Merge branch 'for-4.2/sg' of git://git.kernel.dk/linux-block
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/bootmem.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/rmap.h>
23 #include <linux/swap.h>
24 #include <linux/swapops.h>
25 #include <linux/page-isolation.h>
26 #include <linux/jhash.h>
27
28 #include <asm/page.h>
29 #include <asm/pgtable.h>
30 #include <asm/tlb.h>
31
32 #include <linux/io.h>
33 #include <linux/hugetlb.h>
34 #include <linux/hugetlb_cgroup.h>
35 #include <linux/node.h>
36 #include "internal.h"
37
38 int hugepages_treat_as_movable;
39
40 int hugetlb_max_hstate __read_mostly;
41 unsigned int default_hstate_idx;
42 struct hstate hstates[HUGE_MAX_HSTATE];
43 /*
44  * Minimum page order among possible hugepage sizes, set to a proper value
45  * at boot time.
46  */
47 static unsigned int minimum_order __read_mostly = UINT_MAX;
48
49 __initdata LIST_HEAD(huge_boot_pages);
50
51 /* for command line parsing */
52 static struct hstate * __initdata parsed_hstate;
53 static unsigned long __initdata default_hstate_max_huge_pages;
54 static unsigned long __initdata default_hstate_size;
55
56 /*
57  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
58  * free_huge_pages, and surplus_huge_pages.
59  */
60 DEFINE_SPINLOCK(hugetlb_lock);
61
62 /*
63  * Serializes faults on the same logical page.  This is used to
64  * prevent spurious OOMs when the hugepage pool is fully utilized.
65  */
66 static int num_fault_mutexes;
67 static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
68
69 /* Forward declaration */
70 static int hugetlb_acct_memory(struct hstate *h, long delta);
71
72 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
73 {
74         bool free = (spool->count == 0) && (spool->used_hpages == 0);
75
76         spin_unlock(&spool->lock);
77
78         /* If no pages are used, and no other handles to the subpool
79          * remain, give up any reservations mased on minimum size and
80          * free the subpool */
81         if (free) {
82                 if (spool->min_hpages != -1)
83                         hugetlb_acct_memory(spool->hstate,
84                                                 -spool->min_hpages);
85                 kfree(spool);
86         }
87 }
88
89 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
90                                                 long min_hpages)
91 {
92         struct hugepage_subpool *spool;
93
94         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
95         if (!spool)
96                 return NULL;
97
98         spin_lock_init(&spool->lock);
99         spool->count = 1;
100         spool->max_hpages = max_hpages;
101         spool->hstate = h;
102         spool->min_hpages = min_hpages;
103
104         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
105                 kfree(spool);
106                 return NULL;
107         }
108         spool->rsv_hpages = min_hpages;
109
110         return spool;
111 }
112
113 void hugepage_put_subpool(struct hugepage_subpool *spool)
114 {
115         spin_lock(&spool->lock);
116         BUG_ON(!spool->count);
117         spool->count--;
118         unlock_or_release_subpool(spool);
119 }
120
121 /*
122  * Subpool accounting for allocating and reserving pages.
123  * Return -ENOMEM if there are not enough resources to satisfy the
124  * the request.  Otherwise, return the number of pages by which the
125  * global pools must be adjusted (upward).  The returned value may
126  * only be different than the passed value (delta) in the case where
127  * a subpool minimum size must be manitained.
128  */
129 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
130                                       long delta)
131 {
132         long ret = delta;
133
134         if (!spool)
135                 return ret;
136
137         spin_lock(&spool->lock);
138
139         if (spool->max_hpages != -1) {          /* maximum size accounting */
140                 if ((spool->used_hpages + delta) <= spool->max_hpages)
141                         spool->used_hpages += delta;
142                 else {
143                         ret = -ENOMEM;
144                         goto unlock_ret;
145                 }
146         }
147
148         if (spool->min_hpages != -1) {          /* minimum size accounting */
149                 if (delta > spool->rsv_hpages) {
150                         /*
151                          * Asking for more reserves than those already taken on
152                          * behalf of subpool.  Return difference.
153                          */
154                         ret = delta - spool->rsv_hpages;
155                         spool->rsv_hpages = 0;
156                 } else {
157                         ret = 0;        /* reserves already accounted for */
158                         spool->rsv_hpages -= delta;
159                 }
160         }
161
162 unlock_ret:
163         spin_unlock(&spool->lock);
164         return ret;
165 }
166
167 /*
168  * Subpool accounting for freeing and unreserving pages.
169  * Return the number of global page reservations that must be dropped.
170  * The return value may only be different than the passed value (delta)
171  * in the case where a subpool minimum size must be maintained.
172  */
173 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
174                                        long delta)
175 {
176         long ret = delta;
177
178         if (!spool)
179                 return delta;
180
181         spin_lock(&spool->lock);
182
183         if (spool->max_hpages != -1)            /* maximum size accounting */
184                 spool->used_hpages -= delta;
185
186         if (spool->min_hpages != -1) {          /* minimum size accounting */
187                 if (spool->rsv_hpages + delta <= spool->min_hpages)
188                         ret = 0;
189                 else
190                         ret = spool->rsv_hpages + delta - spool->min_hpages;
191
192                 spool->rsv_hpages += delta;
193                 if (spool->rsv_hpages > spool->min_hpages)
194                         spool->rsv_hpages = spool->min_hpages;
195         }
196
197         /*
198          * If hugetlbfs_put_super couldn't free spool due to an outstanding
199          * quota reference, free it now.
200          */
201         unlock_or_release_subpool(spool);
202
203         return ret;
204 }
205
206 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
207 {
208         return HUGETLBFS_SB(inode->i_sb)->spool;
209 }
210
211 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
212 {
213         return subpool_inode(file_inode(vma->vm_file));
214 }
215
216 /*
217  * Region tracking -- allows tracking of reservations and instantiated pages
218  *                    across the pages in a mapping.
219  *
220  * The region data structures are embedded into a resv_map and protected
221  * by a resv_map's lock.  The set of regions within the resv_map represent
222  * reservations for huge pages, or huge pages that have already been
223  * instantiated within the map.  The from and to elements are huge page
224  * indicies into the associated mapping.  from indicates the starting index
225  * of the region.  to represents the first index past the end of  the region.
226  *
227  * For example, a file region structure with from == 0 and to == 4 represents
228  * four huge pages in a mapping.  It is important to note that the to element
229  * represents the first element past the end of the region. This is used in
230  * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
231  *
232  * Interval notation of the form [from, to) will be used to indicate that
233  * the endpoint from is inclusive and to is exclusive.
234  */
235 struct file_region {
236         struct list_head link;
237         long from;
238         long to;
239 };
240
241 /*
242  * Add the huge page range represented by [f, t) to the reserve
243  * map.  Existing regions will be expanded to accommodate the
244  * specified range.  We know only existing regions need to be
245  * expanded, because region_add is only called after region_chg
246  * with the same range.  If a new file_region structure must
247  * be allocated, it is done in region_chg.
248  *
249  * Return the number of new huge pages added to the map.  This
250  * number is greater than or equal to zero.
251  */
252 static long region_add(struct resv_map *resv, long f, long t)
253 {
254         struct list_head *head = &resv->regions;
255         struct file_region *rg, *nrg, *trg;
256         long add = 0;
257
258         spin_lock(&resv->lock);
259         /* Locate the region we are either in or before. */
260         list_for_each_entry(rg, head, link)
261                 if (f <= rg->to)
262                         break;
263
264         /* Round our left edge to the current segment if it encloses us. */
265         if (f > rg->from)
266                 f = rg->from;
267
268         /* Check for and consume any regions we now overlap with. */
269         nrg = rg;
270         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
271                 if (&rg->link == head)
272                         break;
273                 if (rg->from > t)
274                         break;
275
276                 /* If this area reaches higher then extend our area to
277                  * include it completely.  If this is not the first area
278                  * which we intend to reuse, free it. */
279                 if (rg->to > t)
280                         t = rg->to;
281                 if (rg != nrg) {
282                         /* Decrement return value by the deleted range.
283                          * Another range will span this area so that by
284                          * end of routine add will be >= zero
285                          */
286                         add -= (rg->to - rg->from);
287                         list_del(&rg->link);
288                         kfree(rg);
289                 }
290         }
291
292         add += (nrg->from - f);         /* Added to beginning of region */
293         nrg->from = f;
294         add += t - nrg->to;             /* Added to end of region */
295         nrg->to = t;
296
297         spin_unlock(&resv->lock);
298         VM_BUG_ON(add < 0);
299         return add;
300 }
301
302 /*
303  * Examine the existing reserve map and determine how many
304  * huge pages in the specified range [f, t) are NOT currently
305  * represented.  This routine is called before a subsequent
306  * call to region_add that will actually modify the reserve
307  * map to add the specified range [f, t).  region_chg does
308  * not change the number of huge pages represented by the
309  * map.  However, if the existing regions in the map can not
310  * be expanded to represent the new range, a new file_region
311  * structure is added to the map as a placeholder.  This is
312  * so that the subsequent region_add call will have all the
313  * regions it needs and will not fail.
314  *
315  * Returns the number of huge pages that need to be added
316  * to the existing reservation map for the range [f, t).
317  * This number is greater or equal to zero.  -ENOMEM is
318  * returned if a new file_region structure is needed and can
319  * not be allocated.
320  */
321 static long region_chg(struct resv_map *resv, long f, long t)
322 {
323         struct list_head *head = &resv->regions;
324         struct file_region *rg, *nrg = NULL;
325         long chg = 0;
326
327 retry:
328         spin_lock(&resv->lock);
329         /* Locate the region we are before or in. */
330         list_for_each_entry(rg, head, link)
331                 if (f <= rg->to)
332                         break;
333
334         /* If we are below the current region then a new region is required.
335          * Subtle, allocate a new region at the position but make it zero
336          * size such that we can guarantee to record the reservation. */
337         if (&rg->link == head || t < rg->from) {
338                 if (!nrg) {
339                         spin_unlock(&resv->lock);
340                         nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
341                         if (!nrg)
342                                 return -ENOMEM;
343
344                         nrg->from = f;
345                         nrg->to   = f;
346                         INIT_LIST_HEAD(&nrg->link);
347                         goto retry;
348                 }
349
350                 list_add(&nrg->link, rg->link.prev);
351                 chg = t - f;
352                 goto out_nrg;
353         }
354
355         /* Round our left edge to the current segment if it encloses us. */
356         if (f > rg->from)
357                 f = rg->from;
358         chg = t - f;
359
360         /* Check for and consume any regions we now overlap with. */
361         list_for_each_entry(rg, rg->link.prev, link) {
362                 if (&rg->link == head)
363                         break;
364                 if (rg->from > t)
365                         goto out;
366
367                 /* We overlap with this area, if it extends further than
368                  * us then we must extend ourselves.  Account for its
369                  * existing reservation. */
370                 if (rg->to > t) {
371                         chg += rg->to - t;
372                         t = rg->to;
373                 }
374                 chg -= rg->to - rg->from;
375         }
376
377 out:
378         spin_unlock(&resv->lock);
379         /*  We already know we raced and no longer need the new region */
380         kfree(nrg);
381         return chg;
382 out_nrg:
383         spin_unlock(&resv->lock);
384         return chg;
385 }
386
387 /*
388  * Truncate the reserve map at index 'end'.  Modify/truncate any
389  * region which contains end.  Delete any regions past end.
390  * Return the number of huge pages removed from the map.
391  */
392 static long region_truncate(struct resv_map *resv, long end)
393 {
394         struct list_head *head = &resv->regions;
395         struct file_region *rg, *trg;
396         long chg = 0;
397
398         spin_lock(&resv->lock);
399         /* Locate the region we are either in or before. */
400         list_for_each_entry(rg, head, link)
401                 if (end <= rg->to)
402                         break;
403         if (&rg->link == head)
404                 goto out;
405
406         /* If we are in the middle of a region then adjust it. */
407         if (end > rg->from) {
408                 chg = rg->to - end;
409                 rg->to = end;
410                 rg = list_entry(rg->link.next, typeof(*rg), link);
411         }
412
413         /* Drop any remaining regions. */
414         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
415                 if (&rg->link == head)
416                         break;
417                 chg += rg->to - rg->from;
418                 list_del(&rg->link);
419                 kfree(rg);
420         }
421
422 out:
423         spin_unlock(&resv->lock);
424         return chg;
425 }
426
427 /*
428  * Count and return the number of huge pages in the reserve map
429  * that intersect with the range [f, t).
430  */
431 static long region_count(struct resv_map *resv, long f, long t)
432 {
433         struct list_head *head = &resv->regions;
434         struct file_region *rg;
435         long chg = 0;
436
437         spin_lock(&resv->lock);
438         /* Locate each segment we overlap with, and count that overlap. */
439         list_for_each_entry(rg, head, link) {
440                 long seg_from;
441                 long seg_to;
442
443                 if (rg->to <= f)
444                         continue;
445                 if (rg->from >= t)
446                         break;
447
448                 seg_from = max(rg->from, f);
449                 seg_to = min(rg->to, t);
450
451                 chg += seg_to - seg_from;
452         }
453         spin_unlock(&resv->lock);
454
455         return chg;
456 }
457
458 /*
459  * Convert the address within this vma to the page offset within
460  * the mapping, in pagecache page units; huge pages here.
461  */
462 static pgoff_t vma_hugecache_offset(struct hstate *h,
463                         struct vm_area_struct *vma, unsigned long address)
464 {
465         return ((address - vma->vm_start) >> huge_page_shift(h)) +
466                         (vma->vm_pgoff >> huge_page_order(h));
467 }
468
469 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
470                                      unsigned long address)
471 {
472         return vma_hugecache_offset(hstate_vma(vma), vma, address);
473 }
474
475 /*
476  * Return the size of the pages allocated when backing a VMA. In the majority
477  * cases this will be same size as used by the page table entries.
478  */
479 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
480 {
481         struct hstate *hstate;
482
483         if (!is_vm_hugetlb_page(vma))
484                 return PAGE_SIZE;
485
486         hstate = hstate_vma(vma);
487
488         return 1UL << huge_page_shift(hstate);
489 }
490 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
491
492 /*
493  * Return the page size being used by the MMU to back a VMA. In the majority
494  * of cases, the page size used by the kernel matches the MMU size. On
495  * architectures where it differs, an architecture-specific version of this
496  * function is required.
497  */
498 #ifndef vma_mmu_pagesize
499 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
500 {
501         return vma_kernel_pagesize(vma);
502 }
503 #endif
504
505 /*
506  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
507  * bits of the reservation map pointer, which are always clear due to
508  * alignment.
509  */
510 #define HPAGE_RESV_OWNER    (1UL << 0)
511 #define HPAGE_RESV_UNMAPPED (1UL << 1)
512 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
513
514 /*
515  * These helpers are used to track how many pages are reserved for
516  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
517  * is guaranteed to have their future faults succeed.
518  *
519  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
520  * the reserve counters are updated with the hugetlb_lock held. It is safe
521  * to reset the VMA at fork() time as it is not in use yet and there is no
522  * chance of the global counters getting corrupted as a result of the values.
523  *
524  * The private mapping reservation is represented in a subtly different
525  * manner to a shared mapping.  A shared mapping has a region map associated
526  * with the underlying file, this region map represents the backing file
527  * pages which have ever had a reservation assigned which this persists even
528  * after the page is instantiated.  A private mapping has a region map
529  * associated with the original mmap which is attached to all VMAs which
530  * reference it, this region map represents those offsets which have consumed
531  * reservation ie. where pages have been instantiated.
532  */
533 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
534 {
535         return (unsigned long)vma->vm_private_data;
536 }
537
538 static void set_vma_private_data(struct vm_area_struct *vma,
539                                                         unsigned long value)
540 {
541         vma->vm_private_data = (void *)value;
542 }
543
544 struct resv_map *resv_map_alloc(void)
545 {
546         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
547         if (!resv_map)
548                 return NULL;
549
550         kref_init(&resv_map->refs);
551         spin_lock_init(&resv_map->lock);
552         INIT_LIST_HEAD(&resv_map->regions);
553
554         return resv_map;
555 }
556
557 void resv_map_release(struct kref *ref)
558 {
559         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
560
561         /* Clear out any active regions before we release the map. */
562         region_truncate(resv_map, 0);
563         kfree(resv_map);
564 }
565
566 static inline struct resv_map *inode_resv_map(struct inode *inode)
567 {
568         return inode->i_mapping->private_data;
569 }
570
571 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
572 {
573         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
574         if (vma->vm_flags & VM_MAYSHARE) {
575                 struct address_space *mapping = vma->vm_file->f_mapping;
576                 struct inode *inode = mapping->host;
577
578                 return inode_resv_map(inode);
579
580         } else {
581                 return (struct resv_map *)(get_vma_private_data(vma) &
582                                                         ~HPAGE_RESV_MASK);
583         }
584 }
585
586 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
587 {
588         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
589         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
590
591         set_vma_private_data(vma, (get_vma_private_data(vma) &
592                                 HPAGE_RESV_MASK) | (unsigned long)map);
593 }
594
595 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
596 {
597         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
598         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
599
600         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
601 }
602
603 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
604 {
605         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
606
607         return (get_vma_private_data(vma) & flag) != 0;
608 }
609
610 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
611 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
612 {
613         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
614         if (!(vma->vm_flags & VM_MAYSHARE))
615                 vma->vm_private_data = (void *)0;
616 }
617
618 /* Returns true if the VMA has associated reserve pages */
619 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
620 {
621         if (vma->vm_flags & VM_NORESERVE) {
622                 /*
623                  * This address is already reserved by other process(chg == 0),
624                  * so, we should decrement reserved count. Without decrementing,
625                  * reserve count remains after releasing inode, because this
626                  * allocated page will go into page cache and is regarded as
627                  * coming from reserved pool in releasing step.  Currently, we
628                  * don't have any other solution to deal with this situation
629                  * properly, so add work-around here.
630                  */
631                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
632                         return 1;
633                 else
634                         return 0;
635         }
636
637         /* Shared mappings always use reserves */
638         if (vma->vm_flags & VM_MAYSHARE)
639                 return 1;
640
641         /*
642          * Only the process that called mmap() has reserves for
643          * private mappings.
644          */
645         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
646                 return 1;
647
648         return 0;
649 }
650
651 static void enqueue_huge_page(struct hstate *h, struct page *page)
652 {
653         int nid = page_to_nid(page);
654         list_move(&page->lru, &h->hugepage_freelists[nid]);
655         h->free_huge_pages++;
656         h->free_huge_pages_node[nid]++;
657 }
658
659 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
660 {
661         struct page *page;
662
663         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
664                 if (!is_migrate_isolate_page(page))
665                         break;
666         /*
667          * if 'non-isolated free hugepage' not found on the list,
668          * the allocation fails.
669          */
670         if (&h->hugepage_freelists[nid] == &page->lru)
671                 return NULL;
672         list_move(&page->lru, &h->hugepage_activelist);
673         set_page_refcounted(page);
674         h->free_huge_pages--;
675         h->free_huge_pages_node[nid]--;
676         return page;
677 }
678
679 /* Movability of hugepages depends on migration support. */
680 static inline gfp_t htlb_alloc_mask(struct hstate *h)
681 {
682         if (hugepages_treat_as_movable || hugepage_migration_supported(h))
683                 return GFP_HIGHUSER_MOVABLE;
684         else
685                 return GFP_HIGHUSER;
686 }
687
688 static struct page *dequeue_huge_page_vma(struct hstate *h,
689                                 struct vm_area_struct *vma,
690                                 unsigned long address, int avoid_reserve,
691                                 long chg)
692 {
693         struct page *page = NULL;
694         struct mempolicy *mpol;
695         nodemask_t *nodemask;
696         struct zonelist *zonelist;
697         struct zone *zone;
698         struct zoneref *z;
699         unsigned int cpuset_mems_cookie;
700
701         /*
702          * A child process with MAP_PRIVATE mappings created by their parent
703          * have no page reserves. This check ensures that reservations are
704          * not "stolen". The child may still get SIGKILLed
705          */
706         if (!vma_has_reserves(vma, chg) &&
707                         h->free_huge_pages - h->resv_huge_pages == 0)
708                 goto err;
709
710         /* If reserves cannot be used, ensure enough pages are in the pool */
711         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
712                 goto err;
713
714 retry_cpuset:
715         cpuset_mems_cookie = read_mems_allowed_begin();
716         zonelist = huge_zonelist(vma, address,
717                                         htlb_alloc_mask(h), &mpol, &nodemask);
718
719         for_each_zone_zonelist_nodemask(zone, z, zonelist,
720                                                 MAX_NR_ZONES - 1, nodemask) {
721                 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
722                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
723                         if (page) {
724                                 if (avoid_reserve)
725                                         break;
726                                 if (!vma_has_reserves(vma, chg))
727                                         break;
728
729                                 SetPagePrivate(page);
730                                 h->resv_huge_pages--;
731                                 break;
732                         }
733                 }
734         }
735
736         mpol_cond_put(mpol);
737         if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
738                 goto retry_cpuset;
739         return page;
740
741 err:
742         return NULL;
743 }
744
745 /*
746  * common helper functions for hstate_next_node_to_{alloc|free}.
747  * We may have allocated or freed a huge page based on a different
748  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
749  * be outside of *nodes_allowed.  Ensure that we use an allowed
750  * node for alloc or free.
751  */
752 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
753 {
754         nid = next_node(nid, *nodes_allowed);
755         if (nid == MAX_NUMNODES)
756                 nid = first_node(*nodes_allowed);
757         VM_BUG_ON(nid >= MAX_NUMNODES);
758
759         return nid;
760 }
761
762 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
763 {
764         if (!node_isset(nid, *nodes_allowed))
765                 nid = next_node_allowed(nid, nodes_allowed);
766         return nid;
767 }
768
769 /*
770  * returns the previously saved node ["this node"] from which to
771  * allocate a persistent huge page for the pool and advance the
772  * next node from which to allocate, handling wrap at end of node
773  * mask.
774  */
775 static int hstate_next_node_to_alloc(struct hstate *h,
776                                         nodemask_t *nodes_allowed)
777 {
778         int nid;
779
780         VM_BUG_ON(!nodes_allowed);
781
782         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
783         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
784
785         return nid;
786 }
787
788 /*
789  * helper for free_pool_huge_page() - return the previously saved
790  * node ["this node"] from which to free a huge page.  Advance the
791  * next node id whether or not we find a free huge page to free so
792  * that the next attempt to free addresses the next node.
793  */
794 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
795 {
796         int nid;
797
798         VM_BUG_ON(!nodes_allowed);
799
800         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
801         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
802
803         return nid;
804 }
805
806 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
807         for (nr_nodes = nodes_weight(*mask);                            \
808                 nr_nodes > 0 &&                                         \
809                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
810                 nr_nodes--)
811
812 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
813         for (nr_nodes = nodes_weight(*mask);                            \
814                 nr_nodes > 0 &&                                         \
815                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
816                 nr_nodes--)
817
818 #if defined(CONFIG_CMA) && defined(CONFIG_X86_64)
819 static void destroy_compound_gigantic_page(struct page *page,
820                                         unsigned long order)
821 {
822         int i;
823         int nr_pages = 1 << order;
824         struct page *p = page + 1;
825
826         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
827                 __ClearPageTail(p);
828                 set_page_refcounted(p);
829                 p->first_page = NULL;
830         }
831
832         set_compound_order(page, 0);
833         __ClearPageHead(page);
834 }
835
836 static void free_gigantic_page(struct page *page, unsigned order)
837 {
838         free_contig_range(page_to_pfn(page), 1 << order);
839 }
840
841 static int __alloc_gigantic_page(unsigned long start_pfn,
842                                 unsigned long nr_pages)
843 {
844         unsigned long end_pfn = start_pfn + nr_pages;
845         return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
846 }
847
848 static bool pfn_range_valid_gigantic(unsigned long start_pfn,
849                                 unsigned long nr_pages)
850 {
851         unsigned long i, end_pfn = start_pfn + nr_pages;
852         struct page *page;
853
854         for (i = start_pfn; i < end_pfn; i++) {
855                 if (!pfn_valid(i))
856                         return false;
857
858                 page = pfn_to_page(i);
859
860                 if (PageReserved(page))
861                         return false;
862
863                 if (page_count(page) > 0)
864                         return false;
865
866                 if (PageHuge(page))
867                         return false;
868         }
869
870         return true;
871 }
872
873 static bool zone_spans_last_pfn(const struct zone *zone,
874                         unsigned long start_pfn, unsigned long nr_pages)
875 {
876         unsigned long last_pfn = start_pfn + nr_pages - 1;
877         return zone_spans_pfn(zone, last_pfn);
878 }
879
880 static struct page *alloc_gigantic_page(int nid, unsigned order)
881 {
882         unsigned long nr_pages = 1 << order;
883         unsigned long ret, pfn, flags;
884         struct zone *z;
885
886         z = NODE_DATA(nid)->node_zones;
887         for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
888                 spin_lock_irqsave(&z->lock, flags);
889
890                 pfn = ALIGN(z->zone_start_pfn, nr_pages);
891                 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
892                         if (pfn_range_valid_gigantic(pfn, nr_pages)) {
893                                 /*
894                                  * We release the zone lock here because
895                                  * alloc_contig_range() will also lock the zone
896                                  * at some point. If there's an allocation
897                                  * spinning on this lock, it may win the race
898                                  * and cause alloc_contig_range() to fail...
899                                  */
900                                 spin_unlock_irqrestore(&z->lock, flags);
901                                 ret = __alloc_gigantic_page(pfn, nr_pages);
902                                 if (!ret)
903                                         return pfn_to_page(pfn);
904                                 spin_lock_irqsave(&z->lock, flags);
905                         }
906                         pfn += nr_pages;
907                 }
908
909                 spin_unlock_irqrestore(&z->lock, flags);
910         }
911
912         return NULL;
913 }
914
915 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
916 static void prep_compound_gigantic_page(struct page *page, unsigned long order);
917
918 static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
919 {
920         struct page *page;
921
922         page = alloc_gigantic_page(nid, huge_page_order(h));
923         if (page) {
924                 prep_compound_gigantic_page(page, huge_page_order(h));
925                 prep_new_huge_page(h, page, nid);
926         }
927
928         return page;
929 }
930
931 static int alloc_fresh_gigantic_page(struct hstate *h,
932                                 nodemask_t *nodes_allowed)
933 {
934         struct page *page = NULL;
935         int nr_nodes, node;
936
937         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
938                 page = alloc_fresh_gigantic_page_node(h, node);
939                 if (page)
940                         return 1;
941         }
942
943         return 0;
944 }
945
946 static inline bool gigantic_page_supported(void) { return true; }
947 #else
948 static inline bool gigantic_page_supported(void) { return false; }
949 static inline void free_gigantic_page(struct page *page, unsigned order) { }
950 static inline void destroy_compound_gigantic_page(struct page *page,
951                                                 unsigned long order) { }
952 static inline int alloc_fresh_gigantic_page(struct hstate *h,
953                                         nodemask_t *nodes_allowed) { return 0; }
954 #endif
955
956 static void update_and_free_page(struct hstate *h, struct page *page)
957 {
958         int i;
959
960         if (hstate_is_gigantic(h) && !gigantic_page_supported())
961                 return;
962
963         h->nr_huge_pages--;
964         h->nr_huge_pages_node[page_to_nid(page)]--;
965         for (i = 0; i < pages_per_huge_page(h); i++) {
966                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
967                                 1 << PG_referenced | 1 << PG_dirty |
968                                 1 << PG_active | 1 << PG_private |
969                                 1 << PG_writeback);
970         }
971         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
972         set_compound_page_dtor(page, NULL);
973         set_page_refcounted(page);
974         if (hstate_is_gigantic(h)) {
975                 destroy_compound_gigantic_page(page, huge_page_order(h));
976                 free_gigantic_page(page, huge_page_order(h));
977         } else {
978                 arch_release_hugepage(page);
979                 __free_pages(page, huge_page_order(h));
980         }
981 }
982
983 struct hstate *size_to_hstate(unsigned long size)
984 {
985         struct hstate *h;
986
987         for_each_hstate(h) {
988                 if (huge_page_size(h) == size)
989                         return h;
990         }
991         return NULL;
992 }
993
994 /*
995  * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
996  * to hstate->hugepage_activelist.)
997  *
998  * This function can be called for tail pages, but never returns true for them.
999  */
1000 bool page_huge_active(struct page *page)
1001 {
1002         VM_BUG_ON_PAGE(!PageHuge(page), page);
1003         return PageHead(page) && PagePrivate(&page[1]);
1004 }
1005
1006 /* never called for tail page */
1007 static void set_page_huge_active(struct page *page)
1008 {
1009         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1010         SetPagePrivate(&page[1]);
1011 }
1012
1013 static void clear_page_huge_active(struct page *page)
1014 {
1015         VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1016         ClearPagePrivate(&page[1]);
1017 }
1018
1019 void free_huge_page(struct page *page)
1020 {
1021         /*
1022          * Can't pass hstate in here because it is called from the
1023          * compound page destructor.
1024          */
1025         struct hstate *h = page_hstate(page);
1026         int nid = page_to_nid(page);
1027         struct hugepage_subpool *spool =
1028                 (struct hugepage_subpool *)page_private(page);
1029         bool restore_reserve;
1030
1031         set_page_private(page, 0);
1032         page->mapping = NULL;
1033         BUG_ON(page_count(page));
1034         BUG_ON(page_mapcount(page));
1035         restore_reserve = PagePrivate(page);
1036         ClearPagePrivate(page);
1037
1038         /*
1039          * A return code of zero implies that the subpool will be under its
1040          * minimum size if the reservation is not restored after page is free.
1041          * Therefore, force restore_reserve operation.
1042          */
1043         if (hugepage_subpool_put_pages(spool, 1) == 0)
1044                 restore_reserve = true;
1045
1046         spin_lock(&hugetlb_lock);
1047         clear_page_huge_active(page);
1048         hugetlb_cgroup_uncharge_page(hstate_index(h),
1049                                      pages_per_huge_page(h), page);
1050         if (restore_reserve)
1051                 h->resv_huge_pages++;
1052
1053         if (h->surplus_huge_pages_node[nid]) {
1054                 /* remove the page from active list */
1055                 list_del(&page->lru);
1056                 update_and_free_page(h, page);
1057                 h->surplus_huge_pages--;
1058                 h->surplus_huge_pages_node[nid]--;
1059         } else {
1060                 arch_clear_hugepage_flags(page);
1061                 enqueue_huge_page(h, page);
1062         }
1063         spin_unlock(&hugetlb_lock);
1064 }
1065
1066 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1067 {
1068         INIT_LIST_HEAD(&page->lru);
1069         set_compound_page_dtor(page, free_huge_page);
1070         spin_lock(&hugetlb_lock);
1071         set_hugetlb_cgroup(page, NULL);
1072         h->nr_huge_pages++;
1073         h->nr_huge_pages_node[nid]++;
1074         spin_unlock(&hugetlb_lock);
1075         put_page(page); /* free it into the hugepage allocator */
1076 }
1077
1078 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
1079 {
1080         int i;
1081         int nr_pages = 1 << order;
1082         struct page *p = page + 1;
1083
1084         /* we rely on prep_new_huge_page to set the destructor */
1085         set_compound_order(page, order);
1086         __SetPageHead(page);
1087         __ClearPageReserved(page);
1088         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1089                 /*
1090                  * For gigantic hugepages allocated through bootmem at
1091                  * boot, it's safer to be consistent with the not-gigantic
1092                  * hugepages and clear the PG_reserved bit from all tail pages
1093                  * too.  Otherwse drivers using get_user_pages() to access tail
1094                  * pages may get the reference counting wrong if they see
1095                  * PG_reserved set on a tail page (despite the head page not
1096                  * having PG_reserved set).  Enforcing this consistency between
1097                  * head and tail pages allows drivers to optimize away a check
1098                  * on the head page when they need know if put_page() is needed
1099                  * after get_user_pages().
1100                  */
1101                 __ClearPageReserved(p);
1102                 set_page_count(p, 0);
1103                 p->first_page = page;
1104                 /* Make sure p->first_page is always valid for PageTail() */
1105                 smp_wmb();
1106                 __SetPageTail(p);
1107         }
1108 }
1109
1110 /*
1111  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1112  * transparent huge pages.  See the PageTransHuge() documentation for more
1113  * details.
1114  */
1115 int PageHuge(struct page *page)
1116 {
1117         if (!PageCompound(page))
1118                 return 0;
1119
1120         page = compound_head(page);
1121         return get_compound_page_dtor(page) == free_huge_page;
1122 }
1123 EXPORT_SYMBOL_GPL(PageHuge);
1124
1125 /*
1126  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1127  * normal or transparent huge pages.
1128  */
1129 int PageHeadHuge(struct page *page_head)
1130 {
1131         if (!PageHead(page_head))
1132                 return 0;
1133
1134         return get_compound_page_dtor(page_head) == free_huge_page;
1135 }
1136
1137 pgoff_t __basepage_index(struct page *page)
1138 {
1139         struct page *page_head = compound_head(page);
1140         pgoff_t index = page_index(page_head);
1141         unsigned long compound_idx;
1142
1143         if (!PageHuge(page_head))
1144                 return page_index(page);
1145
1146         if (compound_order(page_head) >= MAX_ORDER)
1147                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1148         else
1149                 compound_idx = page - page_head;
1150
1151         return (index << compound_order(page_head)) + compound_idx;
1152 }
1153
1154 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1155 {
1156         struct page *page;
1157
1158         page = alloc_pages_exact_node(nid,
1159                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1160                                                 __GFP_REPEAT|__GFP_NOWARN,
1161                 huge_page_order(h));
1162         if (page) {
1163                 if (arch_prepare_hugepage(page)) {
1164                         __free_pages(page, huge_page_order(h));
1165                         return NULL;
1166                 }
1167                 prep_new_huge_page(h, page, nid);
1168         }
1169
1170         return page;
1171 }
1172
1173 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1174 {
1175         struct page *page;
1176         int nr_nodes, node;
1177         int ret = 0;
1178
1179         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1180                 page = alloc_fresh_huge_page_node(h, node);
1181                 if (page) {
1182                         ret = 1;
1183                         break;
1184                 }
1185         }
1186
1187         if (ret)
1188                 count_vm_event(HTLB_BUDDY_PGALLOC);
1189         else
1190                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1191
1192         return ret;
1193 }
1194
1195 /*
1196  * Free huge page from pool from next node to free.
1197  * Attempt to keep persistent huge pages more or less
1198  * balanced over allowed nodes.
1199  * Called with hugetlb_lock locked.
1200  */
1201 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1202                                                          bool acct_surplus)
1203 {
1204         int nr_nodes, node;
1205         int ret = 0;
1206
1207         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1208                 /*
1209                  * If we're returning unused surplus pages, only examine
1210                  * nodes with surplus pages.
1211                  */
1212                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1213                     !list_empty(&h->hugepage_freelists[node])) {
1214                         struct page *page =
1215                                 list_entry(h->hugepage_freelists[node].next,
1216                                           struct page, lru);
1217                         list_del(&page->lru);
1218                         h->free_huge_pages--;
1219                         h->free_huge_pages_node[node]--;
1220                         if (acct_surplus) {
1221                                 h->surplus_huge_pages--;
1222                                 h->surplus_huge_pages_node[node]--;
1223                         }
1224                         update_and_free_page(h, page);
1225                         ret = 1;
1226                         break;
1227                 }
1228         }
1229
1230         return ret;
1231 }
1232
1233 /*
1234  * Dissolve a given free hugepage into free buddy pages. This function does
1235  * nothing for in-use (including surplus) hugepages.
1236  */
1237 static void dissolve_free_huge_page(struct page *page)
1238 {
1239         spin_lock(&hugetlb_lock);
1240         if (PageHuge(page) && !page_count(page)) {
1241                 struct hstate *h = page_hstate(page);
1242                 int nid = page_to_nid(page);
1243                 list_del(&page->lru);
1244                 h->free_huge_pages--;
1245                 h->free_huge_pages_node[nid]--;
1246                 update_and_free_page(h, page);
1247         }
1248         spin_unlock(&hugetlb_lock);
1249 }
1250
1251 /*
1252  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1253  * make specified memory blocks removable from the system.
1254  * Note that start_pfn should aligned with (minimum) hugepage size.
1255  */
1256 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1257 {
1258         unsigned long pfn;
1259
1260         if (!hugepages_supported())
1261                 return;
1262
1263         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1264         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
1265                 dissolve_free_huge_page(pfn_to_page(pfn));
1266 }
1267
1268 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
1269 {
1270         struct page *page;
1271         unsigned int r_nid;
1272
1273         if (hstate_is_gigantic(h))
1274                 return NULL;
1275
1276         /*
1277          * Assume we will successfully allocate the surplus page to
1278          * prevent racing processes from causing the surplus to exceed
1279          * overcommit
1280          *
1281          * This however introduces a different race, where a process B
1282          * tries to grow the static hugepage pool while alloc_pages() is
1283          * called by process A. B will only examine the per-node
1284          * counters in determining if surplus huge pages can be
1285          * converted to normal huge pages in adjust_pool_surplus(). A
1286          * won't be able to increment the per-node counter, until the
1287          * lock is dropped by B, but B doesn't drop hugetlb_lock until
1288          * no more huge pages can be converted from surplus to normal
1289          * state (and doesn't try to convert again). Thus, we have a
1290          * case where a surplus huge page exists, the pool is grown, and
1291          * the surplus huge page still exists after, even though it
1292          * should just have been converted to a normal huge page. This
1293          * does not leak memory, though, as the hugepage will be freed
1294          * once it is out of use. It also does not allow the counters to
1295          * go out of whack in adjust_pool_surplus() as we don't modify
1296          * the node values until we've gotten the hugepage and only the
1297          * per-node value is checked there.
1298          */
1299         spin_lock(&hugetlb_lock);
1300         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1301                 spin_unlock(&hugetlb_lock);
1302                 return NULL;
1303         } else {
1304                 h->nr_huge_pages++;
1305                 h->surplus_huge_pages++;
1306         }
1307         spin_unlock(&hugetlb_lock);
1308
1309         if (nid == NUMA_NO_NODE)
1310                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
1311                                    __GFP_REPEAT|__GFP_NOWARN,
1312                                    huge_page_order(h));
1313         else
1314                 page = alloc_pages_exact_node(nid,
1315                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
1316                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
1317
1318         if (page && arch_prepare_hugepage(page)) {
1319                 __free_pages(page, huge_page_order(h));
1320                 page = NULL;
1321         }
1322
1323         spin_lock(&hugetlb_lock);
1324         if (page) {
1325                 INIT_LIST_HEAD(&page->lru);
1326                 r_nid = page_to_nid(page);
1327                 set_compound_page_dtor(page, free_huge_page);
1328                 set_hugetlb_cgroup(page, NULL);
1329                 /*
1330                  * We incremented the global counters already
1331                  */
1332                 h->nr_huge_pages_node[r_nid]++;
1333                 h->surplus_huge_pages_node[r_nid]++;
1334                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1335         } else {
1336                 h->nr_huge_pages--;
1337                 h->surplus_huge_pages--;
1338                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1339         }
1340         spin_unlock(&hugetlb_lock);
1341
1342         return page;
1343 }
1344
1345 /*
1346  * This allocation function is useful in the context where vma is irrelevant.
1347  * E.g. soft-offlining uses this function because it only cares physical
1348  * address of error page.
1349  */
1350 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1351 {
1352         struct page *page = NULL;
1353
1354         spin_lock(&hugetlb_lock);
1355         if (h->free_huge_pages - h->resv_huge_pages > 0)
1356                 page = dequeue_huge_page_node(h, nid);
1357         spin_unlock(&hugetlb_lock);
1358
1359         if (!page)
1360                 page = alloc_buddy_huge_page(h, nid);
1361
1362         return page;
1363 }
1364
1365 /*
1366  * Increase the hugetlb pool such that it can accommodate a reservation
1367  * of size 'delta'.
1368  */
1369 static int gather_surplus_pages(struct hstate *h, int delta)
1370 {
1371         struct list_head surplus_list;
1372         struct page *page, *tmp;
1373         int ret, i;
1374         int needed, allocated;
1375         bool alloc_ok = true;
1376
1377         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1378         if (needed <= 0) {
1379                 h->resv_huge_pages += delta;
1380                 return 0;
1381         }
1382
1383         allocated = 0;
1384         INIT_LIST_HEAD(&surplus_list);
1385
1386         ret = -ENOMEM;
1387 retry:
1388         spin_unlock(&hugetlb_lock);
1389         for (i = 0; i < needed; i++) {
1390                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1391                 if (!page) {
1392                         alloc_ok = false;
1393                         break;
1394                 }
1395                 list_add(&page->lru, &surplus_list);
1396         }
1397         allocated += i;
1398
1399         /*
1400          * After retaking hugetlb_lock, we need to recalculate 'needed'
1401          * because either resv_huge_pages or free_huge_pages may have changed.
1402          */
1403         spin_lock(&hugetlb_lock);
1404         needed = (h->resv_huge_pages + delta) -
1405                         (h->free_huge_pages + allocated);
1406         if (needed > 0) {
1407                 if (alloc_ok)
1408                         goto retry;
1409                 /*
1410                  * We were not able to allocate enough pages to
1411                  * satisfy the entire reservation so we free what
1412                  * we've allocated so far.
1413                  */
1414                 goto free;
1415         }
1416         /*
1417          * The surplus_list now contains _at_least_ the number of extra pages
1418          * needed to accommodate the reservation.  Add the appropriate number
1419          * of pages to the hugetlb pool and free the extras back to the buddy
1420          * allocator.  Commit the entire reservation here to prevent another
1421          * process from stealing the pages as they are added to the pool but
1422          * before they are reserved.
1423          */
1424         needed += allocated;
1425         h->resv_huge_pages += delta;
1426         ret = 0;
1427
1428         /* Free the needed pages to the hugetlb pool */
1429         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1430                 if ((--needed) < 0)
1431                         break;
1432                 /*
1433                  * This page is now managed by the hugetlb allocator and has
1434                  * no users -- drop the buddy allocator's reference.
1435                  */
1436                 put_page_testzero(page);
1437                 VM_BUG_ON_PAGE(page_count(page), page);
1438                 enqueue_huge_page(h, page);
1439         }
1440 free:
1441         spin_unlock(&hugetlb_lock);
1442
1443         /* Free unnecessary surplus pages to the buddy allocator */
1444         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1445                 put_page(page);
1446         spin_lock(&hugetlb_lock);
1447
1448         return ret;
1449 }
1450
1451 /*
1452  * When releasing a hugetlb pool reservation, any surplus pages that were
1453  * allocated to satisfy the reservation must be explicitly freed if they were
1454  * never used.
1455  * Called with hugetlb_lock held.
1456  */
1457 static void return_unused_surplus_pages(struct hstate *h,
1458                                         unsigned long unused_resv_pages)
1459 {
1460         unsigned long nr_pages;
1461
1462         /* Uncommit the reservation */
1463         h->resv_huge_pages -= unused_resv_pages;
1464
1465         /* Cannot return gigantic pages currently */
1466         if (hstate_is_gigantic(h))
1467                 return;
1468
1469         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1470
1471         /*
1472          * We want to release as many surplus pages as possible, spread
1473          * evenly across all nodes with memory. Iterate across these nodes
1474          * until we can no longer free unreserved surplus pages. This occurs
1475          * when the nodes with surplus pages have no free pages.
1476          * free_pool_huge_page() will balance the the freed pages across the
1477          * on-line nodes with memory and will handle the hstate accounting.
1478          */
1479         while (nr_pages--) {
1480                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1481                         break;
1482                 cond_resched_lock(&hugetlb_lock);
1483         }
1484 }
1485
1486 /*
1487  * vma_needs_reservation and vma_commit_reservation are used by the huge
1488  * page allocation routines to manage reservations.
1489  *
1490  * vma_needs_reservation is called to determine if the huge page at addr
1491  * within the vma has an associated reservation.  If a reservation is
1492  * needed, the value 1 is returned.  The caller is then responsible for
1493  * managing the global reservation and subpool usage counts.  After
1494  * the huge page has been allocated, vma_commit_reservation is called
1495  * to add the page to the reservation map.
1496  *
1497  * In the normal case, vma_commit_reservation returns the same value
1498  * as the preceding vma_needs_reservation call.  The only time this
1499  * is not the case is if a reserve map was changed between calls.  It
1500  * is the responsibility of the caller to notice the difference and
1501  * take appropriate action.
1502  */
1503 static long __vma_reservation_common(struct hstate *h,
1504                                 struct vm_area_struct *vma, unsigned long addr,
1505                                 bool commit)
1506 {
1507         struct resv_map *resv;
1508         pgoff_t idx;
1509         long ret;
1510
1511         resv = vma_resv_map(vma);
1512         if (!resv)
1513                 return 1;
1514
1515         idx = vma_hugecache_offset(h, vma, addr);
1516         if (commit)
1517                 ret = region_add(resv, idx, idx + 1);
1518         else
1519                 ret = region_chg(resv, idx, idx + 1);
1520
1521         if (vma->vm_flags & VM_MAYSHARE)
1522                 return ret;
1523         else
1524                 return ret < 0 ? ret : 0;
1525 }
1526
1527 static long vma_needs_reservation(struct hstate *h,
1528                         struct vm_area_struct *vma, unsigned long addr)
1529 {
1530         return __vma_reservation_common(h, vma, addr, false);
1531 }
1532
1533 static long vma_commit_reservation(struct hstate *h,
1534                         struct vm_area_struct *vma, unsigned long addr)
1535 {
1536         return __vma_reservation_common(h, vma, addr, true);
1537 }
1538
1539 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1540                                     unsigned long addr, int avoid_reserve)
1541 {
1542         struct hugepage_subpool *spool = subpool_vma(vma);
1543         struct hstate *h = hstate_vma(vma);
1544         struct page *page;
1545         long chg, commit;
1546         int ret, idx;
1547         struct hugetlb_cgroup *h_cg;
1548
1549         idx = hstate_index(h);
1550         /*
1551          * Processes that did not create the mapping will have no
1552          * reserves and will not have accounted against subpool
1553          * limit. Check that the subpool limit can be made before
1554          * satisfying the allocation MAP_NORESERVE mappings may also
1555          * need pages and subpool limit allocated allocated if no reserve
1556          * mapping overlaps.
1557          */
1558         chg = vma_needs_reservation(h, vma, addr);
1559         if (chg < 0)
1560                 return ERR_PTR(-ENOMEM);
1561         if (chg || avoid_reserve)
1562                 if (hugepage_subpool_get_pages(spool, 1) < 0)
1563                         return ERR_PTR(-ENOSPC);
1564
1565         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1566         if (ret)
1567                 goto out_subpool_put;
1568
1569         spin_lock(&hugetlb_lock);
1570         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1571         if (!page) {
1572                 spin_unlock(&hugetlb_lock);
1573                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1574                 if (!page)
1575                         goto out_uncharge_cgroup;
1576
1577                 spin_lock(&hugetlb_lock);
1578                 list_move(&page->lru, &h->hugepage_activelist);
1579                 /* Fall through */
1580         }
1581         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1582         spin_unlock(&hugetlb_lock);
1583
1584         set_page_private(page, (unsigned long)spool);
1585
1586         commit = vma_commit_reservation(h, vma, addr);
1587         if (unlikely(chg > commit)) {
1588                 /*
1589                  * The page was added to the reservation map between
1590                  * vma_needs_reservation and vma_commit_reservation.
1591                  * This indicates a race with hugetlb_reserve_pages.
1592                  * Adjust for the subpool count incremented above AND
1593                  * in hugetlb_reserve_pages for the same page.  Also,
1594                  * the reservation count added in hugetlb_reserve_pages
1595                  * no longer applies.
1596                  */
1597                 long rsv_adjust;
1598
1599                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1600                 hugetlb_acct_memory(h, -rsv_adjust);
1601         }
1602         return page;
1603
1604 out_uncharge_cgroup:
1605         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1606 out_subpool_put:
1607         if (chg || avoid_reserve)
1608                 hugepage_subpool_put_pages(spool, 1);
1609         return ERR_PTR(-ENOSPC);
1610 }
1611
1612 /*
1613  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1614  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1615  * where no ERR_VALUE is expected to be returned.
1616  */
1617 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1618                                 unsigned long addr, int avoid_reserve)
1619 {
1620         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1621         if (IS_ERR(page))
1622                 page = NULL;
1623         return page;
1624 }
1625
1626 int __weak alloc_bootmem_huge_page(struct hstate *h)
1627 {
1628         struct huge_bootmem_page *m;
1629         int nr_nodes, node;
1630
1631         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1632                 void *addr;
1633
1634                 addr = memblock_virt_alloc_try_nid_nopanic(
1635                                 huge_page_size(h), huge_page_size(h),
1636                                 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
1637                 if (addr) {
1638                         /*
1639                          * Use the beginning of the huge page to store the
1640                          * huge_bootmem_page struct (until gather_bootmem
1641                          * puts them into the mem_map).
1642                          */
1643                         m = addr;
1644                         goto found;
1645                 }
1646         }
1647         return 0;
1648
1649 found:
1650         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
1651         /* Put them into a private list first because mem_map is not up yet */
1652         list_add(&m->list, &huge_boot_pages);
1653         m->hstate = h;
1654         return 1;
1655 }
1656
1657 static void __init prep_compound_huge_page(struct page *page, int order)
1658 {
1659         if (unlikely(order > (MAX_ORDER - 1)))
1660                 prep_compound_gigantic_page(page, order);
1661         else
1662                 prep_compound_page(page, order);
1663 }
1664
1665 /* Put bootmem huge pages into the standard lists after mem_map is up */
1666 static void __init gather_bootmem_prealloc(void)
1667 {
1668         struct huge_bootmem_page *m;
1669
1670         list_for_each_entry(m, &huge_boot_pages, list) {
1671                 struct hstate *h = m->hstate;
1672                 struct page *page;
1673
1674 #ifdef CONFIG_HIGHMEM
1675                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1676                 memblock_free_late(__pa(m),
1677                                    sizeof(struct huge_bootmem_page));
1678 #else
1679                 page = virt_to_page(m);
1680 #endif
1681                 WARN_ON(page_count(page) != 1);
1682                 prep_compound_huge_page(page, h->order);
1683                 WARN_ON(PageReserved(page));
1684                 prep_new_huge_page(h, page, page_to_nid(page));
1685                 /*
1686                  * If we had gigantic hugepages allocated at boot time, we need
1687                  * to restore the 'stolen' pages to totalram_pages in order to
1688                  * fix confusing memory reports from free(1) and another
1689                  * side-effects, like CommitLimit going negative.
1690                  */
1691                 if (hstate_is_gigantic(h))
1692                         adjust_managed_page_count(page, 1 << h->order);
1693         }
1694 }
1695
1696 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1697 {
1698         unsigned long i;
1699
1700         for (i = 0; i < h->max_huge_pages; ++i) {
1701                 if (hstate_is_gigantic(h)) {
1702                         if (!alloc_bootmem_huge_page(h))
1703                                 break;
1704                 } else if (!alloc_fresh_huge_page(h,
1705                                          &node_states[N_MEMORY]))
1706                         break;
1707         }
1708         h->max_huge_pages = i;
1709 }
1710
1711 static void __init hugetlb_init_hstates(void)
1712 {
1713         struct hstate *h;
1714
1715         for_each_hstate(h) {
1716                 if (minimum_order > huge_page_order(h))
1717                         minimum_order = huge_page_order(h);
1718
1719                 /* oversize hugepages were init'ed in early boot */
1720                 if (!hstate_is_gigantic(h))
1721                         hugetlb_hstate_alloc_pages(h);
1722         }
1723         VM_BUG_ON(minimum_order == UINT_MAX);
1724 }
1725
1726 static char * __init memfmt(char *buf, unsigned long n)
1727 {
1728         if (n >= (1UL << 30))
1729                 sprintf(buf, "%lu GB", n >> 30);
1730         else if (n >= (1UL << 20))
1731                 sprintf(buf, "%lu MB", n >> 20);
1732         else
1733                 sprintf(buf, "%lu KB", n >> 10);
1734         return buf;
1735 }
1736
1737 static void __init report_hugepages(void)
1738 {
1739         struct hstate *h;
1740
1741         for_each_hstate(h) {
1742                 char buf[32];
1743                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1744                         memfmt(buf, huge_page_size(h)),
1745                         h->free_huge_pages);
1746         }
1747 }
1748
1749 #ifdef CONFIG_HIGHMEM
1750 static void try_to_free_low(struct hstate *h, unsigned long count,
1751                                                 nodemask_t *nodes_allowed)
1752 {
1753         int i;
1754
1755         if (hstate_is_gigantic(h))
1756                 return;
1757
1758         for_each_node_mask(i, *nodes_allowed) {
1759                 struct page *page, *next;
1760                 struct list_head *freel = &h->hugepage_freelists[i];
1761                 list_for_each_entry_safe(page, next, freel, lru) {
1762                         if (count >= h->nr_huge_pages)
1763                                 return;
1764                         if (PageHighMem(page))
1765                                 continue;
1766                         list_del(&page->lru);
1767                         update_and_free_page(h, page);
1768                         h->free_huge_pages--;
1769                         h->free_huge_pages_node[page_to_nid(page)]--;
1770                 }
1771         }
1772 }
1773 #else
1774 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1775                                                 nodemask_t *nodes_allowed)
1776 {
1777 }
1778 #endif
1779
1780 /*
1781  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1782  * balanced by operating on them in a round-robin fashion.
1783  * Returns 1 if an adjustment was made.
1784  */
1785 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1786                                 int delta)
1787 {
1788         int nr_nodes, node;
1789
1790         VM_BUG_ON(delta != -1 && delta != 1);
1791
1792         if (delta < 0) {
1793                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1794                         if (h->surplus_huge_pages_node[node])
1795                                 goto found;
1796                 }
1797         } else {
1798                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1799                         if (h->surplus_huge_pages_node[node] <
1800                                         h->nr_huge_pages_node[node])
1801                                 goto found;
1802                 }
1803         }
1804         return 0;
1805
1806 found:
1807         h->surplus_huge_pages += delta;
1808         h->surplus_huge_pages_node[node] += delta;
1809         return 1;
1810 }
1811
1812 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1813 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1814                                                 nodemask_t *nodes_allowed)
1815 {
1816         unsigned long min_count, ret;
1817
1818         if (hstate_is_gigantic(h) && !gigantic_page_supported())
1819                 return h->max_huge_pages;
1820
1821         /*
1822          * Increase the pool size
1823          * First take pages out of surplus state.  Then make up the
1824          * remaining difference by allocating fresh huge pages.
1825          *
1826          * We might race with alloc_buddy_huge_page() here and be unable
1827          * to convert a surplus huge page to a normal huge page. That is
1828          * not critical, though, it just means the overall size of the
1829          * pool might be one hugepage larger than it needs to be, but
1830          * within all the constraints specified by the sysctls.
1831          */
1832         spin_lock(&hugetlb_lock);
1833         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1834                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1835                         break;
1836         }
1837
1838         while (count > persistent_huge_pages(h)) {
1839                 /*
1840                  * If this allocation races such that we no longer need the
1841                  * page, free_huge_page will handle it by freeing the page
1842                  * and reducing the surplus.
1843                  */
1844                 spin_unlock(&hugetlb_lock);
1845                 if (hstate_is_gigantic(h))
1846                         ret = alloc_fresh_gigantic_page(h, nodes_allowed);
1847                 else
1848                         ret = alloc_fresh_huge_page(h, nodes_allowed);
1849                 spin_lock(&hugetlb_lock);
1850                 if (!ret)
1851                         goto out;
1852
1853                 /* Bail for signals. Probably ctrl-c from user */
1854                 if (signal_pending(current))
1855                         goto out;
1856         }
1857
1858         /*
1859          * Decrease the pool size
1860          * First return free pages to the buddy allocator (being careful
1861          * to keep enough around to satisfy reservations).  Then place
1862          * pages into surplus state as needed so the pool will shrink
1863          * to the desired size as pages become free.
1864          *
1865          * By placing pages into the surplus state independent of the
1866          * overcommit value, we are allowing the surplus pool size to
1867          * exceed overcommit. There are few sane options here. Since
1868          * alloc_buddy_huge_page() is checking the global counter,
1869          * though, we'll note that we're not allowed to exceed surplus
1870          * and won't grow the pool anywhere else. Not until one of the
1871          * sysctls are changed, or the surplus pages go out of use.
1872          */
1873         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1874         min_count = max(count, min_count);
1875         try_to_free_low(h, min_count, nodes_allowed);
1876         while (min_count < persistent_huge_pages(h)) {
1877                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1878                         break;
1879                 cond_resched_lock(&hugetlb_lock);
1880         }
1881         while (count < persistent_huge_pages(h)) {
1882                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1883                         break;
1884         }
1885 out:
1886         ret = persistent_huge_pages(h);
1887         spin_unlock(&hugetlb_lock);
1888         return ret;
1889 }
1890
1891 #define HSTATE_ATTR_RO(_name) \
1892         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1893
1894 #define HSTATE_ATTR(_name) \
1895         static struct kobj_attribute _name##_attr = \
1896                 __ATTR(_name, 0644, _name##_show, _name##_store)
1897
1898 static struct kobject *hugepages_kobj;
1899 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1900
1901 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1902
1903 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1904 {
1905         int i;
1906
1907         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1908                 if (hstate_kobjs[i] == kobj) {
1909                         if (nidp)
1910                                 *nidp = NUMA_NO_NODE;
1911                         return &hstates[i];
1912                 }
1913
1914         return kobj_to_node_hstate(kobj, nidp);
1915 }
1916
1917 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1918                                         struct kobj_attribute *attr, char *buf)
1919 {
1920         struct hstate *h;
1921         unsigned long nr_huge_pages;
1922         int nid;
1923
1924         h = kobj_to_hstate(kobj, &nid);
1925         if (nid == NUMA_NO_NODE)
1926                 nr_huge_pages = h->nr_huge_pages;
1927         else
1928                 nr_huge_pages = h->nr_huge_pages_node[nid];
1929
1930         return sprintf(buf, "%lu\n", nr_huge_pages);
1931 }
1932
1933 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
1934                                            struct hstate *h, int nid,
1935                                            unsigned long count, size_t len)
1936 {
1937         int err;
1938         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1939
1940         if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
1941                 err = -EINVAL;
1942                 goto out;
1943         }
1944
1945         if (nid == NUMA_NO_NODE) {
1946                 /*
1947                  * global hstate attribute
1948                  */
1949                 if (!(obey_mempolicy &&
1950                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1951                         NODEMASK_FREE(nodes_allowed);
1952                         nodes_allowed = &node_states[N_MEMORY];
1953                 }
1954         } else if (nodes_allowed) {
1955                 /*
1956                  * per node hstate attribute: adjust count to global,
1957                  * but restrict alloc/free to the specified node.
1958                  */
1959                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1960                 init_nodemask_of_node(nodes_allowed, nid);
1961         } else
1962                 nodes_allowed = &node_states[N_MEMORY];
1963
1964         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1965
1966         if (nodes_allowed != &node_states[N_MEMORY])
1967                 NODEMASK_FREE(nodes_allowed);
1968
1969         return len;
1970 out:
1971         NODEMASK_FREE(nodes_allowed);
1972         return err;
1973 }
1974
1975 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1976                                          struct kobject *kobj, const char *buf,
1977                                          size_t len)
1978 {
1979         struct hstate *h;
1980         unsigned long count;
1981         int nid;
1982         int err;
1983
1984         err = kstrtoul(buf, 10, &count);
1985         if (err)
1986                 return err;
1987
1988         h = kobj_to_hstate(kobj, &nid);
1989         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
1990 }
1991
1992 static ssize_t nr_hugepages_show(struct kobject *kobj,
1993                                        struct kobj_attribute *attr, char *buf)
1994 {
1995         return nr_hugepages_show_common(kobj, attr, buf);
1996 }
1997
1998 static ssize_t nr_hugepages_store(struct kobject *kobj,
1999                struct kobj_attribute *attr, const char *buf, size_t len)
2000 {
2001         return nr_hugepages_store_common(false, kobj, buf, len);
2002 }
2003 HSTATE_ATTR(nr_hugepages);
2004
2005 #ifdef CONFIG_NUMA
2006
2007 /*
2008  * hstate attribute for optionally mempolicy-based constraint on persistent
2009  * huge page alloc/free.
2010  */
2011 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2012                                        struct kobj_attribute *attr, char *buf)
2013 {
2014         return nr_hugepages_show_common(kobj, attr, buf);
2015 }
2016
2017 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2018                struct kobj_attribute *attr, const char *buf, size_t len)
2019 {
2020         return nr_hugepages_store_common(true, kobj, buf, len);
2021 }
2022 HSTATE_ATTR(nr_hugepages_mempolicy);
2023 #endif
2024
2025
2026 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2027                                         struct kobj_attribute *attr, char *buf)
2028 {
2029         struct hstate *h = kobj_to_hstate(kobj, NULL);
2030         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2031 }
2032
2033 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2034                 struct kobj_attribute *attr, const char *buf, size_t count)
2035 {
2036         int err;
2037         unsigned long input;
2038         struct hstate *h = kobj_to_hstate(kobj, NULL);
2039
2040         if (hstate_is_gigantic(h))
2041                 return -EINVAL;
2042
2043         err = kstrtoul(buf, 10, &input);
2044         if (err)
2045                 return err;
2046
2047         spin_lock(&hugetlb_lock);
2048         h->nr_overcommit_huge_pages = input;
2049         spin_unlock(&hugetlb_lock);
2050
2051         return count;
2052 }
2053 HSTATE_ATTR(nr_overcommit_hugepages);
2054
2055 static ssize_t free_hugepages_show(struct kobject *kobj,
2056                                         struct kobj_attribute *attr, char *buf)
2057 {
2058         struct hstate *h;
2059         unsigned long free_huge_pages;
2060         int nid;
2061
2062         h = kobj_to_hstate(kobj, &nid);
2063         if (nid == NUMA_NO_NODE)
2064                 free_huge_pages = h->free_huge_pages;
2065         else
2066                 free_huge_pages = h->free_huge_pages_node[nid];
2067
2068         return sprintf(buf, "%lu\n", free_huge_pages);
2069 }
2070 HSTATE_ATTR_RO(free_hugepages);
2071
2072 static ssize_t resv_hugepages_show(struct kobject *kobj,
2073                                         struct kobj_attribute *attr, char *buf)
2074 {
2075         struct hstate *h = kobj_to_hstate(kobj, NULL);
2076         return sprintf(buf, "%lu\n", h->resv_huge_pages);
2077 }
2078 HSTATE_ATTR_RO(resv_hugepages);
2079
2080 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2081                                         struct kobj_attribute *attr, char *buf)
2082 {
2083         struct hstate *h;
2084         unsigned long surplus_huge_pages;
2085         int nid;
2086
2087         h = kobj_to_hstate(kobj, &nid);
2088         if (nid == NUMA_NO_NODE)
2089                 surplus_huge_pages = h->surplus_huge_pages;
2090         else
2091                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2092
2093         return sprintf(buf, "%lu\n", surplus_huge_pages);
2094 }
2095 HSTATE_ATTR_RO(surplus_hugepages);
2096
2097 static struct attribute *hstate_attrs[] = {
2098         &nr_hugepages_attr.attr,
2099         &nr_overcommit_hugepages_attr.attr,
2100         &free_hugepages_attr.attr,
2101         &resv_hugepages_attr.attr,
2102         &surplus_hugepages_attr.attr,
2103 #ifdef CONFIG_NUMA
2104         &nr_hugepages_mempolicy_attr.attr,
2105 #endif
2106         NULL,
2107 };
2108
2109 static struct attribute_group hstate_attr_group = {
2110         .attrs = hstate_attrs,
2111 };
2112
2113 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2114                                     struct kobject **hstate_kobjs,
2115                                     struct attribute_group *hstate_attr_group)
2116 {
2117         int retval;
2118         int hi = hstate_index(h);
2119
2120         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2121         if (!hstate_kobjs[hi])
2122                 return -ENOMEM;
2123
2124         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2125         if (retval)
2126                 kobject_put(hstate_kobjs[hi]);
2127
2128         return retval;
2129 }
2130
2131 static void __init hugetlb_sysfs_init(void)
2132 {
2133         struct hstate *h;
2134         int err;
2135
2136         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2137         if (!hugepages_kobj)
2138                 return;
2139
2140         for_each_hstate(h) {
2141                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2142                                          hstate_kobjs, &hstate_attr_group);
2143                 if (err)
2144                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
2145         }
2146 }
2147
2148 #ifdef CONFIG_NUMA
2149
2150 /*
2151  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2152  * with node devices in node_devices[] using a parallel array.  The array
2153  * index of a node device or _hstate == node id.
2154  * This is here to avoid any static dependency of the node device driver, in
2155  * the base kernel, on the hugetlb module.
2156  */
2157 struct node_hstate {
2158         struct kobject          *hugepages_kobj;
2159         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2160 };
2161 struct node_hstate node_hstates[MAX_NUMNODES];
2162
2163 /*
2164  * A subset of global hstate attributes for node devices
2165  */
2166 static struct attribute *per_node_hstate_attrs[] = {
2167         &nr_hugepages_attr.attr,
2168         &free_hugepages_attr.attr,
2169         &surplus_hugepages_attr.attr,
2170         NULL,
2171 };
2172
2173 static struct attribute_group per_node_hstate_attr_group = {
2174         .attrs = per_node_hstate_attrs,
2175 };
2176
2177 /*
2178  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2179  * Returns node id via non-NULL nidp.
2180  */
2181 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2182 {
2183         int nid;
2184
2185         for (nid = 0; nid < nr_node_ids; nid++) {
2186                 struct node_hstate *nhs = &node_hstates[nid];
2187                 int i;
2188                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2189                         if (nhs->hstate_kobjs[i] == kobj) {
2190                                 if (nidp)
2191                                         *nidp = nid;
2192                                 return &hstates[i];
2193                         }
2194         }
2195
2196         BUG();
2197         return NULL;
2198 }
2199
2200 /*
2201  * Unregister hstate attributes from a single node device.
2202  * No-op if no hstate attributes attached.
2203  */
2204 static void hugetlb_unregister_node(struct node *node)
2205 {
2206         struct hstate *h;
2207         struct node_hstate *nhs = &node_hstates[node->dev.id];
2208
2209         if (!nhs->hugepages_kobj)
2210                 return;         /* no hstate attributes */
2211
2212         for_each_hstate(h) {
2213                 int idx = hstate_index(h);
2214                 if (nhs->hstate_kobjs[idx]) {
2215                         kobject_put(nhs->hstate_kobjs[idx]);
2216                         nhs->hstate_kobjs[idx] = NULL;
2217                 }
2218         }
2219
2220         kobject_put(nhs->hugepages_kobj);
2221         nhs->hugepages_kobj = NULL;
2222 }
2223
2224 /*
2225  * hugetlb module exit:  unregister hstate attributes from node devices
2226  * that have them.
2227  */
2228 static void hugetlb_unregister_all_nodes(void)
2229 {
2230         int nid;
2231
2232         /*
2233          * disable node device registrations.
2234          */
2235         register_hugetlbfs_with_node(NULL, NULL);
2236
2237         /*
2238          * remove hstate attributes from any nodes that have them.
2239          */
2240         for (nid = 0; nid < nr_node_ids; nid++)
2241                 hugetlb_unregister_node(node_devices[nid]);
2242 }
2243
2244 /*
2245  * Register hstate attributes for a single node device.
2246  * No-op if attributes already registered.
2247  */
2248 static void hugetlb_register_node(struct node *node)
2249 {
2250         struct hstate *h;
2251         struct node_hstate *nhs = &node_hstates[node->dev.id];
2252         int err;
2253
2254         if (nhs->hugepages_kobj)
2255                 return;         /* already allocated */
2256
2257         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
2258                                                         &node->dev.kobj);
2259         if (!nhs->hugepages_kobj)
2260                 return;
2261
2262         for_each_hstate(h) {
2263                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2264                                                 nhs->hstate_kobjs,
2265                                                 &per_node_hstate_attr_group);
2266                 if (err) {
2267                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2268                                 h->name, node->dev.id);
2269                         hugetlb_unregister_node(node);
2270                         break;
2271                 }
2272         }
2273 }
2274
2275 /*
2276  * hugetlb init time:  register hstate attributes for all registered node
2277  * devices of nodes that have memory.  All on-line nodes should have
2278  * registered their associated device by this time.
2279  */
2280 static void __init hugetlb_register_all_nodes(void)
2281 {
2282         int nid;
2283
2284         for_each_node_state(nid, N_MEMORY) {
2285                 struct node *node = node_devices[nid];
2286                 if (node->dev.id == nid)
2287                         hugetlb_register_node(node);
2288         }
2289
2290         /*
2291          * Let the node device driver know we're here so it can
2292          * [un]register hstate attributes on node hotplug.
2293          */
2294         register_hugetlbfs_with_node(hugetlb_register_node,
2295                                      hugetlb_unregister_node);
2296 }
2297 #else   /* !CONFIG_NUMA */
2298
2299 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2300 {
2301         BUG();
2302         if (nidp)
2303                 *nidp = -1;
2304         return NULL;
2305 }
2306
2307 static void hugetlb_unregister_all_nodes(void) { }
2308
2309 static void hugetlb_register_all_nodes(void) { }
2310
2311 #endif
2312
2313 static void __exit hugetlb_exit(void)
2314 {
2315         struct hstate *h;
2316
2317         hugetlb_unregister_all_nodes();
2318
2319         for_each_hstate(h) {
2320                 kobject_put(hstate_kobjs[hstate_index(h)]);
2321         }
2322
2323         kobject_put(hugepages_kobj);
2324         kfree(htlb_fault_mutex_table);
2325 }
2326 module_exit(hugetlb_exit);
2327
2328 static int __init hugetlb_init(void)
2329 {
2330         int i;
2331
2332         if (!hugepages_supported())
2333                 return 0;
2334
2335         if (!size_to_hstate(default_hstate_size)) {
2336                 default_hstate_size = HPAGE_SIZE;
2337                 if (!size_to_hstate(default_hstate_size))
2338                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
2339         }
2340         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
2341         if (default_hstate_max_huge_pages)
2342                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2343
2344         hugetlb_init_hstates();
2345         gather_bootmem_prealloc();
2346         report_hugepages();
2347
2348         hugetlb_sysfs_init();
2349         hugetlb_register_all_nodes();
2350         hugetlb_cgroup_file_init();
2351
2352 #ifdef CONFIG_SMP
2353         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2354 #else
2355         num_fault_mutexes = 1;
2356 #endif
2357         htlb_fault_mutex_table =
2358                 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2359         BUG_ON(!htlb_fault_mutex_table);
2360
2361         for (i = 0; i < num_fault_mutexes; i++)
2362                 mutex_init(&htlb_fault_mutex_table[i]);
2363         return 0;
2364 }
2365 module_init(hugetlb_init);
2366
2367 /* Should be called on processing a hugepagesz=... option */
2368 void __init hugetlb_add_hstate(unsigned order)
2369 {
2370         struct hstate *h;
2371         unsigned long i;
2372
2373         if (size_to_hstate(PAGE_SIZE << order)) {
2374                 pr_warning("hugepagesz= specified twice, ignoring\n");
2375                 return;
2376         }
2377         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
2378         BUG_ON(order == 0);
2379         h = &hstates[hugetlb_max_hstate++];
2380         h->order = order;
2381         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
2382         h->nr_huge_pages = 0;
2383         h->free_huge_pages = 0;
2384         for (i = 0; i < MAX_NUMNODES; ++i)
2385                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2386         INIT_LIST_HEAD(&h->hugepage_activelist);
2387         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2388         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2389         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2390                                         huge_page_size(h)/1024);
2391
2392         parsed_hstate = h;
2393 }
2394
2395 static int __init hugetlb_nrpages_setup(char *s)
2396 {
2397         unsigned long *mhp;
2398         static unsigned long *last_mhp;
2399
2400         /*
2401          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2402          * so this hugepages= parameter goes to the "default hstate".
2403          */
2404         if (!hugetlb_max_hstate)
2405                 mhp = &default_hstate_max_huge_pages;
2406         else
2407                 mhp = &parsed_hstate->max_huge_pages;
2408
2409         if (mhp == last_mhp) {
2410                 pr_warning("hugepages= specified twice without "
2411                            "interleaving hugepagesz=, ignoring\n");
2412                 return 1;
2413         }
2414
2415         if (sscanf(s, "%lu", mhp) <= 0)
2416                 *mhp = 0;
2417
2418         /*
2419          * Global state is always initialized later in hugetlb_init.
2420          * But we need to allocate >= MAX_ORDER hstates here early to still
2421          * use the bootmem allocator.
2422          */
2423         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2424                 hugetlb_hstate_alloc_pages(parsed_hstate);
2425
2426         last_mhp = mhp;
2427
2428         return 1;
2429 }
2430 __setup("hugepages=", hugetlb_nrpages_setup);
2431
2432 static int __init hugetlb_default_setup(char *s)
2433 {
2434         default_hstate_size = memparse(s, &s);
2435         return 1;
2436 }
2437 __setup("default_hugepagesz=", hugetlb_default_setup);
2438
2439 static unsigned int cpuset_mems_nr(unsigned int *array)
2440 {
2441         int node;
2442         unsigned int nr = 0;
2443
2444         for_each_node_mask(node, cpuset_current_mems_allowed)
2445                 nr += array[node];
2446
2447         return nr;
2448 }
2449
2450 #ifdef CONFIG_SYSCTL
2451 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2452                          struct ctl_table *table, int write,
2453                          void __user *buffer, size_t *length, loff_t *ppos)
2454 {
2455         struct hstate *h = &default_hstate;
2456         unsigned long tmp = h->max_huge_pages;
2457         int ret;
2458
2459         if (!hugepages_supported())
2460                 return -ENOTSUPP;
2461
2462         table->data = &tmp;
2463         table->maxlen = sizeof(unsigned long);
2464         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2465         if (ret)
2466                 goto out;
2467
2468         if (write)
2469                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2470                                                   NUMA_NO_NODE, tmp, *length);
2471 out:
2472         return ret;
2473 }
2474
2475 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2476                           void __user *buffer, size_t *length, loff_t *ppos)
2477 {
2478
2479         return hugetlb_sysctl_handler_common(false, table, write,
2480                                                         buffer, length, ppos);
2481 }
2482
2483 #ifdef CONFIG_NUMA
2484 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2485                           void __user *buffer, size_t *length, loff_t *ppos)
2486 {
2487         return hugetlb_sysctl_handler_common(true, table, write,
2488                                                         buffer, length, ppos);
2489 }
2490 #endif /* CONFIG_NUMA */
2491
2492 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2493                         void __user *buffer,
2494                         size_t *length, loff_t *ppos)
2495 {
2496         struct hstate *h = &default_hstate;
2497         unsigned long tmp;
2498         int ret;
2499
2500         if (!hugepages_supported())
2501                 return -ENOTSUPP;
2502
2503         tmp = h->nr_overcommit_huge_pages;
2504
2505         if (write && hstate_is_gigantic(h))
2506                 return -EINVAL;
2507
2508         table->data = &tmp;
2509         table->maxlen = sizeof(unsigned long);
2510         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2511         if (ret)
2512                 goto out;
2513
2514         if (write) {
2515                 spin_lock(&hugetlb_lock);
2516                 h->nr_overcommit_huge_pages = tmp;
2517                 spin_unlock(&hugetlb_lock);
2518         }
2519 out:
2520         return ret;
2521 }
2522
2523 #endif /* CONFIG_SYSCTL */
2524
2525 void hugetlb_report_meminfo(struct seq_file *m)
2526 {
2527         struct hstate *h = &default_hstate;
2528         if (!hugepages_supported())
2529                 return;
2530         seq_printf(m,
2531                         "HugePages_Total:   %5lu\n"
2532                         "HugePages_Free:    %5lu\n"
2533                         "HugePages_Rsvd:    %5lu\n"
2534                         "HugePages_Surp:    %5lu\n"
2535                         "Hugepagesize:   %8lu kB\n",
2536                         h->nr_huge_pages,
2537                         h->free_huge_pages,
2538                         h->resv_huge_pages,
2539                         h->surplus_huge_pages,
2540                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2541 }
2542
2543 int hugetlb_report_node_meminfo(int nid, char *buf)
2544 {
2545         struct hstate *h = &default_hstate;
2546         if (!hugepages_supported())
2547                 return 0;
2548         return sprintf(buf,
2549                 "Node %d HugePages_Total: %5u\n"
2550                 "Node %d HugePages_Free:  %5u\n"
2551                 "Node %d HugePages_Surp:  %5u\n",
2552                 nid, h->nr_huge_pages_node[nid],
2553                 nid, h->free_huge_pages_node[nid],
2554                 nid, h->surplus_huge_pages_node[nid]);
2555 }
2556
2557 void hugetlb_show_meminfo(void)
2558 {
2559         struct hstate *h;
2560         int nid;
2561
2562         if (!hugepages_supported())
2563                 return;
2564
2565         for_each_node_state(nid, N_MEMORY)
2566                 for_each_hstate(h)
2567                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2568                                 nid,
2569                                 h->nr_huge_pages_node[nid],
2570                                 h->free_huge_pages_node[nid],
2571                                 h->surplus_huge_pages_node[nid],
2572                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2573 }
2574
2575 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2576 unsigned long hugetlb_total_pages(void)
2577 {
2578         struct hstate *h;
2579         unsigned long nr_total_pages = 0;
2580
2581         for_each_hstate(h)
2582                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2583         return nr_total_pages;
2584 }
2585
2586 static int hugetlb_acct_memory(struct hstate *h, long delta)
2587 {
2588         int ret = -ENOMEM;
2589
2590         spin_lock(&hugetlb_lock);
2591         /*
2592          * When cpuset is configured, it breaks the strict hugetlb page
2593          * reservation as the accounting is done on a global variable. Such
2594          * reservation is completely rubbish in the presence of cpuset because
2595          * the reservation is not checked against page availability for the
2596          * current cpuset. Application can still potentially OOM'ed by kernel
2597          * with lack of free htlb page in cpuset that the task is in.
2598          * Attempt to enforce strict accounting with cpuset is almost
2599          * impossible (or too ugly) because cpuset is too fluid that
2600          * task or memory node can be dynamically moved between cpusets.
2601          *
2602          * The change of semantics for shared hugetlb mapping with cpuset is
2603          * undesirable. However, in order to preserve some of the semantics,
2604          * we fall back to check against current free page availability as
2605          * a best attempt and hopefully to minimize the impact of changing
2606          * semantics that cpuset has.
2607          */
2608         if (delta > 0) {
2609                 if (gather_surplus_pages(h, delta) < 0)
2610                         goto out;
2611
2612                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2613                         return_unused_surplus_pages(h, delta);
2614                         goto out;
2615                 }
2616         }
2617
2618         ret = 0;
2619         if (delta < 0)
2620                 return_unused_surplus_pages(h, (unsigned long) -delta);
2621
2622 out:
2623         spin_unlock(&hugetlb_lock);
2624         return ret;
2625 }
2626
2627 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2628 {
2629         struct resv_map *resv = vma_resv_map(vma);
2630
2631         /*
2632          * This new VMA should share its siblings reservation map if present.
2633          * The VMA will only ever have a valid reservation map pointer where
2634          * it is being copied for another still existing VMA.  As that VMA
2635          * has a reference to the reservation map it cannot disappear until
2636          * after this open call completes.  It is therefore safe to take a
2637          * new reference here without additional locking.
2638          */
2639         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2640                 kref_get(&resv->refs);
2641 }
2642
2643 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2644 {
2645         struct hstate *h = hstate_vma(vma);
2646         struct resv_map *resv = vma_resv_map(vma);
2647         struct hugepage_subpool *spool = subpool_vma(vma);
2648         unsigned long reserve, start, end;
2649         long gbl_reserve;
2650
2651         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2652                 return;
2653
2654         start = vma_hugecache_offset(h, vma, vma->vm_start);
2655         end = vma_hugecache_offset(h, vma, vma->vm_end);
2656
2657         reserve = (end - start) - region_count(resv, start, end);
2658
2659         kref_put(&resv->refs, resv_map_release);
2660
2661         if (reserve) {
2662                 /*
2663                  * Decrement reserve counts.  The global reserve count may be
2664                  * adjusted if the subpool has a minimum size.
2665                  */
2666                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2667                 hugetlb_acct_memory(h, -gbl_reserve);
2668         }
2669 }
2670
2671 /*
2672  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2673  * handle_mm_fault() to try to instantiate regular-sized pages in the
2674  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2675  * this far.
2676  */
2677 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2678 {
2679         BUG();
2680         return 0;
2681 }
2682
2683 const struct vm_operations_struct hugetlb_vm_ops = {
2684         .fault = hugetlb_vm_op_fault,
2685         .open = hugetlb_vm_op_open,
2686         .close = hugetlb_vm_op_close,
2687 };
2688
2689 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2690                                 int writable)
2691 {
2692         pte_t entry;
2693
2694         if (writable) {
2695                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2696                                          vma->vm_page_prot)));
2697         } else {
2698                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2699                                            vma->vm_page_prot));
2700         }
2701         entry = pte_mkyoung(entry);
2702         entry = pte_mkhuge(entry);
2703         entry = arch_make_huge_pte(entry, vma, page, writable);
2704
2705         return entry;
2706 }
2707
2708 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2709                                    unsigned long address, pte_t *ptep)
2710 {
2711         pte_t entry;
2712
2713         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2714         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2715                 update_mmu_cache(vma, address, ptep);
2716 }
2717
2718 static int is_hugetlb_entry_migration(pte_t pte)
2719 {
2720         swp_entry_t swp;
2721
2722         if (huge_pte_none(pte) || pte_present(pte))
2723                 return 0;
2724         swp = pte_to_swp_entry(pte);
2725         if (non_swap_entry(swp) && is_migration_entry(swp))
2726                 return 1;
2727         else
2728                 return 0;
2729 }
2730
2731 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2732 {
2733         swp_entry_t swp;
2734
2735         if (huge_pte_none(pte) || pte_present(pte))
2736                 return 0;
2737         swp = pte_to_swp_entry(pte);
2738         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2739                 return 1;
2740         else
2741                 return 0;
2742 }
2743
2744 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2745                             struct vm_area_struct *vma)
2746 {
2747         pte_t *src_pte, *dst_pte, entry;
2748         struct page *ptepage;
2749         unsigned long addr;
2750         int cow;
2751         struct hstate *h = hstate_vma(vma);
2752         unsigned long sz = huge_page_size(h);
2753         unsigned long mmun_start;       /* For mmu_notifiers */
2754         unsigned long mmun_end;         /* For mmu_notifiers */
2755         int ret = 0;
2756
2757         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2758
2759         mmun_start = vma->vm_start;
2760         mmun_end = vma->vm_end;
2761         if (cow)
2762                 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2763
2764         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2765                 spinlock_t *src_ptl, *dst_ptl;
2766                 src_pte = huge_pte_offset(src, addr);
2767                 if (!src_pte)
2768                         continue;
2769                 dst_pte = huge_pte_alloc(dst, addr, sz);
2770                 if (!dst_pte) {
2771                         ret = -ENOMEM;
2772                         break;
2773                 }
2774
2775                 /* If the pagetables are shared don't copy or take references */
2776                 if (dst_pte == src_pte)
2777                         continue;
2778
2779                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2780                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2781                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2782                 entry = huge_ptep_get(src_pte);
2783                 if (huge_pte_none(entry)) { /* skip none entry */
2784                         ;
2785                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
2786                                     is_hugetlb_entry_hwpoisoned(entry))) {
2787                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
2788
2789                         if (is_write_migration_entry(swp_entry) && cow) {
2790                                 /*
2791                                  * COW mappings require pages in both
2792                                  * parent and child to be set to read.
2793                                  */
2794                                 make_migration_entry_read(&swp_entry);
2795                                 entry = swp_entry_to_pte(swp_entry);
2796                                 set_huge_pte_at(src, addr, src_pte, entry);
2797                         }
2798                         set_huge_pte_at(dst, addr, dst_pte, entry);
2799                 } else {
2800                         if (cow) {
2801                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2802                                 mmu_notifier_invalidate_range(src, mmun_start,
2803                                                                    mmun_end);
2804                         }
2805                         entry = huge_ptep_get(src_pte);
2806                         ptepage = pte_page(entry);
2807                         get_page(ptepage);
2808                         page_dup_rmap(ptepage);
2809                         set_huge_pte_at(dst, addr, dst_pte, entry);
2810                 }
2811                 spin_unlock(src_ptl);
2812                 spin_unlock(dst_ptl);
2813         }
2814
2815         if (cow)
2816                 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2817
2818         return ret;
2819 }
2820
2821 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2822                             unsigned long start, unsigned long end,
2823                             struct page *ref_page)
2824 {
2825         int force_flush = 0;
2826         struct mm_struct *mm = vma->vm_mm;
2827         unsigned long address;
2828         pte_t *ptep;
2829         pte_t pte;
2830         spinlock_t *ptl;
2831         struct page *page;
2832         struct hstate *h = hstate_vma(vma);
2833         unsigned long sz = huge_page_size(h);
2834         const unsigned long mmun_start = start; /* For mmu_notifiers */
2835         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2836
2837         WARN_ON(!is_vm_hugetlb_page(vma));
2838         BUG_ON(start & ~huge_page_mask(h));
2839         BUG_ON(end & ~huge_page_mask(h));
2840
2841         tlb_start_vma(tlb, vma);
2842         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2843         address = start;
2844 again:
2845         for (; address < end; address += sz) {
2846                 ptep = huge_pte_offset(mm, address);
2847                 if (!ptep)
2848                         continue;
2849
2850                 ptl = huge_pte_lock(h, mm, ptep);
2851                 if (huge_pmd_unshare(mm, &address, ptep))
2852                         goto unlock;
2853
2854                 pte = huge_ptep_get(ptep);
2855                 if (huge_pte_none(pte))
2856                         goto unlock;
2857
2858                 /*
2859                  * Migrating hugepage or HWPoisoned hugepage is already
2860                  * unmapped and its refcount is dropped, so just clear pte here.
2861                  */
2862                 if (unlikely(!pte_present(pte))) {
2863                         huge_pte_clear(mm, address, ptep);
2864                         goto unlock;
2865                 }
2866
2867                 page = pte_page(pte);
2868                 /*
2869                  * If a reference page is supplied, it is because a specific
2870                  * page is being unmapped, not a range. Ensure the page we
2871                  * are about to unmap is the actual page of interest.
2872                  */
2873                 if (ref_page) {
2874                         if (page != ref_page)
2875                                 goto unlock;
2876
2877                         /*
2878                          * Mark the VMA as having unmapped its page so that
2879                          * future faults in this VMA will fail rather than
2880                          * looking like data was lost
2881                          */
2882                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2883                 }
2884
2885                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2886                 tlb_remove_tlb_entry(tlb, ptep, address);
2887                 if (huge_pte_dirty(pte))
2888                         set_page_dirty(page);
2889
2890                 page_remove_rmap(page);
2891                 force_flush = !__tlb_remove_page(tlb, page);
2892                 if (force_flush) {
2893                         address += sz;
2894                         spin_unlock(ptl);
2895                         break;
2896                 }
2897                 /* Bail out after unmapping reference page if supplied */
2898                 if (ref_page) {
2899                         spin_unlock(ptl);
2900                         break;
2901                 }
2902 unlock:
2903                 spin_unlock(ptl);
2904         }
2905         /*
2906          * mmu_gather ran out of room to batch pages, we break out of
2907          * the PTE lock to avoid doing the potential expensive TLB invalidate
2908          * and page-free while holding it.
2909          */
2910         if (force_flush) {
2911                 force_flush = 0;
2912                 tlb_flush_mmu(tlb);
2913                 if (address < end && !ref_page)
2914                         goto again;
2915         }
2916         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2917         tlb_end_vma(tlb, vma);
2918 }
2919
2920 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2921                           struct vm_area_struct *vma, unsigned long start,
2922                           unsigned long end, struct page *ref_page)
2923 {
2924         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2925
2926         /*
2927          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2928          * test will fail on a vma being torn down, and not grab a page table
2929          * on its way out.  We're lucky that the flag has such an appropriate
2930          * name, and can in fact be safely cleared here. We could clear it
2931          * before the __unmap_hugepage_range above, but all that's necessary
2932          * is to clear it before releasing the i_mmap_rwsem. This works
2933          * because in the context this is called, the VMA is about to be
2934          * destroyed and the i_mmap_rwsem is held.
2935          */
2936         vma->vm_flags &= ~VM_MAYSHARE;
2937 }
2938
2939 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2940                           unsigned long end, struct page *ref_page)
2941 {
2942         struct mm_struct *mm;
2943         struct mmu_gather tlb;
2944
2945         mm = vma->vm_mm;
2946
2947         tlb_gather_mmu(&tlb, mm, start, end);
2948         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2949         tlb_finish_mmu(&tlb, start, end);
2950 }
2951
2952 /*
2953  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2954  * mappping it owns the reserve page for. The intention is to unmap the page
2955  * from other VMAs and let the children be SIGKILLed if they are faulting the
2956  * same region.
2957  */
2958 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2959                               struct page *page, unsigned long address)
2960 {
2961         struct hstate *h = hstate_vma(vma);
2962         struct vm_area_struct *iter_vma;
2963         struct address_space *mapping;
2964         pgoff_t pgoff;
2965
2966         /*
2967          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2968          * from page cache lookup which is in HPAGE_SIZE units.
2969          */
2970         address = address & huge_page_mask(h);
2971         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2972                         vma->vm_pgoff;
2973         mapping = file_inode(vma->vm_file)->i_mapping;
2974
2975         /*
2976          * Take the mapping lock for the duration of the table walk. As
2977          * this mapping should be shared between all the VMAs,
2978          * __unmap_hugepage_range() is called as the lock is already held
2979          */
2980         i_mmap_lock_write(mapping);
2981         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2982                 /* Do not unmap the current VMA */
2983                 if (iter_vma == vma)
2984                         continue;
2985
2986                 /*
2987                  * Unmap the page from other VMAs without their own reserves.
2988                  * They get marked to be SIGKILLed if they fault in these
2989                  * areas. This is because a future no-page fault on this VMA
2990                  * could insert a zeroed page instead of the data existing
2991                  * from the time of fork. This would look like data corruption
2992                  */
2993                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2994                         unmap_hugepage_range(iter_vma, address,
2995                                              address + huge_page_size(h), page);
2996         }
2997         i_mmap_unlock_write(mapping);
2998 }
2999
3000 /*
3001  * Hugetlb_cow() should be called with page lock of the original hugepage held.
3002  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3003  * cannot race with other handlers or page migration.
3004  * Keep the pte_same checks anyway to make transition from the mutex easier.
3005  */
3006 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3007                         unsigned long address, pte_t *ptep, pte_t pte,
3008                         struct page *pagecache_page, spinlock_t *ptl)
3009 {
3010         struct hstate *h = hstate_vma(vma);
3011         struct page *old_page, *new_page;
3012         int ret = 0, outside_reserve = 0;
3013         unsigned long mmun_start;       /* For mmu_notifiers */
3014         unsigned long mmun_end;         /* For mmu_notifiers */
3015
3016         old_page = pte_page(pte);
3017
3018 retry_avoidcopy:
3019         /* If no-one else is actually using this page, avoid the copy
3020          * and just make the page writable */
3021         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3022                 page_move_anon_rmap(old_page, vma, address);
3023                 set_huge_ptep_writable(vma, address, ptep);
3024                 return 0;
3025         }
3026
3027         /*
3028          * If the process that created a MAP_PRIVATE mapping is about to
3029          * perform a COW due to a shared page count, attempt to satisfy
3030          * the allocation without using the existing reserves. The pagecache
3031          * page is used to determine if the reserve at this address was
3032          * consumed or not. If reserves were used, a partial faulted mapping
3033          * at the time of fork() could consume its reserves on COW instead
3034          * of the full address range.
3035          */
3036         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
3037                         old_page != pagecache_page)
3038                 outside_reserve = 1;
3039
3040         page_cache_get(old_page);
3041
3042         /*
3043          * Drop page table lock as buddy allocator may be called. It will
3044          * be acquired again before returning to the caller, as expected.
3045          */
3046         spin_unlock(ptl);
3047         new_page = alloc_huge_page(vma, address, outside_reserve);
3048
3049         if (IS_ERR(new_page)) {
3050                 /*
3051                  * If a process owning a MAP_PRIVATE mapping fails to COW,
3052                  * it is due to references held by a child and an insufficient
3053                  * huge page pool. To guarantee the original mappers
3054                  * reliability, unmap the page from child processes. The child
3055                  * may get SIGKILLed if it later faults.
3056                  */
3057                 if (outside_reserve) {
3058                         page_cache_release(old_page);
3059                         BUG_ON(huge_pte_none(pte));
3060                         unmap_ref_private(mm, vma, old_page, address);
3061                         BUG_ON(huge_pte_none(pte));
3062                         spin_lock(ptl);
3063                         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3064                         if (likely(ptep &&
3065                                    pte_same(huge_ptep_get(ptep), pte)))
3066                                 goto retry_avoidcopy;
3067                         /*
3068                          * race occurs while re-acquiring page table
3069                          * lock, and our job is done.
3070                          */
3071                         return 0;
3072                 }
3073
3074                 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3075                         VM_FAULT_OOM : VM_FAULT_SIGBUS;
3076                 goto out_release_old;
3077         }
3078
3079         /*
3080          * When the original hugepage is shared one, it does not have
3081          * anon_vma prepared.
3082          */
3083         if (unlikely(anon_vma_prepare(vma))) {
3084                 ret = VM_FAULT_OOM;
3085                 goto out_release_all;
3086         }
3087
3088         copy_user_huge_page(new_page, old_page, address, vma,
3089                             pages_per_huge_page(h));
3090         __SetPageUptodate(new_page);
3091         set_page_huge_active(new_page);
3092
3093         mmun_start = address & huge_page_mask(h);
3094         mmun_end = mmun_start + huge_page_size(h);
3095         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
3096
3097         /*
3098          * Retake the page table lock to check for racing updates
3099          * before the page tables are altered
3100          */
3101         spin_lock(ptl);
3102         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3103         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
3104                 ClearPagePrivate(new_page);
3105
3106                 /* Break COW */
3107                 huge_ptep_clear_flush(vma, address, ptep);
3108                 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
3109                 set_huge_pte_at(mm, address, ptep,
3110                                 make_huge_pte(vma, new_page, 1));
3111                 page_remove_rmap(old_page);
3112                 hugepage_add_new_anon_rmap(new_page, vma, address);
3113                 /* Make the old page be freed below */
3114                 new_page = old_page;
3115         }
3116         spin_unlock(ptl);
3117         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
3118 out_release_all:
3119         page_cache_release(new_page);
3120 out_release_old:
3121         page_cache_release(old_page);
3122
3123         spin_lock(ptl); /* Caller expects lock to be held */
3124         return ret;
3125 }
3126
3127 /* Return the pagecache page at a given address within a VMA */
3128 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3129                         struct vm_area_struct *vma, unsigned long address)
3130 {
3131         struct address_space *mapping;
3132         pgoff_t idx;
3133
3134         mapping = vma->vm_file->f_mapping;
3135         idx = vma_hugecache_offset(h, vma, address);
3136
3137         return find_lock_page(mapping, idx);
3138 }
3139
3140 /*
3141  * Return whether there is a pagecache page to back given address within VMA.
3142  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3143  */
3144 static bool hugetlbfs_pagecache_present(struct hstate *h,
3145                         struct vm_area_struct *vma, unsigned long address)
3146 {
3147         struct address_space *mapping;
3148         pgoff_t idx;
3149         struct page *page;
3150
3151         mapping = vma->vm_file->f_mapping;
3152         idx = vma_hugecache_offset(h, vma, address);
3153
3154         page = find_get_page(mapping, idx);
3155         if (page)
3156                 put_page(page);
3157         return page != NULL;
3158 }
3159
3160 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
3161                            struct address_space *mapping, pgoff_t idx,
3162                            unsigned long address, pte_t *ptep, unsigned int flags)
3163 {
3164         struct hstate *h = hstate_vma(vma);
3165         int ret = VM_FAULT_SIGBUS;
3166         int anon_rmap = 0;
3167         unsigned long size;
3168         struct page *page;
3169         pte_t new_pte;
3170         spinlock_t *ptl;
3171
3172         /*
3173          * Currently, we are forced to kill the process in the event the
3174          * original mapper has unmapped pages from the child due to a failed
3175          * COW. Warn that such a situation has occurred as it may not be obvious
3176          */
3177         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
3178                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
3179                            current->pid);
3180                 return ret;
3181         }
3182
3183         /*
3184          * Use page lock to guard against racing truncation
3185          * before we get page_table_lock.
3186          */
3187 retry:
3188         page = find_lock_page(mapping, idx);
3189         if (!page) {
3190                 size = i_size_read(mapping->host) >> huge_page_shift(h);
3191                 if (idx >= size)
3192                         goto out;
3193                 page = alloc_huge_page(vma, address, 0);
3194                 if (IS_ERR(page)) {
3195                         ret = PTR_ERR(page);
3196                         if (ret == -ENOMEM)
3197                                 ret = VM_FAULT_OOM;
3198                         else
3199                                 ret = VM_FAULT_SIGBUS;
3200                         goto out;
3201                 }
3202                 clear_huge_page(page, address, pages_per_huge_page(h));
3203                 __SetPageUptodate(page);
3204                 set_page_huge_active(page);
3205
3206                 if (vma->vm_flags & VM_MAYSHARE) {
3207                         int err;
3208                         struct inode *inode = mapping->host;
3209
3210                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3211                         if (err) {
3212                                 put_page(page);
3213                                 if (err == -EEXIST)
3214                                         goto retry;
3215                                 goto out;
3216                         }
3217                         ClearPagePrivate(page);
3218
3219                         spin_lock(&inode->i_lock);
3220                         inode->i_blocks += blocks_per_huge_page(h);
3221                         spin_unlock(&inode->i_lock);
3222                 } else {
3223                         lock_page(page);
3224                         if (unlikely(anon_vma_prepare(vma))) {
3225                                 ret = VM_FAULT_OOM;
3226                                 goto backout_unlocked;
3227                         }
3228                         anon_rmap = 1;
3229                 }
3230         } else {
3231                 /*
3232                  * If memory error occurs between mmap() and fault, some process
3233                  * don't have hwpoisoned swap entry for errored virtual address.
3234                  * So we need to block hugepage fault by PG_hwpoison bit check.
3235                  */
3236                 if (unlikely(PageHWPoison(page))) {
3237                         ret = VM_FAULT_HWPOISON |
3238                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3239                         goto backout_unlocked;
3240                 }
3241         }
3242
3243         /*
3244          * If we are going to COW a private mapping later, we examine the
3245          * pending reservations for this page now. This will ensure that
3246          * any allocations necessary to record that reservation occur outside
3247          * the spinlock.
3248          */
3249         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
3250                 if (vma_needs_reservation(h, vma, address) < 0) {
3251                         ret = VM_FAULT_OOM;
3252                         goto backout_unlocked;
3253                 }
3254
3255         ptl = huge_pte_lockptr(h, mm, ptep);
3256         spin_lock(ptl);
3257         size = i_size_read(mapping->host) >> huge_page_shift(h);
3258         if (idx >= size)
3259                 goto backout;
3260
3261         ret = 0;
3262         if (!huge_pte_none(huge_ptep_get(ptep)))
3263                 goto backout;
3264
3265         if (anon_rmap) {
3266                 ClearPagePrivate(page);
3267                 hugepage_add_new_anon_rmap(page, vma, address);
3268         } else
3269                 page_dup_rmap(page);
3270         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3271                                 && (vma->vm_flags & VM_SHARED)));
3272         set_huge_pte_at(mm, address, ptep, new_pte);
3273
3274         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
3275                 /* Optimization, do the COW without a second fault */
3276                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
3277         }
3278
3279         spin_unlock(ptl);
3280         unlock_page(page);
3281 out:
3282         return ret;
3283
3284 backout:
3285         spin_unlock(ptl);
3286 backout_unlocked:
3287         unlock_page(page);
3288         put_page(page);
3289         goto out;
3290 }
3291
3292 #ifdef CONFIG_SMP
3293 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3294                             struct vm_area_struct *vma,
3295                             struct address_space *mapping,
3296                             pgoff_t idx, unsigned long address)
3297 {
3298         unsigned long key[2];
3299         u32 hash;
3300
3301         if (vma->vm_flags & VM_SHARED) {
3302                 key[0] = (unsigned long) mapping;
3303                 key[1] = idx;
3304         } else {
3305                 key[0] = (unsigned long) mm;
3306                 key[1] = address >> huge_page_shift(h);
3307         }
3308
3309         hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3310
3311         return hash & (num_fault_mutexes - 1);
3312 }
3313 #else
3314 /*
3315  * For uniprocesor systems we always use a single mutex, so just
3316  * return 0 and avoid the hashing overhead.
3317  */
3318 static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
3319                             struct vm_area_struct *vma,
3320                             struct address_space *mapping,
3321                             pgoff_t idx, unsigned long address)
3322 {
3323         return 0;
3324 }
3325 #endif
3326
3327 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3328                         unsigned long address, unsigned int flags)
3329 {
3330         pte_t *ptep, entry;
3331         spinlock_t *ptl;
3332         int ret;
3333         u32 hash;
3334         pgoff_t idx;
3335         struct page *page = NULL;
3336         struct page *pagecache_page = NULL;
3337         struct hstate *h = hstate_vma(vma);
3338         struct address_space *mapping;
3339         int need_wait_lock = 0;
3340
3341         address &= huge_page_mask(h);
3342
3343         ptep = huge_pte_offset(mm, address);
3344         if (ptep) {
3345                 entry = huge_ptep_get(ptep);
3346                 if (unlikely(is_hugetlb_entry_migration(entry))) {
3347                         migration_entry_wait_huge(vma, mm, ptep);
3348                         return 0;
3349                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
3350                         return VM_FAULT_HWPOISON_LARGE |
3351                                 VM_FAULT_SET_HINDEX(hstate_index(h));
3352         }
3353
3354         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3355         if (!ptep)
3356                 return VM_FAULT_OOM;
3357
3358         mapping = vma->vm_file->f_mapping;
3359         idx = vma_hugecache_offset(h, vma, address);
3360
3361         /*
3362          * Serialize hugepage allocation and instantiation, so that we don't
3363          * get spurious allocation failures if two CPUs race to instantiate
3364          * the same page in the page cache.
3365          */
3366         hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
3367         mutex_lock(&htlb_fault_mutex_table[hash]);
3368
3369         entry = huge_ptep_get(ptep);
3370         if (huge_pte_none(entry)) {
3371                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
3372                 goto out_mutex;
3373         }
3374
3375         ret = 0;
3376
3377         /*
3378          * entry could be a migration/hwpoison entry at this point, so this
3379          * check prevents the kernel from going below assuming that we have
3380          * a active hugepage in pagecache. This goto expects the 2nd page fault,
3381          * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3382          * handle it.
3383          */
3384         if (!pte_present(entry))
3385                 goto out_mutex;
3386
3387         /*
3388          * If we are going to COW the mapping later, we examine the pending
3389          * reservations for this page now. This will ensure that any
3390          * allocations necessary to record that reservation occur outside the
3391          * spinlock. For private mappings, we also lookup the pagecache
3392          * page now as it is used to determine if a reservation has been
3393          * consumed.
3394          */
3395         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
3396                 if (vma_needs_reservation(h, vma, address) < 0) {
3397                         ret = VM_FAULT_OOM;
3398                         goto out_mutex;
3399                 }
3400
3401                 if (!(vma->vm_flags & VM_MAYSHARE))
3402                         pagecache_page = hugetlbfs_pagecache_page(h,
3403                                                                 vma, address);
3404         }
3405
3406         ptl = huge_pte_lock(h, mm, ptep);
3407
3408         /* Check for a racing update before calling hugetlb_cow */
3409         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3410                 goto out_ptl;
3411
3412         /*
3413          * hugetlb_cow() requires page locks of pte_page(entry) and
3414          * pagecache_page, so here we need take the former one
3415          * when page != pagecache_page or !pagecache_page.
3416          */
3417         page = pte_page(entry);
3418         if (page != pagecache_page)
3419                 if (!trylock_page(page)) {
3420                         need_wait_lock = 1;
3421                         goto out_ptl;
3422                 }
3423
3424         get_page(page);
3425
3426         if (flags & FAULT_FLAG_WRITE) {
3427                 if (!huge_pte_write(entry)) {
3428                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
3429                                         pagecache_page, ptl);
3430                         goto out_put_page;
3431                 }
3432                 entry = huge_pte_mkdirty(entry);
3433         }
3434         entry = pte_mkyoung(entry);
3435         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3436                                                 flags & FAULT_FLAG_WRITE))
3437                 update_mmu_cache(vma, address, ptep);
3438 out_put_page:
3439         if (page != pagecache_page)
3440                 unlock_page(page);
3441         put_page(page);
3442 out_ptl:
3443         spin_unlock(ptl);
3444
3445         if (pagecache_page) {
3446                 unlock_page(pagecache_page);
3447                 put_page(pagecache_page);
3448         }
3449 out_mutex:
3450         mutex_unlock(&htlb_fault_mutex_table[hash]);
3451         /*
3452          * Generally it's safe to hold refcount during waiting page lock. But
3453          * here we just wait to defer the next page fault to avoid busy loop and
3454          * the page is not used after unlocked before returning from the current
3455          * page fault. So we are safe from accessing freed page, even if we wait
3456          * here without taking refcount.
3457          */
3458         if (need_wait_lock)
3459                 wait_on_page_locked(page);
3460         return ret;
3461 }
3462
3463 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3464                          struct page **pages, struct vm_area_struct **vmas,
3465                          unsigned long *position, unsigned long *nr_pages,
3466                          long i, unsigned int flags)
3467 {
3468         unsigned long pfn_offset;
3469         unsigned long vaddr = *position;
3470         unsigned long remainder = *nr_pages;
3471         struct hstate *h = hstate_vma(vma);
3472
3473         while (vaddr < vma->vm_end && remainder) {
3474                 pte_t *pte;
3475                 spinlock_t *ptl = NULL;
3476                 int absent;
3477                 struct page *page;
3478
3479                 /*
3480                  * If we have a pending SIGKILL, don't keep faulting pages and
3481                  * potentially allocating memory.
3482                  */
3483                 if (unlikely(fatal_signal_pending(current))) {
3484                         remainder = 0;
3485                         break;
3486                 }
3487
3488                 /*
3489                  * Some archs (sparc64, sh*) have multiple pte_ts to
3490                  * each hugepage.  We have to make sure we get the
3491                  * first, for the page indexing below to work.
3492                  *
3493                  * Note that page table lock is not held when pte is null.
3494                  */
3495                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3496                 if (pte)
3497                         ptl = huge_pte_lock(h, mm, pte);
3498                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3499
3500                 /*
3501                  * When coredumping, it suits get_dump_page if we just return
3502                  * an error where there's an empty slot with no huge pagecache
3503                  * to back it.  This way, we avoid allocating a hugepage, and
3504                  * the sparse dumpfile avoids allocating disk blocks, but its
3505                  * huge holes still show up with zeroes where they need to be.
3506                  */
3507                 if (absent && (flags & FOLL_DUMP) &&
3508                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3509                         if (pte)
3510                                 spin_unlock(ptl);
3511                         remainder = 0;
3512                         break;
3513                 }
3514
3515                 /*
3516                  * We need call hugetlb_fault for both hugepages under migration
3517                  * (in which case hugetlb_fault waits for the migration,) and
3518                  * hwpoisoned hugepages (in which case we need to prevent the
3519                  * caller from accessing to them.) In order to do this, we use
3520                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3521                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3522                  * both cases, and because we can't follow correct pages
3523                  * directly from any kind of swap entries.
3524                  */
3525                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3526                     ((flags & FOLL_WRITE) &&
3527                       !huge_pte_write(huge_ptep_get(pte)))) {
3528                         int ret;
3529
3530                         if (pte)
3531                                 spin_unlock(ptl);
3532                         ret = hugetlb_fault(mm, vma, vaddr,
3533                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3534                         if (!(ret & VM_FAULT_ERROR))
3535                                 continue;
3536
3537                         remainder = 0;
3538                         break;
3539                 }
3540
3541                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3542                 page = pte_page(huge_ptep_get(pte));
3543 same_page:
3544                 if (pages) {
3545                         pages[i] = mem_map_offset(page, pfn_offset);
3546                         get_page_foll(pages[i]);
3547                 }
3548
3549                 if (vmas)
3550                         vmas[i] = vma;
3551
3552                 vaddr += PAGE_SIZE;
3553                 ++pfn_offset;
3554                 --remainder;
3555                 ++i;
3556                 if (vaddr < vma->vm_end && remainder &&
3557                                 pfn_offset < pages_per_huge_page(h)) {
3558                         /*
3559                          * We use pfn_offset to avoid touching the pageframes
3560                          * of this compound page.
3561                          */
3562                         goto same_page;
3563                 }
3564                 spin_unlock(ptl);
3565         }
3566         *nr_pages = remainder;
3567         *position = vaddr;
3568
3569         return i ? i : -EFAULT;
3570 }
3571
3572 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3573                 unsigned long address, unsigned long end, pgprot_t newprot)
3574 {
3575         struct mm_struct *mm = vma->vm_mm;
3576         unsigned long start = address;
3577         pte_t *ptep;
3578         pte_t pte;
3579         struct hstate *h = hstate_vma(vma);
3580         unsigned long pages = 0;
3581
3582         BUG_ON(address >= end);
3583         flush_cache_range(vma, address, end);
3584
3585         mmu_notifier_invalidate_range_start(mm, start, end);
3586         i_mmap_lock_write(vma->vm_file->f_mapping);
3587         for (; address < end; address += huge_page_size(h)) {
3588                 spinlock_t *ptl;
3589                 ptep = huge_pte_offset(mm, address);
3590                 if (!ptep)
3591                         continue;
3592                 ptl = huge_pte_lock(h, mm, ptep);
3593                 if (huge_pmd_unshare(mm, &address, ptep)) {
3594                         pages++;
3595                         spin_unlock(ptl);
3596                         continue;
3597                 }
3598                 pte = huge_ptep_get(ptep);
3599                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3600                         spin_unlock(ptl);
3601                         continue;
3602                 }
3603                 if (unlikely(is_hugetlb_entry_migration(pte))) {
3604                         swp_entry_t entry = pte_to_swp_entry(pte);
3605
3606                         if (is_write_migration_entry(entry)) {
3607                                 pte_t newpte;
3608
3609                                 make_migration_entry_read(&entry);
3610                                 newpte = swp_entry_to_pte(entry);
3611                                 set_huge_pte_at(mm, address, ptep, newpte);
3612                                 pages++;
3613                         }
3614                         spin_unlock(ptl);
3615                         continue;
3616                 }
3617                 if (!huge_pte_none(pte)) {
3618                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3619                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3620                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3621                         set_huge_pte_at(mm, address, ptep, pte);
3622                         pages++;
3623                 }
3624                 spin_unlock(ptl);
3625         }
3626         /*
3627          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
3628          * may have cleared our pud entry and done put_page on the page table:
3629          * once we release i_mmap_rwsem, another task can do the final put_page
3630          * and that page table be reused and filled with junk.
3631          */
3632         flush_tlb_range(vma, start, end);
3633         mmu_notifier_invalidate_range(mm, start, end);
3634         i_mmap_unlock_write(vma->vm_file->f_mapping);
3635         mmu_notifier_invalidate_range_end(mm, start, end);
3636
3637         return pages << h->order;
3638 }
3639
3640 int hugetlb_reserve_pages(struct inode *inode,
3641                                         long from, long to,
3642                                         struct vm_area_struct *vma,
3643                                         vm_flags_t vm_flags)
3644 {
3645         long ret, chg;
3646         struct hstate *h = hstate_inode(inode);
3647         struct hugepage_subpool *spool = subpool_inode(inode);
3648         struct resv_map *resv_map;
3649         long gbl_reserve;
3650
3651         /*
3652          * Only apply hugepage reservation if asked. At fault time, an
3653          * attempt will be made for VM_NORESERVE to allocate a page
3654          * without using reserves
3655          */
3656         if (vm_flags & VM_NORESERVE)
3657                 return 0;
3658
3659         /*
3660          * Shared mappings base their reservation on the number of pages that
3661          * are already allocated on behalf of the file. Private mappings need
3662          * to reserve the full area even if read-only as mprotect() may be
3663          * called to make the mapping read-write. Assume !vma is a shm mapping
3664          */
3665         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3666                 resv_map = inode_resv_map(inode);
3667
3668                 chg = region_chg(resv_map, from, to);
3669
3670         } else {
3671                 resv_map = resv_map_alloc();
3672                 if (!resv_map)
3673                         return -ENOMEM;
3674
3675                 chg = to - from;
3676
3677                 set_vma_resv_map(vma, resv_map);
3678                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3679         }
3680
3681         if (chg < 0) {
3682                 ret = chg;
3683                 goto out_err;
3684         }
3685
3686         /*
3687          * There must be enough pages in the subpool for the mapping. If
3688          * the subpool has a minimum size, there may be some global
3689          * reservations already in place (gbl_reserve).
3690          */
3691         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
3692         if (gbl_reserve < 0) {
3693                 ret = -ENOSPC;
3694                 goto out_err;
3695         }
3696
3697         /*
3698          * Check enough hugepages are available for the reservation.
3699          * Hand the pages back to the subpool if there are not
3700          */
3701         ret = hugetlb_acct_memory(h, gbl_reserve);
3702         if (ret < 0) {
3703                 /* put back original number of pages, chg */
3704                 (void)hugepage_subpool_put_pages(spool, chg);
3705                 goto out_err;
3706         }
3707
3708         /*
3709          * Account for the reservations made. Shared mappings record regions
3710          * that have reservations as they are shared by multiple VMAs.
3711          * When the last VMA disappears, the region map says how much
3712          * the reservation was and the page cache tells how much of
3713          * the reservation was consumed. Private mappings are per-VMA and
3714          * only the consumed reservations are tracked. When the VMA
3715          * disappears, the original reservation is the VMA size and the
3716          * consumed reservations are stored in the map. Hence, nothing
3717          * else has to be done for private mappings here
3718          */
3719         if (!vma || vma->vm_flags & VM_MAYSHARE) {
3720                 long add = region_add(resv_map, from, to);
3721
3722                 if (unlikely(chg > add)) {
3723                         /*
3724                          * pages in this range were added to the reserve
3725                          * map between region_chg and region_add.  This
3726                          * indicates a race with alloc_huge_page.  Adjust
3727                          * the subpool and reserve counts modified above
3728                          * based on the difference.
3729                          */
3730                         long rsv_adjust;
3731
3732                         rsv_adjust = hugepage_subpool_put_pages(spool,
3733                                                                 chg - add);
3734                         hugetlb_acct_memory(h, -rsv_adjust);
3735                 }
3736         }
3737         return 0;
3738 out_err:
3739         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3740                 kref_put(&resv_map->refs, resv_map_release);
3741         return ret;
3742 }
3743
3744 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3745 {
3746         struct hstate *h = hstate_inode(inode);
3747         struct resv_map *resv_map = inode_resv_map(inode);
3748         long chg = 0;
3749         struct hugepage_subpool *spool = subpool_inode(inode);
3750         long gbl_reserve;
3751
3752         if (resv_map)
3753                 chg = region_truncate(resv_map, offset);
3754         spin_lock(&inode->i_lock);
3755         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3756         spin_unlock(&inode->i_lock);
3757
3758         /*
3759          * If the subpool has a minimum size, the number of global
3760          * reservations to be released may be adjusted.
3761          */
3762         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
3763         hugetlb_acct_memory(h, -gbl_reserve);
3764 }
3765
3766 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3767 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3768                                 struct vm_area_struct *vma,
3769                                 unsigned long addr, pgoff_t idx)
3770 {
3771         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3772                                 svma->vm_start;
3773         unsigned long sbase = saddr & PUD_MASK;
3774         unsigned long s_end = sbase + PUD_SIZE;
3775
3776         /* Allow segments to share if only one is marked locked */
3777         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3778         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3779
3780         /*
3781          * match the virtual addresses, permission and the alignment of the
3782          * page table page.
3783          */
3784         if (pmd_index(addr) != pmd_index(saddr) ||
3785             vm_flags != svm_flags ||
3786             sbase < svma->vm_start || svma->vm_end < s_end)
3787                 return 0;
3788
3789         return saddr;
3790 }
3791
3792 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3793 {
3794         unsigned long base = addr & PUD_MASK;
3795         unsigned long end = base + PUD_SIZE;
3796
3797         /*
3798          * check on proper vm_flags and page table alignment
3799          */
3800         if (vma->vm_flags & VM_MAYSHARE &&
3801             vma->vm_start <= base && end <= vma->vm_end)
3802                 return 1;
3803         return 0;
3804 }
3805
3806 /*
3807  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3808  * and returns the corresponding pte. While this is not necessary for the
3809  * !shared pmd case because we can allocate the pmd later as well, it makes the
3810  * code much cleaner. pmd allocation is essential for the shared case because
3811  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3812  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3813  * bad pmd for sharing.
3814  */
3815 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3816 {
3817         struct vm_area_struct *vma = find_vma(mm, addr);
3818         struct address_space *mapping = vma->vm_file->f_mapping;
3819         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3820                         vma->vm_pgoff;
3821         struct vm_area_struct *svma;
3822         unsigned long saddr;
3823         pte_t *spte = NULL;
3824         pte_t *pte;
3825         spinlock_t *ptl;
3826
3827         if (!vma_shareable(vma, addr))
3828                 return (pte_t *)pmd_alloc(mm, pud, addr);
3829
3830         i_mmap_lock_write(mapping);
3831         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3832                 if (svma == vma)
3833                         continue;
3834
3835                 saddr = page_table_shareable(svma, vma, addr, idx);
3836                 if (saddr) {
3837                         spte = huge_pte_offset(svma->vm_mm, saddr);
3838                         if (spte) {
3839                                 mm_inc_nr_pmds(mm);
3840                                 get_page(virt_to_page(spte));
3841                                 break;
3842                         }
3843                 }
3844         }
3845
3846         if (!spte)
3847                 goto out;
3848
3849         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3850         spin_lock(ptl);
3851         if (pud_none(*pud)) {
3852                 pud_populate(mm, pud,
3853                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3854         } else {
3855                 put_page(virt_to_page(spte));
3856                 mm_inc_nr_pmds(mm);
3857         }
3858         spin_unlock(ptl);
3859 out:
3860         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3861         i_mmap_unlock_write(mapping);
3862         return pte;
3863 }
3864
3865 /*
3866  * unmap huge page backed by shared pte.
3867  *
3868  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3869  * indicated by page_count > 1, unmap is achieved by clearing pud and
3870  * decrementing the ref count. If count == 1, the pte page is not shared.
3871  *
3872  * called with page table lock held.
3873  *
3874  * returns: 1 successfully unmapped a shared pte page
3875  *          0 the underlying pte page is not shared, or it is the last user
3876  */
3877 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3878 {
3879         pgd_t *pgd = pgd_offset(mm, *addr);
3880         pud_t *pud = pud_offset(pgd, *addr);
3881
3882         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3883         if (page_count(virt_to_page(ptep)) == 1)
3884                 return 0;
3885
3886         pud_clear(pud);
3887         put_page(virt_to_page(ptep));
3888         mm_dec_nr_pmds(mm);
3889         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3890         return 1;
3891 }
3892 #define want_pmd_share()        (1)
3893 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3894 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3895 {
3896         return NULL;
3897 }
3898
3899 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3900 {
3901         return 0;
3902 }
3903 #define want_pmd_share()        (0)
3904 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3905
3906 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3907 pte_t *huge_pte_alloc(struct mm_struct *mm,
3908                         unsigned long addr, unsigned long sz)
3909 {
3910         pgd_t *pgd;
3911         pud_t *pud;
3912         pte_t *pte = NULL;
3913
3914         pgd = pgd_offset(mm, addr);
3915         pud = pud_alloc(mm, pgd, addr);
3916         if (pud) {
3917                 if (sz == PUD_SIZE) {
3918                         pte = (pte_t *)pud;
3919                 } else {
3920                         BUG_ON(sz != PMD_SIZE);
3921                         if (want_pmd_share() && pud_none(*pud))
3922                                 pte = huge_pmd_share(mm, addr, pud);
3923                         else
3924                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3925                 }
3926         }
3927         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3928
3929         return pte;
3930 }
3931
3932 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3933 {
3934         pgd_t *pgd;
3935         pud_t *pud;
3936         pmd_t *pmd = NULL;
3937
3938         pgd = pgd_offset(mm, addr);
3939         if (pgd_present(*pgd)) {
3940                 pud = pud_offset(pgd, addr);
3941                 if (pud_present(*pud)) {
3942                         if (pud_huge(*pud))
3943                                 return (pte_t *)pud;
3944                         pmd = pmd_offset(pud, addr);
3945                 }
3946         }
3947         return (pte_t *) pmd;
3948 }
3949
3950 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3951
3952 /*
3953  * These functions are overwritable if your architecture needs its own
3954  * behavior.
3955  */
3956 struct page * __weak
3957 follow_huge_addr(struct mm_struct *mm, unsigned long address,
3958                               int write)
3959 {
3960         return ERR_PTR(-EINVAL);
3961 }
3962
3963 struct page * __weak
3964 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3965                 pmd_t *pmd, int flags)
3966 {
3967         struct page *page = NULL;
3968         spinlock_t *ptl;
3969 retry:
3970         ptl = pmd_lockptr(mm, pmd);
3971         spin_lock(ptl);
3972         /*
3973          * make sure that the address range covered by this pmd is not
3974          * unmapped from other threads.
3975          */
3976         if (!pmd_huge(*pmd))
3977                 goto out;
3978         if (pmd_present(*pmd)) {
3979                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
3980                 if (flags & FOLL_GET)
3981                         get_page(page);
3982         } else {
3983                 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
3984                         spin_unlock(ptl);
3985                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
3986                         goto retry;
3987                 }
3988                 /*
3989                  * hwpoisoned entry is treated as no_page_table in
3990                  * follow_page_mask().
3991                  */
3992         }
3993 out:
3994         spin_unlock(ptl);
3995         return page;
3996 }
3997
3998 struct page * __weak
3999 follow_huge_pud(struct mm_struct *mm, unsigned long address,
4000                 pud_t *pud, int flags)
4001 {
4002         if (flags & FOLL_GET)
4003                 return NULL;
4004
4005         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
4006 }
4007
4008 #ifdef CONFIG_MEMORY_FAILURE
4009
4010 /*
4011  * This function is called from memory failure code.
4012  * Assume the caller holds page lock of the head page.
4013  */
4014 int dequeue_hwpoisoned_huge_page(struct page *hpage)
4015 {
4016         struct hstate *h = page_hstate(hpage);
4017         int nid = page_to_nid(hpage);
4018         int ret = -EBUSY;
4019
4020         spin_lock(&hugetlb_lock);
4021         /*
4022          * Just checking !page_huge_active is not enough, because that could be
4023          * an isolated/hwpoisoned hugepage (which have >0 refcount).
4024          */
4025         if (!page_huge_active(hpage) && !page_count(hpage)) {
4026                 /*
4027                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
4028                  * but dangling hpage->lru can trigger list-debug warnings
4029                  * (this happens when we call unpoison_memory() on it),
4030                  * so let it point to itself with list_del_init().
4031                  */
4032                 list_del_init(&hpage->lru);
4033                 set_page_refcounted(hpage);
4034                 h->free_huge_pages--;
4035                 h->free_huge_pages_node[nid]--;
4036                 ret = 0;
4037         }
4038         spin_unlock(&hugetlb_lock);
4039         return ret;
4040 }
4041 #endif
4042
4043 bool isolate_huge_page(struct page *page, struct list_head *list)
4044 {
4045         bool ret = true;
4046
4047         VM_BUG_ON_PAGE(!PageHead(page), page);
4048         spin_lock(&hugetlb_lock);
4049         if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4050                 ret = false;
4051                 goto unlock;
4052         }
4053         clear_page_huge_active(page);
4054         list_move_tail(&page->lru, list);
4055 unlock:
4056         spin_unlock(&hugetlb_lock);
4057         return ret;
4058 }
4059
4060 void putback_active_hugepage(struct page *page)
4061 {
4062         VM_BUG_ON_PAGE(!PageHead(page), page);
4063         spin_lock(&hugetlb_lock);
4064         set_page_huge_active(page);
4065         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4066         spin_unlock(&hugetlb_lock);
4067         put_page(page);
4068 }