cache. This routine will adjust the subpool
897 * usage count, and the global reserve count if needed. By incrementing
898 * these counts, the reserve map entry which could not be deleted will
899 * appear as a "reserved" entry instead of simply dangling with incorrect
902 void hugetlb_fix_reserve_counts(struct inode *inode)
904 struct hugepage_subpool *spool = subpool_inode(inode);
906 bool reserved = false;
908 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
909 if (rsv_adjust > 0) {
910 struct hstate *h = hstate_inode(inode);
912 if (!hugetlb_acct_memory(h, 1))
914 } else if (!rsv_adjust) {
919 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
923 * Count and return the number of huge pages in the reserve map
924 * that intersect with the range [f, t).
926 static long region_count(struct resv_map *resv, long f, long t)
928 struct list_head *head = &resv->regions;
929 struct file_region *rg;
932 spin_lock(&resv->lock);
933 /* Locate each segment we overlap with, and count that overlap. */
934 list_for_each_entry(rg, head, link) {
943 seg_from = max(rg->from, f);
944 seg_to = min(rg->to, t);
946 chg += seg_to - seg_from;
948 spin_unlock(&resv->lock);
954 * Convert the address within this vma to the page offset within
955 * the mapping, in pagecache page units; huge pages here.
957 static pgoff_t vma_hugecache_offset(struct hstate *h,
958 struct vm_area_struct *vma, unsigned long address)
960 return ((address - vma->vm_start) >> huge_page_shift(h)) +
961 (vma->vm_pgoff >> huge_page_order(h));
964 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
965 unsigned long address)
967 return vma_hugecache_offset(hstate_vma(vma), vma, address);
969 EXPORT_SYMBOL_GPL(linear_hugepage_index);
972 * vma_kernel_pagesize - Page size granularity for this VMA.
973 * @vma: The user mapping.
975 * Folios in this VMA will be aligned to, and at least the size of the
976 * number of bytes returned by this function.
978 * Return: The default size of the folios allocated when backing a VMA.
980 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
982 if (vma->vm_ops && vma->vm_ops->pagesize)
983 return vma->vm_ops->pagesize(vma);
986 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
989 * Return the page size being used by the MMU to back a VMA. In the majority
990 * of cases, the page size used by the kernel matches the MMU size. On
991 * architectures where it differs, an architecture-specific 'strong'
992 * version of this symbol is required.
994 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
996 return vma_kernel_pagesize(vma);
1000 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
1001 * bits of the reservation map pointer, which are always clear due to
1004 #define HPAGE_RESV_OWNER (1UL << 0)
1005 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1006 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1009 * These helpers are used to track how many pages are reserved for
1010 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1011 * is guaranteed to have their future faults succeed.
1013 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1014 * the reserve counters are updated with the hugetlb_lock held. It is safe
1015 * to reset the VMA at fork() time as it is not in use yet and there is no
1016 * chance of the global counters getting corrupted as a result of the values.
1018 * The private mapping reservation is represented in a subtly different
1019 * manner to a shared mapping. A shared mapping has a region map associated
1020 * with the underlying file, this region map represents the backing file
1021 * pages which have ever had a reservation assigned which this persists even
1022 * after the page is instantiated. A private mapping has a region map
1023 * associated with the original mmap which is attached to all VMAs which
1024 * reference it, this region map represents those offsets which have consumed
1025 * reservation ie. where pages have been instantiated.
1027 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1029 return (unsigned long)vma->vm_private_data;
1032 static void set_vma_private_data(struct vm_area_struct *vma,
1033 unsigned long value)
1035 vma->vm_private_data = (void *)value;
1039 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1040 struct hugetlb_cgroup *h_cg,
1043 #ifdef CONFIG_CGROUP_HUGETLB
1045 resv_map->reservation_counter = NULL;
1046 resv_map->pages_per_hpage = 0;
1047 resv_map->css = NULL;
1049 resv_map->reservation_counter =
1050 &h_cg->rsvd_hugepage[hstate_index(h)];
1051 resv_map->pages_per_hpage = pages_per_huge_page(h);
1052 resv_map->css = &h_cg->css;
1057 struct resv_map *resv_map_alloc(void)
1059 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1060 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1062 if (!resv_map || !rg) {
1068 kref_init(&resv_map->refs);
1069 spin_lock_init(&resv_map->lock);
1070 INIT_LIST_HEAD(&resv_map->regions);
1072 resv_map->adds_in_progress = 0;
1074 * Initialize these to 0. On shared mappings, 0's here indicate these
1075 * fields don't do cgroup accounting. On private mappings, these will be
1076 * re-initialized to the proper values, to indicate that hugetlb cgroup
1077 * reservations are to be un-charged from here.
1079 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1081 INIT_LIST_HEAD(&resv_map->region_cache);
1082 list_add(&rg->link, &resv_map->region_cache);
1083 resv_map->region_cache_count = 1;
1088 void resv_map_release(struct kref *ref)
1090 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1091 struct list_head *head = &resv_map->region_cache;
1092 struct file_region *rg, *trg;
1094 /* Clear out any active regions before we release the map. */
1095 region_del(resv_map, 0, LONG_MAX);
1097 /* ... and any entries left in the cache */
1098 list_for_each_entry_safe(rg, trg, head, link) {
1099 list_del(&rg->link);
1103 VM_BUG_ON(resv_map->adds_in_progress);
1108 static inline struct resv_map *inode_resv_map(struct inode *inode)
1111 * At inode evict time, i_mapping may not point to the original
1112 * address space within the inode. This original address space
1113 * contains the pointer to the resv_map. So, always use the
1114 * address space embedded within the inode.
1115 * The VERY common case is inode->mapping == &inode->i_data but,
1116 * this may not be true for device special inodes.
1118 return (struct resv_map *)(&inode->i_data)->private_data;
1121 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1123 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1124 if (vma->vm_flags & VM_MAYSHARE) {
1125 struct address_space *mapping = vma->vm_file->f_mapping;
1126 struct inode *inode = mapping->host;
1128 return inode_resv_map(inode);
1131 return (struct resv_map *)(get_vma_private_data(vma) &
1136 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1138 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1139 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1141 set_vma_private_data(vma, (get_vma_private_data(vma) &
1142 HPAGE_RESV_MASK) | (unsigned long)map);
1145 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1147 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1148 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1150 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1153 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1155 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1157 return (get_vma_private_data(vma) & flag) != 0;
1160 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1162 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1164 * Clear vm_private_data
1165 * - For shared mappings this is a per-vma semaphore that may be
1166 * allocated in a subsequent call to hugetlb_vm_op_open.
1167 * Before clearing, make sure pointer is not associated with vma
1168 * as this will leak the structure. This is the case when called
1169 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1170 * been called to allocate a new structure.
1171 * - For MAP_PRIVATE mappings, this is the reserve map which does
1172 * not apply to children. Faults generated by the children are
1173 * not guaranteed to succeed, even if read-only.
1175 if (vma->vm_flags & VM_MAYSHARE) {
1176 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1178 if (vma_lock && vma_lock->vma != vma)
1179 vma->vm_private_data = NULL;
1181 vma->vm_private_data = NULL;
1185 * Reset and decrement one ref on hugepage private reservation.
1186 * Called with mm->mmap_lock writer semaphore held.
1187 * This function should be only used by move_vma() and operate on
1188 * same sized vma. It should never come here with last ref on the
1191 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1194 * Clear the old hugetlb private page reservation.
1195 * It has already been transferred to new_vma.
1197 * During a mremap() operation of a hugetlb vma we call move_vma()
1198 * which copies vma into new_vma and unmaps vma. After the copy
1199 * operation both new_vma and vma share a reference to the resv_map
1200 * struct, and at that point vma is about to be unmapped. We don't
1201 * want to return the reservation to the pool at unmap of vma because
1202 * the reservation still lives on in new_vma, so simply decrement the
1203 * ref here and remove the resv_map reference from this vma.
1205 struct resv_map *reservations = vma_resv_map(vma);
1207 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1208 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1209 kref_put(&reservations->refs, resv_map_release);
1212 hugetlb_dup_vma_private(vma);
1215 /* Returns true if the VMA has associated reserve pages */
1216 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1218 if (vma->vm_flags & VM_NORESERVE) {
1220 * This address is already reserved by other process(chg == 0),
1221 * so, we should decrement reserved count. Without decrementing,
1222 * reserve count remains after releasing inode, because this
1223 * allocated page will go into page cache and is regarded as
1224 * coming from reserved pool in releasing step. Currently, we
1225 * don't have any other solution to deal with this situation
1226 * properly, so add work-around here.
1228 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1234 /* Shared mappings always use reserves */
1235 if (vma->vm_flags & VM_MAYSHARE) {
1237 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1238 * be a region map for all pages. The only situation where
1239 * there is no region map is if a hole was punched via
1240 * fallocate. In this case, there really are no reserves to
1241 * use. This situation is indicated if chg != 0.
1250 * Only the process that called mmap() has reserves for
1253 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1255 * Like the shared case above, a hole punch or truncate
1256 * could have been performed on the private mapping.
1257 * Examine the value of chg to determine if reserves
1258 * actually exist or were previously consumed.
1259 * Very Subtle - The value of chg comes from a previous
1260 * call to vma_needs_reserves(). The reserve map for
1261 * private mappings has different (opposite) semantics
1262 * than that of shared mappings. vma_needs_reserves()
1263 * has already taken this difference in semantics into
1264 * account. Therefore, the meaning of chg is the same
1265 * as in the shared case above. Code could easily be
1266 * combined, but keeping it separate draws attention to
1267 * subtle differences.
1278 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1280 int nid = folio_nid(folio);
1282 lockdep_assert_held(&hugetlb_lock);
1283 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1285 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1286 h->free_huge_pages++;
1287 h->free_huge_pages_node[nid]++;
1288 folio_set_hugetlb_freed(folio);
1291 static struct folio *dequeue_hugetlb_folio_node_exact(struct hstate *h,
1294 struct folio *folio;
1295 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1297 lockdep_assert_held(&hugetlb_lock);
1298 list_for_each_entry(folio, &h->hugepage_freelists[nid], lru) {
1299 if (pin && !folio_is_longterm_pinnable(folio))
1302 if (folio_test_hwpoison(folio))
1305 list_move(&folio->lru, &h->hugepage_activelist);
1306 folio_ref_unfreeze(folio, 1);
1307 folio_clear_hugetlb_freed(folio);
1308 h->free_huge_pages--;
1309 h->free_huge_pages_node[nid]--;
1316 static struct folio *dequeue_hugetlb_folio_nodemask(struct hstate *h, gfp_t gfp_mask,
1317 int nid, nodemask_t *nmask)
1319 unsigned int cpuset_mems_cookie;
1320 struct zonelist *zonelist;
1323 int node = NUMA_NO_NODE;
1325 zonelist = node_zonelist(nid, gfp_mask);
1328 cpuset_mems_cookie = read_mems_allowed_begin();
1329 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1330 struct folio *folio;
1332 if (!cpuset_zone_allowed(zone, gfp_mask))
1335 * no need to ask again on the same node. Pool is node rather than
1338 if (zone_to_nid(zone) == node)
1340 node = zone_to_nid(zone);
1342 folio = dequeue_hugetlb_folio_node_exact(h, node);
1346 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1352 static unsigned long available_huge_pages(struct hstate *h)
1354 return h->free_huge_pages - h->resv_huge_pages;
1357 static struct folio *dequeue_hugetlb_folio_vma(struct hstate *h,
1358 struct vm_area_struct *vma,
1359 unsigned long address, int avoid_reserve,
1362 struct folio *folio = NULL;
1363 struct mempolicy *mpol;
1365 nodemask_t *nodemask;
1369 * A child process with MAP_PRIVATE mappings created by their parent
1370 * have no page reserves. This check ensures that reservations are
1371 * not "stolen". The child may still get SIGKILLed
1373 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1376 /* If reserves cannot be used, ensure enough pages are in the pool */
1377 if (avoid_reserve && !available_huge_pages(h))
1380 gfp_mask = htlb_alloc_mask(h);
1381 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1383 if (mpol_is_preferred_many(mpol)) {
1384 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1387 /* Fallback to all nodes if page==NULL */
1392 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
1395 if (folio && !avoid_reserve && vma_has_reserves(vma, chg)) {
1396 folio_set_hugetlb_restore_reserve(folio);
1397 h->resv_huge_pages--;
1400 mpol_cond_put(mpol);
1408 * common helper functions for hstate_next_node_to_{alloc|free}.
1409 * We may have allocated or freed a huge page based on a different
1410 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1411 * be outside of *nodes_allowed. Ensure that we use an allowed
1412 * node for alloc or free.
1414 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1416 nid = next_node_in(nid, *nodes_allowed);
1417 VM_BUG_ON(nid >= MAX_NUMNODES);
1422 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1424 if (!node_isset(nid, *nodes_allowed))
1425 nid = next_node_allowed(nid, nodes_allowed);
1430 * returns the previously saved node ["this node"] from which to
1431 * allocate a persistent huge page for the pool and advance the
1432 * next node from which to allocate, handling wrap at end of node
1435 static int hstate_next_node_to_alloc(struct hstate *h,
1436 nodemask_t *nodes_allowed)
1440 VM_BUG_ON(!nodes_allowed);
1442 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1443 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1449 * helper for remove_pool_huge_page() - return the previously saved
1450 * node ["this node"] from which to free a huge page. Advance the
1451 * next node id whether or not we find a free huge page to free so
1452 * that the next attempt to free addresses the next node.
1454 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1458 VM_BUG_ON(!nodes_allowed);
1460 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1461 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1466 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1467 for (nr_nodes = nodes_weight(*mask); \
1469 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1472 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1473 for (nr_nodes = nodes_weight(*mask); \
1475 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1478 /* used to demote non-gigantic_huge pages as well */
1479 static void __destroy_compound_gigantic_folio(struct folio *folio,
1480 unsigned int order, bool demote)
1483 int nr_pages = 1 << order;
1486 atomic_set(&folio->_entire_mapcount, 0);
1487 atomic_set(&folio->_nr_pages_mapped, 0);
1488 atomic_set(&folio->_pincount, 0);
1490 for (i = 1; i < nr_pages; i++) {
1491 p = folio_page(folio, i);
1492 p->flags &= ~PAGE_FLAGS_CHECK_AT_FREE;
1494 clear_compound_head(p);
1496 set_page_refcounted(p);
1499 __folio_clear_head(folio);
1502 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1505 __destroy_compound_gigantic_folio(folio, order, true);
1508 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1509 static void destroy_compound_gigantic_folio(struct folio *folio,
1512 __destroy_compound_gigantic_folio(folio, order, false);
1515 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1518 * If the page isn't allocated using the cma allocator,
1519 * cma_release() returns false.
1522 int nid = folio_nid(folio);
1524 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1528 free_contig_range(folio_pfn(folio), 1 << order);
1531 #ifdef CONFIG_CONTIG_ALLOC
1532 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1533 int nid, nodemask_t *nodemask)
1536 unsigned long nr_pages = pages_per_huge_page(h);
1537 if (nid == NUMA_NO_NODE)
1538 nid = numa_mem_id();
1544 if (hugetlb_cma[nid]) {
1545 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1546 huge_page_order(h), true);
1548 return page_folio(page);
1551 if (!(gfp_mask & __GFP_THISNODE)) {
1552 for_each_node_mask(node, *nodemask) {
1553 if (node == nid || !hugetlb_cma[node])
1556 page = cma_alloc(hugetlb_cma[node], nr_pages,
1557 huge_page_order(h), true);
1559 return page_folio(page);
1565 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1566 return page ? page_folio(page) : NULL;
1569 #else /* !CONFIG_CONTIG_ALLOC */
1570 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1571 int nid, nodemask_t *nodemask)
1575 #endif /* CONFIG_CONTIG_ALLOC */
1577 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1578 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1579 int nid, nodemask_t *nodemask)
1583 static inline void free_gigantic_folio(struct folio *folio,
1584 unsigned int order) { }
1585 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1586 unsigned int order) { }
1589 static inline void __clear_hugetlb_destructor(struct hstate *h,
1590 struct folio *folio)
1592 lockdep_assert_held(&hugetlb_lock);
1594 folio_clear_hugetlb(folio);
1598 * Remove hugetlb folio from lists.
1599 * If vmemmap exists for the folio, update dtor so that the folio appears
1600 * as just a compound page. Otherwise, wait until after allocating vmemmap
1603 * A reference is held on the folio, except in the case of demote.
1605 * Must be called with hugetlb lock held.
1607 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1608 bool adjust_surplus,
1611 int nid = folio_nid(folio);
1613 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1614 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1616 lockdep_assert_held(&hugetlb_lock);
1617 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1620 list_del(&folio->lru);
1622 if (folio_test_hugetlb_freed(folio)) {
1623 h->free_huge_pages--;
1624 h->free_huge_pages_node[nid]--;
1626 if (adjust_surplus) {
1627 h->surplus_huge_pages--;
1628 h->surplus_huge_pages_node[nid]--;
1632 * We can only clear the hugetlb destructor after allocating vmemmap
1633 * pages. Otherwise, someone (memory error handling) may try to write
1634 * to tail struct pages.
1636 if (!folio_test_hugetlb_vmemmap_optimized(folio))
1637 __clear_hugetlb_destructor(h, folio);
1640 * In the case of demote we do not ref count the page as it will soon
1641 * be turned into a page of smaller size.
1644 folio_ref_unfreeze(folio, 1);
1647 h->nr_huge_pages_node[nid]--;
1650 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1651 bool adjust_surplus)
1653 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1656 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1657 bool adjust_surplus)
1659 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1662 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1663 bool adjust_surplus)
1666 int nid = folio_nid(folio);
1668 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1670 lockdep_assert_held(&hugetlb_lock);
1672 INIT_LIST_HEAD(&folio->lru);
1674 h->nr_huge_pages_node[nid]++;
1676 if (adjust_surplus) {
1677 h->surplus_huge_pages++;
1678 h->surplus_huge_pages_node[nid]++;
1681 folio_set_hugetlb(folio);
1682 folio_change_private(folio, NULL);
1684 * We have to set hugetlb_vmemmap_optimized again as above
1685 * folio_change_private(folio, NULL) cleared it.
1687 folio_set_hugetlb_vmemmap_optimized(folio);
1690 * This folio is about to be managed by the hugetlb allocator and
1691 * should have no users. Drop our reference, and check for others
1694 zeroed = folio_put_testzero(folio);
1695 if (unlikely(!zeroed))
1697 * It is VERY unlikely soneone else has taken a ref
1698 * on the folio. In this case, we simply return as
1699 * free_huge_folio() will be called when this other ref
1704 arch_clear_hugepage_flags(&folio->page);
1705 enqueue_hugetlb_folio(h, folio);
1708 static void __update_and_free_hugetlb_folio(struct hstate *h,
1709 struct folio *folio)
1711 bool clear_dtor = folio_test_hugetlb_vmemmap_optimized(folio);
1713 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1717 * If we don't know which subpages are hwpoisoned, we can't free
1718 * the hugepage, so it's leaked intentionally.
1720 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1723 if (hugetlb_vmemmap_restore(h, &folio->page)) {
1724 spin_lock_irq(&hugetlb_lock);
1726 * If we cannot allocate vmemmap pages, just refuse to free the
1727 * page and put the page back on the hugetlb free list and treat
1728 * as a surplus page.
1730 add_hugetlb_folio(h, folio, true);
1731 spin_unlock_irq(&hugetlb_lock);
1736 * Move PageHWPoison flag from head page to the raw error pages,
1737 * which makes any healthy subpages reusable.
1739 if (unlikely(folio_test_hwpoison(folio)))
1740 folio_clear_hugetlb_hwpoison(folio);
1743 * If vmemmap pages were allocated above, then we need to clear the
1744 * hugetlb destructor under the hugetlb lock.
1747 spin_lock_irq(&hugetlb_lock);
1748 __clear_hugetlb_destructor(h, folio);
1749 spin_unlock_irq(&hugetlb_lock);
1753 * Non-gigantic pages demoted from CMA allocated gigantic pages
1754 * need to be given back to CMA in free_gigantic_folio.
1756 if (hstate_is_gigantic(h) ||
1757 hugetlb_cma_folio(folio, huge_page_order(h))) {
1758 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1759 free_gigantic_folio(folio, huge_page_order(h));
1761 __free_pages(&folio->page, huge_page_order(h));
1766 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1767 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1768 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1769 * the vmemmap pages.
1771 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1772 * freed and frees them one-by-one. As the page->mapping pointer is going
1773 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1774 * structure of a lockless linked list of huge pages to be freed.
1776 static LLIST_HEAD(hpage_freelist);
1778 static void free_hpage_workfn(struct work_struct *work)
1780 struct llist_node *node;
1782 node = llist_del_all(&hpage_freelist);
1788 page = container_of((struct address_space **)node,
1789 struct page, mapping);
1791 page->mapping = NULL;
1793 * The VM_BUG_ON_FOLIO(!folio_test_hugetlb(folio), folio) in
1794 * folio_hstate() is going to trigger because a previous call to
1795 * remove_hugetlb_folio() will clear the hugetlb bit, so do
1796 * not use folio_hstate() directly.
1798 h = size_to_hstate(page_size(page));
1800 __update_and_free_hugetlb_folio(h, page_folio(page));
1805 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1807 static inline void flush_free_hpage_work(struct hstate *h)
1809 if (hugetlb_vmemmap_optimizable(h))
1810 flush_work(&free_hpage_work);
1813 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1816 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1817 __update_and_free_hugetlb_folio(h, folio);
1822 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1824 * Only call schedule_work() if hpage_freelist is previously
1825 * empty. Otherwise, schedule_work() had been called but the workfn
1826 * hasn't retrieved the list yet.
1828 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1829 schedule_work(&free_hpage_work);
1832 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1834 struct page *page, *t_page;
1835 struct folio *folio;
1837 list_for_each_entry_safe(page, t_page, list, lru) {
1838 folio = page_folio(page);
1839 update_and_free_hugetlb_folio(h, folio, false);
1844 struct hstate *size_to_hstate(unsigned long size)
1848 for_each_hstate(h) {
1849 if (huge_page_size(h) == size)
1855 void free_huge_folio(struct folio *folio)
1858 * Can't pass hstate in here because it is called from the
1859 * compound page destructor.
1861 struct hstate *h = folio_hstate(folio);
1862 int nid = folio_nid(folio);
1863 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1864 bool restore_reserve;
1865 unsigned long flags;
1867 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1868 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1870 hugetlb_set_folio_subpool(folio, NULL);
1871 if (folio_test_anon(folio))
1872 __ClearPageAnonExclusive(&folio->page);
1873 folio->mapping = NULL;
1874 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1875 folio_clear_hugetlb_restore_reserve(folio);
1878 * If HPageRestoreReserve was set on page, page allocation consumed a
1879 * reservation. If the page was associated with a subpool, there
1880 * would have been a page reserved in the subpool before allocation
1881 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1882 * reservation, do not call hugepage_subpool_put_pages() as this will
1883 * remove the reserved page from the subpool.
1885 if (!restore_reserve) {
1887 * A return code of zero implies that the subpool will be
1888 * under its minimum size if the reservation is not restored
1889 * after page is free. Therefore, force restore_reserve
1892 if (hugepage_subpool_put_pages(spool, 1) == 0)
1893 restore_reserve = true;
1896 spin_lock_irqsave(&hugetlb_lock, flags);
1897 folio_clear_hugetlb_migratable(folio);
1898 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1899 pages_per_huge_page(h), folio);
1900 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1901 pages_per_huge_page(h), folio);
1902 if (restore_reserve)
1903 h->resv_huge_pages++;
1905 if (folio_test_hugetlb_temporary(folio)) {
1906 remove_hugetlb_folio(h, folio, false);
1907 spin_unlock_irqrestore(&hugetlb_lock, flags);
1908 update_and_free_hugetlb_folio(h, folio, true);
1909 } else if (h->surplus_huge_pages_node[nid]) {
1910 /* remove the page from active list */
1911 remove_hugetlb_folio(h, folio, true);
1912 spin_unlock_irqrestore(&hugetlb_lock, flags);
1913 update_and_free_hugetlb_folio(h, folio, true);
1915 arch_clear_hugepage_flags(&folio->page);
1916 enqueue_hugetlb_folio(h, folio);
1917 spin_unlock_irqrestore(&hugetlb_lock, flags);
1922 * Must be called with the hugetlb lock held
1924 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1926 lockdep_assert_held(&hugetlb_lock);
1928 h->nr_huge_pages_node[nid]++;
1931 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1933 hugetlb_vmemmap_optimize(h, &folio->page);
1934 INIT_LIST_HEAD(&folio->lru);
1935 folio_set_hugetlb(folio);
1936 hugetlb_set_folio_subpool(folio, NULL);
1937 set_hugetlb_cgroup(folio, NULL);
1938 set_hugetlb_cgroup_rsvd(folio, NULL);
1941 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1943 __prep_new_hugetlb_folio(h, folio);
1944 spin_lock_irq(&hugetlb_lock);
1945 __prep_account_new_huge_page(h, nid);
1946 spin_unlock_irq(&hugetlb_lock);
1949 static bool __prep_compound_gigantic_folio(struct folio *folio,
1950 unsigned int order, bool demote)
1953 int nr_pages = 1 << order;
1956 __folio_clear_reserved(folio);
1957 for (i = 0; i < nr_pages; i++) {
1958 p = folio_page(folio, i);
1961 * For gigantic hugepages allocated through bootmem at
1962 * boot, it's safer to be consistent with the not-gigantic
1963 * hugepages and clear the PG_reserved bit from all tail pages
1964 * too. Otherwise drivers using get_user_pages() to access tail
1965 * pages may get the reference counting wrong if they see
1966 * PG_reserved set on a tail page (despite the head page not
1967 * having PG_reserved set). Enforcing this consistency between
1968 * head and tail pages allows drivers to optimize away a check
1969 * on the head page when they need know if put_page() is needed
1970 * after get_user_pages().
1972 if (i != 0) /* head page cleared above */
1973 __ClearPageReserved(p);
1975 * Subtle and very unlikely
1977 * Gigantic 'page allocators' such as memblock or cma will
1978 * return a set of pages with each page ref counted. We need
1979 * to turn this set of pages into a compound page with tail
1980 * page ref counts set to zero. Code such as speculative page
1981 * cache adding could take a ref on a 'to be' tail page.
1982 * We need to respect any increased ref count, and only set
1983 * the ref count to zero if count is currently 1. If count
1984 * is not 1, we return an error. An error return indicates
1985 * the set of pages can not be converted to a gigantic page.
1986 * The caller who allocated the pages should then discard the
1987 * pages using the appropriate free interface.
1989 * In the case of demote, the ref count will be zero.
1992 if (!page_ref_freeze(p, 1)) {
1993 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1997 VM_BUG_ON_PAGE(page_count(p), p);
2000 set_compound_head(p, &folio->page);
2002 __folio_set_head(folio);
2003 /* we rely on prep_new_hugetlb_folio to set the destructor */
2004 folio_set_order(folio, order);
2005 atomic_set(&folio->_entire_mapcount, -1);
2006 atomic_set(&folio->_nr_pages_mapped, 0);
2007 atomic_set(&folio->_pincount, 0);
2011 /* undo page modifications made above */
2012 for (j = 0; j < i; j++) {
2013 p = folio_page(folio, j);
2015 clear_compound_head(p);
2016 set_page_refcounted(p);
2018 /* need to clear PG_reserved on remaining tail pages */
2019 for (; j < nr_pages; j++) {
2020 p = folio_page(folio, j);
2021 __ClearPageReserved(p);
2026 static bool prep_compound_gigantic_folio(struct folio *folio,
2029 return __prep_compound_gigantic_folio(folio, order, false);
2032 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2035 return __prep_compound_gigantic_folio(folio, order, true);
2039 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2040 * transparent huge pages. See the PageTransHuge() documentation for more
2043 int PageHuge(struct page *page)
2045 struct folio *folio;
2047 if (!PageCompound(page))
2049 folio = page_folio(page);
2050 return folio_test_hugetlb(folio);
2052 EXPORT_SYMBOL_GPL(PageHuge);
2055 * Find and lock address space (mapping) in write mode.
2057 * Upon entry, the page is locked which means that page_mapping() is
2058 * stable. Due to locking order, we can only trylock_write. If we can
2059 * not get the lock, simply return NULL to caller.
2061 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2063 struct address_space *mapping = page_mapping(hpage);
2068 if (i_mmap_trylock_write(mapping))
2074 pgoff_t hugetlb_basepage_index(struct page *page)
2076 struct page *page_head = compound_head(page);
2077 pgoff_t index = page_index(page_head);
2078 unsigned long compound_idx;
2080 if (compound_order(page_head) > MAX_ORDER)
2081 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2083 compound_idx = page - page_head;
2085 return (index << compound_order(page_head)) + compound_idx;
2088 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2089 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2090 nodemask_t *node_alloc_noretry)
2092 int order = huge_page_order(h);
2094 bool alloc_try_hard = true;
2098 * By default we always try hard to allocate the page with
2099 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2100 * a loop (to adjust global huge page counts) and previous allocation
2101 * failed, do not continue to try hard on the same node. Use the
2102 * node_alloc_noretry bitmap to manage this state information.
2104 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2105 alloc_try_hard = false;
2106 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2108 gfp_mask |= __GFP_RETRY_MAYFAIL;
2109 if (nid == NUMA_NO_NODE)
2110 nid = numa_mem_id();
2112 page = __alloc_pages(gfp_mask, order, nid, nmask);
2114 /* Freeze head page */
2115 if (page && !page_ref_freeze(page, 1)) {
2116 __free_pages(page, order);
2117 if (retry) { /* retry once */
2121 /* WOW! twice in a row. */
2122 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2127 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2128 * indicates an overall state change. Clear bit so that we resume
2129 * normal 'try hard' allocations.
2131 if (node_alloc_noretry && page && !alloc_try_hard)
2132 node_clear(nid, *node_alloc_noretry);
2135 * If we tried hard to get a page but failed, set bit so that
2136 * subsequent attempts will not try as hard until there is an
2137 * overall state change.
2139 if (node_alloc_noretry && !page && alloc_try_hard)
2140 node_set(nid, *node_alloc_noretry);
2143 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2147 __count_vm_event(HTLB_BUDDY_PGALLOC);
2148 return page_folio(page);
2152 * Common helper to allocate a fresh hugetlb page. All specific allocators
2153 * should use this function to get new hugetlb pages
2155 * Note that returned page is 'frozen': ref count of head page and all tail
2158 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2159 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2160 nodemask_t *node_alloc_noretry)
2162 struct folio *folio;
2166 if (hstate_is_gigantic(h))
2167 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2169 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2170 nid, nmask, node_alloc_noretry);
2173 if (hstate_is_gigantic(h)) {
2174 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2176 * Rare failure to convert pages to compound page.
2177 * Free pages and try again - ONCE!
2179 free_gigantic_folio(folio, huge_page_order(h));
2187 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2193 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2196 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2197 nodemask_t *node_alloc_noretry)
2199 struct folio *folio;
2201 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2203 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2204 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2205 nodes_allowed, node_alloc_noretry);
2207 free_huge_folio(folio); /* free it into the hugepage allocator */
2216 * Remove huge page from pool from next node to free. Attempt to keep
2217 * persistent huge pages more or less balanced over allowed nodes.
2218 * This routine only 'removes' the hugetlb page. The caller must make
2219 * an additional call to free the page to low level allocators.
2220 * Called with hugetlb_lock locked.
2222 static struct page *remove_pool_huge_page(struct hstate *h,
2223 nodemask_t *nodes_allowed,
2227 struct page *page = NULL;
2228 struct folio *folio;
2230 lockdep_assert_held(&hugetlb_lock);
2231 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2233 * If we're returning unused surplus pages, only examine
2234 * nodes with surplus pages.
2236 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2237 !list_empty(&h->hugepage_freelists[node])) {
2238 page = list_entry(h->hugepage_freelists[node].next,
2240 folio = page_folio(page);
2241 remove_hugetlb_folio(h, folio, acct_surplus);
2250 * Dissolve a given free hugepage into free buddy pages. This function does
2251 * nothing for in-use hugepages and non-hugepages.
2252 * This function returns values like below:
2254 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2255 * when the system is under memory pressure and the feature of
2256 * freeing unused vmemmap pages associated with each hugetlb page
2258 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2259 * (allocated or reserved.)
2260 * 0: successfully dissolved free hugepages or the page is not a
2261 * hugepage (considered as already dissolved)
2263 int dissolve_free_huge_page(struct page *page)
2266 struct folio *folio = page_folio(page);
2269 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2270 if (!folio_test_hugetlb(folio))
2273 spin_lock_irq(&hugetlb_lock);
2274 if (!folio_test_hugetlb(folio)) {
2279 if (!folio_ref_count(folio)) {
2280 struct hstate *h = folio_hstate(folio);
2281 if (!available_huge_pages(h))
2285 * We should make sure that the page is already on the free list
2286 * when it is dissolved.
2288 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2289 spin_unlock_irq(&hugetlb_lock);
2293 * Theoretically, we should return -EBUSY when we
2294 * encounter this race. In fact, we have a chance
2295 * to successfully dissolve the page if we do a
2296 * retry. Because the race window is quite small.
2297 * If we seize this opportunity, it is an optimization
2298 * for increasing the success rate of dissolving page.
2303 remove_hugetlb_folio(h, folio, false);
2304 h->max_huge_pages--;
2305 spin_unlock_irq(&hugetlb_lock);
2308 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2309 * before freeing the page. update_and_free_hugtlb_folio will fail to
2310 * free the page if it can not allocate required vmemmap. We
2311 * need to adjust max_huge_pages if the page is not freed.
2312 * Attempt to allocate vmemmmap here so that we can take
2313 * appropriate action on failure.
2315 rc = hugetlb_vmemmap_restore(h, &folio->page);
2317 update_and_free_hugetlb_folio(h, folio, false);
2319 spin_lock_irq(&hugetlb_lock);
2320 add_hugetlb_folio(h, folio, false);
2321 h->max_huge_pages++;
2322 spin_unlock_irq(&hugetlb_lock);
2328 spin_unlock_irq(&hugetlb_lock);
2333 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2334 * make specified memory blocks removable from the system.
2335 * Note that this will dissolve a free gigantic hugepage completely, if any
2336 * part of it lies within the given range.
2337 * Also note that if dissolve_free_huge_page() returns with an error, all
2338 * free hugepages that were dissolved before that error are lost.
2340 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2348 if (!hugepages_supported())
2351 order = huge_page_order(&default_hstate);
2353 order = min(order, huge_page_order(h));
2355 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2356 page = pfn_to_page(pfn);
2357 rc = dissolve_free_huge_page(page);
2366 * Allocates a fresh surplus page from the page allocator.
2368 static struct folio *alloc_surplus_hugetlb_folio(struct hstate *h,
2369 gfp_t gfp_mask, int nid, nodemask_t *nmask)
2371 struct folio *folio = NULL;
2373 if (hstate_is_gigantic(h))
2376 spin_lock_irq(&hugetlb_lock);
2377 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2379 spin_unlock_irq(&hugetlb_lock);
2381 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2385 spin_lock_irq(&hugetlb_lock);
2387 * We could have raced with the pool size change.
2388 * Double check that and simply deallocate the new page
2389 * if we would end up overcommiting the surpluses. Abuse
2390 * temporary page to workaround the nasty free_huge_folio
2393 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2394 folio_set_hugetlb_temporary(folio);
2395 spin_unlock_irq(&hugetlb_lock);
2396 free_huge_folio(folio);
2400 h->surplus_huge_pages++;
2401 h->surplus_huge_pages_node[folio_nid(folio)]++;
2404 spin_unlock_irq(&hugetlb_lock);
2409 static struct folio *alloc_migrate_hugetlb_folio(struct hstate *h, gfp_t gfp_mask,
2410 int nid, nodemask_t *nmask)
2412 struct folio *folio;
2414 if (hstate_is_gigantic(h))
2417 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2421 /* fresh huge pages are frozen */
2422 folio_ref_unfreeze(folio, 1);
2424 * We do not account these pages as surplus because they are only
2425 * temporary and will be released properly on the last reference
2427 folio_set_hugetlb_temporary(folio);
2433 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2436 struct folio *alloc_buddy_hugetlb_folio_with_mpol(struct hstate *h,
2437 struct vm_area_struct *vma, unsigned long addr)
2439 struct folio *folio = NULL;
2440 struct mempolicy *mpol;
2441 gfp_t gfp_mask = htlb_alloc_mask(h);
2443 nodemask_t *nodemask;
2445 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2446 if (mpol_is_preferred_many(mpol)) {
2447 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2449 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2450 folio = alloc_surplus_hugetlb_folio(h, gfp, nid, nodemask);
2452 /* Fallback to all nodes if page==NULL */
2457 folio = alloc_surplus_hugetlb_folio(h, gfp_mask, nid, nodemask);
2458 mpol_cond_put(mpol);
2462 /* folio migration callback function */
2463 struct folio *alloc_hugetlb_folio_nodemask(struct hstate *h, int preferred_nid,
2464 nodemask_t *nmask, gfp_t gfp_mask)
2466 spin_lock_irq(&hugetlb_lock);
2467 if (available_huge_pages(h)) {
2468 struct folio *folio;
2470 folio = dequeue_hugetlb_folio_nodemask(h, gfp_mask,
2471 preferred_nid, nmask);
2473 spin_unlock_irq(&hugetlb_lock);
2477 spin_unlock_irq(&hugetlb_lock);
2479 return alloc_migrate_hugetlb_folio(h, gfp_mask, preferred_nid, nmask);
2482 /* mempolicy aware migration callback */
2483 struct folio *alloc_hugetlb_folio_vma(struct hstate *h, struct vm_area_struct *vma,
2484 unsigned long address)
2486 struct mempolicy *mpol;
2487 nodemask_t *nodemask;
2488 struct folio *folio;
2492 gfp_mask = htlb_alloc_mask(h);
2493 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2494 folio = alloc_hugetlb_folio_nodemask(h, node, nodemask, gfp_mask);
2495 mpol_cond_put(mpol);
2501 * Increase the hugetlb pool such that it can accommodate a reservation
2504 static int gather_surplus_pages(struct hstate *h, long delta)
2505 __must_hold(&hugetlb_lock)
2507 LIST_HEAD(surplus_list);
2508 struct folio *folio, *tmp;
2511 long needed, allocated;
2512 bool alloc_ok = true;
2514 lockdep_assert_held(&hugetlb_lock);
2515 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2517 h->resv_huge_pages += delta;
2525 spin_unlock_irq(&hugetlb_lock);
2526 for (i = 0; i < needed; i++) {
2527 folio = alloc_surplus_hugetlb_folio(h, htlb_alloc_mask(h),
2528 NUMA_NO_NODE, NULL);
2533 list_add(&folio->lru, &surplus_list);
2539 * After retaking hugetlb_lock, we need to recalculate 'needed'
2540 * because either resv_huge_pages or free_huge_pages may have changed.
2542 spin_lock_irq(&hugetlb_lock);
2543 needed = (h->resv_huge_pages + delta) -
2544 (h->free_huge_pages + allocated);
2549 * We were not able to allocate enough pages to
2550 * satisfy the entire reservation so we free what
2551 * we've allocated so far.
2556 * The surplus_list now contains _at_least_ the number of extra pages
2557 * needed to accommodate the reservation. Add the appropriate number
2558 * of pages to the hugetlb pool and free the extras back to the buddy
2559 * allocator. Commit the entire reservation here to prevent another
2560 * process from stealing the pages as they are added to the pool but
2561 * before they are reserved.
2563 needed += allocated;
2564 h->resv_huge_pages += delta;
2567 /* Free the needed pages to the hugetlb pool */
2568 list_for_each_entry_safe(folio, tmp, &surplus_list, lru) {
2571 /* Add the page to the hugetlb allocator */
2572 enqueue_hugetlb_folio(h, folio);
2575 spin_unlock_irq(&hugetlb_lock);
2578 * Free unnecessary surplus pages to the buddy allocator.
2579 * Pages have no ref count, call free_huge_folio directly.
2581 list_for_each_entry_safe(folio, tmp, &surplus_list, lru)
2582 free_huge_folio(folio);
2583 spin_lock_irq(&hugetlb_lock);
2589 * This routine has two main purposes:
2590 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2591 * in unused_resv_pages. This corresponds to the prior adjustments made
2592 * to the associated reservation map.
2593 * 2) Free any unused surplus pages that may have been allocated to satisfy
2594 * the reservation. As many as unused_resv_pages may be freed.
2596 static void return_unused_surplus_pages(struct hstate *h,
2597 unsigned long unused_resv_pages)
2599 unsigned long nr_pages;
2601 LIST_HEAD(page_list);
2603 lockdep_assert_held(&hugetlb_lock);
2604 /* Uncommit the reservation */
2605 h->resv_huge_pages -= unused_resv_pages;
2607 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2611 * Part (or even all) of the reservation could have been backed
2612 * by pre-allocated pages. Only free surplus pages.
2614 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2617 * We want to release as many surplus pages as possible, spread
2618 * evenly across all nodes with memory. Iterate across these nodes
2619 * until we can no longer free unreserved surplus pages. This occurs
2620 * when the nodes with surplus pages have no free pages.
2621 * remove_pool_huge_page() will balance the freed pages across the
2622 * on-line nodes with memory and will handle the hstate accounting.
2624 while (nr_pages--) {
2625 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2629 list_add(&page->lru, &page_list);
2633 spin_unlock_irq(&hugetlb_lock);
2634 update_and_free_pages_bulk(h, &page_list);
2635 spin_lock_irq(&hugetlb_lock);
2640 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2641 * are used by the huge page allocation routines to manage reservations.
2643 * vma_needs_reservation is called to determine if the huge page at addr
2644 * within the vma has an associated reservation. If a reservation is
2645 * needed, the value 1 is returned. The caller is then responsible for
2646 * managing the global reservation and subpool usage counts. After
2647 * the huge page has been allocated, vma_commit_reservation is called
2648 * to add the page to the reservation map. If the page allocation fails,
2649 * the reservation must be ended instead of committed. vma_end_reservation
2650 * is called in such cases.
2652 * In the normal case, vma_commit_reservation returns the same value
2653 * as the preceding vma_needs_reservation call. The only time this
2654 * is not the case is if a reserve map was changed between calls. It
2655 * is the responsibility of the caller to notice the difference and
2656 * take appropriate action.
2658 * vma_add_reservation is used in error paths where a reservation must
2659 * be restored when a newly allocated huge page must be freed. It is
2660 * to be called after calling vma_needs_reservation to determine if a
2661 * reservation exists.
2663 * vma_del_reservation is used in error paths where an entry in the reserve
2664 * map was created during huge page allocation and must be removed. It is to
2665 * be called after calling vma_needs_reservation to determine if a reservation
2668 enum vma_resv_mode {
2675 static long __vma_reservation_common(struct hstate *h,
2676 struct vm_area_struct *vma, unsigned long addr,
2677 enum vma_resv_mode mode)
2679 struct resv_map *resv;
2682 long dummy_out_regions_needed;
2684 resv = vma_resv_map(vma);
2688 idx = vma_hugecache_offset(h, vma, addr);
2690 case VMA_NEEDS_RESV:
2691 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2692 /* We assume that vma_reservation_* routines always operate on
2693 * 1 page, and that adding to resv map a 1 page entry can only
2694 * ever require 1 region.
2696 VM_BUG_ON(dummy_out_regions_needed != 1);
2698 case VMA_COMMIT_RESV:
2699 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2700 /* region_add calls of range 1 should never fail. */
2704 region_abort(resv, idx, idx + 1, 1);
2708 if (vma->vm_flags & VM_MAYSHARE) {
2709 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2710 /* region_add calls of range 1 should never fail. */
2713 region_abort(resv, idx, idx + 1, 1);
2714 ret = region_del(resv, idx, idx + 1);
2718 if (vma->vm_flags & VM_MAYSHARE) {
2719 region_abort(resv, idx, idx + 1, 1);
2720 ret = region_del(resv, idx, idx + 1);
2722 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2723 /* region_add calls of range 1 should never fail. */
2731 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2734 * We know private mapping must have HPAGE_RESV_OWNER set.
2736 * In most cases, reserves always exist for private mappings.
2737 * However, a file associated with mapping could have been
2738 * hole punched or truncated after reserves were consumed.
2739 * As subsequent fault on such a range will not use reserves.
2740 * Subtle - The reserve map for private mappings has the
2741 * opposite meaning than that of shared mappings. If NO
2742 * entry is in the reserve map, it means a reservation exists.
2743 * If an entry exists in the reserve map, it means the
2744 * reservation has already been consumed. As a result, the
2745 * return value of this routine is the opposite of the
2746 * value returned from reserve map manipulation routines above.
2755 static long vma_needs_reservation(struct hstate *h,
2756 struct vm_area_struct *vma, unsigned long addr)
2758 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2761 static long vma_commit_reservation(struct hstate *h,
2762 struct vm_area_struct *vma, unsigned long addr)
2764 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2767 static void vma_end_reservation(struct hstate *h,
2768 struct vm_area_struct *vma, unsigned long addr)
2770 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2773 static long vma_add_reservation(struct hstate *h,
2774 struct vm_area_struct *vma, unsigned long addr)
2776 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2779 static long vma_del_reservation(struct hstate *h,
2780 struct vm_area_struct *vma, unsigned long addr)
2782 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2786 * This routine is called to restore reservation information on error paths.
2787 * It should ONLY be called for folios allocated via alloc_hugetlb_folio(),
2788 * and the hugetlb mutex should remain held when calling this routine.
2790 * It handles two specific cases:
2791 * 1) A reservation was in place and the folio consumed the reservation.
2792 * hugetlb_restore_reserve is set in the folio.
2793 * 2) No reservation was in place for the page, so hugetlb_restore_reserve is
2794 * not set. However, alloc_hugetlb_folio always updates the reserve map.
2796 * In case 1, free_huge_folio later in the error path will increment the
2797 * global reserve count. But, free_huge_folio does not have enough context
2798 * to adjust the reservation map. This case deals primarily with private
2799 * mappings. Adjust the reserve map here to be consistent with global
2800 * reserve count adjustments to be made by free_huge_folio. Make sure the
2801 * reserve map indicates there is a reservation present.
2803 * In case 2, simply undo reserve map modifications done by alloc_hugetlb_folio.
2805 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2806 unsigned long address, struct folio *folio)
2808 long rc = vma_needs_reservation(h, vma, address);
2810 if (folio_test_hugetlb_restore_reserve(folio)) {
2811 if (unlikely(rc < 0))
2813 * Rare out of memory condition in reserve map
2814 * manipulation. Clear hugetlb_restore_reserve so
2815 * that global reserve count will not be incremented
2816 * by free_huge_folio. This will make it appear
2817 * as though the reservation for this folio was
2818 * consumed. This may prevent the task from
2819 * faulting in the folio at a later time. This
2820 * is better than inconsistent global huge page
2821 * accounting of reserve counts.
2823 folio_clear_hugetlb_restore_reserve(folio);
2825 (void)vma_add_reservation(h, vma, address);
2827 vma_end_reservation(h, vma, address);
2831 * This indicates there is an entry in the reserve map
2832 * not added by alloc_hugetlb_folio. We know it was added
2833 * before the alloc_hugetlb_folio call, otherwise
2834 * hugetlb_restore_reserve would be set on the folio.
2835 * Remove the entry so that a subsequent allocation
2836 * does not consume a reservation.
2838 rc = vma_del_reservation(h, vma, address);
2841 * VERY rare out of memory condition. Since
2842 * we can not delete the entry, set
2843 * hugetlb_restore_reserve so that the reserve
2844 * count will be incremented when the folio
2845 * is freed. This reserve will be consumed
2846 * on a subsequent allocation.
2848 folio_set_hugetlb_restore_reserve(folio);
2849 } else if (rc < 0) {
2851 * Rare out of memory condition from
2852 * vma_needs_reservation call. Memory allocation is
2853 * only attempted if a new entry is needed. Therefore,
2854 * this implies there is not an entry in the
2857 * For shared mappings, no entry in the map indicates
2858 * no reservation. We are done.
2860 if (!(vma->vm_flags & VM_MAYSHARE))
2862 * For private mappings, no entry indicates
2863 * a reservation is present. Since we can
2864 * not add an entry, set hugetlb_restore_reserve
2865 * on the folio so reserve count will be
2866 * incremented when freed. This reserve will
2867 * be consumed on a subsequent allocation.
2869 folio_set_hugetlb_restore_reserve(folio);
2872 * No reservation present, do nothing
2874 vma_end_reservation(h, vma, address);
2879 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2881 * @h: struct hstate old page belongs to
2882 * @old_folio: Old folio to dissolve
2883 * @list: List to isolate the page in case we need to
2884 * Returns 0 on success, otherwise negated error.
2886 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2887 struct folio *old_folio, struct list_head *list)
2889 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2890 int nid = folio_nid(old_folio);
2891 struct folio *new_folio;
2895 * Before dissolving the folio, we need to allocate a new one for the
2896 * pool to remain stable. Here, we allocate the folio and 'prep' it
2897 * by doing everything but actually updating counters and adding to
2898 * the pool. This simplifies and let us do most of the processing
2901 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2904 __prep_new_hugetlb_folio(h, new_folio);
2907 spin_lock_irq(&hugetlb_lock);
2908 if (!folio_test_hugetlb(old_folio)) {
2910 * Freed from under us. Drop new_folio too.
2913 } else if (folio_ref_count(old_folio)) {
2917 * Someone has grabbed the folio, try to isolate it here.
2918 * Fail with -EBUSY if not possible.
2920 spin_unlock_irq(&hugetlb_lock);
2921 isolated = isolate_hugetlb(old_folio, list);
2922 ret = isolated ? 0 : -EBUSY;
2923 spin_lock_irq(&hugetlb_lock);
2925 } else if (!folio_test_hugetlb_freed(old_folio)) {
2927 * Folio's refcount is 0 but it has not been enqueued in the
2928 * freelist yet. Race window is small, so we can succeed here if
2931 spin_unlock_irq(&hugetlb_lock);
2936 * Ok, old_folio is still a genuine free hugepage. Remove it from
2937 * the freelist and decrease the counters. These will be
2938 * incremented again when calling __prep_account_new_huge_page()
2939 * and enqueue_hugetlb_folio() for new_folio. The counters will
2940 * remain stable since this happens under the lock.
2942 remove_hugetlb_folio(h, old_folio, false);
2945 * Ref count on new_folio is already zero as it was dropped
2946 * earlier. It can be directly added to the pool free list.
2948 __prep_account_new_huge_page(h, nid);
2949 enqueue_hugetlb_folio(h, new_folio);
2952 * Folio has been replaced, we can safely free the old one.
2954 spin_unlock_irq(&hugetlb_lock);
2955 update_and_free_hugetlb_folio(h, old_folio, false);
2961 spin_unlock_irq(&hugetlb_lock);
2962 /* Folio has a zero ref count, but needs a ref to be freed */
2963 folio_ref_unfreeze(new_folio, 1);
2964 update_and_free_hugetlb_folio(h, new_folio, false);
2969 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2972 struct folio *folio = page_folio(page);
2976 * The page might have been dissolved from under our feet, so make sure
2977 * to carefully check the state under the lock.
2978 * Return success when racing as if we dissolved the page ourselves.
2980 spin_lock_irq(&hugetlb_lock);
2981 if (folio_test_hugetlb(folio)) {
2982 h = folio_hstate(folio);
2984 spin_unlock_irq(&hugetlb_lock);
2987 spin_unlock_irq(&hugetlb_lock);
2990 * Fence off gigantic pages as there is a cyclic dependency between
2991 * alloc_contig_range and them. Return -ENOMEM as this has the effect
2992 * of bailing out right away without further retrying.
2994 if (hstate_is_gigantic(h))
2997 if (folio_ref_count(folio) && isolate_hugetlb(folio, list))
2999 else if (!folio_ref_count(folio))
3000 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3005 struct folio *alloc_hugetlb_folio(struct vm_area_struct *vma,
3006 unsigned long addr, int avoid_reserve)
3008 struct hugepage_subpool *spool = subpool_vma(vma);
3009 struct hstate *h = hstate_vma(vma);
3010 struct folio *folio;
3011 long map_chg, map_commit;
3014 struct hugetlb_cgroup *h_cg = NULL;
3015 bool deferred_reserve;
3017 idx = hstate_index(h);
3019 * Examine the region/reserve map to determine if the process
3020 * has a reservation for the page to be allocated. A return
3021 * code of zero indicates a reservation exists (no change).
3023 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3025 return ERR_PTR(-ENOMEM);
3028 * Processes that did not create the mapping will have no
3029 * reserves as indicated by the region/reserve map. Check
3030 * that the allocation will not exceed the subpool limit.
3031 * Allocations for MAP_NORESERVE mappings also need to be
3032 * checked against any subpool limit.
3034 if (map_chg || avoid_reserve) {
3035 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3037 vma_end_reservation(h, vma, addr);
3038 return ERR_PTR(-ENOSPC);
3042 * Even though there was no reservation in the region/reserve
3043 * map, there could be reservations associated with the
3044 * subpool that can be used. This would be indicated if the
3045 * return value of hugepage_subpool_get_pages() is zero.
3046 * However, if avoid_reserve is specified we still avoid even
3047 * the subpool reservations.
3053 /* If this allocation is not consuming a reservation, charge it now.
3055 deferred_reserve = map_chg || avoid_reserve;
3056 if (deferred_reserve) {
3057 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3058 idx, pages_per_huge_page(h), &h_cg);
3060 goto out_subpool_put;
3063 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3065 goto out_uncharge_cgroup_reservation;
3067 spin_lock_irq(&hugetlb_lock);
3069 * glb_chg is passed to indicate whether or not a page must be taken
3070 * from the global free pool (global change). gbl_chg == 0 indicates
3071 * a reservation exists for the allocation.
3073 folio = dequeue_hugetlb_folio_vma(h, vma, addr, avoid_reserve, gbl_chg);
3075 spin_unlock_irq(&hugetlb_lock);
3076 folio = alloc_buddy_hugetlb_folio_with_mpol(h, vma, addr);
3078 goto out_uncharge_cgroup;
3079 spin_lock_irq(&hugetlb_lock);
3080 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3081 folio_set_hugetlb_restore_reserve(folio);
3082 h->resv_huge_pages--;
3084 list_add(&folio->lru, &h->hugepage_activelist);
3085 folio_ref_unfreeze(folio, 1);
3089 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, folio);
3090 /* If allocation is not consuming a reservation, also store the
3091 * hugetlb_cgroup pointer on the page.
3093 if (deferred_reserve) {
3094 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3098 spin_unlock_irq(&hugetlb_lock);
3100 hugetlb_set_folio_subpool(folio, spool);
3102 map_commit = vma_commit_reservation(h, vma, addr);
3103 if (unlikely(map_chg > map_commit)) {
3105 * The page was added to the reservation map between
3106 * vma_needs_reservation and vma_commit_reservation.
3107 * This indicates a race with hugetlb_reserve_pages.
3108 * Adjust for the subpool count incremented above AND
3109 * in hugetlb_reserve_pages for the same page. Also,
3110 * the reservation count added in hugetlb_reserve_pages
3111 * no longer applies.
3115 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3116 hugetlb_acct_memory(h, -rsv_adjust);
3117 if (deferred_reserve)
3118 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3119 pages_per_huge_page(h), folio);
3123 out_uncharge_cgroup:
3124 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3125 out_uncharge_cgroup_reservation:
3126 if (deferred_reserve)
3127 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3130 if (map_chg || avoid_reserve)
3131 hugepage_subpool_put_pages(spool, 1);
3132 vma_end_reservation(h, vma, addr);
3133 return ERR_PTR(-ENOSPC);
3136 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3137 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3138 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3140 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3143 /* do node specific alloc */
3144 if (nid != NUMA_NO_NODE) {
3145 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3146 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3151 /* allocate from next node when distributing huge pages */
3152 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3153 m = memblock_alloc_try_nid_raw(
3154 huge_page_size(h), huge_page_size(h),
3155 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3157 * Use the beginning of the huge page to store the
3158 * huge_bootmem_page struct (until gather_bootmem
3159 * puts them into the mem_map).
3167 /* Put them into a private list first because mem_map is not up yet */
3168 INIT_LIST_HEAD(&m->list);
3169 list_add(&m->list, &huge_boot_pages);
3175 * Put bootmem huge pages into the standard lists after mem_map is up.
3176 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3178 static void __init gather_bootmem_prealloc(void)
3180 struct huge_bootmem_page *m;
3182 list_for_each_entry(m, &huge_boot_pages, list) {
3183 struct page *page = virt_to_page(m);
3184 struct folio *folio = page_folio(page);
3185 struct hstate *h = m->hstate;
3187 VM_BUG_ON(!hstate_is_gigantic(h));
3188 WARN_ON(folio_ref_count(folio) != 1);
3189 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3190 WARN_ON(folio_test_reserved(folio));
3191 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3192 free_huge_folio(folio); /* add to the hugepage allocator */
3194 /* VERY unlikely inflated ref count on a tail page */
3195 free_gigantic_folio(folio, huge_page_order(h));
3199 * We need to restore the 'stolen' pages to totalram_pages
3200 * in order to fix confusing memory reports from free(1) and
3201 * other side-effects, like CommitLimit going negative.
3203 adjust_managed_page_count(page, pages_per_huge_page(h));
3207 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3212 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3213 if (hstate_is_gigantic(h)) {
3214 if (!alloc_bootmem_huge_page(h, nid))
3217 struct folio *folio;
3218 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3220 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3221 &node_states[N_MEMORY], NULL);
3224 free_huge_folio(folio); /* free it into the hugepage allocator */
3228 if (i == h->max_huge_pages_node[nid])
3231 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3232 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3233 h->max_huge_pages_node[nid], buf, nid, i);
3234 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3235 h->max_huge_pages_node[nid] = i;
3238 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3241 nodemask_t *node_alloc_noretry;
3242 bool node_specific_alloc = false;
3244 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3245 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3246 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3250 /* do node specific alloc */
3251 for_each_online_node(i) {
3252 if (h->max_huge_pages_node[i] > 0) {
3253 hugetlb_hstate_alloc_pages_onenode(h, i);
3254 node_specific_alloc = true;
3258 if (node_specific_alloc)
3261 /* below will do all node balanced alloc */
3262 if (!hstate_is_gigantic(h)) {
3264 * Bit mask controlling how hard we retry per-node allocations.
3265 * Ignore errors as lower level routines can deal with
3266 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3267 * time, we are likely in bigger trouble.
3269 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3272 /* allocations done at boot time */
3273 node_alloc_noretry = NULL;
3276 /* bit mask controlling how hard we retry per-node allocations */
3277 if (node_alloc_noretry)
3278 nodes_clear(*node_alloc_noretry);
3280 for (i = 0; i < h->max_huge_pages; ++i) {
3281 if (hstate_is_gigantic(h)) {
3282 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3284 } else if (!alloc_pool_huge_page(h,
3285 &node_states[N_MEMORY],
3286 node_alloc_noretry))
3290 if (i < h->max_huge_pages) {
3293 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3294 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3295 h->max_huge_pages, buf, i);
3296 h->max_huge_pages = i;
3298 kfree(node_alloc_noretry);
3301 static void __init hugetlb_init_hstates(void)
3303 struct hstate *h, *h2;
3305 for_each_hstate(h) {
3306 /* oversize hugepages were init'ed in early boot */
3307 if (!hstate_is_gigantic(h))
3308 hugetlb_hstate_alloc_pages(h);
3311 * Set demote order for each hstate. Note that
3312 * h->demote_order is initially 0.
3313 * - We can not demote gigantic pages if runtime freeing
3314 * is not supported, so skip this.
3315 * - If CMA allocation is possible, we can not demote
3316 * HUGETLB_PAGE_ORDER or smaller size pages.
3318 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3320 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3322 for_each_hstate(h2) {
3325 if (h2->order < h->order &&
3326 h2->order > h->demote_order)
3327 h->demote_order = h2->order;
3332 static void __init report_hugepages(void)
3336 for_each_hstate(h) {
3339 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3340 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3341 buf, h->free_huge_pages);
3342 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3343 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3347 #ifdef CONFIG_HIGHMEM
3348 static void try_to_free_low(struct hstate *h, unsigned long count,
3349 nodemask_t *nodes_allowed)
3352 LIST_HEAD(page_list);
3354 lockdep_assert_held(&hugetlb_lock);
3355 if (hstate_is_gigantic(h))
3359 * Collect pages to be freed on a list, and free after dropping lock
3361 for_each_node_mask(i, *nodes_allowed) {
3362 struct page *page, *next;
3363 struct list_head *freel = &h->hugepage_freelists[i];
3364 list_for_each_entry_safe(page, next, freel, lru) {
3365 if (count >= h->nr_huge_pages)
3367 if (PageHighMem(page))
3369 remove_hugetlb_folio(h, page_folio(page), false);
3370 list_add(&page->lru, &page_list);
3375 spin_unlock_irq(&hugetlb_lock);
3376 update_and_free_pages_bulk(h, &page_list);
3377 spin_lock_irq(&hugetlb_lock);
3380 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3381 nodemask_t *nodes_allowed)
3387 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3388 * balanced by operating on them in a round-robin fashion.
3389 * Returns 1 if an adjustment was made.
3391 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3396 lockdep_assert_held(&hugetlb_lock);
3397 VM_BUG_ON(delta != -1 && delta != 1);
3400 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3401 if (h->surplus_huge_pages_node[node])
3405 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3406 if (h->surplus_huge_pages_node[node] <
3407 h->nr_huge_pages_node[node])
3414 h->surplus_huge_pages += delta;
3415 h->surplus_huge_pages_node[node] += delta;
3419 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3420 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3421 nodemask_t *nodes_allowed)
3423 unsigned long min_count, ret;
3425 LIST_HEAD(page_list);
3426 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3429 * Bit mask controlling how hard we retry per-node allocations.
3430 * If we can not allocate the bit mask, do not attempt to allocate
3431 * the requested huge pages.
3433 if (node_alloc_noretry)
3434 nodes_clear(*node_alloc_noretry);
3439 * resize_lock mutex prevents concurrent adjustments to number of
3440 * pages in hstate via the proc/sysfs interfaces.
3442 mutex_lock(&h->resize_lock);
3443 flush_free_hpage_work(h);
3444 spin_lock_irq(&hugetlb_lock);
3447 * Check for a node specific request.
3448 * Changing node specific huge page count may require a corresponding
3449 * change to the global count. In any case, the passed node mask
3450 * (nodes_allowed) will restrict alloc/free to the specified node.
3452 if (nid != NUMA_NO_NODE) {
3453 unsigned long old_count = count;
3455 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3457 * User may have specified a large count value which caused the
3458 * above calculation to overflow. In this case, they wanted
3459 * to allocate as many huge pages as possible. Set count to
3460 * largest possible value to align with their intention.
3462 if (count < old_count)
3467 * Gigantic pages runtime allocation depend on the capability for large
3468 * page range allocation.
3469 * If the system does not provide this feature, return an error when
3470 * the user tries to allocate gigantic pages but let the user free the
3471 * boottime allocated gigantic pages.
3473 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3474 if (count > persistent_huge_pages(h)) {
3475 spin_unlock_irq(&hugetlb_lock);
3476 mutex_unlock(&h->resize_lock);
3477 NODEMASK_FREE(node_alloc_noretry);
3480 /* Fall through to decrease pool */
3484 * Increase the pool size
3485 * First take pages out of surplus state. Then make up the
3486 * remaining difference by allocating fresh huge pages.
3488 * We might race with alloc_surplus_hugetlb_folio() here and be unable
3489 * to convert a surplus huge page to a normal huge page. That is
3490 * not critical, though, it just means the overall size of the
3491 * pool might be one hugepage larger than it needs to be, but
3492 * within all the constraints specified by the sysctls.
3494 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3495 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3499 while (count > persistent_huge_pages(h)) {
3501 * If this allocation races such that we no longer need the
3502 * page, free_huge_folio will handle it by freeing the page
3503 * and reducing the surplus.
3505 spin_unlock_irq(&hugetlb_lock);
3507 /* yield cpu to avoid soft lockup */
3510 ret = alloc_pool_huge_page(h, nodes_allowed,
3511 node_alloc_noretry);
3512 spin_lock_irq(&hugetlb_lock);
3516 /* Bail for signals. Probably ctrl-c from user */
3517 if (signal_pending(current))
3522 * Decrease the pool size
3523 * First return free pages to the buddy allocator (being careful
3524 * to keep enough around to satisfy reservations). Then place
3525 * pages into surplus state as needed so the pool will shrink
3526 * to the desired size as pages become free.
3528 * By placing pages into the surplus state independent of the
3529 * overcommit value, we are allowing the surplus pool size to
3530 * exceed overcommit. There are few sane options here. Since
3531 * alloc_surplus_hugetlb_folio() is checking the global counter,
3532 * though, we'll note that we're not allowed to exceed surplus
3533 * and won't grow the pool anywhere else. Not until one of the
3534 * sysctls are changed, or the surplus pages go out of use.
3536 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3537 min_count = max(count, min_count);
3538 try_to_free_low(h, min_count, nodes_allowed);
3541 * Collect pages to be removed on list without dropping lock
3543 while (min_count < persistent_huge_pages(h)) {
3544 page = remove_pool_huge_page(h, nodes_allowed, 0);
3548 list_add(&page->lru, &page_list);
3550 /* free the pages after dropping lock */
3551 spin_unlock_irq(&hugetlb_lock);
3552 update_and_free_pages_bulk(h, &page_list);
3553 flush_free_hpage_work(h);
3554 spin_lock_irq(&hugetlb_lock);
3556 while (count < persistent_huge_pages(h)) {
3557 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3561 h->max_huge_pages = persistent_huge_pages(h);
3562 spin_unlock_irq(&hugetlb_lock);
3563 mutex_unlock(&h->resize_lock);
3565 NODEMASK_FREE(node_alloc_noretry);
3570 static int demote_free_hugetlb_folio(struct hstate *h, struct folio *folio)
3572 int i, nid = folio_nid(folio);
3573 struct hstate *target_hstate;
3574 struct page *subpage;
3575 struct folio *inner_folio;
3578 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3580 remove_hugetlb_folio_for_demote(h, folio, false);
3581 spin_unlock_irq(&hugetlb_lock);
3583 rc = hugetlb_vmemmap_restore(h, &folio->page);
3585 /* Allocation of vmemmmap failed, we can not demote folio */
3586 spin_lock_irq(&hugetlb_lock);
3587 folio_ref_unfreeze(folio, 1);
3588 add_hugetlb_folio(h, folio, false);
3593 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3594 * sizes as it will not ref count folios.
3596 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3599 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3600 * Without the mutex, pages added to target hstate could be marked
3603 * Note that we already hold h->resize_lock. To prevent deadlock,
3604 * use the convention of always taking larger size hstate mutex first.
3606 mutex_lock(&target_hstate->resize_lock);
3607 for (i = 0; i < pages_per_huge_page(h);
3608 i += pages_per_huge_page(target_hstate)) {
3609 subpage = folio_page(folio, i);
3610 inner_folio = page_folio(subpage);
3611 if (hstate_is_gigantic(target_hstate))
3612 prep_compound_gigantic_folio_for_demote(inner_folio,
3613 target_hstate->order);
3615 prep_compound_page(subpage, target_hstate->order);
3616 folio_change_private(inner_folio, NULL);
3617 prep_new_hugetlb_folio(target_hstate, inner_folio, nid);
3618 free_huge_folio(inner_folio);
3620 mutex_unlock(&target_hstate->resize_lock);
3622 spin_lock_irq(&hugetlb_lock);
3625 * Not absolutely necessary, but for consistency update max_huge_pages
3626 * based on pool changes for the demoted page.
3628 h->max_huge_pages--;
3629 target_hstate->max_huge_pages +=
3630 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3635 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3636 __must_hold(&hugetlb_lock)
3639 struct folio *folio;
3641 lockdep_assert_held(&hugetlb_lock);
3643 /* We should never get here if no demote order */
3644 if (!h->demote_order) {
3645 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3646 return -EINVAL; /* internal error */
3649 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3650 list_for_each_entry(folio, &h->hugepage_freelists[node], lru) {
3651 if (folio_test_hwpoison(folio))
3653 return demote_free_hugetlb_folio(h, folio);
3658 * Only way to get here is if all pages on free lists are poisoned.
3659 * Return -EBUSY so that caller will not retry.
3664 #define HSTATE_ATTR_RO(_name) \
3665 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3667 #define HSTATE_ATTR_WO(_name) \
3668 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3670 #define HSTATE_ATTR(_name) \
3671 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3673 static struct kobject *hugepages_kobj;
3674 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3676 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3678 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3682 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3683 if (hstate_kobjs[i] == kobj) {
3685 *nidp = NUMA_NO_NODE;
3689 return kobj_to_node_hstate(kobj, nidp);
3692 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3693 struct kobj_attribute *attr, char *buf)
3696 unsigned long nr_huge_pages;
3699 h = kobj_to_hstate(kobj, &nid);
3700 if (nid == NUMA_NO_NODE)
3701 nr_huge_pages = h->nr_huge_pages;
3703 nr_huge_pages = h->nr_huge_pages_node[nid];
3705 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3708 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3709 struct hstate *h, int nid,
3710 unsigned long count, size_t len)
3713 nodemask_t nodes_allowed, *n_mask;
3715 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3718 if (nid == NUMA_NO_NODE) {
3720 * global hstate attribute
3722 if (!(obey_mempolicy &&
3723 init_nodemask_of_mempolicy(&nodes_allowed)))
3724 n_mask = &node_states[N_MEMORY];
3726 n_mask = &nodes_allowed;
3729 * Node specific request. count adjustment happens in
3730 * set_max_huge_pages() after acquiring hugetlb_lock.
3732 init_nodemask_of_node(&nodes_allowed, nid);
3733 n_mask = &nodes_allowed;
3736 err = set_max_huge_pages(h, count, nid, n_mask);
3738 return err ? err : len;
3741 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3742 struct kobject *kobj, const char *buf,
3746 unsigned long count;
3750 err = kstrtoul(buf, 10, &count);
3754 h = kobj_to_hstate(kobj, &nid);
3755 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3758 static ssize_t nr_hugepages_show(struct kobject *kobj,
3759 struct kobj_attribute *attr, char *buf)
3761 return nr_hugepages_show_common(kobj, attr, buf);
3764 static ssize_t nr_hugepages_store(struct kobject *kobj,
3765 struct kobj_attribute *attr, const char *buf, size_t len)
3767 return nr_hugepages_store_common(false, kobj, buf, len);
3769 HSTATE_ATTR(nr_hugepages);
3774 * hstate attribute for optionally mempolicy-based constraint on persistent
3775 * huge page alloc/free.
3777 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3778 struct kobj_attribute *attr,
3781 return nr_hugepages_show_common(kobj, attr, buf);
3784 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3785 struct kobj_attribute *attr, const char *buf, size_t len)
3787 return nr_hugepages_store_common(true, kobj, buf, len);
3789 HSTATE_ATTR(nr_hugepages_mempolicy);
3793 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3794 struct kobj_attribute *attr, char *buf)
3796 struct hstate *h = kobj_to_hstate(kobj, NULL);
3797 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3800 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3801 struct kobj_attribute *attr, const char *buf, size_t count)
3804 unsigned long input;
3805 struct hstate *h = kobj_to_hstate(kobj, NULL);
3807 if (hstate_is_gigantic(h))
3810 err = kstrtoul(buf, 10, &input);
3814 spin_lock_irq(&hugetlb_lock);
3815 h->nr_overcommit_huge_pages = input;
3816 spin_unlock_irq(&hugetlb_lock);
3820 HSTATE_ATTR(nr_overcommit_hugepages);
3822 static ssize_t free_hugepages_show(struct kobject *kobj,
3823 struct kobj_attribute *attr, char *buf)
3826 unsigned long free_huge_pages;
3829 h = kobj_to_hstate(kobj, &nid);
3830 if (nid == NUMA_NO_NODE)
3831 free_huge_pages = h->free_huge_pages;
3833 free_huge_pages = h->free_huge_pages_node[nid];
3835 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3837 HSTATE_ATTR_RO(free_hugepages);
3839 static ssize_t resv_hugepages_show(struct kobject *kobj,
3840 struct kobj_attribute *attr, char *buf)
3842 struct hstate *h = kobj_to_hstate(kobj, NULL);
3843 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3845 HSTATE_ATTR_RO(resv_hugepages);
3847 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3848 struct kobj_attribute *attr, char *buf)
3851 unsigned long surplus_huge_pages;
3854 h = kobj_to_hstate(kobj, &nid);
3855 if (nid == NUMA_NO_NODE)
3856 surplus_huge_pages = h->surplus_huge_pages;
3858 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3860 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3862 HSTATE_ATTR_RO(surplus_hugepages);
3864 static ssize_t demote_store(struct kobject *kobj,
3865 struct kobj_attribute *attr, const char *buf, size_t len)
3867 unsigned long nr_demote;
3868 unsigned long nr_available;
3869 nodemask_t nodes_allowed, *n_mask;
3874 err = kstrtoul(buf, 10, &nr_demote);
3877 h = kobj_to_hstate(kobj, &nid);
3879 if (nid != NUMA_NO_NODE) {
3880 init_nodemask_of_node(&nodes_allowed, nid);
3881 n_mask = &nodes_allowed;
3883 n_mask = &node_states[N_MEMORY];
3886 /* Synchronize with other sysfs operations modifying huge pages */
3887 mutex_lock(&h->resize_lock);
3888 spin_lock_irq(&hugetlb_lock);
3892 * Check for available pages to demote each time thorough the
3893 * loop as demote_pool_huge_page will drop hugetlb_lock.
3895 if (nid != NUMA_NO_NODE)
3896 nr_available = h->free_huge_pages_node[nid];
3898 nr_available = h->free_huge_pages;
3899 nr_available -= h->resv_huge_pages;
3903 err = demote_pool_huge_page(h, n_mask);
3910 spin_unlock_irq(&hugetlb_lock);
3911 mutex_unlock(&h->resize_lock);
3917 HSTATE_ATTR_WO(demote);
3919 static ssize_t demote_size_show(struct kobject *kobj,
3920 struct kobj_attribute *attr, char *buf)
3922 struct hstate *h = kobj_to_hstate(kobj, NULL);
3923 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3925 return sysfs_emit(buf, "%lukB\n", demote_size);
3928 static ssize_t demote_size_store(struct kobject *kobj,
3929 struct kobj_attribute *attr,
3930 const char *buf, size_t count)
3932 struct hstate *h, *demote_hstate;
3933 unsigned long demote_size;
3934 unsigned int demote_order;
3936 demote_size = (unsigned long)memparse(buf, NULL);
3938 demote_hstate = size_to_hstate(demote_size);
3941 demote_order = demote_hstate->order;
3942 if (demote_order < HUGETLB_PAGE_ORDER)
3945 /* demote order must be smaller than hstate order */
3946 h = kobj_to_hstate(kobj, NULL);
3947 if (demote_order >= h->order)
3950 /* resize_lock synchronizes access to demote size and writes */
3951 mutex_lock(&h->resize_lock);
3952 h->demote_order = demote_order;
3953 mutex_unlock(&h->resize_lock);
3957 HSTATE_ATTR(demote_size);
3959 static struct attribute *hstate_attrs[] = {
3960 &nr_hugepages_attr.attr,
3961 &nr_overcommit_hugepages_attr.attr,
3962 &free_hugepages_attr.attr,
3963 &resv_hugepages_attr.attr,
3964 &surplus_hugepages_attr.attr,
3966 &nr_hugepages_mempolicy_attr.attr,
3971 static const struct attribute_group hstate_attr_group = {
3972 .attrs = hstate_attrs,
3975 static struct attribute *hstate_demote_attrs[] = {
3976 &demote_size_attr.attr,
3981 static const struct attribute_group hstate_demote_attr_group = {
3982 .attrs = hstate_demote_attrs,
3985 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3986 struct kobject **hstate_kobjs,
3987 const struct attribute_group *hstate_attr_group)
3990 int hi = hstate_index(h);
3992 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3993 if (!hstate_kobjs[hi])
3996 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3998 kobject_put(hstate_kobjs[hi]);
3999 hstate_kobjs[hi] = NULL;
4003 if (h->demote_order) {
4004 retval = sysfs_create_group(hstate_kobjs[hi],
4005 &hstate_demote_attr_group);
4007 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4008 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4009 kobject_put(hstate_kobjs[hi]);
4010 hstate_kobjs[hi] = NULL;
4019 static bool hugetlb_sysfs_initialized __ro_after_init;
4022 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4023 * with node devices in node_devices[] using a parallel array. The array
4024 * index of a node device or _hstate == node id.
4025 * This is here to avoid any static dependency of the node device driver, in
4026 * the base kernel, on the hugetlb module.
4028 struct node_hstate {
4029 struct kobject *hugepages_kobj;
4030 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4032 static struct node_hstate node_hstates[MAX_NUMNODES];
4035 * A subset of global hstate attributes for node devices
4037 static struct attribute *per_node_hstate_attrs[] = {
4038 &nr_hugepages_attr.attr,
4039 &free_hugepages_attr.attr,
4040 &surplus_hugepages_attr.attr,
4044 static const struct attribute_group per_node_hstate_attr_group = {
4045 .attrs = per_node_hstate_attrs,
4049 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4050 * Returns node id via non-NULL nidp.
4052 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4056 for (nid = 0; nid < nr_node_ids; nid++) {
4057 struct node_hstate *nhs = &node_hstates[nid];
4059 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4060 if (nhs->hstate_kobjs[i] == kobj) {
4072 * Unregister hstate attributes from a single node device.
4073 * No-op if no hstate attributes attached.
4075 void hugetlb_unregister_node(struct node *node)
4078 struct node_hstate *nhs = &node_hstates[node->dev.id];
4080 if (!nhs->hugepages_kobj)
4081 return; /* no hstate attributes */
4083 for_each_hstate(h) {
4084 int idx = hstate_index(h);
4085 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4089 if (h->demote_order)
4090 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4091 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4092 kobject_put(hstate_kobj);
4093 nhs->hstate_kobjs[idx] = NULL;
4096 kobject_put(nhs->hugepages_kobj);
4097 nhs->hugepages_kobj = NULL;
4102 * Register hstate attributes for a single node device.
4103 * No-op if attributes already registered.
4105 void hugetlb_register_node(struct node *node)
4108 struct node_hstate *nhs = &node_hstates[node->dev.id];
4111 if (!hugetlb_sysfs_initialized)
4114 if (nhs->hugepages_kobj)
4115 return; /* already allocated */
4117 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4119 if (!nhs->hugepages_kobj)
4122 for_each_hstate(h) {
4123 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4125 &per_node_hstate_attr_group);
4127 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4128 h->name, node->dev.id);
4129 hugetlb_unregister_node(node);
4136 * hugetlb init time: register hstate attributes for all registered node
4137 * devices of nodes that have memory. All on-line nodes should have
4138 * registered their associated device by this time.
4140 static void __init hugetlb_register_all_nodes(void)
4144 for_each_online_node(nid)
4145 hugetlb_register_node(node_devices[nid]);
4147 #else /* !CONFIG_NUMA */
4149 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4157 static void hugetlb_register_all_nodes(void) { }
4162 static void __init hugetlb_cma_check(void);
4164 static inline __init void hugetlb_cma_check(void)
4169 static void __init hugetlb_sysfs_init(void)
4174 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4175 if (!hugepages_kobj)
4178 for_each_hstate(h) {
4179 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4180 hstate_kobjs, &hstate_attr_group);
4182 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4186 hugetlb_sysfs_initialized = true;
4188 hugetlb_register_all_nodes();
4191 #ifdef CONFIG_SYSCTL
4192 static void hugetlb_sysctl_init(void);
4194 static inline void hugetlb_sysctl_init(void) { }
4197 static int __init hugetlb_init(void)
4201 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4204 if (!hugepages_supported()) {
4205 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4206 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4211 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4212 * architectures depend on setup being done here.
4214 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4215 if (!parsed_default_hugepagesz) {
4217 * If we did not parse a default huge page size, set
4218 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4219 * number of huge pages for this default size was implicitly
4220 * specified, set that here as well.
4221 * Note that the implicit setting will overwrite an explicit
4222 * setting. A warning will be printed in this case.
4224 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4225 if (default_hstate_max_huge_pages) {
4226 if (default_hstate.max_huge_pages) {
4229 string_get_size(huge_page_size(&default_hstate),
4230 1, STRING_UNITS_2, buf, 32);
4231 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4232 default_hstate.max_huge_pages, buf);
4233 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4234 default_hstate_max_huge_pages);
4236 default_hstate.max_huge_pages =
4237 default_hstate_max_huge_pages;
4239 for_each_online_node(i)
4240 default_hstate.max_huge_pages_node[i] =
4241 default_hugepages_in_node[i];
4245 hugetlb_cma_check();
4246 hugetlb_init_hstates();
4247 gather_bootmem_prealloc();
4250 hugetlb_sysfs_init();
4251 hugetlb_cgroup_file_init();
4252 hugetlb_sysctl_init();
4255 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4257 num_fault_mutexes = 1;
4259 hugetlb_fault_mutex_table =
4260 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4262 BUG_ON(!hugetlb_fault_mutex_table);
4264 for (i = 0; i < num_fault_mutexes; i++)
4265 mutex_init(&hugetlb_fault_mutex_table[i]);
4268 subsys_initcall(hugetlb_init);
4270 /* Overwritten by architectures with more huge page sizes */
4271 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4273 return size == HPAGE_SIZE;
4276 void __init hugetlb_add_hstate(unsigned int order)
4281 if (size_to_hstate(PAGE_SIZE << order)) {
4284 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4286 h = &hstates[hugetlb_max_hstate++];
4287 mutex_init(&h->resize_lock);
4289 h->mask = ~(huge_page_size(h) - 1);
4290 for (i = 0; i < MAX_NUMNODES; ++i)
4291 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4292 INIT_LIST_HEAD(&h->hugepage_activelist);
4293 h->next_nid_to_alloc = first_memory_node;
4294 h->next_nid_to_free = first_memory_node;
4295 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4296 huge_page_size(h)/SZ_1K);
4301 bool __init __weak hugetlb_node_alloc_supported(void)
4306 static void __init hugepages_clear_pages_in_node(void)
4308 if (!hugetlb_max_hstate) {
4309 default_hstate_max_huge_pages = 0;
4310 memset(default_hugepages_in_node, 0,
4311 sizeof(default_hugepages_in_node));
4313 parsed_hstate->max_huge_pages = 0;
4314 memset(parsed_hstate->max_huge_pages_node, 0,
4315 sizeof(parsed_hstate->max_huge_pages_node));
4320 * hugepages command line processing
4321 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4322 * specification. If not, ignore the hugepages value. hugepages can also
4323 * be the first huge page command line option in which case it implicitly
4324 * specifies the number of huge pages for the default size.
4326 static int __init hugepages_setup(char *s)
4329 static unsigned long *last_mhp;
4330 int node = NUMA_NO_NODE;
4335 if (!parsed_valid_hugepagesz) {
4336 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4337 parsed_valid_hugepagesz = true;
4342 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4343 * yet, so this hugepages= parameter goes to the "default hstate".
4344 * Otherwise, it goes with the previously parsed hugepagesz or
4345 * default_hugepagesz.
4347 else if (!hugetlb_max_hstate)
4348 mhp = &default_hstate_max_huge_pages;
4350 mhp = &parsed_hstate->max_huge_pages;
4352 if (mhp == last_mhp) {
4353 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4359 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4361 /* Parameter is node format */
4362 if (p[count] == ':') {
4363 if (!hugetlb_node_alloc_supported()) {
4364 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4367 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4369 node = array_index_nospec(tmp, MAX_NUMNODES);
4371 /* Parse hugepages */
4372 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4374 if (!hugetlb_max_hstate)
4375 default_hugepages_in_node[node] = tmp;
4377 parsed_hstate->max_huge_pages_node[node] = tmp;
4379 /* Go to parse next node*/
4380 if (p[count] == ',')
4393 * Global state is always initialized later in hugetlb_init.
4394 * But we need to allocate gigantic hstates here early to still
4395 * use the bootmem allocator.
4397 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4398 hugetlb_hstate_alloc_pages(parsed_hstate);
4405 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4406 hugepages_clear_pages_in_node();
4409 __setup("hugepages=", hugepages_setup);
4412 * hugepagesz command line processing
4413 * A specific huge page size can only be specified once with hugepagesz.
4414 * hugepagesz is followed by hugepages on the command line. The global
4415 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4416 * hugepagesz argument was valid.
4418 static int __init hugepagesz_setup(char *s)
4423 parsed_valid_hugepagesz = false;
4424 size = (unsigned long)memparse(s, NULL);
4426 if (!arch_hugetlb_valid_size(size)) {
4427 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4431 h = size_to_hstate(size);
4434 * hstate for this size already exists. This is normally
4435 * an error, but is allowed if the existing hstate is the
4436 * default hstate. More specifically, it is only allowed if
4437 * the number of huge pages for the default hstate was not
4438 * previously specified.
4440 if (!parsed_default_hugepagesz || h != &default_hstate ||
4441 default_hstate.max_huge_pages) {
4442 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4447 * No need to call hugetlb_add_hstate() as hstate already
4448 * exists. But, do set parsed_hstate so that a following
4449 * hugepages= parameter will be applied to this hstate.
4452 parsed_valid_hugepagesz = true;
4456 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4457 parsed_valid_hugepagesz = true;
4460 __setup("hugepagesz=", hugepagesz_setup);
4463 * default_hugepagesz command line input
4464 * Only one instance of default_hugepagesz allowed on command line.
4466 static int __init default_hugepagesz_setup(char *s)
4471 parsed_valid_hugepagesz = false;
4472 if (parsed_default_hugepagesz) {
4473 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4477 size = (unsigned long)memparse(s, NULL);
4479 if (!arch_hugetlb_valid_size(size)) {
4480 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4484 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4485 parsed_valid_hugepagesz = true;
4486 parsed_default_hugepagesz = true;
4487 default_hstate_idx = hstate_index(size_to_hstate(size));
4490 * The number of default huge pages (for this size) could have been
4491 * specified as the first hugetlb parameter: hugepages=X. If so,
4492 * then default_hstate_max_huge_pages is set. If the default huge
4493 * page size is gigantic (> MAX_ORDER), then the pages must be
4494 * allocated here from bootmem allocator.
4496 if (default_hstate_max_huge_pages) {
4497 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4498 for_each_online_node(i)
4499 default_hstate.max_huge_pages_node[i] =
4500 default_hugepages_in_node[i];
4501 if (hstate_is_gigantic(&default_hstate))
4502 hugetlb_hstate_alloc_pages(&default_hstate);
4503 default_hstate_max_huge_pages = 0;
4508 __setup("default_hugepagesz=", default_hugepagesz_setup);
4510 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4513 struct mempolicy *mpol = get_task_policy(current);
4516 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4517 * (from policy_nodemask) specifically for hugetlb case
4519 if (mpol->mode == MPOL_BIND &&
4520 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4521 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4522 return &mpol->nodes;
4527 static unsigned int allowed_mems_nr(struct hstate *h)
4530 unsigned int nr = 0;
4531 nodemask_t *mbind_nodemask;
4532 unsigned int *array = h->free_huge_pages_node;
4533 gfp_t gfp_mask = htlb_alloc_mask(h);
4535 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4536 for_each_node_mask(node, cpuset_current_mems_allowed) {
4537 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4544 #ifdef CONFIG_SYSCTL
4545 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4546 void *buffer, size_t *length,
4547 loff_t *ppos, unsigned long *out)
4549 struct ctl_table dup_table;
4552 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4553 * can duplicate the @table and alter the duplicate of it.
4556 dup_table.data = out;
4558 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4561 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4562 struct ctl_table *table, int write,
4563 void *buffer, size_t *length, loff_t *ppos)
4565 struct hstate *h = &default_hstate;
4566 unsigned long tmp = h->max_huge_pages;
4569 if (!hugepages_supported())
4572 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4578 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4579 NUMA_NO_NODE, tmp, *length);
4584 static int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4585 void *buffer, size_t *length, loff_t *ppos)
4588 return hugetlb_sysctl_handler_common(false, table, write,
4589 buffer, length, ppos);
4593 static int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4594 void *buffer, size_t *length, loff_t *ppos)
4596 return hugetlb_sysctl_handler_common(true, table, write,
4597 buffer, length, ppos);
4599 #endif /* CONFIG_NUMA */
4601 static int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4602 void *buffer, size_t *length, loff_t *ppos)
4604 struct hstate *h = &default_hstate;
4608 if (!hugepages_supported())
4611 tmp = h->nr_overcommit_huge_pages;
4613 if (write && hstate_is_gigantic(h))
4616 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4622 spin_lock_irq(&hugetlb_lock);
4623 h->nr_overcommit_huge_pages = tmp;
4624 spin_unlock_irq(&hugetlb_lock);
4630 static struct ctl_table hugetlb_table[] = {
4632 .procname = "nr_hugepages",
4634 .maxlen = sizeof(unsigned long),
4636 .proc_handler = hugetlb_sysctl_handler,
4640 .procname = "nr_hugepages_mempolicy",
4642 .maxlen = sizeof(unsigned long),
4644 .proc_handler = &hugetlb_mempolicy_sysctl_handler,
4648 .procname = "hugetlb_shm_group",
4649 .data = &sysctl_hugetlb_shm_group,
4650 .maxlen = sizeof(gid_t),
4652 .proc_handler = proc_dointvec,
4655 .procname = "nr_overcommit_hugepages",
4657 .maxlen = sizeof(unsigned long),
4659 .proc_handler = hugetlb_overcommit_handler,
4664 static void hugetlb_sysctl_init(void)
4666 register_sysctl_init("vm", hugetlb_table);
4668 #endif /* CONFIG_SYSCTL */
4670 void hugetlb_report_meminfo(struct seq_file *m)
4673 unsigned long total = 0;
4675 if (!hugepages_supported())
4678 for_each_hstate(h) {
4679 unsigned long count = h->nr_huge_pages;
4681 total += huge_page_size(h) * count;
4683 if (h == &default_hstate)
4685 "HugePages_Total: %5lu\n"
4686 "HugePages_Free: %5lu\n"
4687 "HugePages_Rsvd: %5lu\n"
4688 "HugePages_Surp: %5lu\n"
4689 "Hugepagesize: %8lu kB\n",
4693 h->surplus_huge_pages,
4694 huge_page_size(h) / SZ_1K);
4697 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4700 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4702 struct hstate *h = &default_hstate;
4704 if (!hugepages_supported())
4707 return sysfs_emit_at(buf, len,
4708 "Node %d HugePages_Total: %5u\n"
4709 "Node %d HugePages_Free: %5u\n"
4710 "Node %d HugePages_Surp: %5u\n",
4711 nid, h->nr_huge_pages_node[nid],
4712 nid, h->free_huge_pages_node[nid],
4713 nid, h->surplus_huge_pages_node[nid]);
4716 void hugetlb_show_meminfo_node(int nid)
4720 if (!hugepages_supported())
4724 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4726 h->nr_huge_pages_node[nid],
4727 h->free_huge_pages_node[nid],
4728 h->surplus_huge_pages_node[nid],
4729 huge_page_size(h) / SZ_1K);
4732 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4734 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4735 K(atomic_long_read(&mm->hugetlb_usage)));
4738 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4739 unsigned long hugetlb_total_pages(void)
4742 unsigned long nr_total_pages = 0;
4745 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4746 return nr_total_pages;
4749 static int hugetlb_acct_memory(struct hstate *h, long delta)
4756 spin_lock_irq(&hugetlb_lock);
4758 * When cpuset is configured, it breaks the strict hugetlb page
4759 * reservation as the accounting is done on a global variable. Such
4760 * reservation is completely rubbish in the presence of cpuset because
4761 * the reservation is not checked against page availability for the
4762 * current cpuset. Application can still potentially OOM'ed by kernel
4763 * with lack of free htlb page in cpuset that the task is in.
4764 * Attempt to enforce strict accounting with cpuset is almost
4765 * impossible (or too ugly) because cpuset is too fluid that
4766 * task or memory node can be dynamically moved between cpusets.
4768 * The change of semantics for shared hugetlb mapping with cpuset is
4769 * undesirable. However, in order to preserve some of the semantics,
4770 * we fall back to check against current free page availability as
4771 * a best attempt and hopefully to minimize the impact of changing
4772 * semantics that cpuset has.
4774 * Apart from cpuset, we also have memory policy mechanism that
4775 * also determines from which node the kernel will allocate memory
4776 * in a NUMA system. So similar to cpuset, we also should consider
4777 * the memory policy of the current task. Similar to the description
4781 if (gather_surplus_pages(h, delta) < 0)
4784 if (delta > allowed_mems_nr(h)) {
4785 return_unused_surplus_pages(h, delta);
4792 return_unused_surplus_pages(h, (unsigned long) -delta);
4795 spin_unlock_irq(&hugetlb_lock);
4799 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4801 struct resv_map *resv = vma_resv_map(vma);
4804 * HPAGE_RESV_OWNER indicates a private mapping.
4805 * This new VMA should share its siblings reservation map if present.
4806 * The VMA will only ever have a valid reservation map pointer where
4807 * it is being copied for another still existing VMA. As that VMA
4808 * has a reference to the reservation map it cannot disappear until
4809 * after this open call completes. It is therefore safe to take a
4810 * new reference here without additional locking.
4812 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4813 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4814 kref_get(&resv->refs);
4818 * vma_lock structure for sharable mappings is vma specific.
4819 * Clear old pointer (if copied via vm_area_dup) and allocate
4820 * new structure. Before clearing, make sure vma_lock is not
4823 if (vma->vm_flags & VM_MAYSHARE) {
4824 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4827 if (vma_lock->vma != vma) {
4828 vma->vm_private_data = NULL;
4829 hugetlb_vma_lock_alloc(vma);
4831 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4833 hugetlb_vma_lock_alloc(vma);
4837 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4839 struct hstate *h = hstate_vma(vma);
4840 struct resv_map *resv;
4841 struct hugepage_subpool *spool = subpool_vma(vma);
4842 unsigned long reserve, start, end;
4845 hugetlb_vma_lock_free(vma);
4847 resv = vma_resv_map(vma);
4848 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4851 start = vma_hugecache_offset(h, vma, vma->vm_start);
4852 end = vma_hugecache_offset(h, vma, vma->vm_end);
4854 reserve = (end - start) - region_count(resv, start, end);
4855 hugetlb_cgroup_uncharge_counter(resv, start, end);
4858 * Decrement reserve counts. The global reserve count may be
4859 * adjusted if the subpool has a minimum size.
4861 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4862 hugetlb_acct_memory(h, -gbl_reserve);
4865 kref_put(&resv->refs, resv_map_release);
4868 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4870 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4874 * PMD sharing is only possible for PUD_SIZE-aligned address ranges
4875 * in HugeTLB VMAs. If we will lose PUD_SIZE alignment due to this
4876 * split, unshare PMDs in the PUD_SIZE interval surrounding addr now.
4878 if (addr & ~PUD_MASK) {
4880 * hugetlb_vm_op_split is called right before we attempt to
4881 * split the VMA. We will need to unshare PMDs in the old and
4882 * new VMAs, so let's unshare before we split.
4884 unsigned long floor = addr & PUD_MASK;
4885 unsigned long ceil = floor + PUD_SIZE;
4887 if (floor >= vma->vm_start && ceil <= vma->vm_end)
4888 hugetlb_unshare_pmds(vma, floor, ceil);
4894 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4896 return huge_page_size(hstate_vma(vma));
4900 * We cannot handle pagefaults against hugetlb pages at all. They cause
4901 * handle_mm_fault() to try to instantiate regular-sized pages in the
4902 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4905 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4912 * When a new function is introduced to vm_operations_struct and added
4913 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4914 * This is because under System V memory model, mappings created via
4915 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4916 * their original vm_ops are overwritten with shm_vm_ops.
4918 const struct vm_operations_struct hugetlb_vm_ops = {
4919 .fault = hugetlb_vm_op_fault,
4920 .open = hugetlb_vm_op_open,
4921 .close = hugetlb_vm_op_close,
4922 .may_split = hugetlb_vm_op_split,
4923 .pagesize = hugetlb_vm_op_pagesize,
4926 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4930 unsigned int shift = huge_page_shift(hstate_vma(vma));
4933 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4934 vma->vm_page_prot)));
4936 entry = huge_pte_wrprotect(mk_huge_pte(page,
4937 vma->vm_page_prot));
4939 entry = pte_mkyoung(entry);
4940 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4945 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4946 unsigned long address, pte_t *ptep)
4950 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4951 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4952 update_mmu_cache(vma, address, ptep);
4955 bool is_hugetlb_entry_migration(pte_t pte)
4959 if (huge_pte_none(pte) || pte_present(pte))
4961 swp = pte_to_swp_entry(pte);
4962 if (is_migration_entry(swp))
4968 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4972 if (huge_pte_none(pte) || pte_present(pte))
4974 swp = pte_to_swp_entry(pte);
4975 if (is_hwpoison_entry(swp))
4982 hugetlb_install_folio(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4983 struct folio *new_folio, pte_t old, unsigned long sz)
4985 pte_t newpte = make_huge_pte(vma, &new_folio->page, 1);
4987 __folio_mark_uptodate(new_folio);
4988 hugepage_add_new_anon_rmap(new_folio, vma, addr);
4989 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(old))
4990 newpte = huge_pte_mkuffd_wp(newpte);
4991 set_huge_pte_at(vma->vm_mm, addr, ptep, newpte, sz);
4992 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4993 folio_set_hugetlb_migratable(new_folio);
4996 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4997 struct vm_area_struct *dst_vma,
4998 struct vm_area_struct *src_vma)
5000 pte_t *src_pte, *dst_pte, entry;
5001 struct folio *pte_folio;
5003 bool cow = is_cow_mapping(src_vma->vm_flags);
5004 struct hstate *h = hstate_vma(src_vma);
5005 unsigned long sz = huge_page_size(h);
5006 unsigned long npages = pages_per_huge_page(h);
5007 struct mmu_notifier_range range;
5008 unsigned long last_addr_mask;
5012 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src,
5015 mmu_notifier_invalidate_range_start(&range);
5016 vma_assert_write_locked(src_vma);
5017 raw_write_seqcount_begin(&src->write_protect_seq);
5020 * For shared mappings the vma lock must be held before
5021 * calling hugetlb_walk() in the src vma. Otherwise, the
5022 * returned ptep could go away if part of a shared pmd and
5023 * another thread calls huge_pmd_unshare.
5025 hugetlb_vma_lock_read(src_vma);
5028 last_addr_mask = hugetlb_mask_last_page(h);
5029 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
5030 spinlock_t *src_ptl, *dst_ptl;
5031 src_pte = hugetlb_walk(src_vma, addr, sz);
5033 addr |= last_addr_mask;
5036 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
5043 * If the pagetables are shared don't copy or take references.
5045 * dst_pte == src_pte is the common case of src/dest sharing.
5046 * However, src could have 'unshared' and dst shares with
5047 * another vma. So page_count of ptep page is checked instead
5048 * to reliably determine whether pte is shared.
5050 if (page_count(virt_to_page(dst_pte)) > 1) {
5051 addr |= last_addr_mask;
5055 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5056 src_ptl = huge_pte_lockptr(h, src, src_pte);
5057 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5058 entry = huge_ptep_get(src_pte);
5060 if (huge_pte_none(entry)) {
5062 * Skip if src entry none.
5065 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5066 if (!userfaultfd_wp(dst_vma))
5067 entry = huge_pte_clear_uffd_wp(entry);
5068 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5069 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5070 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5071 bool uffd_wp = pte_swp_uffd_wp(entry);
5073 if (!is_readable_migration_entry(swp_entry) && cow) {
5075 * COW mappings require pages in both
5076 * parent and child to be set to read.
5078 swp_entry = make_readable_migration_entry(
5079 swp_offset(swp_entry));
5080 entry = swp_entry_to_pte(swp_entry);
5081 if (userfaultfd_wp(src_vma) && uffd_wp)
5082 entry = pte_swp_mkuffd_wp(entry);
5083 set_huge_pte_at(src, addr, src_pte, entry, sz);
5085 if (!userfaultfd_wp(dst_vma))
5086 entry = huge_pte_clear_uffd_wp(entry);
5087 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5088 } else if (unlikely(is_pte_marker(entry))) {
5089 pte_marker marker = copy_pte_marker(
5090 pte_to_swp_entry(entry), dst_vma);
5093 set_huge_pte_at(dst, addr, dst_pte,
5094 make_pte_marker(marker), sz);
5096 entry = huge_ptep_get(src_pte);
5097 pte_folio = page_folio(pte_page(entry));
5098 folio_get(pte_folio);
5101 * Failing to duplicate the anon rmap is a rare case
5102 * where we see pinned hugetlb pages while they're
5103 * prone to COW. We need to do the COW earlier during
5106 * When pre-allocating the page or copying data, we
5107 * need to be without the pgtable locks since we could
5108 * sleep during the process.
5110 if (!folio_test_anon(pte_folio)) {
5111 page_dup_file_rmap(&pte_folio->page, true);
5112 } else if (page_try_dup_anon_rmap(&pte_folio->page,
5114 pte_t src_pte_old = entry;
5115 struct folio *new_folio;
5117 spin_unlock(src_ptl);
5118 spin_unlock(dst_ptl);
5119 /* Do not use reserve as it's private owned */
5120 new_folio = alloc_hugetlb_folio(dst_vma, addr, 1);
5121 if (IS_ERR(new_folio)) {
5122 folio_put(pte_folio);
5123 ret = PTR_ERR(new_folio);
5126 ret = copy_user_large_folio(new_folio,
5129 folio_put(pte_folio);
5131 folio_put(new_folio);
5135 /* Install the new hugetlb folio if src pte stable */
5136 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5137 src_ptl = huge_pte_lockptr(h, src, src_pte);
5138 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5139 entry = huge_ptep_get(src_pte);
5140 if (!pte_same(src_pte_old, entry)) {
5141 restore_reserve_on_error(h, dst_vma, addr,
5143 folio_put(new_folio);
5144 /* huge_ptep of dst_pte won't change as in child */
5147 hugetlb_install_folio(dst_vma, dst_pte, addr,
5148 new_folio, src_pte_old, sz);
5149 spin_unlock(src_ptl);
5150 spin_unlock(dst_ptl);
5156 * No need to notify as we are downgrading page
5157 * table protection not changing it to point
5160 * See Documentation/mm/mmu_notifier.rst
5162 huge_ptep_set_wrprotect(src, addr, src_pte);
5163 entry = huge_pte_wrprotect(entry);
5166 if (!userfaultfd_wp(dst_vma))
5167 entry = huge_pte_clear_uffd_wp(entry);
5169 set_huge_pte_at(dst, addr, dst_pte, entry, sz);
5170 hugetlb_count_add(npages, dst);
5172 spin_unlock(src_ptl);
5173 spin_unlock(dst_ptl);
5177 raw_write_seqcount_end(&src->write_protect_seq);
5178 mmu_notifier_invalidate_range_end(&range);
5180 hugetlb_vma_unlock_read(src_vma);
5186 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5187 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte,
5190 struct hstate *h = hstate_vma(vma);
5191 struct mm_struct *mm = vma->vm_mm;
5192 spinlock_t *src_ptl, *dst_ptl;
5195 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5196 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5199 * We don't have to worry about the ordering of src and dst ptlocks
5200 * because exclusive mmap_lock (or the i_mmap_lock) prevents deadlock.
5202 if (src_ptl != dst_ptl)
5203 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5205 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5206 set_huge_pte_at(mm, new_addr, dst_pte, pte, sz);
5208 if (src_ptl != dst_ptl)
5209 spin_unlock(src_ptl);
5210 spin_unlock(dst_ptl);
5213 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5214 struct vm_area_struct *new_vma,
5215 unsigned long old_addr, unsigned long new_addr,
5218 struct hstate *h = hstate_vma(vma);
5219 struct address_space *mapping = vma->vm_file->f_mapping;
5220 unsigned long sz = huge_page_size(h);
5221 struct mm_struct *mm = vma->vm_mm;
5222 unsigned long old_end = old_addr + len;
5223 unsigned long last_addr_mask;
5224 pte_t *src_pte, *dst_pte;
5225 struct mmu_notifier_range range;
5226 bool shared_pmd = false;
5228 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, old_addr,
5230 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5232 * In case of shared PMDs, we should cover the maximum possible
5235 flush_cache_range(vma, range.start, range.end);
5237 mmu_notifier_invalidate_range_start(&range);
5238 last_addr_mask = hugetlb_mask_last_page(h);
5239 /* Prevent race with file truncation */
5240 hugetlb_vma_lock_write(vma);
5241 i_mmap_lock_write(mapping);
5242 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5243 src_pte = hugetlb_walk(vma, old_addr, sz);
5245 old_addr |= last_addr_mask;
5246 new_addr |= last_addr_mask;
5249 if (huge_pte_none(huge_ptep_get(src_pte)))
5252 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5254 old_addr |= last_addr_mask;
5255 new_addr |= last_addr_mask;
5259 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5263 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte, sz);
5267 flush_hugetlb_tlb_range(vma, range.start, range.end);
5269 flush_hugetlb_tlb_range(vma, old_end - len, old_end);
5270 mmu_notifier_invalidate_range_end(&range);
5271 i_mmap_unlock_write(mapping);
5272 hugetlb_vma_unlock_write(vma);
5274 return len + old_addr - old_end;
5277 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5278 unsigned long start, unsigned long end,
5279 struct page *ref_page, zap_flags_t zap_flags)
5281 struct mm_struct *mm = vma->vm_mm;
5282 unsigned long address;
5287 struct hstate *h = hstate_vma(vma);
5288 unsigned long sz = huge_page_size(h);
5289 unsigned long last_addr_mask;
5290 bool force_flush = false;
5292 WARN_ON(!is_vm_hugetlb_page(vma));
5293 BUG_ON(start & ~huge_page_mask(h));
5294 BUG_ON(end & ~huge_page_mask(h));
5297 * This is a hugetlb vma, all the pte entries should point
5300 tlb_change_page_size(tlb, sz);
5301 tlb_start_vma(tlb, vma);
5303 last_addr_mask = hugetlb_mask_last_page(h);
5305 for (; address < end; address += sz) {
5306 ptep = hugetlb_walk(vma, address, sz);
5308 address |= last_addr_mask;
5312 ptl = huge_pte_lock(h, mm, ptep);
5313 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5315 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5317 address |= last_addr_mask;
5321 pte = huge_ptep_get(ptep);
5322 if (huge_pte_none(pte)) {
5328 * Migrating hugepage or HWPoisoned hugepage is already
5329 * unmapped and its refcount is dropped, so just clear pte here.
5331 if (unlikely(!pte_present(pte))) {
5333 * If the pte was wr-protected by uffd-wp in any of the
5334 * swap forms, meanwhile the caller does not want to
5335 * drop the uffd-wp bit in this zap, then replace the
5336 * pte with a marker.
5338 if (pte_swp_uffd_wp_any(pte) &&
5339 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5340 set_huge_pte_at(mm, address, ptep,
5341 make_pte_marker(PTE_MARKER_UFFD_WP),
5344 huge_pte_clear(mm, address, ptep, sz);
5349 page = pte_page(pte);
5351 * If a reference page is supplied, it is because a specific
5352 * page is being unmapped, not a range. Ensure the page we
5353 * are about to unmap is the actual page of interest.
5356 if (page != ref_page) {
5361 * Mark the VMA as having unmapped its page so that
5362 * future faults in this VMA will fail rather than
5363 * looking like data was lost
5365 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5368 pte = huge_ptep_get_and_clear(mm, address, ptep);
5369 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5370 if (huge_pte_dirty(pte))
5371 set_page_dirty(page);
5372 /* Leave a uffd-wp pte marker if needed */
5373 if (huge_pte_uffd_wp(pte) &&
5374 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5375 set_huge_pte_at(mm, address, ptep,
5376 make_pte_marker(PTE_MARKER_UFFD_WP),
5378 hugetlb_count_sub(pages_per_huge_page(h), mm);
5379 page_remove_rmap(page, vma, true);
5382 tlb_remove_page_size(tlb, page, huge_page_size(h));
5384 * Bail out after unmapping reference page if supplied
5389 tlb_end_vma(tlb, vma);
5392 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5393 * could defer the flush until now, since by holding i_mmap_rwsem we
5394 * guaranteed that the last refernece would not be dropped. But we must
5395 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5396 * dropped and the last reference to the shared PMDs page might be
5399 * In theory we could defer the freeing of the PMD pages as well, but
5400 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5401 * detect sharing, so we cannot defer the release of the page either.
5402 * Instead, do flush now.
5405 tlb_flush_mmu_tlbonly(tlb);
5408 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5409 struct vm_area_struct *vma, unsigned long start,
5410 unsigned long end, struct page *ref_page,
5411 zap_flags_t zap_flags)
5413 hugetlb_vma_lock_write(vma);
5414 i_mmap_lock_write(vma->vm_file->f_mapping);
5416 /* mmu notification performed in caller */
5417 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5419 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5421 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5422 * When the vma_lock is freed, this makes the vma ineligible
5423 * for pmd sharing. And, i_mmap_rwsem is required to set up
5424 * pmd sharing. This is important as page tables for this
5425 * unmapped range will be asynchrously deleted. If the page
5426 * tables are shared, there will be issues when accessed by
5429 __hugetlb_vma_unlock_write_free(vma);
5430 i_mmap_unlock_write(vma->vm_file->f_mapping);
5432 i_mmap_unlock_write(vma->vm_file->f_mapping);
5433 hugetlb_vma_unlock_write(vma);
5437 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5438 unsigned long end, struct page *ref_page,
5439 zap_flags_t zap_flags)
5441 struct mmu_notifier_range range;
5442 struct mmu_gather tlb;
5444 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma->vm_mm,
5446 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5447 mmu_notifier_invalidate_range_start(&range);
5448 tlb_gather_mmu(&tlb, vma->vm_mm);
5450 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5452 mmu_notifier_invalidate_range_end(&range);
5453 tlb_finish_mmu(&tlb);
5457 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5458 * mapping it owns the reserve page for. The intention is to unmap the page
5459 * from other VMAs and let the children be SIGKILLed if they are faulting the
5462 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5463 struct page *page, unsigned long address)
5465 struct hstate *h = hstate_vma(vma);
5466 struct vm_area_struct *iter_vma;
5467 struct address_space *mapping;
5471 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5472 * from page cache lookup which is in HPAGE_SIZE units.
5474 address = address & huge_page_mask(h);
5475 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5477 mapping = vma->vm_file->f_mapping;
5480 * Take the mapping lock for the duration of the table walk. As
5481 * this mapping should be shared between all the VMAs,
5482 * __unmap_hugepage_range() is called as the lock is already held
5484 i_mmap_lock_write(mapping);
5485 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5486 /* Do not unmap the current VMA */
5487 if (iter_vma == vma)
5491 * Shared VMAs have their own reserves and do not affect
5492 * MAP_PRIVATE accounting but it is possible that a shared
5493 * VMA is using the same page so check and skip such VMAs.
5495 if (iter_vma->vm_flags & VM_MAYSHARE)
5499 * Unmap the page from other VMAs without their own reserves.
5500 * They get marked to be SIGKILLed if they fault in these
5501 * areas. This is because a future no-page fault on this VMA
5502 * could insert a zeroed page instead of the data existing
5503 * from the time of fork. This would look like data corruption
5505 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5506 unmap_hugepage_range(iter_vma, address,
5507 address + huge_page_size(h), page, 0);
5509 i_mmap_unlock_write(mapping);
5513 * hugetlb_wp() should be called with page lock of the original hugepage held.
5514 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5515 * cannot race with other handlers or page migration.
5516 * Keep the pte_same checks anyway to make transition from the mutex easier.
5518 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5519 unsigned long address, pte_t *ptep, unsigned int flags,
5520 struct folio *pagecache_folio, spinlock_t *ptl)
5522 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5523 pte_t pte = huge_ptep_get(ptep);
5524 struct hstate *h = hstate_vma(vma);
5525 struct folio *old_folio;
5526 struct folio *new_folio;
5527 int outside_reserve = 0;
5529 unsigned long haddr = address & huge_page_mask(h);
5530 struct mmu_notifier_range range;
5533 * Never handle CoW for uffd-wp protected pages. It should be only
5534 * handled when the uffd-wp protection is removed.
5536 * Note that only the CoW optimization path (in hugetlb_no_page())
5537 * can trigger this, because hugetlb_fault() will always resolve
5538 * uffd-wp bit first.
5540 if (!unshare && huge_pte_uffd_wp(pte))
5544 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5545 * PTE mapped R/O such as maybe_mkwrite() would do.
5547 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5548 return VM_FAULT_SIGSEGV;
5550 /* Let's take out MAP_SHARED mappings first. */
5551 if (vma->vm_flags & VM_MAYSHARE) {
5552 set_huge_ptep_writable(vma, haddr, ptep);
5556 old_folio = page_folio(pte_page(pte));
5558 delayacct_wpcopy_start();
5562 * If no-one else is actually using this page, we're the exclusive
5563 * owner and can reuse this page.
5565 if (folio_mapcount(old_folio) == 1 && folio_test_anon(old_folio)) {
5566 if (!PageAnonExclusive(&old_folio->page))
5567 page_move_anon_rmap(&old_folio->page, vma);
5568 if (likely(!unshare))
5569 set_huge_ptep_writable(vma, haddr, ptep);
5571 delayacct_wpcopy_end();
5574 VM_BUG_ON_PAGE(folio_test_anon(old_folio) &&
5575 PageAnonExclusive(&old_folio->page), &old_folio->page);
5578 * If the process that created a MAP_PRIVATE mapping is about to
5579 * perform a COW due to a shared page count, attempt to satisfy
5580 * the allocation without using the existing reserves. The pagecache
5581 * page is used to determine if the reserve at this address was
5582 * consumed or not. If reserves were used, a partial faulted mapping
5583 * at the time of fork() could consume its reserves on COW instead
5584 * of the full address range.
5586 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5587 old_folio != pagecache_folio)
5588 outside_reserve = 1;
5590 folio_get(old_folio);
5593 * Drop page table lock as buddy allocator may be called. It will
5594 * be acquired again before returning to the caller, as expected.
5597 new_folio = alloc_hugetlb_folio(vma, haddr, outside_reserve);
5599 if (IS_ERR(new_folio)) {
5601 * If a process owning a MAP_PRIVATE mapping fails to COW,
5602 * it is due to references held by a child and an insufficient
5603 * huge page pool. To guarantee the original mappers
5604 * reliability, unmap the page from child processes. The child
5605 * may get SIGKILLed if it later faults.
5607 if (outside_reserve) {
5608 struct address_space *mapping = vma->vm_file->f_mapping;
5612 folio_put(old_folio);
5614 * Drop hugetlb_fault_mutex and vma_lock before
5615 * unmapping. unmapping needs to hold vma_lock
5616 * in write mode. Dropping vma_lock in read mode
5617 * here is OK as COW mappings do not interact with
5620 * Reacquire both after unmap operation.
5622 idx = vma_hugecache_offset(h, vma, haddr);
5623 hash = hugetlb_fault_mutex_hash(mapping, idx);
5624 hugetlb_vma_unlock_read(vma);
5625 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5627 unmap_ref_private(mm, vma, &old_folio->page, haddr);
5629 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5630 hugetlb_vma_lock_read(vma);
5632 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5634 pte_same(huge_ptep_get(ptep), pte)))
5635 goto retry_avoidcopy;
5637 * race occurs while re-acquiring page table
5638 * lock, and our job is done.
5640 delayacct_wpcopy_end();
5644 ret = vmf_error(PTR_ERR(new_folio));
5645 goto out_release_old;
5649 * When the original hugepage is shared one, it does not have
5650 * anon_vma prepared.
5652 if (unlikely(anon_vma_prepare(vma))) {
5654 goto out_release_all;
5657 if (copy_user_large_folio(new_folio, old_folio, address, vma)) {
5658 ret = VM_FAULT_HWPOISON_LARGE;
5659 goto out_release_all;
5661 __folio_mark_uptodate(new_folio);
5663 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm, haddr,
5664 haddr + huge_page_size(h));
5665 mmu_notifier_invalidate_range_start(&range);
5668 * Retake the page table lock to check for racing updates
5669 * before the page tables are altered
5672 ptep = hugetlb_walk(vma, haddr, huge_page_size(h));
5673 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5674 pte_t newpte = make_huge_pte(vma, &new_folio->page, !unshare);
5676 /* Break COW or unshare */
5677 huge_ptep_clear_flush(vma, haddr, ptep);
5678 page_remove_rmap(&old_folio->page, vma, true);
5679 hugepage_add_new_anon_rmap(new_folio, vma, haddr);
5680 if (huge_pte_uffd_wp(pte))
5681 newpte = huge_pte_mkuffd_wp(newpte);
5682 set_huge_pte_at(mm, haddr, ptep, newpte, huge_page_size(h));
5683 folio_set_hugetlb_migratable(new_folio);
5684 /* Make the old page be freed below */
5685 new_folio = old_folio;
5688 mmu_notifier_invalidate_range_end(&range);
5691 * No restore in case of successful pagetable update (Break COW or
5694 if (new_folio != old_folio)
5695 restore_reserve_on_error(h, vma, haddr, new_folio);
5696 folio_put(new_folio);
5698 folio_put(old_folio);
5700 spin_lock(ptl); /* Caller expects lock to be held */
5702 delayacct_wpcopy_end();
5707 * Return whether there is a pagecache page to back given address within VMA.
5709 static bool hugetlbfs_pagecache_present(struct hstate *h,
5710 struct vm_area_struct *vma, unsigned long address)
5712 struct address_space *mapping = vma->vm_file->f_mapping;
5713 pgoff_t idx = vma_hugecache_offset(h, vma, address);
5714 struct folio *folio;
5716 folio = filemap_get_folio(mapping, idx);
5723 int hugetlb_add_to_page_cache(struct folio *folio, struct address_space *mapping,
5726 struct inode *inode = mapping->host;
5727 struct hstate *h = hstate_inode(inode);
5730 __folio_set_locked(folio);
5731 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5733 if (unlikely(err)) {
5734 __folio_clear_locked(folio);
5737 folio_clear_hugetlb_restore_reserve(folio);
5740 * mark folio dirty so that it will not be removed from cache/file
5741 * by non-hugetlbfs specific code paths.
5743 folio_mark_dirty(folio);
5745 spin_lock(&inode->i_lock);
5746 inode->i_blocks += blocks_per_huge_page(h);
5747 spin_unlock(&inode->i_lock);
5751 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5752 struct address_space *mapping,
5755 unsigned long haddr,
5757 unsigned long reason)
5760 struct vm_fault vmf = {
5763 .real_address = addr,
5767 * Hard to debug if it ends up being
5768 * used by a callee that assumes
5769 * something about the other
5770 * uninitialized fields... same as in
5776 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5777 * userfault. Also mmap_lock could be dropped due to handling
5778 * userfault, any vma operation should be careful from here.
5780 hugetlb_vma_unlock_read(vma);
5781 hash = hugetlb_fault_mutex_hash(mapping, idx);
5782 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5783 return handle_userfault(&vmf, reason);
5787 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5788 * false if pte changed or is changing.
5790 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5791 pte_t *ptep, pte_t old_pte)
5796 ptl = huge_pte_lock(h, mm, ptep);
5797 same = pte_same(huge_ptep_get(ptep), old_pte);
5803 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5804 struct vm_area_struct *vma,
5805 struct address_space *mapping, pgoff_t idx,
5806 unsigned long address, pte_t *ptep,
5807 pte_t old_pte, unsigned int flags)
5809 struct hstate *h = hstate_vma(vma);
5810 vm_fault_t ret = VM_FAULT_SIGBUS;
5813 struct folio *folio;
5816 unsigned long haddr = address & huge_page_mask(h);
5817 bool new_folio, new_pagecache_folio = false;
5818 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5821 * Currently, we are forced to kill the process in the event the
5822 * original mapper has unmapped pages from the child due to a failed
5823 * COW/unsharing. Warn that such a situation has occurred as it may not
5826 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5827 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5833 * Use page lock to guard against racing truncation
5834 * before we get page_table_lock.
5837 folio = filemap_lock_folio(mapping, idx);
5838 if (IS_ERR(folio)) {
5839 size = i_size_read(mapping->host) >> huge_page_shift(h);
5842 /* Check for page in userfault range */
5843 if (userfaultfd_missing(vma)) {
5845 * Since hugetlb_no_page() was examining pte
5846 * without pgtable lock, we need to re-test under
5847 * lock because the pte may not be stable and could
5848 * have changed from under us. Try to detect
5849 * either changed or during-changing ptes and retry
5850 * properly when needed.
5852 * Note that userfaultfd is actually fine with
5853 * false positives (e.g. caused by pte changed),
5854 * but not wrong logical events (e.g. caused by
5855 * reading a pte during changing). The latter can
5856 * confuse the userspace, so the strictness is very
5857 * much preferred. E.g., MISSING event should
5858 * never happen on the page after UFFDIO_COPY has
5859 * correctly installed the page and returned.
5861 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5866 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5871 folio = alloc_hugetlb_folio(vma, haddr, 0);
5872 if (IS_ERR(folio)) {
5874 * Returning error will result in faulting task being
5875 * sent SIGBUS. The hugetlb fault mutex prevents two
5876 * tasks from racing to fault in the same page which
5877 * could result in false unable to allocate errors.
5878 * Page migration does not take the fault mutex, but
5879 * does a clear then write of pte's under page table
5880 * lock. Page fault code could race with migration,
5881 * notice the clear pte and try to allocate a page
5882 * here. Before returning error, get ptl and make
5883 * sure there really is no pte entry.
5885 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5886 ret = vmf_error(PTR_ERR(folio));
5891 clear_huge_page(&folio->page, address, pages_per_huge_page(h));
5892 __folio_mark_uptodate(folio);
5895 if (vma->vm_flags & VM_MAYSHARE) {
5896 int err = hugetlb_add_to_page_cache(folio, mapping, idx);
5899 * err can't be -EEXIST which implies someone
5900 * else consumed the reservation since hugetlb
5901 * fault mutex is held when add a hugetlb page
5902 * to the page cache. So it's safe to call
5903 * restore_reserve_on_error() here.
5905 restore_reserve_on_error(h, vma, haddr, folio);
5909 new_pagecache_folio = true;
5912 if (unlikely(anon_vma_prepare(vma))) {
5914 goto backout_unlocked;
5920 * If memory error occurs between mmap() and fault, some process
5921 * don't have hwpoisoned swap entry for errored virtual address.
5922 * So we need to block hugepage fault by PG_hwpoison bit check.
5924 if (unlikely(folio_test_hwpoison(folio))) {
5925 ret = VM_FAULT_HWPOISON_LARGE |
5926 VM_FAULT_SET_HINDEX(hstate_index(h));
5927 goto backout_unlocked;
5930 /* Check for page in userfault range. */
5931 if (userfaultfd_minor(vma)) {
5932 folio_unlock(folio);
5934 /* See comment in userfaultfd_missing() block above */
5935 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5939 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5946 * If we are going to COW a private mapping later, we examine the
5947 * pending reservations for this page now. This will ensure that
5948 * any allocations necessary to record that reservation occur outside
5951 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5952 if (vma_needs_reservation(h, vma, haddr) < 0) {
5954 goto backout_unlocked;
5956 /* Just decrements count, does not deallocate */
5957 vma_end_reservation(h, vma, haddr);
5960 ptl = huge_pte_lock(h, mm, ptep);
5962 /* If pte changed from under us, retry */
5963 if (!pte_same(huge_ptep_get(ptep), old_pte))
5967 hugepage_add_new_anon_rmap(folio, vma, haddr);
5969 page_dup_file_rmap(&folio->page, true);
5970 new_pte = make_huge_pte(vma, &folio->page, ((vma->vm_flags & VM_WRITE)
5971 && (vma->vm_flags & VM_SHARED)));
5973 * If this pte was previously wr-protected, keep it wr-protected even
5976 if (unlikely(pte_marker_uffd_wp(old_pte)))
5977 new_pte = huge_pte_mkuffd_wp(new_pte);
5978 set_huge_pte_at(mm, haddr, ptep, new_pte, huge_page_size(h));
5980 hugetlb_count_add(pages_per_huge_page(h), mm);
5981 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5982 /* Optimization, do the COW without a second fault */
5983 ret = hugetlb_wp(mm, vma, address, ptep, flags, folio, ptl);
5989 * Only set hugetlb_migratable in newly allocated pages. Existing pages
5990 * found in the pagecache may not have hugetlb_migratable if they have
5991 * been isolated for migration.
5994 folio_set_hugetlb_migratable(folio);
5996 folio_unlock(folio);
5998 hugetlb_vma_unlock_read(vma);
5999 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6005 if (new_folio && !new_pagecache_folio)
6006 restore_reserve_on_error(h, vma, haddr, folio);
6008 folio_unlock(folio);
6014 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6016 unsigned long key[2];
6019 key[0] = (unsigned long) mapping;
6022 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
6024 return hash & (num_fault_mutexes - 1);
6028 * For uniprocessor systems we always use a single mutex, so just
6029 * return 0 and avoid the hashing overhead.
6031 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
6037 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
6038 unsigned long address, unsigned int flags)
6045 struct folio *folio = NULL;
6046 struct folio *pagecache_folio = NULL;
6047 struct hstate *h = hstate_vma(vma);
6048 struct address_space *mapping;
6049 int need_wait_lock = 0;
6050 unsigned long haddr = address & huge_page_mask(h);
6052 /* TODO: Handle faults under the VMA lock */
6053 if (flags & FAULT_FLAG_VMA_LOCK) {
6055 return VM_FAULT_RETRY;
6059 * Serialize hugepage allocation and instantiation, so that we don't
6060 * get spurious allocation failures if two CPUs race to instantiate
6061 * the same page in the page cache.
6063 mapping = vma->vm_file->f_mapping;
6064 idx = vma_hugecache_offset(h, vma, haddr);
6065 hash = hugetlb_fault_mutex_hash(mapping, idx);
6066 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6069 * Acquire vma lock before calling huge_pte_alloc and hold
6070 * until finished with ptep. This prevents huge_pmd_unshare from
6071 * being called elsewhere and making the ptep no longer valid.
6073 hugetlb_vma_lock_read(vma);
6074 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6076 hugetlb_vma_unlock_read(vma);
6077 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6078 return VM_FAULT_OOM;
6081 entry = huge_ptep_get(ptep);
6082 if (huge_pte_none_mostly(entry)) {
6083 if (is_pte_marker(entry)) {
6085 pte_marker_get(pte_to_swp_entry(entry));
6087 if (marker & PTE_MARKER_POISONED) {
6088 ret = VM_FAULT_HWPOISON_LARGE;
6094 * Other PTE markers should be handled the same way as none PTE.
6096 * hugetlb_no_page will drop vma lock and hugetlb fault
6097 * mutex internally, which make us return immediately.
6099 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6106 * entry could be a migration/hwpoison entry at this point, so this
6107 * check prevents the kernel from going below assuming that we have
6108 * an active hugepage in pagecache. This goto expects the 2nd page
6109 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6110 * properly handle it.
6112 if (!pte_present(entry)) {
6113 if (unlikely(is_hugetlb_entry_migration(entry))) {
6115 * Release the hugetlb fault lock now, but retain
6116 * the vma lock, because it is needed to guard the
6117 * huge_pte_lockptr() later in
6118 * migration_entry_wait_huge(). The vma lock will
6119 * be released there.
6121 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6122 migration_entry_wait_huge(vma, ptep);
6124 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
6125 ret = VM_FAULT_HWPOISON_LARGE |
6126 VM_FAULT_SET_HINDEX(hstate_index(h));
6131 * If we are going to COW/unshare the mapping later, we examine the
6132 * pending reservations for this page now. This will ensure that any
6133 * allocations necessary to record that reservation occur outside the
6134 * spinlock. Also lookup the pagecache page now as it is used to
6135 * determine if a reservation has been consumed.
6137 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6138 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6139 if (vma_needs_reservation(h, vma, haddr) < 0) {
6143 /* Just decrements count, does not deallocate */
6144 vma_end_reservation(h, vma, haddr);
6146 pagecache_folio = filemap_lock_folio(mapping, idx);
6147 if (IS_ERR(pagecache_folio))
6148 pagecache_folio = NULL;
6151 ptl = huge_pte_lock(h, mm, ptep);
6153 /* Check for a racing update before calling hugetlb_wp() */
6154 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6157 /* Handle userfault-wp first, before trying to lock more pages */
6158 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6159 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6160 struct vm_fault vmf = {
6163 .real_address = address,
6168 if (pagecache_folio) {
6169 folio_unlock(pagecache_folio);
6170 folio_put(pagecache_folio);
6172 hugetlb_vma_unlock_read(vma);
6173 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6174 return handle_userfault(&vmf, VM_UFFD_WP);
6178 * hugetlb_wp() requires page locks of pte_page(entry) and
6179 * pagecache_folio, so here we need take the former one
6180 * when folio != pagecache_folio or !pagecache_folio.
6182 folio = page_folio(pte_page(entry));
6183 if (folio != pagecache_folio)
6184 if (!folio_trylock(folio)) {
6191 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6192 if (!huge_pte_write(entry)) {
6193 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6194 pagecache_folio, ptl);
6196 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6197 entry = huge_pte_mkdirty(entry);
6200 entry = pte_mkyoung(entry);
6201 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6202 flags & FAULT_FLAG_WRITE))
6203 update_mmu_cache(vma, haddr, ptep);
6205 if (folio != pagecache_folio)
6206 folio_unlock(folio);
6211 if (pagecache_folio) {
6212 folio_unlock(pagecache_folio);
6213 folio_put(pagecache_folio);
6216 hugetlb_vma_unlock_read(vma);
6217 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6219 * Generally it's safe to hold refcount during waiting page lock. But
6220 * here we just wait to defer the next page fault to avoid busy loop and
6221 * the page is not used after unlocked before returning from the current
6222 * page fault. So we are safe from accessing freed page, even if we wait
6223 * here without taking refcount.
6226 folio_wait_locked(folio);
6230 #ifdef CONFIG_USERFAULTFD
6232 * Used by userfaultfd UFFDIO_* ioctls. Based on userfaultfd's mfill_atomic_pte
6233 * with modifications for hugetlb pages.
6235 int hugetlb_mfill_atomic_pte(pte_t *dst_pte,
6236 struct vm_area_struct *dst_vma,
6237 unsigned long dst_addr,
6238 unsigned long src_addr,
6240 struct folio **foliop)
6242 struct mm_struct *dst_mm = dst_vma->vm_mm;
6243 bool is_continue = uffd_flags_mode_is(flags, MFILL_ATOMIC_CONTINUE);
6244 bool wp_enabled = (flags & MFILL_ATOMIC_WP);
6245 struct hstate *h = hstate_vma(dst_vma);
6246 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6247 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6249 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6253 struct folio *folio;
6255 bool folio_in_pagecache = false;
6257 if (uffd_flags_mode_is(flags, MFILL_ATOMIC_POISON)) {
6258 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6260 /* Don't overwrite any existing PTEs (even markers) */
6261 if (!huge_pte_none(huge_ptep_get(dst_pte))) {
6266 _dst_pte = make_pte_marker(PTE_MARKER_POISONED);
6267 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte,
6270 /* No need to invalidate - it was non-present before */
6271 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6279 folio = filemap_lock_folio(mapping, idx);
6282 folio_in_pagecache = true;
6283 } else if (!*foliop) {
6284 /* If a folio already exists, then it's UFFDIO_COPY for
6285 * a non-missing case. Return -EEXIST.
6288 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6293 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6294 if (IS_ERR(folio)) {
6299 ret = copy_folio_from_user(folio, (const void __user *) src_addr,
6302 /* fallback to copy_from_user outside mmap_lock */
6303 if (unlikely(ret)) {
6305 /* Free the allocated folio which may have
6306 * consumed a reservation.
6308 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6311 /* Allocate a temporary folio to hold the copied
6314 folio = alloc_hugetlb_folio_vma(h, dst_vma, dst_addr);
6320 /* Set the outparam foliop and return to the caller to
6321 * copy the contents outside the lock. Don't free the
6328 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6335 folio = alloc_hugetlb_folio(dst_vma, dst_addr, 0);
6336 if (IS_ERR(folio)) {
6342 ret = copy_user_large_folio(folio, *foliop, dst_addr, dst_vma);
6352 * The memory barrier inside __folio_mark_uptodate makes sure that
6353 * preceding stores to the page contents become visible before
6354 * the set_pte_at() write.
6356 __folio_mark_uptodate(folio);
6358 /* Add shared, newly allocated pages to the page cache. */
6359 if (vm_shared && !is_continue) {
6360 size = i_size_read(mapping->host) >> huge_page_shift(h);
6363 goto out_release_nounlock;
6366 * Serialization between remove_inode_hugepages() and
6367 * hugetlb_add_to_page_cache() below happens through the
6368 * hugetlb_fault_mutex_table that here must be hold by
6371 ret = hugetlb_add_to_page_cache(folio, mapping, idx);
6373 goto out_release_nounlock;
6374 folio_in_pagecache = true;
6377 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6380 if (folio_test_hwpoison(folio))
6381 goto out_release_unlock;
6384 * We allow to overwrite a pte marker: consider when both MISSING|WP
6385 * registered, we firstly wr-protect a none pte which has no page cache
6386 * page backing it, then access the page.
6389 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6390 goto out_release_unlock;
6392 if (folio_in_pagecache)
6393 page_dup_file_rmap(&folio->page, true);
6395 hugepage_add_new_anon_rmap(folio, dst_vma, dst_addr);
6398 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6399 * with wp flag set, don't set pte write bit.
6401 if (wp_enabled || (is_continue && !vm_shared))
6404 writable = dst_vma->vm_flags & VM_WRITE;
6406 _dst_pte = make_huge_pte(dst_vma, &folio->page, writable);
6408 * Always mark UFFDIO_COPY page dirty; note that this may not be
6409 * extremely important for hugetlbfs for now since swapping is not
6410 * supported, but we should still be clear in that this page cannot be
6411 * thrown away at will, even if write bit not set.
6413 _dst_pte = huge_pte_mkdirty(_dst_pte);
6414 _dst_pte = pte_mkyoung(_dst_pte);
6417 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6419 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte, huge_page_size(h));
6421 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6423 /* No need to invalidate - it was non-present before */
6424 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6428 folio_set_hugetlb_migratable(folio);
6429 if (vm_shared || is_continue)
6430 folio_unlock(folio);
6436 if (vm_shared || is_continue)
6437 folio_unlock(folio);
6438 out_release_nounlock:
6439 if (!folio_in_pagecache)
6440 restore_reserve_on_error(h, dst_vma, dst_addr, folio);
6444 #endif /* CONFIG_USERFAULTFD */
6446 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6447 unsigned long address, unsigned int flags,
6448 unsigned int *page_mask)
6450 struct hstate *h = hstate_vma(vma);
6451 struct mm_struct *mm = vma->vm_mm;
6452 unsigned long haddr = address & huge_page_mask(h);
6453 struct page *page = NULL;
6458 hugetlb_vma_lock_read(vma);
6459 pte = hugetlb_walk(vma, haddr, huge_page_size(h));
6463 ptl = huge_pte_lock(h, mm, pte);
6464 entry = huge_ptep_get(pte);
6465 if (pte_present(entry)) {
6466 page = pte_page(entry);
6468 if (!huge_pte_write(entry)) {
6469 if (flags & FOLL_WRITE) {
6474 if (gup_must_unshare(vma, flags, page)) {
6475 /* Tell the caller to do unsharing */
6476 page = ERR_PTR(-EMLINK);
6481 page += ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6484 * Note that page may be a sub-page, and with vmemmap
6485 * optimizations the page struct may be read only.
6486 * try_grab_page() will increase the ref count on the
6487 * head page, so this will be OK.
6489 * try_grab_page() should always be able to get the page here,
6490 * because we hold the ptl lock and have verified pte_present().
6492 ret = try_grab_page(page, flags);
6494 if (WARN_ON_ONCE(ret)) {
6495 page = ERR_PTR(ret);
6499 *page_mask = (1U << huge_page_order(h)) - 1;
6504 hugetlb_vma_unlock_read(vma);
6507 * Fixup retval for dump requests: if pagecache doesn't exist,
6508 * don't try to allocate a new page but just skip it.
6510 if (!page && (flags & FOLL_DUMP) &&
6511 !hugetlbfs_pagecache_present(h, vma, address))
6512 page = ERR_PTR(-EFAULT);
6517 long hugetlb_change_protection(struct vm_area_struct *vma,
6518 unsigned long address, unsigned long end,
6519 pgprot_t newprot, unsigned long cp_flags)
6521 struct mm_struct *mm = vma->vm_mm;
6522 unsigned long start = address;
6525 struct hstate *h = hstate_vma(vma);
6526 long pages = 0, psize = huge_page_size(h);
6527 bool shared_pmd = false;
6528 struct mmu_notifier_range range;
6529 unsigned long last_addr_mask;
6530 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6531 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6534 * In the case of shared PMDs, the area to flush could be beyond
6535 * start/end. Set range.start/range.end to cover the maximum possible
6536 * range if PMD sharing is possible.
6538 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6540 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6542 BUG_ON(address >= end);
6543 flush_cache_range(vma, range.start, range.end);
6545 mmu_notifier_invalidate_range_start(&range);
6546 hugetlb_vma_lock_write(vma);
6547 i_mmap_lock_write(vma->vm_file->f_mapping);
6548 last_addr_mask = hugetlb_mask_last_page(h);
6549 for (; address < end; address += psize) {
6551 ptep = hugetlb_walk(vma, address, psize);
6554 address |= last_addr_mask;
6558 * Userfaultfd wr-protect requires pgtable
6559 * pre-allocations to install pte markers.
6561 ptep = huge_pte_alloc(mm, vma, address, psize);
6567 ptl = huge_pte_lock(h, mm, ptep);
6568 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6570 * When uffd-wp is enabled on the vma, unshare
6571 * shouldn't happen at all. Warn about it if it
6572 * happened due to some reason.
6574 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6578 address |= last_addr_mask;
6581 pte = huge_ptep_get(ptep);
6582 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6583 /* Nothing to do. */
6584 } else if (unlikely(is_hugetlb_entry_migration(pte))) {
6585 swp_entry_t entry = pte_to_swp_entry(pte);
6586 struct page *page = pfn_swap_entry_to_page(entry);
6589 if (is_writable_migration_entry(entry)) {
6591 entry = make_readable_exclusive_migration_entry(
6594 entry = make_readable_migration_entry(
6596 newpte = swp_entry_to_pte(entry);
6601 newpte = pte_swp_mkuffd_wp(newpte);
6602 else if (uffd_wp_resolve)
6603 newpte = pte_swp_clear_uffd_wp(newpte);
6604 if (!pte_same(pte, newpte))
6605 set_huge_pte_at(mm, address, ptep, newpte, psize);
6606 } else if (unlikely(is_pte_marker(pte))) {
6607 /* No other markers apply for now. */
6608 WARN_ON_ONCE(!pte_marker_uffd_wp(pte));
6609 if (uffd_wp_resolve)
6610 /* Safe to modify directly (non-present->none). */
6611 huge_pte_clear(mm, address, ptep, psize);
6612 } else if (!huge_pte_none(pte)) {
6614 unsigned int shift = huge_page_shift(hstate_vma(vma));
6616 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6617 pte = huge_pte_modify(old_pte, newprot);
6618 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6620 pte = huge_pte_mkuffd_wp(pte);
6621 else if (uffd_wp_resolve)
6622 pte = huge_pte_clear_uffd_wp(pte);
6623 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6627 if (unlikely(uffd_wp))
6628 /* Safe to modify directly (none->non-present). */
6629 set_huge_pte_at(mm, address, ptep,
6630 make_pte_marker(PTE_MARKER_UFFD_WP),
6636 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6637 * may have cleared our pud entry and done put_page on the page table:
6638 * once we release i_mmap_rwsem, another task can do the final put_page
6639 * and that page table be reused and filled with junk. If we actually
6640 * did unshare a page of pmds, flush the range corresponding to the pud.
6643 flush_hugetlb_tlb_range(vma, range.start, range.end);
6645 flush_hugetlb_tlb_range(vma, start, end);
6647 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs() we are
6648 * downgrading page table protection not changing it to point to a new
6651 * See Documentation/mm/mmu_notifier.rst
6653 i_mmap_unlock_write(vma->vm_file->f_mapping);
6654 hugetlb_vma_unlock_write(vma);
6655 mmu_notifier_invalidate_range_end(&range);
6657 return pages > 0 ? (pages << h->order) : pages;
6660 /* Return true if reservation was successful, false otherwise. */
6661 bool hugetlb_reserve_pages(struct inode *inode,
6663 struct vm_area_struct *vma,
6664 vm_flags_t vm_flags)
6666 long chg = -1, add = -1;
6667 struct hstate *h = hstate_inode(inode);
6668 struct hugepage_subpool *spool = subpool_inode(inode);
6669 struct resv_map *resv_map;
6670 struct hugetlb_cgroup *h_cg = NULL;
6671 long gbl_reserve, regions_needed = 0;
6673 /* This should never happen */
6675 VM_WARN(1, "%s called with a negative range\n", __func__);
6680 * vma specific semaphore used for pmd sharing and fault/truncation
6683 hugetlb_vma_lock_alloc(vma);
6686 * Only apply hugepage reservation if asked. At fault time, an
6687 * attempt will be made for VM_NORESERVE to allocate a page
6688 * without using reserves
6690 if (vm_flags & VM_NORESERVE)
6694 * Shared mappings base their reservation on the number of pages that
6695 * are already allocated on behalf of the file. Private mappings need
6696 * to reserve the full area even if read-only as mprotect() may be
6697 * called to make the mapping read-write. Assume !vma is a shm mapping
6699 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6701 * resv_map can not be NULL as hugetlb_reserve_pages is only
6702 * called for inodes for which resv_maps were created (see
6703 * hugetlbfs_get_inode).
6705 resv_map = inode_resv_map(inode);
6707 chg = region_chg(resv_map, from, to, ®ions_needed);
6709 /* Private mapping. */
6710 resv_map = resv_map_alloc();
6716 set_vma_resv_map(vma, resv_map);
6717 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6723 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6724 chg * pages_per_huge_page(h), &h_cg) < 0)
6727 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6728 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6731 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6735 * There must be enough pages in the subpool for the mapping. If
6736 * the subpool has a minimum size, there may be some global
6737 * reservations already in place (gbl_reserve).
6739 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6740 if (gbl_reserve < 0)
6741 goto out_uncharge_cgroup;
6744 * Check enough hugepages are available for the reservation.
6745 * Hand the pages back to the subpool if there are not
6747 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6751 * Account for the reservations made. Shared mappings record regions
6752 * that have reservations as they are shared by multiple VMAs.
6753 * When the last VMA disappears, the region map says how much
6754 * the reservation was and the page cache tells how much of
6755 * the reservation was consumed. Private mappings are per-VMA and
6756 * only the consumed reservations are tracked. When the VMA
6757 * disappears, the original reservation is the VMA size and the
6758 * consumed reservations are stored in the map. Hence, nothing
6759 * else has to be done for private mappings here
6761 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6762 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6764 if (unlikely(add < 0)) {
6765 hugetlb_acct_memory(h, -gbl_reserve);
6767 } else if (unlikely(chg > add)) {
6769 * pages in this range were added to the reserve
6770 * map between region_chg and region_add. This
6771 * indicates a race with alloc_hugetlb_folio. Adjust
6772 * the subpool and reserve counts modified above
6773 * based on the difference.
6778 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6779 * reference to h_cg->css. See comment below for detail.
6781 hugetlb_cgroup_uncharge_cgroup_rsvd(
6783 (chg - add) * pages_per_huge_page(h), h_cg);
6785 rsv_adjust = hugepage_subpool_put_pages(spool,
6787 hugetlb_acct_memory(h, -rsv_adjust);
6790 * The file_regions will hold their own reference to
6791 * h_cg->css. So we should release the reference held
6792 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6795 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6801 /* put back original number of pages, chg */
6802 (void)hugepage_subpool_put_pages(spool, chg);
6803 out_uncharge_cgroup:
6804 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6805 chg * pages_per_huge_page(h), h_cg);
6807 hugetlb_vma_lock_free(vma);
6808 if (!vma || vma->vm_flags & VM_MAYSHARE)
6809 /* Only call region_abort if the region_chg succeeded but the
6810 * region_add failed or didn't run.
6812 if (chg >= 0 && add < 0)
6813 region_abort(resv_map, from, to, regions_needed);
6814 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6815 kref_put(&resv_map->refs, resv_map_release);
6819 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6822 struct hstate *h = hstate_inode(inode);
6823 struct resv_map *resv_map = inode_resv_map(inode);
6825 struct hugepage_subpool *spool = subpool_inode(inode);
6829 * Since this routine can be called in the evict inode path for all
6830 * hugetlbfs inodes, resv_map could be NULL.
6833 chg = region_del(resv_map, start, end);
6835 * region_del() can fail in the rare case where a region
6836 * must be split and another region descriptor can not be
6837 * allocated. If end == LONG_MAX, it will not fail.
6843 spin_lock(&inode->i_lock);
6844 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6845 spin_unlock(&inode->i_lock);
6848 * If the subpool has a minimum size, the number of global
6849 * reservations to be released may be adjusted.
6851 * Note that !resv_map implies freed == 0. So (chg - freed)
6852 * won't go negative.
6854 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6855 hugetlb_acct_memory(h, -gbl_reserve);
6860 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6861 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6862 struct vm_area_struct *vma,
6863 unsigned long addr, pgoff_t idx)
6865 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6867 unsigned long sbase = saddr & PUD_MASK;
6868 unsigned long s_end = sbase + PUD_SIZE;
6870 /* Allow segments to share if only one is marked locked */
6871 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED_MASK;
6872 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED_MASK;
6875 * match the virtual addresses, permission and the alignment of the
6878 * Also, vma_lock (vm_private_data) is required for sharing.
6880 if (pmd_index(addr) != pmd_index(saddr) ||
6881 vm_flags != svm_flags ||
6882 !range_in_vma(svma, sbase, s_end) ||
6883 !svma->vm_private_data)
6889 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6891 unsigned long start = addr & PUD_MASK;
6892 unsigned long end = start + PUD_SIZE;
6894 #ifdef CONFIG_USERFAULTFD
6895 if (uffd_disable_huge_pmd_share(vma))
6899 * check on proper vm_flags and page table alignment
6901 if (!(vma->vm_flags & VM_MAYSHARE))
6903 if (!vma->vm_private_data) /* vma lock required for sharing */
6905 if (!range_in_vma(vma, start, end))
6911 * Determine if start,end range within vma could be mapped by shared pmd.
6912 * If yes, adjust start and end to cover range associated with possible
6913 * shared pmd mappings.
6915 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6916 unsigned long *start, unsigned long *end)
6918 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6919 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6922 * vma needs to span at least one aligned PUD size, and the range
6923 * must be at least partially within in.
6925 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6926 (*end <= v_start) || (*start >= v_end))
6929 /* Extend the range to be PUD aligned for a worst case scenario */
6930 if (*start > v_start)
6931 *start = ALIGN_DOWN(*start, PUD_SIZE);
6934 *end = ALIGN(*end, PUD_SIZE);
6938 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
6939 * and returns the corresponding pte. While this is not necessary for the
6940 * !shared pmd case because we can allocate the pmd later as well, it makes the
6941 * code much cleaner. pmd allocation is essential for the shared case because
6942 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
6943 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
6944 * bad pmd for sharing.
6946 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
6947 unsigned long addr, pud_t *pud)
6949 struct address_space *mapping = vma->vm_file->f_mapping;
6950 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
6952 struct vm_area_struct *svma;
6953 unsigned long saddr;
6957 i_mmap_lock_read(mapping);
6958 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
6962 saddr = page_table_shareable(svma, vma, addr, idx);
6964 spte = hugetlb_walk(svma, saddr,
6965 vma_mmu_pagesize(svma));
6967 get_page(virt_to_page(spte));
6976 spin_lock(&mm->page_table_lock);
6977 if (pud_none(*pud)) {
6978 pud_populate(mm, pud,
6979 (pmd_t *)((unsigned long)spte & PAGE_MASK));
6982 put_page(virt_to_page(spte));
6984 spin_unlock(&mm->page_table_lock);
6986 pte = (pte_t *)pmd_alloc(mm, pud, addr);
6987 i_mmap_unlock_read(mapping);
6992 * unmap huge page backed by shared pte.
6994 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
6995 * indicated by page_count > 1, unmap is achieved by clearing pud and
6996 * decrementing the ref count. If count == 1, the pte page is not shared.
6998 * Called with page table lock held.
7000 * returns: 1 successfully unmapped a shared pte page
7001 * 0 the underlying pte page is not shared, or it is the last user
7003 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7004 unsigned long addr, pte_t *ptep)
7006 pgd_t *pgd = pgd_offset(mm, addr);
7007 p4d_t *p4d = p4d_offset(pgd, addr);
7008 pud_t *pud = pud_offset(p4d, addr);
7010 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7011 hugetlb_vma_assert_locked(vma);
7012 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7013 if (page_count(virt_to_page(ptep)) == 1)
7017 put_page(virt_to_page(ptep));
7022 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7024 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7025 unsigned long addr, pud_t *pud)
7030 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7031 unsigned long addr, pte_t *ptep)
7036 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7037 unsigned long *start, unsigned long *end)
7041 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7045 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7047 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7048 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7049 unsigned long addr, unsigned long sz)
7056 pgd = pgd_offset(mm, addr);
7057 p4d = p4d_alloc(mm, pgd, addr);
7060 pud = pud_alloc(mm, p4d, addr);
7062 if (sz == PUD_SIZE) {
7065 BUG_ON(sz != PMD_SIZE);
7066 if (want_pmd_share(vma, addr) && pud_none(*pud))
7067 pte = huge_pmd_share(mm, vma, addr, pud);
7069 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7074 pte_t pteval = ptep_get_lockless(pte);
7076 BUG_ON(pte_present(pteval) && !pte_huge(pteval));
7083 * huge_pte_offset() - Walk the page table to resolve the hugepage
7084 * entry at address @addr
7086 * Return: Pointer to page table entry (PUD or PMD) for
7087 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7088 * size @sz doesn't match the hugepage size at this level of the page
7091 pte_t *huge_pte_offset(struct mm_struct *mm,
7092 unsigned long addr, unsigned long sz)
7099 pgd = pgd_offset(mm, addr);
7100 if (!pgd_present(*pgd))
7102 p4d = p4d_offset(pgd, addr);
7103 if (!p4d_present(*p4d))
7106 pud = pud_offset(p4d, addr);
7108 /* must be pud huge, non-present or none */
7109 return (pte_t *)pud;
7110 if (!pud_present(*pud))
7112 /* must have a valid entry and size to go further */
7114 pmd = pmd_offset(pud, addr);
7115 /* must be pmd huge, non-present or none */
7116 return (pte_t *)pmd;
7120 * Return a mask that can be used to update an address to the last huge
7121 * page in a page table page mapping size. Used to skip non-present
7122 * page table entries when linearly scanning address ranges. Architectures
7123 * with unique huge page to page table relationships can define their own
7124 * version of this routine.
7126 unsigned long hugetlb_mask_last_page(struct hstate *h)
7128 unsigned long hp_size = huge_page_size(h);
7130 if (hp_size == PUD_SIZE)
7131 return P4D_SIZE - PUD_SIZE;
7132 else if (hp_size == PMD_SIZE)
7133 return PUD_SIZE - PMD_SIZE;
7140 /* See description above. Architectures can provide their own version. */
7141 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7143 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7144 if (huge_page_size(h) == PMD_SIZE)
7145 return PUD_SIZE - PMD_SIZE;
7150 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7153 * These functions are overwritable if your architecture needs its own
7156 bool isolate_hugetlb(struct folio *folio, struct list_head *list)
7160 spin_lock_irq(&hugetlb_lock);
7161 if (!folio_test_hugetlb(folio) ||
7162 !folio_test_hugetlb_migratable(folio) ||
7163 !folio_try_get(folio)) {
7167 folio_clear_hugetlb_migratable(folio);
7168 list_move_tail(&folio->lru, list);
7170 spin_unlock_irq(&hugetlb_lock);
7174 int get_hwpoison_hugetlb_folio(struct folio *folio, bool *hugetlb, bool unpoison)
7179 spin_lock_irq(&hugetlb_lock);
7180 if (folio_test_hugetlb(folio)) {
7182 if (folio_test_hugetlb_freed(folio))
7184 else if (folio_test_hugetlb_migratable(folio) || unpoison)
7185 ret = folio_try_get(folio);
7189 spin_unlock_irq(&hugetlb_lock);
7193 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7194 bool *migratable_cleared)
7198 spin_lock_irq(&hugetlb_lock);
7199 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7200 spin_unlock_irq(&hugetlb_lock);
7204 void folio_putback_active_hugetlb(struct folio *folio)
7206 spin_lock_irq(&hugetlb_lock);
7207 folio_set_hugetlb_migratable(folio);
7208 list_move_tail(&folio->lru, &(folio_hstate(folio))->hugepage_activelist);
7209 spin_unlock_irq(&hugetlb_lock);
7213 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7215 struct hstate *h = folio_hstate(old_folio);
7217 hugetlb_cgroup_migrate(old_folio, new_folio);
7218 set_page_owner_migrate_reason(&new_folio->page, reason);
7221 * transfer temporary state of the new hugetlb folio. This is
7222 * reverse to other transitions because the newpage is going to
7223 * be final while the old one will be freed so it takes over
7224 * the temporary status.
7226 * Also note that we have to transfer the per-node surplus state
7227 * here as well otherwise the global surplus count will not match
7230 if (folio_test_hugetlb_temporary(new_folio)) {
7231 int old_nid = folio_nid(old_folio);
7232 int new_nid = folio_nid(new_folio);
7234 folio_set_hugetlb_temporary(old_folio);
7235 folio_clear_hugetlb_temporary(new_folio);
7239 * There is no need to transfer the per-node surplus state
7240 * when we do not cross the node.
7242 if (new_nid == old_nid)
7244 spin_lock_irq(&hugetlb_lock);
7245 if (h->surplus_huge_pages_node[old_nid]) {
7246 h->surplus_huge_pages_node[old_nid]--;
7247 h->surplus_huge_pages_node[new_nid]++;
7249 spin_unlock_irq(&hugetlb_lock);
7253 static void hugetlb_unshare_pmds(struct vm_area_struct *vma,
7254 unsigned long start,
7257 struct hstate *h = hstate_vma(vma);
7258 unsigned long sz = huge_page_size(h);
7259 struct mm_struct *mm = vma->vm_mm;
7260 struct mmu_notifier_range range;
7261 unsigned long address;
7265 if (!(vma->vm_flags & VM_MAYSHARE))
7271 flush_cache_range(vma, start, end);
7273 * No need to call adjust_range_if_pmd_sharing_possible(), because
7274 * we have already done the PUD_SIZE alignment.
7276 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, mm,
7278 mmu_notifier_invalidate_range_start(&range);
7279 hugetlb_vma_lock_write(vma);
7280 i_mmap_lock_write(vma->vm_file->f_mapping);
7281 for (address = start; address < end; address += PUD_SIZE) {
7282 ptep = hugetlb_walk(vma, address, sz);
7285 ptl = huge_pte_lock(h, mm, ptep);
7286 huge_pmd_unshare(mm, vma, address, ptep);
7289 flush_hugetlb_tlb_range(vma, start, end);
7290 i_mmap_unlock_write(vma->vm_file->f_mapping);
7291 hugetlb_vma_unlock_write(vma);
7293 * No need to call mmu_notifier_arch_invalidate_secondary_tlbs(), see
7294 * Documentation/mm/mmu_notifier.rst.
7296 mmu_notifier_invalidate_range_end(&range);
7300 * This function will unconditionally remove all the shared pmd pgtable entries
7301 * within the specific vma for a hugetlbfs memory range.
7303 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7305 hugetlb_unshare_pmds(vma, ALIGN(vma->vm_start, PUD_SIZE),
7306 ALIGN_DOWN(vma->vm_end, PUD_SIZE));
7310 static bool cma_reserve_called __initdata;
7312 static int __init cmdline_parse_hugetlb_cma(char *p)
7319 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7322 if (s[count] == ':') {
7323 if (tmp >= MAX_NUMNODES)
7325 nid = array_index_nospec(tmp, MAX_NUMNODES);
7328 tmp = memparse(s, &s);
7329 hugetlb_cma_size_in_node[nid] = tmp;
7330 hugetlb_cma_size += tmp;
7333 * Skip the separator if have one, otherwise
7334 * break the parsing.
7341 hugetlb_cma_size = memparse(p, &p);
7349 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7351 void __init hugetlb_cma_reserve(int order)
7353 unsigned long size, reserved, per_node;
7354 bool node_specific_cma_alloc = false;
7357 cma_reserve_called = true;
7359 if (!hugetlb_cma_size)
7362 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7363 if (hugetlb_cma_size_in_node[nid] == 0)
7366 if (!node_online(nid)) {
7367 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7368 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7369 hugetlb_cma_size_in_node[nid] = 0;
7373 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7374 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7375 nid, (PAGE_SIZE << order) / SZ_1M);
7376 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7377 hugetlb_cma_size_in_node[nid] = 0;
7379 node_specific_cma_alloc = true;
7383 /* Validate the CMA size again in case some invalid nodes specified. */
7384 if (!hugetlb_cma_size)
7387 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7388 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7389 (PAGE_SIZE << order) / SZ_1M);
7390 hugetlb_cma_size = 0;
7394 if (!node_specific_cma_alloc) {
7396 * If 3 GB area is requested on a machine with 4 numa nodes,
7397 * let's allocate 1 GB on first three nodes and ignore the last one.
7399 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7400 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7401 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7405 for_each_online_node(nid) {
7407 char name[CMA_MAX_NAME];
7409 if (node_specific_cma_alloc) {
7410 if (hugetlb_cma_size_in_node[nid] == 0)
7413 size = hugetlb_cma_size_in_node[nid];
7415 size = min(per_node, hugetlb_cma_size - reserved);
7418 size = round_up(size, PAGE_SIZE << order);
7420 snprintf(name, sizeof(name), "hugetlb%d", nid);
7422 * Note that 'order per bit' is based on smallest size that
7423 * may be returned to CMA allocator in the case of
7424 * huge page demotion.
7426 res = cma_declare_contiguous_nid(0, size, 0,
7427 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7429 &hugetlb_cma[nid], nid);
7431 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7437 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7440 if (reserved >= hugetlb_cma_size)
7446 * hugetlb_cma_size is used to determine if allocations from
7447 * cma are possible. Set to zero if no cma regions are set up.
7449 hugetlb_cma_size = 0;
7452 static void __init hugetlb_cma_check(void)
7454 if (!hugetlb_cma_size || cma_reserve_called)
7457 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7460 #endif /* CONFIG_CMA */