Merge tag 'x86_core_for_v6.2' of git://git.kernel.org/pub/scm/linux/kernel/git/tip/tip
[platform/kernel/linux-rpi.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33 #include <linux/migrate.h>
34 #include <linux/nospec.h>
35 #include <linux/delayacct.h>
36 #include <linux/memory.h>
37
38 #include <asm/page.h>
39 #include <asm/pgalloc.h>
40 #include <asm/tlb.h>
41
42 #include <linux/io.h>
43 #include <linux/hugetlb.h>
44 #include <linux/hugetlb_cgroup.h>
45 #include <linux/node.h>
46 #include <linux/page_owner.h>
47 #include "internal.h"
48 #include "hugetlb_vmemmap.h"
49
50 int hugetlb_max_hstate __read_mostly;
51 unsigned int default_hstate_idx;
52 struct hstate hstates[HUGE_MAX_HSTATE];
53
54 #ifdef CONFIG_CMA
55 static struct cma *hugetlb_cma[MAX_NUMNODES];
56 static unsigned long hugetlb_cma_size_in_node[MAX_NUMNODES] __initdata;
57 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
58 {
59         return cma_pages_valid(hugetlb_cma[folio_nid(folio)], &folio->page,
60                                 1 << order);
61 }
62 #else
63 static bool hugetlb_cma_folio(struct folio *folio, unsigned int order)
64 {
65         return false;
66 }
67 #endif
68 static unsigned long hugetlb_cma_size __initdata;
69
70 __initdata LIST_HEAD(huge_boot_pages);
71
72 /* for command line parsing */
73 static struct hstate * __initdata parsed_hstate;
74 static unsigned long __initdata default_hstate_max_huge_pages;
75 static bool __initdata parsed_valid_hugepagesz = true;
76 static bool __initdata parsed_default_hugepagesz;
77 static unsigned int default_hugepages_in_node[MAX_NUMNODES] __initdata;
78
79 /*
80  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
81  * free_huge_pages, and surplus_huge_pages.
82  */
83 DEFINE_SPINLOCK(hugetlb_lock);
84
85 /*
86  * Serializes faults on the same logical page.  This is used to
87  * prevent spurious OOMs when the hugepage pool is fully utilized.
88  */
89 static int num_fault_mutexes;
90 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
91
92 /* Forward declaration */
93 static int hugetlb_acct_memory(struct hstate *h, long delta);
94 static void hugetlb_vma_lock_free(struct vm_area_struct *vma);
95 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma);
96 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma);
97
98 static inline bool subpool_is_free(struct hugepage_subpool *spool)
99 {
100         if (spool->count)
101                 return false;
102         if (spool->max_hpages != -1)
103                 return spool->used_hpages == 0;
104         if (spool->min_hpages != -1)
105                 return spool->rsv_hpages == spool->min_hpages;
106
107         return true;
108 }
109
110 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool,
111                                                 unsigned long irq_flags)
112 {
113         spin_unlock_irqrestore(&spool->lock, irq_flags);
114
115         /* If no pages are used, and no other handles to the subpool
116          * remain, give up any reservations based on minimum size and
117          * free the subpool */
118         if (subpool_is_free(spool)) {
119                 if (spool->min_hpages != -1)
120                         hugetlb_acct_memory(spool->hstate,
121                                                 -spool->min_hpages);
122                 kfree(spool);
123         }
124 }
125
126 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
127                                                 long min_hpages)
128 {
129         struct hugepage_subpool *spool;
130
131         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
132         if (!spool)
133                 return NULL;
134
135         spin_lock_init(&spool->lock);
136         spool->count = 1;
137         spool->max_hpages = max_hpages;
138         spool->hstate = h;
139         spool->min_hpages = min_hpages;
140
141         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
142                 kfree(spool);
143                 return NULL;
144         }
145         spool->rsv_hpages = min_hpages;
146
147         return spool;
148 }
149
150 void hugepage_put_subpool(struct hugepage_subpool *spool)
151 {
152         unsigned long flags;
153
154         spin_lock_irqsave(&spool->lock, flags);
155         BUG_ON(!spool->count);
156         spool->count--;
157         unlock_or_release_subpool(spool, flags);
158 }
159
160 /*
161  * Subpool accounting for allocating and reserving pages.
162  * Return -ENOMEM if there are not enough resources to satisfy the
163  * request.  Otherwise, return the number of pages by which the
164  * global pools must be adjusted (upward).  The returned value may
165  * only be different than the passed value (delta) in the case where
166  * a subpool minimum size must be maintained.
167  */
168 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
169                                       long delta)
170 {
171         long ret = delta;
172
173         if (!spool)
174                 return ret;
175
176         spin_lock_irq(&spool->lock);
177
178         if (spool->max_hpages != -1) {          /* maximum size accounting */
179                 if ((spool->used_hpages + delta) <= spool->max_hpages)
180                         spool->used_hpages += delta;
181                 else {
182                         ret = -ENOMEM;
183                         goto unlock_ret;
184                 }
185         }
186
187         /* minimum size accounting */
188         if (spool->min_hpages != -1 && spool->rsv_hpages) {
189                 if (delta > spool->rsv_hpages) {
190                         /*
191                          * Asking for more reserves than those already taken on
192                          * behalf of subpool.  Return difference.
193                          */
194                         ret = delta - spool->rsv_hpages;
195                         spool->rsv_hpages = 0;
196                 } else {
197                         ret = 0;        /* reserves already accounted for */
198                         spool->rsv_hpages -= delta;
199                 }
200         }
201
202 unlock_ret:
203         spin_unlock_irq(&spool->lock);
204         return ret;
205 }
206
207 /*
208  * Subpool accounting for freeing and unreserving pages.
209  * Return the number of global page reservations that must be dropped.
210  * The return value may only be different than the passed value (delta)
211  * in the case where a subpool minimum size must be maintained.
212  */
213 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
214                                        long delta)
215 {
216         long ret = delta;
217         unsigned long flags;
218
219         if (!spool)
220                 return delta;
221
222         spin_lock_irqsave(&spool->lock, flags);
223
224         if (spool->max_hpages != -1)            /* maximum size accounting */
225                 spool->used_hpages -= delta;
226
227          /* minimum size accounting */
228         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
229                 if (spool->rsv_hpages + delta <= spool->min_hpages)
230                         ret = 0;
231                 else
232                         ret = spool->rsv_hpages + delta - spool->min_hpages;
233
234                 spool->rsv_hpages += delta;
235                 if (spool->rsv_hpages > spool->min_hpages)
236                         spool->rsv_hpages = spool->min_hpages;
237         }
238
239         /*
240          * If hugetlbfs_put_super couldn't free spool due to an outstanding
241          * quota reference, free it now.
242          */
243         unlock_or_release_subpool(spool, flags);
244
245         return ret;
246 }
247
248 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
249 {
250         return HUGETLBFS_SB(inode->i_sb)->spool;
251 }
252
253 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
254 {
255         return subpool_inode(file_inode(vma->vm_file));
256 }
257
258 /* Helper that removes a struct file_region from the resv_map cache and returns
259  * it for use.
260  */
261 static struct file_region *
262 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
263 {
264         struct file_region *nrg;
265
266         VM_BUG_ON(resv->region_cache_count <= 0);
267
268         resv->region_cache_count--;
269         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
270         list_del(&nrg->link);
271
272         nrg->from = from;
273         nrg->to = to;
274
275         return nrg;
276 }
277
278 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
279                                               struct file_region *rg)
280 {
281 #ifdef CONFIG_CGROUP_HUGETLB
282         nrg->reservation_counter = rg->reservation_counter;
283         nrg->css = rg->css;
284         if (rg->css)
285                 css_get(rg->css);
286 #endif
287 }
288
289 /* Helper that records hugetlb_cgroup uncharge info. */
290 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
291                                                 struct hstate *h,
292                                                 struct resv_map *resv,
293                                                 struct file_region *nrg)
294 {
295 #ifdef CONFIG_CGROUP_HUGETLB
296         if (h_cg) {
297                 nrg->reservation_counter =
298                         &h_cg->rsvd_hugepage[hstate_index(h)];
299                 nrg->css = &h_cg->css;
300                 /*
301                  * The caller will hold exactly one h_cg->css reference for the
302                  * whole contiguous reservation region. But this area might be
303                  * scattered when there are already some file_regions reside in
304                  * it. As a result, many file_regions may share only one css
305                  * reference. In order to ensure that one file_region must hold
306                  * exactly one h_cg->css reference, we should do css_get for
307                  * each file_region and leave the reference held by caller
308                  * untouched.
309                  */
310                 css_get(&h_cg->css);
311                 if (!resv->pages_per_hpage)
312                         resv->pages_per_hpage = pages_per_huge_page(h);
313                 /* pages_per_hpage should be the same for all entries in
314                  * a resv_map.
315                  */
316                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
317         } else {
318                 nrg->reservation_counter = NULL;
319                 nrg->css = NULL;
320         }
321 #endif
322 }
323
324 static void put_uncharge_info(struct file_region *rg)
325 {
326 #ifdef CONFIG_CGROUP_HUGETLB
327         if (rg->css)
328                 css_put(rg->css);
329 #endif
330 }
331
332 static bool has_same_uncharge_info(struct file_region *rg,
333                                    struct file_region *org)
334 {
335 #ifdef CONFIG_CGROUP_HUGETLB
336         return rg->reservation_counter == org->reservation_counter &&
337                rg->css == org->css;
338
339 #else
340         return true;
341 #endif
342 }
343
344 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
345 {
346         struct file_region *nrg, *prg;
347
348         prg = list_prev_entry(rg, link);
349         if (&prg->link != &resv->regions && prg->to == rg->from &&
350             has_same_uncharge_info(prg, rg)) {
351                 prg->to = rg->to;
352
353                 list_del(&rg->link);
354                 put_uncharge_info(rg);
355                 kfree(rg);
356
357                 rg = prg;
358         }
359
360         nrg = list_next_entry(rg, link);
361         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
362             has_same_uncharge_info(nrg, rg)) {
363                 nrg->from = rg->from;
364
365                 list_del(&rg->link);
366                 put_uncharge_info(rg);
367                 kfree(rg);
368         }
369 }
370
371 static inline long
372 hugetlb_resv_map_add(struct resv_map *map, struct list_head *rg, long from,
373                      long to, struct hstate *h, struct hugetlb_cgroup *cg,
374                      long *regions_needed)
375 {
376         struct file_region *nrg;
377
378         if (!regions_needed) {
379                 nrg = get_file_region_entry_from_cache(map, from, to);
380                 record_hugetlb_cgroup_uncharge_info(cg, h, map, nrg);
381                 list_add(&nrg->link, rg);
382                 coalesce_file_region(map, nrg);
383         } else
384                 *regions_needed += 1;
385
386         return to - from;
387 }
388
389 /*
390  * Must be called with resv->lock held.
391  *
392  * Calling this with regions_needed != NULL will count the number of pages
393  * to be added but will not modify the linked list. And regions_needed will
394  * indicate the number of file_regions needed in the cache to carry out to add
395  * the regions for this range.
396  */
397 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
398                                      struct hugetlb_cgroup *h_cg,
399                                      struct hstate *h, long *regions_needed)
400 {
401         long add = 0;
402         struct list_head *head = &resv->regions;
403         long last_accounted_offset = f;
404         struct file_region *iter, *trg = NULL;
405         struct list_head *rg = NULL;
406
407         if (regions_needed)
408                 *regions_needed = 0;
409
410         /* In this loop, we essentially handle an entry for the range
411          * [last_accounted_offset, iter->from), at every iteration, with some
412          * bounds checking.
413          */
414         list_for_each_entry_safe(iter, trg, head, link) {
415                 /* Skip irrelevant regions that start before our range. */
416                 if (iter->from < f) {
417                         /* If this region ends after the last accounted offset,
418                          * then we need to update last_accounted_offset.
419                          */
420                         if (iter->to > last_accounted_offset)
421                                 last_accounted_offset = iter->to;
422                         continue;
423                 }
424
425                 /* When we find a region that starts beyond our range, we've
426                  * finished.
427                  */
428                 if (iter->from >= t) {
429                         rg = iter->link.prev;
430                         break;
431                 }
432
433                 /* Add an entry for last_accounted_offset -> iter->from, and
434                  * update last_accounted_offset.
435                  */
436                 if (iter->from > last_accounted_offset)
437                         add += hugetlb_resv_map_add(resv, iter->link.prev,
438                                                     last_accounted_offset,
439                                                     iter->from, h, h_cg,
440                                                     regions_needed);
441
442                 last_accounted_offset = iter->to;
443         }
444
445         /* Handle the case where our range extends beyond
446          * last_accounted_offset.
447          */
448         if (!rg)
449                 rg = head->prev;
450         if (last_accounted_offset < t)
451                 add += hugetlb_resv_map_add(resv, rg, last_accounted_offset,
452                                             t, h, h_cg, regions_needed);
453
454         return add;
455 }
456
457 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
458  */
459 static int allocate_file_region_entries(struct resv_map *resv,
460                                         int regions_needed)
461         __must_hold(&resv->lock)
462 {
463         LIST_HEAD(allocated_regions);
464         int to_allocate = 0, i = 0;
465         struct file_region *trg = NULL, *rg = NULL;
466
467         VM_BUG_ON(regions_needed < 0);
468
469         /*
470          * Check for sufficient descriptors in the cache to accommodate
471          * the number of in progress add operations plus regions_needed.
472          *
473          * This is a while loop because when we drop the lock, some other call
474          * to region_add or region_del may have consumed some region_entries,
475          * so we keep looping here until we finally have enough entries for
476          * (adds_in_progress + regions_needed).
477          */
478         while (resv->region_cache_count <
479                (resv->adds_in_progress + regions_needed)) {
480                 to_allocate = resv->adds_in_progress + regions_needed -
481                               resv->region_cache_count;
482
483                 /* At this point, we should have enough entries in the cache
484                  * for all the existing adds_in_progress. We should only be
485                  * needing to allocate for regions_needed.
486                  */
487                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
488
489                 spin_unlock(&resv->lock);
490                 for (i = 0; i < to_allocate; i++) {
491                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
492                         if (!trg)
493                                 goto out_of_memory;
494                         list_add(&trg->link, &allocated_regions);
495                 }
496
497                 spin_lock(&resv->lock);
498
499                 list_splice(&allocated_regions, &resv->region_cache);
500                 resv->region_cache_count += to_allocate;
501         }
502
503         return 0;
504
505 out_of_memory:
506         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
507                 list_del(&rg->link);
508                 kfree(rg);
509         }
510         return -ENOMEM;
511 }
512
513 /*
514  * Add the huge page range represented by [f, t) to the reserve
515  * map.  Regions will be taken from the cache to fill in this range.
516  * Sufficient regions should exist in the cache due to the previous
517  * call to region_chg with the same range, but in some cases the cache will not
518  * have sufficient entries due to races with other code doing region_add or
519  * region_del.  The extra needed entries will be allocated.
520  *
521  * regions_needed is the out value provided by a previous call to region_chg.
522  *
523  * Return the number of new huge pages added to the map.  This number is greater
524  * than or equal to zero.  If file_region entries needed to be allocated for
525  * this operation and we were not able to allocate, it returns -ENOMEM.
526  * region_add of regions of length 1 never allocate file_regions and cannot
527  * fail; region_chg will always allocate at least 1 entry and a region_add for
528  * 1 page will only require at most 1 entry.
529  */
530 static long region_add(struct resv_map *resv, long f, long t,
531                        long in_regions_needed, struct hstate *h,
532                        struct hugetlb_cgroup *h_cg)
533 {
534         long add = 0, actual_regions_needed = 0;
535
536         spin_lock(&resv->lock);
537 retry:
538
539         /* Count how many regions are actually needed to execute this add. */
540         add_reservation_in_range(resv, f, t, NULL, NULL,
541                                  &actual_regions_needed);
542
543         /*
544          * Check for sufficient descriptors in the cache to accommodate
545          * this add operation. Note that actual_regions_needed may be greater
546          * than in_regions_needed, as the resv_map may have been modified since
547          * the region_chg call. In this case, we need to make sure that we
548          * allocate extra entries, such that we have enough for all the
549          * existing adds_in_progress, plus the excess needed for this
550          * operation.
551          */
552         if (actual_regions_needed > in_regions_needed &&
553             resv->region_cache_count <
554                     resv->adds_in_progress +
555                             (actual_regions_needed - in_regions_needed)) {
556                 /* region_add operation of range 1 should never need to
557                  * allocate file_region entries.
558                  */
559                 VM_BUG_ON(t - f <= 1);
560
561                 if (allocate_file_region_entries(
562                             resv, actual_regions_needed - in_regions_needed)) {
563                         return -ENOMEM;
564                 }
565
566                 goto retry;
567         }
568
569         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
570
571         resv->adds_in_progress -= in_regions_needed;
572
573         spin_unlock(&resv->lock);
574         return add;
575 }
576
577 /*
578  * Examine the existing reserve map and determine how many
579  * huge pages in the specified range [f, t) are NOT currently
580  * represented.  This routine is called before a subsequent
581  * call to region_add that will actually modify the reserve
582  * map to add the specified range [f, t).  region_chg does
583  * not change the number of huge pages represented by the
584  * map.  A number of new file_region structures is added to the cache as a
585  * placeholder, for the subsequent region_add call to use. At least 1
586  * file_region structure is added.
587  *
588  * out_regions_needed is the number of regions added to the
589  * resv->adds_in_progress.  This value needs to be provided to a follow up call
590  * to region_add or region_abort for proper accounting.
591  *
592  * Returns the number of huge pages that need to be added to the existing
593  * reservation map for the range [f, t).  This number is greater or equal to
594  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
595  * is needed and can not be allocated.
596  */
597 static long region_chg(struct resv_map *resv, long f, long t,
598                        long *out_regions_needed)
599 {
600         long chg = 0;
601
602         spin_lock(&resv->lock);
603
604         /* Count how many hugepages in this range are NOT represented. */
605         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
606                                        out_regions_needed);
607
608         if (*out_regions_needed == 0)
609                 *out_regions_needed = 1;
610
611         if (allocate_file_region_entries(resv, *out_regions_needed))
612                 return -ENOMEM;
613
614         resv->adds_in_progress += *out_regions_needed;
615
616         spin_unlock(&resv->lock);
617         return chg;
618 }
619
620 /*
621  * Abort the in progress add operation.  The adds_in_progress field
622  * of the resv_map keeps track of the operations in progress between
623  * calls to region_chg and region_add.  Operations are sometimes
624  * aborted after the call to region_chg.  In such cases, region_abort
625  * is called to decrement the adds_in_progress counter. regions_needed
626  * is the value returned by the region_chg call, it is used to decrement
627  * the adds_in_progress counter.
628  *
629  * NOTE: The range arguments [f, t) are not needed or used in this
630  * routine.  They are kept to make reading the calling code easier as
631  * arguments will match the associated region_chg call.
632  */
633 static void region_abort(struct resv_map *resv, long f, long t,
634                          long regions_needed)
635 {
636         spin_lock(&resv->lock);
637         VM_BUG_ON(!resv->region_cache_count);
638         resv->adds_in_progress -= regions_needed;
639         spin_unlock(&resv->lock);
640 }
641
642 /*
643  * Delete the specified range [f, t) from the reserve map.  If the
644  * t parameter is LONG_MAX, this indicates that ALL regions after f
645  * should be deleted.  Locate the regions which intersect [f, t)
646  * and either trim, delete or split the existing regions.
647  *
648  * Returns the number of huge pages deleted from the reserve map.
649  * In the normal case, the return value is zero or more.  In the
650  * case where a region must be split, a new region descriptor must
651  * be allocated.  If the allocation fails, -ENOMEM will be returned.
652  * NOTE: If the parameter t == LONG_MAX, then we will never split
653  * a region and possibly return -ENOMEM.  Callers specifying
654  * t == LONG_MAX do not need to check for -ENOMEM error.
655  */
656 static long region_del(struct resv_map *resv, long f, long t)
657 {
658         struct list_head *head = &resv->regions;
659         struct file_region *rg, *trg;
660         struct file_region *nrg = NULL;
661         long del = 0;
662
663 retry:
664         spin_lock(&resv->lock);
665         list_for_each_entry_safe(rg, trg, head, link) {
666                 /*
667                  * Skip regions before the range to be deleted.  file_region
668                  * ranges are normally of the form [from, to).  However, there
669                  * may be a "placeholder" entry in the map which is of the form
670                  * (from, to) with from == to.  Check for placeholder entries
671                  * at the beginning of the range to be deleted.
672                  */
673                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
674                         continue;
675
676                 if (rg->from >= t)
677                         break;
678
679                 if (f > rg->from && t < rg->to) { /* Must split region */
680                         /*
681                          * Check for an entry in the cache before dropping
682                          * lock and attempting allocation.
683                          */
684                         if (!nrg &&
685                             resv->region_cache_count > resv->adds_in_progress) {
686                                 nrg = list_first_entry(&resv->region_cache,
687                                                         struct file_region,
688                                                         link);
689                                 list_del(&nrg->link);
690                                 resv->region_cache_count--;
691                         }
692
693                         if (!nrg) {
694                                 spin_unlock(&resv->lock);
695                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
696                                 if (!nrg)
697                                         return -ENOMEM;
698                                 goto retry;
699                         }
700
701                         del += t - f;
702                         hugetlb_cgroup_uncharge_file_region(
703                                 resv, rg, t - f, false);
704
705                         /* New entry for end of split region */
706                         nrg->from = t;
707                         nrg->to = rg->to;
708
709                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
710
711                         INIT_LIST_HEAD(&nrg->link);
712
713                         /* Original entry is trimmed */
714                         rg->to = f;
715
716                         list_add(&nrg->link, &rg->link);
717                         nrg = NULL;
718                         break;
719                 }
720
721                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
722                         del += rg->to - rg->from;
723                         hugetlb_cgroup_uncharge_file_region(resv, rg,
724                                                             rg->to - rg->from, true);
725                         list_del(&rg->link);
726                         kfree(rg);
727                         continue;
728                 }
729
730                 if (f <= rg->from) {    /* Trim beginning of region */
731                         hugetlb_cgroup_uncharge_file_region(resv, rg,
732                                                             t - rg->from, false);
733
734                         del += t - rg->from;
735                         rg->from = t;
736                 } else {                /* Trim end of region */
737                         hugetlb_cgroup_uncharge_file_region(resv, rg,
738                                                             rg->to - f, false);
739
740                         del += rg->to - f;
741                         rg->to = f;
742                 }
743         }
744
745         spin_unlock(&resv->lock);
746         kfree(nrg);
747         return del;
748 }
749
750 /*
751  * A rare out of memory error was encountered which prevented removal of
752  * the reserve map region for a page.  The huge page itself was free'ed
753  * and removed from the page cache.  This routine will adjust the subpool
754  * usage count, and the global reserve count if needed.  By incrementing
755  * these counts, the reserve map entry which could not be deleted will
756  * appear as a "reserved" entry instead of simply dangling with incorrect
757  * counts.
758  */
759 void hugetlb_fix_reserve_counts(struct inode *inode)
760 {
761         struct hugepage_subpool *spool = subpool_inode(inode);
762         long rsv_adjust;
763         bool reserved = false;
764
765         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
766         if (rsv_adjust > 0) {
767                 struct hstate *h = hstate_inode(inode);
768
769                 if (!hugetlb_acct_memory(h, 1))
770                         reserved = true;
771         } else if (!rsv_adjust) {
772                 reserved = true;
773         }
774
775         if (!reserved)
776                 pr_warn("hugetlb: Huge Page Reserved count may go negative.\n");
777 }
778
779 /*
780  * Count and return the number of huge pages in the reserve map
781  * that intersect with the range [f, t).
782  */
783 static long region_count(struct resv_map *resv, long f, long t)
784 {
785         struct list_head *head = &resv->regions;
786         struct file_region *rg;
787         long chg = 0;
788
789         spin_lock(&resv->lock);
790         /* Locate each segment we overlap with, and count that overlap. */
791         list_for_each_entry(rg, head, link) {
792                 long seg_from;
793                 long seg_to;
794
795                 if (rg->to <= f)
796                         continue;
797                 if (rg->from >= t)
798                         break;
799
800                 seg_from = max(rg->from, f);
801                 seg_to = min(rg->to, t);
802
803                 chg += seg_to - seg_from;
804         }
805         spin_unlock(&resv->lock);
806
807         return chg;
808 }
809
810 /*
811  * Convert the address within this vma to the page offset within
812  * the mapping, in pagecache page units; huge pages here.
813  */
814 static pgoff_t vma_hugecache_offset(struct hstate *h,
815                         struct vm_area_struct *vma, unsigned long address)
816 {
817         return ((address - vma->vm_start) >> huge_page_shift(h)) +
818                         (vma->vm_pgoff >> huge_page_order(h));
819 }
820
821 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
822                                      unsigned long address)
823 {
824         return vma_hugecache_offset(hstate_vma(vma), vma, address);
825 }
826 EXPORT_SYMBOL_GPL(linear_hugepage_index);
827
828 /*
829  * Return the size of the pages allocated when backing a VMA. In the majority
830  * cases this will be same size as used by the page table entries.
831  */
832 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
833 {
834         if (vma->vm_ops && vma->vm_ops->pagesize)
835                 return vma->vm_ops->pagesize(vma);
836         return PAGE_SIZE;
837 }
838 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
839
840 /*
841  * Return the page size being used by the MMU to back a VMA. In the majority
842  * of cases, the page size used by the kernel matches the MMU size. On
843  * architectures where it differs, an architecture-specific 'strong'
844  * version of this symbol is required.
845  */
846 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
847 {
848         return vma_kernel_pagesize(vma);
849 }
850
851 /*
852  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
853  * bits of the reservation map pointer, which are always clear due to
854  * alignment.
855  */
856 #define HPAGE_RESV_OWNER    (1UL << 0)
857 #define HPAGE_RESV_UNMAPPED (1UL << 1)
858 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
859
860 /*
861  * These helpers are used to track how many pages are reserved for
862  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
863  * is guaranteed to have their future faults succeed.
864  *
865  * With the exception of hugetlb_dup_vma_private() which is called at fork(),
866  * the reserve counters are updated with the hugetlb_lock held. It is safe
867  * to reset the VMA at fork() time as it is not in use yet and there is no
868  * chance of the global counters getting corrupted as a result of the values.
869  *
870  * The private mapping reservation is represented in a subtly different
871  * manner to a shared mapping.  A shared mapping has a region map associated
872  * with the underlying file, this region map represents the backing file
873  * pages which have ever had a reservation assigned which this persists even
874  * after the page is instantiated.  A private mapping has a region map
875  * associated with the original mmap which is attached to all VMAs which
876  * reference it, this region map represents those offsets which have consumed
877  * reservation ie. where pages have been instantiated.
878  */
879 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
880 {
881         return (unsigned long)vma->vm_private_data;
882 }
883
884 static void set_vma_private_data(struct vm_area_struct *vma,
885                                                         unsigned long value)
886 {
887         vma->vm_private_data = (void *)value;
888 }
889
890 static void
891 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
892                                           struct hugetlb_cgroup *h_cg,
893                                           struct hstate *h)
894 {
895 #ifdef CONFIG_CGROUP_HUGETLB
896         if (!h_cg || !h) {
897                 resv_map->reservation_counter = NULL;
898                 resv_map->pages_per_hpage = 0;
899                 resv_map->css = NULL;
900         } else {
901                 resv_map->reservation_counter =
902                         &h_cg->rsvd_hugepage[hstate_index(h)];
903                 resv_map->pages_per_hpage = pages_per_huge_page(h);
904                 resv_map->css = &h_cg->css;
905         }
906 #endif
907 }
908
909 struct resv_map *resv_map_alloc(void)
910 {
911         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
912         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
913
914         if (!resv_map || !rg) {
915                 kfree(resv_map);
916                 kfree(rg);
917                 return NULL;
918         }
919
920         kref_init(&resv_map->refs);
921         spin_lock_init(&resv_map->lock);
922         INIT_LIST_HEAD(&resv_map->regions);
923
924         resv_map->adds_in_progress = 0;
925         /*
926          * Initialize these to 0. On shared mappings, 0's here indicate these
927          * fields don't do cgroup accounting. On private mappings, these will be
928          * re-initialized to the proper values, to indicate that hugetlb cgroup
929          * reservations are to be un-charged from here.
930          */
931         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
932
933         INIT_LIST_HEAD(&resv_map->region_cache);
934         list_add(&rg->link, &resv_map->region_cache);
935         resv_map->region_cache_count = 1;
936
937         return resv_map;
938 }
939
940 void resv_map_release(struct kref *ref)
941 {
942         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
943         struct list_head *head = &resv_map->region_cache;
944         struct file_region *rg, *trg;
945
946         /* Clear out any active regions before we release the map. */
947         region_del(resv_map, 0, LONG_MAX);
948
949         /* ... and any entries left in the cache */
950         list_for_each_entry_safe(rg, trg, head, link) {
951                 list_del(&rg->link);
952                 kfree(rg);
953         }
954
955         VM_BUG_ON(resv_map->adds_in_progress);
956
957         kfree(resv_map);
958 }
959
960 static inline struct resv_map *inode_resv_map(struct inode *inode)
961 {
962         /*
963          * At inode evict time, i_mapping may not point to the original
964          * address space within the inode.  This original address space
965          * contains the pointer to the resv_map.  So, always use the
966          * address space embedded within the inode.
967          * The VERY common case is inode->mapping == &inode->i_data but,
968          * this may not be true for device special inodes.
969          */
970         return (struct resv_map *)(&inode->i_data)->private_data;
971 }
972
973 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
974 {
975         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
976         if (vma->vm_flags & VM_MAYSHARE) {
977                 struct address_space *mapping = vma->vm_file->f_mapping;
978                 struct inode *inode = mapping->host;
979
980                 return inode_resv_map(inode);
981
982         } else {
983                 return (struct resv_map *)(get_vma_private_data(vma) &
984                                                         ~HPAGE_RESV_MASK);
985         }
986 }
987
988 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
989 {
990         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
991         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
992
993         set_vma_private_data(vma, (get_vma_private_data(vma) &
994                                 HPAGE_RESV_MASK) | (unsigned long)map);
995 }
996
997 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
998 {
999         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1000         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
1001
1002         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
1003 }
1004
1005 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
1006 {
1007         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1008
1009         return (get_vma_private_data(vma) & flag) != 0;
1010 }
1011
1012 void hugetlb_dup_vma_private(struct vm_area_struct *vma)
1013 {
1014         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
1015         /*
1016          * Clear vm_private_data
1017          * - For shared mappings this is a per-vma semaphore that may be
1018          *   allocated in a subsequent call to hugetlb_vm_op_open.
1019          *   Before clearing, make sure pointer is not associated with vma
1020          *   as this will leak the structure.  This is the case when called
1021          *   via clear_vma_resv_huge_pages() and hugetlb_vm_op_open has already
1022          *   been called to allocate a new structure.
1023          * - For MAP_PRIVATE mappings, this is the reserve map which does
1024          *   not apply to children.  Faults generated by the children are
1025          *   not guaranteed to succeed, even if read-only.
1026          */
1027         if (vma->vm_flags & VM_MAYSHARE) {
1028                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
1029
1030                 if (vma_lock && vma_lock->vma != vma)
1031                         vma->vm_private_data = NULL;
1032         } else
1033                 vma->vm_private_data = NULL;
1034 }
1035
1036 /*
1037  * Reset and decrement one ref on hugepage private reservation.
1038  * Called with mm->mmap_sem writer semaphore held.
1039  * This function should be only used by move_vma() and operate on
1040  * same sized vma. It should never come here with last ref on the
1041  * reservation.
1042  */
1043 void clear_vma_resv_huge_pages(struct vm_area_struct *vma)
1044 {
1045         /*
1046          * Clear the old hugetlb private page reservation.
1047          * It has already been transferred to new_vma.
1048          *
1049          * During a mremap() operation of a hugetlb vma we call move_vma()
1050          * which copies vma into new_vma and unmaps vma. After the copy
1051          * operation both new_vma and vma share a reference to the resv_map
1052          * struct, and at that point vma is about to be unmapped. We don't
1053          * want to return the reservation to the pool at unmap of vma because
1054          * the reservation still lives on in new_vma, so simply decrement the
1055          * ref here and remove the resv_map reference from this vma.
1056          */
1057         struct resv_map *reservations = vma_resv_map(vma);
1058
1059         if (reservations && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1060                 resv_map_put_hugetlb_cgroup_uncharge_info(reservations);
1061                 kref_put(&reservations->refs, resv_map_release);
1062         }
1063
1064         hugetlb_dup_vma_private(vma);
1065 }
1066
1067 /* Returns true if the VMA has associated reserve pages */
1068 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
1069 {
1070         if (vma->vm_flags & VM_NORESERVE) {
1071                 /*
1072                  * This address is already reserved by other process(chg == 0),
1073                  * so, we should decrement reserved count. Without decrementing,
1074                  * reserve count remains after releasing inode, because this
1075                  * allocated page will go into page cache and is regarded as
1076                  * coming from reserved pool in releasing step.  Currently, we
1077                  * don't have any other solution to deal with this situation
1078                  * properly, so add work-around here.
1079                  */
1080                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
1081                         return true;
1082                 else
1083                         return false;
1084         }
1085
1086         /* Shared mappings always use reserves */
1087         if (vma->vm_flags & VM_MAYSHARE) {
1088                 /*
1089                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
1090                  * be a region map for all pages.  The only situation where
1091                  * there is no region map is if a hole was punched via
1092                  * fallocate.  In this case, there really are no reserves to
1093                  * use.  This situation is indicated if chg != 0.
1094                  */
1095                 if (chg)
1096                         return false;
1097                 else
1098                         return true;
1099         }
1100
1101         /*
1102          * Only the process that called mmap() has reserves for
1103          * private mappings.
1104          */
1105         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1106                 /*
1107                  * Like the shared case above, a hole punch or truncate
1108                  * could have been performed on the private mapping.
1109                  * Examine the value of chg to determine if reserves
1110                  * actually exist or were previously consumed.
1111                  * Very Subtle - The value of chg comes from a previous
1112                  * call to vma_needs_reserves().  The reserve map for
1113                  * private mappings has different (opposite) semantics
1114                  * than that of shared mappings.  vma_needs_reserves()
1115                  * has already taken this difference in semantics into
1116                  * account.  Therefore, the meaning of chg is the same
1117                  * as in the shared case above.  Code could easily be
1118                  * combined, but keeping it separate draws attention to
1119                  * subtle differences.
1120                  */
1121                 if (chg)
1122                         return false;
1123                 else
1124                         return true;
1125         }
1126
1127         return false;
1128 }
1129
1130 static void enqueue_hugetlb_folio(struct hstate *h, struct folio *folio)
1131 {
1132         int nid = folio_nid(folio);
1133
1134         lockdep_assert_held(&hugetlb_lock);
1135         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1136
1137         list_move(&folio->lru, &h->hugepage_freelists[nid]);
1138         h->free_huge_pages++;
1139         h->free_huge_pages_node[nid]++;
1140         folio_set_hugetlb_freed(folio);
1141 }
1142
1143 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1144 {
1145         struct page *page;
1146         bool pin = !!(current->flags & PF_MEMALLOC_PIN);
1147
1148         lockdep_assert_held(&hugetlb_lock);
1149         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1150                 if (pin && !is_longterm_pinnable_page(page))
1151                         continue;
1152
1153                 if (PageHWPoison(page))
1154                         continue;
1155
1156                 list_move(&page->lru, &h->hugepage_activelist);
1157                 set_page_refcounted(page);
1158                 ClearHPageFreed(page);
1159                 h->free_huge_pages--;
1160                 h->free_huge_pages_node[nid]--;
1161                 return page;
1162         }
1163
1164         return NULL;
1165 }
1166
1167 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1168                 nodemask_t *nmask)
1169 {
1170         unsigned int cpuset_mems_cookie;
1171         struct zonelist *zonelist;
1172         struct zone *zone;
1173         struct zoneref *z;
1174         int node = NUMA_NO_NODE;
1175
1176         zonelist = node_zonelist(nid, gfp_mask);
1177
1178 retry_cpuset:
1179         cpuset_mems_cookie = read_mems_allowed_begin();
1180         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1181                 struct page *page;
1182
1183                 if (!cpuset_zone_allowed(zone, gfp_mask))
1184                         continue;
1185                 /*
1186                  * no need to ask again on the same node. Pool is node rather than
1187                  * zone aware
1188                  */
1189                 if (zone_to_nid(zone) == node)
1190                         continue;
1191                 node = zone_to_nid(zone);
1192
1193                 page = dequeue_huge_page_node_exact(h, node);
1194                 if (page)
1195                         return page;
1196         }
1197         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1198                 goto retry_cpuset;
1199
1200         return NULL;
1201 }
1202
1203 static unsigned long available_huge_pages(struct hstate *h)
1204 {
1205         return h->free_huge_pages - h->resv_huge_pages;
1206 }
1207
1208 static struct page *dequeue_huge_page_vma(struct hstate *h,
1209                                 struct vm_area_struct *vma,
1210                                 unsigned long address, int avoid_reserve,
1211                                 long chg)
1212 {
1213         struct page *page = NULL;
1214         struct mempolicy *mpol;
1215         gfp_t gfp_mask;
1216         nodemask_t *nodemask;
1217         int nid;
1218
1219         /*
1220          * A child process with MAP_PRIVATE mappings created by their parent
1221          * have no page reserves. This check ensures that reservations are
1222          * not "stolen". The child may still get SIGKILLed
1223          */
1224         if (!vma_has_reserves(vma, chg) && !available_huge_pages(h))
1225                 goto err;
1226
1227         /* If reserves cannot be used, ensure enough pages are in the pool */
1228         if (avoid_reserve && !available_huge_pages(h))
1229                 goto err;
1230
1231         gfp_mask = htlb_alloc_mask(h);
1232         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1233
1234         if (mpol_is_preferred_many(mpol)) {
1235                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1236
1237                 /* Fallback to all nodes if page==NULL */
1238                 nodemask = NULL;
1239         }
1240
1241         if (!page)
1242                 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1243
1244         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1245                 SetHPageRestoreReserve(page);
1246                 h->resv_huge_pages--;
1247         }
1248
1249         mpol_cond_put(mpol);
1250         return page;
1251
1252 err:
1253         return NULL;
1254 }
1255
1256 /*
1257  * common helper functions for hstate_next_node_to_{alloc|free}.
1258  * We may have allocated or freed a huge page based on a different
1259  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1260  * be outside of *nodes_allowed.  Ensure that we use an allowed
1261  * node for alloc or free.
1262  */
1263 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1264 {
1265         nid = next_node_in(nid, *nodes_allowed);
1266         VM_BUG_ON(nid >= MAX_NUMNODES);
1267
1268         return nid;
1269 }
1270
1271 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1272 {
1273         if (!node_isset(nid, *nodes_allowed))
1274                 nid = next_node_allowed(nid, nodes_allowed);
1275         return nid;
1276 }
1277
1278 /*
1279  * returns the previously saved node ["this node"] from which to
1280  * allocate a persistent huge page for the pool and advance the
1281  * next node from which to allocate, handling wrap at end of node
1282  * mask.
1283  */
1284 static int hstate_next_node_to_alloc(struct hstate *h,
1285                                         nodemask_t *nodes_allowed)
1286 {
1287         int nid;
1288
1289         VM_BUG_ON(!nodes_allowed);
1290
1291         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1292         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1293
1294         return nid;
1295 }
1296
1297 /*
1298  * helper for remove_pool_huge_page() - return the previously saved
1299  * node ["this node"] from which to free a huge page.  Advance the
1300  * next node id whether or not we find a free huge page to free so
1301  * that the next attempt to free addresses the next node.
1302  */
1303 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1304 {
1305         int nid;
1306
1307         VM_BUG_ON(!nodes_allowed);
1308
1309         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1310         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1311
1312         return nid;
1313 }
1314
1315 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1316         for (nr_nodes = nodes_weight(*mask);                            \
1317                 nr_nodes > 0 &&                                         \
1318                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1319                 nr_nodes--)
1320
1321 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1322         for (nr_nodes = nodes_weight(*mask);                            \
1323                 nr_nodes > 0 &&                                         \
1324                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1325                 nr_nodes--)
1326
1327 /* used to demote non-gigantic_huge pages as well */
1328 static void __destroy_compound_gigantic_folio(struct folio *folio,
1329                                         unsigned int order, bool demote)
1330 {
1331         int i;
1332         int nr_pages = 1 << order;
1333         struct page *p;
1334
1335         atomic_set(folio_mapcount_ptr(folio), 0);
1336         atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1337         atomic_set(folio_pincount_ptr(folio), 0);
1338
1339         for (i = 1; i < nr_pages; i++) {
1340                 p = folio_page(folio, i);
1341                 p->mapping = NULL;
1342                 clear_compound_head(p);
1343                 if (!demote)
1344                         set_page_refcounted(p);
1345         }
1346
1347         folio_set_compound_order(folio, 0);
1348         __folio_clear_head(folio);
1349 }
1350
1351 static void destroy_compound_hugetlb_folio_for_demote(struct folio *folio,
1352                                         unsigned int order)
1353 {
1354         __destroy_compound_gigantic_folio(folio, order, true);
1355 }
1356
1357 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1358 static void destroy_compound_gigantic_folio(struct folio *folio,
1359                                         unsigned int order)
1360 {
1361         __destroy_compound_gigantic_folio(folio, order, false);
1362 }
1363
1364 static void free_gigantic_folio(struct folio *folio, unsigned int order)
1365 {
1366         /*
1367          * If the page isn't allocated using the cma allocator,
1368          * cma_release() returns false.
1369          */
1370 #ifdef CONFIG_CMA
1371         int nid = folio_nid(folio);
1372
1373         if (cma_release(hugetlb_cma[nid], &folio->page, 1 << order))
1374                 return;
1375 #endif
1376
1377         free_contig_range(folio_pfn(folio), 1 << order);
1378 }
1379
1380 #ifdef CONFIG_CONTIG_ALLOC
1381 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1382                 int nid, nodemask_t *nodemask)
1383 {
1384         struct page *page;
1385         unsigned long nr_pages = pages_per_huge_page(h);
1386         if (nid == NUMA_NO_NODE)
1387                 nid = numa_mem_id();
1388
1389 #ifdef CONFIG_CMA
1390         {
1391                 int node;
1392
1393                 if (hugetlb_cma[nid]) {
1394                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1395                                         huge_page_order(h), true);
1396                         if (page)
1397                                 return page_folio(page);
1398                 }
1399
1400                 if (!(gfp_mask & __GFP_THISNODE)) {
1401                         for_each_node_mask(node, *nodemask) {
1402                                 if (node == nid || !hugetlb_cma[node])
1403                                         continue;
1404
1405                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1406                                                 huge_page_order(h), true);
1407                                 if (page)
1408                                         return page_folio(page);
1409                         }
1410                 }
1411         }
1412 #endif
1413
1414         page = alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1415         return page ? page_folio(page) : NULL;
1416 }
1417
1418 #else /* !CONFIG_CONTIG_ALLOC */
1419 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1420                                         int nid, nodemask_t *nodemask)
1421 {
1422         return NULL;
1423 }
1424 #endif /* CONFIG_CONTIG_ALLOC */
1425
1426 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1427 static struct folio *alloc_gigantic_folio(struct hstate *h, gfp_t gfp_mask,
1428                                         int nid, nodemask_t *nodemask)
1429 {
1430         return NULL;
1431 }
1432 static inline void free_gigantic_folio(struct folio *folio,
1433                                                 unsigned int order) { }
1434 static inline void destroy_compound_gigantic_folio(struct folio *folio,
1435                                                 unsigned int order) { }
1436 #endif
1437
1438 /*
1439  * Remove hugetlb folio from lists, and update dtor so that the folio appears
1440  * as just a compound page.
1441  *
1442  * A reference is held on the folio, except in the case of demote.
1443  *
1444  * Must be called with hugetlb lock held.
1445  */
1446 static void __remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1447                                                         bool adjust_surplus,
1448                                                         bool demote)
1449 {
1450         int nid = folio_nid(folio);
1451
1452         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio(folio), folio);
1453         VM_BUG_ON_FOLIO(hugetlb_cgroup_from_folio_rsvd(folio), folio);
1454
1455         lockdep_assert_held(&hugetlb_lock);
1456         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1457                 return;
1458
1459         list_del(&folio->lru);
1460
1461         if (folio_test_hugetlb_freed(folio)) {
1462                 h->free_huge_pages--;
1463                 h->free_huge_pages_node[nid]--;
1464         }
1465         if (adjust_surplus) {
1466                 h->surplus_huge_pages--;
1467                 h->surplus_huge_pages_node[nid]--;
1468         }
1469
1470         /*
1471          * Very subtle
1472          *
1473          * For non-gigantic pages set the destructor to the normal compound
1474          * page dtor.  This is needed in case someone takes an additional
1475          * temporary ref to the page, and freeing is delayed until they drop
1476          * their reference.
1477          *
1478          * For gigantic pages set the destructor to the null dtor.  This
1479          * destructor will never be called.  Before freeing the gigantic
1480          * page destroy_compound_gigantic_folio will turn the folio into a
1481          * simple group of pages.  After this the destructor does not
1482          * apply.
1483          *
1484          * This handles the case where more than one ref is held when and
1485          * after update_and_free_hugetlb_folio is called.
1486          *
1487          * In the case of demote we do not ref count the page as it will soon
1488          * be turned into a page of smaller size.
1489          */
1490         if (!demote)
1491                 folio_ref_unfreeze(folio, 1);
1492         if (hstate_is_gigantic(h))
1493                 folio_set_compound_dtor(folio, NULL_COMPOUND_DTOR);
1494         else
1495                 folio_set_compound_dtor(folio, COMPOUND_PAGE_DTOR);
1496
1497         h->nr_huge_pages--;
1498         h->nr_huge_pages_node[nid]--;
1499 }
1500
1501 static void remove_hugetlb_folio(struct hstate *h, struct folio *folio,
1502                                                         bool adjust_surplus)
1503 {
1504         __remove_hugetlb_folio(h, folio, adjust_surplus, false);
1505 }
1506
1507 static void remove_hugetlb_folio_for_demote(struct hstate *h, struct folio *folio,
1508                                                         bool adjust_surplus)
1509 {
1510         __remove_hugetlb_folio(h, folio, adjust_surplus, true);
1511 }
1512
1513 static void add_hugetlb_folio(struct hstate *h, struct folio *folio,
1514                              bool adjust_surplus)
1515 {
1516         int zeroed;
1517         int nid = folio_nid(folio);
1518
1519         VM_BUG_ON_FOLIO(!folio_test_hugetlb_vmemmap_optimized(folio), folio);
1520
1521         lockdep_assert_held(&hugetlb_lock);
1522
1523         INIT_LIST_HEAD(&folio->lru);
1524         h->nr_huge_pages++;
1525         h->nr_huge_pages_node[nid]++;
1526
1527         if (adjust_surplus) {
1528                 h->surplus_huge_pages++;
1529                 h->surplus_huge_pages_node[nid]++;
1530         }
1531
1532         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1533         folio_change_private(folio, NULL);
1534         /*
1535          * We have to set hugetlb_vmemmap_optimized again as above
1536          * folio_change_private(folio, NULL) cleared it.
1537          */
1538         folio_set_hugetlb_vmemmap_optimized(folio);
1539
1540         /*
1541          * This folio is about to be managed by the hugetlb allocator and
1542          * should have no users.  Drop our reference, and check for others
1543          * just in case.
1544          */
1545         zeroed = folio_put_testzero(folio);
1546         if (unlikely(!zeroed))
1547                 /*
1548                  * It is VERY unlikely soneone else has taken a ref on
1549                  * the page.  In this case, we simply return as the
1550                  * hugetlb destructor (free_huge_page) will be called
1551                  * when this other ref is dropped.
1552                  */
1553                 return;
1554
1555         arch_clear_hugepage_flags(&folio->page);
1556         enqueue_hugetlb_folio(h, folio);
1557 }
1558
1559 static void __update_and_free_page(struct hstate *h, struct page *page)
1560 {
1561         int i;
1562         struct folio *folio = page_folio(page);
1563         struct page *subpage;
1564
1565         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1566                 return;
1567
1568         /*
1569          * If we don't know which subpages are hwpoisoned, we can't free
1570          * the hugepage, so it's leaked intentionally.
1571          */
1572         if (folio_test_hugetlb_raw_hwp_unreliable(folio))
1573                 return;
1574
1575         if (hugetlb_vmemmap_restore(h, page)) {
1576                 spin_lock_irq(&hugetlb_lock);
1577                 /*
1578                  * If we cannot allocate vmemmap pages, just refuse to free the
1579                  * page and put the page back on the hugetlb free list and treat
1580                  * as a surplus page.
1581                  */
1582                 add_hugetlb_folio(h, folio, true);
1583                 spin_unlock_irq(&hugetlb_lock);
1584                 return;
1585         }
1586
1587         /*
1588          * Move PageHWPoison flag from head page to the raw error pages,
1589          * which makes any healthy subpages reusable.
1590          */
1591         if (unlikely(folio_test_hwpoison(folio)))
1592                 hugetlb_clear_page_hwpoison(&folio->page);
1593
1594         for (i = 0; i < pages_per_huge_page(h); i++) {
1595                 subpage = folio_page(folio, i);
1596                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1597                                 1 << PG_referenced | 1 << PG_dirty |
1598                                 1 << PG_active | 1 << PG_private |
1599                                 1 << PG_writeback);
1600         }
1601
1602         /*
1603          * Non-gigantic pages demoted from CMA allocated gigantic pages
1604          * need to be given back to CMA in free_gigantic_folio.
1605          */
1606         if (hstate_is_gigantic(h) ||
1607             hugetlb_cma_folio(folio, huge_page_order(h))) {
1608                 destroy_compound_gigantic_folio(folio, huge_page_order(h));
1609                 free_gigantic_folio(folio, huge_page_order(h));
1610         } else {
1611                 __free_pages(page, huge_page_order(h));
1612         }
1613 }
1614
1615 /*
1616  * As update_and_free_hugetlb_folio() can be called under any context, so we cannot
1617  * use GFP_KERNEL to allocate vmemmap pages. However, we can defer the
1618  * actual freeing in a workqueue to prevent from using GFP_ATOMIC to allocate
1619  * the vmemmap pages.
1620  *
1621  * free_hpage_workfn() locklessly retrieves the linked list of pages to be
1622  * freed and frees them one-by-one. As the page->mapping pointer is going
1623  * to be cleared in free_hpage_workfn() anyway, it is reused as the llist_node
1624  * structure of a lockless linked list of huge pages to be freed.
1625  */
1626 static LLIST_HEAD(hpage_freelist);
1627
1628 static void free_hpage_workfn(struct work_struct *work)
1629 {
1630         struct llist_node *node;
1631
1632         node = llist_del_all(&hpage_freelist);
1633
1634         while (node) {
1635                 struct page *page;
1636                 struct hstate *h;
1637
1638                 page = container_of((struct address_space **)node,
1639                                      struct page, mapping);
1640                 node = node->next;
1641                 page->mapping = NULL;
1642                 /*
1643                  * The VM_BUG_ON_PAGE(!PageHuge(page), page) in page_hstate()
1644                  * is going to trigger because a previous call to
1645                  * remove_hugetlb_folio() will call folio_set_compound_dtor
1646                  * (folio, NULL_COMPOUND_DTOR), so do not use page_hstate()
1647                  * directly.
1648                  */
1649                 h = size_to_hstate(page_size(page));
1650
1651                 __update_and_free_page(h, page);
1652
1653                 cond_resched();
1654         }
1655 }
1656 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1657
1658 static inline void flush_free_hpage_work(struct hstate *h)
1659 {
1660         if (hugetlb_vmemmap_optimizable(h))
1661                 flush_work(&free_hpage_work);
1662 }
1663
1664 static void update_and_free_hugetlb_folio(struct hstate *h, struct folio *folio,
1665                                  bool atomic)
1666 {
1667         if (!folio_test_hugetlb_vmemmap_optimized(folio) || !atomic) {
1668                 __update_and_free_page(h, &folio->page);
1669                 return;
1670         }
1671
1672         /*
1673          * Defer freeing to avoid using GFP_ATOMIC to allocate vmemmap pages.
1674          *
1675          * Only call schedule_work() if hpage_freelist is previously
1676          * empty. Otherwise, schedule_work() had been called but the workfn
1677          * hasn't retrieved the list yet.
1678          */
1679         if (llist_add((struct llist_node *)&folio->mapping, &hpage_freelist))
1680                 schedule_work(&free_hpage_work);
1681 }
1682
1683 static void update_and_free_pages_bulk(struct hstate *h, struct list_head *list)
1684 {
1685         struct page *page, *t_page;
1686         struct folio *folio;
1687
1688         list_for_each_entry_safe(page, t_page, list, lru) {
1689                 folio = page_folio(page);
1690                 update_and_free_hugetlb_folio(h, folio, false);
1691                 cond_resched();
1692         }
1693 }
1694
1695 struct hstate *size_to_hstate(unsigned long size)
1696 {
1697         struct hstate *h;
1698
1699         for_each_hstate(h) {
1700                 if (huge_page_size(h) == size)
1701                         return h;
1702         }
1703         return NULL;
1704 }
1705
1706 void free_huge_page(struct page *page)
1707 {
1708         /*
1709          * Can't pass hstate in here because it is called from the
1710          * compound page destructor.
1711          */
1712         struct folio *folio = page_folio(page);
1713         struct hstate *h = folio_hstate(folio);
1714         int nid = folio_nid(folio);
1715         struct hugepage_subpool *spool = hugetlb_folio_subpool(folio);
1716         bool restore_reserve;
1717         unsigned long flags;
1718
1719         VM_BUG_ON_FOLIO(folio_ref_count(folio), folio);
1720         VM_BUG_ON_FOLIO(folio_mapcount(folio), folio);
1721
1722         hugetlb_set_folio_subpool(folio, NULL);
1723         if (folio_test_anon(folio))
1724                 __ClearPageAnonExclusive(&folio->page);
1725         folio->mapping = NULL;
1726         restore_reserve = folio_test_hugetlb_restore_reserve(folio);
1727         folio_clear_hugetlb_restore_reserve(folio);
1728
1729         /*
1730          * If HPageRestoreReserve was set on page, page allocation consumed a
1731          * reservation.  If the page was associated with a subpool, there
1732          * would have been a page reserved in the subpool before allocation
1733          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1734          * reservation, do not call hugepage_subpool_put_pages() as this will
1735          * remove the reserved page from the subpool.
1736          */
1737         if (!restore_reserve) {
1738                 /*
1739                  * A return code of zero implies that the subpool will be
1740                  * under its minimum size if the reservation is not restored
1741                  * after page is free.  Therefore, force restore_reserve
1742                  * operation.
1743                  */
1744                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1745                         restore_reserve = true;
1746         }
1747
1748         spin_lock_irqsave(&hugetlb_lock, flags);
1749         folio_clear_hugetlb_migratable(folio);
1750         hugetlb_cgroup_uncharge_folio(hstate_index(h),
1751                                      pages_per_huge_page(h), folio);
1752         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
1753                                           pages_per_huge_page(h), folio);
1754         if (restore_reserve)
1755                 h->resv_huge_pages++;
1756
1757         if (folio_test_hugetlb_temporary(folio)) {
1758                 remove_hugetlb_folio(h, folio, false);
1759                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1760                 update_and_free_hugetlb_folio(h, folio, true);
1761         } else if (h->surplus_huge_pages_node[nid]) {
1762                 /* remove the page from active list */
1763                 remove_hugetlb_folio(h, folio, true);
1764                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1765                 update_and_free_hugetlb_folio(h, folio, true);
1766         } else {
1767                 arch_clear_hugepage_flags(page);
1768                 enqueue_hugetlb_folio(h, folio);
1769                 spin_unlock_irqrestore(&hugetlb_lock, flags);
1770         }
1771 }
1772
1773 /*
1774  * Must be called with the hugetlb lock held
1775  */
1776 static void __prep_account_new_huge_page(struct hstate *h, int nid)
1777 {
1778         lockdep_assert_held(&hugetlb_lock);
1779         h->nr_huge_pages++;
1780         h->nr_huge_pages_node[nid]++;
1781 }
1782
1783 static void __prep_new_hugetlb_folio(struct hstate *h, struct folio *folio)
1784 {
1785         hugetlb_vmemmap_optimize(h, &folio->page);
1786         INIT_LIST_HEAD(&folio->lru);
1787         folio_set_compound_dtor(folio, HUGETLB_PAGE_DTOR);
1788         hugetlb_set_folio_subpool(folio, NULL);
1789         set_hugetlb_cgroup(folio, NULL);
1790         set_hugetlb_cgroup_rsvd(folio, NULL);
1791 }
1792
1793 static void prep_new_hugetlb_folio(struct hstate *h, struct folio *folio, int nid)
1794 {
1795         __prep_new_hugetlb_folio(h, folio);
1796         spin_lock_irq(&hugetlb_lock);
1797         __prep_account_new_huge_page(h, nid);
1798         spin_unlock_irq(&hugetlb_lock);
1799 }
1800
1801 static bool __prep_compound_gigantic_folio(struct folio *folio,
1802                                         unsigned int order, bool demote)
1803 {
1804         int i, j;
1805         int nr_pages = 1 << order;
1806         struct page *p;
1807
1808         __folio_clear_reserved(folio);
1809         __folio_set_head(folio);
1810         /* we rely on prep_new_hugetlb_folio to set the destructor */
1811         folio_set_compound_order(folio, order);
1812         for (i = 0; i < nr_pages; i++) {
1813                 p = folio_page(folio, i);
1814
1815                 /*
1816                  * For gigantic hugepages allocated through bootmem at
1817                  * boot, it's safer to be consistent with the not-gigantic
1818                  * hugepages and clear the PG_reserved bit from all tail pages
1819                  * too.  Otherwise drivers using get_user_pages() to access tail
1820                  * pages may get the reference counting wrong if they see
1821                  * PG_reserved set on a tail page (despite the head page not
1822                  * having PG_reserved set).  Enforcing this consistency between
1823                  * head and tail pages allows drivers to optimize away a check
1824                  * on the head page when they need know if put_page() is needed
1825                  * after get_user_pages().
1826                  */
1827                 if (i != 0)     /* head page cleared above */
1828                         __ClearPageReserved(p);
1829                 /*
1830                  * Subtle and very unlikely
1831                  *
1832                  * Gigantic 'page allocators' such as memblock or cma will
1833                  * return a set of pages with each page ref counted.  We need
1834                  * to turn this set of pages into a compound page with tail
1835                  * page ref counts set to zero.  Code such as speculative page
1836                  * cache adding could take a ref on a 'to be' tail page.
1837                  * We need to respect any increased ref count, and only set
1838                  * the ref count to zero if count is currently 1.  If count
1839                  * is not 1, we return an error.  An error return indicates
1840                  * the set of pages can not be converted to a gigantic page.
1841                  * The caller who allocated the pages should then discard the
1842                  * pages using the appropriate free interface.
1843                  *
1844                  * In the case of demote, the ref count will be zero.
1845                  */
1846                 if (!demote) {
1847                         if (!page_ref_freeze(p, 1)) {
1848                                 pr_warn("HugeTLB page can not be used due to unexpected inflated ref count\n");
1849                                 goto out_error;
1850                         }
1851                 } else {
1852                         VM_BUG_ON_PAGE(page_count(p), p);
1853                 }
1854                 if (i != 0)
1855                         set_compound_head(p, &folio->page);
1856         }
1857         atomic_set(folio_mapcount_ptr(folio), -1);
1858         atomic_set(folio_subpages_mapcount_ptr(folio), 0);
1859         atomic_set(folio_pincount_ptr(folio), 0);
1860         return true;
1861
1862 out_error:
1863         /* undo page modifications made above */
1864         for (j = 0; j < i; j++) {
1865                 p = folio_page(folio, j);
1866                 if (j != 0)
1867                         clear_compound_head(p);
1868                 set_page_refcounted(p);
1869         }
1870         /* need to clear PG_reserved on remaining tail pages  */
1871         for (; j < nr_pages; j++) {
1872                 p = folio_page(folio, j);
1873                 __ClearPageReserved(p);
1874         }
1875         folio_set_compound_order(folio, 0);
1876         __folio_clear_head(folio);
1877         return false;
1878 }
1879
1880 static bool prep_compound_gigantic_folio(struct folio *folio,
1881                                                         unsigned int order)
1882 {
1883         return __prep_compound_gigantic_folio(folio, order, false);
1884 }
1885
1886 static bool prep_compound_gigantic_folio_for_demote(struct folio *folio,
1887                                                         unsigned int order)
1888 {
1889         return __prep_compound_gigantic_folio(folio, order, true);
1890 }
1891
1892 /*
1893  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1894  * transparent huge pages.  See the PageTransHuge() documentation for more
1895  * details.
1896  */
1897 int PageHuge(struct page *page)
1898 {
1899         if (!PageCompound(page))
1900                 return 0;
1901
1902         page = compound_head(page);
1903         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1904 }
1905 EXPORT_SYMBOL_GPL(PageHuge);
1906
1907 /*
1908  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1909  * normal or transparent huge pages.
1910  */
1911 int PageHeadHuge(struct page *page_head)
1912 {
1913         if (!PageHead(page_head))
1914                 return 0;
1915
1916         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1917 }
1918 EXPORT_SYMBOL_GPL(PageHeadHuge);
1919
1920 /*
1921  * Find and lock address space (mapping) in write mode.
1922  *
1923  * Upon entry, the page is locked which means that page_mapping() is
1924  * stable.  Due to locking order, we can only trylock_write.  If we can
1925  * not get the lock, simply return NULL to caller.
1926  */
1927 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1928 {
1929         struct address_space *mapping = page_mapping(hpage);
1930
1931         if (!mapping)
1932                 return mapping;
1933
1934         if (i_mmap_trylock_write(mapping))
1935                 return mapping;
1936
1937         return NULL;
1938 }
1939
1940 pgoff_t hugetlb_basepage_index(struct page *page)
1941 {
1942         struct page *page_head = compound_head(page);
1943         pgoff_t index = page_index(page_head);
1944         unsigned long compound_idx;
1945
1946         if (compound_order(page_head) >= MAX_ORDER)
1947                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1948         else
1949                 compound_idx = page - page_head;
1950
1951         return (index << compound_order(page_head)) + compound_idx;
1952 }
1953
1954 static struct folio *alloc_buddy_hugetlb_folio(struct hstate *h,
1955                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1956                 nodemask_t *node_alloc_noretry)
1957 {
1958         int order = huge_page_order(h);
1959         struct page *page;
1960         bool alloc_try_hard = true;
1961         bool retry = true;
1962
1963         /*
1964          * By default we always try hard to allocate the page with
1965          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1966          * a loop (to adjust global huge page counts) and previous allocation
1967          * failed, do not continue to try hard on the same node.  Use the
1968          * node_alloc_noretry bitmap to manage this state information.
1969          */
1970         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1971                 alloc_try_hard = false;
1972         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1973         if (alloc_try_hard)
1974                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1975         if (nid == NUMA_NO_NODE)
1976                 nid = numa_mem_id();
1977 retry:
1978         page = __alloc_pages(gfp_mask, order, nid, nmask);
1979
1980         /* Freeze head page */
1981         if (page && !page_ref_freeze(page, 1)) {
1982                 __free_pages(page, order);
1983                 if (retry) {    /* retry once */
1984                         retry = false;
1985                         goto retry;
1986                 }
1987                 /* WOW!  twice in a row. */
1988                 pr_warn("HugeTLB head page unexpected inflated ref count\n");
1989                 page = NULL;
1990         }
1991
1992         /*
1993          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1994          * indicates an overall state change.  Clear bit so that we resume
1995          * normal 'try hard' allocations.
1996          */
1997         if (node_alloc_noretry && page && !alloc_try_hard)
1998                 node_clear(nid, *node_alloc_noretry);
1999
2000         /*
2001          * If we tried hard to get a page but failed, set bit so that
2002          * subsequent attempts will not try as hard until there is an
2003          * overall state change.
2004          */
2005         if (node_alloc_noretry && !page && alloc_try_hard)
2006                 node_set(nid, *node_alloc_noretry);
2007
2008         if (!page) {
2009                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
2010                 return NULL;
2011         }
2012
2013         __count_vm_event(HTLB_BUDDY_PGALLOC);
2014         return page_folio(page);
2015 }
2016
2017 /*
2018  * Common helper to allocate a fresh hugetlb page. All specific allocators
2019  * should use this function to get new hugetlb pages
2020  *
2021  * Note that returned page is 'frozen':  ref count of head page and all tail
2022  * pages is zero.
2023  */
2024 static struct folio *alloc_fresh_hugetlb_folio(struct hstate *h,
2025                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
2026                 nodemask_t *node_alloc_noretry)
2027 {
2028         struct folio *folio;
2029         bool retry = false;
2030
2031 retry:
2032         if (hstate_is_gigantic(h))
2033                 folio = alloc_gigantic_folio(h, gfp_mask, nid, nmask);
2034         else
2035                 folio = alloc_buddy_hugetlb_folio(h, gfp_mask,
2036                                 nid, nmask, node_alloc_noretry);
2037         if (!folio)
2038                 return NULL;
2039         if (hstate_is_gigantic(h)) {
2040                 if (!prep_compound_gigantic_folio(folio, huge_page_order(h))) {
2041                         /*
2042                          * Rare failure to convert pages to compound page.
2043                          * Free pages and try again - ONCE!
2044                          */
2045                         free_gigantic_folio(folio, huge_page_order(h));
2046                         if (!retry) {
2047                                 retry = true;
2048                                 goto retry;
2049                         }
2050                         return NULL;
2051                 }
2052         }
2053         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
2054
2055         return folio;
2056 }
2057
2058 /*
2059  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
2060  * manner.
2061  */
2062 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
2063                                 nodemask_t *node_alloc_noretry)
2064 {
2065         struct folio *folio;
2066         int nr_nodes, node;
2067         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2068
2069         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2070                 folio = alloc_fresh_hugetlb_folio(h, gfp_mask, node,
2071                                         nodes_allowed, node_alloc_noretry);
2072                 if (folio) {
2073                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
2074                         return 1;
2075                 }
2076         }
2077
2078         return 0;
2079 }
2080
2081 /*
2082  * Remove huge page from pool from next node to free.  Attempt to keep
2083  * persistent huge pages more or less balanced over allowed nodes.
2084  * This routine only 'removes' the hugetlb page.  The caller must make
2085  * an additional call to free the page to low level allocators.
2086  * Called with hugetlb_lock locked.
2087  */
2088 static struct page *remove_pool_huge_page(struct hstate *h,
2089                                                 nodemask_t *nodes_allowed,
2090                                                  bool acct_surplus)
2091 {
2092         int nr_nodes, node;
2093         struct page *page = NULL;
2094         struct folio *folio;
2095
2096         lockdep_assert_held(&hugetlb_lock);
2097         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2098                 /*
2099                  * If we're returning unused surplus pages, only examine
2100                  * nodes with surplus pages.
2101                  */
2102                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
2103                     !list_empty(&h->hugepage_freelists[node])) {
2104                         page = list_entry(h->hugepage_freelists[node].next,
2105                                           struct page, lru);
2106                         folio = page_folio(page);
2107                         remove_hugetlb_folio(h, folio, acct_surplus);
2108                         break;
2109                 }
2110         }
2111
2112         return page;
2113 }
2114
2115 /*
2116  * Dissolve a given free hugepage into free buddy pages. This function does
2117  * nothing for in-use hugepages and non-hugepages.
2118  * This function returns values like below:
2119  *
2120  *  -ENOMEM: failed to allocate vmemmap pages to free the freed hugepages
2121  *           when the system is under memory pressure and the feature of
2122  *           freeing unused vmemmap pages associated with each hugetlb page
2123  *           is enabled.
2124  *  -EBUSY:  failed to dissolved free hugepages or the hugepage is in-use
2125  *           (allocated or reserved.)
2126  *       0:  successfully dissolved free hugepages or the page is not a
2127  *           hugepage (considered as already dissolved)
2128  */
2129 int dissolve_free_huge_page(struct page *page)
2130 {
2131         int rc = -EBUSY;
2132         struct folio *folio = page_folio(page);
2133
2134 retry:
2135         /* Not to disrupt normal path by vainly holding hugetlb_lock */
2136         if (!folio_test_hugetlb(folio))
2137                 return 0;
2138
2139         spin_lock_irq(&hugetlb_lock);
2140         if (!folio_test_hugetlb(folio)) {
2141                 rc = 0;
2142                 goto out;
2143         }
2144
2145         if (!folio_ref_count(folio)) {
2146                 struct hstate *h = folio_hstate(folio);
2147                 if (!available_huge_pages(h))
2148                         goto out;
2149
2150                 /*
2151                  * We should make sure that the page is already on the free list
2152                  * when it is dissolved.
2153                  */
2154                 if (unlikely(!folio_test_hugetlb_freed(folio))) {
2155                         spin_unlock_irq(&hugetlb_lock);
2156                         cond_resched();
2157
2158                         /*
2159                          * Theoretically, we should return -EBUSY when we
2160                          * encounter this race. In fact, we have a chance
2161                          * to successfully dissolve the page if we do a
2162                          * retry. Because the race window is quite small.
2163                          * If we seize this opportunity, it is an optimization
2164                          * for increasing the success rate of dissolving page.
2165                          */
2166                         goto retry;
2167                 }
2168
2169                 remove_hugetlb_folio(h, folio, false);
2170                 h->max_huge_pages--;
2171                 spin_unlock_irq(&hugetlb_lock);
2172
2173                 /*
2174                  * Normally update_and_free_hugtlb_folio will allocate required vmemmmap
2175                  * before freeing the page.  update_and_free_hugtlb_folio will fail to
2176                  * free the page if it can not allocate required vmemmap.  We
2177                  * need to adjust max_huge_pages if the page is not freed.
2178                  * Attempt to allocate vmemmmap here so that we can take
2179                  * appropriate action on failure.
2180                  */
2181                 rc = hugetlb_vmemmap_restore(h, &folio->page);
2182                 if (!rc) {
2183                         update_and_free_hugetlb_folio(h, folio, false);
2184                 } else {
2185                         spin_lock_irq(&hugetlb_lock);
2186                         add_hugetlb_folio(h, folio, false);
2187                         h->max_huge_pages++;
2188                         spin_unlock_irq(&hugetlb_lock);
2189                 }
2190
2191                 return rc;
2192         }
2193 out:
2194         spin_unlock_irq(&hugetlb_lock);
2195         return rc;
2196 }
2197
2198 /*
2199  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
2200  * make specified memory blocks removable from the system.
2201  * Note that this will dissolve a free gigantic hugepage completely, if any
2202  * part of it lies within the given range.
2203  * Also note that if dissolve_free_huge_page() returns with an error, all
2204  * free hugepages that were dissolved before that error are lost.
2205  */
2206 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
2207 {
2208         unsigned long pfn;
2209         struct page *page;
2210         int rc = 0;
2211         unsigned int order;
2212         struct hstate *h;
2213
2214         if (!hugepages_supported())
2215                 return rc;
2216
2217         order = huge_page_order(&default_hstate);
2218         for_each_hstate(h)
2219                 order = min(order, huge_page_order(h));
2220
2221         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order) {
2222                 page = pfn_to_page(pfn);
2223                 rc = dissolve_free_huge_page(page);
2224                 if (rc)
2225                         break;
2226         }
2227
2228         return rc;
2229 }
2230
2231 /*
2232  * Allocates a fresh surplus page from the page allocator.
2233  */
2234 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
2235                                                 int nid, nodemask_t *nmask)
2236 {
2237         struct folio *folio = NULL;
2238
2239         if (hstate_is_gigantic(h))
2240                 return NULL;
2241
2242         spin_lock_irq(&hugetlb_lock);
2243         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
2244                 goto out_unlock;
2245         spin_unlock_irq(&hugetlb_lock);
2246
2247         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2248         if (!folio)
2249                 return NULL;
2250
2251         spin_lock_irq(&hugetlb_lock);
2252         /*
2253          * We could have raced with the pool size change.
2254          * Double check that and simply deallocate the new page
2255          * if we would end up overcommiting the surpluses. Abuse
2256          * temporary page to workaround the nasty free_huge_page
2257          * codeflow
2258          */
2259         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
2260                 folio_set_hugetlb_temporary(folio);
2261                 spin_unlock_irq(&hugetlb_lock);
2262                 free_huge_page(&folio->page);
2263                 return NULL;
2264         }
2265
2266         h->surplus_huge_pages++;
2267         h->surplus_huge_pages_node[folio_nid(folio)]++;
2268
2269 out_unlock:
2270         spin_unlock_irq(&hugetlb_lock);
2271
2272         return &folio->page;
2273 }
2274
2275 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
2276                                      int nid, nodemask_t *nmask)
2277 {
2278         struct folio *folio;
2279
2280         if (hstate_is_gigantic(h))
2281                 return NULL;
2282
2283         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid, nmask, NULL);
2284         if (!folio)
2285                 return NULL;
2286
2287         /* fresh huge pages are frozen */
2288         folio_ref_unfreeze(folio, 1);
2289         /*
2290          * We do not account these pages as surplus because they are only
2291          * temporary and will be released properly on the last reference
2292          */
2293         folio_set_hugetlb_temporary(folio);
2294
2295         return &folio->page;
2296 }
2297
2298 /*
2299  * Use the VMA's mpolicy to allocate a huge page from the buddy.
2300  */
2301 static
2302 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
2303                 struct vm_area_struct *vma, unsigned long addr)
2304 {
2305         struct page *page = NULL;
2306         struct mempolicy *mpol;
2307         gfp_t gfp_mask = htlb_alloc_mask(h);
2308         int nid;
2309         nodemask_t *nodemask;
2310
2311         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
2312         if (mpol_is_preferred_many(mpol)) {
2313                 gfp_t gfp = gfp_mask | __GFP_NOWARN;
2314
2315                 gfp &=  ~(__GFP_DIRECT_RECLAIM | __GFP_NOFAIL);
2316                 page = alloc_surplus_huge_page(h, gfp, nid, nodemask);
2317
2318                 /* Fallback to all nodes if page==NULL */
2319                 nodemask = NULL;
2320         }
2321
2322         if (!page)
2323                 page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
2324         mpol_cond_put(mpol);
2325         return page;
2326 }
2327
2328 /* page migration callback function */
2329 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
2330                 nodemask_t *nmask, gfp_t gfp_mask)
2331 {
2332         spin_lock_irq(&hugetlb_lock);
2333         if (available_huge_pages(h)) {
2334                 struct page *page;
2335
2336                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
2337                 if (page) {
2338                         spin_unlock_irq(&hugetlb_lock);
2339                         return page;
2340                 }
2341         }
2342         spin_unlock_irq(&hugetlb_lock);
2343
2344         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
2345 }
2346
2347 /* mempolicy aware migration callback */
2348 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
2349                 unsigned long address)
2350 {
2351         struct mempolicy *mpol;
2352         nodemask_t *nodemask;
2353         struct page *page;
2354         gfp_t gfp_mask;
2355         int node;
2356
2357         gfp_mask = htlb_alloc_mask(h);
2358         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
2359         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
2360         mpol_cond_put(mpol);
2361
2362         return page;
2363 }
2364
2365 /*
2366  * Increase the hugetlb pool such that it can accommodate a reservation
2367  * of size 'delta'.
2368  */
2369 static int gather_surplus_pages(struct hstate *h, long delta)
2370         __must_hold(&hugetlb_lock)
2371 {
2372         LIST_HEAD(surplus_list);
2373         struct page *page, *tmp;
2374         int ret;
2375         long i;
2376         long needed, allocated;
2377         bool alloc_ok = true;
2378
2379         lockdep_assert_held(&hugetlb_lock);
2380         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
2381         if (needed <= 0) {
2382                 h->resv_huge_pages += delta;
2383                 return 0;
2384         }
2385
2386         allocated = 0;
2387
2388         ret = -ENOMEM;
2389 retry:
2390         spin_unlock_irq(&hugetlb_lock);
2391         for (i = 0; i < needed; i++) {
2392                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
2393                                 NUMA_NO_NODE, NULL);
2394                 if (!page) {
2395                         alloc_ok = false;
2396                         break;
2397                 }
2398                 list_add(&page->lru, &surplus_list);
2399                 cond_resched();
2400         }
2401         allocated += i;
2402
2403         /*
2404          * After retaking hugetlb_lock, we need to recalculate 'needed'
2405          * because either resv_huge_pages or free_huge_pages may have changed.
2406          */
2407         spin_lock_irq(&hugetlb_lock);
2408         needed = (h->resv_huge_pages + delta) -
2409                         (h->free_huge_pages + allocated);
2410         if (needed > 0) {
2411                 if (alloc_ok)
2412                         goto retry;
2413                 /*
2414                  * We were not able to allocate enough pages to
2415                  * satisfy the entire reservation so we free what
2416                  * we've allocated so far.
2417                  */
2418                 goto free;
2419         }
2420         /*
2421          * The surplus_list now contains _at_least_ the number of extra pages
2422          * needed to accommodate the reservation.  Add the appropriate number
2423          * of pages to the hugetlb pool and free the extras back to the buddy
2424          * allocator.  Commit the entire reservation here to prevent another
2425          * process from stealing the pages as they are added to the pool but
2426          * before they are reserved.
2427          */
2428         needed += allocated;
2429         h->resv_huge_pages += delta;
2430         ret = 0;
2431
2432         /* Free the needed pages to the hugetlb pool */
2433         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
2434                 if ((--needed) < 0)
2435                         break;
2436                 /* Add the page to the hugetlb allocator */
2437                 enqueue_hugetlb_folio(h, page_folio(page));
2438         }
2439 free:
2440         spin_unlock_irq(&hugetlb_lock);
2441
2442         /*
2443          * Free unnecessary surplus pages to the buddy allocator.
2444          * Pages have no ref count, call free_huge_page directly.
2445          */
2446         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2447                 free_huge_page(page);
2448         spin_lock_irq(&hugetlb_lock);
2449
2450         return ret;
2451 }
2452
2453 /*
2454  * This routine has two main purposes:
2455  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2456  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2457  *    to the associated reservation map.
2458  * 2) Free any unused surplus pages that may have been allocated to satisfy
2459  *    the reservation.  As many as unused_resv_pages may be freed.
2460  */
2461 static void return_unused_surplus_pages(struct hstate *h,
2462                                         unsigned long unused_resv_pages)
2463 {
2464         unsigned long nr_pages;
2465         struct page *page;
2466         LIST_HEAD(page_list);
2467
2468         lockdep_assert_held(&hugetlb_lock);
2469         /* Uncommit the reservation */
2470         h->resv_huge_pages -= unused_resv_pages;
2471
2472         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2473                 goto out;
2474
2475         /*
2476          * Part (or even all) of the reservation could have been backed
2477          * by pre-allocated pages. Only free surplus pages.
2478          */
2479         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2480
2481         /*
2482          * We want to release as many surplus pages as possible, spread
2483          * evenly across all nodes with memory. Iterate across these nodes
2484          * until we can no longer free unreserved surplus pages. This occurs
2485          * when the nodes with surplus pages have no free pages.
2486          * remove_pool_huge_page() will balance the freed pages across the
2487          * on-line nodes with memory and will handle the hstate accounting.
2488          */
2489         while (nr_pages--) {
2490                 page = remove_pool_huge_page(h, &node_states[N_MEMORY], 1);
2491                 if (!page)
2492                         goto out;
2493
2494                 list_add(&page->lru, &page_list);
2495         }
2496
2497 out:
2498         spin_unlock_irq(&hugetlb_lock);
2499         update_and_free_pages_bulk(h, &page_list);
2500         spin_lock_irq(&hugetlb_lock);
2501 }
2502
2503
2504 /*
2505  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2506  * are used by the huge page allocation routines to manage reservations.
2507  *
2508  * vma_needs_reservation is called to determine if the huge page at addr
2509  * within the vma has an associated reservation.  If a reservation is
2510  * needed, the value 1 is returned.  The caller is then responsible for
2511  * managing the global reservation and subpool usage counts.  After
2512  * the huge page has been allocated, vma_commit_reservation is called
2513  * to add the page to the reservation map.  If the page allocation fails,
2514  * the reservation must be ended instead of committed.  vma_end_reservation
2515  * is called in such cases.
2516  *
2517  * In the normal case, vma_commit_reservation returns the same value
2518  * as the preceding vma_needs_reservation call.  The only time this
2519  * is not the case is if a reserve map was changed between calls.  It
2520  * is the responsibility of the caller to notice the difference and
2521  * take appropriate action.
2522  *
2523  * vma_add_reservation is used in error paths where a reservation must
2524  * be restored when a newly allocated huge page must be freed.  It is
2525  * to be called after calling vma_needs_reservation to determine if a
2526  * reservation exists.
2527  *
2528  * vma_del_reservation is used in error paths where an entry in the reserve
2529  * map was created during huge page allocation and must be removed.  It is to
2530  * be called after calling vma_needs_reservation to determine if a reservation
2531  * exists.
2532  */
2533 enum vma_resv_mode {
2534         VMA_NEEDS_RESV,
2535         VMA_COMMIT_RESV,
2536         VMA_END_RESV,
2537         VMA_ADD_RESV,
2538         VMA_DEL_RESV,
2539 };
2540 static long __vma_reservation_common(struct hstate *h,
2541                                 struct vm_area_struct *vma, unsigned long addr,
2542                                 enum vma_resv_mode mode)
2543 {
2544         struct resv_map *resv;
2545         pgoff_t idx;
2546         long ret;
2547         long dummy_out_regions_needed;
2548
2549         resv = vma_resv_map(vma);
2550         if (!resv)
2551                 return 1;
2552
2553         idx = vma_hugecache_offset(h, vma, addr);
2554         switch (mode) {
2555         case VMA_NEEDS_RESV:
2556                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2557                 /* We assume that vma_reservation_* routines always operate on
2558                  * 1 page, and that adding to resv map a 1 page entry can only
2559                  * ever require 1 region.
2560                  */
2561                 VM_BUG_ON(dummy_out_regions_needed != 1);
2562                 break;
2563         case VMA_COMMIT_RESV:
2564                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2565                 /* region_add calls of range 1 should never fail. */
2566                 VM_BUG_ON(ret < 0);
2567                 break;
2568         case VMA_END_RESV:
2569                 region_abort(resv, idx, idx + 1, 1);
2570                 ret = 0;
2571                 break;
2572         case VMA_ADD_RESV:
2573                 if (vma->vm_flags & VM_MAYSHARE) {
2574                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2575                         /* region_add calls of range 1 should never fail. */
2576                         VM_BUG_ON(ret < 0);
2577                 } else {
2578                         region_abort(resv, idx, idx + 1, 1);
2579                         ret = region_del(resv, idx, idx + 1);
2580                 }
2581                 break;
2582         case VMA_DEL_RESV:
2583                 if (vma->vm_flags & VM_MAYSHARE) {
2584                         region_abort(resv, idx, idx + 1, 1);
2585                         ret = region_del(resv, idx, idx + 1);
2586                 } else {
2587                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2588                         /* region_add calls of range 1 should never fail. */
2589                         VM_BUG_ON(ret < 0);
2590                 }
2591                 break;
2592         default:
2593                 BUG();
2594         }
2595
2596         if (vma->vm_flags & VM_MAYSHARE || mode == VMA_DEL_RESV)
2597                 return ret;
2598         /*
2599          * We know private mapping must have HPAGE_RESV_OWNER set.
2600          *
2601          * In most cases, reserves always exist for private mappings.
2602          * However, a file associated with mapping could have been
2603          * hole punched or truncated after reserves were consumed.
2604          * As subsequent fault on such a range will not use reserves.
2605          * Subtle - The reserve map for private mappings has the
2606          * opposite meaning than that of shared mappings.  If NO
2607          * entry is in the reserve map, it means a reservation exists.
2608          * If an entry exists in the reserve map, it means the
2609          * reservation has already been consumed.  As a result, the
2610          * return value of this routine is the opposite of the
2611          * value returned from reserve map manipulation routines above.
2612          */
2613         if (ret > 0)
2614                 return 0;
2615         if (ret == 0)
2616                 return 1;
2617         return ret;
2618 }
2619
2620 static long vma_needs_reservation(struct hstate *h,
2621                         struct vm_area_struct *vma, unsigned long addr)
2622 {
2623         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2624 }
2625
2626 static long vma_commit_reservation(struct hstate *h,
2627                         struct vm_area_struct *vma, unsigned long addr)
2628 {
2629         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2630 }
2631
2632 static void vma_end_reservation(struct hstate *h,
2633                         struct vm_area_struct *vma, unsigned long addr)
2634 {
2635         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2636 }
2637
2638 static long vma_add_reservation(struct hstate *h,
2639                         struct vm_area_struct *vma, unsigned long addr)
2640 {
2641         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2642 }
2643
2644 static long vma_del_reservation(struct hstate *h,
2645                         struct vm_area_struct *vma, unsigned long addr)
2646 {
2647         return __vma_reservation_common(h, vma, addr, VMA_DEL_RESV);
2648 }
2649
2650 /*
2651  * This routine is called to restore reservation information on error paths.
2652  * It should ONLY be called for pages allocated via alloc_huge_page(), and
2653  * the hugetlb mutex should remain held when calling this routine.
2654  *
2655  * It handles two specific cases:
2656  * 1) A reservation was in place and the page consumed the reservation.
2657  *    HPageRestoreReserve is set in the page.
2658  * 2) No reservation was in place for the page, so HPageRestoreReserve is
2659  *    not set.  However, alloc_huge_page always updates the reserve map.
2660  *
2661  * In case 1, free_huge_page later in the error path will increment the
2662  * global reserve count.  But, free_huge_page does not have enough context
2663  * to adjust the reservation map.  This case deals primarily with private
2664  * mappings.  Adjust the reserve map here to be consistent with global
2665  * reserve count adjustments to be made by free_huge_page.  Make sure the
2666  * reserve map indicates there is a reservation present.
2667  *
2668  * In case 2, simply undo reserve map modifications done by alloc_huge_page.
2669  */
2670 void restore_reserve_on_error(struct hstate *h, struct vm_area_struct *vma,
2671                         unsigned long address, struct page *page)
2672 {
2673         long rc = vma_needs_reservation(h, vma, address);
2674
2675         if (HPageRestoreReserve(page)) {
2676                 if (unlikely(rc < 0))
2677                         /*
2678                          * Rare out of memory condition in reserve map
2679                          * manipulation.  Clear HPageRestoreReserve so that
2680                          * global reserve count will not be incremented
2681                          * by free_huge_page.  This will make it appear
2682                          * as though the reservation for this page was
2683                          * consumed.  This may prevent the task from
2684                          * faulting in the page at a later time.  This
2685                          * is better than inconsistent global huge page
2686                          * accounting of reserve counts.
2687                          */
2688                         ClearHPageRestoreReserve(page);
2689                 else if (rc)
2690                         (void)vma_add_reservation(h, vma, address);
2691                 else
2692                         vma_end_reservation(h, vma, address);
2693         } else {
2694                 if (!rc) {
2695                         /*
2696                          * This indicates there is an entry in the reserve map
2697                          * not added by alloc_huge_page.  We know it was added
2698                          * before the alloc_huge_page call, otherwise
2699                          * HPageRestoreReserve would be set on the page.
2700                          * Remove the entry so that a subsequent allocation
2701                          * does not consume a reservation.
2702                          */
2703                         rc = vma_del_reservation(h, vma, address);
2704                         if (rc < 0)
2705                                 /*
2706                                  * VERY rare out of memory condition.  Since
2707                                  * we can not delete the entry, set
2708                                  * HPageRestoreReserve so that the reserve
2709                                  * count will be incremented when the page
2710                                  * is freed.  This reserve will be consumed
2711                                  * on a subsequent allocation.
2712                                  */
2713                                 SetHPageRestoreReserve(page);
2714                 } else if (rc < 0) {
2715                         /*
2716                          * Rare out of memory condition from
2717                          * vma_needs_reservation call.  Memory allocation is
2718                          * only attempted if a new entry is needed.  Therefore,
2719                          * this implies there is not an entry in the
2720                          * reserve map.
2721                          *
2722                          * For shared mappings, no entry in the map indicates
2723                          * no reservation.  We are done.
2724                          */
2725                         if (!(vma->vm_flags & VM_MAYSHARE))
2726                                 /*
2727                                  * For private mappings, no entry indicates
2728                                  * a reservation is present.  Since we can
2729                                  * not add an entry, set SetHPageRestoreReserve
2730                                  * on the page so reserve count will be
2731                                  * incremented when freed.  This reserve will
2732                                  * be consumed on a subsequent allocation.
2733                                  */
2734                                 SetHPageRestoreReserve(page);
2735                 } else
2736                         /*
2737                          * No reservation present, do nothing
2738                          */
2739                          vma_end_reservation(h, vma, address);
2740         }
2741 }
2742
2743 /*
2744  * alloc_and_dissolve_hugetlb_folio - Allocate a new folio and dissolve
2745  * the old one
2746  * @h: struct hstate old page belongs to
2747  * @old_folio: Old folio to dissolve
2748  * @list: List to isolate the page in case we need to
2749  * Returns 0 on success, otherwise negated error.
2750  */
2751 static int alloc_and_dissolve_hugetlb_folio(struct hstate *h,
2752                         struct folio *old_folio, struct list_head *list)
2753 {
2754         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
2755         int nid = folio_nid(old_folio);
2756         struct folio *new_folio;
2757         int ret = 0;
2758
2759         /*
2760          * Before dissolving the folio, we need to allocate a new one for the
2761          * pool to remain stable.  Here, we allocate the folio and 'prep' it
2762          * by doing everything but actually updating counters and adding to
2763          * the pool.  This simplifies and let us do most of the processing
2764          * under the lock.
2765          */
2766         new_folio = alloc_buddy_hugetlb_folio(h, gfp_mask, nid, NULL, NULL);
2767         if (!new_folio)
2768                 return -ENOMEM;
2769         __prep_new_hugetlb_folio(h, new_folio);
2770
2771 retry:
2772         spin_lock_irq(&hugetlb_lock);
2773         if (!folio_test_hugetlb(old_folio)) {
2774                 /*
2775                  * Freed from under us. Drop new_folio too.
2776                  */
2777                 goto free_new;
2778         } else if (folio_ref_count(old_folio)) {
2779                 /*
2780                  * Someone has grabbed the folio, try to isolate it here.
2781                  * Fail with -EBUSY if not possible.
2782                  */
2783                 spin_unlock_irq(&hugetlb_lock);
2784                 ret = isolate_hugetlb(&old_folio->page, list);
2785                 spin_lock_irq(&hugetlb_lock);
2786                 goto free_new;
2787         } else if (!folio_test_hugetlb_freed(old_folio)) {
2788                 /*
2789                  * Folio's refcount is 0 but it has not been enqueued in the
2790                  * freelist yet. Race window is small, so we can succeed here if
2791                  * we retry.
2792                  */
2793                 spin_unlock_irq(&hugetlb_lock);
2794                 cond_resched();
2795                 goto retry;
2796         } else {
2797                 /*
2798                  * Ok, old_folio is still a genuine free hugepage. Remove it from
2799                  * the freelist and decrease the counters. These will be
2800                  * incremented again when calling __prep_account_new_huge_page()
2801                  * and enqueue_hugetlb_folio() for new_folio. The counters will
2802                  * remain stable since this happens under the lock.
2803                  */
2804                 remove_hugetlb_folio(h, old_folio, false);
2805
2806                 /*
2807                  * Ref count on new_folio is already zero as it was dropped
2808                  * earlier.  It can be directly added to the pool free list.
2809                  */
2810                 __prep_account_new_huge_page(h, nid);
2811                 enqueue_hugetlb_folio(h, new_folio);
2812
2813                 /*
2814                  * Folio has been replaced, we can safely free the old one.
2815                  */
2816                 spin_unlock_irq(&hugetlb_lock);
2817                 update_and_free_hugetlb_folio(h, old_folio, false);
2818         }
2819
2820         return ret;
2821
2822 free_new:
2823         spin_unlock_irq(&hugetlb_lock);
2824         /* Folio has a zero ref count, but needs a ref to be freed */
2825         folio_ref_unfreeze(new_folio, 1);
2826         update_and_free_hugetlb_folio(h, new_folio, false);
2827
2828         return ret;
2829 }
2830
2831 int isolate_or_dissolve_huge_page(struct page *page, struct list_head *list)
2832 {
2833         struct hstate *h;
2834         struct folio *folio = page_folio(page);
2835         int ret = -EBUSY;
2836
2837         /*
2838          * The page might have been dissolved from under our feet, so make sure
2839          * to carefully check the state under the lock.
2840          * Return success when racing as if we dissolved the page ourselves.
2841          */
2842         spin_lock_irq(&hugetlb_lock);
2843         if (folio_test_hugetlb(folio)) {
2844                 h = folio_hstate(folio);
2845         } else {
2846                 spin_unlock_irq(&hugetlb_lock);
2847                 return 0;
2848         }
2849         spin_unlock_irq(&hugetlb_lock);
2850
2851         /*
2852          * Fence off gigantic pages as there is a cyclic dependency between
2853          * alloc_contig_range and them. Return -ENOMEM as this has the effect
2854          * of bailing out right away without further retrying.
2855          */
2856         if (hstate_is_gigantic(h))
2857                 return -ENOMEM;
2858
2859         if (folio_ref_count(folio) && !isolate_hugetlb(&folio->page, list))
2860                 ret = 0;
2861         else if (!folio_ref_count(folio))
2862                 ret = alloc_and_dissolve_hugetlb_folio(h, folio, list);
2863
2864         return ret;
2865 }
2866
2867 struct page *alloc_huge_page(struct vm_area_struct *vma,
2868                                     unsigned long addr, int avoid_reserve)
2869 {
2870         struct hugepage_subpool *spool = subpool_vma(vma);
2871         struct hstate *h = hstate_vma(vma);
2872         struct page *page;
2873         struct folio *folio;
2874         long map_chg, map_commit;
2875         long gbl_chg;
2876         int ret, idx;
2877         struct hugetlb_cgroup *h_cg;
2878         bool deferred_reserve;
2879
2880         idx = hstate_index(h);
2881         /*
2882          * Examine the region/reserve map to determine if the process
2883          * has a reservation for the page to be allocated.  A return
2884          * code of zero indicates a reservation exists (no change).
2885          */
2886         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2887         if (map_chg < 0)
2888                 return ERR_PTR(-ENOMEM);
2889
2890         /*
2891          * Processes that did not create the mapping will have no
2892          * reserves as indicated by the region/reserve map. Check
2893          * that the allocation will not exceed the subpool limit.
2894          * Allocations for MAP_NORESERVE mappings also need to be
2895          * checked against any subpool limit.
2896          */
2897         if (map_chg || avoid_reserve) {
2898                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2899                 if (gbl_chg < 0) {
2900                         vma_end_reservation(h, vma, addr);
2901                         return ERR_PTR(-ENOSPC);
2902                 }
2903
2904                 /*
2905                  * Even though there was no reservation in the region/reserve
2906                  * map, there could be reservations associated with the
2907                  * subpool that can be used.  This would be indicated if the
2908                  * return value of hugepage_subpool_get_pages() is zero.
2909                  * However, if avoid_reserve is specified we still avoid even
2910                  * the subpool reservations.
2911                  */
2912                 if (avoid_reserve)
2913                         gbl_chg = 1;
2914         }
2915
2916         /* If this allocation is not consuming a reservation, charge it now.
2917          */
2918         deferred_reserve = map_chg || avoid_reserve;
2919         if (deferred_reserve) {
2920                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2921                         idx, pages_per_huge_page(h), &h_cg);
2922                 if (ret)
2923                         goto out_subpool_put;
2924         }
2925
2926         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2927         if (ret)
2928                 goto out_uncharge_cgroup_reservation;
2929
2930         spin_lock_irq(&hugetlb_lock);
2931         /*
2932          * glb_chg is passed to indicate whether or not a page must be taken
2933          * from the global free pool (global change).  gbl_chg == 0 indicates
2934          * a reservation exists for the allocation.
2935          */
2936         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2937         if (!page) {
2938                 spin_unlock_irq(&hugetlb_lock);
2939                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2940                 if (!page)
2941                         goto out_uncharge_cgroup;
2942                 spin_lock_irq(&hugetlb_lock);
2943                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2944                         SetHPageRestoreReserve(page);
2945                         h->resv_huge_pages--;
2946                 }
2947                 list_add(&page->lru, &h->hugepage_activelist);
2948                 set_page_refcounted(page);
2949                 /* Fall through */
2950         }
2951         folio = page_folio(page);
2952         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2953         /* If allocation is not consuming a reservation, also store the
2954          * hugetlb_cgroup pointer on the page.
2955          */
2956         if (deferred_reserve) {
2957                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2958                                                   h_cg, page);
2959         }
2960
2961         spin_unlock_irq(&hugetlb_lock);
2962
2963         hugetlb_set_page_subpool(page, spool);
2964
2965         map_commit = vma_commit_reservation(h, vma, addr);
2966         if (unlikely(map_chg > map_commit)) {
2967                 /*
2968                  * The page was added to the reservation map between
2969                  * vma_needs_reservation and vma_commit_reservation.
2970                  * This indicates a race with hugetlb_reserve_pages.
2971                  * Adjust for the subpool count incremented above AND
2972                  * in hugetlb_reserve_pages for the same page.  Also,
2973                  * the reservation count added in hugetlb_reserve_pages
2974                  * no longer applies.
2975                  */
2976                 long rsv_adjust;
2977
2978                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2979                 hugetlb_acct_memory(h, -rsv_adjust);
2980                 if (deferred_reserve)
2981                         hugetlb_cgroup_uncharge_folio_rsvd(hstate_index(h),
2982                                         pages_per_huge_page(h), folio);
2983         }
2984         return page;
2985
2986 out_uncharge_cgroup:
2987         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2988 out_uncharge_cgroup_reservation:
2989         if (deferred_reserve)
2990                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2991                                                     h_cg);
2992 out_subpool_put:
2993         if (map_chg || avoid_reserve)
2994                 hugepage_subpool_put_pages(spool, 1);
2995         vma_end_reservation(h, vma, addr);
2996         return ERR_PTR(-ENOSPC);
2997 }
2998
2999 int alloc_bootmem_huge_page(struct hstate *h, int nid)
3000         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
3001 int __alloc_bootmem_huge_page(struct hstate *h, int nid)
3002 {
3003         struct huge_bootmem_page *m = NULL; /* initialize for clang */
3004         int nr_nodes, node;
3005
3006         /* do node specific alloc */
3007         if (nid != NUMA_NO_NODE) {
3008                 m = memblock_alloc_try_nid_raw(huge_page_size(h), huge_page_size(h),
3009                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, nid);
3010                 if (!m)
3011                         return 0;
3012                 goto found;
3013         }
3014         /* allocate from next node when distributing huge pages */
3015         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
3016                 m = memblock_alloc_try_nid_raw(
3017                                 huge_page_size(h), huge_page_size(h),
3018                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
3019                 /*
3020                  * Use the beginning of the huge page to store the
3021                  * huge_bootmem_page struct (until gather_bootmem
3022                  * puts them into the mem_map).
3023                  */
3024                 if (!m)
3025                         return 0;
3026                 goto found;
3027         }
3028
3029 found:
3030         /* Put them into a private list first because mem_map is not up yet */
3031         INIT_LIST_HEAD(&m->list);
3032         list_add(&m->list, &huge_boot_pages);
3033         m->hstate = h;
3034         return 1;
3035 }
3036
3037 /*
3038  * Put bootmem huge pages into the standard lists after mem_map is up.
3039  * Note: This only applies to gigantic (order > MAX_ORDER) pages.
3040  */
3041 static void __init gather_bootmem_prealloc(void)
3042 {
3043         struct huge_bootmem_page *m;
3044
3045         list_for_each_entry(m, &huge_boot_pages, list) {
3046                 struct page *page = virt_to_page(m);
3047                 struct folio *folio = page_folio(page);
3048                 struct hstate *h = m->hstate;
3049
3050                 VM_BUG_ON(!hstate_is_gigantic(h));
3051                 WARN_ON(folio_ref_count(folio) != 1);
3052                 if (prep_compound_gigantic_folio(folio, huge_page_order(h))) {
3053                         WARN_ON(folio_test_reserved(folio));
3054                         prep_new_hugetlb_folio(h, folio, folio_nid(folio));
3055                         free_huge_page(page); /* add to the hugepage allocator */
3056                 } else {
3057                         /* VERY unlikely inflated ref count on a tail page */
3058                         free_gigantic_folio(folio, huge_page_order(h));
3059                 }
3060
3061                 /*
3062                  * We need to restore the 'stolen' pages to totalram_pages
3063                  * in order to fix confusing memory reports from free(1) and
3064                  * other side-effects, like CommitLimit going negative.
3065                  */
3066                 adjust_managed_page_count(page, pages_per_huge_page(h));
3067                 cond_resched();
3068         }
3069 }
3070 static void __init hugetlb_hstate_alloc_pages_onenode(struct hstate *h, int nid)
3071 {
3072         unsigned long i;
3073         char buf[32];
3074
3075         for (i = 0; i < h->max_huge_pages_node[nid]; ++i) {
3076                 if (hstate_is_gigantic(h)) {
3077                         if (!alloc_bootmem_huge_page(h, nid))
3078                                 break;
3079                 } else {
3080                         struct folio *folio;
3081                         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
3082
3083                         folio = alloc_fresh_hugetlb_folio(h, gfp_mask, nid,
3084                                         &node_states[N_MEMORY], NULL);
3085                         if (!folio)
3086                                 break;
3087                         free_huge_page(&folio->page); /* free it into the hugepage allocator */
3088                 }
3089                 cond_resched();
3090         }
3091         if (i == h->max_huge_pages_node[nid])
3092                 return;
3093
3094         string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3095         pr_warn("HugeTLB: allocating %u of page size %s failed node%d.  Only allocated %lu hugepages.\n",
3096                 h->max_huge_pages_node[nid], buf, nid, i);
3097         h->max_huge_pages -= (h->max_huge_pages_node[nid] - i);
3098         h->max_huge_pages_node[nid] = i;
3099 }
3100
3101 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
3102 {
3103         unsigned long i;
3104         nodemask_t *node_alloc_noretry;
3105         bool node_specific_alloc = false;
3106
3107         /* skip gigantic hugepages allocation if hugetlb_cma enabled */
3108         if (hstate_is_gigantic(h) && hugetlb_cma_size) {
3109                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
3110                 return;
3111         }
3112
3113         /* do node specific alloc */
3114         for_each_online_node(i) {
3115                 if (h->max_huge_pages_node[i] > 0) {
3116                         hugetlb_hstate_alloc_pages_onenode(h, i);
3117                         node_specific_alloc = true;
3118                 }
3119         }
3120
3121         if (node_specific_alloc)
3122                 return;
3123
3124         /* below will do all node balanced alloc */
3125         if (!hstate_is_gigantic(h)) {
3126                 /*
3127                  * Bit mask controlling how hard we retry per-node allocations.
3128                  * Ignore errors as lower level routines can deal with
3129                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
3130                  * time, we are likely in bigger trouble.
3131                  */
3132                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
3133                                                 GFP_KERNEL);
3134         } else {
3135                 /* allocations done at boot time */
3136                 node_alloc_noretry = NULL;
3137         }
3138
3139         /* bit mask controlling how hard we retry per-node allocations */
3140         if (node_alloc_noretry)
3141                 nodes_clear(*node_alloc_noretry);
3142
3143         for (i = 0; i < h->max_huge_pages; ++i) {
3144                 if (hstate_is_gigantic(h)) {
3145                         if (!alloc_bootmem_huge_page(h, NUMA_NO_NODE))
3146                                 break;
3147                 } else if (!alloc_pool_huge_page(h,
3148                                          &node_states[N_MEMORY],
3149                                          node_alloc_noretry))
3150                         break;
3151                 cond_resched();
3152         }
3153         if (i < h->max_huge_pages) {
3154                 char buf[32];
3155
3156                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3157                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
3158                         h->max_huge_pages, buf, i);
3159                 h->max_huge_pages = i;
3160         }
3161         kfree(node_alloc_noretry);
3162 }
3163
3164 static void __init hugetlb_init_hstates(void)
3165 {
3166         struct hstate *h, *h2;
3167
3168         for_each_hstate(h) {
3169                 /* oversize hugepages were init'ed in early boot */
3170                 if (!hstate_is_gigantic(h))
3171                         hugetlb_hstate_alloc_pages(h);
3172
3173                 /*
3174                  * Set demote order for each hstate.  Note that
3175                  * h->demote_order is initially 0.
3176                  * - We can not demote gigantic pages if runtime freeing
3177                  *   is not supported, so skip this.
3178                  * - If CMA allocation is possible, we can not demote
3179                  *   HUGETLB_PAGE_ORDER or smaller size pages.
3180                  */
3181                 if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3182                         continue;
3183                 if (hugetlb_cma_size && h->order <= HUGETLB_PAGE_ORDER)
3184                         continue;
3185                 for_each_hstate(h2) {
3186                         if (h2 == h)
3187                                 continue;
3188                         if (h2->order < h->order &&
3189                             h2->order > h->demote_order)
3190                                 h->demote_order = h2->order;
3191                 }
3192         }
3193 }
3194
3195 static void __init report_hugepages(void)
3196 {
3197         struct hstate *h;
3198
3199         for_each_hstate(h) {
3200                 char buf[32];
3201
3202                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
3203                 pr_info("HugeTLB: registered %s page size, pre-allocated %ld pages\n",
3204                         buf, h->free_huge_pages);
3205                 pr_info("HugeTLB: %d KiB vmemmap can be freed for a %s page\n",
3206                         hugetlb_vmemmap_optimizable_size(h) / SZ_1K, buf);
3207         }
3208 }
3209
3210 #ifdef CONFIG_HIGHMEM
3211 static void try_to_free_low(struct hstate *h, unsigned long count,
3212                                                 nodemask_t *nodes_allowed)
3213 {
3214         int i;
3215         LIST_HEAD(page_list);
3216
3217         lockdep_assert_held(&hugetlb_lock);
3218         if (hstate_is_gigantic(h))
3219                 return;
3220
3221         /*
3222          * Collect pages to be freed on a list, and free after dropping lock
3223          */
3224         for_each_node_mask(i, *nodes_allowed) {
3225                 struct page *page, *next;
3226                 struct list_head *freel = &h->hugepage_freelists[i];
3227                 list_for_each_entry_safe(page, next, freel, lru) {
3228                         if (count >= h->nr_huge_pages)
3229                                 goto out;
3230                         if (PageHighMem(page))
3231                                 continue;
3232                         remove_hugetlb_folio(h, page_folio(page), false);
3233                         list_add(&page->lru, &page_list);
3234                 }
3235         }
3236
3237 out:
3238         spin_unlock_irq(&hugetlb_lock);
3239         update_and_free_pages_bulk(h, &page_list);
3240         spin_lock_irq(&hugetlb_lock);
3241 }
3242 #else
3243 static inline void try_to_free_low(struct hstate *h, unsigned long count,
3244                                                 nodemask_t *nodes_allowed)
3245 {
3246 }
3247 #endif
3248
3249 /*
3250  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
3251  * balanced by operating on them in a round-robin fashion.
3252  * Returns 1 if an adjustment was made.
3253  */
3254 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
3255                                 int delta)
3256 {
3257         int nr_nodes, node;
3258
3259         lockdep_assert_held(&hugetlb_lock);
3260         VM_BUG_ON(delta != -1 && delta != 1);
3261
3262         if (delta < 0) {
3263                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
3264                         if (h->surplus_huge_pages_node[node])
3265                                 goto found;
3266                 }
3267         } else {
3268                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3269                         if (h->surplus_huge_pages_node[node] <
3270                                         h->nr_huge_pages_node[node])
3271                                 goto found;
3272                 }
3273         }
3274         return 0;
3275
3276 found:
3277         h->surplus_huge_pages += delta;
3278         h->surplus_huge_pages_node[node] += delta;
3279         return 1;
3280 }
3281
3282 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
3283 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
3284                               nodemask_t *nodes_allowed)
3285 {
3286         unsigned long min_count, ret;
3287         struct page *page;
3288         LIST_HEAD(page_list);
3289         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
3290
3291         /*
3292          * Bit mask controlling how hard we retry per-node allocations.
3293          * If we can not allocate the bit mask, do not attempt to allocate
3294          * the requested huge pages.
3295          */
3296         if (node_alloc_noretry)
3297                 nodes_clear(*node_alloc_noretry);
3298         else
3299                 return -ENOMEM;
3300
3301         /*
3302          * resize_lock mutex prevents concurrent adjustments to number of
3303          * pages in hstate via the proc/sysfs interfaces.
3304          */
3305         mutex_lock(&h->resize_lock);
3306         flush_free_hpage_work(h);
3307         spin_lock_irq(&hugetlb_lock);
3308
3309         /*
3310          * Check for a node specific request.
3311          * Changing node specific huge page count may require a corresponding
3312          * change to the global count.  In any case, the passed node mask
3313          * (nodes_allowed) will restrict alloc/free to the specified node.
3314          */
3315         if (nid != NUMA_NO_NODE) {
3316                 unsigned long old_count = count;
3317
3318                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
3319                 /*
3320                  * User may have specified a large count value which caused the
3321                  * above calculation to overflow.  In this case, they wanted
3322                  * to allocate as many huge pages as possible.  Set count to
3323                  * largest possible value to align with their intention.
3324                  */
3325                 if (count < old_count)
3326                         count = ULONG_MAX;
3327         }
3328
3329         /*
3330          * Gigantic pages runtime allocation depend on the capability for large
3331          * page range allocation.
3332          * If the system does not provide this feature, return an error when
3333          * the user tries to allocate gigantic pages but let the user free the
3334          * boottime allocated gigantic pages.
3335          */
3336         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
3337                 if (count > persistent_huge_pages(h)) {
3338                         spin_unlock_irq(&hugetlb_lock);
3339                         mutex_unlock(&h->resize_lock);
3340                         NODEMASK_FREE(node_alloc_noretry);
3341                         return -EINVAL;
3342                 }
3343                 /* Fall through to decrease pool */
3344         }
3345
3346         /*
3347          * Increase the pool size
3348          * First take pages out of surplus state.  Then make up the
3349          * remaining difference by allocating fresh huge pages.
3350          *
3351          * We might race with alloc_surplus_huge_page() here and be unable
3352          * to convert a surplus huge page to a normal huge page. That is
3353          * not critical, though, it just means the overall size of the
3354          * pool might be one hugepage larger than it needs to be, but
3355          * within all the constraints specified by the sysctls.
3356          */
3357         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
3358                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
3359                         break;
3360         }
3361
3362         while (count > persistent_huge_pages(h)) {
3363                 /*
3364                  * If this allocation races such that we no longer need the
3365                  * page, free_huge_page will handle it by freeing the page
3366                  * and reducing the surplus.
3367                  */
3368                 spin_unlock_irq(&hugetlb_lock);
3369
3370                 /* yield cpu to avoid soft lockup */
3371                 cond_resched();
3372
3373                 ret = alloc_pool_huge_page(h, nodes_allowed,
3374                                                 node_alloc_noretry);
3375                 spin_lock_irq(&hugetlb_lock);
3376                 if (!ret)
3377                         goto out;
3378
3379                 /* Bail for signals. Probably ctrl-c from user */
3380                 if (signal_pending(current))
3381                         goto out;
3382         }
3383
3384         /*
3385          * Decrease the pool size
3386          * First return free pages to the buddy allocator (being careful
3387          * to keep enough around to satisfy reservations).  Then place
3388          * pages into surplus state as needed so the pool will shrink
3389          * to the desired size as pages become free.
3390          *
3391          * By placing pages into the surplus state independent of the
3392          * overcommit value, we are allowing the surplus pool size to
3393          * exceed overcommit. There are few sane options here. Since
3394          * alloc_surplus_huge_page() is checking the global counter,
3395          * though, we'll note that we're not allowed to exceed surplus
3396          * and won't grow the pool anywhere else. Not until one of the
3397          * sysctls are changed, or the surplus pages go out of use.
3398          */
3399         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
3400         min_count = max(count, min_count);
3401         try_to_free_low(h, min_count, nodes_allowed);
3402
3403         /*
3404          * Collect pages to be removed on list without dropping lock
3405          */
3406         while (min_count < persistent_huge_pages(h)) {
3407                 page = remove_pool_huge_page(h, nodes_allowed, 0);
3408                 if (!page)
3409                         break;
3410
3411                 list_add(&page->lru, &page_list);
3412         }
3413         /* free the pages after dropping lock */
3414         spin_unlock_irq(&hugetlb_lock);
3415         update_and_free_pages_bulk(h, &page_list);
3416         flush_free_hpage_work(h);
3417         spin_lock_irq(&hugetlb_lock);
3418
3419         while (count < persistent_huge_pages(h)) {
3420                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
3421                         break;
3422         }
3423 out:
3424         h->max_huge_pages = persistent_huge_pages(h);
3425         spin_unlock_irq(&hugetlb_lock);
3426         mutex_unlock(&h->resize_lock);
3427
3428         NODEMASK_FREE(node_alloc_noretry);
3429
3430         return 0;
3431 }
3432
3433 static int demote_free_huge_page(struct hstate *h, struct page *page)
3434 {
3435         int i, nid = page_to_nid(page);
3436         struct hstate *target_hstate;
3437         struct folio *folio = page_folio(page);
3438         struct page *subpage;
3439         int rc = 0;
3440
3441         target_hstate = size_to_hstate(PAGE_SIZE << h->demote_order);
3442
3443         remove_hugetlb_folio_for_demote(h, folio, false);
3444         spin_unlock_irq(&hugetlb_lock);
3445
3446         rc = hugetlb_vmemmap_restore(h, page);
3447         if (rc) {
3448                 /* Allocation of vmemmmap failed, we can not demote page */
3449                 spin_lock_irq(&hugetlb_lock);
3450                 set_page_refcounted(page);
3451                 add_hugetlb_folio(h, page_folio(page), false);
3452                 return rc;
3453         }
3454
3455         /*
3456          * Use destroy_compound_hugetlb_folio_for_demote for all huge page
3457          * sizes as it will not ref count pages.
3458          */
3459         destroy_compound_hugetlb_folio_for_demote(folio, huge_page_order(h));
3460
3461         /*
3462          * Taking target hstate mutex synchronizes with set_max_huge_pages.
3463          * Without the mutex, pages added to target hstate could be marked
3464          * as surplus.
3465          *
3466          * Note that we already hold h->resize_lock.  To prevent deadlock,
3467          * use the convention of always taking larger size hstate mutex first.
3468          */
3469         mutex_lock(&target_hstate->resize_lock);
3470         for (i = 0; i < pages_per_huge_page(h);
3471                                 i += pages_per_huge_page(target_hstate)) {
3472                 subpage = nth_page(page, i);
3473                 folio = page_folio(subpage);
3474                 if (hstate_is_gigantic(target_hstate))
3475                         prep_compound_gigantic_folio_for_demote(folio,
3476                                                         target_hstate->order);
3477                 else
3478                         prep_compound_page(subpage, target_hstate->order);
3479                 set_page_private(subpage, 0);
3480                 prep_new_hugetlb_folio(target_hstate, folio, nid);
3481                 free_huge_page(subpage);
3482         }
3483         mutex_unlock(&target_hstate->resize_lock);
3484
3485         spin_lock_irq(&hugetlb_lock);
3486
3487         /*
3488          * Not absolutely necessary, but for consistency update max_huge_pages
3489          * based on pool changes for the demoted page.
3490          */
3491         h->max_huge_pages--;
3492         target_hstate->max_huge_pages +=
3493                 pages_per_huge_page(h) / pages_per_huge_page(target_hstate);
3494
3495         return rc;
3496 }
3497
3498 static int demote_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
3499         __must_hold(&hugetlb_lock)
3500 {
3501         int nr_nodes, node;
3502         struct page *page;
3503
3504         lockdep_assert_held(&hugetlb_lock);
3505
3506         /* We should never get here if no demote order */
3507         if (!h->demote_order) {
3508                 pr_warn("HugeTLB: NULL demote order passed to demote_pool_huge_page.\n");
3509                 return -EINVAL;         /* internal error */
3510         }
3511
3512         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
3513                 list_for_each_entry(page, &h->hugepage_freelists[node], lru) {
3514                         if (PageHWPoison(page))
3515                                 continue;
3516
3517                         return demote_free_huge_page(h, page);
3518                 }
3519         }
3520
3521         /*
3522          * Only way to get here is if all pages on free lists are poisoned.
3523          * Return -EBUSY so that caller will not retry.
3524          */
3525         return -EBUSY;
3526 }
3527
3528 #define HSTATE_ATTR_RO(_name) \
3529         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
3530
3531 #define HSTATE_ATTR_WO(_name) \
3532         static struct kobj_attribute _name##_attr = __ATTR_WO(_name)
3533
3534 #define HSTATE_ATTR(_name) \
3535         static struct kobj_attribute _name##_attr = __ATTR_RW(_name)
3536
3537 static struct kobject *hugepages_kobj;
3538 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
3539
3540 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
3541
3542 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
3543 {
3544         int i;
3545
3546         for (i = 0; i < HUGE_MAX_HSTATE; i++)
3547                 if (hstate_kobjs[i] == kobj) {
3548                         if (nidp)
3549                                 *nidp = NUMA_NO_NODE;
3550                         return &hstates[i];
3551                 }
3552
3553         return kobj_to_node_hstate(kobj, nidp);
3554 }
3555
3556 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
3557                                         struct kobj_attribute *attr, char *buf)
3558 {
3559         struct hstate *h;
3560         unsigned long nr_huge_pages;
3561         int nid;
3562
3563         h = kobj_to_hstate(kobj, &nid);
3564         if (nid == NUMA_NO_NODE)
3565                 nr_huge_pages = h->nr_huge_pages;
3566         else
3567                 nr_huge_pages = h->nr_huge_pages_node[nid];
3568
3569         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
3570 }
3571
3572 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
3573                                            struct hstate *h, int nid,
3574                                            unsigned long count, size_t len)
3575 {
3576         int err;
3577         nodemask_t nodes_allowed, *n_mask;
3578
3579         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
3580                 return -EINVAL;
3581
3582         if (nid == NUMA_NO_NODE) {
3583                 /*
3584                  * global hstate attribute
3585                  */
3586                 if (!(obey_mempolicy &&
3587                                 init_nodemask_of_mempolicy(&nodes_allowed)))
3588                         n_mask = &node_states[N_MEMORY];
3589                 else
3590                         n_mask = &nodes_allowed;
3591         } else {
3592                 /*
3593                  * Node specific request.  count adjustment happens in
3594                  * set_max_huge_pages() after acquiring hugetlb_lock.
3595                  */
3596                 init_nodemask_of_node(&nodes_allowed, nid);
3597                 n_mask = &nodes_allowed;
3598         }
3599
3600         err = set_max_huge_pages(h, count, nid, n_mask);
3601
3602         return err ? err : len;
3603 }
3604
3605 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
3606                                          struct kobject *kobj, const char *buf,
3607                                          size_t len)
3608 {
3609         struct hstate *h;
3610         unsigned long count;
3611         int nid;
3612         int err;
3613
3614         err = kstrtoul(buf, 10, &count);
3615         if (err)
3616                 return err;
3617
3618         h = kobj_to_hstate(kobj, &nid);
3619         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
3620 }
3621
3622 static ssize_t nr_hugepages_show(struct kobject *kobj,
3623                                        struct kobj_attribute *attr, char *buf)
3624 {
3625         return nr_hugepages_show_common(kobj, attr, buf);
3626 }
3627
3628 static ssize_t nr_hugepages_store(struct kobject *kobj,
3629                struct kobj_attribute *attr, const char *buf, size_t len)
3630 {
3631         return nr_hugepages_store_common(false, kobj, buf, len);
3632 }
3633 HSTATE_ATTR(nr_hugepages);
3634
3635 #ifdef CONFIG_NUMA
3636
3637 /*
3638  * hstate attribute for optionally mempolicy-based constraint on persistent
3639  * huge page alloc/free.
3640  */
3641 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
3642                                            struct kobj_attribute *attr,
3643                                            char *buf)
3644 {
3645         return nr_hugepages_show_common(kobj, attr, buf);
3646 }
3647
3648 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
3649                struct kobj_attribute *attr, const char *buf, size_t len)
3650 {
3651         return nr_hugepages_store_common(true, kobj, buf, len);
3652 }
3653 HSTATE_ATTR(nr_hugepages_mempolicy);
3654 #endif
3655
3656
3657 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
3658                                         struct kobj_attribute *attr, char *buf)
3659 {
3660         struct hstate *h = kobj_to_hstate(kobj, NULL);
3661         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
3662 }
3663
3664 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
3665                 struct kobj_attribute *attr, const char *buf, size_t count)
3666 {
3667         int err;
3668         unsigned long input;
3669         struct hstate *h = kobj_to_hstate(kobj, NULL);
3670
3671         if (hstate_is_gigantic(h))
3672                 return -EINVAL;
3673
3674         err = kstrtoul(buf, 10, &input);
3675         if (err)
3676                 return err;
3677
3678         spin_lock_irq(&hugetlb_lock);
3679         h->nr_overcommit_huge_pages = input;
3680         spin_unlock_irq(&hugetlb_lock);
3681
3682         return count;
3683 }
3684 HSTATE_ATTR(nr_overcommit_hugepages);
3685
3686 static ssize_t free_hugepages_show(struct kobject *kobj,
3687                                         struct kobj_attribute *attr, char *buf)
3688 {
3689         struct hstate *h;
3690         unsigned long free_huge_pages;
3691         int nid;
3692
3693         h = kobj_to_hstate(kobj, &nid);
3694         if (nid == NUMA_NO_NODE)
3695                 free_huge_pages = h->free_huge_pages;
3696         else
3697                 free_huge_pages = h->free_huge_pages_node[nid];
3698
3699         return sysfs_emit(buf, "%lu\n", free_huge_pages);
3700 }
3701 HSTATE_ATTR_RO(free_hugepages);
3702
3703 static ssize_t resv_hugepages_show(struct kobject *kobj,
3704                                         struct kobj_attribute *attr, char *buf)
3705 {
3706         struct hstate *h = kobj_to_hstate(kobj, NULL);
3707         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
3708 }
3709 HSTATE_ATTR_RO(resv_hugepages);
3710
3711 static ssize_t surplus_hugepages_show(struct kobject *kobj,
3712                                         struct kobj_attribute *attr, char *buf)
3713 {
3714         struct hstate *h;
3715         unsigned long surplus_huge_pages;
3716         int nid;
3717
3718         h = kobj_to_hstate(kobj, &nid);
3719         if (nid == NUMA_NO_NODE)
3720                 surplus_huge_pages = h->surplus_huge_pages;
3721         else
3722                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
3723
3724         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
3725 }
3726 HSTATE_ATTR_RO(surplus_hugepages);
3727
3728 static ssize_t demote_store(struct kobject *kobj,
3729                struct kobj_attribute *attr, const char *buf, size_t len)
3730 {
3731         unsigned long nr_demote;
3732         unsigned long nr_available;
3733         nodemask_t nodes_allowed, *n_mask;
3734         struct hstate *h;
3735         int err;
3736         int nid;
3737
3738         err = kstrtoul(buf, 10, &nr_demote);
3739         if (err)
3740                 return err;
3741         h = kobj_to_hstate(kobj, &nid);
3742
3743         if (nid != NUMA_NO_NODE) {
3744                 init_nodemask_of_node(&nodes_allowed, nid);
3745                 n_mask = &nodes_allowed;
3746         } else {
3747                 n_mask = &node_states[N_MEMORY];
3748         }
3749
3750         /* Synchronize with other sysfs operations modifying huge pages */
3751         mutex_lock(&h->resize_lock);
3752         spin_lock_irq(&hugetlb_lock);
3753
3754         while (nr_demote) {
3755                 /*
3756                  * Check for available pages to demote each time thorough the
3757                  * loop as demote_pool_huge_page will drop hugetlb_lock.
3758                  */
3759                 if (nid != NUMA_NO_NODE)
3760                         nr_available = h->free_huge_pages_node[nid];
3761                 else
3762                         nr_available = h->free_huge_pages;
3763                 nr_available -= h->resv_huge_pages;
3764                 if (!nr_available)
3765                         break;
3766
3767                 err = demote_pool_huge_page(h, n_mask);
3768                 if (err)
3769                         break;
3770
3771                 nr_demote--;
3772         }
3773
3774         spin_unlock_irq(&hugetlb_lock);
3775         mutex_unlock(&h->resize_lock);
3776
3777         if (err)
3778                 return err;
3779         return len;
3780 }
3781 HSTATE_ATTR_WO(demote);
3782
3783 static ssize_t demote_size_show(struct kobject *kobj,
3784                                         struct kobj_attribute *attr, char *buf)
3785 {
3786         struct hstate *h = kobj_to_hstate(kobj, NULL);
3787         unsigned long demote_size = (PAGE_SIZE << h->demote_order) / SZ_1K;
3788
3789         return sysfs_emit(buf, "%lukB\n", demote_size);
3790 }
3791
3792 static ssize_t demote_size_store(struct kobject *kobj,
3793                                         struct kobj_attribute *attr,
3794                                         const char *buf, size_t count)
3795 {
3796         struct hstate *h, *demote_hstate;
3797         unsigned long demote_size;
3798         unsigned int demote_order;
3799
3800         demote_size = (unsigned long)memparse(buf, NULL);
3801
3802         demote_hstate = size_to_hstate(demote_size);
3803         if (!demote_hstate)
3804                 return -EINVAL;
3805         demote_order = demote_hstate->order;
3806         if (demote_order < HUGETLB_PAGE_ORDER)
3807                 return -EINVAL;
3808
3809         /* demote order must be smaller than hstate order */
3810         h = kobj_to_hstate(kobj, NULL);
3811         if (demote_order >= h->order)
3812                 return -EINVAL;
3813
3814         /* resize_lock synchronizes access to demote size and writes */
3815         mutex_lock(&h->resize_lock);
3816         h->demote_order = demote_order;
3817         mutex_unlock(&h->resize_lock);
3818
3819         return count;
3820 }
3821 HSTATE_ATTR(demote_size);
3822
3823 static struct attribute *hstate_attrs[] = {
3824         &nr_hugepages_attr.attr,
3825         &nr_overcommit_hugepages_attr.attr,
3826         &free_hugepages_attr.attr,
3827         &resv_hugepages_attr.attr,
3828         &surplus_hugepages_attr.attr,
3829 #ifdef CONFIG_NUMA
3830         &nr_hugepages_mempolicy_attr.attr,
3831 #endif
3832         NULL,
3833 };
3834
3835 static const struct attribute_group hstate_attr_group = {
3836         .attrs = hstate_attrs,
3837 };
3838
3839 static struct attribute *hstate_demote_attrs[] = {
3840         &demote_size_attr.attr,
3841         &demote_attr.attr,
3842         NULL,
3843 };
3844
3845 static const struct attribute_group hstate_demote_attr_group = {
3846         .attrs = hstate_demote_attrs,
3847 };
3848
3849 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
3850                                     struct kobject **hstate_kobjs,
3851                                     const struct attribute_group *hstate_attr_group)
3852 {
3853         int retval;
3854         int hi = hstate_index(h);
3855
3856         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
3857         if (!hstate_kobjs[hi])
3858                 return -ENOMEM;
3859
3860         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
3861         if (retval) {
3862                 kobject_put(hstate_kobjs[hi]);
3863                 hstate_kobjs[hi] = NULL;
3864                 return retval;
3865         }
3866
3867         if (h->demote_order) {
3868                 retval = sysfs_create_group(hstate_kobjs[hi],
3869                                             &hstate_demote_attr_group);
3870                 if (retval) {
3871                         pr_warn("HugeTLB unable to create demote interfaces for %s\n", h->name);
3872                         sysfs_remove_group(hstate_kobjs[hi], hstate_attr_group);
3873                         kobject_put(hstate_kobjs[hi]);
3874                         hstate_kobjs[hi] = NULL;
3875                         return retval;
3876                 }
3877         }
3878
3879         return 0;
3880 }
3881
3882 #ifdef CONFIG_NUMA
3883 static bool hugetlb_sysfs_initialized __ro_after_init;
3884
3885 /*
3886  * node_hstate/s - associate per node hstate attributes, via their kobjects,
3887  * with node devices in node_devices[] using a parallel array.  The array
3888  * index of a node device or _hstate == node id.
3889  * This is here to avoid any static dependency of the node device driver, in
3890  * the base kernel, on the hugetlb module.
3891  */
3892 struct node_hstate {
3893         struct kobject          *hugepages_kobj;
3894         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
3895 };
3896 static struct node_hstate node_hstates[MAX_NUMNODES];
3897
3898 /*
3899  * A subset of global hstate attributes for node devices
3900  */
3901 static struct attribute *per_node_hstate_attrs[] = {
3902         &nr_hugepages_attr.attr,
3903         &free_hugepages_attr.attr,
3904         &surplus_hugepages_attr.attr,
3905         NULL,
3906 };
3907
3908 static const struct attribute_group per_node_hstate_attr_group = {
3909         .attrs = per_node_hstate_attrs,
3910 };
3911
3912 /*
3913  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
3914  * Returns node id via non-NULL nidp.
3915  */
3916 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3917 {
3918         int nid;
3919
3920         for (nid = 0; nid < nr_node_ids; nid++) {
3921                 struct node_hstate *nhs = &node_hstates[nid];
3922                 int i;
3923                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3924                         if (nhs->hstate_kobjs[i] == kobj) {
3925                                 if (nidp)
3926                                         *nidp = nid;
3927                                 return &hstates[i];
3928                         }
3929         }
3930
3931         BUG();
3932         return NULL;
3933 }
3934
3935 /*
3936  * Unregister hstate attributes from a single node device.
3937  * No-op if no hstate attributes attached.
3938  */
3939 void hugetlb_unregister_node(struct node *node)
3940 {
3941         struct hstate *h;
3942         struct node_hstate *nhs = &node_hstates[node->dev.id];
3943
3944         if (!nhs->hugepages_kobj)
3945                 return;         /* no hstate attributes */
3946
3947         for_each_hstate(h) {
3948                 int idx = hstate_index(h);
3949                 struct kobject *hstate_kobj = nhs->hstate_kobjs[idx];
3950
3951                 if (!hstate_kobj)
3952                         continue;
3953                 if (h->demote_order)
3954                         sysfs_remove_group(hstate_kobj, &hstate_demote_attr_group);
3955                 sysfs_remove_group(hstate_kobj, &per_node_hstate_attr_group);
3956                 kobject_put(hstate_kobj);
3957                 nhs->hstate_kobjs[idx] = NULL;
3958         }
3959
3960         kobject_put(nhs->hugepages_kobj);
3961         nhs->hugepages_kobj = NULL;
3962 }
3963
3964
3965 /*
3966  * Register hstate attributes for a single node device.
3967  * No-op if attributes already registered.
3968  */
3969 void hugetlb_register_node(struct node *node)
3970 {
3971         struct hstate *h;
3972         struct node_hstate *nhs = &node_hstates[node->dev.id];
3973         int err;
3974
3975         if (!hugetlb_sysfs_initialized)
3976                 return;
3977
3978         if (nhs->hugepages_kobj)
3979                 return;         /* already allocated */
3980
3981         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3982                                                         &node->dev.kobj);
3983         if (!nhs->hugepages_kobj)
3984                 return;
3985
3986         for_each_hstate(h) {
3987                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3988                                                 nhs->hstate_kobjs,
3989                                                 &per_node_hstate_attr_group);
3990                 if (err) {
3991                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3992                                 h->name, node->dev.id);
3993                         hugetlb_unregister_node(node);
3994                         break;
3995                 }
3996         }
3997 }
3998
3999 /*
4000  * hugetlb init time:  register hstate attributes for all registered node
4001  * devices of nodes that have memory.  All on-line nodes should have
4002  * registered their associated device by this time.
4003  */
4004 static void __init hugetlb_register_all_nodes(void)
4005 {
4006         int nid;
4007
4008         for_each_online_node(nid)
4009                 hugetlb_register_node(node_devices[nid]);
4010 }
4011 #else   /* !CONFIG_NUMA */
4012
4013 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
4014 {
4015         BUG();
4016         if (nidp)
4017                 *nidp = -1;
4018         return NULL;
4019 }
4020
4021 static void hugetlb_register_all_nodes(void) { }
4022
4023 #endif
4024
4025 #ifdef CONFIG_CMA
4026 static void __init hugetlb_cma_check(void);
4027 #else
4028 static inline __init void hugetlb_cma_check(void)
4029 {
4030 }
4031 #endif
4032
4033 static void __init hugetlb_sysfs_init(void)
4034 {
4035         struct hstate *h;
4036         int err;
4037
4038         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
4039         if (!hugepages_kobj)
4040                 return;
4041
4042         for_each_hstate(h) {
4043                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
4044                                          hstate_kobjs, &hstate_attr_group);
4045                 if (err)
4046                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
4047         }
4048
4049 #ifdef CONFIG_NUMA
4050         hugetlb_sysfs_initialized = true;
4051 #endif
4052         hugetlb_register_all_nodes();
4053 }
4054
4055 static int __init hugetlb_init(void)
4056 {
4057         int i;
4058
4059         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
4060                         __NR_HPAGEFLAGS);
4061
4062         if (!hugepages_supported()) {
4063                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
4064                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
4065                 return 0;
4066         }
4067
4068         /*
4069          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
4070          * architectures depend on setup being done here.
4071          */
4072         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
4073         if (!parsed_default_hugepagesz) {
4074                 /*
4075                  * If we did not parse a default huge page size, set
4076                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
4077                  * number of huge pages for this default size was implicitly
4078                  * specified, set that here as well.
4079                  * Note that the implicit setting will overwrite an explicit
4080                  * setting.  A warning will be printed in this case.
4081                  */
4082                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
4083                 if (default_hstate_max_huge_pages) {
4084                         if (default_hstate.max_huge_pages) {
4085                                 char buf[32];
4086
4087                                 string_get_size(huge_page_size(&default_hstate),
4088                                         1, STRING_UNITS_2, buf, 32);
4089                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
4090                                         default_hstate.max_huge_pages, buf);
4091                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
4092                                         default_hstate_max_huge_pages);
4093                         }
4094                         default_hstate.max_huge_pages =
4095                                 default_hstate_max_huge_pages;
4096
4097                         for_each_online_node(i)
4098                                 default_hstate.max_huge_pages_node[i] =
4099                                         default_hugepages_in_node[i];
4100                 }
4101         }
4102
4103         hugetlb_cma_check();
4104         hugetlb_init_hstates();
4105         gather_bootmem_prealloc();
4106         report_hugepages();
4107
4108         hugetlb_sysfs_init();
4109         hugetlb_cgroup_file_init();
4110
4111 #ifdef CONFIG_SMP
4112         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
4113 #else
4114         num_fault_mutexes = 1;
4115 #endif
4116         hugetlb_fault_mutex_table =
4117                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
4118                               GFP_KERNEL);
4119         BUG_ON(!hugetlb_fault_mutex_table);
4120
4121         for (i = 0; i < num_fault_mutexes; i++)
4122                 mutex_init(&hugetlb_fault_mutex_table[i]);
4123         return 0;
4124 }
4125 subsys_initcall(hugetlb_init);
4126
4127 /* Overwritten by architectures with more huge page sizes */
4128 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
4129 {
4130         return size == HPAGE_SIZE;
4131 }
4132
4133 void __init hugetlb_add_hstate(unsigned int order)
4134 {
4135         struct hstate *h;
4136         unsigned long i;
4137
4138         if (size_to_hstate(PAGE_SIZE << order)) {
4139                 return;
4140         }
4141         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
4142         BUG_ON(order == 0);
4143         h = &hstates[hugetlb_max_hstate++];
4144         mutex_init(&h->resize_lock);
4145         h->order = order;
4146         h->mask = ~(huge_page_size(h) - 1);
4147         for (i = 0; i < MAX_NUMNODES; ++i)
4148                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
4149         INIT_LIST_HEAD(&h->hugepage_activelist);
4150         h->next_nid_to_alloc = first_memory_node;
4151         h->next_nid_to_free = first_memory_node;
4152         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
4153                                         huge_page_size(h)/SZ_1K);
4154
4155         parsed_hstate = h;
4156 }
4157
4158 bool __init __weak hugetlb_node_alloc_supported(void)
4159 {
4160         return true;
4161 }
4162
4163 static void __init hugepages_clear_pages_in_node(void)
4164 {
4165         if (!hugetlb_max_hstate) {
4166                 default_hstate_max_huge_pages = 0;
4167                 memset(default_hugepages_in_node, 0,
4168                         sizeof(default_hugepages_in_node));
4169         } else {
4170                 parsed_hstate->max_huge_pages = 0;
4171                 memset(parsed_hstate->max_huge_pages_node, 0,
4172                         sizeof(parsed_hstate->max_huge_pages_node));
4173         }
4174 }
4175
4176 /*
4177  * hugepages command line processing
4178  * hugepages normally follows a valid hugepagsz or default_hugepagsz
4179  * specification.  If not, ignore the hugepages value.  hugepages can also
4180  * be the first huge page command line  option in which case it implicitly
4181  * specifies the number of huge pages for the default size.
4182  */
4183 static int __init hugepages_setup(char *s)
4184 {
4185         unsigned long *mhp;
4186         static unsigned long *last_mhp;
4187         int node = NUMA_NO_NODE;
4188         int count;
4189         unsigned long tmp;
4190         char *p = s;
4191
4192         if (!parsed_valid_hugepagesz) {
4193                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
4194                 parsed_valid_hugepagesz = true;
4195                 return 1;
4196         }
4197
4198         /*
4199          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
4200          * yet, so this hugepages= parameter goes to the "default hstate".
4201          * Otherwise, it goes with the previously parsed hugepagesz or
4202          * default_hugepagesz.
4203          */
4204         else if (!hugetlb_max_hstate)
4205                 mhp = &default_hstate_max_huge_pages;
4206         else
4207                 mhp = &parsed_hstate->max_huge_pages;
4208
4209         if (mhp == last_mhp) {
4210                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
4211                 return 1;
4212         }
4213
4214         while (*p) {
4215                 count = 0;
4216                 if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4217                         goto invalid;
4218                 /* Parameter is node format */
4219                 if (p[count] == ':') {
4220                         if (!hugetlb_node_alloc_supported()) {
4221                                 pr_warn("HugeTLB: architecture can't support node specific alloc, ignoring!\n");
4222                                 return 1;
4223                         }
4224                         if (tmp >= MAX_NUMNODES || !node_online(tmp))
4225                                 goto invalid;
4226                         node = array_index_nospec(tmp, MAX_NUMNODES);
4227                         p += count + 1;
4228                         /* Parse hugepages */
4229                         if (sscanf(p, "%lu%n", &tmp, &count) != 1)
4230                                 goto invalid;
4231                         if (!hugetlb_max_hstate)
4232                                 default_hugepages_in_node[node] = tmp;
4233                         else
4234                                 parsed_hstate->max_huge_pages_node[node] = tmp;
4235                         *mhp += tmp;
4236                         /* Go to parse next node*/
4237                         if (p[count] == ',')
4238                                 p += count + 1;
4239                         else
4240                                 break;
4241                 } else {
4242                         if (p != s)
4243                                 goto invalid;
4244                         *mhp = tmp;
4245                         break;
4246                 }
4247         }
4248
4249         /*
4250          * Global state is always initialized later in hugetlb_init.
4251          * But we need to allocate gigantic hstates here early to still
4252          * use the bootmem allocator.
4253          */
4254         if (hugetlb_max_hstate && hstate_is_gigantic(parsed_hstate))
4255                 hugetlb_hstate_alloc_pages(parsed_hstate);
4256
4257         last_mhp = mhp;
4258
4259         return 1;
4260
4261 invalid:
4262         pr_warn("HugeTLB: Invalid hugepages parameter %s\n", p);
4263         hugepages_clear_pages_in_node();
4264         return 1;
4265 }
4266 __setup("hugepages=", hugepages_setup);
4267
4268 /*
4269  * hugepagesz command line processing
4270  * A specific huge page size can only be specified once with hugepagesz.
4271  * hugepagesz is followed by hugepages on the command line.  The global
4272  * variable 'parsed_valid_hugepagesz' is used to determine if prior
4273  * hugepagesz argument was valid.
4274  */
4275 static int __init hugepagesz_setup(char *s)
4276 {
4277         unsigned long size;
4278         struct hstate *h;
4279
4280         parsed_valid_hugepagesz = false;
4281         size = (unsigned long)memparse(s, NULL);
4282
4283         if (!arch_hugetlb_valid_size(size)) {
4284                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
4285                 return 1;
4286         }
4287
4288         h = size_to_hstate(size);
4289         if (h) {
4290                 /*
4291                  * hstate for this size already exists.  This is normally
4292                  * an error, but is allowed if the existing hstate is the
4293                  * default hstate.  More specifically, it is only allowed if
4294                  * the number of huge pages for the default hstate was not
4295                  * previously specified.
4296                  */
4297                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
4298                     default_hstate.max_huge_pages) {
4299                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
4300                         return 1;
4301                 }
4302
4303                 /*
4304                  * No need to call hugetlb_add_hstate() as hstate already
4305                  * exists.  But, do set parsed_hstate so that a following
4306                  * hugepages= parameter will be applied to this hstate.
4307                  */
4308                 parsed_hstate = h;
4309                 parsed_valid_hugepagesz = true;
4310                 return 1;
4311         }
4312
4313         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4314         parsed_valid_hugepagesz = true;
4315         return 1;
4316 }
4317 __setup("hugepagesz=", hugepagesz_setup);
4318
4319 /*
4320  * default_hugepagesz command line input
4321  * Only one instance of default_hugepagesz allowed on command line.
4322  */
4323 static int __init default_hugepagesz_setup(char *s)
4324 {
4325         unsigned long size;
4326         int i;
4327
4328         parsed_valid_hugepagesz = false;
4329         if (parsed_default_hugepagesz) {
4330                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
4331                 return 1;
4332         }
4333
4334         size = (unsigned long)memparse(s, NULL);
4335
4336         if (!arch_hugetlb_valid_size(size)) {
4337                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
4338                 return 1;
4339         }
4340
4341         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
4342         parsed_valid_hugepagesz = true;
4343         parsed_default_hugepagesz = true;
4344         default_hstate_idx = hstate_index(size_to_hstate(size));
4345
4346         /*
4347          * The number of default huge pages (for this size) could have been
4348          * specified as the first hugetlb parameter: hugepages=X.  If so,
4349          * then default_hstate_max_huge_pages is set.  If the default huge
4350          * page size is gigantic (>= MAX_ORDER), then the pages must be
4351          * allocated here from bootmem allocator.
4352          */
4353         if (default_hstate_max_huge_pages) {
4354                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
4355                 for_each_online_node(i)
4356                         default_hstate.max_huge_pages_node[i] =
4357                                 default_hugepages_in_node[i];
4358                 if (hstate_is_gigantic(&default_hstate))
4359                         hugetlb_hstate_alloc_pages(&default_hstate);
4360                 default_hstate_max_huge_pages = 0;
4361         }
4362
4363         return 1;
4364 }
4365 __setup("default_hugepagesz=", default_hugepagesz_setup);
4366
4367 static nodemask_t *policy_mbind_nodemask(gfp_t gfp)
4368 {
4369 #ifdef CONFIG_NUMA
4370         struct mempolicy *mpol = get_task_policy(current);
4371
4372         /*
4373          * Only enforce MPOL_BIND policy which overlaps with cpuset policy
4374          * (from policy_nodemask) specifically for hugetlb case
4375          */
4376         if (mpol->mode == MPOL_BIND &&
4377                 (apply_policy_zone(mpol, gfp_zone(gfp)) &&
4378                  cpuset_nodemask_valid_mems_allowed(&mpol->nodes)))
4379                 return &mpol->nodes;
4380 #endif
4381         return NULL;
4382 }
4383
4384 static unsigned int allowed_mems_nr(struct hstate *h)
4385 {
4386         int node;
4387         unsigned int nr = 0;
4388         nodemask_t *mbind_nodemask;
4389         unsigned int *array = h->free_huge_pages_node;
4390         gfp_t gfp_mask = htlb_alloc_mask(h);
4391
4392         mbind_nodemask = policy_mbind_nodemask(gfp_mask);
4393         for_each_node_mask(node, cpuset_current_mems_allowed) {
4394                 if (!mbind_nodemask || node_isset(node, *mbind_nodemask))
4395                         nr += array[node];
4396         }
4397
4398         return nr;
4399 }
4400
4401 #ifdef CONFIG_SYSCTL
4402 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
4403                                           void *buffer, size_t *length,
4404                                           loff_t *ppos, unsigned long *out)
4405 {
4406         struct ctl_table dup_table;
4407
4408         /*
4409          * In order to avoid races with __do_proc_doulongvec_minmax(), we
4410          * can duplicate the @table and alter the duplicate of it.
4411          */
4412         dup_table = *table;
4413         dup_table.data = out;
4414
4415         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
4416 }
4417
4418 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
4419                          struct ctl_table *table, int write,
4420                          void *buffer, size_t *length, loff_t *ppos)
4421 {
4422         struct hstate *h = &default_hstate;
4423         unsigned long tmp = h->max_huge_pages;
4424         int ret;
4425
4426         if (!hugepages_supported())
4427                 return -EOPNOTSUPP;
4428
4429         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4430                                              &tmp);
4431         if (ret)
4432                 goto out;
4433
4434         if (write)
4435                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
4436                                                   NUMA_NO_NODE, tmp, *length);
4437 out:
4438         return ret;
4439 }
4440
4441 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
4442                           void *buffer, size_t *length, loff_t *ppos)
4443 {
4444
4445         return hugetlb_sysctl_handler_common(false, table, write,
4446                                                         buffer, length, ppos);
4447 }
4448
4449 #ifdef CONFIG_NUMA
4450 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
4451                           void *buffer, size_t *length, loff_t *ppos)
4452 {
4453         return hugetlb_sysctl_handler_common(true, table, write,
4454                                                         buffer, length, ppos);
4455 }
4456 #endif /* CONFIG_NUMA */
4457
4458 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
4459                 void *buffer, size_t *length, loff_t *ppos)
4460 {
4461         struct hstate *h = &default_hstate;
4462         unsigned long tmp;
4463         int ret;
4464
4465         if (!hugepages_supported())
4466                 return -EOPNOTSUPP;
4467
4468         tmp = h->nr_overcommit_huge_pages;
4469
4470         if (write && hstate_is_gigantic(h))
4471                 return -EINVAL;
4472
4473         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
4474                                              &tmp);
4475         if (ret)
4476                 goto out;
4477
4478         if (write) {
4479                 spin_lock_irq(&hugetlb_lock);
4480                 h->nr_overcommit_huge_pages = tmp;
4481                 spin_unlock_irq(&hugetlb_lock);
4482         }
4483 out:
4484         return ret;
4485 }
4486
4487 #endif /* CONFIG_SYSCTL */
4488
4489 void hugetlb_report_meminfo(struct seq_file *m)
4490 {
4491         struct hstate *h;
4492         unsigned long total = 0;
4493
4494         if (!hugepages_supported())
4495                 return;
4496
4497         for_each_hstate(h) {
4498                 unsigned long count = h->nr_huge_pages;
4499
4500                 total += huge_page_size(h) * count;
4501
4502                 if (h == &default_hstate)
4503                         seq_printf(m,
4504                                    "HugePages_Total:   %5lu\n"
4505                                    "HugePages_Free:    %5lu\n"
4506                                    "HugePages_Rsvd:    %5lu\n"
4507                                    "HugePages_Surp:    %5lu\n"
4508                                    "Hugepagesize:   %8lu kB\n",
4509                                    count,
4510                                    h->free_huge_pages,
4511                                    h->resv_huge_pages,
4512                                    h->surplus_huge_pages,
4513                                    huge_page_size(h) / SZ_1K);
4514         }
4515
4516         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
4517 }
4518
4519 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
4520 {
4521         struct hstate *h = &default_hstate;
4522
4523         if (!hugepages_supported())
4524                 return 0;
4525
4526         return sysfs_emit_at(buf, len,
4527                              "Node %d HugePages_Total: %5u\n"
4528                              "Node %d HugePages_Free:  %5u\n"
4529                              "Node %d HugePages_Surp:  %5u\n",
4530                              nid, h->nr_huge_pages_node[nid],
4531                              nid, h->free_huge_pages_node[nid],
4532                              nid, h->surplus_huge_pages_node[nid]);
4533 }
4534
4535 void hugetlb_show_meminfo_node(int nid)
4536 {
4537         struct hstate *h;
4538
4539         if (!hugepages_supported())
4540                 return;
4541
4542         for_each_hstate(h)
4543                 printk("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
4544                         nid,
4545                         h->nr_huge_pages_node[nid],
4546                         h->free_huge_pages_node[nid],
4547                         h->surplus_huge_pages_node[nid],
4548                         huge_page_size(h) / SZ_1K);
4549 }
4550
4551 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
4552 {
4553         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
4554                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
4555 }
4556
4557 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
4558 unsigned long hugetlb_total_pages(void)
4559 {
4560         struct hstate *h;
4561         unsigned long nr_total_pages = 0;
4562
4563         for_each_hstate(h)
4564                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
4565         return nr_total_pages;
4566 }
4567
4568 static int hugetlb_acct_memory(struct hstate *h, long delta)
4569 {
4570         int ret = -ENOMEM;
4571
4572         if (!delta)
4573                 return 0;
4574
4575         spin_lock_irq(&hugetlb_lock);
4576         /*
4577          * When cpuset is configured, it breaks the strict hugetlb page
4578          * reservation as the accounting is done on a global variable. Such
4579          * reservation is completely rubbish in the presence of cpuset because
4580          * the reservation is not checked against page availability for the
4581          * current cpuset. Application can still potentially OOM'ed by kernel
4582          * with lack of free htlb page in cpuset that the task is in.
4583          * Attempt to enforce strict accounting with cpuset is almost
4584          * impossible (or too ugly) because cpuset is too fluid that
4585          * task or memory node can be dynamically moved between cpusets.
4586          *
4587          * The change of semantics for shared hugetlb mapping with cpuset is
4588          * undesirable. However, in order to preserve some of the semantics,
4589          * we fall back to check against current free page availability as
4590          * a best attempt and hopefully to minimize the impact of changing
4591          * semantics that cpuset has.
4592          *
4593          * Apart from cpuset, we also have memory policy mechanism that
4594          * also determines from which node the kernel will allocate memory
4595          * in a NUMA system. So similar to cpuset, we also should consider
4596          * the memory policy of the current task. Similar to the description
4597          * above.
4598          */
4599         if (delta > 0) {
4600                 if (gather_surplus_pages(h, delta) < 0)
4601                         goto out;
4602
4603                 if (delta > allowed_mems_nr(h)) {
4604                         return_unused_surplus_pages(h, delta);
4605                         goto out;
4606                 }
4607         }
4608
4609         ret = 0;
4610         if (delta < 0)
4611                 return_unused_surplus_pages(h, (unsigned long) -delta);
4612
4613 out:
4614         spin_unlock_irq(&hugetlb_lock);
4615         return ret;
4616 }
4617
4618 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
4619 {
4620         struct resv_map *resv = vma_resv_map(vma);
4621
4622         /*
4623          * HPAGE_RESV_OWNER indicates a private mapping.
4624          * This new VMA should share its siblings reservation map if present.
4625          * The VMA will only ever have a valid reservation map pointer where
4626          * it is being copied for another still existing VMA.  As that VMA
4627          * has a reference to the reservation map it cannot disappear until
4628          * after this open call completes.  It is therefore safe to take a
4629          * new reference here without additional locking.
4630          */
4631         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
4632                 resv_map_dup_hugetlb_cgroup_uncharge_info(resv);
4633                 kref_get(&resv->refs);
4634         }
4635
4636         /*
4637          * vma_lock structure for sharable mappings is vma specific.
4638          * Clear old pointer (if copied via vm_area_dup) and allocate
4639          * new structure.  Before clearing, make sure vma_lock is not
4640          * for this vma.
4641          */
4642         if (vma->vm_flags & VM_MAYSHARE) {
4643                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
4644
4645                 if (vma_lock) {
4646                         if (vma_lock->vma != vma) {
4647                                 vma->vm_private_data = NULL;
4648                                 hugetlb_vma_lock_alloc(vma);
4649                         } else
4650                                 pr_warn("HugeTLB: vma_lock already exists in %s.\n", __func__);
4651                 } else
4652                         hugetlb_vma_lock_alloc(vma);
4653         }
4654 }
4655
4656 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
4657 {
4658         struct hstate *h = hstate_vma(vma);
4659         struct resv_map *resv;
4660         struct hugepage_subpool *spool = subpool_vma(vma);
4661         unsigned long reserve, start, end;
4662         long gbl_reserve;
4663
4664         hugetlb_vma_lock_free(vma);
4665
4666         resv = vma_resv_map(vma);
4667         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4668                 return;
4669
4670         start = vma_hugecache_offset(h, vma, vma->vm_start);
4671         end = vma_hugecache_offset(h, vma, vma->vm_end);
4672
4673         reserve = (end - start) - region_count(resv, start, end);
4674         hugetlb_cgroup_uncharge_counter(resv, start, end);
4675         if (reserve) {
4676                 /*
4677                  * Decrement reserve counts.  The global reserve count may be
4678                  * adjusted if the subpool has a minimum size.
4679                  */
4680                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
4681                 hugetlb_acct_memory(h, -gbl_reserve);
4682         }
4683
4684         kref_put(&resv->refs, resv_map_release);
4685 }
4686
4687 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
4688 {
4689         if (addr & ~(huge_page_mask(hstate_vma(vma))))
4690                 return -EINVAL;
4691         return 0;
4692 }
4693
4694 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
4695 {
4696         return huge_page_size(hstate_vma(vma));
4697 }
4698
4699 /*
4700  * We cannot handle pagefaults against hugetlb pages at all.  They cause
4701  * handle_mm_fault() to try to instantiate regular-sized pages in the
4702  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
4703  * this far.
4704  */
4705 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
4706 {
4707         BUG();
4708         return 0;
4709 }
4710
4711 /*
4712  * When a new function is introduced to vm_operations_struct and added
4713  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
4714  * This is because under System V memory model, mappings created via
4715  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
4716  * their original vm_ops are overwritten with shm_vm_ops.
4717  */
4718 const struct vm_operations_struct hugetlb_vm_ops = {
4719         .fault = hugetlb_vm_op_fault,
4720         .open = hugetlb_vm_op_open,
4721         .close = hugetlb_vm_op_close,
4722         .may_split = hugetlb_vm_op_split,
4723         .pagesize = hugetlb_vm_op_pagesize,
4724 };
4725
4726 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
4727                                 int writable)
4728 {
4729         pte_t entry;
4730         unsigned int shift = huge_page_shift(hstate_vma(vma));
4731
4732         if (writable) {
4733                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
4734                                          vma->vm_page_prot)));
4735         } else {
4736                 entry = huge_pte_wrprotect(mk_huge_pte(page,
4737                                            vma->vm_page_prot));
4738         }
4739         entry = pte_mkyoung(entry);
4740         entry = arch_make_huge_pte(entry, shift, vma->vm_flags);
4741
4742         return entry;
4743 }
4744
4745 static void set_huge_ptep_writable(struct vm_area_struct *vma,
4746                                    unsigned long address, pte_t *ptep)
4747 {
4748         pte_t entry;
4749
4750         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
4751         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4752                 update_mmu_cache(vma, address, ptep);
4753 }
4754
4755 bool is_hugetlb_entry_migration(pte_t pte)
4756 {
4757         swp_entry_t swp;
4758
4759         if (huge_pte_none(pte) || pte_present(pte))
4760                 return false;
4761         swp = pte_to_swp_entry(pte);
4762         if (is_migration_entry(swp))
4763                 return true;
4764         else
4765                 return false;
4766 }
4767
4768 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
4769 {
4770         swp_entry_t swp;
4771
4772         if (huge_pte_none(pte) || pte_present(pte))
4773                 return false;
4774         swp = pte_to_swp_entry(pte);
4775         if (is_hwpoison_entry(swp))
4776                 return true;
4777         else
4778                 return false;
4779 }
4780
4781 static void
4782 hugetlb_install_page(struct vm_area_struct *vma, pte_t *ptep, unsigned long addr,
4783                      struct page *new_page)
4784 {
4785         __SetPageUptodate(new_page);
4786         hugepage_add_new_anon_rmap(new_page, vma, addr);
4787         set_huge_pte_at(vma->vm_mm, addr, ptep, make_huge_pte(vma, new_page, 1));
4788         hugetlb_count_add(pages_per_huge_page(hstate_vma(vma)), vma->vm_mm);
4789         SetHPageMigratable(new_page);
4790 }
4791
4792 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
4793                             struct vm_area_struct *dst_vma,
4794                             struct vm_area_struct *src_vma)
4795 {
4796         pte_t *src_pte, *dst_pte, entry;
4797         struct page *ptepage;
4798         unsigned long addr;
4799         bool cow = is_cow_mapping(src_vma->vm_flags);
4800         struct hstate *h = hstate_vma(src_vma);
4801         unsigned long sz = huge_page_size(h);
4802         unsigned long npages = pages_per_huge_page(h);
4803         struct mmu_notifier_range range;
4804         unsigned long last_addr_mask;
4805         int ret = 0;
4806
4807         if (cow) {
4808                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, src_vma, src,
4809                                         src_vma->vm_start,
4810                                         src_vma->vm_end);
4811                 mmu_notifier_invalidate_range_start(&range);
4812                 mmap_assert_write_locked(src);
4813                 raw_write_seqcount_begin(&src->write_protect_seq);
4814         } else {
4815                 /*
4816                  * For shared mappings the vma lock must be held before
4817                  * calling huge_pte_offset in the src vma. Otherwise, the
4818                  * returned ptep could go away if part of a shared pmd and
4819                  * another thread calls huge_pmd_unshare.
4820                  */
4821                 hugetlb_vma_lock_read(src_vma);
4822         }
4823
4824         last_addr_mask = hugetlb_mask_last_page(h);
4825         for (addr = src_vma->vm_start; addr < src_vma->vm_end; addr += sz) {
4826                 spinlock_t *src_ptl, *dst_ptl;
4827                 src_pte = huge_pte_offset(src, addr, sz);
4828                 if (!src_pte) {
4829                         addr |= last_addr_mask;
4830                         continue;
4831                 }
4832                 dst_pte = huge_pte_alloc(dst, dst_vma, addr, sz);
4833                 if (!dst_pte) {
4834                         ret = -ENOMEM;
4835                         break;
4836                 }
4837
4838                 /*
4839                  * If the pagetables are shared don't copy or take references.
4840                  *
4841                  * dst_pte == src_pte is the common case of src/dest sharing.
4842                  * However, src could have 'unshared' and dst shares with
4843                  * another vma. So page_count of ptep page is checked instead
4844                  * to reliably determine whether pte is shared.
4845                  */
4846                 if (page_count(virt_to_page(dst_pte)) > 1) {
4847                         addr |= last_addr_mask;
4848                         continue;
4849                 }
4850
4851                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4852                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4853                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4854                 entry = huge_ptep_get(src_pte);
4855 again:
4856                 if (huge_pte_none(entry)) {
4857                         /*
4858                          * Skip if src entry none.
4859                          */
4860                         ;
4861                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry))) {
4862                         bool uffd_wp = huge_pte_uffd_wp(entry);
4863
4864                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4865                                 entry = huge_pte_clear_uffd_wp(entry);
4866                         set_huge_pte_at(dst, addr, dst_pte, entry);
4867                 } else if (unlikely(is_hugetlb_entry_migration(entry))) {
4868                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
4869                         bool uffd_wp = huge_pte_uffd_wp(entry);
4870
4871                         if (!is_readable_migration_entry(swp_entry) && cow) {
4872                                 /*
4873                                  * COW mappings require pages in both
4874                                  * parent and child to be set to read.
4875                                  */
4876                                 swp_entry = make_readable_migration_entry(
4877                                                         swp_offset(swp_entry));
4878                                 entry = swp_entry_to_pte(swp_entry);
4879                                 if (userfaultfd_wp(src_vma) && uffd_wp)
4880                                         entry = huge_pte_mkuffd_wp(entry);
4881                                 set_huge_pte_at(src, addr, src_pte, entry);
4882                         }
4883                         if (!userfaultfd_wp(dst_vma) && uffd_wp)
4884                                 entry = huge_pte_clear_uffd_wp(entry);
4885                         set_huge_pte_at(dst, addr, dst_pte, entry);
4886                 } else if (unlikely(is_pte_marker(entry))) {
4887                         /*
4888                          * We copy the pte marker only if the dst vma has
4889                          * uffd-wp enabled.
4890                          */
4891                         if (userfaultfd_wp(dst_vma))
4892                                 set_huge_pte_at(dst, addr, dst_pte, entry);
4893                 } else {
4894                         entry = huge_ptep_get(src_pte);
4895                         ptepage = pte_page(entry);
4896                         get_page(ptepage);
4897
4898                         /*
4899                          * Failing to duplicate the anon rmap is a rare case
4900                          * where we see pinned hugetlb pages while they're
4901                          * prone to COW. We need to do the COW earlier during
4902                          * fork.
4903                          *
4904                          * When pre-allocating the page or copying data, we
4905                          * need to be without the pgtable locks since we could
4906                          * sleep during the process.
4907                          */
4908                         if (!PageAnon(ptepage)) {
4909                                 page_dup_file_rmap(ptepage, true);
4910                         } else if (page_try_dup_anon_rmap(ptepage, true,
4911                                                           src_vma)) {
4912                                 pte_t src_pte_old = entry;
4913                                 struct page *new;
4914
4915                                 spin_unlock(src_ptl);
4916                                 spin_unlock(dst_ptl);
4917                                 /* Do not use reserve as it's private owned */
4918                                 new = alloc_huge_page(dst_vma, addr, 1);
4919                                 if (IS_ERR(new)) {
4920                                         put_page(ptepage);
4921                                         ret = PTR_ERR(new);
4922                                         break;
4923                                 }
4924                                 copy_user_huge_page(new, ptepage, addr, dst_vma,
4925                                                     npages);
4926                                 put_page(ptepage);
4927
4928                                 /* Install the new huge page if src pte stable */
4929                                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
4930                                 src_ptl = huge_pte_lockptr(h, src, src_pte);
4931                                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4932                                 entry = huge_ptep_get(src_pte);
4933                                 if (!pte_same(src_pte_old, entry)) {
4934                                         restore_reserve_on_error(h, dst_vma, addr,
4935                                                                 new);
4936                                         put_page(new);
4937                                         /* huge_ptep of dst_pte won't change as in child */
4938                                         goto again;
4939                                 }
4940                                 hugetlb_install_page(dst_vma, dst_pte, addr, new);
4941                                 spin_unlock(src_ptl);
4942                                 spin_unlock(dst_ptl);
4943                                 continue;
4944                         }
4945
4946                         if (cow) {
4947                                 /*
4948                                  * No need to notify as we are downgrading page
4949                                  * table protection not changing it to point
4950                                  * to a new page.
4951                                  *
4952                                  * See Documentation/mm/mmu_notifier.rst
4953                                  */
4954                                 huge_ptep_set_wrprotect(src, addr, src_pte);
4955                                 entry = huge_pte_wrprotect(entry);
4956                         }
4957
4958                         set_huge_pte_at(dst, addr, dst_pte, entry);
4959                         hugetlb_count_add(npages, dst);
4960                 }
4961                 spin_unlock(src_ptl);
4962                 spin_unlock(dst_ptl);
4963         }
4964
4965         if (cow) {
4966                 raw_write_seqcount_end(&src->write_protect_seq);
4967                 mmu_notifier_invalidate_range_end(&range);
4968         } else {
4969                 hugetlb_vma_unlock_read(src_vma);
4970         }
4971
4972         return ret;
4973 }
4974
4975 static void move_huge_pte(struct vm_area_struct *vma, unsigned long old_addr,
4976                           unsigned long new_addr, pte_t *src_pte, pte_t *dst_pte)
4977 {
4978         struct hstate *h = hstate_vma(vma);
4979         struct mm_struct *mm = vma->vm_mm;
4980         spinlock_t *src_ptl, *dst_ptl;
4981         pte_t pte;
4982
4983         dst_ptl = huge_pte_lock(h, mm, dst_pte);
4984         src_ptl = huge_pte_lockptr(h, mm, src_pte);
4985
4986         /*
4987          * We don't have to worry about the ordering of src and dst ptlocks
4988          * because exclusive mmap_sem (or the i_mmap_lock) prevents deadlock.
4989          */
4990         if (src_ptl != dst_ptl)
4991                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4992
4993         pte = huge_ptep_get_and_clear(mm, old_addr, src_pte);
4994         set_huge_pte_at(mm, new_addr, dst_pte, pte);
4995
4996         if (src_ptl != dst_ptl)
4997                 spin_unlock(src_ptl);
4998         spin_unlock(dst_ptl);
4999 }
5000
5001 int move_hugetlb_page_tables(struct vm_area_struct *vma,
5002                              struct vm_area_struct *new_vma,
5003                              unsigned long old_addr, unsigned long new_addr,
5004                              unsigned long len)
5005 {
5006         struct hstate *h = hstate_vma(vma);
5007         struct address_space *mapping = vma->vm_file->f_mapping;
5008         unsigned long sz = huge_page_size(h);
5009         struct mm_struct *mm = vma->vm_mm;
5010         unsigned long old_end = old_addr + len;
5011         unsigned long last_addr_mask;
5012         pte_t *src_pte, *dst_pte;
5013         struct mmu_notifier_range range;
5014         bool shared_pmd = false;
5015
5016         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, old_addr,
5017                                 old_end);
5018         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5019         /*
5020          * In case of shared PMDs, we should cover the maximum possible
5021          * range.
5022          */
5023         flush_cache_range(vma, range.start, range.end);
5024
5025         mmu_notifier_invalidate_range_start(&range);
5026         last_addr_mask = hugetlb_mask_last_page(h);
5027         /* Prevent race with file truncation */
5028         hugetlb_vma_lock_write(vma);
5029         i_mmap_lock_write(mapping);
5030         for (; old_addr < old_end; old_addr += sz, new_addr += sz) {
5031                 src_pte = huge_pte_offset(mm, old_addr, sz);
5032                 if (!src_pte) {
5033                         old_addr |= last_addr_mask;
5034                         new_addr |= last_addr_mask;
5035                         continue;
5036                 }
5037                 if (huge_pte_none(huge_ptep_get(src_pte)))
5038                         continue;
5039
5040                 if (huge_pmd_unshare(mm, vma, old_addr, src_pte)) {
5041                         shared_pmd = true;
5042                         old_addr |= last_addr_mask;
5043                         new_addr |= last_addr_mask;
5044                         continue;
5045                 }
5046
5047                 dst_pte = huge_pte_alloc(mm, new_vma, new_addr, sz);
5048                 if (!dst_pte)
5049                         break;
5050
5051                 move_huge_pte(vma, old_addr, new_addr, src_pte, dst_pte);
5052         }
5053
5054         if (shared_pmd)
5055                 flush_tlb_range(vma, range.start, range.end);
5056         else
5057                 flush_tlb_range(vma, old_end - len, old_end);
5058         mmu_notifier_invalidate_range_end(&range);
5059         i_mmap_unlock_write(mapping);
5060         hugetlb_vma_unlock_write(vma);
5061
5062         return len + old_addr - old_end;
5063 }
5064
5065 static void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
5066                                    unsigned long start, unsigned long end,
5067                                    struct page *ref_page, zap_flags_t zap_flags)
5068 {
5069         struct mm_struct *mm = vma->vm_mm;
5070         unsigned long address;
5071         pte_t *ptep;
5072         pte_t pte;
5073         spinlock_t *ptl;
5074         struct page *page;
5075         struct hstate *h = hstate_vma(vma);
5076         unsigned long sz = huge_page_size(h);
5077         unsigned long last_addr_mask;
5078         bool force_flush = false;
5079
5080         WARN_ON(!is_vm_hugetlb_page(vma));
5081         BUG_ON(start & ~huge_page_mask(h));
5082         BUG_ON(end & ~huge_page_mask(h));
5083
5084         /*
5085          * This is a hugetlb vma, all the pte entries should point
5086          * to huge page.
5087          */
5088         tlb_change_page_size(tlb, sz);
5089         tlb_start_vma(tlb, vma);
5090
5091         last_addr_mask = hugetlb_mask_last_page(h);
5092         address = start;
5093         for (; address < end; address += sz) {
5094                 ptep = huge_pte_offset(mm, address, sz);
5095                 if (!ptep) {
5096                         address |= last_addr_mask;
5097                         continue;
5098                 }
5099
5100                 ptl = huge_pte_lock(h, mm, ptep);
5101                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
5102                         spin_unlock(ptl);
5103                         tlb_flush_pmd_range(tlb, address & PUD_MASK, PUD_SIZE);
5104                         force_flush = true;
5105                         address |= last_addr_mask;
5106                         continue;
5107                 }
5108
5109                 pte = huge_ptep_get(ptep);
5110                 if (huge_pte_none(pte)) {
5111                         spin_unlock(ptl);
5112                         continue;
5113                 }
5114
5115                 /*
5116                  * Migrating hugepage or HWPoisoned hugepage is already
5117                  * unmapped and its refcount is dropped, so just clear pte here.
5118                  */
5119                 if (unlikely(!pte_present(pte))) {
5120                         /*
5121                          * If the pte was wr-protected by uffd-wp in any of the
5122                          * swap forms, meanwhile the caller does not want to
5123                          * drop the uffd-wp bit in this zap, then replace the
5124                          * pte with a marker.
5125                          */
5126                         if (pte_swp_uffd_wp_any(pte) &&
5127                             !(zap_flags & ZAP_FLAG_DROP_MARKER))
5128                                 set_huge_pte_at(mm, address, ptep,
5129                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
5130                         else
5131                                 huge_pte_clear(mm, address, ptep, sz);
5132                         spin_unlock(ptl);
5133                         continue;
5134                 }
5135
5136                 page = pte_page(pte);
5137                 /*
5138                  * If a reference page is supplied, it is because a specific
5139                  * page is being unmapped, not a range. Ensure the page we
5140                  * are about to unmap is the actual page of interest.
5141                  */
5142                 if (ref_page) {
5143                         if (page != ref_page) {
5144                                 spin_unlock(ptl);
5145                                 continue;
5146                         }
5147                         /*
5148                          * Mark the VMA as having unmapped its page so that
5149                          * future faults in this VMA will fail rather than
5150                          * looking like data was lost
5151                          */
5152                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
5153                 }
5154
5155                 pte = huge_ptep_get_and_clear(mm, address, ptep);
5156                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
5157                 if (huge_pte_dirty(pte))
5158                         set_page_dirty(page);
5159                 /* Leave a uffd-wp pte marker if needed */
5160                 if (huge_pte_uffd_wp(pte) &&
5161                     !(zap_flags & ZAP_FLAG_DROP_MARKER))
5162                         set_huge_pte_at(mm, address, ptep,
5163                                         make_pte_marker(PTE_MARKER_UFFD_WP));
5164                 hugetlb_count_sub(pages_per_huge_page(h), mm);
5165                 page_remove_rmap(page, vma, true);
5166
5167                 spin_unlock(ptl);
5168                 tlb_remove_page_size(tlb, page, huge_page_size(h));
5169                 /*
5170                  * Bail out after unmapping reference page if supplied
5171                  */
5172                 if (ref_page)
5173                         break;
5174         }
5175         tlb_end_vma(tlb, vma);
5176
5177         /*
5178          * If we unshared PMDs, the TLB flush was not recorded in mmu_gather. We
5179          * could defer the flush until now, since by holding i_mmap_rwsem we
5180          * guaranteed that the last refernece would not be dropped. But we must
5181          * do the flushing before we return, as otherwise i_mmap_rwsem will be
5182          * dropped and the last reference to the shared PMDs page might be
5183          * dropped as well.
5184          *
5185          * In theory we could defer the freeing of the PMD pages as well, but
5186          * huge_pmd_unshare() relies on the exact page_count for the PMD page to
5187          * detect sharing, so we cannot defer the release of the page either.
5188          * Instead, do flush now.
5189          */
5190         if (force_flush)
5191                 tlb_flush_mmu_tlbonly(tlb);
5192 }
5193
5194 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
5195                           struct vm_area_struct *vma, unsigned long start,
5196                           unsigned long end, struct page *ref_page,
5197                           zap_flags_t zap_flags)
5198 {
5199         hugetlb_vma_lock_write(vma);
5200         i_mmap_lock_write(vma->vm_file->f_mapping);
5201
5202         /* mmu notification performed in caller */
5203         __unmap_hugepage_range(tlb, vma, start, end, ref_page, zap_flags);
5204
5205         if (zap_flags & ZAP_FLAG_UNMAP) {       /* final unmap */
5206                 /*
5207                  * Unlock and free the vma lock before releasing i_mmap_rwsem.
5208                  * When the vma_lock is freed, this makes the vma ineligible
5209                  * for pmd sharing.  And, i_mmap_rwsem is required to set up
5210                  * pmd sharing.  This is important as page tables for this
5211                  * unmapped range will be asynchrously deleted.  If the page
5212                  * tables are shared, there will be issues when accessed by
5213                  * someone else.
5214                  */
5215                 __hugetlb_vma_unlock_write_free(vma);
5216                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5217         } else {
5218                 i_mmap_unlock_write(vma->vm_file->f_mapping);
5219                 hugetlb_vma_unlock_write(vma);
5220         }
5221 }
5222
5223 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
5224                           unsigned long end, struct page *ref_page,
5225                           zap_flags_t zap_flags)
5226 {
5227         struct mmu_notifier_range range;
5228         struct mmu_gather tlb;
5229
5230         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
5231                                 start, end);
5232         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
5233         mmu_notifier_invalidate_range_start(&range);
5234         tlb_gather_mmu(&tlb, vma->vm_mm);
5235
5236         __unmap_hugepage_range(&tlb, vma, start, end, ref_page, zap_flags);
5237
5238         mmu_notifier_invalidate_range_end(&range);
5239         tlb_finish_mmu(&tlb);
5240 }
5241
5242 /*
5243  * This is called when the original mapper is failing to COW a MAP_PRIVATE
5244  * mapping it owns the reserve page for. The intention is to unmap the page
5245  * from other VMAs and let the children be SIGKILLed if they are faulting the
5246  * same region.
5247  */
5248 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
5249                               struct page *page, unsigned long address)
5250 {
5251         struct hstate *h = hstate_vma(vma);
5252         struct vm_area_struct *iter_vma;
5253         struct address_space *mapping;
5254         pgoff_t pgoff;
5255
5256         /*
5257          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
5258          * from page cache lookup which is in HPAGE_SIZE units.
5259          */
5260         address = address & huge_page_mask(h);
5261         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
5262                         vma->vm_pgoff;
5263         mapping = vma->vm_file->f_mapping;
5264
5265         /*
5266          * Take the mapping lock for the duration of the table walk. As
5267          * this mapping should be shared between all the VMAs,
5268          * __unmap_hugepage_range() is called as the lock is already held
5269          */
5270         i_mmap_lock_write(mapping);
5271         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
5272                 /* Do not unmap the current VMA */
5273                 if (iter_vma == vma)
5274                         continue;
5275
5276                 /*
5277                  * Shared VMAs have their own reserves and do not affect
5278                  * MAP_PRIVATE accounting but it is possible that a shared
5279                  * VMA is using the same page so check and skip such VMAs.
5280                  */
5281                 if (iter_vma->vm_flags & VM_MAYSHARE)
5282                         continue;
5283
5284                 /*
5285                  * Unmap the page from other VMAs without their own reserves.
5286                  * They get marked to be SIGKILLed if they fault in these
5287                  * areas. This is because a future no-page fault on this VMA
5288                  * could insert a zeroed page instead of the data existing
5289                  * from the time of fork. This would look like data corruption
5290                  */
5291                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
5292                         unmap_hugepage_range(iter_vma, address,
5293                                              address + huge_page_size(h), page, 0);
5294         }
5295         i_mmap_unlock_write(mapping);
5296 }
5297
5298 /*
5299  * hugetlb_wp() should be called with page lock of the original hugepage held.
5300  * Called with hugetlb_fault_mutex_table held and pte_page locked so we
5301  * cannot race with other handlers or page migration.
5302  * Keep the pte_same checks anyway to make transition from the mutex easier.
5303  */
5304 static vm_fault_t hugetlb_wp(struct mm_struct *mm, struct vm_area_struct *vma,
5305                        unsigned long address, pte_t *ptep, unsigned int flags,
5306                        struct page *pagecache_page, spinlock_t *ptl)
5307 {
5308         const bool unshare = flags & FAULT_FLAG_UNSHARE;
5309         pte_t pte;
5310         struct hstate *h = hstate_vma(vma);
5311         struct page *old_page, *new_page;
5312         int outside_reserve = 0;
5313         vm_fault_t ret = 0;
5314         unsigned long haddr = address & huge_page_mask(h);
5315         struct mmu_notifier_range range;
5316
5317         /*
5318          * hugetlb does not support FOLL_FORCE-style write faults that keep the
5319          * PTE mapped R/O such as maybe_mkwrite() would do.
5320          */
5321         if (WARN_ON_ONCE(!unshare && !(vma->vm_flags & VM_WRITE)))
5322                 return VM_FAULT_SIGSEGV;
5323
5324         /* Let's take out MAP_SHARED mappings first. */
5325         if (vma->vm_flags & VM_MAYSHARE) {
5326                 set_huge_ptep_writable(vma, haddr, ptep);
5327                 return 0;
5328         }
5329
5330         pte = huge_ptep_get(ptep);
5331         old_page = pte_page(pte);
5332
5333         delayacct_wpcopy_start();
5334
5335 retry_avoidcopy:
5336         /*
5337          * If no-one else is actually using this page, we're the exclusive
5338          * owner and can reuse this page.
5339          */
5340         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5341                 if (!PageAnonExclusive(old_page))
5342                         page_move_anon_rmap(old_page, vma);
5343                 if (likely(!unshare))
5344                         set_huge_ptep_writable(vma, haddr, ptep);
5345
5346                 delayacct_wpcopy_end();
5347                 return 0;
5348         }
5349         VM_BUG_ON_PAGE(PageAnon(old_page) && PageAnonExclusive(old_page),
5350                        old_page);
5351
5352         /*
5353          * If the process that created a MAP_PRIVATE mapping is about to
5354          * perform a COW due to a shared page count, attempt to satisfy
5355          * the allocation without using the existing reserves. The pagecache
5356          * page is used to determine if the reserve at this address was
5357          * consumed or not. If reserves were used, a partial faulted mapping
5358          * at the time of fork() could consume its reserves on COW instead
5359          * of the full address range.
5360          */
5361         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
5362                         old_page != pagecache_page)
5363                 outside_reserve = 1;
5364
5365         get_page(old_page);
5366
5367         /*
5368          * Drop page table lock as buddy allocator may be called. It will
5369          * be acquired again before returning to the caller, as expected.
5370          */
5371         spin_unlock(ptl);
5372         new_page = alloc_huge_page(vma, haddr, outside_reserve);
5373
5374         if (IS_ERR(new_page)) {
5375                 /*
5376                  * If a process owning a MAP_PRIVATE mapping fails to COW,
5377                  * it is due to references held by a child and an insufficient
5378                  * huge page pool. To guarantee the original mappers
5379                  * reliability, unmap the page from child processes. The child
5380                  * may get SIGKILLed if it later faults.
5381                  */
5382                 if (outside_reserve) {
5383                         struct address_space *mapping = vma->vm_file->f_mapping;
5384                         pgoff_t idx;
5385                         u32 hash;
5386
5387                         put_page(old_page);
5388                         /*
5389                          * Drop hugetlb_fault_mutex and vma_lock before
5390                          * unmapping.  unmapping needs to hold vma_lock
5391                          * in write mode.  Dropping vma_lock in read mode
5392                          * here is OK as COW mappings do not interact with
5393                          * PMD sharing.
5394                          *
5395                          * Reacquire both after unmap operation.
5396                          */
5397                         idx = vma_hugecache_offset(h, vma, haddr);
5398                         hash = hugetlb_fault_mutex_hash(mapping, idx);
5399                         hugetlb_vma_unlock_read(vma);
5400                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5401
5402                         unmap_ref_private(mm, vma, old_page, haddr);
5403
5404                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5405                         hugetlb_vma_lock_read(vma);
5406                         spin_lock(ptl);
5407                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5408                         if (likely(ptep &&
5409                                    pte_same(huge_ptep_get(ptep), pte)))
5410                                 goto retry_avoidcopy;
5411                         /*
5412                          * race occurs while re-acquiring page table
5413                          * lock, and our job is done.
5414                          */
5415                         delayacct_wpcopy_end();
5416                         return 0;
5417                 }
5418
5419                 ret = vmf_error(PTR_ERR(new_page));
5420                 goto out_release_old;
5421         }
5422
5423         /*
5424          * When the original hugepage is shared one, it does not have
5425          * anon_vma prepared.
5426          */
5427         if (unlikely(anon_vma_prepare(vma))) {
5428                 ret = VM_FAULT_OOM;
5429                 goto out_release_all;
5430         }
5431
5432         copy_user_huge_page(new_page, old_page, address, vma,
5433                             pages_per_huge_page(h));
5434         __SetPageUptodate(new_page);
5435
5436         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
5437                                 haddr + huge_page_size(h));
5438         mmu_notifier_invalidate_range_start(&range);
5439
5440         /*
5441          * Retake the page table lock to check for racing updates
5442          * before the page tables are altered
5443          */
5444         spin_lock(ptl);
5445         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5446         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
5447                 /* Break COW or unshare */
5448                 huge_ptep_clear_flush(vma, haddr, ptep);
5449                 mmu_notifier_invalidate_range(mm, range.start, range.end);
5450                 page_remove_rmap(old_page, vma, true);
5451                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
5452                 set_huge_pte_at(mm, haddr, ptep,
5453                                 make_huge_pte(vma, new_page, !unshare));
5454                 SetHPageMigratable(new_page);
5455                 /* Make the old page be freed below */
5456                 new_page = old_page;
5457         }
5458         spin_unlock(ptl);
5459         mmu_notifier_invalidate_range_end(&range);
5460 out_release_all:
5461         /*
5462          * No restore in case of successful pagetable update (Break COW or
5463          * unshare)
5464          */
5465         if (new_page != old_page)
5466                 restore_reserve_on_error(h, vma, haddr, new_page);
5467         put_page(new_page);
5468 out_release_old:
5469         put_page(old_page);
5470
5471         spin_lock(ptl); /* Caller expects lock to be held */
5472
5473         delayacct_wpcopy_end();
5474         return ret;
5475 }
5476
5477 /*
5478  * Return whether there is a pagecache page to back given address within VMA.
5479  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
5480  */
5481 static bool hugetlbfs_pagecache_present(struct hstate *h,
5482                         struct vm_area_struct *vma, unsigned long address)
5483 {
5484         struct address_space *mapping;
5485         pgoff_t idx;
5486         struct page *page;
5487
5488         mapping = vma->vm_file->f_mapping;
5489         idx = vma_hugecache_offset(h, vma, address);
5490
5491         page = find_get_page(mapping, idx);
5492         if (page)
5493                 put_page(page);
5494         return page != NULL;
5495 }
5496
5497 int hugetlb_add_to_page_cache(struct page *page, struct address_space *mapping,
5498                            pgoff_t idx)
5499 {
5500         struct folio *folio = page_folio(page);
5501         struct inode *inode = mapping->host;
5502         struct hstate *h = hstate_inode(inode);
5503         int err;
5504
5505         __folio_set_locked(folio);
5506         err = __filemap_add_folio(mapping, folio, idx, GFP_KERNEL, NULL);
5507
5508         if (unlikely(err)) {
5509                 __folio_clear_locked(folio);
5510                 return err;
5511         }
5512         ClearHPageRestoreReserve(page);
5513
5514         /*
5515          * mark folio dirty so that it will not be removed from cache/file
5516          * by non-hugetlbfs specific code paths.
5517          */
5518         folio_mark_dirty(folio);
5519
5520         spin_lock(&inode->i_lock);
5521         inode->i_blocks += blocks_per_huge_page(h);
5522         spin_unlock(&inode->i_lock);
5523         return 0;
5524 }
5525
5526 static inline vm_fault_t hugetlb_handle_userfault(struct vm_area_struct *vma,
5527                                                   struct address_space *mapping,
5528                                                   pgoff_t idx,
5529                                                   unsigned int flags,
5530                                                   unsigned long haddr,
5531                                                   unsigned long addr,
5532                                                   unsigned long reason)
5533 {
5534         u32 hash;
5535         struct vm_fault vmf = {
5536                 .vma = vma,
5537                 .address = haddr,
5538                 .real_address = addr,
5539                 .flags = flags,
5540
5541                 /*
5542                  * Hard to debug if it ends up being
5543                  * used by a callee that assumes
5544                  * something about the other
5545                  * uninitialized fields... same as in
5546                  * memory.c
5547                  */
5548         };
5549
5550         /*
5551          * vma_lock and hugetlb_fault_mutex must be dropped before handling
5552          * userfault. Also mmap_lock could be dropped due to handling
5553          * userfault, any vma operation should be careful from here.
5554          */
5555         hugetlb_vma_unlock_read(vma);
5556         hash = hugetlb_fault_mutex_hash(mapping, idx);
5557         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5558         return handle_userfault(&vmf, reason);
5559 }
5560
5561 /*
5562  * Recheck pte with pgtable lock.  Returns true if pte didn't change, or
5563  * false if pte changed or is changing.
5564  */
5565 static bool hugetlb_pte_stable(struct hstate *h, struct mm_struct *mm,
5566                                pte_t *ptep, pte_t old_pte)
5567 {
5568         spinlock_t *ptl;
5569         bool same;
5570
5571         ptl = huge_pte_lock(h, mm, ptep);
5572         same = pte_same(huge_ptep_get(ptep), old_pte);
5573         spin_unlock(ptl);
5574
5575         return same;
5576 }
5577
5578 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
5579                         struct vm_area_struct *vma,
5580                         struct address_space *mapping, pgoff_t idx,
5581                         unsigned long address, pte_t *ptep,
5582                         pte_t old_pte, unsigned int flags)
5583 {
5584         struct hstate *h = hstate_vma(vma);
5585         vm_fault_t ret = VM_FAULT_SIGBUS;
5586         int anon_rmap = 0;
5587         unsigned long size;
5588         struct page *page;
5589         pte_t new_pte;
5590         spinlock_t *ptl;
5591         unsigned long haddr = address & huge_page_mask(h);
5592         bool new_page, new_pagecache_page = false;
5593         u32 hash = hugetlb_fault_mutex_hash(mapping, idx);
5594
5595         /*
5596          * Currently, we are forced to kill the process in the event the
5597          * original mapper has unmapped pages from the child due to a failed
5598          * COW/unsharing. Warn that such a situation has occurred as it may not
5599          * be obvious.
5600          */
5601         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
5602                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
5603                            current->pid);
5604                 goto out;
5605         }
5606
5607         /*
5608          * Use page lock to guard against racing truncation
5609          * before we get page_table_lock.
5610          */
5611         new_page = false;
5612         page = find_lock_page(mapping, idx);
5613         if (!page) {
5614                 size = i_size_read(mapping->host) >> huge_page_shift(h);
5615                 if (idx >= size)
5616                         goto out;
5617                 /* Check for page in userfault range */
5618                 if (userfaultfd_missing(vma)) {
5619                         /*
5620                          * Since hugetlb_no_page() was examining pte
5621                          * without pgtable lock, we need to re-test under
5622                          * lock because the pte may not be stable and could
5623                          * have changed from under us.  Try to detect
5624                          * either changed or during-changing ptes and retry
5625                          * properly when needed.
5626                          *
5627                          * Note that userfaultfd is actually fine with
5628                          * false positives (e.g. caused by pte changed),
5629                          * but not wrong logical events (e.g. caused by
5630                          * reading a pte during changing).  The latter can
5631                          * confuse the userspace, so the strictness is very
5632                          * much preferred.  E.g., MISSING event should
5633                          * never happen on the page after UFFDIO_COPY has
5634                          * correctly installed the page and returned.
5635                          */
5636                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5637                                 ret = 0;
5638                                 goto out;
5639                         }
5640
5641                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5642                                                         haddr, address,
5643                                                         VM_UFFD_MISSING);
5644                 }
5645
5646                 page = alloc_huge_page(vma, haddr, 0);
5647                 if (IS_ERR(page)) {
5648                         /*
5649                          * Returning error will result in faulting task being
5650                          * sent SIGBUS.  The hugetlb fault mutex prevents two
5651                          * tasks from racing to fault in the same page which
5652                          * could result in false unable to allocate errors.
5653                          * Page migration does not take the fault mutex, but
5654                          * does a clear then write of pte's under page table
5655                          * lock.  Page fault code could race with migration,
5656                          * notice the clear pte and try to allocate a page
5657                          * here.  Before returning error, get ptl and make
5658                          * sure there really is no pte entry.
5659                          */
5660                         if (hugetlb_pte_stable(h, mm, ptep, old_pte))
5661                                 ret = vmf_error(PTR_ERR(page));
5662                         else
5663                                 ret = 0;
5664                         goto out;
5665                 }
5666                 clear_huge_page(page, address, pages_per_huge_page(h));
5667                 __SetPageUptodate(page);
5668                 new_page = true;
5669
5670                 if (vma->vm_flags & VM_MAYSHARE) {
5671                         int err = hugetlb_add_to_page_cache(page, mapping, idx);
5672                         if (err) {
5673                                 /*
5674                                  * err can't be -EEXIST which implies someone
5675                                  * else consumed the reservation since hugetlb
5676                                  * fault mutex is held when add a hugetlb page
5677                                  * to the page cache. So it's safe to call
5678                                  * restore_reserve_on_error() here.
5679                                  */
5680                                 restore_reserve_on_error(h, vma, haddr, page);
5681                                 put_page(page);
5682                                 goto out;
5683                         }
5684                         new_pagecache_page = true;
5685                 } else {
5686                         lock_page(page);
5687                         if (unlikely(anon_vma_prepare(vma))) {
5688                                 ret = VM_FAULT_OOM;
5689                                 goto backout_unlocked;
5690                         }
5691                         anon_rmap = 1;
5692                 }
5693         } else {
5694                 /*
5695                  * If memory error occurs between mmap() and fault, some process
5696                  * don't have hwpoisoned swap entry for errored virtual address.
5697                  * So we need to block hugepage fault by PG_hwpoison bit check.
5698                  */
5699                 if (unlikely(PageHWPoison(page))) {
5700                         ret = VM_FAULT_HWPOISON_LARGE |
5701                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5702                         goto backout_unlocked;
5703                 }
5704
5705                 /* Check for page in userfault range. */
5706                 if (userfaultfd_minor(vma)) {
5707                         unlock_page(page);
5708                         put_page(page);
5709                         /* See comment in userfaultfd_missing() block above */
5710                         if (!hugetlb_pte_stable(h, mm, ptep, old_pte)) {
5711                                 ret = 0;
5712                                 goto out;
5713                         }
5714                         return hugetlb_handle_userfault(vma, mapping, idx, flags,
5715                                                         haddr, address,
5716                                                         VM_UFFD_MINOR);
5717                 }
5718         }
5719
5720         /*
5721          * If we are going to COW a private mapping later, we examine the
5722          * pending reservations for this page now. This will ensure that
5723          * any allocations necessary to record that reservation occur outside
5724          * the spinlock.
5725          */
5726         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5727                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5728                         ret = VM_FAULT_OOM;
5729                         goto backout_unlocked;
5730                 }
5731                 /* Just decrements count, does not deallocate */
5732                 vma_end_reservation(h, vma, haddr);
5733         }
5734
5735         ptl = huge_pte_lock(h, mm, ptep);
5736         ret = 0;
5737         /* If pte changed from under us, retry */
5738         if (!pte_same(huge_ptep_get(ptep), old_pte))
5739                 goto backout;
5740
5741         if (anon_rmap)
5742                 hugepage_add_new_anon_rmap(page, vma, haddr);
5743         else
5744                 page_dup_file_rmap(page, true);
5745         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
5746                                 && (vma->vm_flags & VM_SHARED)));
5747         /*
5748          * If this pte was previously wr-protected, keep it wr-protected even
5749          * if populated.
5750          */
5751         if (unlikely(pte_marker_uffd_wp(old_pte)))
5752                 new_pte = huge_pte_wrprotect(huge_pte_mkuffd_wp(new_pte));
5753         set_huge_pte_at(mm, haddr, ptep, new_pte);
5754
5755         hugetlb_count_add(pages_per_huge_page(h), mm);
5756         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
5757                 /* Optimization, do the COW without a second fault */
5758                 ret = hugetlb_wp(mm, vma, address, ptep, flags, page, ptl);
5759         }
5760
5761         spin_unlock(ptl);
5762
5763         /*
5764          * Only set HPageMigratable in newly allocated pages.  Existing pages
5765          * found in the pagecache may not have HPageMigratableset if they have
5766          * been isolated for migration.
5767          */
5768         if (new_page)
5769                 SetHPageMigratable(page);
5770
5771         unlock_page(page);
5772 out:
5773         hugetlb_vma_unlock_read(vma);
5774         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5775         return ret;
5776
5777 backout:
5778         spin_unlock(ptl);
5779 backout_unlocked:
5780         if (new_page && !new_pagecache_page)
5781                 restore_reserve_on_error(h, vma, haddr, page);
5782
5783         unlock_page(page);
5784         put_page(page);
5785         goto out;
5786 }
5787
5788 #ifdef CONFIG_SMP
5789 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5790 {
5791         unsigned long key[2];
5792         u32 hash;
5793
5794         key[0] = (unsigned long) mapping;
5795         key[1] = idx;
5796
5797         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
5798
5799         return hash & (num_fault_mutexes - 1);
5800 }
5801 #else
5802 /*
5803  * For uniprocessor systems we always use a single mutex, so just
5804  * return 0 and avoid the hashing overhead.
5805  */
5806 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
5807 {
5808         return 0;
5809 }
5810 #endif
5811
5812 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
5813                         unsigned long address, unsigned int flags)
5814 {
5815         pte_t *ptep, entry;
5816         spinlock_t *ptl;
5817         vm_fault_t ret;
5818         u32 hash;
5819         pgoff_t idx;
5820         struct page *page = NULL;
5821         struct page *pagecache_page = NULL;
5822         struct hstate *h = hstate_vma(vma);
5823         struct address_space *mapping;
5824         int need_wait_lock = 0;
5825         unsigned long haddr = address & huge_page_mask(h);
5826
5827         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
5828         if (ptep) {
5829                 /*
5830                  * Since we hold no locks, ptep could be stale.  That is
5831                  * OK as we are only making decisions based on content and
5832                  * not actually modifying content here.
5833                  */
5834                 entry = huge_ptep_get(ptep);
5835                 if (unlikely(is_hugetlb_entry_migration(entry))) {
5836                         migration_entry_wait_huge(vma, ptep);
5837                         return 0;
5838                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
5839                         return VM_FAULT_HWPOISON_LARGE |
5840                                 VM_FAULT_SET_HINDEX(hstate_index(h));
5841         }
5842
5843         /*
5844          * Serialize hugepage allocation and instantiation, so that we don't
5845          * get spurious allocation failures if two CPUs race to instantiate
5846          * the same page in the page cache.
5847          */
5848         mapping = vma->vm_file->f_mapping;
5849         idx = vma_hugecache_offset(h, vma, haddr);
5850         hash = hugetlb_fault_mutex_hash(mapping, idx);
5851         mutex_lock(&hugetlb_fault_mutex_table[hash]);
5852
5853         /*
5854          * Acquire vma lock before calling huge_pte_alloc and hold
5855          * until finished with ptep.  This prevents huge_pmd_unshare from
5856          * being called elsewhere and making the ptep no longer valid.
5857          *
5858          * ptep could have already be assigned via huge_pte_offset.  That
5859          * is OK, as huge_pte_alloc will return the same value unless
5860          * something has changed.
5861          */
5862         hugetlb_vma_lock_read(vma);
5863         ptep = huge_pte_alloc(mm, vma, haddr, huge_page_size(h));
5864         if (!ptep) {
5865                 hugetlb_vma_unlock_read(vma);
5866                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5867                 return VM_FAULT_OOM;
5868         }
5869
5870         entry = huge_ptep_get(ptep);
5871         /* PTE markers should be handled the same way as none pte */
5872         if (huge_pte_none_mostly(entry))
5873                 /*
5874                  * hugetlb_no_page will drop vma lock and hugetlb fault
5875                  * mutex internally, which make us return immediately.
5876                  */
5877                 return hugetlb_no_page(mm, vma, mapping, idx, address, ptep,
5878                                       entry, flags);
5879
5880         ret = 0;
5881
5882         /*
5883          * entry could be a migration/hwpoison entry at this point, so this
5884          * check prevents the kernel from going below assuming that we have
5885          * an active hugepage in pagecache. This goto expects the 2nd page
5886          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
5887          * properly handle it.
5888          */
5889         if (!pte_present(entry))
5890                 goto out_mutex;
5891
5892         /*
5893          * If we are going to COW/unshare the mapping later, we examine the
5894          * pending reservations for this page now. This will ensure that any
5895          * allocations necessary to record that reservation occur outside the
5896          * spinlock. Also lookup the pagecache page now as it is used to
5897          * determine if a reservation has been consumed.
5898          */
5899         if ((flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) &&
5900             !(vma->vm_flags & VM_MAYSHARE) && !huge_pte_write(entry)) {
5901                 if (vma_needs_reservation(h, vma, haddr) < 0) {
5902                         ret = VM_FAULT_OOM;
5903                         goto out_mutex;
5904                 }
5905                 /* Just decrements count, does not deallocate */
5906                 vma_end_reservation(h, vma, haddr);
5907
5908                 pagecache_page = find_lock_page(mapping, idx);
5909         }
5910
5911         ptl = huge_pte_lock(h, mm, ptep);
5912
5913         /* Check for a racing update before calling hugetlb_wp() */
5914         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
5915                 goto out_ptl;
5916
5917         /* Handle userfault-wp first, before trying to lock more pages */
5918         if (userfaultfd_wp(vma) && huge_pte_uffd_wp(huge_ptep_get(ptep)) &&
5919             (flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
5920                 struct vm_fault vmf = {
5921                         .vma = vma,
5922                         .address = haddr,
5923                         .real_address = address,
5924                         .flags = flags,
5925                 };
5926
5927                 spin_unlock(ptl);
5928                 if (pagecache_page) {
5929                         unlock_page(pagecache_page);
5930                         put_page(pagecache_page);
5931                 }
5932                 hugetlb_vma_unlock_read(vma);
5933                 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5934                 return handle_userfault(&vmf, VM_UFFD_WP);
5935         }
5936
5937         /*
5938          * hugetlb_wp() requires page locks of pte_page(entry) and
5939          * pagecache_page, so here we need take the former one
5940          * when page != pagecache_page or !pagecache_page.
5941          */
5942         page = pte_page(entry);
5943         if (page != pagecache_page)
5944                 if (!trylock_page(page)) {
5945                         need_wait_lock = 1;
5946                         goto out_ptl;
5947                 }
5948
5949         get_page(page);
5950
5951         if (flags & (FAULT_FLAG_WRITE|FAULT_FLAG_UNSHARE)) {
5952                 if (!huge_pte_write(entry)) {
5953                         ret = hugetlb_wp(mm, vma, address, ptep, flags,
5954                                          pagecache_page, ptl);
5955                         goto out_put_page;
5956                 } else if (likely(flags & FAULT_FLAG_WRITE)) {
5957                         entry = huge_pte_mkdirty(entry);
5958                 }
5959         }
5960         entry = pte_mkyoung(entry);
5961         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
5962                                                 flags & FAULT_FLAG_WRITE))
5963                 update_mmu_cache(vma, haddr, ptep);
5964 out_put_page:
5965         if (page != pagecache_page)
5966                 unlock_page(page);
5967         put_page(page);
5968 out_ptl:
5969         spin_unlock(ptl);
5970
5971         if (pagecache_page) {
5972                 unlock_page(pagecache_page);
5973                 put_page(pagecache_page);
5974         }
5975 out_mutex:
5976         hugetlb_vma_unlock_read(vma);
5977         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
5978         /*
5979          * Generally it's safe to hold refcount during waiting page lock. But
5980          * here we just wait to defer the next page fault to avoid busy loop and
5981          * the page is not used after unlocked before returning from the current
5982          * page fault. So we are safe from accessing freed page, even if we wait
5983          * here without taking refcount.
5984          */
5985         if (need_wait_lock)
5986                 wait_on_page_locked(page);
5987         return ret;
5988 }
5989
5990 #ifdef CONFIG_USERFAULTFD
5991 /*
5992  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
5993  * modifications for huge pages.
5994  */
5995 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
5996                             pte_t *dst_pte,
5997                             struct vm_area_struct *dst_vma,
5998                             unsigned long dst_addr,
5999                             unsigned long src_addr,
6000                             enum mcopy_atomic_mode mode,
6001                             struct page **pagep,
6002                             bool wp_copy)
6003 {
6004         bool is_continue = (mode == MCOPY_ATOMIC_CONTINUE);
6005         struct hstate *h = hstate_vma(dst_vma);
6006         struct address_space *mapping = dst_vma->vm_file->f_mapping;
6007         pgoff_t idx = vma_hugecache_offset(h, dst_vma, dst_addr);
6008         unsigned long size;
6009         int vm_shared = dst_vma->vm_flags & VM_SHARED;
6010         pte_t _dst_pte;
6011         spinlock_t *ptl;
6012         int ret = -ENOMEM;
6013         struct page *page;
6014         int writable;
6015         bool page_in_pagecache = false;
6016
6017         if (is_continue) {
6018                 ret = -EFAULT;
6019                 page = find_lock_page(mapping, idx);
6020                 if (!page)
6021                         goto out;
6022                 page_in_pagecache = true;
6023         } else if (!*pagep) {
6024                 /* If a page already exists, then it's UFFDIO_COPY for
6025                  * a non-missing case. Return -EEXIST.
6026                  */
6027                 if (vm_shared &&
6028                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6029                         ret = -EEXIST;
6030                         goto out;
6031                 }
6032
6033                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6034                 if (IS_ERR(page)) {
6035                         ret = -ENOMEM;
6036                         goto out;
6037                 }
6038
6039                 ret = copy_huge_page_from_user(page,
6040                                                 (const void __user *) src_addr,
6041                                                 pages_per_huge_page(h), false);
6042
6043                 /* fallback to copy_from_user outside mmap_lock */
6044                 if (unlikely(ret)) {
6045                         ret = -ENOENT;
6046                         /* Free the allocated page which may have
6047                          * consumed a reservation.
6048                          */
6049                         restore_reserve_on_error(h, dst_vma, dst_addr, page);
6050                         put_page(page);
6051
6052                         /* Allocate a temporary page to hold the copied
6053                          * contents.
6054                          */
6055                         page = alloc_huge_page_vma(h, dst_vma, dst_addr);
6056                         if (!page) {
6057                                 ret = -ENOMEM;
6058                                 goto out;
6059                         }
6060                         *pagep = page;
6061                         /* Set the outparam pagep and return to the caller to
6062                          * copy the contents outside the lock. Don't free the
6063                          * page.
6064                          */
6065                         goto out;
6066                 }
6067         } else {
6068                 if (vm_shared &&
6069                     hugetlbfs_pagecache_present(h, dst_vma, dst_addr)) {
6070                         put_page(*pagep);
6071                         ret = -EEXIST;
6072                         *pagep = NULL;
6073                         goto out;
6074                 }
6075
6076                 page = alloc_huge_page(dst_vma, dst_addr, 0);
6077                 if (IS_ERR(page)) {
6078                         put_page(*pagep);
6079                         ret = -ENOMEM;
6080                         *pagep = NULL;
6081                         goto out;
6082                 }
6083                 copy_user_huge_page(page, *pagep, dst_addr, dst_vma,
6084                                     pages_per_huge_page(h));
6085                 put_page(*pagep);
6086                 *pagep = NULL;
6087         }
6088
6089         /*
6090          * The memory barrier inside __SetPageUptodate makes sure that
6091          * preceding stores to the page contents become visible before
6092          * the set_pte_at() write.
6093          */
6094         __SetPageUptodate(page);
6095
6096         /* Add shared, newly allocated pages to the page cache. */
6097         if (vm_shared && !is_continue) {
6098                 size = i_size_read(mapping->host) >> huge_page_shift(h);
6099                 ret = -EFAULT;
6100                 if (idx >= size)
6101                         goto out_release_nounlock;
6102
6103                 /*
6104                  * Serialization between remove_inode_hugepages() and
6105                  * hugetlb_add_to_page_cache() below happens through the
6106                  * hugetlb_fault_mutex_table that here must be hold by
6107                  * the caller.
6108                  */
6109                 ret = hugetlb_add_to_page_cache(page, mapping, idx);
6110                 if (ret)
6111                         goto out_release_nounlock;
6112                 page_in_pagecache = true;
6113         }
6114
6115         ptl = huge_pte_lock(h, dst_mm, dst_pte);
6116
6117         ret = -EIO;
6118         if (PageHWPoison(page))
6119                 goto out_release_unlock;
6120
6121         /*
6122          * We allow to overwrite a pte marker: consider when both MISSING|WP
6123          * registered, we firstly wr-protect a none pte which has no page cache
6124          * page backing it, then access the page.
6125          */
6126         ret = -EEXIST;
6127         if (!huge_pte_none_mostly(huge_ptep_get(dst_pte)))
6128                 goto out_release_unlock;
6129
6130         if (page_in_pagecache)
6131                 page_dup_file_rmap(page, true);
6132         else
6133                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
6134
6135         /*
6136          * For either: (1) CONTINUE on a non-shared VMA, or (2) UFFDIO_COPY
6137          * with wp flag set, don't set pte write bit.
6138          */
6139         if (wp_copy || (is_continue && !vm_shared))
6140                 writable = 0;
6141         else
6142                 writable = dst_vma->vm_flags & VM_WRITE;
6143
6144         _dst_pte = make_huge_pte(dst_vma, page, writable);
6145         /*
6146          * Always mark UFFDIO_COPY page dirty; note that this may not be
6147          * extremely important for hugetlbfs for now since swapping is not
6148          * supported, but we should still be clear in that this page cannot be
6149          * thrown away at will, even if write bit not set.
6150          */
6151         _dst_pte = huge_pte_mkdirty(_dst_pte);
6152         _dst_pte = pte_mkyoung(_dst_pte);
6153
6154         if (wp_copy)
6155                 _dst_pte = huge_pte_mkuffd_wp(_dst_pte);
6156
6157         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
6158
6159         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
6160
6161         /* No need to invalidate - it was non-present before */
6162         update_mmu_cache(dst_vma, dst_addr, dst_pte);
6163
6164         spin_unlock(ptl);
6165         if (!is_continue)
6166                 SetHPageMigratable(page);
6167         if (vm_shared || is_continue)
6168                 unlock_page(page);
6169         ret = 0;
6170 out:
6171         return ret;
6172 out_release_unlock:
6173         spin_unlock(ptl);
6174         if (vm_shared || is_continue)
6175                 unlock_page(page);
6176 out_release_nounlock:
6177         if (!page_in_pagecache)
6178                 restore_reserve_on_error(h, dst_vma, dst_addr, page);
6179         put_page(page);
6180         goto out;
6181 }
6182 #endif /* CONFIG_USERFAULTFD */
6183
6184 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
6185                                  int refs, struct page **pages,
6186                                  struct vm_area_struct **vmas)
6187 {
6188         int nr;
6189
6190         for (nr = 0; nr < refs; nr++) {
6191                 if (likely(pages))
6192                         pages[nr] = nth_page(page, nr);
6193                 if (vmas)
6194                         vmas[nr] = vma;
6195         }
6196 }
6197
6198 static inline bool __follow_hugetlb_must_fault(struct vm_area_struct *vma,
6199                                                unsigned int flags, pte_t *pte,
6200                                                bool *unshare)
6201 {
6202         pte_t pteval = huge_ptep_get(pte);
6203
6204         *unshare = false;
6205         if (is_swap_pte(pteval))
6206                 return true;
6207         if (huge_pte_write(pteval))
6208                 return false;
6209         if (flags & FOLL_WRITE)
6210                 return true;
6211         if (gup_must_unshare(vma, flags, pte_page(pteval))) {
6212                 *unshare = true;
6213                 return true;
6214         }
6215         return false;
6216 }
6217
6218 struct page *hugetlb_follow_page_mask(struct vm_area_struct *vma,
6219                                 unsigned long address, unsigned int flags)
6220 {
6221         struct hstate *h = hstate_vma(vma);
6222         struct mm_struct *mm = vma->vm_mm;
6223         unsigned long haddr = address & huge_page_mask(h);
6224         struct page *page = NULL;
6225         spinlock_t *ptl;
6226         pte_t *pte, entry;
6227
6228         /*
6229          * FOLL_PIN is not supported for follow_page(). Ordinary GUP goes via
6230          * follow_hugetlb_page().
6231          */
6232         if (WARN_ON_ONCE(flags & FOLL_PIN))
6233                 return NULL;
6234
6235 retry:
6236         pte = huge_pte_offset(mm, haddr, huge_page_size(h));
6237         if (!pte)
6238                 return NULL;
6239
6240         ptl = huge_pte_lock(h, mm, pte);
6241         entry = huge_ptep_get(pte);
6242         if (pte_present(entry)) {
6243                 page = pte_page(entry) +
6244                                 ((address & ~huge_page_mask(h)) >> PAGE_SHIFT);
6245                 /*
6246                  * Note that page may be a sub-page, and with vmemmap
6247                  * optimizations the page struct may be read only.
6248                  * try_grab_page() will increase the ref count on the
6249                  * head page, so this will be OK.
6250                  *
6251                  * try_grab_page() should always be able to get the page here,
6252                  * because we hold the ptl lock and have verified pte_present().
6253                  */
6254                 if (try_grab_page(page, flags)) {
6255                         page = NULL;
6256                         goto out;
6257                 }
6258         } else {
6259                 if (is_hugetlb_entry_migration(entry)) {
6260                         spin_unlock(ptl);
6261                         __migration_entry_wait_huge(pte, ptl);
6262                         goto retry;
6263                 }
6264                 /*
6265                  * hwpoisoned entry is treated as no_page_table in
6266                  * follow_page_mask().
6267                  */
6268         }
6269 out:
6270         spin_unlock(ptl);
6271         return page;
6272 }
6273
6274 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
6275                          struct page **pages, struct vm_area_struct **vmas,
6276                          unsigned long *position, unsigned long *nr_pages,
6277                          long i, unsigned int flags, int *locked)
6278 {
6279         unsigned long pfn_offset;
6280         unsigned long vaddr = *position;
6281         unsigned long remainder = *nr_pages;
6282         struct hstate *h = hstate_vma(vma);
6283         int err = -EFAULT, refs;
6284
6285         while (vaddr < vma->vm_end && remainder) {
6286                 pte_t *pte;
6287                 spinlock_t *ptl = NULL;
6288                 bool unshare = false;
6289                 int absent;
6290                 struct page *page;
6291
6292                 /*
6293                  * If we have a pending SIGKILL, don't keep faulting pages and
6294                  * potentially allocating memory.
6295                  */
6296                 if (fatal_signal_pending(current)) {
6297                         remainder = 0;
6298                         break;
6299                 }
6300
6301                 /*
6302                  * Some archs (sparc64, sh*) have multiple pte_ts to
6303                  * each hugepage.  We have to make sure we get the
6304                  * first, for the page indexing below to work.
6305                  *
6306                  * Note that page table lock is not held when pte is null.
6307                  */
6308                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
6309                                       huge_page_size(h));
6310                 if (pte)
6311                         ptl = huge_pte_lock(h, mm, pte);
6312                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
6313
6314                 /*
6315                  * When coredumping, it suits get_dump_page if we just return
6316                  * an error where there's an empty slot with no huge pagecache
6317                  * to back it.  This way, we avoid allocating a hugepage, and
6318                  * the sparse dumpfile avoids allocating disk blocks, but its
6319                  * huge holes still show up with zeroes where they need to be.
6320                  */
6321                 if (absent && (flags & FOLL_DUMP) &&
6322                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
6323                         if (pte)
6324                                 spin_unlock(ptl);
6325                         remainder = 0;
6326                         break;
6327                 }
6328
6329                 /*
6330                  * We need call hugetlb_fault for both hugepages under migration
6331                  * (in which case hugetlb_fault waits for the migration,) and
6332                  * hwpoisoned hugepages (in which case we need to prevent the
6333                  * caller from accessing to them.) In order to do this, we use
6334                  * here is_swap_pte instead of is_hugetlb_entry_migration and
6335                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
6336                  * both cases, and because we can't follow correct pages
6337                  * directly from any kind of swap entries.
6338                  */
6339                 if (absent ||
6340                     __follow_hugetlb_must_fault(vma, flags, pte, &unshare)) {
6341                         vm_fault_t ret;
6342                         unsigned int fault_flags = 0;
6343
6344                         if (pte)
6345                                 spin_unlock(ptl);
6346                         if (flags & FOLL_WRITE)
6347                                 fault_flags |= FAULT_FLAG_WRITE;
6348                         else if (unshare)
6349                                 fault_flags |= FAULT_FLAG_UNSHARE;
6350                         if (locked)
6351                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6352                                         FAULT_FLAG_KILLABLE;
6353                         if (flags & FOLL_NOWAIT)
6354                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
6355                                         FAULT_FLAG_RETRY_NOWAIT;
6356                         if (flags & FOLL_TRIED) {
6357                                 /*
6358                                  * Note: FAULT_FLAG_ALLOW_RETRY and
6359                                  * FAULT_FLAG_TRIED can co-exist
6360                                  */
6361                                 fault_flags |= FAULT_FLAG_TRIED;
6362                         }
6363                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
6364                         if (ret & VM_FAULT_ERROR) {
6365                                 err = vm_fault_to_errno(ret, flags);
6366                                 remainder = 0;
6367                                 break;
6368                         }
6369                         if (ret & VM_FAULT_RETRY) {
6370                                 if (locked &&
6371                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
6372                                         *locked = 0;
6373                                 *nr_pages = 0;
6374                                 /*
6375                                  * VM_FAULT_RETRY must not return an
6376                                  * error, it will return zero
6377                                  * instead.
6378                                  *
6379                                  * No need to update "position" as the
6380                                  * caller will not check it after
6381                                  * *nr_pages is set to 0.
6382                                  */
6383                                 return i;
6384                         }
6385                         continue;
6386                 }
6387
6388                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
6389                 page = pte_page(huge_ptep_get(pte));
6390
6391                 VM_BUG_ON_PAGE((flags & FOLL_PIN) && PageAnon(page) &&
6392                                !PageAnonExclusive(page), page);
6393
6394                 /*
6395                  * If subpage information not requested, update counters
6396                  * and skip the same_page loop below.
6397                  */
6398                 if (!pages && !vmas && !pfn_offset &&
6399                     (vaddr + huge_page_size(h) < vma->vm_end) &&
6400                     (remainder >= pages_per_huge_page(h))) {
6401                         vaddr += huge_page_size(h);
6402                         remainder -= pages_per_huge_page(h);
6403                         i += pages_per_huge_page(h);
6404                         spin_unlock(ptl);
6405                         continue;
6406                 }
6407
6408                 /* vaddr may not be aligned to PAGE_SIZE */
6409                 refs = min3(pages_per_huge_page(h) - pfn_offset, remainder,
6410                     (vma->vm_end - ALIGN_DOWN(vaddr, PAGE_SIZE)) >> PAGE_SHIFT);
6411
6412                 if (pages || vmas)
6413                         record_subpages_vmas(nth_page(page, pfn_offset),
6414                                              vma, refs,
6415                                              likely(pages) ? pages + i : NULL,
6416                                              vmas ? vmas + i : NULL);
6417
6418                 if (pages) {
6419                         /*
6420                          * try_grab_folio() should always succeed here,
6421                          * because: a) we hold the ptl lock, and b) we've just
6422                          * checked that the huge page is present in the page
6423                          * tables. If the huge page is present, then the tail
6424                          * pages must also be present. The ptl prevents the
6425                          * head page and tail pages from being rearranged in
6426                          * any way. As this is hugetlb, the pages will never
6427                          * be p2pdma or not longterm pinable. So this page
6428                          * must be available at this point, unless the page
6429                          * refcount overflowed:
6430                          */
6431                         if (WARN_ON_ONCE(!try_grab_folio(pages[i], refs,
6432                                                          flags))) {
6433                                 spin_unlock(ptl);
6434                                 remainder = 0;
6435                                 err = -ENOMEM;
6436                                 break;
6437                         }
6438                 }
6439
6440                 vaddr += (refs << PAGE_SHIFT);
6441                 remainder -= refs;
6442                 i += refs;
6443
6444                 spin_unlock(ptl);
6445         }
6446         *nr_pages = remainder;
6447         /*
6448          * setting position is actually required only if remainder is
6449          * not zero but it's faster not to add a "if (remainder)"
6450          * branch.
6451          */
6452         *position = vaddr;
6453
6454         return i ? i : err;
6455 }
6456
6457 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
6458                 unsigned long address, unsigned long end,
6459                 pgprot_t newprot, unsigned long cp_flags)
6460 {
6461         struct mm_struct *mm = vma->vm_mm;
6462         unsigned long start = address;
6463         pte_t *ptep;
6464         pte_t pte;
6465         struct hstate *h = hstate_vma(vma);
6466         unsigned long pages = 0, psize = huge_page_size(h);
6467         bool shared_pmd = false;
6468         struct mmu_notifier_range range;
6469         unsigned long last_addr_mask;
6470         bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
6471         bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
6472
6473         /*
6474          * In the case of shared PMDs, the area to flush could be beyond
6475          * start/end.  Set range.start/range.end to cover the maximum possible
6476          * range if PMD sharing is possible.
6477          */
6478         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
6479                                 0, vma, mm, start, end);
6480         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
6481
6482         BUG_ON(address >= end);
6483         flush_cache_range(vma, range.start, range.end);
6484
6485         mmu_notifier_invalidate_range_start(&range);
6486         hugetlb_vma_lock_write(vma);
6487         i_mmap_lock_write(vma->vm_file->f_mapping);
6488         last_addr_mask = hugetlb_mask_last_page(h);
6489         for (; address < end; address += psize) {
6490                 spinlock_t *ptl;
6491                 ptep = huge_pte_offset(mm, address, psize);
6492                 if (!ptep) {
6493                         address |= last_addr_mask;
6494                         continue;
6495                 }
6496                 ptl = huge_pte_lock(h, mm, ptep);
6497                 if (huge_pmd_unshare(mm, vma, address, ptep)) {
6498                         /*
6499                          * When uffd-wp is enabled on the vma, unshare
6500                          * shouldn't happen at all.  Warn about it if it
6501                          * happened due to some reason.
6502                          */
6503                         WARN_ON_ONCE(uffd_wp || uffd_wp_resolve);
6504                         pages++;
6505                         spin_unlock(ptl);
6506                         shared_pmd = true;
6507                         address |= last_addr_mask;
6508                         continue;
6509                 }
6510                 pte = huge_ptep_get(ptep);
6511                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
6512                         spin_unlock(ptl);
6513                         continue;
6514                 }
6515                 if (unlikely(is_hugetlb_entry_migration(pte))) {
6516                         swp_entry_t entry = pte_to_swp_entry(pte);
6517                         struct page *page = pfn_swap_entry_to_page(entry);
6518
6519                         if (!is_readable_migration_entry(entry)) {
6520                                 pte_t newpte;
6521
6522                                 if (PageAnon(page))
6523                                         entry = make_readable_exclusive_migration_entry(
6524                                                                 swp_offset(entry));
6525                                 else
6526                                         entry = make_readable_migration_entry(
6527                                                                 swp_offset(entry));
6528                                 newpte = swp_entry_to_pte(entry);
6529                                 if (uffd_wp)
6530                                         newpte = pte_swp_mkuffd_wp(newpte);
6531                                 else if (uffd_wp_resolve)
6532                                         newpte = pte_swp_clear_uffd_wp(newpte);
6533                                 set_huge_pte_at(mm, address, ptep, newpte);
6534                                 pages++;
6535                         }
6536                         spin_unlock(ptl);
6537                         continue;
6538                 }
6539                 if (unlikely(pte_marker_uffd_wp(pte))) {
6540                         /*
6541                          * This is changing a non-present pte into a none pte,
6542                          * no need for huge_ptep_modify_prot_start/commit().
6543                          */
6544                         if (uffd_wp_resolve)
6545                                 huge_pte_clear(mm, address, ptep, psize);
6546                 }
6547                 if (!huge_pte_none(pte)) {
6548                         pte_t old_pte;
6549                         unsigned int shift = huge_page_shift(hstate_vma(vma));
6550
6551                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
6552                         pte = huge_pte_modify(old_pte, newprot);
6553                         pte = arch_make_huge_pte(pte, shift, vma->vm_flags);
6554                         if (uffd_wp)
6555                                 pte = huge_pte_mkuffd_wp(huge_pte_wrprotect(pte));
6556                         else if (uffd_wp_resolve)
6557                                 pte = huge_pte_clear_uffd_wp(pte);
6558                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
6559                         pages++;
6560                 } else {
6561                         /* None pte */
6562                         if (unlikely(uffd_wp))
6563                                 /* Safe to modify directly (none->non-present). */
6564                                 set_huge_pte_at(mm, address, ptep,
6565                                                 make_pte_marker(PTE_MARKER_UFFD_WP));
6566                 }
6567                 spin_unlock(ptl);
6568         }
6569         /*
6570          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
6571          * may have cleared our pud entry and done put_page on the page table:
6572          * once we release i_mmap_rwsem, another task can do the final put_page
6573          * and that page table be reused and filled with junk.  If we actually
6574          * did unshare a page of pmds, flush the range corresponding to the pud.
6575          */
6576         if (shared_pmd)
6577                 flush_hugetlb_tlb_range(vma, range.start, range.end);
6578         else
6579                 flush_hugetlb_tlb_range(vma, start, end);
6580         /*
6581          * No need to call mmu_notifier_invalidate_range() we are downgrading
6582          * page table protection not changing it to point to a new page.
6583          *
6584          * See Documentation/mm/mmu_notifier.rst
6585          */
6586         i_mmap_unlock_write(vma->vm_file->f_mapping);
6587         hugetlb_vma_unlock_write(vma);
6588         mmu_notifier_invalidate_range_end(&range);
6589
6590         return pages << h->order;
6591 }
6592
6593 /* Return true if reservation was successful, false otherwise.  */
6594 bool hugetlb_reserve_pages(struct inode *inode,
6595                                         long from, long to,
6596                                         struct vm_area_struct *vma,
6597                                         vm_flags_t vm_flags)
6598 {
6599         long chg, add = -1;
6600         struct hstate *h = hstate_inode(inode);
6601         struct hugepage_subpool *spool = subpool_inode(inode);
6602         struct resv_map *resv_map;
6603         struct hugetlb_cgroup *h_cg = NULL;
6604         long gbl_reserve, regions_needed = 0;
6605
6606         /* This should never happen */
6607         if (from > to) {
6608                 VM_WARN(1, "%s called with a negative range\n", __func__);
6609                 return false;
6610         }
6611
6612         /*
6613          * vma specific semaphore used for pmd sharing synchronization
6614          */
6615         hugetlb_vma_lock_alloc(vma);
6616
6617         /*
6618          * Only apply hugepage reservation if asked. At fault time, an
6619          * attempt will be made for VM_NORESERVE to allocate a page
6620          * without using reserves
6621          */
6622         if (vm_flags & VM_NORESERVE)
6623                 return true;
6624
6625         /*
6626          * Shared mappings base their reservation on the number of pages that
6627          * are already allocated on behalf of the file. Private mappings need
6628          * to reserve the full area even if read-only as mprotect() may be
6629          * called to make the mapping read-write. Assume !vma is a shm mapping
6630          */
6631         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6632                 /*
6633                  * resv_map can not be NULL as hugetlb_reserve_pages is only
6634                  * called for inodes for which resv_maps were created (see
6635                  * hugetlbfs_get_inode).
6636                  */
6637                 resv_map = inode_resv_map(inode);
6638
6639                 chg = region_chg(resv_map, from, to, &regions_needed);
6640         } else {
6641                 /* Private mapping. */
6642                 resv_map = resv_map_alloc();
6643                 if (!resv_map)
6644                         goto out_err;
6645
6646                 chg = to - from;
6647
6648                 set_vma_resv_map(vma, resv_map);
6649                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
6650         }
6651
6652         if (chg < 0)
6653                 goto out_err;
6654
6655         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
6656                                 chg * pages_per_huge_page(h), &h_cg) < 0)
6657                 goto out_err;
6658
6659         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
6660                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
6661                  * of the resv_map.
6662                  */
6663                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
6664         }
6665
6666         /*
6667          * There must be enough pages in the subpool for the mapping. If
6668          * the subpool has a minimum size, there may be some global
6669          * reservations already in place (gbl_reserve).
6670          */
6671         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
6672         if (gbl_reserve < 0)
6673                 goto out_uncharge_cgroup;
6674
6675         /*
6676          * Check enough hugepages are available for the reservation.
6677          * Hand the pages back to the subpool if there are not
6678          */
6679         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
6680                 goto out_put_pages;
6681
6682         /*
6683          * Account for the reservations made. Shared mappings record regions
6684          * that have reservations as they are shared by multiple VMAs.
6685          * When the last VMA disappears, the region map says how much
6686          * the reservation was and the page cache tells how much of
6687          * the reservation was consumed. Private mappings are per-VMA and
6688          * only the consumed reservations are tracked. When the VMA
6689          * disappears, the original reservation is the VMA size and the
6690          * consumed reservations are stored in the map. Hence, nothing
6691          * else has to be done for private mappings here
6692          */
6693         if (!vma || vma->vm_flags & VM_MAYSHARE) {
6694                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
6695
6696                 if (unlikely(add < 0)) {
6697                         hugetlb_acct_memory(h, -gbl_reserve);
6698                         goto out_put_pages;
6699                 } else if (unlikely(chg > add)) {
6700                         /*
6701                          * pages in this range were added to the reserve
6702                          * map between region_chg and region_add.  This
6703                          * indicates a race with alloc_huge_page.  Adjust
6704                          * the subpool and reserve counts modified above
6705                          * based on the difference.
6706                          */
6707                         long rsv_adjust;
6708
6709                         /*
6710                          * hugetlb_cgroup_uncharge_cgroup_rsvd() will put the
6711                          * reference to h_cg->css. See comment below for detail.
6712                          */
6713                         hugetlb_cgroup_uncharge_cgroup_rsvd(
6714                                 hstate_index(h),
6715                                 (chg - add) * pages_per_huge_page(h), h_cg);
6716
6717                         rsv_adjust = hugepage_subpool_put_pages(spool,
6718                                                                 chg - add);
6719                         hugetlb_acct_memory(h, -rsv_adjust);
6720                 } else if (h_cg) {
6721                         /*
6722                          * The file_regions will hold their own reference to
6723                          * h_cg->css. So we should release the reference held
6724                          * via hugetlb_cgroup_charge_cgroup_rsvd() when we are
6725                          * done.
6726                          */
6727                         hugetlb_cgroup_put_rsvd_cgroup(h_cg);
6728                 }
6729         }
6730         return true;
6731
6732 out_put_pages:
6733         /* put back original number of pages, chg */
6734         (void)hugepage_subpool_put_pages(spool, chg);
6735 out_uncharge_cgroup:
6736         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
6737                                             chg * pages_per_huge_page(h), h_cg);
6738 out_err:
6739         hugetlb_vma_lock_free(vma);
6740         if (!vma || vma->vm_flags & VM_MAYSHARE)
6741                 /* Only call region_abort if the region_chg succeeded but the
6742                  * region_add failed or didn't run.
6743                  */
6744                 if (chg >= 0 && add < 0)
6745                         region_abort(resv_map, from, to, regions_needed);
6746         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
6747                 kref_put(&resv_map->refs, resv_map_release);
6748         return false;
6749 }
6750
6751 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
6752                                                                 long freed)
6753 {
6754         struct hstate *h = hstate_inode(inode);
6755         struct resv_map *resv_map = inode_resv_map(inode);
6756         long chg = 0;
6757         struct hugepage_subpool *spool = subpool_inode(inode);
6758         long gbl_reserve;
6759
6760         /*
6761          * Since this routine can be called in the evict inode path for all
6762          * hugetlbfs inodes, resv_map could be NULL.
6763          */
6764         if (resv_map) {
6765                 chg = region_del(resv_map, start, end);
6766                 /*
6767                  * region_del() can fail in the rare case where a region
6768                  * must be split and another region descriptor can not be
6769                  * allocated.  If end == LONG_MAX, it will not fail.
6770                  */
6771                 if (chg < 0)
6772                         return chg;
6773         }
6774
6775         spin_lock(&inode->i_lock);
6776         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
6777         spin_unlock(&inode->i_lock);
6778
6779         /*
6780          * If the subpool has a minimum size, the number of global
6781          * reservations to be released may be adjusted.
6782          *
6783          * Note that !resv_map implies freed == 0. So (chg - freed)
6784          * won't go negative.
6785          */
6786         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
6787         hugetlb_acct_memory(h, -gbl_reserve);
6788
6789         return 0;
6790 }
6791
6792 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
6793 static unsigned long page_table_shareable(struct vm_area_struct *svma,
6794                                 struct vm_area_struct *vma,
6795                                 unsigned long addr, pgoff_t idx)
6796 {
6797         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
6798                                 svma->vm_start;
6799         unsigned long sbase = saddr & PUD_MASK;
6800         unsigned long s_end = sbase + PUD_SIZE;
6801
6802         /* Allow segments to share if only one is marked locked */
6803         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
6804         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
6805
6806         /*
6807          * match the virtual addresses, permission and the alignment of the
6808          * page table page.
6809          *
6810          * Also, vma_lock (vm_private_data) is required for sharing.
6811          */
6812         if (pmd_index(addr) != pmd_index(saddr) ||
6813             vm_flags != svm_flags ||
6814             !range_in_vma(svma, sbase, s_end) ||
6815             !svma->vm_private_data)
6816                 return 0;
6817
6818         return saddr;
6819 }
6820
6821 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
6822 {
6823         unsigned long start = addr & PUD_MASK;
6824         unsigned long end = start + PUD_SIZE;
6825
6826 #ifdef CONFIG_USERFAULTFD
6827         if (uffd_disable_huge_pmd_share(vma))
6828                 return false;
6829 #endif
6830         /*
6831          * check on proper vm_flags and page table alignment
6832          */
6833         if (!(vma->vm_flags & VM_MAYSHARE))
6834                 return false;
6835         if (!vma->vm_private_data)      /* vma lock required for sharing */
6836                 return false;
6837         if (!range_in_vma(vma, start, end))
6838                 return false;
6839         return true;
6840 }
6841
6842 /*
6843  * Determine if start,end range within vma could be mapped by shared pmd.
6844  * If yes, adjust start and end to cover range associated with possible
6845  * shared pmd mappings.
6846  */
6847 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
6848                                 unsigned long *start, unsigned long *end)
6849 {
6850         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
6851                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
6852
6853         /*
6854          * vma needs to span at least one aligned PUD size, and the range
6855          * must be at least partially within in.
6856          */
6857         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
6858                 (*end <= v_start) || (*start >= v_end))
6859                 return;
6860
6861         /* Extend the range to be PUD aligned for a worst case scenario */
6862         if (*start > v_start)
6863                 *start = ALIGN_DOWN(*start, PUD_SIZE);
6864
6865         if (*end < v_end)
6866                 *end = ALIGN(*end, PUD_SIZE);
6867 }
6868
6869 static bool __vma_shareable_flags_pmd(struct vm_area_struct *vma)
6870 {
6871         return vma->vm_flags & (VM_MAYSHARE | VM_SHARED) &&
6872                 vma->vm_private_data;
6873 }
6874
6875 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
6876 {
6877         if (__vma_shareable_flags_pmd(vma)) {
6878                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6879
6880                 down_read(&vma_lock->rw_sema);
6881         }
6882 }
6883
6884 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
6885 {
6886         if (__vma_shareable_flags_pmd(vma)) {
6887                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6888
6889                 up_read(&vma_lock->rw_sema);
6890         }
6891 }
6892
6893 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
6894 {
6895         if (__vma_shareable_flags_pmd(vma)) {
6896                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6897
6898                 down_write(&vma_lock->rw_sema);
6899         }
6900 }
6901
6902 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
6903 {
6904         if (__vma_shareable_flags_pmd(vma)) {
6905                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6906
6907                 up_write(&vma_lock->rw_sema);
6908         }
6909 }
6910
6911 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
6912 {
6913         struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6914
6915         if (!__vma_shareable_flags_pmd(vma))
6916                 return 1;
6917
6918         return down_write_trylock(&vma_lock->rw_sema);
6919 }
6920
6921 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
6922 {
6923         if (__vma_shareable_flags_pmd(vma)) {
6924                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6925
6926                 lockdep_assert_held(&vma_lock->rw_sema);
6927         }
6928 }
6929
6930 void hugetlb_vma_lock_release(struct kref *kref)
6931 {
6932         struct hugetlb_vma_lock *vma_lock = container_of(kref,
6933                         struct hugetlb_vma_lock, refs);
6934
6935         kfree(vma_lock);
6936 }
6937
6938 static void __hugetlb_vma_unlock_write_put(struct hugetlb_vma_lock *vma_lock)
6939 {
6940         struct vm_area_struct *vma = vma_lock->vma;
6941
6942         /*
6943          * vma_lock structure may or not be released as a result of put,
6944          * it certainly will no longer be attached to vma so clear pointer.
6945          * Semaphore synchronizes access to vma_lock->vma field.
6946          */
6947         vma_lock->vma = NULL;
6948         vma->vm_private_data = NULL;
6949         up_write(&vma_lock->rw_sema);
6950         kref_put(&vma_lock->refs, hugetlb_vma_lock_release);
6951 }
6952
6953 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
6954 {
6955         if (__vma_shareable_flags_pmd(vma)) {
6956                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6957
6958                 __hugetlb_vma_unlock_write_put(vma_lock);
6959         }
6960 }
6961
6962 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
6963 {
6964         /*
6965          * Only present in sharable vmas.
6966          */
6967         if (!vma || !__vma_shareable_flags_pmd(vma))
6968                 return;
6969
6970         if (vma->vm_private_data) {
6971                 struct hugetlb_vma_lock *vma_lock = vma->vm_private_data;
6972
6973                 down_write(&vma_lock->rw_sema);
6974                 __hugetlb_vma_unlock_write_put(vma_lock);
6975         }
6976 }
6977
6978 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
6979 {
6980         struct hugetlb_vma_lock *vma_lock;
6981
6982         /* Only establish in (flags) sharable vmas */
6983         if (!vma || !(vma->vm_flags & VM_MAYSHARE))
6984                 return;
6985
6986         /* Should never get here with non-NULL vm_private_data */
6987         if (vma->vm_private_data)
6988                 return;
6989
6990         vma_lock = kmalloc(sizeof(*vma_lock), GFP_KERNEL);
6991         if (!vma_lock) {
6992                 /*
6993                  * If we can not allocate structure, then vma can not
6994                  * participate in pmd sharing.  This is only a possible
6995                  * performance enhancement and memory saving issue.
6996                  * However, the lock is also used to synchronize page
6997                  * faults with truncation.  If the lock is not present,
6998                  * unlikely races could leave pages in a file past i_size
6999                  * until the file is removed.  Warn in the unlikely case of
7000                  * allocation failure.
7001                  */
7002                 pr_warn_once("HugeTLB: unable to allocate vma specific lock\n");
7003                 return;
7004         }
7005
7006         kref_init(&vma_lock->refs);
7007         init_rwsem(&vma_lock->rw_sema);
7008         vma_lock->vma = vma;
7009         vma->vm_private_data = vma_lock;
7010 }
7011
7012 /*
7013  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
7014  * and returns the corresponding pte. While this is not necessary for the
7015  * !shared pmd case because we can allocate the pmd later as well, it makes the
7016  * code much cleaner. pmd allocation is essential for the shared case because
7017  * pud has to be populated inside the same i_mmap_rwsem section - otherwise
7018  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
7019  * bad pmd for sharing.
7020  */
7021 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7022                       unsigned long addr, pud_t *pud)
7023 {
7024         struct address_space *mapping = vma->vm_file->f_mapping;
7025         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
7026                         vma->vm_pgoff;
7027         struct vm_area_struct *svma;
7028         unsigned long saddr;
7029         pte_t *spte = NULL;
7030         pte_t *pte;
7031         spinlock_t *ptl;
7032
7033         i_mmap_lock_read(mapping);
7034         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
7035                 if (svma == vma)
7036                         continue;
7037
7038                 saddr = page_table_shareable(svma, vma, addr, idx);
7039                 if (saddr) {
7040                         spte = huge_pte_offset(svma->vm_mm, saddr,
7041                                                vma_mmu_pagesize(svma));
7042                         if (spte) {
7043                                 get_page(virt_to_page(spte));
7044                                 break;
7045                         }
7046                 }
7047         }
7048
7049         if (!spte)
7050                 goto out;
7051
7052         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
7053         if (pud_none(*pud)) {
7054                 pud_populate(mm, pud,
7055                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
7056                 mm_inc_nr_pmds(mm);
7057         } else {
7058                 put_page(virt_to_page(spte));
7059         }
7060         spin_unlock(ptl);
7061 out:
7062         pte = (pte_t *)pmd_alloc(mm, pud, addr);
7063         i_mmap_unlock_read(mapping);
7064         return pte;
7065 }
7066
7067 /*
7068  * unmap huge page backed by shared pte.
7069  *
7070  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
7071  * indicated by page_count > 1, unmap is achieved by clearing pud and
7072  * decrementing the ref count. If count == 1, the pte page is not shared.
7073  *
7074  * Called with page table lock held.
7075  *
7076  * returns: 1 successfully unmapped a shared pte page
7077  *          0 the underlying pte page is not shared, or it is the last user
7078  */
7079 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7080                                         unsigned long addr, pte_t *ptep)
7081 {
7082         pgd_t *pgd = pgd_offset(mm, addr);
7083         p4d_t *p4d = p4d_offset(pgd, addr);
7084         pud_t *pud = pud_offset(p4d, addr);
7085
7086         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
7087         hugetlb_vma_assert_locked(vma);
7088         BUG_ON(page_count(virt_to_page(ptep)) == 0);
7089         if (page_count(virt_to_page(ptep)) == 1)
7090                 return 0;
7091
7092         pud_clear(pud);
7093         put_page(virt_to_page(ptep));
7094         mm_dec_nr_pmds(mm);
7095         return 1;
7096 }
7097
7098 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7099
7100 void hugetlb_vma_lock_read(struct vm_area_struct *vma)
7101 {
7102 }
7103
7104 void hugetlb_vma_unlock_read(struct vm_area_struct *vma)
7105 {
7106 }
7107
7108 void hugetlb_vma_lock_write(struct vm_area_struct *vma)
7109 {
7110 }
7111
7112 void hugetlb_vma_unlock_write(struct vm_area_struct *vma)
7113 {
7114 }
7115
7116 int hugetlb_vma_trylock_write(struct vm_area_struct *vma)
7117 {
7118         return 1;
7119 }
7120
7121 void hugetlb_vma_assert_locked(struct vm_area_struct *vma)
7122 {
7123 }
7124
7125 void hugetlb_vma_lock_release(struct kref *kref)
7126 {
7127 }
7128
7129 static void __hugetlb_vma_unlock_write_free(struct vm_area_struct *vma)
7130 {
7131 }
7132
7133 static void hugetlb_vma_lock_free(struct vm_area_struct *vma)
7134 {
7135 }
7136
7137 static void hugetlb_vma_lock_alloc(struct vm_area_struct *vma)
7138 {
7139 }
7140
7141 pte_t *huge_pmd_share(struct mm_struct *mm, struct vm_area_struct *vma,
7142                       unsigned long addr, pud_t *pud)
7143 {
7144         return NULL;
7145 }
7146
7147 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
7148                                 unsigned long addr, pte_t *ptep)
7149 {
7150         return 0;
7151 }
7152
7153 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
7154                                 unsigned long *start, unsigned long *end)
7155 {
7156 }
7157
7158 bool want_pmd_share(struct vm_area_struct *vma, unsigned long addr)
7159 {
7160         return false;
7161 }
7162 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
7163
7164 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
7165 pte_t *huge_pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
7166                         unsigned long addr, unsigned long sz)
7167 {
7168         pgd_t *pgd;
7169         p4d_t *p4d;
7170         pud_t *pud;
7171         pte_t *pte = NULL;
7172
7173         pgd = pgd_offset(mm, addr);
7174         p4d = p4d_alloc(mm, pgd, addr);
7175         if (!p4d)
7176                 return NULL;
7177         pud = pud_alloc(mm, p4d, addr);
7178         if (pud) {
7179                 if (sz == PUD_SIZE) {
7180                         pte = (pte_t *)pud;
7181                 } else {
7182                         BUG_ON(sz != PMD_SIZE);
7183                         if (want_pmd_share(vma, addr) && pud_none(*pud))
7184                                 pte = huge_pmd_share(mm, vma, addr, pud);
7185                         else
7186                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
7187                 }
7188         }
7189         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
7190
7191         return pte;
7192 }
7193
7194 /*
7195  * huge_pte_offset() - Walk the page table to resolve the hugepage
7196  * entry at address @addr
7197  *
7198  * Return: Pointer to page table entry (PUD or PMD) for
7199  * address @addr, or NULL if a !p*d_present() entry is encountered and the
7200  * size @sz doesn't match the hugepage size at this level of the page
7201  * table.
7202  */
7203 pte_t *huge_pte_offset(struct mm_struct *mm,
7204                        unsigned long addr, unsigned long sz)
7205 {
7206         pgd_t *pgd;
7207         p4d_t *p4d;
7208         pud_t *pud;
7209         pmd_t *pmd;
7210
7211         pgd = pgd_offset(mm, addr);
7212         if (!pgd_present(*pgd))
7213                 return NULL;
7214         p4d = p4d_offset(pgd, addr);
7215         if (!p4d_present(*p4d))
7216                 return NULL;
7217
7218         pud = pud_offset(p4d, addr);
7219         if (sz == PUD_SIZE)
7220                 /* must be pud huge, non-present or none */
7221                 return (pte_t *)pud;
7222         if (!pud_present(*pud))
7223                 return NULL;
7224         /* must have a valid entry and size to go further */
7225
7226         pmd = pmd_offset(pud, addr);
7227         /* must be pmd huge, non-present or none */
7228         return (pte_t *)pmd;
7229 }
7230
7231 /*
7232  * Return a mask that can be used to update an address to the last huge
7233  * page in a page table page mapping size.  Used to skip non-present
7234  * page table entries when linearly scanning address ranges.  Architectures
7235  * with unique huge page to page table relationships can define their own
7236  * version of this routine.
7237  */
7238 unsigned long hugetlb_mask_last_page(struct hstate *h)
7239 {
7240         unsigned long hp_size = huge_page_size(h);
7241
7242         if (hp_size == PUD_SIZE)
7243                 return P4D_SIZE - PUD_SIZE;
7244         else if (hp_size == PMD_SIZE)
7245                 return PUD_SIZE - PMD_SIZE;
7246         else
7247                 return 0UL;
7248 }
7249
7250 #else
7251
7252 /* See description above.  Architectures can provide their own version. */
7253 __weak unsigned long hugetlb_mask_last_page(struct hstate *h)
7254 {
7255 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
7256         if (huge_page_size(h) == PMD_SIZE)
7257                 return PUD_SIZE - PMD_SIZE;
7258 #endif
7259         return 0UL;
7260 }
7261
7262 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
7263
7264 /*
7265  * These functions are overwritable if your architecture needs its own
7266  * behavior.
7267  */
7268 int isolate_hugetlb(struct page *page, struct list_head *list)
7269 {
7270         int ret = 0;
7271
7272         spin_lock_irq(&hugetlb_lock);
7273         if (!PageHeadHuge(page) ||
7274             !HPageMigratable(page) ||
7275             !get_page_unless_zero(page)) {
7276                 ret = -EBUSY;
7277                 goto unlock;
7278         }
7279         ClearHPageMigratable(page);
7280         list_move_tail(&page->lru, list);
7281 unlock:
7282         spin_unlock_irq(&hugetlb_lock);
7283         return ret;
7284 }
7285
7286 int get_hwpoison_huge_page(struct page *page, bool *hugetlb, bool unpoison)
7287 {
7288         int ret = 0;
7289
7290         *hugetlb = false;
7291         spin_lock_irq(&hugetlb_lock);
7292         if (PageHeadHuge(page)) {
7293                 *hugetlb = true;
7294                 if (HPageFreed(page))
7295                         ret = 0;
7296                 else if (HPageMigratable(page) || unpoison)
7297                         ret = get_page_unless_zero(page);
7298                 else
7299                         ret = -EBUSY;
7300         }
7301         spin_unlock_irq(&hugetlb_lock);
7302         return ret;
7303 }
7304
7305 int get_huge_page_for_hwpoison(unsigned long pfn, int flags,
7306                                 bool *migratable_cleared)
7307 {
7308         int ret;
7309
7310         spin_lock_irq(&hugetlb_lock);
7311         ret = __get_huge_page_for_hwpoison(pfn, flags, migratable_cleared);
7312         spin_unlock_irq(&hugetlb_lock);
7313         return ret;
7314 }
7315
7316 void putback_active_hugepage(struct page *page)
7317 {
7318         spin_lock_irq(&hugetlb_lock);
7319         SetHPageMigratable(page);
7320         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
7321         spin_unlock_irq(&hugetlb_lock);
7322         put_page(page);
7323 }
7324
7325 void move_hugetlb_state(struct folio *old_folio, struct folio *new_folio, int reason)
7326 {
7327         struct hstate *h = folio_hstate(old_folio);
7328
7329         hugetlb_cgroup_migrate(old_folio, new_folio);
7330         set_page_owner_migrate_reason(&new_folio->page, reason);
7331
7332         /*
7333          * transfer temporary state of the new hugetlb folio. This is
7334          * reverse to other transitions because the newpage is going to
7335          * be final while the old one will be freed so it takes over
7336          * the temporary status.
7337          *
7338          * Also note that we have to transfer the per-node surplus state
7339          * here as well otherwise the global surplus count will not match
7340          * the per-node's.
7341          */
7342         if (folio_test_hugetlb_temporary(new_folio)) {
7343                 int old_nid = folio_nid(old_folio);
7344                 int new_nid = folio_nid(new_folio);
7345
7346                 folio_set_hugetlb_temporary(old_folio);
7347                 folio_clear_hugetlb_temporary(new_folio);
7348
7349
7350                 /*
7351                  * There is no need to transfer the per-node surplus state
7352                  * when we do not cross the node.
7353                  */
7354                 if (new_nid == old_nid)
7355                         return;
7356                 spin_lock_irq(&hugetlb_lock);
7357                 if (h->surplus_huge_pages_node[old_nid]) {
7358                         h->surplus_huge_pages_node[old_nid]--;
7359                         h->surplus_huge_pages_node[new_nid]++;
7360                 }
7361                 spin_unlock_irq(&hugetlb_lock);
7362         }
7363 }
7364
7365 /*
7366  * This function will unconditionally remove all the shared pmd pgtable entries
7367  * within the specific vma for a hugetlbfs memory range.
7368  */
7369 void hugetlb_unshare_all_pmds(struct vm_area_struct *vma)
7370 {
7371         struct hstate *h = hstate_vma(vma);
7372         unsigned long sz = huge_page_size(h);
7373         struct mm_struct *mm = vma->vm_mm;
7374         struct mmu_notifier_range range;
7375         unsigned long address, start, end;
7376         spinlock_t *ptl;
7377         pte_t *ptep;
7378
7379         if (!(vma->vm_flags & VM_MAYSHARE))
7380                 return;
7381
7382         start = ALIGN(vma->vm_start, PUD_SIZE);
7383         end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
7384
7385         if (start >= end)
7386                 return;
7387
7388         flush_cache_range(vma, start, end);
7389         /*
7390          * No need to call adjust_range_if_pmd_sharing_possible(), because
7391          * we have already done the PUD_SIZE alignment.
7392          */
7393         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm,
7394                                 start, end);
7395         mmu_notifier_invalidate_range_start(&range);
7396         hugetlb_vma_lock_write(vma);
7397         i_mmap_lock_write(vma->vm_file->f_mapping);
7398         for (address = start; address < end; address += PUD_SIZE) {
7399                 ptep = huge_pte_offset(mm, address, sz);
7400                 if (!ptep)
7401                         continue;
7402                 ptl = huge_pte_lock(h, mm, ptep);
7403                 huge_pmd_unshare(mm, vma, address, ptep);
7404                 spin_unlock(ptl);
7405         }
7406         flush_hugetlb_tlb_range(vma, start, end);
7407         i_mmap_unlock_write(vma->vm_file->f_mapping);
7408         hugetlb_vma_unlock_write(vma);
7409         /*
7410          * No need to call mmu_notifier_invalidate_range(), see
7411          * Documentation/mm/mmu_notifier.rst.
7412          */
7413         mmu_notifier_invalidate_range_end(&range);
7414 }
7415
7416 #ifdef CONFIG_CMA
7417 static bool cma_reserve_called __initdata;
7418
7419 static int __init cmdline_parse_hugetlb_cma(char *p)
7420 {
7421         int nid, count = 0;
7422         unsigned long tmp;
7423         char *s = p;
7424
7425         while (*s) {
7426                 if (sscanf(s, "%lu%n", &tmp, &count) != 1)
7427                         break;
7428
7429                 if (s[count] == ':') {
7430                         if (tmp >= MAX_NUMNODES)
7431                                 break;
7432                         nid = array_index_nospec(tmp, MAX_NUMNODES);
7433
7434                         s += count + 1;
7435                         tmp = memparse(s, &s);
7436                         hugetlb_cma_size_in_node[nid] = tmp;
7437                         hugetlb_cma_size += tmp;
7438
7439                         /*
7440                          * Skip the separator if have one, otherwise
7441                          * break the parsing.
7442                          */
7443                         if (*s == ',')
7444                                 s++;
7445                         else
7446                                 break;
7447                 } else {
7448                         hugetlb_cma_size = memparse(p, &p);
7449                         break;
7450                 }
7451         }
7452
7453         return 0;
7454 }
7455
7456 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
7457
7458 void __init hugetlb_cma_reserve(int order)
7459 {
7460         unsigned long size, reserved, per_node;
7461         bool node_specific_cma_alloc = false;
7462         int nid;
7463
7464         cma_reserve_called = true;
7465
7466         if (!hugetlb_cma_size)
7467                 return;
7468
7469         for (nid = 0; nid < MAX_NUMNODES; nid++) {
7470                 if (hugetlb_cma_size_in_node[nid] == 0)
7471                         continue;
7472
7473                 if (!node_online(nid)) {
7474                         pr_warn("hugetlb_cma: invalid node %d specified\n", nid);
7475                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7476                         hugetlb_cma_size_in_node[nid] = 0;
7477                         continue;
7478                 }
7479
7480                 if (hugetlb_cma_size_in_node[nid] < (PAGE_SIZE << order)) {
7481                         pr_warn("hugetlb_cma: cma area of node %d should be at least %lu MiB\n",
7482                                 nid, (PAGE_SIZE << order) / SZ_1M);
7483                         hugetlb_cma_size -= hugetlb_cma_size_in_node[nid];
7484                         hugetlb_cma_size_in_node[nid] = 0;
7485                 } else {
7486                         node_specific_cma_alloc = true;
7487                 }
7488         }
7489
7490         /* Validate the CMA size again in case some invalid nodes specified. */
7491         if (!hugetlb_cma_size)
7492                 return;
7493
7494         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
7495                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
7496                         (PAGE_SIZE << order) / SZ_1M);
7497                 hugetlb_cma_size = 0;
7498                 return;
7499         }
7500
7501         if (!node_specific_cma_alloc) {
7502                 /*
7503                  * If 3 GB area is requested on a machine with 4 numa nodes,
7504                  * let's allocate 1 GB on first three nodes and ignore the last one.
7505                  */
7506                 per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
7507                 pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
7508                         hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
7509         }
7510
7511         reserved = 0;
7512         for_each_online_node(nid) {
7513                 int res;
7514                 char name[CMA_MAX_NAME];
7515
7516                 if (node_specific_cma_alloc) {
7517                         if (hugetlb_cma_size_in_node[nid] == 0)
7518                                 continue;
7519
7520                         size = hugetlb_cma_size_in_node[nid];
7521                 } else {
7522                         size = min(per_node, hugetlb_cma_size - reserved);
7523                 }
7524
7525                 size = round_up(size, PAGE_SIZE << order);
7526
7527                 snprintf(name, sizeof(name), "hugetlb%d", nid);
7528                 /*
7529                  * Note that 'order per bit' is based on smallest size that
7530                  * may be returned to CMA allocator in the case of
7531                  * huge page demotion.
7532                  */
7533                 res = cma_declare_contiguous_nid(0, size, 0,
7534                                                 PAGE_SIZE << HUGETLB_PAGE_ORDER,
7535                                                  0, false, name,
7536                                                  &hugetlb_cma[nid], nid);
7537                 if (res) {
7538                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
7539                                 res, nid);
7540                         continue;
7541                 }
7542
7543                 reserved += size;
7544                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
7545                         size / SZ_1M, nid);
7546
7547                 if (reserved >= hugetlb_cma_size)
7548                         break;
7549         }
7550
7551         if (!reserved)
7552                 /*
7553                  * hugetlb_cma_size is used to determine if allocations from
7554                  * cma are possible.  Set to zero if no cma regions are set up.
7555                  */
7556                 hugetlb_cma_size = 0;
7557 }
7558
7559 static void __init hugetlb_cma_check(void)
7560 {
7561         if (!hugetlb_cma_size || cma_reserve_called)
7562                 return;
7563
7564         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
7565 }
7566
7567 #endif /* CONFIG_CMA */