1 // SPDX-License-Identifier: GPL-2.0-only
3 * Generic hugetlb support.
4 * (C) Nadia Yvette Chambers, April 2004
6 #include <linux/list.h>
7 #include <linux/init.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
39 #include <asm/pgalloc.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
48 #include "hugetlb_vmemmap.h"
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
59 return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
68 static unsigned long hugetlb_cma_size __initdata;
70 __initdata LIST_HEAD(huge_boot_pages);
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
80 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81 * free_huge_pages, and surplus_huge_pages.
83 DEFINE_SPINLOCK(hugetlb_lock);
86 * Serializes faults on the same logical page. This is used to
87 * prevent spurious OOMs when the hugepage pool is fully utilized.
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
102 if (spool->max_hpages != -1)
103 return spool->used_hpages == 0;
104 if (spool->min_hpages != -1)
105 return spool->rsv_hpages == spool->min_hpages;
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111 unsigned long irq_flags)
113 spin_unlock_irqrestore(&spool->lock, irq_flags);
115 /* If no pages are used, and no other handles to the subpool
116 * remain, give up any reservations based on minimum size and
117 * free the subpool */
118 if (subpool_is_free(spool)) {
119 if (spool->min_hpages != -1)
120 hugetlb_acct_memory(spool->hstate,
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
129 struct hugepage_subpool *spool;
131 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
135 spin_lock_init(&spool->lock);
137 spool->max_hpages = max_hpages;
139 spool->min_hpages = min_hpages;
141 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
145 spool->rsv_hpages = min_hpages;
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
154 spin_lock_irqsave(&spool->lock, flags);
155 BUG_ON(!spool->count);
157 unlock_or_release_subpool(spool, flags);
161 * Subpool accounting for allocating and reserving pages.
162 * Return -ENOMEM if there are not enough resources to satisfy the
163 * request. Otherwise, return the number of pages by which the
164 * global pools must be adjusted (upward). The returned value may
165 * only be different than the passed value (delta) in the case where
166 * a subpool minimum size must be maintained.
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
176 spin_lock_irq(&spool->lock);
178 if (spool->max_hpages != -1) { /* maximum size accounting */
179 if ((spool->used_hpages + delta) <= spool->max_hpages)
180 spool->used_hpages += delta;
187 /* minimum size accounting */
188 if (spool->min_hpages != -1 && spool->rsv_hpages) {
189 if (delta > spool->rsv_hpages) {
191 * Asking for more reserves than those already taken on
192 * behalf of subpool. Return difference.
194 ret = delta - spool->rsv_hpages;
195 spool->rsv_hpages = 0;
197 ret = 0; /* reserves already accounted for */
198 spool->rsv_hpages -= delta;
203 spin_unlock_irq(&spool->lock);
208 * Subpool accounting for freeing and unreserving pages.
209 * Return the number of global page reservations that must be dropped.
210 * The return value may only be different than the passed value (delta)
211 * in the case where a subpool minimum size must be maintained.
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
222 spin_lock_irqsave(&spool->lock, flags);
224 if (spool->max_hpages != -1) /* maximum size accounting */
225 spool->used_hpages -= delta;
227 /* minimum size accounting */
228 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229 if (spool->rsv_hpages + delta <= spool->min_hpages)
232 ret = spool->rsv_hpages + delta - spool->min_hpages;
234 spool->rsv_hpages += delta;
235 if (spool->rsv_hpages > spool->min_hpages)
236 spool->rsv_hpages = spool->min_hpages;
240 * If hugetlbfs_put_super couldn't free spool due to an outstanding
241 * quota reference, free it now.
243 unlock_or_release_subpool(spool, flags);
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
250 return HUGETLBFS_SB(inode->i_sb)->spool;
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
255 return subpool_inode(file_inode(vma->vm_file));
259 * hugetlb vma_lock helper routines
261 static bool __vma_shareable_lock(struct vm_area_struct *vma)
263 return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
264 vma->vm_private_data;
267 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
269 if (__vma_shareable_lock(vma)) {
270 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
272 down_read(&vma_lock->rw_sema);
276 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
278 if (__vma_shareable_lock(vma)) {
279 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
281 up_read(&vma_lock->rw_sema);
285 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
287 if (__vma_shareable_lock(vma)) {
288 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
290 down_write(&vma_lock->rw_sema);
294 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
296 if (__vma_shareable_lock(vma)) {
297 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
299 up_write(&vma_lock->rw_sema);
303 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
305 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
307 if (!__vma_shareable_lock(vma))
310 return down_write_trylock(&vma_lock->rw_sema);
313 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
315 if (__vma_shareable_lock(vma)) {
316 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
318 lockdep_assert_held(&vma_lock->rw_sema);
322 void hugetlb_vma_lock_release(struct kref *kref)
324 struct hugetlb_vma_lock *vma_lock = container_of(kref,
325 struct hugetlb_vma_lock, refs);
330 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
332 struct vm_area_struct *vma = vma_lock->vma;
335 * vma_lock structure may or not be released as a result of put,
336 * it certainly will no longer be attached to vma so clear pointer.
337 * Semaphore synchronizes access to vma_lock->vma field.
339 vma_lock->vma = NULL;
340 vma->vm_private_data = NULL;
341 up_write(&vma_lock->rw_sema);
342 kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
345 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
347 if (__vma_shareable_lock(vma)) {
348 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
350 __hugetlb_vma_unlock_write_put(vma_lock);
354 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
357 * Only present in sharable vmas.
359 if (!vma || !__vma_shareable_lock(vma))
362 if (vma->vm_private_data) {
363 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
365 down_write(&vma_lock->rw_sema);
366 __hugetlb_vma_unlock_write_put(vma_lock);
370 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
372 struct hugetlb_vma_lock *vma_lock;
374 /* Only establish in (flags) sharable vmas */
375 if (!vma || !(vma->vm_flags & VM_MAYSHARE))
378 /* Should never get here with non-NULL vm_private_data */
379 if (vma->vm_private_data)
382 vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
385 * If we can not allocate structure, then vma can not
386 * participate in pmd sharing. This is only a possible
387 * performance enhancement and memory saving issue.
388 * However, the lock is also used to synchronize page
389 * faults with truncation. If the lock is not present,
390 * unlikely races could leave pages in a file past i_size
391 * until the file is removed. Warn in the unlikely case of
392 * allocation failure.
394 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
398 kref_init(&vma_lock->refs);
399 init_rwsem(&vma_lock->rw_sema);
401 vma->vm_private_data = vma_lock;
404 /* Helper that removes a struct file_region from the resv_map cache and returns
407 static struct file_region *
408 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
410 struct file_region *nrg;
412 VM_BUG_ON(resv->region_cache_count <= 0);
414 resv->region_cache_count--;
415 nrg = list_first_entry(&resv->region_cache, struct file_region, link);
416 list_del(&nrg->link);
424 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
425 struct file_region *rg)
427 #ifdef CONFIG_CGROUP_HUGETLB
428 nrg->reservation_counter = rg->reservation_counter;
435 /* Helper that records hugetlb_cgroup uncharge info. */
436 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
438 struct resv_map *resv,
439 struct file_region *nrg)
441 #ifdef CONFIG_CGROUP_HUGETLB
443 nrg->reservation_counter =
444 &h_cg->rsvd_hugepage[hstate_index(h)];
445 nrg->css = &h_cg->css;
447 * The caller will hold exactly one h_cg->css reference for the
448 * whole contiguous reservation region. But this area might be
449 * scattered when there are already some file_regions reside in
450 * it. As a result, many file_regions may share only one css
451 * reference. In order to ensure that one file_region must hold
452 * exactly one h_cg->css reference, we should do css_get for
453 * each file_region and leave the reference held by caller
457 if (!resv->pages_per_hpage)
458 resv->pages_per_hpage = pages_per_huge_page(h);
459 /* pages_per_hpage should be the same for all entries in
462 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
464 nrg->reservation_counter = NULL;
470 static void put_uncharge_info(struct file_region *rg)
472 #ifdef CONFIG_CGROUP_HUGETLB
478 static bool has_same_uncharge_info(struct file_region *rg,
479 struct file_region *org)
481 #ifdef CONFIG_CGROUP_HUGETLB
482 return rg->reservation_counter == org->reservation_counter &&
490 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
492 struct file_region *nrg, *prg;
494 prg = list_prev_entry(rg, link);
495 if (&prg->link != &resv->regions && prg->to == rg->from &&
496 has_same_uncharge_info(prg, rg)) {
500 put_uncharge_info(rg);
506 nrg = list_next_entry(rg, link);
507 if (&nrg->link != &resv->regions && nrg->from == rg->to &&
508 has_same_uncharge_info(nrg, rg)) {
509 nrg->from = rg->from;
512 put_uncharge_info(rg);
518 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
519 long to, struct hstate *h, struct hugetlb_cgroup *cg,
520 long *regions_needed)
522 struct file_region *nrg;
524 if (!regions_needed) {
525 nrg = get_file_region_entry_from_cache(map, from, to);
526 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
527 list_add(&nrg->link, rg);
528 coalesce_file_region(map, nrg);
530 *regions_needed += 1;
536 * Must be called with resv->lock held.
538 * Calling this with regions_needed != NULL will count the number of pages
539 * to be added but will not modify the linked list. And regions_needed will
540 * indicate the number of file_regions needed in the cache to carry out to add
541 * the regions for this range.
543 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
544 struct hugetlb_cgroup *h_cg,
545 struct hstate *h, long *regions_needed)
548 struct list_head *head = &resv->regions;
549 long last_accounted_offset = f;
550 struct file_region *iter, *trg = NULL;
551 struct list_head *rg = NULL;
556 /* In this loop, we essentially handle an entry for the range
557 * [last_accounted_offset, iter->from), at every iteration, with some
560 list_for_each_entry_safe(iter, trg, head, link) {
561 /* Skip irrelevant regions that start before our range. */
562 if (iter->from < f) {
563 /* If this region ends after the last accounted offset,
564 * then we need to update last_accounted_offset.
566 if (iter->to > last_accounted_offset)
567 last_accounted_offset = iter->to;
571 /* When we find a region that starts beyond our range, we've
574 if (iter->from >= t) {
575 rg = iter->link.prev;
579 /* Add an entry for last_accounted_offset -> iter->from, and
580 * update last_accounted_offset.
582 if (iter->from > last_accounted_offset)
583 add += hugetlb_resv_map_add(resv, iter->link.prev,
584 last_accounted_offset,
588 last_accounted_offset = iter->to;
591 /* Handle the case where our range extends beyond
592 * last_accounted_offset.
596 if (last_accounted_offset < t)
597 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
598 t, h, h_cg, regions_needed);
603 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
605 static int allocate_file_region_entries(struct resv_map *resv,
607 __must_hold(&resv->lock)
609 LIST_HEAD(allocated_regions);
610 int to_allocate = 0, i = 0;
611 struct file_region *trg = NULL, *rg = NULL;
613 VM_BUG_ON(regions_needed < 0);
616 * Check for sufficient descriptors in the cache to accommodate
617 * the number of in progress add operations plus regions_needed.
619 * This is a while loop because when we drop the lock, some other call
620 * to region_add or region_del may have consumed some region_entries,
621 * so we keep looping here until we finally have enough entries for
622 * (adds_in_progress + regions_needed).
624 while (resv->region_cache_count <
625 (resv->adds_in_progress + regions_needed)) {
626 to_allocate = resv->adds_in_progress + regions_needed -
627 resv->region_cache_count;
629 /* At this point, we should have enough entries in the cache
630 * for all the existing adds_in_progress. We should only be
631 * needing to allocate for regions_needed.
633 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
635 spin_unlock(&resv->lock);
636 for (i = 0; i < to_allocate; i++) {
637 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
640 list_add(&trg->link, &allocated_regions);
643 spin_lock(&resv->lock);
645 list_splice(&allocated_regions, &resv->region_cache);
646 resv->region_cache_count += to_allocate;
652 list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
660 * Add the huge page range represented by [f, t) to the reserve
661 * map. Regions will be taken from the cache to fill in this range.
662 * Sufficient regions should exist in the cache due to the previous
663 * call to region_chg with the same range, but in some cases the cache will not
664 * have sufficient entries due to races with other code doing region_add or
665 * region_del. The extra needed entries will be allocated.
667 * regions_needed is the out value provided by a previous call to region_chg.
669 * Return the number of new huge pages added to the map. This number is greater
670 * than or equal to zero. If file_region entries needed to be allocated for
671 * this operation and we were not able to allocate, it returns -ENOMEM.
672 * region_add of regions of length 1 never allocate file_regions and cannot
673 * fail; region_chg will always allocate at least 1 entry and a region_add for
674 * 1 page will only require at most 1 entry.
676 static long region_add(struct resv_map *resv, long f, long t,
677 long in_regions_needed, struct hstate *h,
678 struct hugetlb_cgroup *h_cg)
680 long add = 0, actual_regions_needed = 0;
682 spin_lock(&resv->lock);
685 /* Count how many regions are actually needed to execute this add. */
686 add_reservation_in_range(resv, f, t, NULL, NULL,
687 &actual_regions_needed);
690 * Check for sufficient descriptors in the cache to accommodate
691 * this add operation. Note that actual_regions_needed may be greater
692 * than in_regions_needed, as the resv_map may have been modified since
693 * the region_chg call. In this case, we need to make sure that we
694 * allocate extra entries, such that we have enough for all the
695 * existing adds_in_progress, plus the excess needed for this
698 if (actual_regions_needed > in_regions_needed &&
699 resv->region_cache_count <
700 resv->adds_in_progress +
701 (actual_regions_needed - in_regions_needed)) {
702 /* region_add operation of range 1 should never need to
703 * allocate file_region entries.
705 VM_BUG_ON(t - f <= 1);
707 if (allocate_file_region_entries(
708 resv, actual_regions_needed - in_regions_needed)) {
715 add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
717 resv->adds_in_progress -= in_regions_needed;
719 spin_unlock(&resv->lock);
724 * Examine the existing reserve map and determine how many
725 * huge pages in the specified range [f, t) are NOT currently
726 * represented. This routine is called before a subsequent
727 * call to region_add that will actually modify the reserve
728 * map to add the specified range [f, t). region_chg does
729 * not change the number of huge pages represented by the
730 * map. A number of new file_region structures is added to the cache as a
731 * placeholder, for the subsequent region_add call to use. At least 1
732 * file_region structure is added.
734 * out_regions_needed is the number of regions added to the
735 * resv->adds_in_progress. This value needs to be provided to a follow up call
736 * to region_add or region_abort for proper accounting.
738 * Returns the number of huge pages that need to be added to the existing
739 * reservation map for the range [f, t). This number is greater or equal to
740 * zero. -ENOMEM is returned if a new file_region structure or cache entry
741 * is needed and can not be allocated.
743 static long region_chg(struct resv_map *resv, long f, long t,
744 long *out_regions_needed)
748 spin_lock(&resv->lock);
750 /* Count how many hugepages in this range are NOT represented. */
751 chg = add_reservation_in_range(resv, f, t, NULL, NULL,
754 if (*out_regions_needed == 0)
755 *out_regions_needed = 1;
757 if (allocate_file_region_entries(resv, *out_regions_needed))
760 resv->adds_in_progress += *out_regions_needed;
762 spin_unlock(&resv->lock);
767 * Abort the in progress add operation. The adds_in_progress field
768 * of the resv_map keeps track of the operations in progress between
769 * calls to region_chg and region_add. Operations are sometimes
770 * aborted after the call to region_chg. In such cases, region_abort
771 * is called to decrement the adds_in_progress counter. regions_needed
772 * is the value returned by the region_chg call, it is used to decrement
773 * the adds_in_progress counter.
775 * NOTE: The range arguments [f, t) are not needed or used in this
776 * routine. They are kept to make reading the calling code easier as
777 * arguments will match the associated region_chg call.
779 static void region_abort(struct resv_map *resv, long f, long t,
782 spin_lock(&resv->lock);
783 VM_BUG_ON(!resv->region_cache_count);
784 resv->adds_in_progress -= regions_needed;
785 spin_unlock(&resv->lock);
789 * Delete the specified range [f, t) from the reserve map. If the
790 * t parameter is LONG_MAX, this indicates that ALL regions after f
791 * should be deleted. Locate the regions which intersect [f, t)
792 * and either trim, delete or split the existing regions.
794 * Returns the number of huge pages deleted from the reserve map.
795 * In the normal case, the return value is zero or more. In the
796 * case where a region must be split, a new region descriptor must
797 * be allocated. If the allocation fails, -ENOMEM will be returned.
798 * NOTE: If the parameter t == LONG_MAX, then we will never split
799 * a region and possibly return -ENOMEM. Callers specifying
800 * t == LONG_MAX do not need to check for -ENOMEM error.
802 static long region_del(struct resv_map *resv, long f, long t)
804 struct list_head *head = &resv->regions;
805 struct file_region *rg, *trg;
806 struct file_region *nrg = NULL;
810 spin_lock(&resv->lock);
811 list_for_each_entry_safe(rg, trg, head, link) {
813 * Skip regions before the range to be deleted. file_region
814 * ranges are normally of the form [from, to). However, there
815 * may be a "placeholder" entry in the map which is of the form
816 * (from, to) with from == to. Check for placeholder entries
817 * at the beginning of the range to be deleted.
819 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
825 if (f > rg->from && t < rg->to) { /* Must split region */
827 * Check for an entry in the cache before dropping
828 * lock and attempting allocation.
831 resv->region_cache_count > resv->adds_in_progress) {
832 nrg = list_first_entry(&resv->region_cache,
835 list_del(&nrg->link);
836 resv->region_cache_count--;
840 spin_unlock(&resv->lock);
841 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
848 hugetlb_cgroup_uncharge_file_region(
849 resv, rg, t - f, false);
851 /* New entry for end of split region */
855 copy_hugetlb_cgroup_uncharge_info(nrg, rg);
857 INIT_LIST_HEAD(&nrg->link);
859 /* Original entry is trimmed */
862 list_add(&nrg->link, &rg->link);
867 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
868 del += rg->to - rg->from;
869 hugetlb_cgroup_uncharge_file_region(resv, rg,
870 rg->to - rg->from, true);
876 if (f <= rg->from) { /* Trim beginning of region */
877 hugetlb_cgroup_uncharge_file_region(resv, rg,
878 t - rg->from, false);
882 } else { /* Trim end of region */
883 hugetlb_cgroup_uncharge_file_region(resv, rg,
891 spin_unlock(&resv->lock);
897 * A rare out of memory error was encountered which prevented removal of
898 * the reserve map region for a page. The huge page itself was free'ed
899 * and removed from the page cache. This routine will adjust the subpool
900 * usage count, and the global reserve count if needed. By incrementing
901 * these counts, the reserve map entry which could not be deleted will
902 * appear as a "reserved" entry instead of simply dangling with incorrect
905 void hugetlb_fix_reserve_counts(struct inode *inode)
907 struct hugepage_subpool *spool = subpool_inode(inode);
909 bool reserved = false;
911 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
912 if (rsv_adjust > 0) {
913 struct hstate *h = hstate_inode(inode);
915 if (!hugetlb_acct_memory(h, 1))
917 } else if (!rsv_adjust) {
922 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
926 * Count and return the number of huge pages in the reserve map
927 * that intersect with the range [f, t).
929 static long region_count(struct resv_map *resv, long f, long t)
931 struct list_head *head = &resv->regions;
932 struct file_region *rg;
935 spin_lock(&resv->lock);
936 /* Locate each segment we overlap with, and count that overlap. */
937 list_for_each_entry(rg, head, link) {
946 seg_from = max(rg->from, f);
947 seg_to = min(rg->to, t);
949 chg += seg_to - seg_from;
951 spin_unlock(&resv->lock);
957 * Convert the address within this vma to the page offset within
958 * the mapping, in pagecache page units; huge pages here.
960 static pgoff_t vma_hugecache_offset(struct hstate *h,
961 struct vm_area_struct *vma, unsigned long address)
963 return ((address - vma->vm_start) >> huge_page_shift(h)) +
964 (vma->vm_pgoff >> huge_page_order(h));
967 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
968 unsigned long address)
970 return vma_hugecache_offset(hstate_vma(vma), vma, address);
972 EXPORT_SYMBOL_GPL(linear_hugepage_index);
975 * Return the size of the pages allocated when backing a VMA. In the majority
976 * cases this will be same size as used by the page table entries.
978 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
980 if (vma->vm_ops && vma->vm_ops->pagesize)
981 return vma->vm_ops->pagesize(vma);
984 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
987 * Return the page size being used by the MMU to back a VMA. In the majority
988 * of cases, the page size used by the kernel matches the MMU size. On
989 * architectures where it differs, an architecture-specific 'strong'
990 * version of this symbol is required.
992 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
994 return vma_kernel_pagesize(vma);
998 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
999 * bits of the reservation map pointer, which are always clear due to
1002 #define HPAGE_RESV_OWNER (1UL << 0)
1003 #define HPAGE_RESV_UNMAPPED (1UL << 1)
1004 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
1007 * These helpers are used to track how many pages are reserved for
1008 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
1009 * is guaranteed to have their future faults succeed.
1011 * With the exception of hugetlb_dup_vma_private() which is called at fork(),
1012 * the reserve counters are updated with the hugetlb_lock held. It is safe
1013 * to reset the VMA at fork() time as it is not in use yet and there is no
1014 * chance of the global counters getting corrupted as a result of the values.
1016 * The private mapping reservation is represented in a subtly different
1017 * manner to a shared mapping. A shared mapping has a region map associated
1018 * with the underlying file, this region map represents the backing file
1019 * pages which have ever had a reservation assigned which this persists even
1020 * after the page is instantiated. A private mapping has a region map
1021 * associated with the original mmap which is attached to all VMAs which
1022 * reference it, this region map represents those offsets which have consumed
1023 * reservation ie. where pages have been instantiated.
1025 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
1027 return (unsigned long)vma->vm_private_data;
1030 static void set_vma_private_data(struct vm_area_struct *vma,
1031 unsigned long value)
1033 vma->vm_private_data = (void *)value;
1037 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
1038 struct hugetlb_cgroup *h_cg,
1041 #ifdef CONFIG_CGROUP_HUGETLB
1043 resv_map->reservation_counter = NULL;
1044 resv_map->pages_per_hpage = 0;
1045 resv_map->css = NULL;
1047 resv_map->reservation_counter =
1048 &h_cg->rsvd_hugepage[hstate_index(h)];
1049 resv_map->pages_per_hpage = pages_per_huge_page(h);
1050 resv_map->css = &h_cg->css;
1055 struct resv_map *resv_map_alloc(void)
1057 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
1058 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
1060 if (!resv_map || !rg) {
1066 kref_init(&resv_map->refs);
1067 spin_lock_init(&resv_map->lock);
1068 INIT_LIST_HEAD(&resv_map->regions);
1070 resv_map->adds_in_progress = 0;
1072 * Initialize these to 0. On shared mappings, 0's here indicate these
1073 * fields don't do cgroup accounting. On private mappings, these will be
1074 * re-initialized to the proper values, to indicate that hugetlb cgroup
1075 * reservations are to be un-charged from here.
1077 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
1079 INIT_LIST_HEAD(&resv_map->region_cache);
1080 list_add(&rg->link, &resv_map->region_cache);
1081 resv_map->region_cache_count = 1;
1086 void resv_map_release(struct kref *ref)
1088 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
1089 struct list_head *head = &resv_map->region_cache;
1090 struct file_region *rg, *trg;
1092 /* Clear out any active regions before we release the map. */
1093 region_del(resv_map, 0, LONG_MAX);
1095 /* ... and any entries left in the cache */
1096 list_for_each_entry_safe(rg, trg, head, link) {
1097 list_del(&rg->link);
1101 VM_BUG_ON(resv_map->adds_in_progress);
1106 static inline struct resv_map *inode_resv_map(struct inode *inode)
1109 * At inode evict time, i_mapping may not point to the original
1110 * address space within the inode. This original address space
1111 * contains the pointer to the resv_map. So, always use the
1112 * address space embedded within the inode.
1113 * The VERY common case is inode->mapping == &inode->i_data but,
1114 * this may not be true for device special inodes.
1116 return (struct resv_map *)(&inode->i_data)->private_data;
1119 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
1121 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1122 if (vma->vm_flags & VM_MAYSHARE) {
1123 struct address_space *mapping = vma->vm_file->f_mapping;
1124 struct inode *inode = mapping->host;
1126 return inode_resv_map(inode);
1129 return (struct resv_map *)(get_vma_private_data(vma) &
1134 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
1136 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1137 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1139 set_vma_private_data(vma, (get_vma_private_data(vma) &
1140 HPAGE_RESV_MASK) | (unsigned long)map);
1143 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
1145 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1146 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1148 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1151 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1153 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1155 return (get_vma_private_data(vma) & flag) != 0;
1158 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1160 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1162 * Clear vm_private_data
1163 * - For shared mappings this is a per-vma semaphore that may be
1164 * allocated in a subsequent call to hugetlb_vm_op_open.
1165 * Before clearing, make sure pointer is not associated with vma
1166 * as this will leak the structure. This is the case when called
1167 * via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1168 * been called to allocate a new structure.
1169 * - For MAP_PRIVATE mappings, this is the reserve map which does
1170 * not apply to children. Faults generated by the children are
1171 * not guaranteed to succeed, even if read-only.
1173 if (vma->vm_flags & VM_MAYSHARE) {
1174 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1176 if (vma_lock && vma_lock->vma != vma)
1177 vma->vm_private_data = NULL;
1179 vma->vm_private_data = NULL;
1183 * Reset and decrement one ref on hugepage private reservation.
1184 * Called with mm->mmap_sem writer semaphore held.
1185 * This function should be only used by move_vma() and operate on
1186 * same sized vma. It should never come here with last ref on the
1189 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1192 * Clear the old hugetlb private page reservation.
1193 * It has already been transferred to new_vma.
1195 * During a mremap() operation of a hugetlb vma we call move_vma()
1196 * which copies vma into new_vma and unmaps vma. After the copy
1197 * operation both new_vma and vma share a reference to the resv_map
1198 * struct, and at that point vma is about to be unmapped. We don't
1199 * want to return the reservation to the pool at unmap of vma because
1200 * the reservation still lives on in new_vma, so simply decrement the
1201 * ref here and remove the resv_map reference from this vma.
1203 struct resv_map *reservations = vma_resv_map(vma);
1205 if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1206 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1207 kref_put(&reservations->refs, resv_map_release);
1210 hugetlb_dup_vma_private(vma);
1213 /* Returns true if the VMA has associated reserve pages */
1214 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1216 if (vma->vm_flags & VM_NORESERVE) {
1218 * This address is already reserved by other process(chg == 0),
1219 * so, we should decrement reserved count. Without decrementing,
1220 * reserve count remains after releasing inode, because this
1221 * allocated page will go into page cache and is regarded as
1222 * coming from reserved pool in releasing step. Currently, we
1223 * don't have any other solution to deal with this situation
1224 * properly, so add work-around here.
1226 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1232 /* Shared mappings always use reserves */
1233 if (vma->vm_flags & VM_MAYSHARE) {
1235 * We know VM_NORESERVE is not set. Therefore, there SHOULD
1236 * be a region map for all pages. The only situation where
1237 * there is no region map is if a hole was punched via
1238 * fallocate. In this case, there really are no reserves to
1239 * use. This situation is indicated if chg != 0.
1248 * Only the process that called mmap() has reserves for
1251 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1253 * Like the shared case above, a hole punch or truncate
1254 * could have been performed on the private mapping.
1255 * Examine the value of chg to determine if reserves
1256 * actually exist or were previously consumed.
1257 * Very Subtle - The value of chg comes from a previous
1258 * call to vma_needs_reserves(). The reserve map for
1259 * private mappings has different (opposite) semantics
1260 * than that of shared mappings. vma_needs_reserves()
1261 * has already taken this difference in semantics into
1262 * account. Therefore, the meaning of chg is the same
1263 * as in the shared case above. Code could easily be
1264 * combined, but keeping it separate draws attention to
1265 * subtle differences.
1276 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1278 int nid = folio_nid(folio);
1280 lockdep_assert_held(&hugetlb_lock);
1281 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1283 list_move(&folio->lru, &h->hugepage_freelists[nid]);
1284 h->free_huge_pages++;
1285 h->free_huge_pages_node[nid]++;
1286 folio_set_hugetlb_freed(folio);
1289 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1292 bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1294 lockdep_assert_held(&hugetlb_lock);
1295 list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1296 if (pin && !is_longterm_pinnable_page(page))
1299 if (PageHWPoison(page))
1302 list_move(&page->lru, &h->hugepage_activelist);
1303 set_page_refcounted(page);
1304 ClearHPageFreed(page);
1305 h->free_huge_pages--;
1306 h->free_huge_pages_node[nid]--;
1313 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1316 unsigned int cpuset_mems_cookie;
1317 struct zonelist *zonelist;
1320 int node = NUMA_NO_NODE;
1322 zonelist = node_zonelist(nid, gfp_mask);
1325 cpuset_mems_cookie = read_mems_allowed_begin();
1326 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1329 if (!cpuset_zone_allowed(zone, gfp_mask))
1332 * no need to ask again on the same node. Pool is node rather than
1335 if (zone_to_nid(zone) == node)
1337 node = zone_to_nid(zone);
1339 page = dequeue_huge_page_node_exact(h, node);
1343 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1349 static unsigned long available_huge_pages(struct hstate *h)
1351 return h->free_huge_pages - h->resv_huge_pages;
1354 static struct page *dequeue_huge_page_vma(struct hstate *h,
1355 struct vm_area_struct *vma,
1356 unsigned long address, int avoid_reserve,
1359 struct page *page = NULL;
1360 struct mempolicy *mpol;
1362 nodemask_t *nodemask;
1366 * A child process with MAP_PRIVATE mappings created by their parent
1367 * have no page reserves. This check ensures that reservations are
1368 * not "stolen". The child may still get SIGKILLed
1370 if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1373 /* If reserves cannot be used, ensure enough pages are in the pool */
1374 if (avoid_reserve && !available_huge_pages(h))
1377 gfp_mask = htlb_alloc_mask(h);
1378 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1380 if (mpol_is_preferred_many(mpol)) {
1381 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1383 /* Fallback to all nodes if page==NULL */
1388 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1390 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1391 SetHPageRestoreReserve(page);
1392 h->resv_huge_pages--;
1395 mpol_cond_put(mpol);
1403 * common helper functions for hstate_next_node_to_{alloc|free}.
1404 * We may have allocated or freed a huge page based on a different
1405 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1406 * be outside of *nodes_allowed. Ensure that we use an allowed
1407 * node for alloc or free.
1409 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1411 nid = next_node_in(nid, *nodes_allowed);
1412 VM_BUG_ON(nid >= MAX_NUMNODES);
1417 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1419 if (!node_isset(nid, *nodes_allowed))
1420 nid = next_node_allowed(nid, nodes_allowed);
1425 * returns the previously saved node ["this node"] from which to
1426 * allocate a persistent huge page for the pool and advance the
1427 * next node from which to allocate, handling wrap at end of node
1430 static int hstate_next_node_to_alloc(struct hstate *h,
1431 nodemask_t *nodes_allowed)
1435 VM_BUG_ON(!nodes_allowed);
1437 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1438 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1444 * helper for remove_pool_huge_page() - return the previously saved
1445 * node ["this node"] from which to free a huge page. Advance the
1446 * next node id whether or not we find a free huge page to free so
1447 * that the next attempt to free addresses the next node.
1449 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1453 VM_BUG_ON(!nodes_allowed);
1455 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1456 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1461 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1462 for (nr_nodes = nodes_weight(*mask); \
1464 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1467 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1468 for (nr_nodes = nodes_weight(*mask); \
1470 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1473 /* used to demote non-gigantic_huge pages as well */
1474 static void __destroy_compound_gigantic_folio(struct folio *folio,
1475 unsigned int order, bool demote)
1478 int nr_pages = 1 << order;
1481 atomic_set(folio_mapcount_ptr(folio), 0);
1482 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1483 atomic_set(folio_pincount_ptr(folio), 0);
1485 for (i = 1; i < nr_pages; i++) {
1486 p = folio_page(folio, i);
1488 clear_compound_head(p);
1490 set_page_refcounted(p);
1493 folio_set_compound_order(folio, 0);
1494 __folio_clear_head(folio);
1497 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1500 __destroy_compound_gigantic_folio(folio, order, true);
1503 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1504 static void destroy_compound_gigantic_folio(struct folio *folio,
1507 __destroy_compound_gigantic_folio(folio, order, false);
1510 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1513 * If the page isn't allocated using the cma allocator,
1514 * cma_release() returns false.
1517 int nid = folio_nid(folio);
1519 if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1523 free_contig_range(folio_pfn(folio), 1 << order);
1526 #ifdef CONFIG_CONTIG_ALLOC
1527 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1528 int nid, nodemask_t *nodemask)
1531 unsigned long nr_pages = pages_per_huge_page(h);
1532 if (nid == NUMA_NO_NODE)
1533 nid = numa_mem_id();
1539 if (hugetlb_cma[nid]) {
1540 page = cma_alloc(hugetlb_cma[nid], nr_pages,
1541 huge_page_order(h), true);
1543 return page_folio(page);
1546 if (!(gfp_mask & __GFP_THISNODE)) {
1547 for_each_node_mask(node, *nodemask) {
1548 if (node == nid || !hugetlb_cma[node])
1551 page = cma_alloc(hugetlb_cma[node], nr_pages,
1552 huge_page_order(h), true);
1554 return page_folio(page);
1560 page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1561 return page ? page_folio(page) : NULL;
1564 #else /* !CONFIG_CONTIG_ALLOC */
1565 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1566 int nid, nodemask_t *nodemask)
1570 #endif /* CONFIG_CONTIG_ALLOC */
1572 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1573 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1574 int nid, nodemask_t *nodemask)
1578 static inline void free_gigantic_folio(struct folio *folio,
1579 unsigned int order) { }
1580 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1581 unsigned int order) { }
1585 * Remove hugetlb folio from lists, and update dtor so that the folio appears
1586 * as just a compound page.
1588 * A reference is held on the folio, except in the case of demote.
1590 * Must be called with hugetlb lock held.
1592 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1593 bool adjust_surplus,
1596 int nid = folio_nid(folio);
1598 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1599 VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1601 lockdep_assert_held(&hugetlb_lock);
1602 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1605 list_del(&folio->lru);
1607 if (folio_test_hugetlb_freed(folio)) {
1608 h->free_huge_pages--;
1609 h->free_huge_pages_node[nid]--;
1611 if (adjust_surplus) {
1612 h->surplus_huge_pages--;
1613 h->surplus_huge_pages_node[nid]--;
1619 * For non-gigantic pages set the destructor to the normal compound
1620 * page dtor. This is needed in case someone takes an additional
1621 * temporary ref to the page, and freeing is delayed until they drop
1624 * For gigantic pages set the destructor to the null dtor. This
1625 * destructor will never be called. Before freeing the gigantic
1626 * page destroy_compound_gigantic_folio will turn the folio into a
1627 * simple group of pages. After this the destructor does not
1630 * This handles the case where more than one ref is held when and
1631 * after update_and_free_hugetlb_folio is called.
1633 * In the case of demote we do not ref count the page as it will soon
1634 * be turned into a page of smaller size.
1637 folio_ref_unfreeze(folio, 1);
1638 if (hstate_is_gigantic(h))
1639 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1641 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1644 h->nr_huge_pages_node[nid]--;
1647 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1648 bool adjust_surplus)
1650 __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1653 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1654 bool adjust_surplus)
1656 __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1659 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1660 bool adjust_surplus)
1663 int nid = folio_nid(folio);
1665 VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1667 lockdep_assert_held(&hugetlb_lock);
1669 INIT_LIST_HEAD(&folio->lru);
1671 h->nr_huge_pages_node[nid]++;
1673 if (adjust_surplus) {
1674 h->surplus_huge_pages++;
1675 h->surplus_huge_pages_node[nid]++;
1678 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1679 folio_change_private(folio, NULL);
1681 * We have to set hugetlb_vmemmap_optimized again as above
1682 * folio_change_private(folio, NULL) cleared it.
1684 folio_set_hugetlb_vmemmap_optimized(folio);
1687 * This folio is about to be managed by the hugetlb allocator and
1688 * should have no users. Drop our reference, and check for others
1691 zeroed = folio_put_testzero(folio);
1692 if (unlikely(!zeroed))
1694 * It is VERY unlikely soneone else has taken a ref on
1695 * the page. In this case, we simply return as the
1696 * hugetlb destructor (free_huge_page) will be called
1697 * when this other ref is dropped.
1701 arch_clear_hugepage_flags(&folio->page);
1702 enqueue_hugetlb_folio(h, folio);
1705 static void __update_and_free_page(struct hstate *h, struct page *page)
1708 struct folio *folio = page_folio(page);
1709 struct page *subpage;
1711 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1715 * If we don't know which subpages are hwpoisoned, we can't free
1716 * the hugepage, so it's leaked intentionally.
1718 if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1721 if (hugetlb_vmemmap_restore(h, page)) {
1722 spin_lock_irq(&hugetlb_lock);
1724 * If we cannot allocate vmemmap pages, just refuse to free the
1725 * page and put the page back on the hugetlb free list and treat
1726 * as a surplus page.
1728 add_hugetlb_folio(h, folio, true);
1729 spin_unlock_irq(&hugetlb_lock);
1734 * Move PageHWPoison flag from head page to the raw error pages,
1735 * which makes any healthy subpages reusable.
1737 if (unlikely(folio_test_hwpoison(folio)))
1738 hugetlb_clear_page_hwpoison(&folio->page);
1740 for (i = 0; i < pages_per_huge_page(h); i++) {
1741 subpage = folio_page(folio, i);
1742 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1743 1 << PG_referenced | 1 << PG_dirty |
1744 1 << PG_active | 1 << PG_private |
1749 * Non-gigantic pages demoted from CMA allocated gigantic pages
1750 * need to be given back to CMA in free_gigantic_folio.
1752 if (hstate_is_gigantic(h) ||
1753 hugetlb_cma_folio(folio, huge_page_order(h))) {
1754 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1755 free_gigantic_folio(folio, huge_page_order(h));
1757 __free_pages(page, huge_page_order(h));
1762 * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1763 * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1764 * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1765 * the vmemmap pages.
1767 * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1768 * freed and frees them one-by-one. As the page->mapping pointer is going
1769 * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1770 * structure of a lockless linked list of huge pages to be freed.
1772 static LLIST_HEAD(hpage_freelist);
1774 static void free_hpage_workfn(struct work_struct *work)
1776 struct llist_node *node;
1778 node = llist_del_all(&hpage_freelist);
1784 page = container_of((struct address_space **)node,
1785 struct page, mapping);
1787 page->mapping = NULL;
1789 * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1790 * is going to trigger because a previous call to
1791 * remove_hugetlb_folio() will call folio_set_compound_dtor
1792 * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1795 h = size_to_hstate(page_size(page));
1797 __update_and_free_page(h, page);
1802 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1804 static inline void flush_free_hpage_work(struct hstate *h)
1806 if (hugetlb_vmemmap_optimizable(h))
1807 flush_work(&free_hpage_work);
1810 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1813 if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1814 __update_and_free_page(h, &folio->page);
1819 * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1821 * Only call schedule_work() if hpage_freelist is previously
1822 * empty. Otherwise, schedule_work() had been called but the workfn
1823 * hasn't retrieved the list yet.
1825 if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1826 schedule_work(&free_hpage_work);
1829 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1831 struct page *page, *t_page;
1832 struct folio *folio;
1834 list_for_each_entry_safe(page, t_page, list, lru) {
1835 folio = page_folio(page);
1836 update_and_free_hugetlb_folio(h, folio, false);
1841 struct hstate *size_to_hstate(unsigned long size)
1845 for_each_hstate(h) {
1846 if (huge_page_size(h) == size)
1852 void free_huge_page(struct page *page)
1855 * Can't pass hstate in here because it is called from the
1856 * compound page destructor.
1858 struct folio *folio = page_folio(page);
1859 struct hstate *h = folio_hstate(folio);
1860 int nid = folio_nid(folio);
1861 struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1862 bool restore_reserve;
1863 unsigned long flags;
1865 VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1866 VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1868 hugetlb_set_folio_subpool(folio, NULL);
1869 if (folio_test_anon(folio))
1870 __ClearPageAnonExclusive(&folio->page);
1871 folio->mapping = NULL;
1872 restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1873 folio_clear_hugetlb_restore_reserve(folio);
1876 * If HPageRestoreReserve was set on page, page allocation consumed a
1877 * reservation. If the page was associated with a subpool, there
1878 * would have been a page reserved in the subpool before allocation
1879 * via hugepage_subpool_get_pages(). Since we are 'restoring' the
1880 * reservation, do not call hugepage_subpool_put_pages() as this will
1881 * remove the reserved page from the subpool.
1883 if (!restore_reserve) {
1885 * A return code of zero implies that the subpool will be
1886 * under its minimum size if the reservation is not restored
1887 * after page is free. Therefore, force restore_reserve
1890 if (hugepage_subpool_put_pages(spool, 1) == 0)
1891 restore_reserve = true;
1894 spin_lock_irqsave(&hugetlb_lock, flags);
1895 folio_clear_hugetlb_migratable(folio);
1896 hugetlb_cgroup_uncharge_folio(hstate_index(h),
1897 pages_per_huge_page(h), folio);
1898 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1899 pages_per_huge_page(h), folio);
1900 if (restore_reserve)
1901 h->resv_huge_pages++;
1903 if (folio_test_hugetlb_temporary(folio)) {
1904 remove_hugetlb_folio(h, folio, false);
1905 spin_unlock_irqrestore(&hugetlb_lock, flags);
1906 update_and_free_hugetlb_folio(h, folio, true);
1907 } else if (h->surplus_huge_pages_node[nid]) {
1908 /* remove the page from active list */
1909 remove_hugetlb_folio(h, folio, true);
1910 spin_unlock_irqrestore(&hugetlb_lock, flags);
1911 update_and_free_hugetlb_folio(h, folio, true);
1913 arch_clear_hugepage_flags(page);
1914 enqueue_hugetlb_folio(h, folio);
1915 spin_unlock_irqrestore(&hugetlb_lock, flags);
1920 * Must be called with the hugetlb lock held
1922 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1924 lockdep_assert_held(&hugetlb_lock);
1926 h->nr_huge_pages_node[nid]++;
1929 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1931 hugetlb_vmemmap_optimize(h, &folio->page);
1932 INIT_LIST_HEAD(&folio->lru);
1933 folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1934 hugetlb_set_folio_subpool(folio, NULL);
1935 set_hugetlb_cgroup(folio, NULL);
1936 set_hugetlb_cgroup_rsvd(folio, NULL);
1939 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1941 __prep_new_hugetlb_folio(h, folio);
1942 spin_lock_irq(&hugetlb_lock);
1943 __prep_account_new_huge_page(h, nid);
1944 spin_unlock_irq(&hugetlb_lock);
1947 static bool __prep_compound_gigantic_folio(struct folio *folio,
1948 unsigned int order, bool demote)
1951 int nr_pages = 1 << order;
1954 __folio_clear_reserved(folio);
1955 __folio_set_head(folio);
1956 /* we rely on prep_new_hugetlb_folio to set the destructor */
1957 folio_set_compound_order(folio, order);
1958 for (i = 0; i < nr_pages; i++) {
1959 p = folio_page(folio, i);
1962 * For gigantic hugepages allocated through bootmem at
1963 * boot, it's safer to be consistent with the not-gigantic
1964 * hugepages and clear the PG_reserved bit from all tail pages
1965 * too. Otherwise drivers using get_user_pages() to access tail
1966 * pages may get the reference counting wrong if they see
1967 * PG_reserved set on a tail page (despite the head page not
1968 * having PG_reserved set). Enforcing this consistency between
1969 * head and tail pages allows drivers to optimize away a check
1970 * on the head page when they need know if put_page() is needed
1971 * after get_user_pages().
1973 if (i != 0) /* head page cleared above */
1974 __ClearPageReserved(p);
1976 * Subtle and very unlikely
1978 * Gigantic 'page allocators' such as memblock or cma will
1979 * return a set of pages with each page ref counted. We need
1980 * to turn this set of pages into a compound page with tail
1981 * page ref counts set to zero. Code such as speculative page
1982 * cache adding could take a ref on a 'to be' tail page.
1983 * We need to respect any increased ref count, and only set
1984 * the ref count to zero if count is currently 1. If count
1985 * is not 1, we return an error. An error return indicates
1986 * the set of pages can not be converted to a gigantic page.
1987 * The caller who allocated the pages should then discard the
1988 * pages using the appropriate free interface.
1990 * In the case of demote, the ref count will be zero.
1993 if (!page_ref_freeze(p, 1)) {
1994 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1998 VM_BUG_ON_PAGE(page_count(p), p);
2001 set_compound_head(p, &folio->page);
2003 atomic_set(folio_mapcount_ptr(folio), -1);
2004 atomic_set(folio_subpages_mapcount_ptr(folio), 0);
2005 atomic_set(folio_pincount_ptr(folio), 0);
2009 /* undo page modifications made above */
2010 for (j = 0; j < i; j++) {
2011 p = folio_page(folio, j);
2013 clear_compound_head(p);
2014 set_page_refcounted(p);
2016 /* need to clear PG_reserved on remaining tail pages */
2017 for (; j < nr_pages; j++) {
2018 p = folio_page(folio, j);
2019 __ClearPageReserved(p);
2021 folio_set_compound_order(folio, 0);
2022 __folio_clear_head(folio);
2026 static bool prep_compound_gigantic_folio(struct folio *folio,
2029 return __prep_compound_gigantic_folio(folio, order, false);
2032 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
2035 return __prep_compound_gigantic_folio(folio, order, true);
2039 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
2040 * transparent huge pages. See the PageTransHuge() documentation for more
2043 int PageHuge(struct page *page)
2045 if (!PageCompound(page))
2048 page = compound_head(page);
2049 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
2051 EXPORT_SYMBOL_GPL(PageHuge);
2054 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
2055 * normal or transparent huge pages.
2057 int PageHeadHuge(struct page *page_head)
2059 if (!PageHead(page_head))
2062 return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
2064 EXPORT_SYMBOL_GPL(PageHeadHuge);
2067 * Find and lock address space (mapping) in write mode.
2069 * Upon entry, the page is locked which means that page_mapping() is
2070 * stable. Due to locking order, we can only trylock_write. If we can
2071 * not get the lock, simply return NULL to caller.
2073 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
2075 struct address_space *mapping = page_mapping(hpage);
2080 if (i_mmap_trylock_write(mapping))
2086 pgoff_t hugetlb_basepage_index(struct page *page)
2088 struct page *page_head = compound_head(page);
2089 pgoff_t index = page_index(page_head);
2090 unsigned long compound_idx;
2092 if (compound_order(page_head) >= MAX_ORDER)
2093 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
2095 compound_idx = page - page_head;
2097 return (index << compound_order(page_head)) + compound_idx;
2100 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
2101 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2102 nodemask_t *node_alloc_noretry)
2104 int order = huge_page_order(h);
2106 bool alloc_try_hard = true;
2110 * By default we always try hard to allocate the page with
2111 * __GFP_RETRY_MAYFAIL flag. However, if we are allocating pages in
2112 * a loop (to adjust global huge page counts) and previous allocation
2113 * failed, do not continue to try hard on the same node. Use the
2114 * node_alloc_noretry bitmap to manage this state information.
2116 if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
2117 alloc_try_hard = false;
2118 gfp_mask |= __GFP_COMP|__GFP_NOWARN;
2120 gfp_mask |= __GFP_RETRY_MAYFAIL;
2121 if (nid == NUMA_NO_NODE)
2122 nid = numa_mem_id();
2124 page = __alloc_pages(gfp_mask, order, nid, nmask);
2126 /* Freeze head page */
2127 if (page && !page_ref_freeze(page, 1)) {
2128 __free_pages(page, order);
2129 if (retry) { /* retry once */
2133 /* WOW! twice in a row. */
2134 pr_warn("HugeTLB head page unexpected inflated ref count\n");
2139 * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
2140 * indicates an overall state change. Clear bit so that we resume
2141 * normal 'try hard' allocations.
2143 if (node_alloc_noretry && page && !alloc_try_hard)
2144 node_clear(nid, *node_alloc_noretry);
2147 * If we tried hard to get a page but failed, set bit so that
2148 * subsequent attempts will not try as hard until there is an
2149 * overall state change.
2151 if (node_alloc_noretry && !page && alloc_try_hard)
2152 node_set(nid, *node_alloc_noretry);
2155 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2159 __count_vm_event(HTLB_BUDDY_PGALLOC);
2160 return page_folio(page);
2164 * Common helper to allocate a fresh hugetlb page. All specific allocators
2165 * should use this function to get new hugetlb pages
2167 * Note that returned page is 'frozen': ref count of head page and all tail
2170 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2171 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2172 nodemask_t *node_alloc_noretry)
2174 struct folio *folio;
2178 if (hstate_is_gigantic(h))
2179 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2181 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2182 nid, nmask, node_alloc_noretry);
2185 if (hstate_is_gigantic(h)) {
2186 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2188 * Rare failure to convert pages to compound page.
2189 * Free pages and try again - ONCE!
2191 free_gigantic_folio(folio, huge_page_order(h));
2199 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2205 * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2208 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2209 nodemask_t *node_alloc_noretry)
2211 struct folio *folio;
2213 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2215 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2216 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2217 nodes_allowed, node_alloc_noretry);
2219 free_huge_page(&folio->page); /* free it into the hugepage allocator */
2228 * Remove huge page from pool from next node to free. Attempt to keep
2229 * persistent huge pages more or less balanced over allowed nodes.
2230 * This routine only 'removes' the hugetlb page. The caller must make
2231 * an additional call to free the page to low level allocators.
2232 * Called with hugetlb_lock locked.
2234 static struct page *remove_pool_huge_page(struct hstate *h,
2235 nodemask_t *nodes_allowed,
2239 struct page *page = NULL;
2240 struct folio *folio;
2242 lockdep_assert_held(&hugetlb_lock);
2243 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2245 * If we're returning unused surplus pages, only examine
2246 * nodes with surplus pages.
2248 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2249 !list_empty(&h->hugepage_freelists[node])) {
2250 page = list_entry(h->hugepage_freelists[node].next,
2252 folio = page_folio(page);
2253 remove_hugetlb_folio(h, folio, acct_surplus);
2262 * Dissolve a given free hugepage into free buddy pages. This function does
2263 * nothing for in-use hugepages and non-hugepages.
2264 * This function returns values like below:
2266 * -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2267 * when the system is under memory pressure and the feature of
2268 * freeing unused vmemmap pages associated with each hugetlb page
2270 * -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
2271 * (allocated or reserved.)
2272 * 0: successfully dissolved free hugepages or the page is not a
2273 * hugepage (considered as already dissolved)
2275 int dissolve_free_huge_page(struct page *page)
2278 struct folio *folio = page_folio(page);
2281 /* Not to disrupt normal path by vainly holding hugetlb_lock */
2282 if (!folio_test_hugetlb(folio))
2285 spin_lock_irq(&hugetlb_lock);
2286 if (!folio_test_hugetlb(folio)) {
2291 if (!folio_ref_count(folio)) {
2292 struct hstate *h = folio_hstate(folio);
2293 if (!available_huge_pages(h))
2297 * We should make sure that the page is already on the free list
2298 * when it is dissolved.
2300 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2301 spin_unlock_irq(&hugetlb_lock);
2305 * Theoretically, we should return -EBUSY when we
2306 * encounter this race. In fact, we have a chance
2307 * to successfully dissolve the page if we do a
2308 * retry. Because the race window is quite small.
2309 * If we seize this opportunity, it is an optimization
2310 * for increasing the success rate of dissolving page.
2315 remove_hugetlb_folio(h, folio, false);
2316 h->max_huge_pages--;
2317 spin_unlock_irq(&hugetlb_lock);
2320 * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2321 * before freeing the page. update_and_free_hugtlb_folio will fail to
2322 * free the page if it can not allocate required vmemmap. We
2323 * need to adjust max_huge_pages if the page is not freed.
2324 * Attempt to allocate vmemmmap here so that we can take
2325 * appropriate action on failure.
2327 rc = hugetlb_vmemmap_restore(h, &folio->page);
2329 update_and_free_hugetlb_folio(h, folio, false);
2331 spin_lock_irq(&hugetlb_lock);
2332 add_hugetlb_folio(h, folio, false);
2333 h->max_huge_pages++;
2334 spin_unlock_irq(&hugetlb_lock);
2340 spin_unlock_irq(&hugetlb_lock);
2345 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2346 * make specified memory blocks removable from the system.
2347 * Note that this will dissolve a free gigantic hugepage completely, if any
2348 * part of it lies within the given range.
2349 * Also note that if dissolve_free_huge_page() returns with an error, all
2350 * free hugepages that were dissolved before that error are lost.
2352 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2360 if (!hugepages_supported())
2363 order = huge_page_order(&default_hstate);
2365 order = min(order, huge_page_order(h));
2367 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2368 page = pfn_to_page(pfn);
2369 rc = dissolve_free_huge_page(page);
2378 * Allocates a fresh surplus page from the page allocator.
2380 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2381 int nid, nodemask_t *nmask)
2383 struct folio *folio = NULL;
2385 if (hstate_is_gigantic(h))
2388 spin_lock_irq(&hugetlb_lock);
2389 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2391 spin_unlock_irq(&hugetlb_lock);
2393 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2397 spin_lock_irq(&hugetlb_lock);
2399 * We could have raced with the pool size change.
2400 * Double check that and simply deallocate the new page
2401 * if we would end up overcommiting the surpluses. Abuse
2402 * temporary page to workaround the nasty free_huge_page
2405 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2406 folio_set_hugetlb_temporary(folio);
2407 spin_unlock_irq(&hugetlb_lock);
2408 free_huge_page(&folio->page);
2412 h->surplus_huge_pages++;
2413 h->surplus_huge_pages_node[folio_nid(folio)]++;
2416 spin_unlock_irq(&hugetlb_lock);
2418 return &folio->page;
2421 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2422 int nid, nodemask_t *nmask)
2424 struct folio *folio;
2426 if (hstate_is_gigantic(h))
2429 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2433 /* fresh huge pages are frozen */
2434 folio_ref_unfreeze(folio, 1);
2436 * We do not account these pages as surplus because they are only
2437 * temporary and will be released properly on the last reference
2439 folio_set_hugetlb_temporary(folio);
2441 return &folio->page;
2445 * Use the VMA's mpolicy to allocate a huge page from the buddy.
2448 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2449 struct vm_area_struct *vma, unsigned long addr)
2451 struct page *page = NULL;
2452 struct mempolicy *mpol;
2453 gfp_t gfp_mask = htlb_alloc_mask(h);
2455 nodemask_t *nodemask;
2457 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2458 if (mpol_is_preferred_many(mpol)) {
2459 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2461 gfp &= ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2462 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2464 /* Fallback to all nodes if page==NULL */
2469 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2470 mpol_cond_put(mpol);
2474 /* page migration callback function */
2475 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2476 nodemask_t *nmask, gfp_t gfp_mask)
2478 spin_lock_irq(&hugetlb_lock);
2479 if (available_huge_pages(h)) {
2482 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2484 spin_unlock_irq(&hugetlb_lock);
2488 spin_unlock_irq(&hugetlb_lock);
2490 return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2493 /* mempolicy aware migration callback */
2494 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2495 unsigned long address)
2497 struct mempolicy *mpol;
2498 nodemask_t *nodemask;
2503 gfp_mask = htlb_alloc_mask(h);
2504 node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2505 page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2506 mpol_cond_put(mpol);
2512 * Increase the hugetlb pool such that it can accommodate a reservation
2515 static int gather_surplus_pages(struct hstate *h, long delta)
2516 __must_hold(&hugetlb_lock)
2518 LIST_HEAD(surplus_list);
2519 struct page *page, *tmp;
2522 long needed, allocated;
2523 bool alloc_ok = true;
2525 lockdep_assert_held(&hugetlb_lock);
2526 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2528 h->resv_huge_pages += delta;
2536 spin_unlock_irq(&hugetlb_lock);
2537 for (i = 0; i < needed; i++) {
2538 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2539 NUMA_NO_NODE, NULL);
2544 list_add(&page->lru, &surplus_list);
2550 * After retaking hugetlb_lock, we need to recalculate 'needed'
2551 * because either resv_huge_pages or free_huge_pages may have changed.
2553 spin_lock_irq(&hugetlb_lock);
2554 needed = (h->resv_huge_pages + delta) -
2555 (h->free_huge_pages + allocated);
2560 * We were not able to allocate enough pages to
2561 * satisfy the entire reservation so we free what
2562 * we've allocated so far.
2567 * The surplus_list now contains _at_least_ the number of extra pages
2568 * needed to accommodate the reservation. Add the appropriate number
2569 * of pages to the hugetlb pool and free the extras back to the buddy
2570 * allocator. Commit the entire reservation here to prevent another
2571 * process from stealing the pages as they are added to the pool but
2572 * before they are reserved.
2574 needed += allocated;
2575 h->resv_huge_pages += delta;
2578 /* Free the needed pages to the hugetlb pool */
2579 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2582 /* Add the page to the hugetlb allocator */
2583 enqueue_hugetlb_folio(h, page_folio(page));
2586 spin_unlock_irq(&hugetlb_lock);
2589 * Free unnecessary surplus pages to the buddy allocator.
2590 * Pages have no ref count, call free_huge_page directly.
2592 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2593 free_huge_page(page);
2594 spin_lock_irq(&hugetlb_lock);
2600 * This routine has two main purposes:
2601 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2602 * in unused_resv_pages. This corresponds to the prior adjustments made
2603 * to the associated reservation map.
2604 * 2) Free any unused surplus pages that may have been allocated to satisfy
2605 * the reservation. As many as unused_resv_pages may be freed.
2607 static void return_unused_surplus_pages(struct hstate *h,
2608 unsigned long unused_resv_pages)
2610 unsigned long nr_pages;
2612 LIST_HEAD(page_list);
2614 lockdep_assert_held(&hugetlb_lock);
2615 /* Uncommit the reservation */
2616 h->resv_huge_pages -= unused_resv_pages;
2618 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2622 * Part (or even all) of the reservation could have been backed
2623 * by pre-allocated pages. Only free surplus pages.
2625 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2628 * We want to release as many surplus pages as possible, spread
2629 * evenly across all nodes with memory. Iterate across these nodes
2630 * until we can no longer free unreserved surplus pages. This occurs
2631 * when the nodes with surplus pages have no free pages.
2632 * remove_pool_huge_page() will balance the freed pages across the
2633 * on-line nodes with memory and will handle the hstate accounting.
2635 while (nr_pages--) {
2636 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2640 list_add(&page->lru, &page_list);
2644 spin_unlock_irq(&hugetlb_lock);
2645 update_and_free_pages_bulk(h, &page_list);
2646 spin_lock_irq(&hugetlb_lock);
2651 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2652 * are used by the huge page allocation routines to manage reservations.
2654 * vma_needs_reservation is called to determine if the huge page at addr
2655 * within the vma has an associated reservation. If a reservation is
2656 * needed, the value 1 is returned. The caller is then responsible for
2657 * managing the global reservation and subpool usage counts. After
2658 * the huge page has been allocated, vma_commit_reservation is called
2659 * to add the page to the reservation map. If the page allocation fails,
2660 * the reservation must be ended instead of committed. vma_end_reservation
2661 * is called in such cases.
2663 * In the normal case, vma_commit_reservation returns the same value
2664 * as the preceding vma_needs_reservation call. The only time this
2665 * is not the case is if a reserve map was changed between calls. It
2666 * is the responsibility of the caller to notice the difference and
2667 * take appropriate action.
2669 * vma_add_reservation is used in error paths where a reservation must
2670 * be restored when a newly allocated huge page must be freed. It is
2671 * to be called after calling vma_needs_reservation to determine if a
2672 * reservation exists.
2674 * vma_del_reservation is used in error paths where an entry in the reserve
2675 * map was created during huge page allocation and must be removed. It is to
2676 * be called after calling vma_needs_reservation to determine if a reservation
2679 enum vma_resv_mode {
2686 static long __vma_reservation_common(struct hstate *h,
2687 struct vm_area_struct *vma, unsigned long addr,
2688 enum vma_resv_mode mode)
2690 struct resv_map *resv;
2693 long dummy_out_regions_needed;
2695 resv = vma_resv_map(vma);
2699 idx = vma_hugecache_offset(h, vma, addr);
2701 case VMA_NEEDS_RESV:
2702 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2703 /* We assume that vma_reservation_* routines always operate on
2704 * 1 page, and that adding to resv map a 1 page entry can only
2705 * ever require 1 region.
2707 VM_BUG_ON(dummy_out_regions_needed != 1);
2709 case VMA_COMMIT_RESV:
2710 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2711 /* region_add calls of range 1 should never fail. */
2715 region_abort(resv, idx, idx + 1, 1);
2719 if (vma->vm_flags & VM_MAYSHARE) {
2720 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2721 /* region_add calls of range 1 should never fail. */
2724 region_abort(resv, idx, idx + 1, 1);
2725 ret = region_del(resv, idx, idx + 1);
2729 if (vma->vm_flags & VM_MAYSHARE) {
2730 region_abort(resv, idx, idx + 1, 1);
2731 ret = region_del(resv, idx, idx + 1);
2733 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2734 /* region_add calls of range 1 should never fail. */
2742 if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2745 * We know private mapping must have HPAGE_RESV_OWNER set.
2747 * In most cases, reserves always exist for private mappings.
2748 * However, a file associated with mapping could have been
2749 * hole punched or truncated after reserves were consumed.
2750 * As subsequent fault on such a range will not use reserves.
2751 * Subtle - The reserve map for private mappings has the
2752 * opposite meaning than that of shared mappings. If NO
2753 * entry is in the reserve map, it means a reservation exists.
2754 * If an entry exists in the reserve map, it means the
2755 * reservation has already been consumed. As a result, the
2756 * return value of this routine is the opposite of the
2757 * value returned from reserve map manipulation routines above.
2766 static long vma_needs_reservation(struct hstate *h,
2767 struct vm_area_struct *vma, unsigned long addr)
2769 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2772 static long vma_commit_reservation(struct hstate *h,
2773 struct vm_area_struct *vma, unsigned long addr)
2775 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2778 static void vma_end_reservation(struct hstate *h,
2779 struct vm_area_struct *vma, unsigned long addr)
2781 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2784 static long vma_add_reservation(struct hstate *h,
2785 struct vm_area_struct *vma, unsigned long addr)
2787 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2790 static long vma_del_reservation(struct hstate *h,
2791 struct vm_area_struct *vma, unsigned long addr)
2793 return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2797 * This routine is called to restore reservation information on error paths.
2798 * It should ONLY be called for pages allocated via alloc_huge_page(), and
2799 * the hugetlb mutex should remain held when calling this routine.
2801 * It handles two specific cases:
2802 * 1) A reservation was in place and the page consumed the reservation.
2803 * HPageRestoreReserve is set in the page.
2804 * 2) No reservation was in place for the page, so HPageRestoreReserve is
2805 * not set. However, alloc_huge_page always updates the reserve map.
2807 * In case 1, free_huge_page later in the error path will increment the
2808 * global reserve count. But, free_huge_page does not have enough context
2809 * to adjust the reservation map. This case deals primarily with private
2810 * mappings. Adjust the reserve map here to be consistent with global
2811 * reserve count adjustments to be made by free_huge_page. Make sure the
2812 * reserve map indicates there is a reservation present.
2814 * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2816 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2817 unsigned long address, struct page *page)
2819 long rc = vma_needs_reservation(h, vma, address);
2821 if (HPageRestoreReserve(page)) {
2822 if (unlikely(rc < 0))
2824 * Rare out of memory condition in reserve map
2825 * manipulation. Clear HPageRestoreReserve so that
2826 * global reserve count will not be incremented
2827 * by free_huge_page. This will make it appear
2828 * as though the reservation for this page was
2829 * consumed. This may prevent the task from
2830 * faulting in the page at a later time. This
2831 * is better than inconsistent global huge page
2832 * accounting of reserve counts.
2834 ClearHPageRestoreReserve(page);
2836 (void)vma_add_reservation(h, vma, address);
2838 vma_end_reservation(h, vma, address);
2842 * This indicates there is an entry in the reserve map
2843 * not added by alloc_huge_page. We know it was added
2844 * before the alloc_huge_page call, otherwise
2845 * HPageRestoreReserve would be set on the page.
2846 * Remove the entry so that a subsequent allocation
2847 * does not consume a reservation.
2849 rc = vma_del_reservation(h, vma, address);
2852 * VERY rare out of memory condition. Since
2853 * we can not delete the entry, set
2854 * HPageRestoreReserve so that the reserve
2855 * count will be incremented when the page
2856 * is freed. This reserve will be consumed
2857 * on a subsequent allocation.
2859 SetHPageRestoreReserve(page);
2860 } else if (rc < 0) {
2862 * Rare out of memory condition from
2863 * vma_needs_reservation call. Memory allocation is
2864 * only attempted if a new entry is needed. Therefore,
2865 * this implies there is not an entry in the
2868 * For shared mappings, no entry in the map indicates
2869 * no reservation. We are done.
2871 if (!(vma->vm_flags & VM_MAYSHARE))
2873 * For private mappings, no entry indicates
2874 * a reservation is present. Since we can
2875 * not add an entry, set SetHPageRestoreReserve
2876 * on the page so reserve count will be
2877 * incremented when freed. This reserve will
2878 * be consumed on a subsequent allocation.
2880 SetHPageRestoreReserve(page);
2883 * No reservation present, do nothing
2885 vma_end_reservation(h, vma, address);
2890 * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2892 * @h: struct hstate old page belongs to
2893 * @old_folio: Old folio to dissolve
2894 * @list: List to isolate the page in case we need to
2895 * Returns 0 on success, otherwise negated error.
2897 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2898 struct folio *old_folio, struct list_head *list)
2900 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2901 int nid = folio_nid(old_folio);
2902 struct folio *new_folio;
2906 * Before dissolving the folio, we need to allocate a new one for the
2907 * pool to remain stable. Here, we allocate the folio and 'prep' it
2908 * by doing everything but actually updating counters and adding to
2909 * the pool. This simplifies and let us do most of the processing
2912 new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2915 __prep_new_hugetlb_folio(h, new_folio);
2918 spin_lock_irq(&hugetlb_lock);
2919 if (!folio_test_hugetlb(old_folio)) {
2921 * Freed from under us. Drop new_folio too.
2924 } else if (folio_ref_count(old_folio)) {
2926 * Someone has grabbed the folio, try to isolate it here.
2927 * Fail with -EBUSY if not possible.
2929 spin_unlock_irq(&hugetlb_lock);
2930 ret = isolate_hugetlb(&old_folio->page, list);
2931 spin_lock_irq(&hugetlb_lock);
2933 } else if (!folio_test_hugetlb_freed(old_folio)) {
2935 * Folio's refcount is 0 but it has not been enqueued in the
2936 * freelist yet. Race window is small, so we can succeed here if
2939 spin_unlock_irq(&hugetlb_lock);
2944 * Ok, old_folio is still a genuine free hugepage. Remove it from
2945 * the freelist and decrease the counters. These will be
2946 * incremented again when calling __prep_account_new_huge_page()
2947 * and enqueue_hugetlb_folio() for new_folio. The counters will
2948 * remain stable since this happens under the lock.
2950 remove_hugetlb_folio(h, old_folio, false);
2953 * Ref count on new_folio is already zero as it was dropped
2954 * earlier. It can be directly added to the pool free list.
2956 __prep_account_new_huge_page(h, nid);
2957 enqueue_hugetlb_folio(h, new_folio);
2960 * Folio has been replaced, we can safely free the old one.
2962 spin_unlock_irq(&hugetlb_lock);
2963 update_and_free_hugetlb_folio(h, old_folio, false);
2969 spin_unlock_irq(&hugetlb_lock);
2970 /* Folio has a zero ref count, but needs a ref to be freed */
2971 folio_ref_unfreeze(new_folio, 1);
2972 update_and_free_hugetlb_folio(h, new_folio, false);
2977 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2980 struct folio *folio = page_folio(page);
2984 * The page might have been dissolved from under our feet, so make sure
2985 * to carefully check the state under the lock.
2986 * Return success when racing as if we dissolved the page ourselves.
2988 spin_lock_irq(&hugetlb_lock);
2989 if (folio_test_hugetlb(folio)) {
2990 h = folio_hstate(folio);
2992 spin_unlock_irq(&hugetlb_lock);
2995 spin_unlock_irq(&hugetlb_lock);
2998 * Fence off gigantic pages as there is a cyclic dependency between
2999 * alloc_contig_range and them. Return -ENOMEM as this has the effect
3000 * of bailing out right away without further retrying.
3002 if (hstate_is_gigantic(h))
3005 if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
3007 else if (!folio_ref_count(folio))
3008 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
3013 struct page *alloc_huge_page(struct vm_area_struct *vma,
3014 unsigned long addr, int avoid_reserve)
3016 struct hugepage_subpool *spool = subpool_vma(vma);
3017 struct hstate *h = hstate_vma(vma);
3019 struct folio *folio;
3020 long map_chg, map_commit;
3023 struct hugetlb_cgroup *h_cg;
3024 bool deferred_reserve;
3026 idx = hstate_index(h);
3028 * Examine the region/reserve map to determine if the process
3029 * has a reservation for the page to be allocated. A return
3030 * code of zero indicates a reservation exists (no change).
3032 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
3034 return ERR_PTR(-ENOMEM);
3037 * Processes that did not create the mapping will have no
3038 * reserves as indicated by the region/reserve map. Check
3039 * that the allocation will not exceed the subpool limit.
3040 * Allocations for MAP_NORESERVE mappings also need to be
3041 * checked against any subpool limit.
3043 if (map_chg || avoid_reserve) {
3044 gbl_chg = hugepage_subpool_get_pages(spool, 1);
3046 vma_end_reservation(h, vma, addr);
3047 return ERR_PTR(-ENOSPC);
3051 * Even though there was no reservation in the region/reserve
3052 * map, there could be reservations associated with the
3053 * subpool that can be used. This would be indicated if the
3054 * return value of hugepage_subpool_get_pages() is zero.
3055 * However, if avoid_reserve is specified we still avoid even
3056 * the subpool reservations.
3062 /* If this allocation is not consuming a reservation, charge it now.
3064 deferred_reserve = map_chg || avoid_reserve;
3065 if (deferred_reserve) {
3066 ret = hugetlb_cgroup_charge_cgroup_rsvd(
3067 idx, pages_per_huge_page(h), &h_cg);
3069 goto out_subpool_put;
3072 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
3074 goto out_uncharge_cgroup_reservation;
3076 spin_lock_irq(&hugetlb_lock);
3078 * glb_chg is passed to indicate whether or not a page must be taken
3079 * from the global free pool (global change). gbl_chg == 0 indicates
3080 * a reservation exists for the allocation.
3082 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
3084 spin_unlock_irq(&hugetlb_lock);
3085 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
3087 goto out_uncharge_cgroup;
3088 spin_lock_irq(&hugetlb_lock);
3089 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
3090 SetHPageRestoreReserve(page);
3091 h->resv_huge_pages--;
3093 list_add(&page->lru, &h->hugepage_activelist);
3094 set_page_refcounted(page);
3097 folio = page_folio(page);
3098 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
3099 /* If allocation is not consuming a reservation, also store the
3100 * hugetlb_cgroup pointer on the page.
3102 if (deferred_reserve) {
3103 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
3107 spin_unlock_irq(&hugetlb_lock);
3109 hugetlb_set_page_subpool(page, spool);
3111 map_commit = vma_commit_reservation(h, vma, addr);
3112 if (unlikely(map_chg > map_commit)) {
3114 * The page was added to the reservation map between
3115 * vma_needs_reservation and vma_commit_reservation.
3116 * This indicates a race with hugetlb_reserve_pages.
3117 * Adjust for the subpool count incremented above AND
3118 * in hugetlb_reserve_pages for the same page. Also,
3119 * the reservation count added in hugetlb_reserve_pages
3120 * no longer applies.
3124 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
3125 hugetlb_acct_memory(h, -rsv_adjust);
3126 if (deferred_reserve)
3127 hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
3128 pages_per_huge_page(h), folio);
3132 out_uncharge_cgroup:
3133 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
3134 out_uncharge_cgroup_reservation:
3135 if (deferred_reserve)
3136 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
3139 if (map_chg || avoid_reserve)
3140 hugepage_subpool_put_pages(spool, 1);
3141 vma_end_reservation(h, vma, addr);
3142 return ERR_PTR(-ENOSPC);
3145 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3146 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3147 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3149 struct huge_bootmem_page *m = NULL; /* initialize for clang */
3152 /* do node specific alloc */
3153 if (nid != NUMA_NO_NODE) {
3154 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3155 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3160 /* allocate from next node when distributing huge pages */
3161 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3162 m = memblock_alloc_try_nid_raw(
3163 huge_page_size(h), huge_page_size(h),
3164 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3166 * Use the beginning of the huge page to store the
3167 * huge_bootmem_page struct (until gather_bootmem
3168 * puts them into the mem_map).
3176 /* Put them into a private list first because mem_map is not up yet */
3177 INIT_LIST_HEAD(&m->list);
3178 list_add(&m->list, &huge_boot_pages);
3184 * Put bootmem huge pages into the standard lists after mem_map is up.
3185 * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3187 static void __init gather_bootmem_prealloc(void)
3189 struct huge_bootmem_page *m;
3191 list_for_each_entry(m, &huge_boot_pages, list) {
3192 struct page *page = virt_to_page(m);
3193 struct folio *folio = page_folio(page);
3194 struct hstate *h = m->hstate;
3196 VM_BUG_ON(!hstate_is_gigantic(h));
3197 WARN_ON(folio_ref_count(folio) != 1);
3198 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3199 WARN_ON(folio_test_reserved(folio));
3200 prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3201 free_huge_page(page); /* add to the hugepage allocator */
3203 /* VERY unlikely inflated ref count on a tail page */
3204 free_gigantic_folio(folio, huge_page_order(h));
3208 * We need to restore the 'stolen' pages to totalram_pages
3209 * in order to fix confusing memory reports from free(1) and
3210 * other side-effects, like CommitLimit going negative.
3212 adjust_managed_page_count(page, pages_per_huge_page(h));
3216 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3221 for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3222 if (hstate_is_gigantic(h)) {
3223 if (!alloc_bootmem_huge_page(h, nid))
3226 struct folio *folio;
3227 gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3229 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3230 &node_states[N_MEMORY], NULL);
3233 free_huge_page(&folio->page); /* free it into the hugepage allocator */
3237 if (i == h->max_huge_pages_node[nid])
3240 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3241 pr_warn("HugeTLB: allocating %u of page size %s failed node%d. Only allocated %lu hugepages.\n",
3242 h->max_huge_pages_node[nid], buf, nid, i);
3243 h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3244 h->max_huge_pages_node[nid] = i;
3247 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3250 nodemask_t *node_alloc_noretry;
3251 bool node_specific_alloc = false;
3253 /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3254 if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3255 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3259 /* do node specific alloc */
3260 for_each_online_node(i) {
3261 if (h->max_huge_pages_node[i] > 0) {
3262 hugetlb_hstate_alloc_pages_onenode(h, i);
3263 node_specific_alloc = true;
3267 if (node_specific_alloc)
3270 /* below will do all node balanced alloc */
3271 if (!hstate_is_gigantic(h)) {
3273 * Bit mask controlling how hard we retry per-node allocations.
3274 * Ignore errors as lower level routines can deal with
3275 * node_alloc_noretry == NULL. If this kmalloc fails at boot
3276 * time, we are likely in bigger trouble.
3278 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3281 /* allocations done at boot time */
3282 node_alloc_noretry = NULL;
3285 /* bit mask controlling how hard we retry per-node allocations */
3286 if (node_alloc_noretry)
3287 nodes_clear(*node_alloc_noretry);
3289 for (i = 0; i < h->max_huge_pages; ++i) {
3290 if (hstate_is_gigantic(h)) {
3291 if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3293 } else if (!alloc_pool_huge_page(h,
3294 &node_states[N_MEMORY],
3295 node_alloc_noretry))
3299 if (i < h->max_huge_pages) {
3302 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3303 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
3304 h->max_huge_pages, buf, i);
3305 h->max_huge_pages = i;
3307 kfree(node_alloc_noretry);
3310 static void __init hugetlb_init_hstates(void)
3312 struct hstate *h, *h2;
3314 for_each_hstate(h) {
3315 /* oversize hugepages were init'ed in early boot */
3316 if (!hstate_is_gigantic(h))
3317 hugetlb_hstate_alloc_pages(h);
3320 * Set demote order for each hstate. Note that
3321 * h->demote_order is initially 0.
3322 * - We can not demote gigantic pages if runtime freeing
3323 * is not supported, so skip this.
3324 * - If CMA allocation is possible, we can not demote
3325 * HUGETLB_PAGE_ORDER or smaller size pages.
3327 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3329 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3331 for_each_hstate(h2) {
3334 if (h2->order < h->order &&
3335 h2->order > h->demote_order)
3336 h->demote_order = h2->order;
3341 static void __init report_hugepages(void)
3345 for_each_hstate(h) {
3348 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3349 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3350 buf, h->free_huge_pages);
3351 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3352 hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3356 #ifdef CONFIG_HIGHMEM
3357 static void try_to_free_low(struct hstate *h, unsigned long count,
3358 nodemask_t *nodes_allowed)
3361 LIST_HEAD(page_list);
3363 lockdep_assert_held(&hugetlb_lock);
3364 if (hstate_is_gigantic(h))
3368 * Collect pages to be freed on a list, and free after dropping lock
3370 for_each_node_mask(i, *nodes_allowed) {
3371 struct page *page, *next;
3372 struct list_head *freel = &h->hugepage_freelists[i];
3373 list_for_each_entry_safe(page, next, freel, lru) {
3374 if (count >= h->nr_huge_pages)
3376 if (PageHighMem(page))
3378 remove_hugetlb_folio(h, page_folio(page), false);
3379 list_add(&page->lru, &page_list);
3384 spin_unlock_irq(&hugetlb_lock);
3385 update_and_free_pages_bulk(h, &page_list);
3386 spin_lock_irq(&hugetlb_lock);
3389 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3390 nodemask_t *nodes_allowed)
3396 * Increment or decrement surplus_huge_pages. Keep node-specific counters
3397 * balanced by operating on them in a round-robin fashion.
3398 * Returns 1 if an adjustment was made.
3400 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3405 lockdep_assert_held(&hugetlb_lock);
3406 VM_BUG_ON(delta != -1 && delta != 1);
3409 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3410 if (h->surplus_huge_pages_node[node])
3414 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3415 if (h->surplus_huge_pages_node[node] <
3416 h->nr_huge_pages_node[node])
3423 h->surplus_huge_pages += delta;
3424 h->surplus_huge_pages_node[node] += delta;
3428 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3429 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3430 nodemask_t *nodes_allowed)
3432 unsigned long min_count, ret;
3434 LIST_HEAD(page_list);
3435 NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3438 * Bit mask controlling how hard we retry per-node allocations.
3439 * If we can not allocate the bit mask, do not attempt to allocate
3440 * the requested huge pages.
3442 if (node_alloc_noretry)
3443 nodes_clear(*node_alloc_noretry);
3448 * resize_lock mutex prevents concurrent adjustments to number of
3449 * pages in hstate via the proc/sysfs interfaces.
3451 mutex_lock(&h->resize_lock);
3452 flush_free_hpage_work(h);
3453 spin_lock_irq(&hugetlb_lock);
3456 * Check for a node specific request.
3457 * Changing node specific huge page count may require a corresponding
3458 * change to the global count. In any case, the passed node mask
3459 * (nodes_allowed) will restrict alloc/free to the specified node.
3461 if (nid != NUMA_NO_NODE) {
3462 unsigned long old_count = count;
3464 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3466 * User may have specified a large count value which caused the
3467 * above calculation to overflow. In this case, they wanted
3468 * to allocate as many huge pages as possible. Set count to
3469 * largest possible value to align with their intention.
3471 if (count < old_count)
3476 * Gigantic pages runtime allocation depend on the capability for large
3477 * page range allocation.
3478 * If the system does not provide this feature, return an error when
3479 * the user tries to allocate gigantic pages but let the user free the
3480 * boottime allocated gigantic pages.
3482 if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3483 if (count > persistent_huge_pages(h)) {
3484 spin_unlock_irq(&hugetlb_lock);
3485 mutex_unlock(&h->resize_lock);
3486 NODEMASK_FREE(node_alloc_noretry);
3489 /* Fall through to decrease pool */
3493 * Increase the pool size
3494 * First take pages out of surplus state. Then make up the
3495 * remaining difference by allocating fresh huge pages.
3497 * We might race with alloc_surplus_huge_page() here and be unable
3498 * to convert a surplus huge page to a normal huge page. That is
3499 * not critical, though, it just means the overall size of the
3500 * pool might be one hugepage larger than it needs to be, but
3501 * within all the constraints specified by the sysctls.
3503 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3504 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3508 while (count > persistent_huge_pages(h)) {
3510 * If this allocation races such that we no longer need the
3511 * page, free_huge_page will handle it by freeing the page
3512 * and reducing the surplus.
3514 spin_unlock_irq(&hugetlb_lock);
3516 /* yield cpu to avoid soft lockup */
3519 ret = alloc_pool_huge_page(h, nodes_allowed,
3520 node_alloc_noretry);
3521 spin_lock_irq(&hugetlb_lock);
3525 /* Bail for signals. Probably ctrl-c from user */
3526 if (signal_pending(current))
3531 * Decrease the pool size
3532 * First return free pages to the buddy allocator (being careful
3533 * to keep enough around to satisfy reservations). Then place
3534 * pages into surplus state as needed so the pool will shrink
3535 * to the desired size as pages become free.
3537 * By placing pages into the surplus state independent of the
3538 * overcommit value, we are allowing the surplus pool size to
3539 * exceed overcommit. There are few sane options here. Since
3540 * alloc_surplus_huge_page() is checking the global counter,
3541 * though, we'll note that we're not allowed to exceed surplus
3542 * and won't grow the pool anywhere else. Not until one of the
3543 * sysctls are changed, or the surplus pages go out of use.
3545 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3546 min_count = max(count, min_count);
3547 try_to_free_low(h, min_count, nodes_allowed);
3550 * Collect pages to be removed on list without dropping lock
3552 while (min_count < persistent_huge_pages(h)) {
3553 page = remove_pool_huge_page(h, nodes_allowed, 0);
3557 list_add(&page->lru, &page_list);
3559 /* free the pages after dropping lock */
3560 spin_unlock_irq(&hugetlb_lock);
3561 update_and_free_pages_bulk(h, &page_list);
3562 flush_free_hpage_work(h);
3563 spin_lock_irq(&hugetlb_lock);
3565 while (count < persistent_huge_pages(h)) {
3566 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3570 h->max_huge_pages = persistent_huge_pages(h);
3571 spin_unlock_irq(&hugetlb_lock);
3572 mutex_unlock(&h->resize_lock);
3574 NODEMASK_FREE(node_alloc_noretry);
3579 static int demote_free_huge_page(struct hstate *h, struct page *page)
3581 int i, nid = page_to_nid(page);
3582 struct hstate *target_hstate;
3583 struct folio *folio = page_folio(page);
3584 struct page *subpage;
3587 target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3589 remove_hugetlb_folio_for_demote(h, folio, false);
3590 spin_unlock_irq(&hugetlb_lock);
3592 rc = hugetlb_vmemmap_restore(h, page);
3594 /* Allocation of vmemmmap failed, we can not demote page */
3595 spin_lock_irq(&hugetlb_lock);
3596 set_page_refcounted(page);
3597 add_hugetlb_folio(h, page_folio(page), false);
3602 * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3603 * sizes as it will not ref count pages.
3605 destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3608 * Taking target hstate mutex synchronizes with set_max_huge_pages.
3609 * Without the mutex, pages added to target hstate could be marked
3612 * Note that we already hold h->resize_lock. To prevent deadlock,
3613 * use the convention of always taking larger size hstate mutex first.
3615 mutex_lock(&target_hstate->resize_lock);
3616 for (i = 0; i < pages_per_huge_page(h);
3617 i += pages_per_huge_page(target_hstate)) {
3618 subpage = nth_page(page, i);
3619 folio = page_folio(subpage);
3620 if (hstate_is_gigantic(target_hstate))
3621 prep_compound_gigantic_folio_for_demote(folio,
3622 target_hstate->order);
3624 prep_compound_page(subpage, target_hstate->order);
3625 set_page_private(subpage, 0);
3626 prep_new_hugetlb_folio(target_hstate, folio, nid);
3627 free_huge_page(subpage);
3629 mutex_unlock(&target_hstate->resize_lock);
3631 spin_lock_irq(&hugetlb_lock);
3634 * Not absolutely necessary, but for consistency update max_huge_pages
3635 * based on pool changes for the demoted page.
3637 h->max_huge_pages--;
3638 target_hstate->max_huge_pages +=
3639 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3644 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3645 __must_hold(&hugetlb_lock)
3650 lockdep_assert_held(&hugetlb_lock);
3652 /* We should never get here if no demote order */
3653 if (!h->demote_order) {
3654 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3655 return -EINVAL; /* internal error */
3658 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3659 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3660 if (PageHWPoison(page))
3663 return demote_free_huge_page(h, page);
3668 * Only way to get here is if all pages on free lists are poisoned.
3669 * Return -EBUSY so that caller will not retry.
3674 #define HSTATE_ATTR_RO(_name) \
3675 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3677 #define HSTATE_ATTR_WO(_name) \
3678 static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3680 #define HSTATE_ATTR(_name) \
3681 static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3683 static struct kobject *hugepages_kobj;
3684 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3686 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3688 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3692 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3693 if (hstate_kobjs[i] == kobj) {
3695 *nidp = NUMA_NO_NODE;
3699 return kobj_to_node_hstate(kobj, nidp);
3702 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3703 struct kobj_attribute *attr, char *buf)
3706 unsigned long nr_huge_pages;
3709 h = kobj_to_hstate(kobj, &nid);
3710 if (nid == NUMA_NO_NODE)
3711 nr_huge_pages = h->nr_huge_pages;
3713 nr_huge_pages = h->nr_huge_pages_node[nid];
3715 return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3718 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3719 struct hstate *h, int nid,
3720 unsigned long count, size_t len)
3723 nodemask_t nodes_allowed, *n_mask;
3725 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3728 if (nid == NUMA_NO_NODE) {
3730 * global hstate attribute
3732 if (!(obey_mempolicy &&
3733 init_nodemask_of_mempolicy(&nodes_allowed)))
3734 n_mask = &node_states[N_MEMORY];
3736 n_mask = &nodes_allowed;
3739 * Node specific request. count adjustment happens in
3740 * set_max_huge_pages() after acquiring hugetlb_lock.
3742 init_nodemask_of_node(&nodes_allowed, nid);
3743 n_mask = &nodes_allowed;
3746 err = set_max_huge_pages(h, count, nid, n_mask);
3748 return err ? err : len;
3751 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3752 struct kobject *kobj, const char *buf,
3756 unsigned long count;
3760 err = kstrtoul(buf, 10, &count);
3764 h = kobj_to_hstate(kobj, &nid);
3765 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3768 static ssize_t nr_hugepages_show(struct kobject *kobj,
3769 struct kobj_attribute *attr, char *buf)
3771 return nr_hugepages_show_common(kobj, attr, buf);
3774 static ssize_t nr_hugepages_store(struct kobject *kobj,
3775 struct kobj_attribute *attr, const char *buf, size_t len)
3777 return nr_hugepages_store_common(false, kobj, buf, len);
3779 HSTATE_ATTR(nr_hugepages);
3784 * hstate attribute for optionally mempolicy-based constraint on persistent
3785 * huge page alloc/free.
3787 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3788 struct kobj_attribute *attr,
3791 return nr_hugepages_show_common(kobj, attr, buf);
3794 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3795 struct kobj_attribute *attr, const char *buf, size_t len)
3797 return nr_hugepages_store_common(true, kobj, buf, len);
3799 HSTATE_ATTR(nr_hugepages_mempolicy);
3803 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3804 struct kobj_attribute *attr, char *buf)
3806 struct hstate *h = kobj_to_hstate(kobj, NULL);
3807 return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3810 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3811 struct kobj_attribute *attr, const char *buf, size_t count)
3814 unsigned long input;
3815 struct hstate *h = kobj_to_hstate(kobj, NULL);
3817 if (hstate_is_gigantic(h))
3820 err = kstrtoul(buf, 10, &input);
3824 spin_lock_irq(&hugetlb_lock);
3825 h->nr_overcommit_huge_pages = input;
3826 spin_unlock_irq(&hugetlb_lock);
3830 HSTATE_ATTR(nr_overcommit_hugepages);
3832 static ssize_t free_hugepages_show(struct kobject *kobj,
3833 struct kobj_attribute *attr, char *buf)
3836 unsigned long free_huge_pages;
3839 h = kobj_to_hstate(kobj, &nid);
3840 if (nid == NUMA_NO_NODE)
3841 free_huge_pages = h->free_huge_pages;
3843 free_huge_pages = h->free_huge_pages_node[nid];
3845 return sysfs_emit(buf, "%lu\n", free_huge_pages);
3847 HSTATE_ATTR_RO(free_hugepages);
3849 static ssize_t resv_hugepages_show(struct kobject *kobj,
3850 struct kobj_attribute *attr, char *buf)
3852 struct hstate *h = kobj_to_hstate(kobj, NULL);
3853 return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3855 HSTATE_ATTR_RO(resv_hugepages);
3857 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3858 struct kobj_attribute *attr, char *buf)
3861 unsigned long surplus_huge_pages;
3864 h = kobj_to_hstate(kobj, &nid);
3865 if (nid == NUMA_NO_NODE)
3866 surplus_huge_pages = h->surplus_huge_pages;
3868 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3870 return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3872 HSTATE_ATTR_RO(surplus_hugepages);
3874 static ssize_t demote_store(struct kobject *kobj,
3875 struct kobj_attribute *attr, const char *buf, size_t len)
3877 unsigned long nr_demote;
3878 unsigned long nr_available;
3879 nodemask_t nodes_allowed, *n_mask;
3884 err = kstrtoul(buf, 10, &nr_demote);
3887 h = kobj_to_hstate(kobj, &nid);
3889 if (nid != NUMA_NO_NODE) {
3890 init_nodemask_of_node(&nodes_allowed, nid);
3891 n_mask = &nodes_allowed;
3893 n_mask = &node_states[N_MEMORY];
3896 /* Synchronize with other sysfs operations modifying huge pages */
3897 mutex_lock(&h->resize_lock);
3898 spin_lock_irq(&hugetlb_lock);
3902 * Check for available pages to demote each time thorough the
3903 * loop as demote_pool_huge_page will drop hugetlb_lock.
3905 if (nid != NUMA_NO_NODE)
3906 nr_available = h->free_huge_pages_node[nid];
3908 nr_available = h->free_huge_pages;
3909 nr_available -= h->resv_huge_pages;
3913 err = demote_pool_huge_page(h, n_mask);
3920 spin_unlock_irq(&hugetlb_lock);
3921 mutex_unlock(&h->resize_lock);
3927 HSTATE_ATTR_WO(demote);
3929 static ssize_t demote_size_show(struct kobject *kobj,
3930 struct kobj_attribute *attr, char *buf)
3932 struct hstate *h = kobj_to_hstate(kobj, NULL);
3933 unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3935 return sysfs_emit(buf, "%lukB\n", demote_size);
3938 static ssize_t demote_size_store(struct kobject *kobj,
3939 struct kobj_attribute *attr,
3940 const char *buf, size_t count)
3942 struct hstate *h, *demote_hstate;
3943 unsigned long demote_size;
3944 unsigned int demote_order;
3946 demote_size = (unsigned long)memparse(buf, NULL);
3948 demote_hstate = size_to_hstate(demote_size);
3951 demote_order = demote_hstate->order;
3952 if (demote_order < HUGETLB_PAGE_ORDER)
3955 /* demote order must be smaller than hstate order */
3956 h = kobj_to_hstate(kobj, NULL);
3957 if (demote_order >= h->order)
3960 /* resize_lock synchronizes access to demote size and writes */
3961 mutex_lock(&h->resize_lock);
3962 h->demote_order = demote_order;
3963 mutex_unlock(&h->resize_lock);
3967 HSTATE_ATTR(demote_size);
3969 static struct attribute *hstate_attrs[] = {
3970 &nr_hugepages_attr.attr,
3971 &nr_overcommit_hugepages_attr.attr,
3972 &free_hugepages_attr.attr,
3973 &resv_hugepages_attr.attr,
3974 &surplus_hugepages_attr.attr,
3976 &nr_hugepages_mempolicy_attr.attr,
3981 static const struct attribute_group hstate_attr_group = {
3982 .attrs = hstate_attrs,
3985 static struct attribute *hstate_demote_attrs[] = {
3986 &demote_size_attr.attr,
3991 static const struct attribute_group hstate_demote_attr_group = {
3992 .attrs = hstate_demote_attrs,
3995 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3996 struct kobject **hstate_kobjs,
3997 const struct attribute_group *hstate_attr_group)
4000 int hi = hstate_index(h);
4002 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
4003 if (!hstate_kobjs[hi])
4006 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
4008 kobject_put(hstate_kobjs[hi]);
4009 hstate_kobjs[hi] = NULL;
4013 if (h->demote_order) {
4014 retval = sysfs_create_group(hstate_kobjs[hi],
4015 &hstate_demote_attr_group);
4017 pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
4018 sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
4019 kobject_put(hstate_kobjs[hi]);
4020 hstate_kobjs[hi] = NULL;
4029 static bool hugetlb_sysfs_initialized __ro_after_init;
4032 * node_hstate/s - associate per node hstate attributes, via their kobjects,
4033 * with node devices in node_devices[] using a parallel array. The array
4034 * index of a node device or _hstate == node id.
4035 * This is here to avoid any static dependency of the node device driver, in
4036 * the base kernel, on the hugetlb module.
4038 struct node_hstate {
4039 struct kobject *hugepages_kobj;
4040 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
4042 static struct node_hstate node_hstates[MAX_NUMNODES];
4045 * A subset of global hstate attributes for node devices
4047 static struct attribute *per_node_hstate_attrs[] = {
4048 &nr_hugepages_attr.attr,
4049 &free_hugepages_attr.attr,
4050 &surplus_hugepages_attr.attr,
4054 static const struct attribute_group per_node_hstate_attr_group = {
4055 .attrs = per_node_hstate_attrs,
4059 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
4060 * Returns node id via non-NULL nidp.
4062 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4066 for (nid = 0; nid < nr_node_ids; nid++) {
4067 struct node_hstate *nhs = &node_hstates[nid];
4069 for (i = 0; i < HUGE_MAX_HSTATE; i++)
4070 if (nhs->hstate_kobjs[i] == kobj) {
4082 * Unregister hstate attributes from a single node device.
4083 * No-op if no hstate attributes attached.
4085 void hugetlb_unregister_node(struct node *node)
4088 struct node_hstate *nhs = &node_hstates[node->dev.id];
4090 if (!nhs->hugepages_kobj)
4091 return; /* no hstate attributes */
4093 for_each_hstate(h) {
4094 int idx = hstate_index(h);
4095 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
4099 if (h->demote_order)
4100 sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
4101 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
4102 kobject_put(hstate_kobj);
4103 nhs->hstate_kobjs[idx] = NULL;
4106 kobject_put(nhs->hugepages_kobj);
4107 nhs->hugepages_kobj = NULL;
4112 * Register hstate attributes for a single node device.
4113 * No-op if attributes already registered.
4115 void hugetlb_register_node(struct node *node)
4118 struct node_hstate *nhs = &node_hstates[node->dev.id];
4121 if (!hugetlb_sysfs_initialized)
4124 if (nhs->hugepages_kobj)
4125 return; /* already allocated */
4127 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
4129 if (!nhs->hugepages_kobj)
4132 for_each_hstate(h) {
4133 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
4135 &per_node_hstate_attr_group);
4137 pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
4138 h->name, node->dev.id);
4139 hugetlb_unregister_node(node);
4146 * hugetlb init time: register hstate attributes for all registered node
4147 * devices of nodes that have memory. All on-line nodes should have
4148 * registered their associated device by this time.
4150 static void __init hugetlb_register_all_nodes(void)
4154 for_each_online_node(nid)
4155 hugetlb_register_node(node_devices[nid]);
4157 #else /* !CONFIG_NUMA */
4159 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4167 static void hugetlb_register_all_nodes(void) { }
4172 static void __init hugetlb_cma_check(void);
4174 static inline __init void hugetlb_cma_check(void)
4179 static void __init hugetlb_sysfs_init(void)
4184 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4185 if (!hugepages_kobj)
4188 for_each_hstate(h) {
4189 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4190 hstate_kobjs, &hstate_attr_group);
4192 pr_err("HugeTLB: Unable to add hstate %s", h->name);
4196 hugetlb_sysfs_initialized = true;
4198 hugetlb_register_all_nodes();
4201 static int __init hugetlb_init(void)
4205 BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4208 if (!hugepages_supported()) {
4209 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4210 pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4215 * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists. Some
4216 * architectures depend on setup being done here.
4218 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4219 if (!parsed_default_hugepagesz) {
4221 * If we did not parse a default huge page size, set
4222 * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4223 * number of huge pages for this default size was implicitly
4224 * specified, set that here as well.
4225 * Note that the implicit setting will overwrite an explicit
4226 * setting. A warning will be printed in this case.
4228 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4229 if (default_hstate_max_huge_pages) {
4230 if (default_hstate.max_huge_pages) {
4233 string_get_size(huge_page_size(&default_hstate),
4234 1, STRING_UNITS_2, buf, 32);
4235 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4236 default_hstate.max_huge_pages, buf);
4237 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4238 default_hstate_max_huge_pages);
4240 default_hstate.max_huge_pages =
4241 default_hstate_max_huge_pages;
4243 for_each_online_node(i)
4244 default_hstate.max_huge_pages_node[i] =
4245 default_hugepages_in_node[i];
4249 hugetlb_cma_check();
4250 hugetlb_init_hstates();
4251 gather_bootmem_prealloc();
4254 hugetlb_sysfs_init();
4255 hugetlb_cgroup_file_init();
4258 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4260 num_fault_mutexes = 1;
4262 hugetlb_fault_mutex_table =
4263 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4265 BUG_ON(!hugetlb_fault_mutex_table);
4267 for (i = 0; i < num_fault_mutexes; i++)
4268 mutex_init(&hugetlb_fault_mutex_table[i]);
4271 subsys_initcall(hugetlb_init);
4273 /* Overwritten by architectures with more huge page sizes */
4274 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4276 return size == HPAGE_SIZE;
4279 void __init hugetlb_add_hstate(unsigned int order)
4284 if (size_to_hstate(PAGE_SIZE << order)) {
4287 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4289 h = &hstates[hugetlb_max_hstate++];
4290 mutex_init(&h->resize_lock);
4292 h->mask = ~(huge_page_size(h) - 1);
4293 for (i = 0; i < MAX_NUMNODES; ++i)
4294 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4295 INIT_LIST_HEAD(&h->hugepage_activelist);
4296 h->next_nid_to_alloc = first_memory_node;
4297 h->next_nid_to_free = first_memory_node;
4298 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4299 huge_page_size(h)/SZ_1K);
4304 bool __init __weak hugetlb_node_alloc_supported(void)
4309 static void __init hugepages_clear_pages_in_node(void)
4311 if (!hugetlb_max_hstate) {
4312 default_hstate_max_huge_pages = 0;
4313 memset(default_hugepages_in_node, 0,
4314 sizeof(default_hugepages_in_node));
4316 parsed_hstate->max_huge_pages = 0;
4317 memset(parsed_hstate->max_huge_pages_node, 0,
4318 sizeof(parsed_hstate->max_huge_pages_node));
4323 * hugepages command line processing
4324 * hugepages normally follows a valid hugepagsz or default_hugepagsz
4325 * specification. If not, ignore the hugepages value. hugepages can also
4326 * be the first huge page command line option in which case it implicitly
4327 * specifies the number of huge pages for the default size.
4329 static int __init hugepages_setup(char *s)
4332 static unsigned long *last_mhp;
4333 int node = NUMA_NO_NODE;
4338 if (!parsed_valid_hugepagesz) {
4339 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4340 parsed_valid_hugepagesz = true;
4345 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4346 * yet, so this hugepages= parameter goes to the "default hstate".
4347 * Otherwise, it goes with the previously parsed hugepagesz or
4348 * default_hugepagesz.
4350 else if (!hugetlb_max_hstate)
4351 mhp = &default_hstate_max_huge_pages;
4353 mhp = &parsed_hstate->max_huge_pages;
4355 if (mhp == last_mhp) {
4356 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4362 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4364 /* Parameter is node format */
4365 if (p[count] == ':') {
4366 if (!hugetlb_node_alloc_supported()) {
4367 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4370 if (tmp >= MAX_NUMNODES || !node_online(tmp))
4372 node = array_index_nospec(tmp, MAX_NUMNODES);
4374 /* Parse hugepages */
4375 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4377 if (!hugetlb_max_hstate)
4378 default_hugepages_in_node[node] = tmp;
4380 parsed_hstate->max_huge_pages_node[node] = tmp;
4382 /* Go to parse next node*/
4383 if (p[count] == ',')
4396 * Global state is always initialized later in hugetlb_init.
4397 * But we need to allocate gigantic hstates here early to still
4398 * use the bootmem allocator.
4400 if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4401 hugetlb_hstate_alloc_pages(parsed_hstate);
4408 pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4409 hugepages_clear_pages_in_node();
4412 __setup("hugepages=", hugepages_setup);
4415 * hugepagesz command line processing
4416 * A specific huge page size can only be specified once with hugepagesz.
4417 * hugepagesz is followed by hugepages on the command line. The global
4418 * variable 'parsed_valid_hugepagesz' is used to determine if prior
4419 * hugepagesz argument was valid.
4421 static int __init hugepagesz_setup(char *s)
4426 parsed_valid_hugepagesz = false;
4427 size = (unsigned long)memparse(s, NULL);
4429 if (!arch_hugetlb_valid_size(size)) {
4430 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4434 h = size_to_hstate(size);
4437 * hstate for this size already exists. This is normally
4438 * an error, but is allowed if the existing hstate is the
4439 * default hstate. More specifically, it is only allowed if
4440 * the number of huge pages for the default hstate was not
4441 * previously specified.
4443 if (!parsed_default_hugepagesz || h != &default_hstate ||
4444 default_hstate.max_huge_pages) {
4445 pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4450 * No need to call hugetlb_add_hstate() as hstate already
4451 * exists. But, do set parsed_hstate so that a following
4452 * hugepages= parameter will be applied to this hstate.
4455 parsed_valid_hugepagesz = true;
4459 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4460 parsed_valid_hugepagesz = true;
4463 __setup("hugepagesz=", hugepagesz_setup);
4466 * default_hugepagesz command line input
4467 * Only one instance of default_hugepagesz allowed on command line.
4469 static int __init default_hugepagesz_setup(char *s)
4474 parsed_valid_hugepagesz = false;
4475 if (parsed_default_hugepagesz) {
4476 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4480 size = (unsigned long)memparse(s, NULL);
4482 if (!arch_hugetlb_valid_size(size)) {
4483 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4487 hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4488 parsed_valid_hugepagesz = true;
4489 parsed_default_hugepagesz = true;
4490 default_hstate_idx = hstate_index(size_to_hstate(size));
4493 * The number of default huge pages (for this size) could have been
4494 * specified as the first hugetlb parameter: hugepages=X. If so,
4495 * then default_hstate_max_huge_pages is set. If the default huge
4496 * page size is gigantic (>= MAX_ORDER), then the pages must be
4497 * allocated here from bootmem allocator.
4499 if (default_hstate_max_huge_pages) {
4500 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4501 for_each_online_node(i)
4502 default_hstate.max_huge_pages_node[i] =
4503 default_hugepages_in_node[i];
4504 if (hstate_is_gigantic(&default_hstate))
4505 hugetlb_hstate_alloc_pages(&default_hstate);
4506 default_hstate_max_huge_pages = 0;
4511 __setup("default_hugepagesz=", default_hugepagesz_setup);
4513 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4516 struct mempolicy *mpol = get_task_policy(current);
4519 * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4520 * (from policy_nodemask) specifically for hugetlb case
4522 if (mpol->mode == MPOL_BIND &&
4523 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4524 cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4525 return &mpol->nodes;
4530 static unsigned int allowed_mems_nr(struct hstate *h)
4533 unsigned int nr = 0;
4534 nodemask_t *mbind_nodemask;
4535 unsigned int *array = h->free_huge_pages_node;
4536 gfp_t gfp_mask = htlb_alloc_mask(h);
4538 mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4539 for_each_node_mask(node, cpuset_current_mems_allowed) {
4540 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4547 #ifdef CONFIG_SYSCTL
4548 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4549 void *buffer, size_t *length,
4550 loff_t *ppos, unsigned long *out)
4552 struct ctl_table dup_table;
4555 * In order to avoid races with __do_proc_doulongvec_minmax(), we
4556 * can duplicate the @table and alter the duplicate of it.
4559 dup_table.data = out;
4561 return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4564 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4565 struct ctl_table *table, int write,
4566 void *buffer, size_t *length, loff_t *ppos)
4568 struct hstate *h = &default_hstate;
4569 unsigned long tmp = h->max_huge_pages;
4572 if (!hugepages_supported())
4575 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4581 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4582 NUMA_NO_NODE, tmp, *length);
4587 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4588 void *buffer, size_t *length, loff_t *ppos)
4591 return hugetlb_sysctl_handler_common(false, table, write,
4592 buffer, length, ppos);
4596 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4597 void *buffer, size_t *length, loff_t *ppos)
4599 return hugetlb_sysctl_handler_common(true, table, write,
4600 buffer, length, ppos);
4602 #endif /* CONFIG_NUMA */
4604 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4605 void *buffer, size_t *length, loff_t *ppos)
4607 struct hstate *h = &default_hstate;
4611 if (!hugepages_supported())
4614 tmp = h->nr_overcommit_huge_pages;
4616 if (write && hstate_is_gigantic(h))
4619 ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4625 spin_lock_irq(&hugetlb_lock);
4626 h->nr_overcommit_huge_pages = tmp;
4627 spin_unlock_irq(&hugetlb_lock);
4633 #endif /* CONFIG_SYSCTL */
4635 void hugetlb_report_meminfo(struct seq_file *m)
4638 unsigned long total = 0;
4640 if (!hugepages_supported())
4643 for_each_hstate(h) {
4644 unsigned long count = h->nr_huge_pages;
4646 total += huge_page_size(h) * count;
4648 if (h == &default_hstate)
4650 "HugePages_Total: %5lu\n"
4651 "HugePages_Free: %5lu\n"
4652 "HugePages_Rsvd: %5lu\n"
4653 "HugePages_Surp: %5lu\n"
4654 "Hugepagesize: %8lu kB\n",
4658 h->surplus_huge_pages,
4659 huge_page_size(h) / SZ_1K);
4662 seq_printf(m, "Hugetlb: %8lu kB\n", total / SZ_1K);
4665 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4667 struct hstate *h = &default_hstate;
4669 if (!hugepages_supported())
4672 return sysfs_emit_at(buf, len,
4673 "Node %d HugePages_Total: %5u\n"
4674 "Node %d HugePages_Free: %5u\n"
4675 "Node %d HugePages_Surp: %5u\n",
4676 nid, h->nr_huge_pages_node[nid],
4677 nid, h->free_huge_pages_node[nid],
4678 nid, h->surplus_huge_pages_node[nid]);
4681 void hugetlb_show_meminfo_node(int nid)
4685 if (!hugepages_supported())
4689 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4691 h->nr_huge_pages_node[nid],
4692 h->free_huge_pages_node[nid],
4693 h->surplus_huge_pages_node[nid],
4694 huge_page_size(h) / SZ_1K);
4697 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4699 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4700 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4703 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4704 unsigned long hugetlb_total_pages(void)
4707 unsigned long nr_total_pages = 0;
4710 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4711 return nr_total_pages;
4714 static int hugetlb_acct_memory(struct hstate *h, long delta)
4721 spin_lock_irq(&hugetlb_lock);
4723 * When cpuset is configured, it breaks the strict hugetlb page
4724 * reservation as the accounting is done on a global variable. Such
4725 * reservation is completely rubbish in the presence of cpuset because
4726 * the reservation is not checked against page availability for the
4727 * current cpuset. Application can still potentially OOM'ed by kernel
4728 * with lack of free htlb page in cpuset that the task is in.
4729 * Attempt to enforce strict accounting with cpuset is almost
4730 * impossible (or too ugly) because cpuset is too fluid that
4731 * task or memory node can be dynamically moved between cpusets.
4733 * The change of semantics for shared hugetlb mapping with cpuset is
4734 * undesirable. However, in order to preserve some of the semantics,
4735 * we fall back to check against current free page availability as
4736 * a best attempt and hopefully to minimize the impact of changing
4737 * semantics that cpuset has.
4739 * Apart from cpuset, we also have memory policy mechanism that
4740 * also determines from which node the kernel will allocate memory
4741 * in a NUMA system. So similar to cpuset, we also should consider
4742 * the memory policy of the current task. Similar to the description
4746 if (gather_surplus_pages(h, delta) < 0)
4749 if (delta > allowed_mems_nr(h)) {
4750 return_unused_surplus_pages(h, delta);
4757 return_unused_surplus_pages(h, (unsigned long) -delta);
4760 spin_unlock_irq(&hugetlb_lock);
4764 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4766 struct resv_map *resv = vma_resv_map(vma);
4769 * HPAGE_RESV_OWNER indicates a private mapping.
4770 * This new VMA should share its siblings reservation map if present.
4771 * The VMA will only ever have a valid reservation map pointer where
4772 * it is being copied for another still existing VMA. As that VMA
4773 * has a reference to the reservation map it cannot disappear until
4774 * after this open call completes. It is therefore safe to take a
4775 * new reference here without additional locking.
4777 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4778 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4779 kref_get(&resv->refs);
4783 * vma_lock structure for sharable mappings is vma specific.
4784 * Clear old pointer (if copied via vm_area_dup) and allocate
4785 * new structure. Before clearing, make sure vma_lock is not
4788 if (vma->vm_flags & VM_MAYSHARE) {
4789 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4792 if (vma_lock->vma != vma) {
4793 vma->vm_private_data = NULL;
4794 hugetlb_vma_lock_alloc(vma);
4796 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4798 hugetlb_vma_lock_alloc(vma);
4802 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4804 struct hstate *h = hstate_vma(vma);
4805 struct resv_map *resv;
4806 struct hugepage_subpool *spool = subpool_vma(vma);
4807 unsigned long reserve, start, end;
4810 hugetlb_vma_lock_free(vma);
4812 resv = vma_resv_map(vma);
4813 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4816 start = vma_hugecache_offset(h, vma, vma->vm_start);
4817 end = vma_hugecache_offset(h, vma, vma->vm_end);
4819 reserve = (end - start) - region_count(resv, start, end);
4820 hugetlb_cgroup_uncharge_counter(resv, start, end);
4823 * Decrement reserve counts. The global reserve count may be
4824 * adjusted if the subpool has a minimum size.
4826 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4827 hugetlb_acct_memory(h, -gbl_reserve);
4830 kref_put(&resv->refs, resv_map_release);
4833 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4835 if (addr & ~(huge_page_mask(hstate_vma(vma))))
4840 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4842 return huge_page_size(hstate_vma(vma));
4846 * We cannot handle pagefaults against hugetlb pages at all. They cause
4847 * handle_mm_fault() to try to instantiate regular-sized pages in the
4848 * hugepage VMA. do_page_fault() is supposed to trap this, so BUG is we get
4851 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4858 * When a new function is introduced to vm_operations_struct and added
4859 * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4860 * This is because under System V memory model, mappings created via
4861 * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4862 * their original vm_ops are overwritten with shm_vm_ops.
4864 const struct vm_operations_struct hugetlb_vm_ops = {
4865 .fault = hugetlb_vm_op_fault,
4866 .open = hugetlb_vm_op_open,
4867 .close = hugetlb_vm_op_close,
4868 .may_split = hugetlb_vm_op_split,
4869 .pagesize = hugetlb_vm_op_pagesize,
4872 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4876 unsigned int shift = huge_page_shift(hstate_vma(vma));
4879 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4880 vma->vm_page_prot)));
4882 entry = huge_pte_wrprotect(mk_huge_pte(page,
4883 vma->vm_page_prot));
4885 entry = pte_mkyoung(entry);
4886 entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4891 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4892 unsigned long address, pte_t *ptep)
4896 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4897 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4898 update_mmu_cache(vma, address, ptep);
4901 bool is_hugetlb_entry_migration(pte_t pte)
4905 if (huge_pte_none(pte) || pte_present(pte))
4907 swp = pte_to_swp_entry(pte);
4908 if (is_migration_entry(swp))
4914 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4918 if (huge_pte_none(pte) || pte_present(pte))
4920 swp = pte_to_swp_entry(pte);
4921 if (is_hwpoison_entry(swp))
4928 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4929 struct page *new_page)
4931 __SetPageUptodate(new_page);
4932 hugepage_add_new_anon_rmap(new_page, vma, addr);
4933 set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4934 hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4935 SetHPageMigratable(new_page);
4938 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4939 struct vm_area_struct *dst_vma,
4940 struct vm_area_struct *src_vma)
4942 pte_t *src_pte, *dst_pte, entry;
4943 struct page *ptepage;
4945 bool cow = is_cow_mapping(src_vma->vm_flags);
4946 struct hstate *h = hstate_vma(src_vma);
4947 unsigned long sz = huge_page_size(h);
4948 unsigned long npages = pages_per_huge_page(h);
4949 struct mmu_notifier_range range;
4950 unsigned long last_addr_mask;
4954 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4957 mmu_notifier_invalidate_range_start(&range);
4958 mmap_assert_write_locked(src);
4959 raw_write_seqcount_begin(&src->write_protect_seq);
4962 * For shared mappings the vma lock must be held before
4963 * calling huge_pte_offset in the src vma. Otherwise, the
4964 * returned ptep could go away if part of a shared pmd and
4965 * another thread calls huge_pmd_unshare.
4967 hugetlb_vma_lock_read(src_vma);
4970 last_addr_mask = hugetlb_mask_last_page(h);
4971 for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4972 spinlock_t *src_ptl, *dst_ptl;
4973 src_pte = huge_pte_offset(src, addr, sz);
4975 addr |= last_addr_mask;
4978 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4985 * If the pagetables are shared don't copy or take references.
4987 * dst_pte == src_pte is the common case of src/dest sharing.
4988 * However, src could have 'unshared' and dst shares with
4989 * another vma. So page_count of ptep page is checked instead
4990 * to reliably determine whether pte is shared.
4992 if (page_count(virt_to_page(dst_pte)) > 1) {
4993 addr |= last_addr_mask;
4997 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4998 src_ptl = huge_pte_lockptr(h, src, src_pte);
4999 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5000 entry = huge_ptep_get(src_pte);
5002 if (huge_pte_none(entry)) {
5004 * Skip if src entry none.
5007 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
5008 bool uffd_wp = huge_pte_uffd_wp(entry);
5010 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5011 entry = huge_pte_clear_uffd_wp(entry);
5012 set_huge_pte_at(dst, addr, dst_pte, entry);
5013 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
5014 swp_entry_t swp_entry = pte_to_swp_entry(entry);
5015 bool uffd_wp = huge_pte_uffd_wp(entry);
5017 if (!is_readable_migration_entry(swp_entry) && cow) {
5019 * COW mappings require pages in both
5020 * parent and child to be set to read.
5022 swp_entry = make_readable_migration_entry(
5023 swp_offset(swp_entry));
5024 entry = swp_entry_to_pte(swp_entry);
5025 if (userfaultfd_wp(src_vma) && uffd_wp)
5026 entry = huge_pte_mkuffd_wp(entry);
5027 set_huge_pte_at(src, addr, src_pte, entry);
5029 if (!userfaultfd_wp(dst_vma) && uffd_wp)
5030 entry = huge_pte_clear_uffd_wp(entry);
5031 set_huge_pte_at(dst, addr, dst_pte, entry);
5032 } else if (unlikely(is_pte_marker(entry))) {
5034 * We copy the pte marker only if the dst vma has
5037 if (userfaultfd_wp(dst_vma))
5038 set_huge_pte_at(dst, addr, dst_pte, entry);
5040 entry = huge_ptep_get(src_pte);
5041 ptepage = pte_page(entry);
5045 * Failing to duplicate the anon rmap is a rare case
5046 * where we see pinned hugetlb pages while they're
5047 * prone to COW. We need to do the COW earlier during
5050 * When pre-allocating the page or copying data, we
5051 * need to be without the pgtable locks since we could
5052 * sleep during the process.
5054 if (!PageAnon(ptepage)) {
5055 page_dup_file_rmap(ptepage, true);
5056 } else if (page_try_dup_anon_rmap(ptepage, true,
5058 pte_t src_pte_old = entry;
5061 spin_unlock(src_ptl);
5062 spin_unlock(dst_ptl);
5063 /* Do not use reserve as it's private owned */
5064 new = alloc_huge_page(dst_vma, addr, 1);
5070 copy_user_huge_page(new, ptepage, addr, dst_vma,
5074 /* Install the new huge page if src pte stable */
5075 dst_ptl = huge_pte_lock(h, dst, dst_pte);
5076 src_ptl = huge_pte_lockptr(h, src, src_pte);
5077 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5078 entry = huge_ptep_get(src_pte);
5079 if (!pte_same(src_pte_old, entry)) {
5080 restore_reserve_on_error(h, dst_vma, addr,
5083 /* huge_ptep of dst_pte won't change as in child */
5086 hugetlb_install_page(dst_vma, dst_pte, addr, new);
5087 spin_unlock(src_ptl);
5088 spin_unlock(dst_ptl);
5094 * No need to notify as we are downgrading page
5095 * table protection not changing it to point
5098 * See Documentation/mm/mmu_notifier.rst
5100 huge_ptep_set_wrprotect(src, addr, src_pte);
5101 entry = huge_pte_wrprotect(entry);
5104 set_huge_pte_at(dst, addr, dst_pte, entry);
5105 hugetlb_count_add(npages, dst);
5107 spin_unlock(src_ptl);
5108 spin_unlock(dst_ptl);
5112 raw_write_seqcount_end(&src->write_protect_seq);
5113 mmu_notifier_invalidate_range_end(&range);
5115 hugetlb_vma_unlock_read(src_vma);
5121 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
5122 unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
5124 struct hstate *h = hstate_vma(vma);
5125 struct mm_struct *mm = vma->vm_mm;
5126 spinlock_t *src_ptl, *dst_ptl;
5129 dst_ptl = huge_pte_lock(h, mm, dst_pte);
5130 src_ptl = huge_pte_lockptr(h, mm, src_pte);
5133 * We don't have to worry about the ordering of src and dst ptlocks
5134 * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
5136 if (src_ptl != dst_ptl)
5137 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
5139 pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
5140 set_huge_pte_at(mm, new_addr, dst_pte, pte);
5142 if (src_ptl != dst_ptl)
5143 spin_unlock(src_ptl);
5144 spin_unlock(dst_ptl);
5147 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5148 struct vm_area_struct *new_vma,
5149 unsigned long old_addr, unsigned long new_addr,
5152 struct hstate *h = hstate_vma(vma);
5153 struct address_space *mapping = vma->vm_file->f_mapping;
5154 unsigned long sz = huge_page_size(h);
5155 struct mm_struct *mm = vma->vm_mm;
5156 unsigned long old_end = old_addr + len;
5157 unsigned long last_addr_mask;
5158 pte_t *src_pte, *dst_pte;
5159 struct mmu_notifier_range range;
5160 bool shared_pmd = false;
5162 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5164 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5166 * In case of shared PMDs, we should cover the maximum possible
5169 flush_cache_range(vma, range.start, range.end);
5171 mmu_notifier_invalidate_range_start(&range);
5172 last_addr_mask = hugetlb_mask_last_page(h);
5173 /* Prevent race with file truncation */
5174 hugetlb_vma_lock_write(vma);
5175 i_mmap_lock_write(mapping);
5176 for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5177 src_pte = huge_pte_offset(mm, old_addr, sz);
5179 old_addr |= last_addr_mask;
5180 new_addr |= last_addr_mask;
5183 if (huge_pte_none(huge_ptep_get(src_pte)))
5186 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5188 old_addr |= last_addr_mask;
5189 new_addr |= last_addr_mask;
5193 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5197 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5201 flush_tlb_range(vma, range.start, range.end);
5203 flush_tlb_range(vma, old_end - len, old_end);
5204 mmu_notifier_invalidate_range_end(&range);
5205 i_mmap_unlock_write(mapping);
5206 hugetlb_vma_unlock_write(vma);
5208 return len + old_addr - old_end;
5211 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5212 unsigned long start, unsigned long end,
5213 struct page *ref_page, zap_flags_t zap_flags)
5215 struct mm_struct *mm = vma->vm_mm;
5216 unsigned long address;
5221 struct hstate *h = hstate_vma(vma);
5222 unsigned long sz = huge_page_size(h);
5223 unsigned long last_addr_mask;
5224 bool force_flush = false;
5226 WARN_ON(!is_vm_hugetlb_page(vma));
5227 BUG_ON(start & ~huge_page_mask(h));
5228 BUG_ON(end & ~huge_page_mask(h));
5231 * This is a hugetlb vma, all the pte entries should point
5234 tlb_change_page_size(tlb, sz);
5235 tlb_start_vma(tlb, vma);
5237 last_addr_mask = hugetlb_mask_last_page(h);
5239 for (; address < end; address += sz) {
5240 ptep = huge_pte_offset(mm, address, sz);
5242 address |= last_addr_mask;
5246 ptl = huge_pte_lock(h, mm, ptep);
5247 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5249 tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5251 address |= last_addr_mask;
5255 pte = huge_ptep_get(ptep);
5256 if (huge_pte_none(pte)) {
5262 * Migrating hugepage or HWPoisoned hugepage is already
5263 * unmapped and its refcount is dropped, so just clear pte here.
5265 if (unlikely(!pte_present(pte))) {
5267 * If the pte was wr-protected by uffd-wp in any of the
5268 * swap forms, meanwhile the caller does not want to
5269 * drop the uffd-wp bit in this zap, then replace the
5270 * pte with a marker.
5272 if (pte_swp_uffd_wp_any(pte) &&
5273 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5274 set_huge_pte_at(mm, address, ptep,
5275 make_pte_marker(PTE_MARKER_UFFD_WP));
5277 huge_pte_clear(mm, address, ptep, sz);
5282 page = pte_page(pte);
5284 * If a reference page is supplied, it is because a specific
5285 * page is being unmapped, not a range. Ensure the page we
5286 * are about to unmap is the actual page of interest.
5289 if (page != ref_page) {
5294 * Mark the VMA as having unmapped its page so that
5295 * future faults in this VMA will fail rather than
5296 * looking like data was lost
5298 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5301 pte = huge_ptep_get_and_clear(mm, address, ptep);
5302 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5303 if (huge_pte_dirty(pte))
5304 set_page_dirty(page);
5305 /* Leave a uffd-wp pte marker if needed */
5306 if (huge_pte_uffd_wp(pte) &&
5307 !(zap_flags & ZAP_FLAG_DROP_MARKER))
5308 set_huge_pte_at(mm, address, ptep,
5309 make_pte_marker(PTE_MARKER_UFFD_WP));
5310 hugetlb_count_sub(pages_per_huge_page(h), mm);
5311 page_remove_rmap(page, vma, true);
5314 tlb_remove_page_size(tlb, page, huge_page_size(h));
5316 * Bail out after unmapping reference page if supplied
5321 tlb_end_vma(tlb, vma);
5324 * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5325 * could defer the flush until now, since by holding i_mmap_rwsem we
5326 * guaranteed that the last refernece would not be dropped. But we must
5327 * do the flushing before we return, as otherwise i_mmap_rwsem will be
5328 * dropped and the last reference to the shared PMDs page might be
5331 * In theory we could defer the freeing of the PMD pages as well, but
5332 * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5333 * detect sharing, so we cannot defer the release of the page either.
5334 * Instead, do flush now.
5337 tlb_flush_mmu_tlbonly(tlb);
5340 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5341 struct vm_area_struct *vma, unsigned long start,
5342 unsigned long end, struct page *ref_page,
5343 zap_flags_t zap_flags)
5345 hugetlb_vma_lock_write(vma);
5346 i_mmap_lock_write(vma->vm_file->f_mapping);
5348 /* mmu notification performed in caller */
5349 __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5351 if (zap_flags & ZAP_FLAG_UNMAP) { /* final unmap */
5353 * Unlock and free the vma lock before releasing i_mmap_rwsem.
5354 * When the vma_lock is freed, this makes the vma ineligible
5355 * for pmd sharing. And, i_mmap_rwsem is required to set up
5356 * pmd sharing. This is important as page tables for this
5357 * unmapped range will be asynchrously deleted. If the page
5358 * tables are shared, there will be issues when accessed by
5361 __hugetlb_vma_unlock_write_free(vma);
5362 i_mmap_unlock_write(vma->vm_file->f_mapping);
5364 i_mmap_unlock_write(vma->vm_file->f_mapping);
5365 hugetlb_vma_unlock_write(vma);
5369 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5370 unsigned long end, struct page *ref_page,
5371 zap_flags_t zap_flags)
5373 struct mmu_notifier_range range;
5374 struct mmu_gather tlb;
5376 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5378 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5379 mmu_notifier_invalidate_range_start(&range);
5380 tlb_gather_mmu(&tlb, vma->vm_mm);
5382 __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5384 mmu_notifier_invalidate_range_end(&range);
5385 tlb_finish_mmu(&tlb);
5389 * This is called when the original mapper is failing to COW a MAP_PRIVATE
5390 * mapping it owns the reserve page for. The intention is to unmap the page
5391 * from other VMAs and let the children be SIGKILLed if they are faulting the
5394 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5395 struct page *page, unsigned long address)
5397 struct hstate *h = hstate_vma(vma);
5398 struct vm_area_struct *iter_vma;
5399 struct address_space *mapping;
5403 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5404 * from page cache lookup which is in HPAGE_SIZE units.
5406 address = address & huge_page_mask(h);
5407 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5409 mapping = vma->vm_file->f_mapping;
5412 * Take the mapping lock for the duration of the table walk. As
5413 * this mapping should be shared between all the VMAs,
5414 * __unmap_hugepage_range() is called as the lock is already held
5416 i_mmap_lock_write(mapping);
5417 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5418 /* Do not unmap the current VMA */
5419 if (iter_vma == vma)
5423 * Shared VMAs have their own reserves and do not affect
5424 * MAP_PRIVATE accounting but it is possible that a shared
5425 * VMA is using the same page so check and skip such VMAs.
5427 if (iter_vma->vm_flags & VM_MAYSHARE)
5431 * Unmap the page from other VMAs without their own reserves.
5432 * They get marked to be SIGKILLed if they fault in these
5433 * areas. This is because a future no-page fault on this VMA
5434 * could insert a zeroed page instead of the data existing
5435 * from the time of fork. This would look like data corruption
5437 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5438 unmap_hugepage_range(iter_vma, address,
5439 address + huge_page_size(h), page, 0);
5441 i_mmap_unlock_write(mapping);
5445 * hugetlb_wp() should be called with page lock of the original hugepage held.
5446 * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5447 * cannot race with other handlers or page migration.
5448 * Keep the pte_same checks anyway to make transition from the mutex easier.
5450 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5451 unsigned long address, pte_t *ptep, unsigned int flags,
5452 struct page *pagecache_page, spinlock_t *ptl)
5454 const bool unshare = flags & FAULT_FLAG_UNSHARE;
5456 struct hstate *h = hstate_vma(vma);
5457 struct page *old_page, *new_page;
5458 int outside_reserve = 0;
5460 unsigned long haddr = address & huge_page_mask(h);
5461 struct mmu_notifier_range range;
5464 * hugetlb does not support FOLL_FORCE-style write faults that keep the
5465 * PTE mapped R/O such as maybe_mkwrite() would do.
5467 if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5468 return VM_FAULT_SIGSEGV;
5470 /* Let's take out MAP_SHARED mappings first. */
5471 if (vma->vm_flags & VM_MAYSHARE) {
5472 set_huge_ptep_writable(vma, haddr, ptep);
5476 pte = huge_ptep_get(ptep);
5477 old_page = pte_page(pte);
5479 delayacct_wpcopy_start();
5483 * If no-one else is actually using this page, we're the exclusive
5484 * owner and can reuse this page.
5486 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5487 if (!PageAnonExclusive(old_page))
5488 page_move_anon_rmap(old_page, vma);
5489 if (likely(!unshare))
5490 set_huge_ptep_writable(vma, haddr, ptep);
5492 delayacct_wpcopy_end();
5495 VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5499 * If the process that created a MAP_PRIVATE mapping is about to
5500 * perform a COW due to a shared page count, attempt to satisfy
5501 * the allocation without using the existing reserves. The pagecache
5502 * page is used to determine if the reserve at this address was
5503 * consumed or not. If reserves were used, a partial faulted mapping
5504 * at the time of fork() could consume its reserves on COW instead
5505 * of the full address range.
5507 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5508 old_page != pagecache_page)
5509 outside_reserve = 1;
5514 * Drop page table lock as buddy allocator may be called. It will
5515 * be acquired again before returning to the caller, as expected.
5518 new_page = alloc_huge_page(vma, haddr, outside_reserve);
5520 if (IS_ERR(new_page)) {
5522 * If a process owning a MAP_PRIVATE mapping fails to COW,
5523 * it is due to references held by a child and an insufficient
5524 * huge page pool. To guarantee the original mappers
5525 * reliability, unmap the page from child processes. The child
5526 * may get SIGKILLed if it later faults.
5528 if (outside_reserve) {
5529 struct address_space *mapping = vma->vm_file->f_mapping;
5535 * Drop hugetlb_fault_mutex and vma_lock before
5536 * unmapping. unmapping needs to hold vma_lock
5537 * in write mode. Dropping vma_lock in read mode
5538 * here is OK as COW mappings do not interact with
5541 * Reacquire both after unmap operation.
5543 idx = vma_hugecache_offset(h, vma, haddr);
5544 hash = hugetlb_fault_mutex_hash(mapping, idx);
5545 hugetlb_vma_unlock_read(vma);
5546 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5548 unmap_ref_private(mm, vma, old_page, haddr);
5550 mutex_lock(&hugetlb_fault_mutex_table[hash]);
5551 hugetlb_vma_lock_read(vma);
5553 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5555 pte_same(huge_ptep_get(ptep), pte)))
5556 goto retry_avoidcopy;
5558 * race occurs while re-acquiring page table
5559 * lock, and our job is done.
5561 delayacct_wpcopy_end();
5565 ret = vmf_error(PTR_ERR(new_page));
5566 goto out_release_old;
5570 * When the original hugepage is shared one, it does not have
5571 * anon_vma prepared.
5573 if (unlikely(anon_vma_prepare(vma))) {
5575 goto out_release_all;
5578 copy_user_huge_page(new_page, old_page, address, vma,
5579 pages_per_huge_page(h));
5580 __SetPageUptodate(new_page);
5582 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5583 haddr + huge_page_size(h));
5584 mmu_notifier_invalidate_range_start(&range);
5587 * Retake the page table lock to check for racing updates
5588 * before the page tables are altered
5591 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5592 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5593 /* Break COW or unshare */
5594 huge_ptep_clear_flush(vma, haddr, ptep);
5595 mmu_notifier_invalidate_range(mm, range.start, range.end);
5596 page_remove_rmap(old_page, vma, true);
5597 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5598 set_huge_pte_at(mm, haddr, ptep,
5599 make_huge_pte(vma, new_page, !unshare));
5600 SetHPageMigratable(new_page);
5601 /* Make the old page be freed below */
5602 new_page = old_page;
5605 mmu_notifier_invalidate_range_end(&range);
5608 * No restore in case of successful pagetable update (Break COW or
5611 if (new_page != old_page)
5612 restore_reserve_on_error(h, vma, haddr, new_page);
5617 spin_lock(ptl); /* Caller expects lock to be held */
5619 delayacct_wpcopy_end();
5624 * Return whether there is a pagecache page to back given address within VMA.
5625 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5627 static bool hugetlbfs_pagecache_present(struct hstate *h,
5628 struct vm_area_struct *vma, unsigned long address)
5630 struct address_space *mapping;
5634 mapping = vma->vm_file->f_mapping;
5635 idx = vma_hugecache_offset(h, vma, address);
5637 page = find_get_page(mapping, idx);
5640 return page != NULL;
5643 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5646 struct folio *folio = page_folio(page);
5647 struct inode *inode = mapping->host;
5648 struct hstate *h = hstate_inode(inode);
5651 __folio_set_locked(folio);
5652 err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5654 if (unlikely(err)) {
5655 __folio_clear_locked(folio);
5658 ClearHPageRestoreReserve(page);
5661 * mark folio dirty so that it will not be removed from cache/file
5662 * by non-hugetlbfs specific code paths.
5664 folio_mark_dirty(folio);
5666 spin_lock(&inode->i_lock);
5667 inode->i_blocks += blocks_per_huge_page(h);
5668 spin_unlock(&inode->i_lock);
5672 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5673 struct address_space *mapping,
5676 unsigned long haddr,
5678 unsigned long reason)
5681 struct vm_fault vmf = {
5684 .real_address = addr,
5688 * Hard to debug if it ends up being
5689 * used by a callee that assumes
5690 * something about the other
5691 * uninitialized fields... same as in
5697 * vma_lock and hugetlb_fault_mutex must be dropped before handling
5698 * userfault. Also mmap_lock could be dropped due to handling
5699 * userfault, any vma operation should be careful from here.
5701 hugetlb_vma_unlock_read(vma);
5702 hash = hugetlb_fault_mutex_hash(mapping, idx);
5703 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5704 return handle_userfault(&vmf, reason);
5708 * Recheck pte with pgtable lock. Returns true if pte didn't change, or
5709 * false if pte changed or is changing.
5711 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5712 pte_t *ptep, pte_t old_pte)
5717 ptl = huge_pte_lock(h, mm, ptep);
5718 same = pte_same(huge_ptep_get(ptep), old_pte);
5724 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5725 struct vm_area_struct *vma,
5726 struct address_space *mapping, pgoff_t idx,
5727 unsigned long address, pte_t *ptep,
5728 pte_t old_pte, unsigned int flags)
5730 struct hstate *h = hstate_vma(vma);
5731 vm_fault_t ret = VM_FAULT_SIGBUS;
5737 unsigned long haddr = address & huge_page_mask(h);
5738 bool new_page, new_pagecache_page = false;
5739 u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5742 * Currently, we are forced to kill the process in the event the
5743 * original mapper has unmapped pages from the child due to a failed
5744 * COW/unsharing. Warn that such a situation has occurred as it may not
5747 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5748 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5754 * Use page lock to guard against racing truncation
5755 * before we get page_table_lock.
5758 page = find_lock_page(mapping, idx);
5760 size = i_size_read(mapping->host) >> huge_page_shift(h);
5763 /* Check for page in userfault range */
5764 if (userfaultfd_missing(vma)) {
5766 * Since hugetlb_no_page() was examining pte
5767 * without pgtable lock, we need to re-test under
5768 * lock because the pte may not be stable and could
5769 * have changed from under us. Try to detect
5770 * either changed or during-changing ptes and retry
5771 * properly when needed.
5773 * Note that userfaultfd is actually fine with
5774 * false positives (e.g. caused by pte changed),
5775 * but not wrong logical events (e.g. caused by
5776 * reading a pte during changing). The latter can
5777 * confuse the userspace, so the strictness is very
5778 * much preferred. E.g., MISSING event should
5779 * never happen on the page after UFFDIO_COPY has
5780 * correctly installed the page and returned.
5782 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5787 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5792 page = alloc_huge_page(vma, haddr, 0);
5795 * Returning error will result in faulting task being
5796 * sent SIGBUS. The hugetlb fault mutex prevents two
5797 * tasks from racing to fault in the same page which
5798 * could result in false unable to allocate errors.
5799 * Page migration does not take the fault mutex, but
5800 * does a clear then write of pte's under page table
5801 * lock. Page fault code could race with migration,
5802 * notice the clear pte and try to allocate a page
5803 * here. Before returning error, get ptl and make
5804 * sure there really is no pte entry.
5806 if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5807 ret = vmf_error(PTR_ERR(page));
5812 clear_huge_page(page, address, pages_per_huge_page(h));
5813 __SetPageUptodate(page);
5816 if (vma->vm_flags & VM_MAYSHARE) {
5817 int err = hugetlb_add_to_page_cache(page, mapping, idx);
5820 * err can't be -EEXIST which implies someone
5821 * else consumed the reservation since hugetlb
5822 * fault mutex is held when add a hugetlb page
5823 * to the page cache. So it's safe to call
5824 * restore_reserve_on_error() here.
5826 restore_reserve_on_error(h, vma, haddr, page);
5830 new_pagecache_page = true;
5833 if (unlikely(anon_vma_prepare(vma))) {
5835 goto backout_unlocked;
5841 * If memory error occurs between mmap() and fault, some process
5842 * don't have hwpoisoned swap entry for errored virtual address.
5843 * So we need to block hugepage fault by PG_hwpoison bit check.
5845 if (unlikely(PageHWPoison(page))) {
5846 ret = VM_FAULT_HWPOISON_LARGE |
5847 VM_FAULT_SET_HINDEX(hstate_index(h));
5848 goto backout_unlocked;
5851 /* Check for page in userfault range. */
5852 if (userfaultfd_minor(vma)) {
5855 /* See comment in userfaultfd_missing() block above */
5856 if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5860 return hugetlb_handle_userfault(vma, mapping, idx, flags,
5867 * If we are going to COW a private mapping later, we examine the
5868 * pending reservations for this page now. This will ensure that
5869 * any allocations necessary to record that reservation occur outside
5872 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5873 if (vma_needs_reservation(h, vma, haddr) < 0) {
5875 goto backout_unlocked;
5877 /* Just decrements count, does not deallocate */
5878 vma_end_reservation(h, vma, haddr);
5881 ptl = huge_pte_lock(h, mm, ptep);
5883 /* If pte changed from under us, retry */
5884 if (!pte_same(huge_ptep_get(ptep), old_pte))
5888 hugepage_add_new_anon_rmap(page, vma, haddr);
5890 page_dup_file_rmap(page, true);
5891 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5892 && (vma->vm_flags & VM_SHARED)));
5894 * If this pte was previously wr-protected, keep it wr-protected even
5897 if (unlikely(pte_marker_uffd_wp(old_pte)))
5898 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5899 set_huge_pte_at(mm, haddr, ptep, new_pte);
5901 hugetlb_count_add(pages_per_huge_page(h), mm);
5902 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5903 /* Optimization, do the COW without a second fault */
5904 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5910 * Only set HPageMigratable in newly allocated pages. Existing pages
5911 * found in the pagecache may not have HPageMigratableset if they have
5912 * been isolated for migration.
5915 SetHPageMigratable(page);
5919 hugetlb_vma_unlock_read(vma);
5920 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5926 if (new_page && !new_pagecache_page)
5927 restore_reserve_on_error(h, vma, haddr, page);
5935 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5937 unsigned long key[2];
5940 key[0] = (unsigned long) mapping;
5943 hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5945 return hash & (num_fault_mutexes - 1);
5949 * For uniprocessor systems we always use a single mutex, so just
5950 * return 0 and avoid the hashing overhead.
5952 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5958 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5959 unsigned long address, unsigned int flags)
5966 struct page *page = NULL;
5967 struct page *pagecache_page = NULL;
5968 struct hstate *h = hstate_vma(vma);
5969 struct address_space *mapping;
5970 int need_wait_lock = 0;
5971 unsigned long haddr = address & huge_page_mask(h);
5973 ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5976 * Since we hold no locks, ptep could be stale. That is
5977 * OK as we are only making decisions based on content and
5978 * not actually modifying content here.
5980 entry = huge_ptep_get(ptep);
5981 if (unlikely(is_hugetlb_entry_migration(entry))) {
5982 migration_entry_wait_huge(vma, ptep);
5984 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5985 return VM_FAULT_HWPOISON_LARGE |
5986 VM_FAULT_SET_HINDEX(hstate_index(h));
5990 * Serialize hugepage allocation and instantiation, so that we don't
5991 * get spurious allocation failures if two CPUs race to instantiate
5992 * the same page in the page cache.
5994 mapping = vma->vm_file->f_mapping;
5995 idx = vma_hugecache_offset(h, vma, haddr);
5996 hash = hugetlb_fault_mutex_hash(mapping, idx);
5997 mutex_lock(&hugetlb_fault_mutex_table[hash]);
6000 * Acquire vma lock before calling huge_pte_alloc and hold
6001 * until finished with ptep. This prevents huge_pmd_unshare from
6002 * being called elsewhere and making the ptep no longer valid.
6004 * ptep could have already be assigned via huge_pte_offset. That
6005 * is OK, as huge_pte_alloc will return the same value unless
6006 * something has changed.
6008 hugetlb_vma_lock_read(vma);
6009 ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
6011 hugetlb_vma_unlock_read(vma);
6012 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6013 return VM_FAULT_OOM;
6016 entry = huge_ptep_get(ptep);
6017 /* PTE markers should be handled the same way as none pte */
6018 if (huge_pte_none_mostly(entry))
6020 * hugetlb_no_page will drop vma lock and hugetlb fault
6021 * mutex internally, which make us return immediately.
6023 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
6029 * entry could be a migration/hwpoison entry at this point, so this
6030 * check prevents the kernel from going below assuming that we have
6031 * an active hugepage in pagecache. This goto expects the 2nd page
6032 * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
6033 * properly handle it.
6035 if (!pte_present(entry))
6039 * If we are going to COW/unshare the mapping later, we examine the
6040 * pending reservations for this page now. This will ensure that any
6041 * allocations necessary to record that reservation occur outside the
6042 * spinlock. Also lookup the pagecache page now as it is used to
6043 * determine if a reservation has been consumed.
6045 if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
6046 !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
6047 if (vma_needs_reservation(h, vma, haddr) < 0) {
6051 /* Just decrements count, does not deallocate */
6052 vma_end_reservation(h, vma, haddr);
6054 pagecache_page = find_lock_page(mapping, idx);
6057 ptl = huge_pte_lock(h, mm, ptep);
6059 /* Check for a racing update before calling hugetlb_wp() */
6060 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
6063 /* Handle userfault-wp first, before trying to lock more pages */
6064 if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
6065 (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
6066 struct vm_fault vmf = {
6069 .real_address = address,
6074 if (pagecache_page) {
6075 unlock_page(pagecache_page);
6076 put_page(pagecache_page);
6078 hugetlb_vma_unlock_read(vma);
6079 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6080 return handle_userfault(&vmf, VM_UFFD_WP);
6084 * hugetlb_wp() requires page locks of pte_page(entry) and
6085 * pagecache_page, so here we need take the former one
6086 * when page != pagecache_page or !pagecache_page.
6088 page = pte_page(entry);
6089 if (page != pagecache_page)
6090 if (!trylock_page(page)) {
6097 if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
6098 if (!huge_pte_write(entry)) {
6099 ret = hugetlb_wp(mm, vma, address, ptep, flags,
6100 pagecache_page, ptl);
6102 } else if (likely(flags & FAULT_FLAG_WRITE)) {
6103 entry = huge_pte_mkdirty(entry);
6106 entry = pte_mkyoung(entry);
6107 if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
6108 flags & FAULT_FLAG_WRITE))
6109 update_mmu_cache(vma, haddr, ptep);
6111 if (page != pagecache_page)
6117 if (pagecache_page) {
6118 unlock_page(pagecache_page);
6119 put_page(pagecache_page);
6122 hugetlb_vma_unlock_read(vma);
6123 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
6125 * Generally it's safe to hold refcount during waiting page lock. But
6126 * here we just wait to defer the next page fault to avoid busy loop and
6127 * the page is not used after unlocked before returning from the current
6128 * page fault. So we are safe from accessing freed page, even if we wait
6129 * here without taking refcount.
6132 wait_on_page_locked(page);
6136 #ifdef CONFIG_USERFAULTFD
6138 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
6139 * modifications for huge pages.
6141 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
6143 struct vm_area_struct *dst_vma,
6144 unsigned long dst_addr,
6145 unsigned long src_addr,
6146 enum mcopy_atomic_mode mode,
6147 struct page **pagep,
6150 bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6151 struct hstate *h = hstate_vma(dst_vma);
6152 struct address_space *mapping = dst_vma->vm_file->f_mapping;
6153 pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6155 int vm_shared = dst_vma->vm_flags & VM_SHARED;
6161 bool page_in_pagecache = false;
6165 page = find_lock_page(mapping, idx);
6168 page_in_pagecache = true;
6169 } else if (!*pagep) {
6170 /* If a page already exists, then it's UFFDIO_COPY for
6171 * a non-missing case. Return -EEXIST.
6174 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6179 page = alloc_huge_page(dst_vma, dst_addr, 0);
6185 ret = copy_huge_page_from_user(page,
6186 (const void __user *) src_addr,
6187 pages_per_huge_page(h), false);
6189 /* fallback to copy_from_user outside mmap_lock */
6190 if (unlikely(ret)) {
6192 /* Free the allocated page which may have
6193 * consumed a reservation.
6195 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6198 /* Allocate a temporary page to hold the copied
6201 page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6207 /* Set the outparam pagep and return to the caller to
6208 * copy the contents outside the lock. Don't free the
6215 hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6222 page = alloc_huge_page(dst_vma, dst_addr, 0);
6229 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6230 pages_per_huge_page(h));
6236 * The memory barrier inside __SetPageUptodate makes sure that
6237 * preceding stores to the page contents become visible before
6238 * the set_pte_at() write.
6240 __SetPageUptodate(page);
6242 /* Add shared, newly allocated pages to the page cache. */
6243 if (vm_shared && !is_continue) {
6244 size = i_size_read(mapping->host) >> huge_page_shift(h);
6247 goto out_release_nounlock;
6250 * Serialization between remove_inode_hugepages() and
6251 * hugetlb_add_to_page_cache() below happens through the
6252 * hugetlb_fault_mutex_table that here must be hold by
6255 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6257 goto out_release_nounlock;
6258 page_in_pagecache = true;
6261 ptl = huge_pte_lock(h, dst_mm, dst_pte);
6264 if (PageHWPoison(page))
6265 goto out_release_unlock;
6268 * We allow to overwrite a pte marker: consider when both MISSING|WP
6269 * registered, we firstly wr-protect a none pte which has no page cache
6270 * page backing it, then access the page.
6273 if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6274 goto out_release_unlock;
6276 if (page_in_pagecache)
6277 page_dup_file_rmap(page, true);
6279 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6282 * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6283 * with wp flag set, don't set pte write bit.
6285 if (wp_copy || (is_continue && !vm_shared))
6288 writable = dst_vma->vm_flags & VM_WRITE;
6290 _dst_pte = make_huge_pte(dst_vma, page, writable);
6292 * Always mark UFFDIO_COPY page dirty; note that this may not be
6293 * extremely important for hugetlbfs for now since swapping is not
6294 * supported, but we should still be clear in that this page cannot be
6295 * thrown away at will, even if write bit not set.
6297 _dst_pte = huge_pte_mkdirty(_dst_pte);
6298 _dst_pte = pte_mkyoung(_dst_pte);
6301 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6303 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6305 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6307 /* No need to invalidate - it was non-present before */
6308 update_mmu_cache(dst_vma, dst_addr, dst_pte);
6312 SetHPageMigratable(page);
6313 if (vm_shared || is_continue)
6320 if (vm_shared || is_continue)
6322 out_release_nounlock:
6323 if (!page_in_pagecache)
6324 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6328 #endif /* CONFIG_USERFAULTFD */
6330 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6331 int refs, struct page **pages,
6332 struct vm_area_struct **vmas)
6336 for (nr = 0; nr < refs; nr++) {
6338 pages[nr] = nth_page(page, nr);
6344 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6345 unsigned int flags, pte_t *pte,
6348 pte_t pteval = huge_ptep_get(pte);
6351 if (is_swap_pte(pteval))
6353 if (huge_pte_write(pteval))
6355 if (flags & FOLL_WRITE)
6357 if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6364 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6365 unsigned long address, unsigned int flags)
6367 struct hstate *h = hstate_vma(vma);
6368 struct mm_struct *mm = vma->vm_mm;
6369 unsigned long haddr = address & huge_page_mask(h);
6370 struct page *page = NULL;
6375 * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6376 * follow_hugetlb_page().
6378 if (WARN_ON_ONCE(flags & FOLL_PIN))
6382 pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6386 ptl = huge_pte_lock(h, mm, pte);
6387 entry = huge_ptep_get(pte);
6388 if (pte_present(entry)) {
6389 page = pte_page(entry) +
6390 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6392 * Note that page may be a sub-page, and with vmemmap
6393 * optimizations the page struct may be read only.
6394 * try_grab_page() will increase the ref count on the
6395 * head page, so this will be OK.
6397 * try_grab_page() should always be able to get the page here,
6398 * because we hold the ptl lock and have verified pte_present().
6400 if (try_grab_page(page, flags)) {
6405 if (is_hugetlb_entry_migration(entry)) {
6407 __migration_entry_wait_huge(pte, ptl);
6411 * hwpoisoned entry is treated as no_page_table in
6412 * follow_page_mask().
6420 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6421 struct page **pages, struct vm_area_struct **vmas,
6422 unsigned long *position, unsigned long *nr_pages,
6423 long i, unsigned int flags, int *locked)
6425 unsigned long pfn_offset;
6426 unsigned long vaddr = *position;
6427 unsigned long remainder = *nr_pages;
6428 struct hstate *h = hstate_vma(vma);
6429 int err = -EFAULT, refs;
6431 while (vaddr < vma->vm_end && remainder) {
6433 spinlock_t *ptl = NULL;
6434 bool unshare = false;
6439 * If we have a pending SIGKILL, don't keep faulting pages and
6440 * potentially allocating memory.
6442 if (fatal_signal_pending(current)) {
6448 * Some archs (sparc64, sh*) have multiple pte_ts to
6449 * each hugepage. We have to make sure we get the
6450 * first, for the page indexing below to work.
6452 * Note that page table lock is not held when pte is null.
6454 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6457 ptl = huge_pte_lock(h, mm, pte);
6458 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6461 * When coredumping, it suits get_dump_page if we just return
6462 * an error where there's an empty slot with no huge pagecache
6463 * to back it. This way, we avoid allocating a hugepage, and
6464 * the sparse dumpfile avoids allocating disk blocks, but its
6465 * huge holes still show up with zeroes where they need to be.
6467 if (absent && (flags & FOLL_DUMP) &&
6468 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6476 * We need call hugetlb_fault for both hugepages under migration
6477 * (in which case hugetlb_fault waits for the migration,) and
6478 * hwpoisoned hugepages (in which case we need to prevent the
6479 * caller from accessing to them.) In order to do this, we use
6480 * here is_swap_pte instead of is_hugetlb_entry_migration and
6481 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6482 * both cases, and because we can't follow correct pages
6483 * directly from any kind of swap entries.
6486 __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6488 unsigned int fault_flags = 0;
6492 if (flags & FOLL_WRITE)
6493 fault_flags |= FAULT_FLAG_WRITE;
6495 fault_flags |= FAULT_FLAG_UNSHARE;
6497 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6498 FAULT_FLAG_KILLABLE;
6499 if (flags & FOLL_INTERRUPTIBLE)
6500 fault_flags |= FAULT_FLAG_INTERRUPTIBLE;
6502 if (flags & FOLL_NOWAIT)
6503 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6504 FAULT_FLAG_RETRY_NOWAIT;
6505 if (flags & FOLL_TRIED) {
6507 * Note: FAULT_FLAG_ALLOW_RETRY and
6508 * FAULT_FLAG_TRIED can co-exist
6510 fault_flags |= FAULT_FLAG_TRIED;
6512 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6513 if (ret & VM_FAULT_ERROR) {
6514 err = vm_fault_to_errno(ret, flags);
6518 if (ret & VM_FAULT_RETRY) {
6520 !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6524 * VM_FAULT_RETRY must not return an
6525 * error, it will return zero
6528 * No need to update "position" as the
6529 * caller will not check it after
6530 * *nr_pages is set to 0.
6537 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6538 page = pte_page(huge_ptep_get(pte));
6540 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6541 !PageAnonExclusive(page), page);
6544 * If subpage information not requested, update counters
6545 * and skip the same_page loop below.
6547 if (!pages && !vmas && !pfn_offset &&
6548 (vaddr + huge_page_size(h) < vma->vm_end) &&
6549 (remainder >= pages_per_huge_page(h))) {
6550 vaddr += huge_page_size(h);
6551 remainder -= pages_per_huge_page(h);
6552 i += pages_per_huge_page(h);
6557 /* vaddr may not be aligned to PAGE_SIZE */
6558 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6559 (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6562 record_subpages_vmas(nth_page(page, pfn_offset),
6564 likely(pages) ? pages + i : NULL,
6565 vmas ? vmas + i : NULL);
6569 * try_grab_folio() should always succeed here,
6570 * because: a) we hold the ptl lock, and b) we've just
6571 * checked that the huge page is present in the page
6572 * tables. If the huge page is present, then the tail
6573 * pages must also be present. The ptl prevents the
6574 * head page and tail pages from being rearranged in
6575 * any way. As this is hugetlb, the pages will never
6576 * be p2pdma or not longterm pinable. So this page
6577 * must be available at this point, unless the page
6578 * refcount overflowed:
6580 if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6589 vaddr += (refs << PAGE_SHIFT);
6595 *nr_pages = remainder;
6597 * setting position is actually required only if remainder is
6598 * not zero but it's faster not to add a "if (remainder)"
6606 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6607 unsigned long address, unsigned long end,
6608 pgprot_t newprot, unsigned long cp_flags)
6610 struct mm_struct *mm = vma->vm_mm;
6611 unsigned long start = address;
6614 struct hstate *h = hstate_vma(vma);
6615 unsigned long pages = 0, psize = huge_page_size(h);
6616 bool shared_pmd = false;
6617 struct mmu_notifier_range range;
6618 unsigned long last_addr_mask;
6619 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6620 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6623 * In the case of shared PMDs, the area to flush could be beyond
6624 * start/end. Set range.start/range.end to cover the maximum possible
6625 * range if PMD sharing is possible.
6627 mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6628 0, vma, mm, start, end);
6629 adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6631 BUG_ON(address >= end);
6632 flush_cache_range(vma, range.start, range.end);
6634 mmu_notifier_invalidate_range_start(&range);
6635 hugetlb_vma_lock_write(vma);
6636 i_mmap_lock_write(vma->vm_file->f_mapping);
6637 last_addr_mask = hugetlb_mask_last_page(h);
6638 for (; address < end; address += psize) {
6640 ptep = huge_pte_offset(mm, address, psize);
6642 address |= last_addr_mask;
6645 ptl = huge_pte_lock(h, mm, ptep);
6646 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6648 * When uffd-wp is enabled on the vma, unshare
6649 * shouldn't happen at all. Warn about it if it
6650 * happened due to some reason.
6652 WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6656 address |= last_addr_mask;
6659 pte = huge_ptep_get(ptep);
6660 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6664 if (unlikely(is_hugetlb_entry_migration(pte))) {
6665 swp_entry_t entry = pte_to_swp_entry(pte);
6666 struct page *page = pfn_swap_entry_to_page(entry);
6668 if (!is_readable_migration_entry(entry)) {
6672 entry = make_readable_exclusive_migration_entry(
6675 entry = make_readable_migration_entry(
6677 newpte = swp_entry_to_pte(entry);
6679 newpte = pte_swp_mkuffd_wp(newpte);
6680 else if (uffd_wp_resolve)
6681 newpte = pte_swp_clear_uffd_wp(newpte);
6682 set_huge_pte_at(mm, address, ptep, newpte);
6688 if (unlikely(pte_marker_uffd_wp(pte))) {
6690 * This is changing a non-present pte into a none pte,
6691 * no need for huge_ptep_modify_prot_start/commit().
6693 if (uffd_wp_resolve)
6694 huge_pte_clear(mm, address, ptep, psize);
6696 if (!huge_pte_none(pte)) {
6698 unsigned int shift = huge_page_shift(hstate_vma(vma));
6700 old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6701 pte = huge_pte_modify(old_pte, newprot);
6702 pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6704 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6705 else if (uffd_wp_resolve)
6706 pte = huge_pte_clear_uffd_wp(pte);
6707 huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6711 if (unlikely(uffd_wp))
6712 /* Safe to modify directly (none->non-present). */
6713 set_huge_pte_at(mm, address, ptep,
6714 make_pte_marker(PTE_MARKER_UFFD_WP));
6719 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6720 * may have cleared our pud entry and done put_page on the page table:
6721 * once we release i_mmap_rwsem, another task can do the final put_page
6722 * and that page table be reused and filled with junk. If we actually
6723 * did unshare a page of pmds, flush the range corresponding to the pud.
6726 flush_hugetlb_tlb_range(vma, range.start, range.end);
6728 flush_hugetlb_tlb_range(vma, start, end);
6730 * No need to call mmu_notifier_invalidate_range() we are downgrading
6731 * page table protection not changing it to point to a new page.
6733 * See Documentation/mm/mmu_notifier.rst
6735 i_mmap_unlock_write(vma->vm_file->f_mapping);
6736 hugetlb_vma_unlock_write(vma);
6737 mmu_notifier_invalidate_range_end(&range);
6739 return pages << h->order;
6742 /* Return true if reservation was successful, false otherwise. */
6743 bool hugetlb_reserve_pages(struct inode *inode,
6745 struct vm_area_struct *vma,
6746 vm_flags_t vm_flags)
6749 struct hstate *h = hstate_inode(inode);
6750 struct hugepage_subpool *spool = subpool_inode(inode);
6751 struct resv_map *resv_map;
6752 struct hugetlb_cgroup *h_cg = NULL;
6753 long gbl_reserve, regions_needed = 0;
6755 /* This should never happen */
6757 VM_WARN(1, "%s called with a negative range\n", __func__);
6762 * vma specific semaphore used for pmd sharing and fault/truncation
6765 hugetlb_vma_lock_alloc(vma);
6768 * Only apply hugepage reservation if asked. At fault time, an
6769 * attempt will be made for VM_NORESERVE to allocate a page
6770 * without using reserves
6772 if (vm_flags & VM_NORESERVE)
6776 * Shared mappings base their reservation on the number of pages that
6777 * are already allocated on behalf of the file. Private mappings need
6778 * to reserve the full area even if read-only as mprotect() may be
6779 * called to make the mapping read-write. Assume !vma is a shm mapping
6781 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6783 * resv_map can not be NULL as hugetlb_reserve_pages is only
6784 * called for inodes for which resv_maps were created (see
6785 * hugetlbfs_get_inode).
6787 resv_map = inode_resv_map(inode);
6789 chg = region_chg(resv_map, from, to, ®ions_needed);
6791 /* Private mapping. */
6792 resv_map = resv_map_alloc();
6798 set_vma_resv_map(vma, resv_map);
6799 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6805 if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6806 chg * pages_per_huge_page(h), &h_cg) < 0)
6809 if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6810 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6813 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6817 * There must be enough pages in the subpool for the mapping. If
6818 * the subpool has a minimum size, there may be some global
6819 * reservations already in place (gbl_reserve).
6821 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6822 if (gbl_reserve < 0)
6823 goto out_uncharge_cgroup;
6826 * Check enough hugepages are available for the reservation.
6827 * Hand the pages back to the subpool if there are not
6829 if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6833 * Account for the reservations made. Shared mappings record regions
6834 * that have reservations as they are shared by multiple VMAs.
6835 * When the last VMA disappears, the region map says how much
6836 * the reservation was and the page cache tells how much of
6837 * the reservation was consumed. Private mappings are per-VMA and
6838 * only the consumed reservations are tracked. When the VMA
6839 * disappears, the original reservation is the VMA size and the
6840 * consumed reservations are stored in the map. Hence, nothing
6841 * else has to be done for private mappings here
6843 if (!vma || vma->vm_flags & VM_MAYSHARE) {
6844 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6846 if (unlikely(add < 0)) {
6847 hugetlb_acct_memory(h, -gbl_reserve);
6849 } else if (unlikely(chg > add)) {
6851 * pages in this range were added to the reserve
6852 * map between region_chg and region_add. This
6853 * indicates a race with alloc_huge_page. Adjust
6854 * the subpool and reserve counts modified above
6855 * based on the difference.
6860 * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6861 * reference to h_cg->css. See comment below for detail.
6863 hugetlb_cgroup_uncharge_cgroup_rsvd(
6865 (chg - add) * pages_per_huge_page(h), h_cg);
6867 rsv_adjust = hugepage_subpool_put_pages(spool,
6869 hugetlb_acct_memory(h, -rsv_adjust);
6872 * The file_regions will hold their own reference to
6873 * h_cg->css. So we should release the reference held
6874 * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6877 hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6883 /* put back original number of pages, chg */
6884 (void)hugepage_subpool_put_pages(spool, chg);
6885 out_uncharge_cgroup:
6886 hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6887 chg * pages_per_huge_page(h), h_cg);
6889 hugetlb_vma_lock_free(vma);
6890 if (!vma || vma->vm_flags & VM_MAYSHARE)
6891 /* Only call region_abort if the region_chg succeeded but the
6892 * region_add failed or didn't run.
6894 if (chg >= 0 && add < 0)
6895 region_abort(resv_map, from, to, regions_needed);
6896 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6897 kref_put(&resv_map->refs, resv_map_release);
6901 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6904 struct hstate *h = hstate_inode(inode);
6905 struct resv_map *resv_map = inode_resv_map(inode);
6907 struct hugepage_subpool *spool = subpool_inode(inode);
6911 * Since this routine can be called in the evict inode path for all
6912 * hugetlbfs inodes, resv_map could be NULL.
6915 chg = region_del(resv_map, start, end);
6917 * region_del() can fail in the rare case where a region
6918 * must be split and another region descriptor can not be
6919 * allocated. If end == LONG_MAX, it will not fail.
6925 spin_lock(&inode->i_lock);
6926 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6927 spin_unlock(&inode->i_lock);
6930 * If the subpool has a minimum size, the number of global
6931 * reservations to be released may be adjusted.
6933 * Note that !resv_map implies freed == 0. So (chg - freed)
6934 * won't go negative.
6936 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6937 hugetlb_acct_memory(h, -gbl_reserve);
6942 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6943 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6944 struct vm_area_struct *vma,
6945 unsigned long addr, pgoff_t idx)
6947 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6949 unsigned long sbase = saddr & PUD_MASK;
6950 unsigned long s_end = sbase + PUD_SIZE;
6952 /* Allow segments to share if only one is marked locked */
6953 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6954 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6957 * match the virtual addresses, permission and the alignment of the
6960 * Also, vma_lock (vm_private_data) is required for sharing.
6962 if (pmd_index(addr) != pmd_index(saddr) ||
6963 vm_flags != svm_flags ||
6964 !range_in_vma(svma, sbase, s_end) ||
6965 !svma->vm_private_data)
6971 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6973 unsigned long start = addr & PUD_MASK;
6974 unsigned long end = start + PUD_SIZE;
6976 #ifdef CONFIG_USERFAULTFD
6977 if (uffd_disable_huge_pmd_share(vma))
6981 * check on proper vm_flags and page table alignment
6983 if (!(vma->vm_flags & VM_MAYSHARE))
6985 if (!vma->vm_private_data) /* vma lock required for sharing */
6987 if (!range_in_vma(vma, start, end))
6993 * Determine if start,end range within vma could be mapped by shared pmd.
6994 * If yes, adjust start and end to cover range associated with possible
6995 * shared pmd mappings.
6997 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6998 unsigned long *start, unsigned long *end)
7000 unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
7001 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7004 * vma needs to span at least one aligned PUD size, and the range
7005 * must be at least partially within in.
7007 if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
7008 (*end <= v_start) || (*start >= v_end))
7011 /* Extend the range to be PUD aligned for a worst case scenario */
7012 if (*start > v_start)
7013 *start = ALIGN_DOWN(*start, PUD_SIZE);
7016 *end = ALIGN(*end, PUD_SIZE);
7020 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7021 * and returns the corresponding pte. While this is not necessary for the
7022 * !shared pmd case because we can allocate the pmd later as well, it makes the
7023 * code much cleaner. pmd allocation is essential for the shared case because
7024 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7025 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7026 * bad pmd for sharing.
7028 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7029 unsigned long addr, pud_t *pud)
7031 struct address_space *mapping = vma->vm_file->f_mapping;
7032 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7034 struct vm_area_struct *svma;
7035 unsigned long saddr;
7040 i_mmap_lock_read(mapping);
7041 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7045 saddr = page_table_shareable(svma, vma, addr, idx);
7047 spte = huge_pte_offset(svma->vm_mm, saddr,
7048 vma_mmu_pagesize(svma));
7050 get_page(virt_to_page(spte));
7059 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7060 if (pud_none(*pud)) {
7061 pud_populate(mm, pud,
7062 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7065 put_page(virt_to_page(spte));
7069 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7070 i_mmap_unlock_read(mapping);
7075 * unmap huge page backed by shared pte.
7077 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
7078 * indicated by page_count > 1, unmap is achieved by clearing pud and
7079 * decrementing the ref count. If count == 1, the pte page is not shared.
7081 * Called with page table lock held.
7083 * returns: 1 successfully unmapped a shared pte page
7084 * 0 the underlying pte page is not shared, or it is the last user
7086 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7087 unsigned long addr, pte_t *ptep)
7089 pgd_t *pgd = pgd_offset(mm, addr);
7090 p4d_t *p4d = p4d_offset(pgd, addr);
7091 pud_t *pud = pud_offset(p4d, addr);
7093 i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7094 hugetlb_vma_assert_locked(vma);
7095 BUG_ON(page_count(virt_to_page(ptep)) == 0);
7096 if (page_count(virt_to_page(ptep)) == 1)
7100 put_page(virt_to_page(ptep));
7105 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7107 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7108 unsigned long addr, pud_t *pud)
7113 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7114 unsigned long addr, pte_t *ptep)
7119 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7120 unsigned long *start, unsigned long *end)
7124 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7128 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7130 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7131 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7132 unsigned long addr, unsigned long sz)
7139 pgd = pgd_offset(mm, addr);
7140 p4d = p4d_alloc(mm, pgd, addr);
7143 pud = pud_alloc(mm, p4d, addr);
7145 if (sz == PUD_SIZE) {
7148 BUG_ON(sz != PMD_SIZE);
7149 if (want_pmd_share(vma, addr) && pud_none(*pud))
7150 pte = huge_pmd_share(mm, vma, addr, pud);
7152 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7155 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7161 * huge_pte_offset() - Walk the page table to resolve the hugepage
7162 * entry at address @addr
7164 * Return: Pointer to page table entry (PUD or PMD) for
7165 * address @addr, or NULL if a !p*d_present() entry is encountered and the
7166 * size @sz doesn't match the hugepage size at this level of the page
7169 pte_t *huge_pte_offset(struct mm_struct *mm,
7170 unsigned long addr, unsigned long sz)
7177 pgd = pgd_offset(mm, addr);
7178 if (!pgd_present(*pgd))
7180 p4d = p4d_offset(pgd, addr);
7181 if (!p4d_present(*p4d))
7184 pud = pud_offset(p4d, addr);
7186 /* must be pud huge, non-present or none */
7187 return (pte_t *)pud;
7188 if (!pud_present(*pud))
7190 /* must have a valid entry and size to go further */
7192 pmd = pmd_offset(pud, addr);
7193 /* must be pmd huge, non-present or none */
7194 return (pte_t *)pmd;
7198 * Return a mask that can be used to update an address to the last huge
7199 * page in a page table page mapping size. Used to skip non-present
7200 * page table entries when linearly scanning address ranges. Architectures
7201 * with unique huge page to page table relationships can define their own
7202 * version of this routine.
7204 unsigned long hugetlb_mask_last_page(struct hstate *h)
7206 unsigned long hp_size = huge_page_size(h);
7208 if (hp_size == PUD_SIZE)
7209 return P4D_SIZE - PUD_SIZE;
7210 else if (hp_size == PMD_SIZE)
7211 return PUD_SIZE - PMD_SIZE;
7218 /* See description above. Architectures can provide their own version. */
7219 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7221 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7222 if (huge_page_size(h) == PMD_SIZE)
7223 return PUD_SIZE - PMD_SIZE;
7228 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7231 * These functions are overwritable if your architecture needs its own
7234 int isolate_hugetlb(struct page *page, struct list_head *list)
7238 spin_lock_irq(&hugetlb_lock);
7239 if (!PageHeadHuge(page) ||
7240 !HPageMigratable(page) ||
7241 !get_page_unless_zero(page)) {
7245 ClearHPageMigratable(page);
7246 list_move_tail(&page->lru, list);
7248 spin_unlock_irq(&hugetlb_lock);
7252 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7257 spin_lock_irq(&hugetlb_lock);
7258 if (PageHeadHuge(page)) {
7260 if (HPageFreed(page))
7262 else if (HPageMigratable(page) || unpoison)
7263 ret = get_page_unless_zero(page);
7267 spin_unlock_irq(&hugetlb_lock);
7271 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7272 bool *migratable_cleared)
7276 spin_lock_irq(&hugetlb_lock);
7277 ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7278 spin_unlock_irq(&hugetlb_lock);
7282 void putback_active_hugepage(struct page *page)
7284 spin_lock_irq(&hugetlb_lock);
7285 SetHPageMigratable(page);
7286 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7287 spin_unlock_irq(&hugetlb_lock);
7291 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7293 struct hstate *h = folio_hstate(old_folio);
7295 hugetlb_cgroup_migrate(old_folio, new_folio);
7296 set_page_owner_migrate_reason(&new_folio->page, reason);
7299 * transfer temporary state of the new hugetlb folio. This is
7300 * reverse to other transitions because the newpage is going to
7301 * be final while the old one will be freed so it takes over
7302 * the temporary status.
7304 * Also note that we have to transfer the per-node surplus state
7305 * here as well otherwise the global surplus count will not match
7308 if (folio_test_hugetlb_temporary(new_folio)) {
7309 int old_nid = folio_nid(old_folio);
7310 int new_nid = folio_nid(new_folio);
7312 folio_set_hugetlb_temporary(old_folio);
7313 folio_clear_hugetlb_temporary(new_folio);
7317 * There is no need to transfer the per-node surplus state
7318 * when we do not cross the node.
7320 if (new_nid == old_nid)
7322 spin_lock_irq(&hugetlb_lock);
7323 if (h->surplus_huge_pages_node[old_nid]) {
7324 h->surplus_huge_pages_node[old_nid]--;
7325 h->surplus_huge_pages_node[new_nid]++;
7327 spin_unlock_irq(&hugetlb_lock);
7332 * This function will unconditionally remove all the shared pmd pgtable entries
7333 * within the specific vma for a hugetlbfs memory range.
7335 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7337 struct hstate *h = hstate_vma(vma);
7338 unsigned long sz = huge_page_size(h);
7339 struct mm_struct *mm = vma->vm_mm;
7340 struct mmu_notifier_range range;
7341 unsigned long address, start, end;
7345 if (!(vma->vm_flags & VM_MAYSHARE))
7348 start = ALIGN(vma->vm_start, PUD_SIZE);
7349 end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7354 flush_cache_range(vma, start, end);
7356 * No need to call adjust_range_if_pmd_sharing_possible(), because
7357 * we have already done the PUD_SIZE alignment.
7359 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7361 mmu_notifier_invalidate_range_start(&range);
7362 hugetlb_vma_lock_write(vma);
7363 i_mmap_lock_write(vma->vm_file->f_mapping);
7364 for (address = start; address < end; address += PUD_SIZE) {
7365 ptep = huge_pte_offset(mm, address, sz);
7368 ptl = huge_pte_lock(h, mm, ptep);
7369 huge_pmd_unshare(mm, vma, address, ptep);
7372 flush_hugetlb_tlb_range(vma, start, end);
7373 i_mmap_unlock_write(vma->vm_file->f_mapping);
7374 hugetlb_vma_unlock_write(vma);
7376 * No need to call mmu_notifier_invalidate_range(), see
7377 * Documentation/mm/mmu_notifier.rst.
7379 mmu_notifier_invalidate_range_end(&range);
7383 static bool cma_reserve_called __initdata;
7385 static int __init cmdline_parse_hugetlb_cma(char *p)
7392 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7395 if (s[count] == ':') {
7396 if (tmp >= MAX_NUMNODES)
7398 nid = array_index_nospec(tmp, MAX_NUMNODES);
7401 tmp = memparse(s, &s);
7402 hugetlb_cma_size_in_node[nid] = tmp;
7403 hugetlb_cma_size += tmp;
7406 * Skip the separator if have one, otherwise
7407 * break the parsing.
7414 hugetlb_cma_size = memparse(p, &p);
7422 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7424 void __init hugetlb_cma_reserve(int order)
7426 unsigned long size, reserved, per_node;
7427 bool node_specific_cma_alloc = false;
7430 cma_reserve_called = true;
7432 if (!hugetlb_cma_size)
7435 for (nid = 0; nid < MAX_NUMNODES; nid++) {
7436 if (hugetlb_cma_size_in_node[nid] == 0)
7439 if (!node_online(nid)) {
7440 pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7441 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7442 hugetlb_cma_size_in_node[nid] = 0;
7446 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7447 pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7448 nid, (PAGE_SIZE << order) / SZ_1M);
7449 hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7450 hugetlb_cma_size_in_node[nid] = 0;
7452 node_specific_cma_alloc = true;
7456 /* Validate the CMA size again in case some invalid nodes specified. */
7457 if (!hugetlb_cma_size)
7460 if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7461 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7462 (PAGE_SIZE << order) / SZ_1M);
7463 hugetlb_cma_size = 0;
7467 if (!node_specific_cma_alloc) {
7469 * If 3 GB area is requested on a machine with 4 numa nodes,
7470 * let's allocate 1 GB on first three nodes and ignore the last one.
7472 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7473 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7474 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7478 for_each_online_node(nid) {
7480 char name[CMA_MAX_NAME];
7482 if (node_specific_cma_alloc) {
7483 if (hugetlb_cma_size_in_node[nid] == 0)
7486 size = hugetlb_cma_size_in_node[nid];
7488 size = min(per_node, hugetlb_cma_size - reserved);
7491 size = round_up(size, PAGE_SIZE << order);
7493 snprintf(name, sizeof(name), "hugetlb%d", nid);
7495 * Note that 'order per bit' is based on smallest size that
7496 * may be returned to CMA allocator in the case of
7497 * huge page demotion.
7499 res = cma_declare_contiguous_nid(0, size, 0,
7500 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7502 &hugetlb_cma[nid], nid);
7504 pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7510 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7513 if (reserved >= hugetlb_cma_size)
7519 * hugetlb_cma_size is used to determine if allocations from
7520 * cma are possible. Set to zero if no cma regions are set up.
7522 hugetlb_cma_size = 0;
7525 static void __init hugetlb_cma_check(void)
7527 if (!hugetlb_cma_size || cma_reserve_called)
7530 pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7533 #endif /* CONFIG_CMA */