mm/hugetlb.c: simplify PageHeadHuge() and PageHuge()
[platform/adaptation/renesas_rcar/renesas_kernel.git] / mm / hugetlb.c
1 /*
2  * Generic hugetlb support.
3  * (C) Nadia Yvette Chambers, April 2004
4  */
5 #include <linux/list.h>
6 #include <linux/init.h>
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/cpuset.h>
17 #include <linux/mutex.h>
18 #include <linux/bootmem.h>
19 #include <linux/sysfs.h>
20 #include <linux/slab.h>
21 #include <linux/rmap.h>
22 #include <linux/swap.h>
23 #include <linux/swapops.h>
24 #include <linux/page-isolation.h>
25
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/tlb.h>
29
30 #include <linux/io.h>
31 #include <linux/hugetlb.h>
32 #include <linux/hugetlb_cgroup.h>
33 #include <linux/node.h>
34 #include "internal.h"
35
36 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
37 unsigned long hugepages_treat_as_movable;
38
39 int hugetlb_max_hstate __read_mostly;
40 unsigned int default_hstate_idx;
41 struct hstate hstates[HUGE_MAX_HSTATE];
42
43 __initdata LIST_HEAD(huge_boot_pages);
44
45 /* for command line parsing */
46 static struct hstate * __initdata parsed_hstate;
47 static unsigned long __initdata default_hstate_max_huge_pages;
48 static unsigned long __initdata default_hstate_size;
49
50 /*
51  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
52  * free_huge_pages, and surplus_huge_pages.
53  */
54 DEFINE_SPINLOCK(hugetlb_lock);
55
56 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
57 {
58         bool free = (spool->count == 0) && (spool->used_hpages == 0);
59
60         spin_unlock(&spool->lock);
61
62         /* If no pages are used, and no other handles to the subpool
63          * remain, free the subpool the subpool remain */
64         if (free)
65                 kfree(spool);
66 }
67
68 struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
69 {
70         struct hugepage_subpool *spool;
71
72         spool = kmalloc(sizeof(*spool), GFP_KERNEL);
73         if (!spool)
74                 return NULL;
75
76         spin_lock_init(&spool->lock);
77         spool->count = 1;
78         spool->max_hpages = nr_blocks;
79         spool->used_hpages = 0;
80
81         return spool;
82 }
83
84 void hugepage_put_subpool(struct hugepage_subpool *spool)
85 {
86         spin_lock(&spool->lock);
87         BUG_ON(!spool->count);
88         spool->count--;
89         unlock_or_release_subpool(spool);
90 }
91
92 static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
93                                       long delta)
94 {
95         int ret = 0;
96
97         if (!spool)
98                 return 0;
99
100         spin_lock(&spool->lock);
101         if ((spool->used_hpages + delta) <= spool->max_hpages) {
102                 spool->used_hpages += delta;
103         } else {
104                 ret = -ENOMEM;
105         }
106         spin_unlock(&spool->lock);
107
108         return ret;
109 }
110
111 static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
112                                        long delta)
113 {
114         if (!spool)
115                 return;
116
117         spin_lock(&spool->lock);
118         spool->used_hpages -= delta;
119         /* If hugetlbfs_put_super couldn't free spool due to
120         * an outstanding quota reference, free it now. */
121         unlock_or_release_subpool(spool);
122 }
123
124 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
125 {
126         return HUGETLBFS_SB(inode->i_sb)->spool;
127 }
128
129 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
130 {
131         return subpool_inode(file_inode(vma->vm_file));
132 }
133
134 /*
135  * Region tracking -- allows tracking of reservations and instantiated pages
136  *                    across the pages in a mapping.
137  *
138  * The region data structures are protected by a combination of the mmap_sem
139  * and the hugetlb_instantiation_mutex.  To access or modify a region the caller
140  * must either hold the mmap_sem for write, or the mmap_sem for read and
141  * the hugetlb_instantiation_mutex:
142  *
143  *      down_write(&mm->mmap_sem);
144  * or
145  *      down_read(&mm->mmap_sem);
146  *      mutex_lock(&hugetlb_instantiation_mutex);
147  */
148 struct file_region {
149         struct list_head link;
150         long from;
151         long to;
152 };
153
154 static long region_add(struct list_head *head, long f, long t)
155 {
156         struct file_region *rg, *nrg, *trg;
157
158         /* Locate the region we are either in or before. */
159         list_for_each_entry(rg, head, link)
160                 if (f <= rg->to)
161                         break;
162
163         /* Round our left edge to the current segment if it encloses us. */
164         if (f > rg->from)
165                 f = rg->from;
166
167         /* Check for and consume any regions we now overlap with. */
168         nrg = rg;
169         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
170                 if (&rg->link == head)
171                         break;
172                 if (rg->from > t)
173                         break;
174
175                 /* If this area reaches higher then extend our area to
176                  * include it completely.  If this is not the first area
177                  * which we intend to reuse, free it. */
178                 if (rg->to > t)
179                         t = rg->to;
180                 if (rg != nrg) {
181                         list_del(&rg->link);
182                         kfree(rg);
183                 }
184         }
185         nrg->from = f;
186         nrg->to = t;
187         return 0;
188 }
189
190 static long region_chg(struct list_head *head, long f, long t)
191 {
192         struct file_region *rg, *nrg;
193         long chg = 0;
194
195         /* Locate the region we are before or in. */
196         list_for_each_entry(rg, head, link)
197                 if (f <= rg->to)
198                         break;
199
200         /* If we are below the current region then a new region is required.
201          * Subtle, allocate a new region at the position but make it zero
202          * size such that we can guarantee to record the reservation. */
203         if (&rg->link == head || t < rg->from) {
204                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
205                 if (!nrg)
206                         return -ENOMEM;
207                 nrg->from = f;
208                 nrg->to   = f;
209                 INIT_LIST_HEAD(&nrg->link);
210                 list_add(&nrg->link, rg->link.prev);
211
212                 return t - f;
213         }
214
215         /* Round our left edge to the current segment if it encloses us. */
216         if (f > rg->from)
217                 f = rg->from;
218         chg = t - f;
219
220         /* Check for and consume any regions we now overlap with. */
221         list_for_each_entry(rg, rg->link.prev, link) {
222                 if (&rg->link == head)
223                         break;
224                 if (rg->from > t)
225                         return chg;
226
227                 /* We overlap with this area, if it extends further than
228                  * us then we must extend ourselves.  Account for its
229                  * existing reservation. */
230                 if (rg->to > t) {
231                         chg += rg->to - t;
232                         t = rg->to;
233                 }
234                 chg -= rg->to - rg->from;
235         }
236         return chg;
237 }
238
239 static long region_truncate(struct list_head *head, long end)
240 {
241         struct file_region *rg, *trg;
242         long chg = 0;
243
244         /* Locate the region we are either in or before. */
245         list_for_each_entry(rg, head, link)
246                 if (end <= rg->to)
247                         break;
248         if (&rg->link == head)
249                 return 0;
250
251         /* If we are in the middle of a region then adjust it. */
252         if (end > rg->from) {
253                 chg = rg->to - end;
254                 rg->to = end;
255                 rg = list_entry(rg->link.next, typeof(*rg), link);
256         }
257
258         /* Drop any remaining regions. */
259         list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
260                 if (&rg->link == head)
261                         break;
262                 chg += rg->to - rg->from;
263                 list_del(&rg->link);
264                 kfree(rg);
265         }
266         return chg;
267 }
268
269 static long region_count(struct list_head *head, long f, long t)
270 {
271         struct file_region *rg;
272         long chg = 0;
273
274         /* Locate each segment we overlap with, and count that overlap. */
275         list_for_each_entry(rg, head, link) {
276                 long seg_from;
277                 long seg_to;
278
279                 if (rg->to <= f)
280                         continue;
281                 if (rg->from >= t)
282                         break;
283
284                 seg_from = max(rg->from, f);
285                 seg_to = min(rg->to, t);
286
287                 chg += seg_to - seg_from;
288         }
289
290         return chg;
291 }
292
293 /*
294  * Convert the address within this vma to the page offset within
295  * the mapping, in pagecache page units; huge pages here.
296  */
297 static pgoff_t vma_hugecache_offset(struct hstate *h,
298                         struct vm_area_struct *vma, unsigned long address)
299 {
300         return ((address - vma->vm_start) >> huge_page_shift(h)) +
301                         (vma->vm_pgoff >> huge_page_order(h));
302 }
303
304 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
305                                      unsigned long address)
306 {
307         return vma_hugecache_offset(hstate_vma(vma), vma, address);
308 }
309
310 /*
311  * Return the size of the pages allocated when backing a VMA. In the majority
312  * cases this will be same size as used by the page table entries.
313  */
314 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
315 {
316         struct hstate *hstate;
317
318         if (!is_vm_hugetlb_page(vma))
319                 return PAGE_SIZE;
320
321         hstate = hstate_vma(vma);
322
323         return 1UL << huge_page_shift(hstate);
324 }
325 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
326
327 /*
328  * Return the page size being used by the MMU to back a VMA. In the majority
329  * of cases, the page size used by the kernel matches the MMU size. On
330  * architectures where it differs, an architecture-specific version of this
331  * function is required.
332  */
333 #ifndef vma_mmu_pagesize
334 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
335 {
336         return vma_kernel_pagesize(vma);
337 }
338 #endif
339
340 /*
341  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
342  * bits of the reservation map pointer, which are always clear due to
343  * alignment.
344  */
345 #define HPAGE_RESV_OWNER    (1UL << 0)
346 #define HPAGE_RESV_UNMAPPED (1UL << 1)
347 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
348
349 /*
350  * These helpers are used to track how many pages are reserved for
351  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
352  * is guaranteed to have their future faults succeed.
353  *
354  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
355  * the reserve counters are updated with the hugetlb_lock held. It is safe
356  * to reset the VMA at fork() time as it is not in use yet and there is no
357  * chance of the global counters getting corrupted as a result of the values.
358  *
359  * The private mapping reservation is represented in a subtly different
360  * manner to a shared mapping.  A shared mapping has a region map associated
361  * with the underlying file, this region map represents the backing file
362  * pages which have ever had a reservation assigned which this persists even
363  * after the page is instantiated.  A private mapping has a region map
364  * associated with the original mmap which is attached to all VMAs which
365  * reference it, this region map represents those offsets which have consumed
366  * reservation ie. where pages have been instantiated.
367  */
368 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
369 {
370         return (unsigned long)vma->vm_private_data;
371 }
372
373 static void set_vma_private_data(struct vm_area_struct *vma,
374                                                         unsigned long value)
375 {
376         vma->vm_private_data = (void *)value;
377 }
378
379 struct resv_map {
380         struct kref refs;
381         struct list_head regions;
382 };
383
384 static struct resv_map *resv_map_alloc(void)
385 {
386         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
387         if (!resv_map)
388                 return NULL;
389
390         kref_init(&resv_map->refs);
391         INIT_LIST_HEAD(&resv_map->regions);
392
393         return resv_map;
394 }
395
396 static void resv_map_release(struct kref *ref)
397 {
398         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
399
400         /* Clear out any active regions before we release the map. */
401         region_truncate(&resv_map->regions, 0);
402         kfree(resv_map);
403 }
404
405 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
406 {
407         VM_BUG_ON(!is_vm_hugetlb_page(vma));
408         if (!(vma->vm_flags & VM_MAYSHARE))
409                 return (struct resv_map *)(get_vma_private_data(vma) &
410                                                         ~HPAGE_RESV_MASK);
411         return NULL;
412 }
413
414 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
415 {
416         VM_BUG_ON(!is_vm_hugetlb_page(vma));
417         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
418
419         set_vma_private_data(vma, (get_vma_private_data(vma) &
420                                 HPAGE_RESV_MASK) | (unsigned long)map);
421 }
422
423 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
424 {
425         VM_BUG_ON(!is_vm_hugetlb_page(vma));
426         VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
427
428         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
429 }
430
431 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
432 {
433         VM_BUG_ON(!is_vm_hugetlb_page(vma));
434
435         return (get_vma_private_data(vma) & flag) != 0;
436 }
437
438 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
439 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
440 {
441         VM_BUG_ON(!is_vm_hugetlb_page(vma));
442         if (!(vma->vm_flags & VM_MAYSHARE))
443                 vma->vm_private_data = (void *)0;
444 }
445
446 /* Returns true if the VMA has associated reserve pages */
447 static int vma_has_reserves(struct vm_area_struct *vma, long chg)
448 {
449         if (vma->vm_flags & VM_NORESERVE) {
450                 /*
451                  * This address is already reserved by other process(chg == 0),
452                  * so, we should decrement reserved count. Without decrementing,
453                  * reserve count remains after releasing inode, because this
454                  * allocated page will go into page cache and is regarded as
455                  * coming from reserved pool in releasing step.  Currently, we
456                  * don't have any other solution to deal with this situation
457                  * properly, so add work-around here.
458                  */
459                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
460                         return 1;
461                 else
462                         return 0;
463         }
464
465         /* Shared mappings always use reserves */
466         if (vma->vm_flags & VM_MAYSHARE)
467                 return 1;
468
469         /*
470          * Only the process that called mmap() has reserves for
471          * private mappings.
472          */
473         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
474                 return 1;
475
476         return 0;
477 }
478
479 static void enqueue_huge_page(struct hstate *h, struct page *page)
480 {
481         int nid = page_to_nid(page);
482         list_move(&page->lru, &h->hugepage_freelists[nid]);
483         h->free_huge_pages++;
484         h->free_huge_pages_node[nid]++;
485 }
486
487 static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
488 {
489         struct page *page;
490
491         list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
492                 if (!is_migrate_isolate_page(page))
493                         break;
494         /*
495          * if 'non-isolated free hugepage' not found on the list,
496          * the allocation fails.
497          */
498         if (&h->hugepage_freelists[nid] == &page->lru)
499                 return NULL;
500         list_move(&page->lru, &h->hugepage_activelist);
501         set_page_refcounted(page);
502         h->free_huge_pages--;
503         h->free_huge_pages_node[nid]--;
504         return page;
505 }
506
507 /* Movability of hugepages depends on migration support. */
508 static inline gfp_t htlb_alloc_mask(struct hstate *h)
509 {
510         if (hugepages_treat_as_movable || hugepage_migration_support(h))
511                 return GFP_HIGHUSER_MOVABLE;
512         else
513                 return GFP_HIGHUSER;
514 }
515
516 static struct page *dequeue_huge_page_vma(struct hstate *h,
517                                 struct vm_area_struct *vma,
518                                 unsigned long address, int avoid_reserve,
519                                 long chg)
520 {
521         struct page *page = NULL;
522         struct mempolicy *mpol;
523         nodemask_t *nodemask;
524         struct zonelist *zonelist;
525         struct zone *zone;
526         struct zoneref *z;
527         unsigned int cpuset_mems_cookie;
528
529         /*
530          * A child process with MAP_PRIVATE mappings created by their parent
531          * have no page reserves. This check ensures that reservations are
532          * not "stolen". The child may still get SIGKILLed
533          */
534         if (!vma_has_reserves(vma, chg) &&
535                         h->free_huge_pages - h->resv_huge_pages == 0)
536                 goto err;
537
538         /* If reserves cannot be used, ensure enough pages are in the pool */
539         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
540                 goto err;
541
542 retry_cpuset:
543         cpuset_mems_cookie = get_mems_allowed();
544         zonelist = huge_zonelist(vma, address,
545                                         htlb_alloc_mask(h), &mpol, &nodemask);
546
547         for_each_zone_zonelist_nodemask(zone, z, zonelist,
548                                                 MAX_NR_ZONES - 1, nodemask) {
549                 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
550                         page = dequeue_huge_page_node(h, zone_to_nid(zone));
551                         if (page) {
552                                 if (avoid_reserve)
553                                         break;
554                                 if (!vma_has_reserves(vma, chg))
555                                         break;
556
557                                 SetPagePrivate(page);
558                                 h->resv_huge_pages--;
559                                 break;
560                         }
561                 }
562         }
563
564         mpol_cond_put(mpol);
565         if (unlikely(!put_mems_allowed(cpuset_mems_cookie) && !page))
566                 goto retry_cpuset;
567         return page;
568
569 err:
570         return NULL;
571 }
572
573 static void update_and_free_page(struct hstate *h, struct page *page)
574 {
575         int i;
576
577         VM_BUG_ON(h->order >= MAX_ORDER);
578
579         h->nr_huge_pages--;
580         h->nr_huge_pages_node[page_to_nid(page)]--;
581         for (i = 0; i < pages_per_huge_page(h); i++) {
582                 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
583                                 1 << PG_referenced | 1 << PG_dirty |
584                                 1 << PG_active | 1 << PG_reserved |
585                                 1 << PG_private | 1 << PG_writeback);
586         }
587         VM_BUG_ON(hugetlb_cgroup_from_page(page));
588         set_compound_page_dtor(page, NULL);
589         set_page_refcounted(page);
590         arch_release_hugepage(page);
591         __free_pages(page, huge_page_order(h));
592 }
593
594 struct hstate *size_to_hstate(unsigned long size)
595 {
596         struct hstate *h;
597
598         for_each_hstate(h) {
599                 if (huge_page_size(h) == size)
600                         return h;
601         }
602         return NULL;
603 }
604
605 static void free_huge_page(struct page *page)
606 {
607         /*
608          * Can't pass hstate in here because it is called from the
609          * compound page destructor.
610          */
611         struct hstate *h = page_hstate(page);
612         int nid = page_to_nid(page);
613         struct hugepage_subpool *spool =
614                 (struct hugepage_subpool *)page_private(page);
615         bool restore_reserve;
616
617         set_page_private(page, 0);
618         page->mapping = NULL;
619         BUG_ON(page_count(page));
620         BUG_ON(page_mapcount(page));
621         restore_reserve = PagePrivate(page);
622         ClearPagePrivate(page);
623
624         spin_lock(&hugetlb_lock);
625         hugetlb_cgroup_uncharge_page(hstate_index(h),
626                                      pages_per_huge_page(h), page);
627         if (restore_reserve)
628                 h->resv_huge_pages++;
629
630         if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
631                 /* remove the page from active list */
632                 list_del(&page->lru);
633                 update_and_free_page(h, page);
634                 h->surplus_huge_pages--;
635                 h->surplus_huge_pages_node[nid]--;
636         } else {
637                 arch_clear_hugepage_flags(page);
638                 enqueue_huge_page(h, page);
639         }
640         spin_unlock(&hugetlb_lock);
641         hugepage_subpool_put_pages(spool, 1);
642 }
643
644 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
645 {
646         INIT_LIST_HEAD(&page->lru);
647         set_compound_page_dtor(page, free_huge_page);
648         spin_lock(&hugetlb_lock);
649         set_hugetlb_cgroup(page, NULL);
650         h->nr_huge_pages++;
651         h->nr_huge_pages_node[nid]++;
652         spin_unlock(&hugetlb_lock);
653         put_page(page); /* free it into the hugepage allocator */
654 }
655
656 static void prep_compound_gigantic_page(struct page *page, unsigned long order)
657 {
658         int i;
659         int nr_pages = 1 << order;
660         struct page *p = page + 1;
661
662         /* we rely on prep_new_huge_page to set the destructor */
663         set_compound_order(page, order);
664         __SetPageHead(page);
665         __ClearPageReserved(page);
666         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
667                 __SetPageTail(p);
668                 /*
669                  * For gigantic hugepages allocated through bootmem at
670                  * boot, it's safer to be consistent with the not-gigantic
671                  * hugepages and clear the PG_reserved bit from all tail pages
672                  * too.  Otherwse drivers using get_user_pages() to access tail
673                  * pages may get the reference counting wrong if they see
674                  * PG_reserved set on a tail page (despite the head page not
675                  * having PG_reserved set).  Enforcing this consistency between
676                  * head and tail pages allows drivers to optimize away a check
677                  * on the head page when they need know if put_page() is needed
678                  * after get_user_pages().
679                  */
680                 __ClearPageReserved(p);
681                 set_page_count(p, 0);
682                 p->first_page = page;
683         }
684 }
685
686 /*
687  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
688  * transparent huge pages.  See the PageTransHuge() documentation for more
689  * details.
690  */
691 int PageHuge(struct page *page)
692 {
693         if (!PageCompound(page))
694                 return 0;
695
696         page = compound_head(page);
697         return get_compound_page_dtor(page) == free_huge_page;
698 }
699 EXPORT_SYMBOL_GPL(PageHuge);
700
701 /*
702  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
703  * normal or transparent huge pages.
704  */
705 int PageHeadHuge(struct page *page_head)
706 {
707         if (!PageHead(page_head))
708                 return 0;
709
710         return get_compound_page_dtor(page_head) == free_huge_page;
711 }
712 EXPORT_SYMBOL_GPL(PageHeadHuge);
713
714 pgoff_t __basepage_index(struct page *page)
715 {
716         struct page *page_head = compound_head(page);
717         pgoff_t index = page_index(page_head);
718         unsigned long compound_idx;
719
720         if (!PageHuge(page_head))
721                 return page_index(page);
722
723         if (compound_order(page_head) >= MAX_ORDER)
724                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
725         else
726                 compound_idx = page - page_head;
727
728         return (index << compound_order(page_head)) + compound_idx;
729 }
730
731 static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
732 {
733         struct page *page;
734
735         if (h->order >= MAX_ORDER)
736                 return NULL;
737
738         page = alloc_pages_exact_node(nid,
739                 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
740                                                 __GFP_REPEAT|__GFP_NOWARN,
741                 huge_page_order(h));
742         if (page) {
743                 if (arch_prepare_hugepage(page)) {
744                         __free_pages(page, huge_page_order(h));
745                         return NULL;
746                 }
747                 prep_new_huge_page(h, page, nid);
748         }
749
750         return page;
751 }
752
753 /*
754  * common helper functions for hstate_next_node_to_{alloc|free}.
755  * We may have allocated or freed a huge page based on a different
756  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
757  * be outside of *nodes_allowed.  Ensure that we use an allowed
758  * node for alloc or free.
759  */
760 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
761 {
762         nid = next_node(nid, *nodes_allowed);
763         if (nid == MAX_NUMNODES)
764                 nid = first_node(*nodes_allowed);
765         VM_BUG_ON(nid >= MAX_NUMNODES);
766
767         return nid;
768 }
769
770 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
771 {
772         if (!node_isset(nid, *nodes_allowed))
773                 nid = next_node_allowed(nid, nodes_allowed);
774         return nid;
775 }
776
777 /*
778  * returns the previously saved node ["this node"] from which to
779  * allocate a persistent huge page for the pool and advance the
780  * next node from which to allocate, handling wrap at end of node
781  * mask.
782  */
783 static int hstate_next_node_to_alloc(struct hstate *h,
784                                         nodemask_t *nodes_allowed)
785 {
786         int nid;
787
788         VM_BUG_ON(!nodes_allowed);
789
790         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
791         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
792
793         return nid;
794 }
795
796 /*
797  * helper for free_pool_huge_page() - return the previously saved
798  * node ["this node"] from which to free a huge page.  Advance the
799  * next node id whether or not we find a free huge page to free so
800  * that the next attempt to free addresses the next node.
801  */
802 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
803 {
804         int nid;
805
806         VM_BUG_ON(!nodes_allowed);
807
808         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
809         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
810
811         return nid;
812 }
813
814 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
815         for (nr_nodes = nodes_weight(*mask);                            \
816                 nr_nodes > 0 &&                                         \
817                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
818                 nr_nodes--)
819
820 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
821         for (nr_nodes = nodes_weight(*mask);                            \
822                 nr_nodes > 0 &&                                         \
823                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
824                 nr_nodes--)
825
826 static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
827 {
828         struct page *page;
829         int nr_nodes, node;
830         int ret = 0;
831
832         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
833                 page = alloc_fresh_huge_page_node(h, node);
834                 if (page) {
835                         ret = 1;
836                         break;
837                 }
838         }
839
840         if (ret)
841                 count_vm_event(HTLB_BUDDY_PGALLOC);
842         else
843                 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
844
845         return ret;
846 }
847
848 /*
849  * Free huge page from pool from next node to free.
850  * Attempt to keep persistent huge pages more or less
851  * balanced over allowed nodes.
852  * Called with hugetlb_lock locked.
853  */
854 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
855                                                          bool acct_surplus)
856 {
857         int nr_nodes, node;
858         int ret = 0;
859
860         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
861                 /*
862                  * If we're returning unused surplus pages, only examine
863                  * nodes with surplus pages.
864                  */
865                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
866                     !list_empty(&h->hugepage_freelists[node])) {
867                         struct page *page =
868                                 list_entry(h->hugepage_freelists[node].next,
869                                           struct page, lru);
870                         list_del(&page->lru);
871                         h->free_huge_pages--;
872                         h->free_huge_pages_node[node]--;
873                         if (acct_surplus) {
874                                 h->surplus_huge_pages--;
875                                 h->surplus_huge_pages_node[node]--;
876                         }
877                         update_and_free_page(h, page);
878                         ret = 1;
879                         break;
880                 }
881         }
882
883         return ret;
884 }
885
886 /*
887  * Dissolve a given free hugepage into free buddy pages. This function does
888  * nothing for in-use (including surplus) hugepages.
889  */
890 static void dissolve_free_huge_page(struct page *page)
891 {
892         spin_lock(&hugetlb_lock);
893         if (PageHuge(page) && !page_count(page)) {
894                 struct hstate *h = page_hstate(page);
895                 int nid = page_to_nid(page);
896                 list_del(&page->lru);
897                 h->free_huge_pages--;
898                 h->free_huge_pages_node[nid]--;
899                 update_and_free_page(h, page);
900         }
901         spin_unlock(&hugetlb_lock);
902 }
903
904 /*
905  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
906  * make specified memory blocks removable from the system.
907  * Note that start_pfn should aligned with (minimum) hugepage size.
908  */
909 void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
910 {
911         unsigned int order = 8 * sizeof(void *);
912         unsigned long pfn;
913         struct hstate *h;
914
915         /* Set scan step to minimum hugepage size */
916         for_each_hstate(h)
917                 if (order > huge_page_order(h))
918                         order = huge_page_order(h);
919         VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
920         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
921                 dissolve_free_huge_page(pfn_to_page(pfn));
922 }
923
924 static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
925 {
926         struct page *page;
927         unsigned int r_nid;
928
929         if (h->order >= MAX_ORDER)
930                 return NULL;
931
932         /*
933          * Assume we will successfully allocate the surplus page to
934          * prevent racing processes from causing the surplus to exceed
935          * overcommit
936          *
937          * This however introduces a different race, where a process B
938          * tries to grow the static hugepage pool while alloc_pages() is
939          * called by process A. B will only examine the per-node
940          * counters in determining if surplus huge pages can be
941          * converted to normal huge pages in adjust_pool_surplus(). A
942          * won't be able to increment the per-node counter, until the
943          * lock is dropped by B, but B doesn't drop hugetlb_lock until
944          * no more huge pages can be converted from surplus to normal
945          * state (and doesn't try to convert again). Thus, we have a
946          * case where a surplus huge page exists, the pool is grown, and
947          * the surplus huge page still exists after, even though it
948          * should just have been converted to a normal huge page. This
949          * does not leak memory, though, as the hugepage will be freed
950          * once it is out of use. It also does not allow the counters to
951          * go out of whack in adjust_pool_surplus() as we don't modify
952          * the node values until we've gotten the hugepage and only the
953          * per-node value is checked there.
954          */
955         spin_lock(&hugetlb_lock);
956         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
957                 spin_unlock(&hugetlb_lock);
958                 return NULL;
959         } else {
960                 h->nr_huge_pages++;
961                 h->surplus_huge_pages++;
962         }
963         spin_unlock(&hugetlb_lock);
964
965         if (nid == NUMA_NO_NODE)
966                 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
967                                    __GFP_REPEAT|__GFP_NOWARN,
968                                    huge_page_order(h));
969         else
970                 page = alloc_pages_exact_node(nid,
971                         htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
972                         __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
973
974         if (page && arch_prepare_hugepage(page)) {
975                 __free_pages(page, huge_page_order(h));
976                 page = NULL;
977         }
978
979         spin_lock(&hugetlb_lock);
980         if (page) {
981                 INIT_LIST_HEAD(&page->lru);
982                 r_nid = page_to_nid(page);
983                 set_compound_page_dtor(page, free_huge_page);
984                 set_hugetlb_cgroup(page, NULL);
985                 /*
986                  * We incremented the global counters already
987                  */
988                 h->nr_huge_pages_node[r_nid]++;
989                 h->surplus_huge_pages_node[r_nid]++;
990                 __count_vm_event(HTLB_BUDDY_PGALLOC);
991         } else {
992                 h->nr_huge_pages--;
993                 h->surplus_huge_pages--;
994                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
995         }
996         spin_unlock(&hugetlb_lock);
997
998         return page;
999 }
1000
1001 /*
1002  * This allocation function is useful in the context where vma is irrelevant.
1003  * E.g. soft-offlining uses this function because it only cares physical
1004  * address of error page.
1005  */
1006 struct page *alloc_huge_page_node(struct hstate *h, int nid)
1007 {
1008         struct page *page = NULL;
1009
1010         spin_lock(&hugetlb_lock);
1011         if (h->free_huge_pages - h->resv_huge_pages > 0)
1012                 page = dequeue_huge_page_node(h, nid);
1013         spin_unlock(&hugetlb_lock);
1014
1015         if (!page)
1016                 page = alloc_buddy_huge_page(h, nid);
1017
1018         return page;
1019 }
1020
1021 /*
1022  * Increase the hugetlb pool such that it can accommodate a reservation
1023  * of size 'delta'.
1024  */
1025 static int gather_surplus_pages(struct hstate *h, int delta)
1026 {
1027         struct list_head surplus_list;
1028         struct page *page, *tmp;
1029         int ret, i;
1030         int needed, allocated;
1031         bool alloc_ok = true;
1032
1033         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1034         if (needed <= 0) {
1035                 h->resv_huge_pages += delta;
1036                 return 0;
1037         }
1038
1039         allocated = 0;
1040         INIT_LIST_HEAD(&surplus_list);
1041
1042         ret = -ENOMEM;
1043 retry:
1044         spin_unlock(&hugetlb_lock);
1045         for (i = 0; i < needed; i++) {
1046                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1047                 if (!page) {
1048                         alloc_ok = false;
1049                         break;
1050                 }
1051                 list_add(&page->lru, &surplus_list);
1052         }
1053         allocated += i;
1054
1055         /*
1056          * After retaking hugetlb_lock, we need to recalculate 'needed'
1057          * because either resv_huge_pages or free_huge_pages may have changed.
1058          */
1059         spin_lock(&hugetlb_lock);
1060         needed = (h->resv_huge_pages + delta) -
1061                         (h->free_huge_pages + allocated);
1062         if (needed > 0) {
1063                 if (alloc_ok)
1064                         goto retry;
1065                 /*
1066                  * We were not able to allocate enough pages to
1067                  * satisfy the entire reservation so we free what
1068                  * we've allocated so far.
1069                  */
1070                 goto free;
1071         }
1072         /*
1073          * The surplus_list now contains _at_least_ the number of extra pages
1074          * needed to accommodate the reservation.  Add the appropriate number
1075          * of pages to the hugetlb pool and free the extras back to the buddy
1076          * allocator.  Commit the entire reservation here to prevent another
1077          * process from stealing the pages as they are added to the pool but
1078          * before they are reserved.
1079          */
1080         needed += allocated;
1081         h->resv_huge_pages += delta;
1082         ret = 0;
1083
1084         /* Free the needed pages to the hugetlb pool */
1085         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1086                 if ((--needed) < 0)
1087                         break;
1088                 /*
1089                  * This page is now managed by the hugetlb allocator and has
1090                  * no users -- drop the buddy allocator's reference.
1091                  */
1092                 put_page_testzero(page);
1093                 VM_BUG_ON(page_count(page));
1094                 enqueue_huge_page(h, page);
1095         }
1096 free:
1097         spin_unlock(&hugetlb_lock);
1098
1099         /* Free unnecessary surplus pages to the buddy allocator */
1100         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1101                 put_page(page);
1102         spin_lock(&hugetlb_lock);
1103
1104         return ret;
1105 }
1106
1107 /*
1108  * When releasing a hugetlb pool reservation, any surplus pages that were
1109  * allocated to satisfy the reservation must be explicitly freed if they were
1110  * never used.
1111  * Called with hugetlb_lock held.
1112  */
1113 static void return_unused_surplus_pages(struct hstate *h,
1114                                         unsigned long unused_resv_pages)
1115 {
1116         unsigned long nr_pages;
1117
1118         /* Uncommit the reservation */
1119         h->resv_huge_pages -= unused_resv_pages;
1120
1121         /* Cannot return gigantic pages currently */
1122         if (h->order >= MAX_ORDER)
1123                 return;
1124
1125         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
1126
1127         /*
1128          * We want to release as many surplus pages as possible, spread
1129          * evenly across all nodes with memory. Iterate across these nodes
1130          * until we can no longer free unreserved surplus pages. This occurs
1131          * when the nodes with surplus pages have no free pages.
1132          * free_pool_huge_page() will balance the the freed pages across the
1133          * on-line nodes with memory and will handle the hstate accounting.
1134          */
1135         while (nr_pages--) {
1136                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
1137                         break;
1138         }
1139 }
1140
1141 /*
1142  * Determine if the huge page at addr within the vma has an associated
1143  * reservation.  Where it does not we will need to logically increase
1144  * reservation and actually increase subpool usage before an allocation
1145  * can occur.  Where any new reservation would be required the
1146  * reservation change is prepared, but not committed.  Once the page
1147  * has been allocated from the subpool and instantiated the change should
1148  * be committed via vma_commit_reservation.  No action is required on
1149  * failure.
1150  */
1151 static long vma_needs_reservation(struct hstate *h,
1152                         struct vm_area_struct *vma, unsigned long addr)
1153 {
1154         struct address_space *mapping = vma->vm_file->f_mapping;
1155         struct inode *inode = mapping->host;
1156
1157         if (vma->vm_flags & VM_MAYSHARE) {
1158                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1159                 return region_chg(&inode->i_mapping->private_list,
1160                                                         idx, idx + 1);
1161
1162         } else if (!is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1163                 return 1;
1164
1165         } else  {
1166                 long err;
1167                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1168                 struct resv_map *resv = vma_resv_map(vma);
1169
1170                 err = region_chg(&resv->regions, idx, idx + 1);
1171                 if (err < 0)
1172                         return err;
1173                 return 0;
1174         }
1175 }
1176 static void vma_commit_reservation(struct hstate *h,
1177                         struct vm_area_struct *vma, unsigned long addr)
1178 {
1179         struct address_space *mapping = vma->vm_file->f_mapping;
1180         struct inode *inode = mapping->host;
1181
1182         if (vma->vm_flags & VM_MAYSHARE) {
1183                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1184                 region_add(&inode->i_mapping->private_list, idx, idx + 1);
1185
1186         } else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1187                 pgoff_t idx = vma_hugecache_offset(h, vma, addr);
1188                 struct resv_map *resv = vma_resv_map(vma);
1189
1190                 /* Mark this page used in the map. */
1191                 region_add(&resv->regions, idx, idx + 1);
1192         }
1193 }
1194
1195 static struct page *alloc_huge_page(struct vm_area_struct *vma,
1196                                     unsigned long addr, int avoid_reserve)
1197 {
1198         struct hugepage_subpool *spool = subpool_vma(vma);
1199         struct hstate *h = hstate_vma(vma);
1200         struct page *page;
1201         long chg;
1202         int ret, idx;
1203         struct hugetlb_cgroup *h_cg;
1204
1205         idx = hstate_index(h);
1206         /*
1207          * Processes that did not create the mapping will have no
1208          * reserves and will not have accounted against subpool
1209          * limit. Check that the subpool limit can be made before
1210          * satisfying the allocation MAP_NORESERVE mappings may also
1211          * need pages and subpool limit allocated allocated if no reserve
1212          * mapping overlaps.
1213          */
1214         chg = vma_needs_reservation(h, vma, addr);
1215         if (chg < 0)
1216                 return ERR_PTR(-ENOMEM);
1217         if (chg || avoid_reserve)
1218                 if (hugepage_subpool_get_pages(spool, 1))
1219                         return ERR_PTR(-ENOSPC);
1220
1221         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1222         if (ret) {
1223                 if (chg || avoid_reserve)
1224                         hugepage_subpool_put_pages(spool, 1);
1225                 return ERR_PTR(-ENOSPC);
1226         }
1227         spin_lock(&hugetlb_lock);
1228         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
1229         if (!page) {
1230                 spin_unlock(&hugetlb_lock);
1231                 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
1232                 if (!page) {
1233                         hugetlb_cgroup_uncharge_cgroup(idx,
1234                                                        pages_per_huge_page(h),
1235                                                        h_cg);
1236                         if (chg || avoid_reserve)
1237                                 hugepage_subpool_put_pages(spool, 1);
1238                         return ERR_PTR(-ENOSPC);
1239                 }
1240                 spin_lock(&hugetlb_lock);
1241                 list_move(&page->lru, &h->hugepage_activelist);
1242                 /* Fall through */
1243         }
1244         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1245         spin_unlock(&hugetlb_lock);
1246
1247         set_page_private(page, (unsigned long)spool);
1248
1249         vma_commit_reservation(h, vma, addr);
1250         return page;
1251 }
1252
1253 /*
1254  * alloc_huge_page()'s wrapper which simply returns the page if allocation
1255  * succeeds, otherwise NULL. This function is called from new_vma_page(),
1256  * where no ERR_VALUE is expected to be returned.
1257  */
1258 struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1259                                 unsigned long addr, int avoid_reserve)
1260 {
1261         struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1262         if (IS_ERR(page))
1263                 page = NULL;
1264         return page;
1265 }
1266
1267 int __weak alloc_bootmem_huge_page(struct hstate *h)
1268 {
1269         struct huge_bootmem_page *m;
1270         int nr_nodes, node;
1271
1272         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
1273                 void *addr;
1274
1275                 addr = __alloc_bootmem_node_nopanic(NODE_DATA(node),
1276                                 huge_page_size(h), huge_page_size(h), 0);
1277
1278                 if (addr) {
1279                         /*
1280                          * Use the beginning of the huge page to store the
1281                          * huge_bootmem_page struct (until gather_bootmem
1282                          * puts them into the mem_map).
1283                          */
1284                         m = addr;
1285                         goto found;
1286                 }
1287         }
1288         return 0;
1289
1290 found:
1291         BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1292         /* Put them into a private list first because mem_map is not up yet */
1293         list_add(&m->list, &huge_boot_pages);
1294         m->hstate = h;
1295         return 1;
1296 }
1297
1298 static void prep_compound_huge_page(struct page *page, int order)
1299 {
1300         if (unlikely(order > (MAX_ORDER - 1)))
1301                 prep_compound_gigantic_page(page, order);
1302         else
1303                 prep_compound_page(page, order);
1304 }
1305
1306 /* Put bootmem huge pages into the standard lists after mem_map is up */
1307 static void __init gather_bootmem_prealloc(void)
1308 {
1309         struct huge_bootmem_page *m;
1310
1311         list_for_each_entry(m, &huge_boot_pages, list) {
1312                 struct hstate *h = m->hstate;
1313                 struct page *page;
1314
1315 #ifdef CONFIG_HIGHMEM
1316                 page = pfn_to_page(m->phys >> PAGE_SHIFT);
1317                 free_bootmem_late((unsigned long)m,
1318                                   sizeof(struct huge_bootmem_page));
1319 #else
1320                 page = virt_to_page(m);
1321 #endif
1322                 WARN_ON(page_count(page) != 1);
1323                 prep_compound_huge_page(page, h->order);
1324                 WARN_ON(PageReserved(page));
1325                 prep_new_huge_page(h, page, page_to_nid(page));
1326                 /*
1327                  * If we had gigantic hugepages allocated at boot time, we need
1328                  * to restore the 'stolen' pages to totalram_pages in order to
1329                  * fix confusing memory reports from free(1) and another
1330                  * side-effects, like CommitLimit going negative.
1331                  */
1332                 if (h->order > (MAX_ORDER - 1))
1333                         adjust_managed_page_count(page, 1 << h->order);
1334         }
1335 }
1336
1337 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1338 {
1339         unsigned long i;
1340
1341         for (i = 0; i < h->max_huge_pages; ++i) {
1342                 if (h->order >= MAX_ORDER) {
1343                         if (!alloc_bootmem_huge_page(h))
1344                                 break;
1345                 } else if (!alloc_fresh_huge_page(h,
1346                                          &node_states[N_MEMORY]))
1347                         break;
1348         }
1349         h->max_huge_pages = i;
1350 }
1351
1352 static void __init hugetlb_init_hstates(void)
1353 {
1354         struct hstate *h;
1355
1356         for_each_hstate(h) {
1357                 /* oversize hugepages were init'ed in early boot */
1358                 if (h->order < MAX_ORDER)
1359                         hugetlb_hstate_alloc_pages(h);
1360         }
1361 }
1362
1363 static char * __init memfmt(char *buf, unsigned long n)
1364 {
1365         if (n >= (1UL << 30))
1366                 sprintf(buf, "%lu GB", n >> 30);
1367         else if (n >= (1UL << 20))
1368                 sprintf(buf, "%lu MB", n >> 20);
1369         else
1370                 sprintf(buf, "%lu KB", n >> 10);
1371         return buf;
1372 }
1373
1374 static void __init report_hugepages(void)
1375 {
1376         struct hstate *h;
1377
1378         for_each_hstate(h) {
1379                 char buf[32];
1380                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
1381                         memfmt(buf, huge_page_size(h)),
1382                         h->free_huge_pages);
1383         }
1384 }
1385
1386 #ifdef CONFIG_HIGHMEM
1387 static void try_to_free_low(struct hstate *h, unsigned long count,
1388                                                 nodemask_t *nodes_allowed)
1389 {
1390         int i;
1391
1392         if (h->order >= MAX_ORDER)
1393                 return;
1394
1395         for_each_node_mask(i, *nodes_allowed) {
1396                 struct page *page, *next;
1397                 struct list_head *freel = &h->hugepage_freelists[i];
1398                 list_for_each_entry_safe(page, next, freel, lru) {
1399                         if (count >= h->nr_huge_pages)
1400                                 return;
1401                         if (PageHighMem(page))
1402                                 continue;
1403                         list_del(&page->lru);
1404                         update_and_free_page(h, page);
1405                         h->free_huge_pages--;
1406                         h->free_huge_pages_node[page_to_nid(page)]--;
1407                 }
1408         }
1409 }
1410 #else
1411 static inline void try_to_free_low(struct hstate *h, unsigned long count,
1412                                                 nodemask_t *nodes_allowed)
1413 {
1414 }
1415 #endif
1416
1417 /*
1418  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
1419  * balanced by operating on them in a round-robin fashion.
1420  * Returns 1 if an adjustment was made.
1421  */
1422 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1423                                 int delta)
1424 {
1425         int nr_nodes, node;
1426
1427         VM_BUG_ON(delta != -1 && delta != 1);
1428
1429         if (delta < 0) {
1430                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1431                         if (h->surplus_huge_pages_node[node])
1432                                 goto found;
1433                 }
1434         } else {
1435                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1436                         if (h->surplus_huge_pages_node[node] <
1437                                         h->nr_huge_pages_node[node])
1438                                 goto found;
1439                 }
1440         }
1441         return 0;
1442
1443 found:
1444         h->surplus_huge_pages += delta;
1445         h->surplus_huge_pages_node[node] += delta;
1446         return 1;
1447 }
1448
1449 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
1450 static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1451                                                 nodemask_t *nodes_allowed)
1452 {
1453         unsigned long min_count, ret;
1454
1455         if (h->order >= MAX_ORDER)
1456                 return h->max_huge_pages;
1457
1458         /*
1459          * Increase the pool size
1460          * First take pages out of surplus state.  Then make up the
1461          * remaining difference by allocating fresh huge pages.
1462          *
1463          * We might race with alloc_buddy_huge_page() here and be unable
1464          * to convert a surplus huge page to a normal huge page. That is
1465          * not critical, though, it just means the overall size of the
1466          * pool might be one hugepage larger than it needs to be, but
1467          * within all the constraints specified by the sysctls.
1468          */
1469         spin_lock(&hugetlb_lock);
1470         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
1471                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
1472                         break;
1473         }
1474
1475         while (count > persistent_huge_pages(h)) {
1476                 /*
1477                  * If this allocation races such that we no longer need the
1478                  * page, free_huge_page will handle it by freeing the page
1479                  * and reducing the surplus.
1480                  */
1481                 spin_unlock(&hugetlb_lock);
1482                 ret = alloc_fresh_huge_page(h, nodes_allowed);
1483                 spin_lock(&hugetlb_lock);
1484                 if (!ret)
1485                         goto out;
1486
1487                 /* Bail for signals. Probably ctrl-c from user */
1488                 if (signal_pending(current))
1489                         goto out;
1490         }
1491
1492         /*
1493          * Decrease the pool size
1494          * First return free pages to the buddy allocator (being careful
1495          * to keep enough around to satisfy reservations).  Then place
1496          * pages into surplus state as needed so the pool will shrink
1497          * to the desired size as pages become free.
1498          *
1499          * By placing pages into the surplus state independent of the
1500          * overcommit value, we are allowing the surplus pool size to
1501          * exceed overcommit. There are few sane options here. Since
1502          * alloc_buddy_huge_page() is checking the global counter,
1503          * though, we'll note that we're not allowed to exceed surplus
1504          * and won't grow the pool anywhere else. Not until one of the
1505          * sysctls are changed, or the surplus pages go out of use.
1506          */
1507         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
1508         min_count = max(count, min_count);
1509         try_to_free_low(h, min_count, nodes_allowed);
1510         while (min_count < persistent_huge_pages(h)) {
1511                 if (!free_pool_huge_page(h, nodes_allowed, 0))
1512                         break;
1513         }
1514         while (count < persistent_huge_pages(h)) {
1515                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
1516                         break;
1517         }
1518 out:
1519         ret = persistent_huge_pages(h);
1520         spin_unlock(&hugetlb_lock);
1521         return ret;
1522 }
1523
1524 #define HSTATE_ATTR_RO(_name) \
1525         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1526
1527 #define HSTATE_ATTR(_name) \
1528         static struct kobj_attribute _name##_attr = \
1529                 __ATTR(_name, 0644, _name##_show, _name##_store)
1530
1531 static struct kobject *hugepages_kobj;
1532 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1533
1534 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1535
1536 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
1537 {
1538         int i;
1539
1540         for (i = 0; i < HUGE_MAX_HSTATE; i++)
1541                 if (hstate_kobjs[i] == kobj) {
1542                         if (nidp)
1543                                 *nidp = NUMA_NO_NODE;
1544                         return &hstates[i];
1545                 }
1546
1547         return kobj_to_node_hstate(kobj, nidp);
1548 }
1549
1550 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
1551                                         struct kobj_attribute *attr, char *buf)
1552 {
1553         struct hstate *h;
1554         unsigned long nr_huge_pages;
1555         int nid;
1556
1557         h = kobj_to_hstate(kobj, &nid);
1558         if (nid == NUMA_NO_NODE)
1559                 nr_huge_pages = h->nr_huge_pages;
1560         else
1561                 nr_huge_pages = h->nr_huge_pages_node[nid];
1562
1563         return sprintf(buf, "%lu\n", nr_huge_pages);
1564 }
1565
1566 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1567                         struct kobject *kobj, struct kobj_attribute *attr,
1568                         const char *buf, size_t len)
1569 {
1570         int err;
1571         int nid;
1572         unsigned long count;
1573         struct hstate *h;
1574         NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
1575
1576         err = kstrtoul(buf, 10, &count);
1577         if (err)
1578                 goto out;
1579
1580         h = kobj_to_hstate(kobj, &nid);
1581         if (h->order >= MAX_ORDER) {
1582                 err = -EINVAL;
1583                 goto out;
1584         }
1585
1586         if (nid == NUMA_NO_NODE) {
1587                 /*
1588                  * global hstate attribute
1589                  */
1590                 if (!(obey_mempolicy &&
1591                                 init_nodemask_of_mempolicy(nodes_allowed))) {
1592                         NODEMASK_FREE(nodes_allowed);
1593                         nodes_allowed = &node_states[N_MEMORY];
1594                 }
1595         } else if (nodes_allowed) {
1596                 /*
1597                  * per node hstate attribute: adjust count to global,
1598                  * but restrict alloc/free to the specified node.
1599                  */
1600                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1601                 init_nodemask_of_node(nodes_allowed, nid);
1602         } else
1603                 nodes_allowed = &node_states[N_MEMORY];
1604
1605         h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
1606
1607         if (nodes_allowed != &node_states[N_MEMORY])
1608                 NODEMASK_FREE(nodes_allowed);
1609
1610         return len;
1611 out:
1612         NODEMASK_FREE(nodes_allowed);
1613         return err;
1614 }
1615
1616 static ssize_t nr_hugepages_show(struct kobject *kobj,
1617                                        struct kobj_attribute *attr, char *buf)
1618 {
1619         return nr_hugepages_show_common(kobj, attr, buf);
1620 }
1621
1622 static ssize_t nr_hugepages_store(struct kobject *kobj,
1623                struct kobj_attribute *attr, const char *buf, size_t len)
1624 {
1625         return nr_hugepages_store_common(false, kobj, attr, buf, len);
1626 }
1627 HSTATE_ATTR(nr_hugepages);
1628
1629 #ifdef CONFIG_NUMA
1630
1631 /*
1632  * hstate attribute for optionally mempolicy-based constraint on persistent
1633  * huge page alloc/free.
1634  */
1635 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1636                                        struct kobj_attribute *attr, char *buf)
1637 {
1638         return nr_hugepages_show_common(kobj, attr, buf);
1639 }
1640
1641 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1642                struct kobj_attribute *attr, const char *buf, size_t len)
1643 {
1644         return nr_hugepages_store_common(true, kobj, attr, buf, len);
1645 }
1646 HSTATE_ATTR(nr_hugepages_mempolicy);
1647 #endif
1648
1649
1650 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1651                                         struct kobj_attribute *attr, char *buf)
1652 {
1653         struct hstate *h = kobj_to_hstate(kobj, NULL);
1654         return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1655 }
1656
1657 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1658                 struct kobj_attribute *attr, const char *buf, size_t count)
1659 {
1660         int err;
1661         unsigned long input;
1662         struct hstate *h = kobj_to_hstate(kobj, NULL);
1663
1664         if (h->order >= MAX_ORDER)
1665                 return -EINVAL;
1666
1667         err = kstrtoul(buf, 10, &input);
1668         if (err)
1669                 return err;
1670
1671         spin_lock(&hugetlb_lock);
1672         h->nr_overcommit_huge_pages = input;
1673         spin_unlock(&hugetlb_lock);
1674
1675         return count;
1676 }
1677 HSTATE_ATTR(nr_overcommit_hugepages);
1678
1679 static ssize_t free_hugepages_show(struct kobject *kobj,
1680                                         struct kobj_attribute *attr, char *buf)
1681 {
1682         struct hstate *h;
1683         unsigned long free_huge_pages;
1684         int nid;
1685
1686         h = kobj_to_hstate(kobj, &nid);
1687         if (nid == NUMA_NO_NODE)
1688                 free_huge_pages = h->free_huge_pages;
1689         else
1690                 free_huge_pages = h->free_huge_pages_node[nid];
1691
1692         return sprintf(buf, "%lu\n", free_huge_pages);
1693 }
1694 HSTATE_ATTR_RO(free_hugepages);
1695
1696 static ssize_t resv_hugepages_show(struct kobject *kobj,
1697                                         struct kobj_attribute *attr, char *buf)
1698 {
1699         struct hstate *h = kobj_to_hstate(kobj, NULL);
1700         return sprintf(buf, "%lu\n", h->resv_huge_pages);
1701 }
1702 HSTATE_ATTR_RO(resv_hugepages);
1703
1704 static ssize_t surplus_hugepages_show(struct kobject *kobj,
1705                                         struct kobj_attribute *attr, char *buf)
1706 {
1707         struct hstate *h;
1708         unsigned long surplus_huge_pages;
1709         int nid;
1710
1711         h = kobj_to_hstate(kobj, &nid);
1712         if (nid == NUMA_NO_NODE)
1713                 surplus_huge_pages = h->surplus_huge_pages;
1714         else
1715                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1716
1717         return sprintf(buf, "%lu\n", surplus_huge_pages);
1718 }
1719 HSTATE_ATTR_RO(surplus_hugepages);
1720
1721 static struct attribute *hstate_attrs[] = {
1722         &nr_hugepages_attr.attr,
1723         &nr_overcommit_hugepages_attr.attr,
1724         &free_hugepages_attr.attr,
1725         &resv_hugepages_attr.attr,
1726         &surplus_hugepages_attr.attr,
1727 #ifdef CONFIG_NUMA
1728         &nr_hugepages_mempolicy_attr.attr,
1729 #endif
1730         NULL,
1731 };
1732
1733 static struct attribute_group hstate_attr_group = {
1734         .attrs = hstate_attrs,
1735 };
1736
1737 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1738                                     struct kobject **hstate_kobjs,
1739                                     struct attribute_group *hstate_attr_group)
1740 {
1741         int retval;
1742         int hi = hstate_index(h);
1743
1744         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1745         if (!hstate_kobjs[hi])
1746                 return -ENOMEM;
1747
1748         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
1749         if (retval)
1750                 kobject_put(hstate_kobjs[hi]);
1751
1752         return retval;
1753 }
1754
1755 static void __init hugetlb_sysfs_init(void)
1756 {
1757         struct hstate *h;
1758         int err;
1759
1760         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1761         if (!hugepages_kobj)
1762                 return;
1763
1764         for_each_hstate(h) {
1765                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1766                                          hstate_kobjs, &hstate_attr_group);
1767                 if (err)
1768                         pr_err("Hugetlb: Unable to add hstate %s", h->name);
1769         }
1770 }
1771
1772 #ifdef CONFIG_NUMA
1773
1774 /*
1775  * node_hstate/s - associate per node hstate attributes, via their kobjects,
1776  * with node devices in node_devices[] using a parallel array.  The array
1777  * index of a node device or _hstate == node id.
1778  * This is here to avoid any static dependency of the node device driver, in
1779  * the base kernel, on the hugetlb module.
1780  */
1781 struct node_hstate {
1782         struct kobject          *hugepages_kobj;
1783         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
1784 };
1785 struct node_hstate node_hstates[MAX_NUMNODES];
1786
1787 /*
1788  * A subset of global hstate attributes for node devices
1789  */
1790 static struct attribute *per_node_hstate_attrs[] = {
1791         &nr_hugepages_attr.attr,
1792         &free_hugepages_attr.attr,
1793         &surplus_hugepages_attr.attr,
1794         NULL,
1795 };
1796
1797 static struct attribute_group per_node_hstate_attr_group = {
1798         .attrs = per_node_hstate_attrs,
1799 };
1800
1801 /*
1802  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
1803  * Returns node id via non-NULL nidp.
1804  */
1805 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1806 {
1807         int nid;
1808
1809         for (nid = 0; nid < nr_node_ids; nid++) {
1810                 struct node_hstate *nhs = &node_hstates[nid];
1811                 int i;
1812                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1813                         if (nhs->hstate_kobjs[i] == kobj) {
1814                                 if (nidp)
1815                                         *nidp = nid;
1816                                 return &hstates[i];
1817                         }
1818         }
1819
1820         BUG();
1821         return NULL;
1822 }
1823
1824 /*
1825  * Unregister hstate attributes from a single node device.
1826  * No-op if no hstate attributes attached.
1827  */
1828 static void hugetlb_unregister_node(struct node *node)
1829 {
1830         struct hstate *h;
1831         struct node_hstate *nhs = &node_hstates[node->dev.id];
1832
1833         if (!nhs->hugepages_kobj)
1834                 return;         /* no hstate attributes */
1835
1836         for_each_hstate(h) {
1837                 int idx = hstate_index(h);
1838                 if (nhs->hstate_kobjs[idx]) {
1839                         kobject_put(nhs->hstate_kobjs[idx]);
1840                         nhs->hstate_kobjs[idx] = NULL;
1841                 }
1842         }
1843
1844         kobject_put(nhs->hugepages_kobj);
1845         nhs->hugepages_kobj = NULL;
1846 }
1847
1848 /*
1849  * hugetlb module exit:  unregister hstate attributes from node devices
1850  * that have them.
1851  */
1852 static void hugetlb_unregister_all_nodes(void)
1853 {
1854         int nid;
1855
1856         /*
1857          * disable node device registrations.
1858          */
1859         register_hugetlbfs_with_node(NULL, NULL);
1860
1861         /*
1862          * remove hstate attributes from any nodes that have them.
1863          */
1864         for (nid = 0; nid < nr_node_ids; nid++)
1865                 hugetlb_unregister_node(node_devices[nid]);
1866 }
1867
1868 /*
1869  * Register hstate attributes for a single node device.
1870  * No-op if attributes already registered.
1871  */
1872 static void hugetlb_register_node(struct node *node)
1873 {
1874         struct hstate *h;
1875         struct node_hstate *nhs = &node_hstates[node->dev.id];
1876         int err;
1877
1878         if (nhs->hugepages_kobj)
1879                 return;         /* already allocated */
1880
1881         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
1882                                                         &node->dev.kobj);
1883         if (!nhs->hugepages_kobj)
1884                 return;
1885
1886         for_each_hstate(h) {
1887                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1888                                                 nhs->hstate_kobjs,
1889                                                 &per_node_hstate_attr_group);
1890                 if (err) {
1891                         pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1892                                 h->name, node->dev.id);
1893                         hugetlb_unregister_node(node);
1894                         break;
1895                 }
1896         }
1897 }
1898
1899 /*
1900  * hugetlb init time:  register hstate attributes for all registered node
1901  * devices of nodes that have memory.  All on-line nodes should have
1902  * registered their associated device by this time.
1903  */
1904 static void hugetlb_register_all_nodes(void)
1905 {
1906         int nid;
1907
1908         for_each_node_state(nid, N_MEMORY) {
1909                 struct node *node = node_devices[nid];
1910                 if (node->dev.id == nid)
1911                         hugetlb_register_node(node);
1912         }
1913
1914         /*
1915          * Let the node device driver know we're here so it can
1916          * [un]register hstate attributes on node hotplug.
1917          */
1918         register_hugetlbfs_with_node(hugetlb_register_node,
1919                                      hugetlb_unregister_node);
1920 }
1921 #else   /* !CONFIG_NUMA */
1922
1923 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1924 {
1925         BUG();
1926         if (nidp)
1927                 *nidp = -1;
1928         return NULL;
1929 }
1930
1931 static void hugetlb_unregister_all_nodes(void) { }
1932
1933 static void hugetlb_register_all_nodes(void) { }
1934
1935 #endif
1936
1937 static void __exit hugetlb_exit(void)
1938 {
1939         struct hstate *h;
1940
1941         hugetlb_unregister_all_nodes();
1942
1943         for_each_hstate(h) {
1944                 kobject_put(hstate_kobjs[hstate_index(h)]);
1945         }
1946
1947         kobject_put(hugepages_kobj);
1948 }
1949 module_exit(hugetlb_exit);
1950
1951 static int __init hugetlb_init(void)
1952 {
1953         /* Some platform decide whether they support huge pages at boot
1954          * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1955          * there is no such support
1956          */
1957         if (HPAGE_SHIFT == 0)
1958                 return 0;
1959
1960         if (!size_to_hstate(default_hstate_size)) {
1961                 default_hstate_size = HPAGE_SIZE;
1962                 if (!size_to_hstate(default_hstate_size))
1963                         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
1964         }
1965         default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
1966         if (default_hstate_max_huge_pages)
1967                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
1968
1969         hugetlb_init_hstates();
1970         gather_bootmem_prealloc();
1971         report_hugepages();
1972
1973         hugetlb_sysfs_init();
1974         hugetlb_register_all_nodes();
1975         hugetlb_cgroup_file_init();
1976
1977         return 0;
1978 }
1979 module_init(hugetlb_init);
1980
1981 /* Should be called on processing a hugepagesz=... option */
1982 void __init hugetlb_add_hstate(unsigned order)
1983 {
1984         struct hstate *h;
1985         unsigned long i;
1986
1987         if (size_to_hstate(PAGE_SIZE << order)) {
1988                 pr_warning("hugepagesz= specified twice, ignoring\n");
1989                 return;
1990         }
1991         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
1992         BUG_ON(order == 0);
1993         h = &hstates[hugetlb_max_hstate++];
1994         h->order = order;
1995         h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
1996         h->nr_huge_pages = 0;
1997         h->free_huge_pages = 0;
1998         for (i = 0; i < MAX_NUMNODES; ++i)
1999                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
2000         INIT_LIST_HEAD(&h->hugepage_activelist);
2001         h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2002         h->next_nid_to_free = first_node(node_states[N_MEMORY]);
2003         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2004                                         huge_page_size(h)/1024);
2005
2006         parsed_hstate = h;
2007 }
2008
2009 static int __init hugetlb_nrpages_setup(char *s)
2010 {
2011         unsigned long *mhp;
2012         static unsigned long *last_mhp;
2013
2014         /*
2015          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
2016          * so this hugepages= parameter goes to the "default hstate".
2017          */
2018         if (!hugetlb_max_hstate)
2019                 mhp = &default_hstate_max_huge_pages;
2020         else
2021                 mhp = &parsed_hstate->max_huge_pages;
2022
2023         if (mhp == last_mhp) {
2024                 pr_warning("hugepages= specified twice without "
2025                            "interleaving hugepagesz=, ignoring\n");
2026                 return 1;
2027         }
2028
2029         if (sscanf(s, "%lu", mhp) <= 0)
2030                 *mhp = 0;
2031
2032         /*
2033          * Global state is always initialized later in hugetlb_init.
2034          * But we need to allocate >= MAX_ORDER hstates here early to still
2035          * use the bootmem allocator.
2036          */
2037         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
2038                 hugetlb_hstate_alloc_pages(parsed_hstate);
2039
2040         last_mhp = mhp;
2041
2042         return 1;
2043 }
2044 __setup("hugepages=", hugetlb_nrpages_setup);
2045
2046 static int __init hugetlb_default_setup(char *s)
2047 {
2048         default_hstate_size = memparse(s, &s);
2049         return 1;
2050 }
2051 __setup("default_hugepagesz=", hugetlb_default_setup);
2052
2053 static unsigned int cpuset_mems_nr(unsigned int *array)
2054 {
2055         int node;
2056         unsigned int nr = 0;
2057
2058         for_each_node_mask(node, cpuset_current_mems_allowed)
2059                 nr += array[node];
2060
2061         return nr;
2062 }
2063
2064 #ifdef CONFIG_SYSCTL
2065 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2066                          struct ctl_table *table, int write,
2067                          void __user *buffer, size_t *length, loff_t *ppos)
2068 {
2069         struct hstate *h = &default_hstate;
2070         unsigned long tmp;
2071         int ret;
2072
2073         tmp = h->max_huge_pages;
2074
2075         if (write && h->order >= MAX_ORDER)
2076                 return -EINVAL;
2077
2078         table->data = &tmp;
2079         table->maxlen = sizeof(unsigned long);
2080         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2081         if (ret)
2082                 goto out;
2083
2084         if (write) {
2085                 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2086                                                 GFP_KERNEL | __GFP_NORETRY);
2087                 if (!(obey_mempolicy &&
2088                                init_nodemask_of_mempolicy(nodes_allowed))) {
2089                         NODEMASK_FREE(nodes_allowed);
2090                         nodes_allowed = &node_states[N_MEMORY];
2091                 }
2092                 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2093
2094                 if (nodes_allowed != &node_states[N_MEMORY])
2095                         NODEMASK_FREE(nodes_allowed);
2096         }
2097 out:
2098         return ret;
2099 }
2100
2101 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2102                           void __user *buffer, size_t *length, loff_t *ppos)
2103 {
2104
2105         return hugetlb_sysctl_handler_common(false, table, write,
2106                                                         buffer, length, ppos);
2107 }
2108
2109 #ifdef CONFIG_NUMA
2110 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2111                           void __user *buffer, size_t *length, loff_t *ppos)
2112 {
2113         return hugetlb_sysctl_handler_common(true, table, write,
2114                                                         buffer, length, ppos);
2115 }
2116 #endif /* CONFIG_NUMA */
2117
2118 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
2119                         void __user *buffer,
2120                         size_t *length, loff_t *ppos)
2121 {
2122         struct hstate *h = &default_hstate;
2123         unsigned long tmp;
2124         int ret;
2125
2126         tmp = h->nr_overcommit_huge_pages;
2127
2128         if (write && h->order >= MAX_ORDER)
2129                 return -EINVAL;
2130
2131         table->data = &tmp;
2132         table->maxlen = sizeof(unsigned long);
2133         ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2134         if (ret)
2135                 goto out;
2136
2137         if (write) {
2138                 spin_lock(&hugetlb_lock);
2139                 h->nr_overcommit_huge_pages = tmp;
2140                 spin_unlock(&hugetlb_lock);
2141         }
2142 out:
2143         return ret;
2144 }
2145
2146 #endif /* CONFIG_SYSCTL */
2147
2148 void hugetlb_report_meminfo(struct seq_file *m)
2149 {
2150         struct hstate *h = &default_hstate;
2151         seq_printf(m,
2152                         "HugePages_Total:   %5lu\n"
2153                         "HugePages_Free:    %5lu\n"
2154                         "HugePages_Rsvd:    %5lu\n"
2155                         "HugePages_Surp:    %5lu\n"
2156                         "Hugepagesize:   %8lu kB\n",
2157                         h->nr_huge_pages,
2158                         h->free_huge_pages,
2159                         h->resv_huge_pages,
2160                         h->surplus_huge_pages,
2161                         1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2162 }
2163
2164 int hugetlb_report_node_meminfo(int nid, char *buf)
2165 {
2166         struct hstate *h = &default_hstate;
2167         return sprintf(buf,
2168                 "Node %d HugePages_Total: %5u\n"
2169                 "Node %d HugePages_Free:  %5u\n"
2170                 "Node %d HugePages_Surp:  %5u\n",
2171                 nid, h->nr_huge_pages_node[nid],
2172                 nid, h->free_huge_pages_node[nid],
2173                 nid, h->surplus_huge_pages_node[nid]);
2174 }
2175
2176 void hugetlb_show_meminfo(void)
2177 {
2178         struct hstate *h;
2179         int nid;
2180
2181         for_each_node_state(nid, N_MEMORY)
2182                 for_each_hstate(h)
2183                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2184                                 nid,
2185                                 h->nr_huge_pages_node[nid],
2186                                 h->free_huge_pages_node[nid],
2187                                 h->surplus_huge_pages_node[nid],
2188                                 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2189 }
2190
2191 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2192 unsigned long hugetlb_total_pages(void)
2193 {
2194         struct hstate *h;
2195         unsigned long nr_total_pages = 0;
2196
2197         for_each_hstate(h)
2198                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2199         return nr_total_pages;
2200 }
2201
2202 static int hugetlb_acct_memory(struct hstate *h, long delta)
2203 {
2204         int ret = -ENOMEM;
2205
2206         spin_lock(&hugetlb_lock);
2207         /*
2208          * When cpuset is configured, it breaks the strict hugetlb page
2209          * reservation as the accounting is done on a global variable. Such
2210          * reservation is completely rubbish in the presence of cpuset because
2211          * the reservation is not checked against page availability for the
2212          * current cpuset. Application can still potentially OOM'ed by kernel
2213          * with lack of free htlb page in cpuset that the task is in.
2214          * Attempt to enforce strict accounting with cpuset is almost
2215          * impossible (or too ugly) because cpuset is too fluid that
2216          * task or memory node can be dynamically moved between cpusets.
2217          *
2218          * The change of semantics for shared hugetlb mapping with cpuset is
2219          * undesirable. However, in order to preserve some of the semantics,
2220          * we fall back to check against current free page availability as
2221          * a best attempt and hopefully to minimize the impact of changing
2222          * semantics that cpuset has.
2223          */
2224         if (delta > 0) {
2225                 if (gather_surplus_pages(h, delta) < 0)
2226                         goto out;
2227
2228                 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2229                         return_unused_surplus_pages(h, delta);
2230                         goto out;
2231                 }
2232         }
2233
2234         ret = 0;
2235         if (delta < 0)
2236                 return_unused_surplus_pages(h, (unsigned long) -delta);
2237
2238 out:
2239         spin_unlock(&hugetlb_lock);
2240         return ret;
2241 }
2242
2243 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2244 {
2245         struct resv_map *resv = vma_resv_map(vma);
2246
2247         /*
2248          * This new VMA should share its siblings reservation map if present.
2249          * The VMA will only ever have a valid reservation map pointer where
2250          * it is being copied for another still existing VMA.  As that VMA
2251          * has a reference to the reservation map it cannot disappear until
2252          * after this open call completes.  It is therefore safe to take a
2253          * new reference here without additional locking.
2254          */
2255         if (resv)
2256                 kref_get(&resv->refs);
2257 }
2258
2259 static void resv_map_put(struct vm_area_struct *vma)
2260 {
2261         struct resv_map *resv = vma_resv_map(vma);
2262
2263         if (!resv)
2264                 return;
2265         kref_put(&resv->refs, resv_map_release);
2266 }
2267
2268 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2269 {
2270         struct hstate *h = hstate_vma(vma);
2271         struct resv_map *resv = vma_resv_map(vma);
2272         struct hugepage_subpool *spool = subpool_vma(vma);
2273         unsigned long reserve;
2274         unsigned long start;
2275         unsigned long end;
2276
2277         if (resv) {
2278                 start = vma_hugecache_offset(h, vma, vma->vm_start);
2279                 end = vma_hugecache_offset(h, vma, vma->vm_end);
2280
2281                 reserve = (end - start) -
2282                         region_count(&resv->regions, start, end);
2283
2284                 resv_map_put(vma);
2285
2286                 if (reserve) {
2287                         hugetlb_acct_memory(h, -reserve);
2288                         hugepage_subpool_put_pages(spool, reserve);
2289                 }
2290         }
2291 }
2292
2293 /*
2294  * We cannot handle pagefaults against hugetlb pages at all.  They cause
2295  * handle_mm_fault() to try to instantiate regular-sized pages in the
2296  * hugegpage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
2297  * this far.
2298  */
2299 static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2300 {
2301         BUG();
2302         return 0;
2303 }
2304
2305 const struct vm_operations_struct hugetlb_vm_ops = {
2306         .fault = hugetlb_vm_op_fault,
2307         .open = hugetlb_vm_op_open,
2308         .close = hugetlb_vm_op_close,
2309 };
2310
2311 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2312                                 int writable)
2313 {
2314         pte_t entry;
2315
2316         if (writable) {
2317                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2318                                          vma->vm_page_prot)));
2319         } else {
2320                 entry = huge_pte_wrprotect(mk_huge_pte(page,
2321                                            vma->vm_page_prot));
2322         }
2323         entry = pte_mkyoung(entry);
2324         entry = pte_mkhuge(entry);
2325         entry = arch_make_huge_pte(entry, vma, page, writable);
2326
2327         return entry;
2328 }
2329
2330 static void set_huge_ptep_writable(struct vm_area_struct *vma,
2331                                    unsigned long address, pte_t *ptep)
2332 {
2333         pte_t entry;
2334
2335         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
2336         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
2337                 update_mmu_cache(vma, address, ptep);
2338 }
2339
2340
2341 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2342                             struct vm_area_struct *vma)
2343 {
2344         pte_t *src_pte, *dst_pte, entry;
2345         struct page *ptepage;
2346         unsigned long addr;
2347         int cow;
2348         struct hstate *h = hstate_vma(vma);
2349         unsigned long sz = huge_page_size(h);
2350
2351         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
2352
2353         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
2354                 spinlock_t *src_ptl, *dst_ptl;
2355                 src_pte = huge_pte_offset(src, addr);
2356                 if (!src_pte)
2357                         continue;
2358                 dst_pte = huge_pte_alloc(dst, addr, sz);
2359                 if (!dst_pte)
2360                         goto nomem;
2361
2362                 /* If the pagetables are shared don't copy or take references */
2363                 if (dst_pte == src_pte)
2364                         continue;
2365
2366                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2367                 src_ptl = huge_pte_lockptr(h, src, src_pte);
2368                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
2369                 if (!huge_pte_none(huge_ptep_get(src_pte))) {
2370                         if (cow)
2371                                 huge_ptep_set_wrprotect(src, addr, src_pte);
2372                         entry = huge_ptep_get(src_pte);
2373                         ptepage = pte_page(entry);
2374                         get_page(ptepage);
2375                         page_dup_rmap(ptepage);
2376                         set_huge_pte_at(dst, addr, dst_pte, entry);
2377                 }
2378                 spin_unlock(src_ptl);
2379                 spin_unlock(dst_ptl);
2380         }
2381         return 0;
2382
2383 nomem:
2384         return -ENOMEM;
2385 }
2386
2387 static int is_hugetlb_entry_migration(pte_t pte)
2388 {
2389         swp_entry_t swp;
2390
2391         if (huge_pte_none(pte) || pte_present(pte))
2392                 return 0;
2393         swp = pte_to_swp_entry(pte);
2394         if (non_swap_entry(swp) && is_migration_entry(swp))
2395                 return 1;
2396         else
2397                 return 0;
2398 }
2399
2400 static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2401 {
2402         swp_entry_t swp;
2403
2404         if (huge_pte_none(pte) || pte_present(pte))
2405                 return 0;
2406         swp = pte_to_swp_entry(pte);
2407         if (non_swap_entry(swp) && is_hwpoison_entry(swp))
2408                 return 1;
2409         else
2410                 return 0;
2411 }
2412
2413 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2414                             unsigned long start, unsigned long end,
2415                             struct page *ref_page)
2416 {
2417         int force_flush = 0;
2418         struct mm_struct *mm = vma->vm_mm;
2419         unsigned long address;
2420         pte_t *ptep;
2421         pte_t pte;
2422         spinlock_t *ptl;
2423         struct page *page;
2424         struct hstate *h = hstate_vma(vma);
2425         unsigned long sz = huge_page_size(h);
2426         const unsigned long mmun_start = start; /* For mmu_notifiers */
2427         const unsigned long mmun_end   = end;   /* For mmu_notifiers */
2428
2429         WARN_ON(!is_vm_hugetlb_page(vma));
2430         BUG_ON(start & ~huge_page_mask(h));
2431         BUG_ON(end & ~huge_page_mask(h));
2432
2433         tlb_start_vma(tlb, vma);
2434         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2435 again:
2436         for (address = start; address < end; address += sz) {
2437                 ptep = huge_pte_offset(mm, address);
2438                 if (!ptep)
2439                         continue;
2440
2441                 ptl = huge_pte_lock(h, mm, ptep);
2442                 if (huge_pmd_unshare(mm, &address, ptep))
2443                         goto unlock;
2444
2445                 pte = huge_ptep_get(ptep);
2446                 if (huge_pte_none(pte))
2447                         goto unlock;
2448
2449                 /*
2450                  * HWPoisoned hugepage is already unmapped and dropped reference
2451                  */
2452                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
2453                         huge_pte_clear(mm, address, ptep);
2454                         goto unlock;
2455                 }
2456
2457                 page = pte_page(pte);
2458                 /*
2459                  * If a reference page is supplied, it is because a specific
2460                  * page is being unmapped, not a range. Ensure the page we
2461                  * are about to unmap is the actual page of interest.
2462                  */
2463                 if (ref_page) {
2464                         if (page != ref_page)
2465                                 goto unlock;
2466
2467                         /*
2468                          * Mark the VMA as having unmapped its page so that
2469                          * future faults in this VMA will fail rather than
2470                          * looking like data was lost
2471                          */
2472                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2473                 }
2474
2475                 pte = huge_ptep_get_and_clear(mm, address, ptep);
2476                 tlb_remove_tlb_entry(tlb, ptep, address);
2477                 if (huge_pte_dirty(pte))
2478                         set_page_dirty(page);
2479
2480                 page_remove_rmap(page);
2481                 force_flush = !__tlb_remove_page(tlb, page);
2482                 if (force_flush) {
2483                         spin_unlock(ptl);
2484                         break;
2485                 }
2486                 /* Bail out after unmapping reference page if supplied */
2487                 if (ref_page) {
2488                         spin_unlock(ptl);
2489                         break;
2490                 }
2491 unlock:
2492                 spin_unlock(ptl);
2493         }
2494         /*
2495          * mmu_gather ran out of room to batch pages, we break out of
2496          * the PTE lock to avoid doing the potential expensive TLB invalidate
2497          * and page-free while holding it.
2498          */
2499         if (force_flush) {
2500                 force_flush = 0;
2501                 tlb_flush_mmu(tlb);
2502                 if (address < end && !ref_page)
2503                         goto again;
2504         }
2505         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2506         tlb_end_vma(tlb, vma);
2507 }
2508
2509 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2510                           struct vm_area_struct *vma, unsigned long start,
2511                           unsigned long end, struct page *ref_page)
2512 {
2513         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2514
2515         /*
2516          * Clear this flag so that x86's huge_pmd_share page_table_shareable
2517          * test will fail on a vma being torn down, and not grab a page table
2518          * on its way out.  We're lucky that the flag has such an appropriate
2519          * name, and can in fact be safely cleared here. We could clear it
2520          * before the __unmap_hugepage_range above, but all that's necessary
2521          * is to clear it before releasing the i_mmap_mutex. This works
2522          * because in the context this is called, the VMA is about to be
2523          * destroyed and the i_mmap_mutex is held.
2524          */
2525         vma->vm_flags &= ~VM_MAYSHARE;
2526 }
2527
2528 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
2529                           unsigned long end, struct page *ref_page)
2530 {
2531         struct mm_struct *mm;
2532         struct mmu_gather tlb;
2533
2534         mm = vma->vm_mm;
2535
2536         tlb_gather_mmu(&tlb, mm, start, end);
2537         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2538         tlb_finish_mmu(&tlb, start, end);
2539 }
2540
2541 /*
2542  * This is called when the original mapper is failing to COW a MAP_PRIVATE
2543  * mappping it owns the reserve page for. The intention is to unmap the page
2544  * from other VMAs and let the children be SIGKILLed if they are faulting the
2545  * same region.
2546  */
2547 static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2548                                 struct page *page, unsigned long address)
2549 {
2550         struct hstate *h = hstate_vma(vma);
2551         struct vm_area_struct *iter_vma;
2552         struct address_space *mapping;
2553         pgoff_t pgoff;
2554
2555         /*
2556          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2557          * from page cache lookup which is in HPAGE_SIZE units.
2558          */
2559         address = address & huge_page_mask(h);
2560         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2561                         vma->vm_pgoff;
2562         mapping = file_inode(vma->vm_file)->i_mapping;
2563
2564         /*
2565          * Take the mapping lock for the duration of the table walk. As
2566          * this mapping should be shared between all the VMAs,
2567          * __unmap_hugepage_range() is called as the lock is already held
2568          */
2569         mutex_lock(&mapping->i_mmap_mutex);
2570         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
2571                 /* Do not unmap the current VMA */
2572                 if (iter_vma == vma)
2573                         continue;
2574
2575                 /*
2576                  * Unmap the page from other VMAs without their own reserves.
2577                  * They get marked to be SIGKILLed if they fault in these
2578                  * areas. This is because a future no-page fault on this VMA
2579                  * could insert a zeroed page instead of the data existing
2580                  * from the time of fork. This would look like data corruption
2581                  */
2582                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
2583                         unmap_hugepage_range(iter_vma, address,
2584                                              address + huge_page_size(h), page);
2585         }
2586         mutex_unlock(&mapping->i_mmap_mutex);
2587
2588         return 1;
2589 }
2590
2591 /*
2592  * Hugetlb_cow() should be called with page lock of the original hugepage held.
2593  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2594  * cannot race with other handlers or page migration.
2595  * Keep the pte_same checks anyway to make transition from the mutex easier.
2596  */
2597 static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
2598                         unsigned long address, pte_t *ptep, pte_t pte,
2599                         struct page *pagecache_page, spinlock_t *ptl)
2600 {
2601         struct hstate *h = hstate_vma(vma);
2602         struct page *old_page, *new_page;
2603         int outside_reserve = 0;
2604         unsigned long mmun_start;       /* For mmu_notifiers */
2605         unsigned long mmun_end;         /* For mmu_notifiers */
2606
2607         old_page = pte_page(pte);
2608
2609 retry_avoidcopy:
2610         /* If no-one else is actually using this page, avoid the copy
2611          * and just make the page writable */
2612         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2613                 page_move_anon_rmap(old_page, vma, address);
2614                 set_huge_ptep_writable(vma, address, ptep);
2615                 return 0;
2616         }
2617
2618         /*
2619          * If the process that created a MAP_PRIVATE mapping is about to
2620          * perform a COW due to a shared page count, attempt to satisfy
2621          * the allocation without using the existing reserves. The pagecache
2622          * page is used to determine if the reserve at this address was
2623          * consumed or not. If reserves were used, a partial faulted mapping
2624          * at the time of fork() could consume its reserves on COW instead
2625          * of the full address range.
2626          */
2627         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
2628                         old_page != pagecache_page)
2629                 outside_reserve = 1;
2630
2631         page_cache_get(old_page);
2632
2633         /* Drop page table lock as buddy allocator may be called */
2634         spin_unlock(ptl);
2635         new_page = alloc_huge_page(vma, address, outside_reserve);
2636
2637         if (IS_ERR(new_page)) {
2638                 long err = PTR_ERR(new_page);
2639                 page_cache_release(old_page);
2640
2641                 /*
2642                  * If a process owning a MAP_PRIVATE mapping fails to COW,
2643                  * it is due to references held by a child and an insufficient
2644                  * huge page pool. To guarantee the original mappers
2645                  * reliability, unmap the page from child processes. The child
2646                  * may get SIGKILLed if it later faults.
2647                  */
2648                 if (outside_reserve) {
2649                         BUG_ON(huge_pte_none(pte));
2650                         if (unmap_ref_private(mm, vma, old_page, address)) {
2651                                 BUG_ON(huge_pte_none(pte));
2652                                 spin_lock(ptl);
2653                                 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2654                                 if (likely(pte_same(huge_ptep_get(ptep), pte)))
2655                                         goto retry_avoidcopy;
2656                                 /*
2657                                  * race occurs while re-acquiring page table
2658                                  * lock, and our job is done.
2659                                  */
2660                                 return 0;
2661                         }
2662                         WARN_ON_ONCE(1);
2663                 }
2664
2665                 /* Caller expects lock to be held */
2666                 spin_lock(ptl);
2667                 if (err == -ENOMEM)
2668                         return VM_FAULT_OOM;
2669                 else
2670                         return VM_FAULT_SIGBUS;
2671         }
2672
2673         /*
2674          * When the original hugepage is shared one, it does not have
2675          * anon_vma prepared.
2676          */
2677         if (unlikely(anon_vma_prepare(vma))) {
2678                 page_cache_release(new_page);
2679                 page_cache_release(old_page);
2680                 /* Caller expects lock to be held */
2681                 spin_lock(ptl);
2682                 return VM_FAULT_OOM;
2683         }
2684
2685         copy_user_huge_page(new_page, old_page, address, vma,
2686                             pages_per_huge_page(h));
2687         __SetPageUptodate(new_page);
2688
2689         mmun_start = address & huge_page_mask(h);
2690         mmun_end = mmun_start + huge_page_size(h);
2691         mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2692         /*
2693          * Retake the page table lock to check for racing updates
2694          * before the page tables are altered
2695          */
2696         spin_lock(ptl);
2697         ptep = huge_pte_offset(mm, address & huge_page_mask(h));
2698         if (likely(pte_same(huge_ptep_get(ptep), pte))) {
2699                 ClearPagePrivate(new_page);
2700
2701                 /* Break COW */
2702                 huge_ptep_clear_flush(vma, address, ptep);
2703                 set_huge_pte_at(mm, address, ptep,
2704                                 make_huge_pte(vma, new_page, 1));
2705                 page_remove_rmap(old_page);
2706                 hugepage_add_new_anon_rmap(new_page, vma, address);
2707                 /* Make the old page be freed below */
2708                 new_page = old_page;
2709         }
2710         spin_unlock(ptl);
2711         mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2712         page_cache_release(new_page);
2713         page_cache_release(old_page);
2714
2715         /* Caller expects lock to be held */
2716         spin_lock(ptl);
2717         return 0;
2718 }
2719
2720 /* Return the pagecache page at a given address within a VMA */
2721 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2722                         struct vm_area_struct *vma, unsigned long address)
2723 {
2724         struct address_space *mapping;
2725         pgoff_t idx;
2726
2727         mapping = vma->vm_file->f_mapping;
2728         idx = vma_hugecache_offset(h, vma, address);
2729
2730         return find_lock_page(mapping, idx);
2731 }
2732
2733 /*
2734  * Return whether there is a pagecache page to back given address within VMA.
2735  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2736  */
2737 static bool hugetlbfs_pagecache_present(struct hstate *h,
2738                         struct vm_area_struct *vma, unsigned long address)
2739 {
2740         struct address_space *mapping;
2741         pgoff_t idx;
2742         struct page *page;
2743
2744         mapping = vma->vm_file->f_mapping;
2745         idx = vma_hugecache_offset(h, vma, address);
2746
2747         page = find_get_page(mapping, idx);
2748         if (page)
2749                 put_page(page);
2750         return page != NULL;
2751 }
2752
2753 static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
2754                         unsigned long address, pte_t *ptep, unsigned int flags)
2755 {
2756         struct hstate *h = hstate_vma(vma);
2757         int ret = VM_FAULT_SIGBUS;
2758         int anon_rmap = 0;
2759         pgoff_t idx;
2760         unsigned long size;
2761         struct page *page;
2762         struct address_space *mapping;
2763         pte_t new_pte;
2764         spinlock_t *ptl;
2765
2766         /*
2767          * Currently, we are forced to kill the process in the event the
2768          * original mapper has unmapped pages from the child due to a failed
2769          * COW. Warn that such a situation has occurred as it may not be obvious
2770          */
2771         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
2772                 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2773                            current->pid);
2774                 return ret;
2775         }
2776
2777         mapping = vma->vm_file->f_mapping;
2778         idx = vma_hugecache_offset(h, vma, address);
2779
2780         /*
2781          * Use page lock to guard against racing truncation
2782          * before we get page_table_lock.
2783          */
2784 retry:
2785         page = find_lock_page(mapping, idx);
2786         if (!page) {
2787                 size = i_size_read(mapping->host) >> huge_page_shift(h);
2788                 if (idx >= size)
2789                         goto out;
2790                 page = alloc_huge_page(vma, address, 0);
2791                 if (IS_ERR(page)) {
2792                         ret = PTR_ERR(page);
2793                         if (ret == -ENOMEM)
2794                                 ret = VM_FAULT_OOM;
2795                         else
2796                                 ret = VM_FAULT_SIGBUS;
2797                         goto out;
2798                 }
2799                 clear_huge_page(page, address, pages_per_huge_page(h));
2800                 __SetPageUptodate(page);
2801
2802                 if (vma->vm_flags & VM_MAYSHARE) {
2803                         int err;
2804                         struct inode *inode = mapping->host;
2805
2806                         err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2807                         if (err) {
2808                                 put_page(page);
2809                                 if (err == -EEXIST)
2810                                         goto retry;
2811                                 goto out;
2812                         }
2813                         ClearPagePrivate(page);
2814
2815                         spin_lock(&inode->i_lock);
2816                         inode->i_blocks += blocks_per_huge_page(h);
2817                         spin_unlock(&inode->i_lock);
2818                 } else {
2819                         lock_page(page);
2820                         if (unlikely(anon_vma_prepare(vma))) {
2821                                 ret = VM_FAULT_OOM;
2822                                 goto backout_unlocked;
2823                         }
2824                         anon_rmap = 1;
2825                 }
2826         } else {
2827                 /*
2828                  * If memory error occurs between mmap() and fault, some process
2829                  * don't have hwpoisoned swap entry for errored virtual address.
2830                  * So we need to block hugepage fault by PG_hwpoison bit check.
2831                  */
2832                 if (unlikely(PageHWPoison(page))) {
2833                         ret = VM_FAULT_HWPOISON |
2834                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2835                         goto backout_unlocked;
2836                 }
2837         }
2838
2839         /*
2840          * If we are going to COW a private mapping later, we examine the
2841          * pending reservations for this page now. This will ensure that
2842          * any allocations necessary to record that reservation occur outside
2843          * the spinlock.
2844          */
2845         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2846                 if (vma_needs_reservation(h, vma, address) < 0) {
2847                         ret = VM_FAULT_OOM;
2848                         goto backout_unlocked;
2849                 }
2850
2851         ptl = huge_pte_lockptr(h, mm, ptep);
2852         spin_lock(ptl);
2853         size = i_size_read(mapping->host) >> huge_page_shift(h);
2854         if (idx >= size)
2855                 goto backout;
2856
2857         ret = 0;
2858         if (!huge_pte_none(huge_ptep_get(ptep)))
2859                 goto backout;
2860
2861         if (anon_rmap) {
2862                 ClearPagePrivate(page);
2863                 hugepage_add_new_anon_rmap(page, vma, address);
2864         }
2865         else
2866                 page_dup_rmap(page);
2867         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2868                                 && (vma->vm_flags & VM_SHARED)));
2869         set_huge_pte_at(mm, address, ptep, new_pte);
2870
2871         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2872                 /* Optimization, do the COW without a second fault */
2873                 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
2874         }
2875
2876         spin_unlock(ptl);
2877         unlock_page(page);
2878 out:
2879         return ret;
2880
2881 backout:
2882         spin_unlock(ptl);
2883 backout_unlocked:
2884         unlock_page(page);
2885         put_page(page);
2886         goto out;
2887 }
2888
2889 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2890                         unsigned long address, unsigned int flags)
2891 {
2892         pte_t *ptep;
2893         pte_t entry;
2894         spinlock_t *ptl;
2895         int ret;
2896         struct page *page = NULL;
2897         struct page *pagecache_page = NULL;
2898         static DEFINE_MUTEX(hugetlb_instantiation_mutex);
2899         struct hstate *h = hstate_vma(vma);
2900
2901         address &= huge_page_mask(h);
2902
2903         ptep = huge_pte_offset(mm, address);
2904         if (ptep) {
2905                 entry = huge_ptep_get(ptep);
2906                 if (unlikely(is_hugetlb_entry_migration(entry))) {
2907                         migration_entry_wait_huge(vma, mm, ptep);
2908                         return 0;
2909                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
2910                         return VM_FAULT_HWPOISON_LARGE |
2911                                 VM_FAULT_SET_HINDEX(hstate_index(h));
2912         }
2913
2914         ptep = huge_pte_alloc(mm, address, huge_page_size(h));
2915         if (!ptep)
2916                 return VM_FAULT_OOM;
2917
2918         /*
2919          * Serialize hugepage allocation and instantiation, so that we don't
2920          * get spurious allocation failures if two CPUs race to instantiate
2921          * the same page in the page cache.
2922          */
2923         mutex_lock(&hugetlb_instantiation_mutex);
2924         entry = huge_ptep_get(ptep);
2925         if (huge_pte_none(entry)) {
2926                 ret = hugetlb_no_page(mm, vma, address, ptep, flags);
2927                 goto out_mutex;
2928         }
2929
2930         ret = 0;
2931
2932         /*
2933          * If we are going to COW the mapping later, we examine the pending
2934          * reservations for this page now. This will ensure that any
2935          * allocations necessary to record that reservation occur outside the
2936          * spinlock. For private mappings, we also lookup the pagecache
2937          * page now as it is used to determine if a reservation has been
2938          * consumed.
2939          */
2940         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2941                 if (vma_needs_reservation(h, vma, address) < 0) {
2942                         ret = VM_FAULT_OOM;
2943                         goto out_mutex;
2944                 }
2945
2946                 if (!(vma->vm_flags & VM_MAYSHARE))
2947                         pagecache_page = hugetlbfs_pagecache_page(h,
2948                                                                 vma, address);
2949         }
2950
2951         /*
2952          * hugetlb_cow() requires page locks of pte_page(entry) and
2953          * pagecache_page, so here we need take the former one
2954          * when page != pagecache_page or !pagecache_page.
2955          * Note that locking order is always pagecache_page -> page,
2956          * so no worry about deadlock.
2957          */
2958         page = pte_page(entry);
2959         get_page(page);
2960         if (page != pagecache_page)
2961                 lock_page(page);
2962
2963         ptl = huge_pte_lockptr(h, mm, ptep);
2964         spin_lock(ptl);
2965         /* Check for a racing update before calling hugetlb_cow */
2966         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
2967                 goto out_ptl;
2968
2969
2970         if (flags & FAULT_FLAG_WRITE) {
2971                 if (!huge_pte_write(entry)) {
2972                         ret = hugetlb_cow(mm, vma, address, ptep, entry,
2973                                         pagecache_page, ptl);
2974                         goto out_ptl;
2975                 }
2976                 entry = huge_pte_mkdirty(entry);
2977         }
2978         entry = pte_mkyoung(entry);
2979         if (huge_ptep_set_access_flags(vma, address, ptep, entry,
2980                                                 flags & FAULT_FLAG_WRITE))
2981                 update_mmu_cache(vma, address, ptep);
2982
2983 out_ptl:
2984         spin_unlock(ptl);
2985
2986         if (pagecache_page) {
2987                 unlock_page(pagecache_page);
2988                 put_page(pagecache_page);
2989         }
2990         if (page != pagecache_page)
2991                 unlock_page(page);
2992         put_page(page);
2993
2994 out_mutex:
2995         mutex_unlock(&hugetlb_instantiation_mutex);
2996
2997         return ret;
2998 }
2999
3000 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3001                          struct page **pages, struct vm_area_struct **vmas,
3002                          unsigned long *position, unsigned long *nr_pages,
3003                          long i, unsigned int flags)
3004 {
3005         unsigned long pfn_offset;
3006         unsigned long vaddr = *position;
3007         unsigned long remainder = *nr_pages;
3008         struct hstate *h = hstate_vma(vma);
3009
3010         while (vaddr < vma->vm_end && remainder) {
3011                 pte_t *pte;
3012                 spinlock_t *ptl = NULL;
3013                 int absent;
3014                 struct page *page;
3015
3016                 /*
3017                  * Some archs (sparc64, sh*) have multiple pte_ts to
3018                  * each hugepage.  We have to make sure we get the
3019                  * first, for the page indexing below to work.
3020                  *
3021                  * Note that page table lock is not held when pte is null.
3022                  */
3023                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
3024                 if (pte)
3025                         ptl = huge_pte_lock(h, mm, pte);
3026                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3027
3028                 /*
3029                  * When coredumping, it suits get_dump_page if we just return
3030                  * an error where there's an empty slot with no huge pagecache
3031                  * to back it.  This way, we avoid allocating a hugepage, and
3032                  * the sparse dumpfile avoids allocating disk blocks, but its
3033                  * huge holes still show up with zeroes where they need to be.
3034                  */
3035                 if (absent && (flags & FOLL_DUMP) &&
3036                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
3037                         if (pte)
3038                                 spin_unlock(ptl);
3039                         remainder = 0;
3040                         break;
3041                 }
3042
3043                 /*
3044                  * We need call hugetlb_fault for both hugepages under migration
3045                  * (in which case hugetlb_fault waits for the migration,) and
3046                  * hwpoisoned hugepages (in which case we need to prevent the
3047                  * caller from accessing to them.) In order to do this, we use
3048                  * here is_swap_pte instead of is_hugetlb_entry_migration and
3049                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3050                  * both cases, and because we can't follow correct pages
3051                  * directly from any kind of swap entries.
3052                  */
3053                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
3054                     ((flags & FOLL_WRITE) &&
3055                       !huge_pte_write(huge_ptep_get(pte)))) {
3056                         int ret;
3057
3058                         if (pte)
3059                                 spin_unlock(ptl);
3060                         ret = hugetlb_fault(mm, vma, vaddr,
3061                                 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
3062                         if (!(ret & VM_FAULT_ERROR))
3063                                 continue;
3064
3065                         remainder = 0;
3066                         break;
3067                 }
3068
3069                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
3070                 page = pte_page(huge_ptep_get(pte));
3071 same_page:
3072                 if (pages) {
3073                         pages[i] = mem_map_offset(page, pfn_offset);
3074                         get_page_foll(pages[i]);
3075                 }
3076
3077                 if (vmas)
3078                         vmas[i] = vma;
3079
3080                 vaddr += PAGE_SIZE;
3081                 ++pfn_offset;
3082                 --remainder;
3083                 ++i;
3084                 if (vaddr < vma->vm_end && remainder &&
3085                                 pfn_offset < pages_per_huge_page(h)) {
3086                         /*
3087                          * We use pfn_offset to avoid touching the pageframes
3088                          * of this compound page.
3089                          */
3090                         goto same_page;
3091                 }
3092                 spin_unlock(ptl);
3093         }
3094         *nr_pages = remainder;
3095         *position = vaddr;
3096
3097         return i ? i : -EFAULT;
3098 }
3099
3100 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
3101                 unsigned long address, unsigned long end, pgprot_t newprot)
3102 {
3103         struct mm_struct *mm = vma->vm_mm;
3104         unsigned long start = address;
3105         pte_t *ptep;
3106         pte_t pte;
3107         struct hstate *h = hstate_vma(vma);
3108         unsigned long pages = 0;
3109
3110         BUG_ON(address >= end);
3111         flush_cache_range(vma, address, end);
3112
3113         mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
3114         for (; address < end; address += huge_page_size(h)) {
3115                 spinlock_t *ptl;
3116                 ptep = huge_pte_offset(mm, address);
3117                 if (!ptep)
3118                         continue;
3119                 ptl = huge_pte_lock(h, mm, ptep);
3120                 if (huge_pmd_unshare(mm, &address, ptep)) {
3121                         pages++;
3122                         spin_unlock(ptl);
3123                         continue;
3124                 }
3125                 if (!huge_pte_none(huge_ptep_get(ptep))) {
3126                         pte = huge_ptep_get_and_clear(mm, address, ptep);
3127                         pte = pte_mkhuge(huge_pte_modify(pte, newprot));
3128                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
3129                         set_huge_pte_at(mm, address, ptep, pte);
3130                         pages++;
3131                 }
3132                 spin_unlock(ptl);
3133         }
3134         /*
3135          * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3136          * may have cleared our pud entry and done put_page on the page table:
3137          * once we release i_mmap_mutex, another task can do the final put_page
3138          * and that page table be reused and filled with junk.
3139          */
3140         flush_tlb_range(vma, start, end);
3141         mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
3142
3143         return pages << h->order;
3144 }
3145
3146 int hugetlb_reserve_pages(struct inode *inode,
3147                                         long from, long to,
3148                                         struct vm_area_struct *vma,
3149                                         vm_flags_t vm_flags)
3150 {
3151         long ret, chg;
3152         struct hstate *h = hstate_inode(inode);
3153         struct hugepage_subpool *spool = subpool_inode(inode);
3154
3155         /*
3156          * Only apply hugepage reservation if asked. At fault time, an
3157          * attempt will be made for VM_NORESERVE to allocate a page
3158          * without using reserves
3159          */
3160         if (vm_flags & VM_NORESERVE)
3161                 return 0;
3162
3163         /*
3164          * Shared mappings base their reservation on the number of pages that
3165          * are already allocated on behalf of the file. Private mappings need
3166          * to reserve the full area even if read-only as mprotect() may be
3167          * called to make the mapping read-write. Assume !vma is a shm mapping
3168          */
3169         if (!vma || vma->vm_flags & VM_MAYSHARE)
3170                 chg = region_chg(&inode->i_mapping->private_list, from, to);
3171         else {
3172                 struct resv_map *resv_map = resv_map_alloc();
3173                 if (!resv_map)
3174                         return -ENOMEM;
3175
3176                 chg = to - from;
3177
3178                 set_vma_resv_map(vma, resv_map);
3179                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3180         }
3181
3182         if (chg < 0) {
3183                 ret = chg;
3184                 goto out_err;
3185         }
3186
3187         /* There must be enough pages in the subpool for the mapping */
3188         if (hugepage_subpool_get_pages(spool, chg)) {
3189                 ret = -ENOSPC;
3190                 goto out_err;
3191         }
3192
3193         /*
3194          * Check enough hugepages are available for the reservation.
3195          * Hand the pages back to the subpool if there are not
3196          */
3197         ret = hugetlb_acct_memory(h, chg);
3198         if (ret < 0) {
3199                 hugepage_subpool_put_pages(spool, chg);
3200                 goto out_err;
3201         }
3202
3203         /*
3204          * Account for the reservations made. Shared mappings record regions
3205          * that have reservations as they are shared by multiple VMAs.
3206          * When the last VMA disappears, the region map says how much
3207          * the reservation was and the page cache tells how much of
3208          * the reservation was consumed. Private mappings are per-VMA and
3209          * only the consumed reservations are tracked. When the VMA
3210          * disappears, the original reservation is the VMA size and the
3211          * consumed reservations are stored in the map. Hence, nothing
3212          * else has to be done for private mappings here
3213          */
3214         if (!vma || vma->vm_flags & VM_MAYSHARE)
3215                 region_add(&inode->i_mapping->private_list, from, to);
3216         return 0;
3217 out_err:
3218         if (vma)
3219                 resv_map_put(vma);
3220         return ret;
3221 }
3222
3223 void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3224 {
3225         struct hstate *h = hstate_inode(inode);
3226         long chg = region_truncate(&inode->i_mapping->private_list, offset);
3227         struct hugepage_subpool *spool = subpool_inode(inode);
3228
3229         spin_lock(&inode->i_lock);
3230         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
3231         spin_unlock(&inode->i_lock);
3232
3233         hugepage_subpool_put_pages(spool, (chg - freed));
3234         hugetlb_acct_memory(h, -(chg - freed));
3235 }
3236
3237 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3238 static unsigned long page_table_shareable(struct vm_area_struct *svma,
3239                                 struct vm_area_struct *vma,
3240                                 unsigned long addr, pgoff_t idx)
3241 {
3242         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3243                                 svma->vm_start;
3244         unsigned long sbase = saddr & PUD_MASK;
3245         unsigned long s_end = sbase + PUD_SIZE;
3246
3247         /* Allow segments to share if only one is marked locked */
3248         unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3249         unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3250
3251         /*
3252          * match the virtual addresses, permission and the alignment of the
3253          * page table page.
3254          */
3255         if (pmd_index(addr) != pmd_index(saddr) ||
3256             vm_flags != svm_flags ||
3257             sbase < svma->vm_start || svma->vm_end < s_end)
3258                 return 0;
3259
3260         return saddr;
3261 }
3262
3263 static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3264 {
3265         unsigned long base = addr & PUD_MASK;
3266         unsigned long end = base + PUD_SIZE;
3267
3268         /*
3269          * check on proper vm_flags and page table alignment
3270          */
3271         if (vma->vm_flags & VM_MAYSHARE &&
3272             vma->vm_start <= base && end <= vma->vm_end)
3273                 return 1;
3274         return 0;
3275 }
3276
3277 /*
3278  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3279  * and returns the corresponding pte. While this is not necessary for the
3280  * !shared pmd case because we can allocate the pmd later as well, it makes the
3281  * code much cleaner. pmd allocation is essential for the shared case because
3282  * pud has to be populated inside the same i_mmap_mutex section - otherwise
3283  * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3284  * bad pmd for sharing.
3285  */
3286 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3287 {
3288         struct vm_area_struct *vma = find_vma(mm, addr);
3289         struct address_space *mapping = vma->vm_file->f_mapping;
3290         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3291                         vma->vm_pgoff;
3292         struct vm_area_struct *svma;
3293         unsigned long saddr;
3294         pte_t *spte = NULL;
3295         pte_t *pte;
3296         spinlock_t *ptl;
3297
3298         if (!vma_shareable(vma, addr))
3299                 return (pte_t *)pmd_alloc(mm, pud, addr);
3300
3301         mutex_lock(&mapping->i_mmap_mutex);
3302         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3303                 if (svma == vma)
3304                         continue;
3305
3306                 saddr = page_table_shareable(svma, vma, addr, idx);
3307                 if (saddr) {
3308                         spte = huge_pte_offset(svma->vm_mm, saddr);
3309                         if (spte) {
3310                                 get_page(virt_to_page(spte));
3311                                 break;
3312                         }
3313                 }
3314         }
3315
3316         if (!spte)
3317                 goto out;
3318
3319         ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3320         spin_lock(ptl);
3321         if (pud_none(*pud))
3322                 pud_populate(mm, pud,
3323                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3324         else
3325                 put_page(virt_to_page(spte));
3326         spin_unlock(ptl);
3327 out:
3328         pte = (pte_t *)pmd_alloc(mm, pud, addr);
3329         mutex_unlock(&mapping->i_mmap_mutex);
3330         return pte;
3331 }
3332
3333 /*
3334  * unmap huge page backed by shared pte.
3335  *
3336  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
3337  * indicated by page_count > 1, unmap is achieved by clearing pud and
3338  * decrementing the ref count. If count == 1, the pte page is not shared.
3339  *
3340  * called with page table lock held.
3341  *
3342  * returns: 1 successfully unmapped a shared pte page
3343  *          0 the underlying pte page is not shared, or it is the last user
3344  */
3345 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3346 {
3347         pgd_t *pgd = pgd_offset(mm, *addr);
3348         pud_t *pud = pud_offset(pgd, *addr);
3349
3350         BUG_ON(page_count(virt_to_page(ptep)) == 0);
3351         if (page_count(virt_to_page(ptep)) == 1)
3352                 return 0;
3353
3354         pud_clear(pud);
3355         put_page(virt_to_page(ptep));
3356         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3357         return 1;
3358 }
3359 #define want_pmd_share()        (1)
3360 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3361 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3362 {
3363         return NULL;
3364 }
3365 #define want_pmd_share()        (0)
3366 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3367
3368 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3369 pte_t *huge_pte_alloc(struct mm_struct *mm,
3370                         unsigned long addr, unsigned long sz)
3371 {
3372         pgd_t *pgd;
3373         pud_t *pud;
3374         pte_t *pte = NULL;
3375
3376         pgd = pgd_offset(mm, addr);
3377         pud = pud_alloc(mm, pgd, addr);
3378         if (pud) {
3379                 if (sz == PUD_SIZE) {
3380                         pte = (pte_t *)pud;
3381                 } else {
3382                         BUG_ON(sz != PMD_SIZE);
3383                         if (want_pmd_share() && pud_none(*pud))
3384                                 pte = huge_pmd_share(mm, addr, pud);
3385                         else
3386                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3387                 }
3388         }
3389         BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3390
3391         return pte;
3392 }
3393
3394 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3395 {
3396         pgd_t *pgd;
3397         pud_t *pud;
3398         pmd_t *pmd = NULL;
3399
3400         pgd = pgd_offset(mm, addr);
3401         if (pgd_present(*pgd)) {
3402                 pud = pud_offset(pgd, addr);
3403                 if (pud_present(*pud)) {
3404                         if (pud_huge(*pud))
3405                                 return (pte_t *)pud;
3406                         pmd = pmd_offset(pud, addr);
3407                 }
3408         }
3409         return (pte_t *) pmd;
3410 }
3411
3412 struct page *
3413 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3414                 pmd_t *pmd, int write)
3415 {
3416         struct page *page;
3417
3418         page = pte_page(*(pte_t *)pmd);
3419         if (page)
3420                 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3421         return page;
3422 }
3423
3424 struct page *
3425 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3426                 pud_t *pud, int write)
3427 {
3428         struct page *page;
3429
3430         page = pte_page(*(pte_t *)pud);
3431         if (page)
3432                 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3433         return page;
3434 }
3435
3436 #else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3437
3438 /* Can be overriden by architectures */
3439 __attribute__((weak)) struct page *
3440 follow_huge_pud(struct mm_struct *mm, unsigned long address,
3441                pud_t *pud, int write)
3442 {
3443         BUG();
3444         return NULL;
3445 }
3446
3447 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3448
3449 #ifdef CONFIG_MEMORY_FAILURE
3450
3451 /* Should be called in hugetlb_lock */
3452 static int is_hugepage_on_freelist(struct page *hpage)
3453 {
3454         struct page *page;
3455         struct page *tmp;
3456         struct hstate *h = page_hstate(hpage);
3457         int nid = page_to_nid(hpage);
3458
3459         list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3460                 if (page == hpage)
3461                         return 1;
3462         return 0;
3463 }
3464
3465 /*
3466  * This function is called from memory failure code.
3467  * Assume the caller holds page lock of the head page.
3468  */
3469 int dequeue_hwpoisoned_huge_page(struct page *hpage)
3470 {
3471         struct hstate *h = page_hstate(hpage);
3472         int nid = page_to_nid(hpage);
3473         int ret = -EBUSY;
3474
3475         spin_lock(&hugetlb_lock);
3476         if (is_hugepage_on_freelist(hpage)) {
3477                 /*
3478                  * Hwpoisoned hugepage isn't linked to activelist or freelist,
3479                  * but dangling hpage->lru can trigger list-debug warnings
3480                  * (this happens when we call unpoison_memory() on it),
3481                  * so let it point to itself with list_del_init().
3482                  */
3483                 list_del_init(&hpage->lru);
3484                 set_page_refcounted(hpage);
3485                 h->free_huge_pages--;
3486                 h->free_huge_pages_node[nid]--;
3487                 ret = 0;
3488         }
3489         spin_unlock(&hugetlb_lock);
3490         return ret;
3491 }
3492 #endif
3493
3494 bool isolate_huge_page(struct page *page, struct list_head *list)
3495 {
3496         VM_BUG_ON(!PageHead(page));
3497         if (!get_page_unless_zero(page))
3498                 return false;
3499         spin_lock(&hugetlb_lock);
3500         list_move_tail(&page->lru, list);
3501         spin_unlock(&hugetlb_lock);
3502         return true;
3503 }
3504
3505 void putback_active_hugepage(struct page *page)
3506 {
3507         VM_BUG_ON(!PageHead(page));
3508         spin_lock(&hugetlb_lock);
3509         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3510         spin_unlock(&hugetlb_lock);
3511         put_page(page);
3512 }
3513
3514 bool is_hugepage_active(struct page *page)
3515 {
3516         VM_BUG_ON(!PageHuge(page));
3517         /*
3518          * This function can be called for a tail page because the caller,
3519          * scan_movable_pages, scans through a given pfn-range which typically
3520          * covers one memory block. In systems using gigantic hugepage (1GB
3521          * for x86_64,) a hugepage is larger than a memory block, and we don't
3522          * support migrating such large hugepages for now, so return false
3523          * when called for tail pages.
3524          */
3525         if (PageTail(page))
3526                 return false;
3527         /*
3528          * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3529          * so we should return false for them.
3530          */
3531         if (unlikely(PageHWPoison(page)))
3532                 return false;
3533         return page_count(page) > 0;
3534 }