Merge tag 'nds32-for-linux-5.12' of git://git.kernel.org/pub/scm/linux/kernel/git...
[platform/kernel/linux-starfive.git] / mm / hugetlb.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic hugetlb support.
4  * (C) Nadia Yvette Chambers, April 2004
5  */
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/mm.h>
9 #include <linux/seq_file.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/nodemask.h>
14 #include <linux/pagemap.h>
15 #include <linux/mempolicy.h>
16 #include <linux/compiler.h>
17 #include <linux/cpuset.h>
18 #include <linux/mutex.h>
19 #include <linux/memblock.h>
20 #include <linux/sysfs.h>
21 #include <linux/slab.h>
22 #include <linux/sched/mm.h>
23 #include <linux/mmdebug.h>
24 #include <linux/sched/signal.h>
25 #include <linux/rmap.h>
26 #include <linux/string_helpers.h>
27 #include <linux/swap.h>
28 #include <linux/swapops.h>
29 #include <linux/jhash.h>
30 #include <linux/numa.h>
31 #include <linux/llist.h>
32 #include <linux/cma.h>
33
34 #include <asm/page.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlb.h>
37
38 #include <linux/io.h>
39 #include <linux/hugetlb.h>
40 #include <linux/hugetlb_cgroup.h>
41 #include <linux/node.h>
42 #include <linux/userfaultfd_k.h>
43 #include <linux/page_owner.h>
44 #include "internal.h"
45
46 int hugetlb_max_hstate __read_mostly;
47 unsigned int default_hstate_idx;
48 struct hstate hstates[HUGE_MAX_HSTATE];
49
50 #ifdef CONFIG_CMA
51 static struct cma *hugetlb_cma[MAX_NUMNODES];
52 #endif
53 static unsigned long hugetlb_cma_size __initdata;
54
55 /*
56  * Minimum page order among possible hugepage sizes, set to a proper value
57  * at boot time.
58  */
59 static unsigned int minimum_order __read_mostly = UINT_MAX;
60
61 __initdata LIST_HEAD(huge_boot_pages);
62
63 /* for command line parsing */
64 static struct hstate * __initdata parsed_hstate;
65 static unsigned long __initdata default_hstate_max_huge_pages;
66 static bool __initdata parsed_valid_hugepagesz = true;
67 static bool __initdata parsed_default_hugepagesz;
68
69 /*
70  * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
71  * free_huge_pages, and surplus_huge_pages.
72  */
73 DEFINE_SPINLOCK(hugetlb_lock);
74
75 /*
76  * Serializes faults on the same logical page.  This is used to
77  * prevent spurious OOMs when the hugepage pool is fully utilized.
78  */
79 static int num_fault_mutexes;
80 struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
81
82 /* Forward declaration */
83 static int hugetlb_acct_memory(struct hstate *h, long delta);
84
85 static inline bool subpool_is_free(struct hugepage_subpool *spool)
86 {
87         if (spool->count)
88                 return false;
89         if (spool->max_hpages != -1)
90                 return spool->used_hpages == 0;
91         if (spool->min_hpages != -1)
92                 return spool->rsv_hpages == spool->min_hpages;
93
94         return true;
95 }
96
97 static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
98 {
99         spin_unlock(&spool->lock);
100
101         /* If no pages are used, and no other handles to the subpool
102          * remain, give up any reservations based on minimum size and
103          * free the subpool */
104         if (subpool_is_free(spool)) {
105                 if (spool->min_hpages != -1)
106                         hugetlb_acct_memory(spool->hstate,
107                                                 -spool->min_hpages);
108                 kfree(spool);
109         }
110 }
111
112 struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
113                                                 long min_hpages)
114 {
115         struct hugepage_subpool *spool;
116
117         spool = kzalloc(sizeof(*spool), GFP_KERNEL);
118         if (!spool)
119                 return NULL;
120
121         spin_lock_init(&spool->lock);
122         spool->count = 1;
123         spool->max_hpages = max_hpages;
124         spool->hstate = h;
125         spool->min_hpages = min_hpages;
126
127         if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
128                 kfree(spool);
129                 return NULL;
130         }
131         spool->rsv_hpages = min_hpages;
132
133         return spool;
134 }
135
136 void hugepage_put_subpool(struct hugepage_subpool *spool)
137 {
138         spin_lock(&spool->lock);
139         BUG_ON(!spool->count);
140         spool->count--;
141         unlock_or_release_subpool(spool);
142 }
143
144 /*
145  * Subpool accounting for allocating and reserving pages.
146  * Return -ENOMEM if there are not enough resources to satisfy the
147  * request.  Otherwise, return the number of pages by which the
148  * global pools must be adjusted (upward).  The returned value may
149  * only be different than the passed value (delta) in the case where
150  * a subpool minimum size must be maintained.
151  */
152 static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
153                                       long delta)
154 {
155         long ret = delta;
156
157         if (!spool)
158                 return ret;
159
160         spin_lock(&spool->lock);
161
162         if (spool->max_hpages != -1) {          /* maximum size accounting */
163                 if ((spool->used_hpages + delta) <= spool->max_hpages)
164                         spool->used_hpages += delta;
165                 else {
166                         ret = -ENOMEM;
167                         goto unlock_ret;
168                 }
169         }
170
171         /* minimum size accounting */
172         if (spool->min_hpages != -1 && spool->rsv_hpages) {
173                 if (delta > spool->rsv_hpages) {
174                         /*
175                          * Asking for more reserves than those already taken on
176                          * behalf of subpool.  Return difference.
177                          */
178                         ret = delta - spool->rsv_hpages;
179                         spool->rsv_hpages = 0;
180                 } else {
181                         ret = 0;        /* reserves already accounted for */
182                         spool->rsv_hpages -= delta;
183                 }
184         }
185
186 unlock_ret:
187         spin_unlock(&spool->lock);
188         return ret;
189 }
190
191 /*
192  * Subpool accounting for freeing and unreserving pages.
193  * Return the number of global page reservations that must be dropped.
194  * The return value may only be different than the passed value (delta)
195  * in the case where a subpool minimum size must be maintained.
196  */
197 static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
198                                        long delta)
199 {
200         long ret = delta;
201
202         if (!spool)
203                 return delta;
204
205         spin_lock(&spool->lock);
206
207         if (spool->max_hpages != -1)            /* maximum size accounting */
208                 spool->used_hpages -= delta;
209
210          /* minimum size accounting */
211         if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
212                 if (spool->rsv_hpages + delta <= spool->min_hpages)
213                         ret = 0;
214                 else
215                         ret = spool->rsv_hpages + delta - spool->min_hpages;
216
217                 spool->rsv_hpages += delta;
218                 if (spool->rsv_hpages > spool->min_hpages)
219                         spool->rsv_hpages = spool->min_hpages;
220         }
221
222         /*
223          * If hugetlbfs_put_super couldn't free spool due to an outstanding
224          * quota reference, free it now.
225          */
226         unlock_or_release_subpool(spool);
227
228         return ret;
229 }
230
231 static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
232 {
233         return HUGETLBFS_SB(inode->i_sb)->spool;
234 }
235
236 static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
237 {
238         return subpool_inode(file_inode(vma->vm_file));
239 }
240
241 /* Helper that removes a struct file_region from the resv_map cache and returns
242  * it for use.
243  */
244 static struct file_region *
245 get_file_region_entry_from_cache(struct resv_map *resv, long from, long to)
246 {
247         struct file_region *nrg = NULL;
248
249         VM_BUG_ON(resv->region_cache_count <= 0);
250
251         resv->region_cache_count--;
252         nrg = list_first_entry(&resv->region_cache, struct file_region, link);
253         list_del(&nrg->link);
254
255         nrg->from = from;
256         nrg->to = to;
257
258         return nrg;
259 }
260
261 static void copy_hugetlb_cgroup_uncharge_info(struct file_region *nrg,
262                                               struct file_region *rg)
263 {
264 #ifdef CONFIG_CGROUP_HUGETLB
265         nrg->reservation_counter = rg->reservation_counter;
266         nrg->css = rg->css;
267         if (rg->css)
268                 css_get(rg->css);
269 #endif
270 }
271
272 /* Helper that records hugetlb_cgroup uncharge info. */
273 static void record_hugetlb_cgroup_uncharge_info(struct hugetlb_cgroup *h_cg,
274                                                 struct hstate *h,
275                                                 struct resv_map *resv,
276                                                 struct file_region *nrg)
277 {
278 #ifdef CONFIG_CGROUP_HUGETLB
279         if (h_cg) {
280                 nrg->reservation_counter =
281                         &h_cg->rsvd_hugepage[hstate_index(h)];
282                 nrg->css = &h_cg->css;
283                 if (!resv->pages_per_hpage)
284                         resv->pages_per_hpage = pages_per_huge_page(h);
285                 /* pages_per_hpage should be the same for all entries in
286                  * a resv_map.
287                  */
288                 VM_BUG_ON(resv->pages_per_hpage != pages_per_huge_page(h));
289         } else {
290                 nrg->reservation_counter = NULL;
291                 nrg->css = NULL;
292         }
293 #endif
294 }
295
296 static bool has_same_uncharge_info(struct file_region *rg,
297                                    struct file_region *org)
298 {
299 #ifdef CONFIG_CGROUP_HUGETLB
300         return rg && org &&
301                rg->reservation_counter == org->reservation_counter &&
302                rg->css == org->css;
303
304 #else
305         return true;
306 #endif
307 }
308
309 static void coalesce_file_region(struct resv_map *resv, struct file_region *rg)
310 {
311         struct file_region *nrg = NULL, *prg = NULL;
312
313         prg = list_prev_entry(rg, link);
314         if (&prg->link != &resv->regions && prg->to == rg->from &&
315             has_same_uncharge_info(prg, rg)) {
316                 prg->to = rg->to;
317
318                 list_del(&rg->link);
319                 kfree(rg);
320
321                 rg = prg;
322         }
323
324         nrg = list_next_entry(rg, link);
325         if (&nrg->link != &resv->regions && nrg->from == rg->to &&
326             has_same_uncharge_info(nrg, rg)) {
327                 nrg->from = rg->from;
328
329                 list_del(&rg->link);
330                 kfree(rg);
331         }
332 }
333
334 /*
335  * Must be called with resv->lock held.
336  *
337  * Calling this with regions_needed != NULL will count the number of pages
338  * to be added but will not modify the linked list. And regions_needed will
339  * indicate the number of file_regions needed in the cache to carry out to add
340  * the regions for this range.
341  */
342 static long add_reservation_in_range(struct resv_map *resv, long f, long t,
343                                      struct hugetlb_cgroup *h_cg,
344                                      struct hstate *h, long *regions_needed)
345 {
346         long add = 0;
347         struct list_head *head = &resv->regions;
348         long last_accounted_offset = f;
349         struct file_region *rg = NULL, *trg = NULL, *nrg = NULL;
350
351         if (regions_needed)
352                 *regions_needed = 0;
353
354         /* In this loop, we essentially handle an entry for the range
355          * [last_accounted_offset, rg->from), at every iteration, with some
356          * bounds checking.
357          */
358         list_for_each_entry_safe(rg, trg, head, link) {
359                 /* Skip irrelevant regions that start before our range. */
360                 if (rg->from < f) {
361                         /* If this region ends after the last accounted offset,
362                          * then we need to update last_accounted_offset.
363                          */
364                         if (rg->to > last_accounted_offset)
365                                 last_accounted_offset = rg->to;
366                         continue;
367                 }
368
369                 /* When we find a region that starts beyond our range, we've
370                  * finished.
371                  */
372                 if (rg->from > t)
373                         break;
374
375                 /* Add an entry for last_accounted_offset -> rg->from, and
376                  * update last_accounted_offset.
377                  */
378                 if (rg->from > last_accounted_offset) {
379                         add += rg->from - last_accounted_offset;
380                         if (!regions_needed) {
381                                 nrg = get_file_region_entry_from_cache(
382                                         resv, last_accounted_offset, rg->from);
383                                 record_hugetlb_cgroup_uncharge_info(h_cg, h,
384                                                                     resv, nrg);
385                                 list_add(&nrg->link, rg->link.prev);
386                                 coalesce_file_region(resv, nrg);
387                         } else
388                                 *regions_needed += 1;
389                 }
390
391                 last_accounted_offset = rg->to;
392         }
393
394         /* Handle the case where our range extends beyond
395          * last_accounted_offset.
396          */
397         if (last_accounted_offset < t) {
398                 add += t - last_accounted_offset;
399                 if (!regions_needed) {
400                         nrg = get_file_region_entry_from_cache(
401                                 resv, last_accounted_offset, t);
402                         record_hugetlb_cgroup_uncharge_info(h_cg, h, resv, nrg);
403                         list_add(&nrg->link, rg->link.prev);
404                         coalesce_file_region(resv, nrg);
405                 } else
406                         *regions_needed += 1;
407         }
408
409         VM_BUG_ON(add < 0);
410         return add;
411 }
412
413 /* Must be called with resv->lock acquired. Will drop lock to allocate entries.
414  */
415 static int allocate_file_region_entries(struct resv_map *resv,
416                                         int regions_needed)
417         __must_hold(&resv->lock)
418 {
419         struct list_head allocated_regions;
420         int to_allocate = 0, i = 0;
421         struct file_region *trg = NULL, *rg = NULL;
422
423         VM_BUG_ON(regions_needed < 0);
424
425         INIT_LIST_HEAD(&allocated_regions);
426
427         /*
428          * Check for sufficient descriptors in the cache to accommodate
429          * the number of in progress add operations plus regions_needed.
430          *
431          * This is a while loop because when we drop the lock, some other call
432          * to region_add or region_del may have consumed some region_entries,
433          * so we keep looping here until we finally have enough entries for
434          * (adds_in_progress + regions_needed).
435          */
436         while (resv->region_cache_count <
437                (resv->adds_in_progress + regions_needed)) {
438                 to_allocate = resv->adds_in_progress + regions_needed -
439                               resv->region_cache_count;
440
441                 /* At this point, we should have enough entries in the cache
442                  * for all the existings adds_in_progress. We should only be
443                  * needing to allocate for regions_needed.
444                  */
445                 VM_BUG_ON(resv->region_cache_count < resv->adds_in_progress);
446
447                 spin_unlock(&resv->lock);
448                 for (i = 0; i < to_allocate; i++) {
449                         trg = kmalloc(sizeof(*trg), GFP_KERNEL);
450                         if (!trg)
451                                 goto out_of_memory;
452                         list_add(&trg->link, &allocated_regions);
453                 }
454
455                 spin_lock(&resv->lock);
456
457                 list_splice(&allocated_regions, &resv->region_cache);
458                 resv->region_cache_count += to_allocate;
459         }
460
461         return 0;
462
463 out_of_memory:
464         list_for_each_entry_safe(rg, trg, &allocated_regions, link) {
465                 list_del(&rg->link);
466                 kfree(rg);
467         }
468         return -ENOMEM;
469 }
470
471 /*
472  * Add the huge page range represented by [f, t) to the reserve
473  * map.  Regions will be taken from the cache to fill in this range.
474  * Sufficient regions should exist in the cache due to the previous
475  * call to region_chg with the same range, but in some cases the cache will not
476  * have sufficient entries due to races with other code doing region_add or
477  * region_del.  The extra needed entries will be allocated.
478  *
479  * regions_needed is the out value provided by a previous call to region_chg.
480  *
481  * Return the number of new huge pages added to the map.  This number is greater
482  * than or equal to zero.  If file_region entries needed to be allocated for
483  * this operation and we were not able to allocate, it returns -ENOMEM.
484  * region_add of regions of length 1 never allocate file_regions and cannot
485  * fail; region_chg will always allocate at least 1 entry and a region_add for
486  * 1 page will only require at most 1 entry.
487  */
488 static long region_add(struct resv_map *resv, long f, long t,
489                        long in_regions_needed, struct hstate *h,
490                        struct hugetlb_cgroup *h_cg)
491 {
492         long add = 0, actual_regions_needed = 0;
493
494         spin_lock(&resv->lock);
495 retry:
496
497         /* Count how many regions are actually needed to execute this add. */
498         add_reservation_in_range(resv, f, t, NULL, NULL,
499                                  &actual_regions_needed);
500
501         /*
502          * Check for sufficient descriptors in the cache to accommodate
503          * this add operation. Note that actual_regions_needed may be greater
504          * than in_regions_needed, as the resv_map may have been modified since
505          * the region_chg call. In this case, we need to make sure that we
506          * allocate extra entries, such that we have enough for all the
507          * existing adds_in_progress, plus the excess needed for this
508          * operation.
509          */
510         if (actual_regions_needed > in_regions_needed &&
511             resv->region_cache_count <
512                     resv->adds_in_progress +
513                             (actual_regions_needed - in_regions_needed)) {
514                 /* region_add operation of range 1 should never need to
515                  * allocate file_region entries.
516                  */
517                 VM_BUG_ON(t - f <= 1);
518
519                 if (allocate_file_region_entries(
520                             resv, actual_regions_needed - in_regions_needed)) {
521                         return -ENOMEM;
522                 }
523
524                 goto retry;
525         }
526
527         add = add_reservation_in_range(resv, f, t, h_cg, h, NULL);
528
529         resv->adds_in_progress -= in_regions_needed;
530
531         spin_unlock(&resv->lock);
532         VM_BUG_ON(add < 0);
533         return add;
534 }
535
536 /*
537  * Examine the existing reserve map and determine how many
538  * huge pages in the specified range [f, t) are NOT currently
539  * represented.  This routine is called before a subsequent
540  * call to region_add that will actually modify the reserve
541  * map to add the specified range [f, t).  region_chg does
542  * not change the number of huge pages represented by the
543  * map.  A number of new file_region structures is added to the cache as a
544  * placeholder, for the subsequent region_add call to use. At least 1
545  * file_region structure is added.
546  *
547  * out_regions_needed is the number of regions added to the
548  * resv->adds_in_progress.  This value needs to be provided to a follow up call
549  * to region_add or region_abort for proper accounting.
550  *
551  * Returns the number of huge pages that need to be added to the existing
552  * reservation map for the range [f, t).  This number is greater or equal to
553  * zero.  -ENOMEM is returned if a new file_region structure or cache entry
554  * is needed and can not be allocated.
555  */
556 static long region_chg(struct resv_map *resv, long f, long t,
557                        long *out_regions_needed)
558 {
559         long chg = 0;
560
561         spin_lock(&resv->lock);
562
563         /* Count how many hugepages in this range are NOT represented. */
564         chg = add_reservation_in_range(resv, f, t, NULL, NULL,
565                                        out_regions_needed);
566
567         if (*out_regions_needed == 0)
568                 *out_regions_needed = 1;
569
570         if (allocate_file_region_entries(resv, *out_regions_needed))
571                 return -ENOMEM;
572
573         resv->adds_in_progress += *out_regions_needed;
574
575         spin_unlock(&resv->lock);
576         return chg;
577 }
578
579 /*
580  * Abort the in progress add operation.  The adds_in_progress field
581  * of the resv_map keeps track of the operations in progress between
582  * calls to region_chg and region_add.  Operations are sometimes
583  * aborted after the call to region_chg.  In such cases, region_abort
584  * is called to decrement the adds_in_progress counter. regions_needed
585  * is the value returned by the region_chg call, it is used to decrement
586  * the adds_in_progress counter.
587  *
588  * NOTE: The range arguments [f, t) are not needed or used in this
589  * routine.  They are kept to make reading the calling code easier as
590  * arguments will match the associated region_chg call.
591  */
592 static void region_abort(struct resv_map *resv, long f, long t,
593                          long regions_needed)
594 {
595         spin_lock(&resv->lock);
596         VM_BUG_ON(!resv->region_cache_count);
597         resv->adds_in_progress -= regions_needed;
598         spin_unlock(&resv->lock);
599 }
600
601 /*
602  * Delete the specified range [f, t) from the reserve map.  If the
603  * t parameter is LONG_MAX, this indicates that ALL regions after f
604  * should be deleted.  Locate the regions which intersect [f, t)
605  * and either trim, delete or split the existing regions.
606  *
607  * Returns the number of huge pages deleted from the reserve map.
608  * In the normal case, the return value is zero or more.  In the
609  * case where a region must be split, a new region descriptor must
610  * be allocated.  If the allocation fails, -ENOMEM will be returned.
611  * NOTE: If the parameter t == LONG_MAX, then we will never split
612  * a region and possibly return -ENOMEM.  Callers specifying
613  * t == LONG_MAX do not need to check for -ENOMEM error.
614  */
615 static long region_del(struct resv_map *resv, long f, long t)
616 {
617         struct list_head *head = &resv->regions;
618         struct file_region *rg, *trg;
619         struct file_region *nrg = NULL;
620         long del = 0;
621
622 retry:
623         spin_lock(&resv->lock);
624         list_for_each_entry_safe(rg, trg, head, link) {
625                 /*
626                  * Skip regions before the range to be deleted.  file_region
627                  * ranges are normally of the form [from, to).  However, there
628                  * may be a "placeholder" entry in the map which is of the form
629                  * (from, to) with from == to.  Check for placeholder entries
630                  * at the beginning of the range to be deleted.
631                  */
632                 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
633                         continue;
634
635                 if (rg->from >= t)
636                         break;
637
638                 if (f > rg->from && t < rg->to) { /* Must split region */
639                         /*
640                          * Check for an entry in the cache before dropping
641                          * lock and attempting allocation.
642                          */
643                         if (!nrg &&
644                             resv->region_cache_count > resv->adds_in_progress) {
645                                 nrg = list_first_entry(&resv->region_cache,
646                                                         struct file_region,
647                                                         link);
648                                 list_del(&nrg->link);
649                                 resv->region_cache_count--;
650                         }
651
652                         if (!nrg) {
653                                 spin_unlock(&resv->lock);
654                                 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
655                                 if (!nrg)
656                                         return -ENOMEM;
657                                 goto retry;
658                         }
659
660                         del += t - f;
661                         hugetlb_cgroup_uncharge_file_region(
662                                 resv, rg, t - f);
663
664                         /* New entry for end of split region */
665                         nrg->from = t;
666                         nrg->to = rg->to;
667
668                         copy_hugetlb_cgroup_uncharge_info(nrg, rg);
669
670                         INIT_LIST_HEAD(&nrg->link);
671
672                         /* Original entry is trimmed */
673                         rg->to = f;
674
675                         list_add(&nrg->link, &rg->link);
676                         nrg = NULL;
677                         break;
678                 }
679
680                 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
681                         del += rg->to - rg->from;
682                         hugetlb_cgroup_uncharge_file_region(resv, rg,
683                                                             rg->to - rg->from);
684                         list_del(&rg->link);
685                         kfree(rg);
686                         continue;
687                 }
688
689                 if (f <= rg->from) {    /* Trim beginning of region */
690                         hugetlb_cgroup_uncharge_file_region(resv, rg,
691                                                             t - rg->from);
692
693                         del += t - rg->from;
694                         rg->from = t;
695                 } else {                /* Trim end of region */
696                         hugetlb_cgroup_uncharge_file_region(resv, rg,
697                                                             rg->to - f);
698
699                         del += rg->to - f;
700                         rg->to = f;
701                 }
702         }
703
704         spin_unlock(&resv->lock);
705         kfree(nrg);
706         return del;
707 }
708
709 /*
710  * A rare out of memory error was encountered which prevented removal of
711  * the reserve map region for a page.  The huge page itself was free'ed
712  * and removed from the page cache.  This routine will adjust the subpool
713  * usage count, and the global reserve count if needed.  By incrementing
714  * these counts, the reserve map entry which could not be deleted will
715  * appear as a "reserved" entry instead of simply dangling with incorrect
716  * counts.
717  */
718 void hugetlb_fix_reserve_counts(struct inode *inode)
719 {
720         struct hugepage_subpool *spool = subpool_inode(inode);
721         long rsv_adjust;
722
723         rsv_adjust = hugepage_subpool_get_pages(spool, 1);
724         if (rsv_adjust) {
725                 struct hstate *h = hstate_inode(inode);
726
727                 hugetlb_acct_memory(h, 1);
728         }
729 }
730
731 /*
732  * Count and return the number of huge pages in the reserve map
733  * that intersect with the range [f, t).
734  */
735 static long region_count(struct resv_map *resv, long f, long t)
736 {
737         struct list_head *head = &resv->regions;
738         struct file_region *rg;
739         long chg = 0;
740
741         spin_lock(&resv->lock);
742         /* Locate each segment we overlap with, and count that overlap. */
743         list_for_each_entry(rg, head, link) {
744                 long seg_from;
745                 long seg_to;
746
747                 if (rg->to <= f)
748                         continue;
749                 if (rg->from >= t)
750                         break;
751
752                 seg_from = max(rg->from, f);
753                 seg_to = min(rg->to, t);
754
755                 chg += seg_to - seg_from;
756         }
757         spin_unlock(&resv->lock);
758
759         return chg;
760 }
761
762 /*
763  * Convert the address within this vma to the page offset within
764  * the mapping, in pagecache page units; huge pages here.
765  */
766 static pgoff_t vma_hugecache_offset(struct hstate *h,
767                         struct vm_area_struct *vma, unsigned long address)
768 {
769         return ((address - vma->vm_start) >> huge_page_shift(h)) +
770                         (vma->vm_pgoff >> huge_page_order(h));
771 }
772
773 pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
774                                      unsigned long address)
775 {
776         return vma_hugecache_offset(hstate_vma(vma), vma, address);
777 }
778 EXPORT_SYMBOL_GPL(linear_hugepage_index);
779
780 /*
781  * Return the size of the pages allocated when backing a VMA. In the majority
782  * cases this will be same size as used by the page table entries.
783  */
784 unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
785 {
786         if (vma->vm_ops && vma->vm_ops->pagesize)
787                 return vma->vm_ops->pagesize(vma);
788         return PAGE_SIZE;
789 }
790 EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
791
792 /*
793  * Return the page size being used by the MMU to back a VMA. In the majority
794  * of cases, the page size used by the kernel matches the MMU size. On
795  * architectures where it differs, an architecture-specific 'strong'
796  * version of this symbol is required.
797  */
798 __weak unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
799 {
800         return vma_kernel_pagesize(vma);
801 }
802
803 /*
804  * Flags for MAP_PRIVATE reservations.  These are stored in the bottom
805  * bits of the reservation map pointer, which are always clear due to
806  * alignment.
807  */
808 #define HPAGE_RESV_OWNER    (1UL << 0)
809 #define HPAGE_RESV_UNMAPPED (1UL << 1)
810 #define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
811
812 /*
813  * These helpers are used to track how many pages are reserved for
814  * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
815  * is guaranteed to have their future faults succeed.
816  *
817  * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
818  * the reserve counters are updated with the hugetlb_lock held. It is safe
819  * to reset the VMA at fork() time as it is not in use yet and there is no
820  * chance of the global counters getting corrupted as a result of the values.
821  *
822  * The private mapping reservation is represented in a subtly different
823  * manner to a shared mapping.  A shared mapping has a region map associated
824  * with the underlying file, this region map represents the backing file
825  * pages which have ever had a reservation assigned which this persists even
826  * after the page is instantiated.  A private mapping has a region map
827  * associated with the original mmap which is attached to all VMAs which
828  * reference it, this region map represents those offsets which have consumed
829  * reservation ie. where pages have been instantiated.
830  */
831 static unsigned long get_vma_private_data(struct vm_area_struct *vma)
832 {
833         return (unsigned long)vma->vm_private_data;
834 }
835
836 static void set_vma_private_data(struct vm_area_struct *vma,
837                                                         unsigned long value)
838 {
839         vma->vm_private_data = (void *)value;
840 }
841
842 static void
843 resv_map_set_hugetlb_cgroup_uncharge_info(struct resv_map *resv_map,
844                                           struct hugetlb_cgroup *h_cg,
845                                           struct hstate *h)
846 {
847 #ifdef CONFIG_CGROUP_HUGETLB
848         if (!h_cg || !h) {
849                 resv_map->reservation_counter = NULL;
850                 resv_map->pages_per_hpage = 0;
851                 resv_map->css = NULL;
852         } else {
853                 resv_map->reservation_counter =
854                         &h_cg->rsvd_hugepage[hstate_index(h)];
855                 resv_map->pages_per_hpage = pages_per_huge_page(h);
856                 resv_map->css = &h_cg->css;
857         }
858 #endif
859 }
860
861 struct resv_map *resv_map_alloc(void)
862 {
863         struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
864         struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
865
866         if (!resv_map || !rg) {
867                 kfree(resv_map);
868                 kfree(rg);
869                 return NULL;
870         }
871
872         kref_init(&resv_map->refs);
873         spin_lock_init(&resv_map->lock);
874         INIT_LIST_HEAD(&resv_map->regions);
875
876         resv_map->adds_in_progress = 0;
877         /*
878          * Initialize these to 0. On shared mappings, 0's here indicate these
879          * fields don't do cgroup accounting. On private mappings, these will be
880          * re-initialized to the proper values, to indicate that hugetlb cgroup
881          * reservations are to be un-charged from here.
882          */
883         resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, NULL, NULL);
884
885         INIT_LIST_HEAD(&resv_map->region_cache);
886         list_add(&rg->link, &resv_map->region_cache);
887         resv_map->region_cache_count = 1;
888
889         return resv_map;
890 }
891
892 void resv_map_release(struct kref *ref)
893 {
894         struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
895         struct list_head *head = &resv_map->region_cache;
896         struct file_region *rg, *trg;
897
898         /* Clear out any active regions before we release the map. */
899         region_del(resv_map, 0, LONG_MAX);
900
901         /* ... and any entries left in the cache */
902         list_for_each_entry_safe(rg, trg, head, link) {
903                 list_del(&rg->link);
904                 kfree(rg);
905         }
906
907         VM_BUG_ON(resv_map->adds_in_progress);
908
909         kfree(resv_map);
910 }
911
912 static inline struct resv_map *inode_resv_map(struct inode *inode)
913 {
914         /*
915          * At inode evict time, i_mapping may not point to the original
916          * address space within the inode.  This original address space
917          * contains the pointer to the resv_map.  So, always use the
918          * address space embedded within the inode.
919          * The VERY common case is inode->mapping == &inode->i_data but,
920          * this may not be true for device special inodes.
921          */
922         return (struct resv_map *)(&inode->i_data)->private_data;
923 }
924
925 static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
926 {
927         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
928         if (vma->vm_flags & VM_MAYSHARE) {
929                 struct address_space *mapping = vma->vm_file->f_mapping;
930                 struct inode *inode = mapping->host;
931
932                 return inode_resv_map(inode);
933
934         } else {
935                 return (struct resv_map *)(get_vma_private_data(vma) &
936                                                         ~HPAGE_RESV_MASK);
937         }
938 }
939
940 static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
941 {
942         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
943         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
944
945         set_vma_private_data(vma, (get_vma_private_data(vma) &
946                                 HPAGE_RESV_MASK) | (unsigned long)map);
947 }
948
949 static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
950 {
951         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
952         VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
953
954         set_vma_private_data(vma, get_vma_private_data(vma) | flags);
955 }
956
957 static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
958 {
959         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
960
961         return (get_vma_private_data(vma) & flag) != 0;
962 }
963
964 /* Reset counters to 0 and clear all HPAGE_RESV_* flags */
965 void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
966 {
967         VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
968         if (!(vma->vm_flags & VM_MAYSHARE))
969                 vma->vm_private_data = (void *)0;
970 }
971
972 /* Returns true if the VMA has associated reserve pages */
973 static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
974 {
975         if (vma->vm_flags & VM_NORESERVE) {
976                 /*
977                  * This address is already reserved by other process(chg == 0),
978                  * so, we should decrement reserved count. Without decrementing,
979                  * reserve count remains after releasing inode, because this
980                  * allocated page will go into page cache and is regarded as
981                  * coming from reserved pool in releasing step.  Currently, we
982                  * don't have any other solution to deal with this situation
983                  * properly, so add work-around here.
984                  */
985                 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
986                         return true;
987                 else
988                         return false;
989         }
990
991         /* Shared mappings always use reserves */
992         if (vma->vm_flags & VM_MAYSHARE) {
993                 /*
994                  * We know VM_NORESERVE is not set.  Therefore, there SHOULD
995                  * be a region map for all pages.  The only situation where
996                  * there is no region map is if a hole was punched via
997                  * fallocate.  In this case, there really are no reserves to
998                  * use.  This situation is indicated if chg != 0.
999                  */
1000                 if (chg)
1001                         return false;
1002                 else
1003                         return true;
1004         }
1005
1006         /*
1007          * Only the process that called mmap() has reserves for
1008          * private mappings.
1009          */
1010         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
1011                 /*
1012                  * Like the shared case above, a hole punch or truncate
1013                  * could have been performed on the private mapping.
1014                  * Examine the value of chg to determine if reserves
1015                  * actually exist or were previously consumed.
1016                  * Very Subtle - The value of chg comes from a previous
1017                  * call to vma_needs_reserves().  The reserve map for
1018                  * private mappings has different (opposite) semantics
1019                  * than that of shared mappings.  vma_needs_reserves()
1020                  * has already taken this difference in semantics into
1021                  * account.  Therefore, the meaning of chg is the same
1022                  * as in the shared case above.  Code could easily be
1023                  * combined, but keeping it separate draws attention to
1024                  * subtle differences.
1025                  */
1026                 if (chg)
1027                         return false;
1028                 else
1029                         return true;
1030         }
1031
1032         return false;
1033 }
1034
1035 static void enqueue_huge_page(struct hstate *h, struct page *page)
1036 {
1037         int nid = page_to_nid(page);
1038         list_move(&page->lru, &h->hugepage_freelists[nid]);
1039         h->free_huge_pages++;
1040         h->free_huge_pages_node[nid]++;
1041         SetHPageFreed(page);
1042 }
1043
1044 static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
1045 {
1046         struct page *page;
1047         bool nocma = !!(current->flags & PF_MEMALLOC_NOCMA);
1048
1049         list_for_each_entry(page, &h->hugepage_freelists[nid], lru) {
1050                 if (nocma && is_migrate_cma_page(page))
1051                         continue;
1052
1053                 if (PageHWPoison(page))
1054                         continue;
1055
1056                 list_move(&page->lru, &h->hugepage_activelist);
1057                 set_page_refcounted(page);
1058                 ClearHPageFreed(page);
1059                 h->free_huge_pages--;
1060                 h->free_huge_pages_node[nid]--;
1061                 return page;
1062         }
1063
1064         return NULL;
1065 }
1066
1067 static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
1068                 nodemask_t *nmask)
1069 {
1070         unsigned int cpuset_mems_cookie;
1071         struct zonelist *zonelist;
1072         struct zone *zone;
1073         struct zoneref *z;
1074         int node = NUMA_NO_NODE;
1075
1076         zonelist = node_zonelist(nid, gfp_mask);
1077
1078 retry_cpuset:
1079         cpuset_mems_cookie = read_mems_allowed_begin();
1080         for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
1081                 struct page *page;
1082
1083                 if (!cpuset_zone_allowed(zone, gfp_mask))
1084                         continue;
1085                 /*
1086                  * no need to ask again on the same node. Pool is node rather than
1087                  * zone aware
1088                  */
1089                 if (zone_to_nid(zone) == node)
1090                         continue;
1091                 node = zone_to_nid(zone);
1092
1093                 page = dequeue_huge_page_node_exact(h, node);
1094                 if (page)
1095                         return page;
1096         }
1097         if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
1098                 goto retry_cpuset;
1099
1100         return NULL;
1101 }
1102
1103 static struct page *dequeue_huge_page_vma(struct hstate *h,
1104                                 struct vm_area_struct *vma,
1105                                 unsigned long address, int avoid_reserve,
1106                                 long chg)
1107 {
1108         struct page *page;
1109         struct mempolicy *mpol;
1110         gfp_t gfp_mask;
1111         nodemask_t *nodemask;
1112         int nid;
1113
1114         /*
1115          * A child process with MAP_PRIVATE mappings created by their parent
1116          * have no page reserves. This check ensures that reservations are
1117          * not "stolen". The child may still get SIGKILLed
1118          */
1119         if (!vma_has_reserves(vma, chg) &&
1120                         h->free_huge_pages - h->resv_huge_pages == 0)
1121                 goto err;
1122
1123         /* If reserves cannot be used, ensure enough pages are in the pool */
1124         if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
1125                 goto err;
1126
1127         gfp_mask = htlb_alloc_mask(h);
1128         nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1129         page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
1130         if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
1131                 SetHPageRestoreReserve(page);
1132                 h->resv_huge_pages--;
1133         }
1134
1135         mpol_cond_put(mpol);
1136         return page;
1137
1138 err:
1139         return NULL;
1140 }
1141
1142 /*
1143  * common helper functions for hstate_next_node_to_{alloc|free}.
1144  * We may have allocated or freed a huge page based on a different
1145  * nodes_allowed previously, so h->next_node_to_{alloc|free} might
1146  * be outside of *nodes_allowed.  Ensure that we use an allowed
1147  * node for alloc or free.
1148  */
1149 static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
1150 {
1151         nid = next_node_in(nid, *nodes_allowed);
1152         VM_BUG_ON(nid >= MAX_NUMNODES);
1153
1154         return nid;
1155 }
1156
1157 static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
1158 {
1159         if (!node_isset(nid, *nodes_allowed))
1160                 nid = next_node_allowed(nid, nodes_allowed);
1161         return nid;
1162 }
1163
1164 /*
1165  * returns the previously saved node ["this node"] from which to
1166  * allocate a persistent huge page for the pool and advance the
1167  * next node from which to allocate, handling wrap at end of node
1168  * mask.
1169  */
1170 static int hstate_next_node_to_alloc(struct hstate *h,
1171                                         nodemask_t *nodes_allowed)
1172 {
1173         int nid;
1174
1175         VM_BUG_ON(!nodes_allowed);
1176
1177         nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1178         h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1179
1180         return nid;
1181 }
1182
1183 /*
1184  * helper for free_pool_huge_page() - return the previously saved
1185  * node ["this node"] from which to free a huge page.  Advance the
1186  * next node id whether or not we find a free huge page to free so
1187  * that the next attempt to free addresses the next node.
1188  */
1189 static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1190 {
1191         int nid;
1192
1193         VM_BUG_ON(!nodes_allowed);
1194
1195         nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1196         h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1197
1198         return nid;
1199 }
1200
1201 #define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask)           \
1202         for (nr_nodes = nodes_weight(*mask);                            \
1203                 nr_nodes > 0 &&                                         \
1204                 ((node = hstate_next_node_to_alloc(hs, mask)) || 1);    \
1205                 nr_nodes--)
1206
1207 #define for_each_node_mask_to_free(hs, nr_nodes, node, mask)            \
1208         for (nr_nodes = nodes_weight(*mask);                            \
1209                 nr_nodes > 0 &&                                         \
1210                 ((node = hstate_next_node_to_free(hs, mask)) || 1);     \
1211                 nr_nodes--)
1212
1213 #ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
1214 static void destroy_compound_gigantic_page(struct page *page,
1215                                         unsigned int order)
1216 {
1217         int i;
1218         int nr_pages = 1 << order;
1219         struct page *p = page + 1;
1220
1221         atomic_set(compound_mapcount_ptr(page), 0);
1222         atomic_set(compound_pincount_ptr(page), 0);
1223
1224         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1225                 clear_compound_head(p);
1226                 set_page_refcounted(p);
1227         }
1228
1229         set_compound_order(page, 0);
1230         page[1].compound_nr = 0;
1231         __ClearPageHead(page);
1232 }
1233
1234 static void free_gigantic_page(struct page *page, unsigned int order)
1235 {
1236         /*
1237          * If the page isn't allocated using the cma allocator,
1238          * cma_release() returns false.
1239          */
1240 #ifdef CONFIG_CMA
1241         if (cma_release(hugetlb_cma[page_to_nid(page)], page, 1 << order))
1242                 return;
1243 #endif
1244
1245         free_contig_range(page_to_pfn(page), 1 << order);
1246 }
1247
1248 #ifdef CONFIG_CONTIG_ALLOC
1249 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1250                 int nid, nodemask_t *nodemask)
1251 {
1252         unsigned long nr_pages = 1UL << huge_page_order(h);
1253         if (nid == NUMA_NO_NODE)
1254                 nid = numa_mem_id();
1255
1256 #ifdef CONFIG_CMA
1257         {
1258                 struct page *page;
1259                 int node;
1260
1261                 if (hugetlb_cma[nid]) {
1262                         page = cma_alloc(hugetlb_cma[nid], nr_pages,
1263                                         huge_page_order(h), true);
1264                         if (page)
1265                                 return page;
1266                 }
1267
1268                 if (!(gfp_mask & __GFP_THISNODE)) {
1269                         for_each_node_mask(node, *nodemask) {
1270                                 if (node == nid || !hugetlb_cma[node])
1271                                         continue;
1272
1273                                 page = cma_alloc(hugetlb_cma[node], nr_pages,
1274                                                 huge_page_order(h), true);
1275                                 if (page)
1276                                         return page;
1277                         }
1278                 }
1279         }
1280 #endif
1281
1282         return alloc_contig_pages(nr_pages, gfp_mask, nid, nodemask);
1283 }
1284
1285 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
1286 static void prep_compound_gigantic_page(struct page *page, unsigned int order);
1287 #else /* !CONFIG_CONTIG_ALLOC */
1288 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1289                                         int nid, nodemask_t *nodemask)
1290 {
1291         return NULL;
1292 }
1293 #endif /* CONFIG_CONTIG_ALLOC */
1294
1295 #else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
1296 static struct page *alloc_gigantic_page(struct hstate *h, gfp_t gfp_mask,
1297                                         int nid, nodemask_t *nodemask)
1298 {
1299         return NULL;
1300 }
1301 static inline void free_gigantic_page(struct page *page, unsigned int order) { }
1302 static inline void destroy_compound_gigantic_page(struct page *page,
1303                                                 unsigned int order) { }
1304 #endif
1305
1306 static void update_and_free_page(struct hstate *h, struct page *page)
1307 {
1308         int i;
1309         struct page *subpage = page;
1310
1311         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
1312                 return;
1313
1314         h->nr_huge_pages--;
1315         h->nr_huge_pages_node[page_to_nid(page)]--;
1316         for (i = 0; i < pages_per_huge_page(h);
1317              i++, subpage = mem_map_next(subpage, page, i)) {
1318                 subpage->flags &= ~(1 << PG_locked | 1 << PG_error |
1319                                 1 << PG_referenced | 1 << PG_dirty |
1320                                 1 << PG_active | 1 << PG_private |
1321                                 1 << PG_writeback);
1322         }
1323         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
1324         VM_BUG_ON_PAGE(hugetlb_cgroup_from_page_rsvd(page), page);
1325         set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
1326         set_page_refcounted(page);
1327         if (hstate_is_gigantic(h)) {
1328                 /*
1329                  * Temporarily drop the hugetlb_lock, because
1330                  * we might block in free_gigantic_page().
1331                  */
1332                 spin_unlock(&hugetlb_lock);
1333                 destroy_compound_gigantic_page(page, huge_page_order(h));
1334                 free_gigantic_page(page, huge_page_order(h));
1335                 spin_lock(&hugetlb_lock);
1336         } else {
1337                 __free_pages(page, huge_page_order(h));
1338         }
1339 }
1340
1341 struct hstate *size_to_hstate(unsigned long size)
1342 {
1343         struct hstate *h;
1344
1345         for_each_hstate(h) {
1346                 if (huge_page_size(h) == size)
1347                         return h;
1348         }
1349         return NULL;
1350 }
1351
1352 static void __free_huge_page(struct page *page)
1353 {
1354         /*
1355          * Can't pass hstate in here because it is called from the
1356          * compound page destructor.
1357          */
1358         struct hstate *h = page_hstate(page);
1359         int nid = page_to_nid(page);
1360         struct hugepage_subpool *spool = hugetlb_page_subpool(page);
1361         bool restore_reserve;
1362
1363         VM_BUG_ON_PAGE(page_count(page), page);
1364         VM_BUG_ON_PAGE(page_mapcount(page), page);
1365
1366         hugetlb_set_page_subpool(page, NULL);
1367         page->mapping = NULL;
1368         restore_reserve = HPageRestoreReserve(page);
1369         ClearHPageRestoreReserve(page);
1370
1371         /*
1372          * If HPageRestoreReserve was set on page, page allocation consumed a
1373          * reservation.  If the page was associated with a subpool, there
1374          * would have been a page reserved in the subpool before allocation
1375          * via hugepage_subpool_get_pages().  Since we are 'restoring' the
1376          * reservation, do not call hugepage_subpool_put_pages() as this will
1377          * remove the reserved page from the subpool.
1378          */
1379         if (!restore_reserve) {
1380                 /*
1381                  * A return code of zero implies that the subpool will be
1382                  * under its minimum size if the reservation is not restored
1383                  * after page is free.  Therefore, force restore_reserve
1384                  * operation.
1385                  */
1386                 if (hugepage_subpool_put_pages(spool, 1) == 0)
1387                         restore_reserve = true;
1388         }
1389
1390         spin_lock(&hugetlb_lock);
1391         ClearHPageMigratable(page);
1392         hugetlb_cgroup_uncharge_page(hstate_index(h),
1393                                      pages_per_huge_page(h), page);
1394         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
1395                                           pages_per_huge_page(h), page);
1396         if (restore_reserve)
1397                 h->resv_huge_pages++;
1398
1399         if (HPageTemporary(page)) {
1400                 list_del(&page->lru);
1401                 ClearHPageTemporary(page);
1402                 update_and_free_page(h, page);
1403         } else if (h->surplus_huge_pages_node[nid]) {
1404                 /* remove the page from active list */
1405                 list_del(&page->lru);
1406                 update_and_free_page(h, page);
1407                 h->surplus_huge_pages--;
1408                 h->surplus_huge_pages_node[nid]--;
1409         } else {
1410                 arch_clear_hugepage_flags(page);
1411                 enqueue_huge_page(h, page);
1412         }
1413         spin_unlock(&hugetlb_lock);
1414 }
1415
1416 /*
1417  * As free_huge_page() can be called from a non-task context, we have
1418  * to defer the actual freeing in a workqueue to prevent potential
1419  * hugetlb_lock deadlock.
1420  *
1421  * free_hpage_workfn() locklessly retrieves the linked list of pages to
1422  * be freed and frees them one-by-one. As the page->mapping pointer is
1423  * going to be cleared in __free_huge_page() anyway, it is reused as the
1424  * llist_node structure of a lockless linked list of huge pages to be freed.
1425  */
1426 static LLIST_HEAD(hpage_freelist);
1427
1428 static void free_hpage_workfn(struct work_struct *work)
1429 {
1430         struct llist_node *node;
1431         struct page *page;
1432
1433         node = llist_del_all(&hpage_freelist);
1434
1435         while (node) {
1436                 page = container_of((struct address_space **)node,
1437                                      struct page, mapping);
1438                 node = node->next;
1439                 __free_huge_page(page);
1440         }
1441 }
1442 static DECLARE_WORK(free_hpage_work, free_hpage_workfn);
1443
1444 void free_huge_page(struct page *page)
1445 {
1446         /*
1447          * Defer freeing if in non-task context to avoid hugetlb_lock deadlock.
1448          */
1449         if (!in_task()) {
1450                 /*
1451                  * Only call schedule_work() if hpage_freelist is previously
1452                  * empty. Otherwise, schedule_work() had been called but the
1453                  * workfn hasn't retrieved the list yet.
1454                  */
1455                 if (llist_add((struct llist_node *)&page->mapping,
1456                               &hpage_freelist))
1457                         schedule_work(&free_hpage_work);
1458                 return;
1459         }
1460
1461         __free_huge_page(page);
1462 }
1463
1464 static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
1465 {
1466         INIT_LIST_HEAD(&page->lru);
1467         set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
1468         hugetlb_set_page_subpool(page, NULL);
1469         set_hugetlb_cgroup(page, NULL);
1470         set_hugetlb_cgroup_rsvd(page, NULL);
1471         spin_lock(&hugetlb_lock);
1472         h->nr_huge_pages++;
1473         h->nr_huge_pages_node[nid]++;
1474         ClearHPageFreed(page);
1475         spin_unlock(&hugetlb_lock);
1476 }
1477
1478 static void prep_compound_gigantic_page(struct page *page, unsigned int order)
1479 {
1480         int i;
1481         int nr_pages = 1 << order;
1482         struct page *p = page + 1;
1483
1484         /* we rely on prep_new_huge_page to set the destructor */
1485         set_compound_order(page, order);
1486         __ClearPageReserved(page);
1487         __SetPageHead(page);
1488         for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1489                 /*
1490                  * For gigantic hugepages allocated through bootmem at
1491                  * boot, it's safer to be consistent with the not-gigantic
1492                  * hugepages and clear the PG_reserved bit from all tail pages
1493                  * too.  Otherwise drivers using get_user_pages() to access tail
1494                  * pages may get the reference counting wrong if they see
1495                  * PG_reserved set on a tail page (despite the head page not
1496                  * having PG_reserved set).  Enforcing this consistency between
1497                  * head and tail pages allows drivers to optimize away a check
1498                  * on the head page when they need know if put_page() is needed
1499                  * after get_user_pages().
1500                  */
1501                 __ClearPageReserved(p);
1502                 set_page_count(p, 0);
1503                 set_compound_head(p, page);
1504         }
1505         atomic_set(compound_mapcount_ptr(page), -1);
1506         atomic_set(compound_pincount_ptr(page), 0);
1507 }
1508
1509 /*
1510  * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1511  * transparent huge pages.  See the PageTransHuge() documentation for more
1512  * details.
1513  */
1514 int PageHuge(struct page *page)
1515 {
1516         if (!PageCompound(page))
1517                 return 0;
1518
1519         page = compound_head(page);
1520         return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
1521 }
1522 EXPORT_SYMBOL_GPL(PageHuge);
1523
1524 /*
1525  * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1526  * normal or transparent huge pages.
1527  */
1528 int PageHeadHuge(struct page *page_head)
1529 {
1530         if (!PageHead(page_head))
1531                 return 0;
1532
1533         return page_head[1].compound_dtor == HUGETLB_PAGE_DTOR;
1534 }
1535
1536 /*
1537  * Find and lock address space (mapping) in write mode.
1538  *
1539  * Upon entry, the page is locked which means that page_mapping() is
1540  * stable.  Due to locking order, we can only trylock_write.  If we can
1541  * not get the lock, simply return NULL to caller.
1542  */
1543 struct address_space *hugetlb_page_mapping_lock_write(struct page *hpage)
1544 {
1545         struct address_space *mapping = page_mapping(hpage);
1546
1547         if (!mapping)
1548                 return mapping;
1549
1550         if (i_mmap_trylock_write(mapping))
1551                 return mapping;
1552
1553         return NULL;
1554 }
1555
1556 pgoff_t __basepage_index(struct page *page)
1557 {
1558         struct page *page_head = compound_head(page);
1559         pgoff_t index = page_index(page_head);
1560         unsigned long compound_idx;
1561
1562         if (!PageHuge(page_head))
1563                 return page_index(page);
1564
1565         if (compound_order(page_head) >= MAX_ORDER)
1566                 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1567         else
1568                 compound_idx = page - page_head;
1569
1570         return (index << compound_order(page_head)) + compound_idx;
1571 }
1572
1573 static struct page *alloc_buddy_huge_page(struct hstate *h,
1574                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1575                 nodemask_t *node_alloc_noretry)
1576 {
1577         int order = huge_page_order(h);
1578         struct page *page;
1579         bool alloc_try_hard = true;
1580
1581         /*
1582          * By default we always try hard to allocate the page with
1583          * __GFP_RETRY_MAYFAIL flag.  However, if we are allocating pages in
1584          * a loop (to adjust global huge page counts) and previous allocation
1585          * failed, do not continue to try hard on the same node.  Use the
1586          * node_alloc_noretry bitmap to manage this state information.
1587          */
1588         if (node_alloc_noretry && node_isset(nid, *node_alloc_noretry))
1589                 alloc_try_hard = false;
1590         gfp_mask |= __GFP_COMP|__GFP_NOWARN;
1591         if (alloc_try_hard)
1592                 gfp_mask |= __GFP_RETRY_MAYFAIL;
1593         if (nid == NUMA_NO_NODE)
1594                 nid = numa_mem_id();
1595         page = __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
1596         if (page)
1597                 __count_vm_event(HTLB_BUDDY_PGALLOC);
1598         else
1599                 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1600
1601         /*
1602          * If we did not specify __GFP_RETRY_MAYFAIL, but still got a page this
1603          * indicates an overall state change.  Clear bit so that we resume
1604          * normal 'try hard' allocations.
1605          */
1606         if (node_alloc_noretry && page && !alloc_try_hard)
1607                 node_clear(nid, *node_alloc_noretry);
1608
1609         /*
1610          * If we tried hard to get a page but failed, set bit so that
1611          * subsequent attempts will not try as hard until there is an
1612          * overall state change.
1613          */
1614         if (node_alloc_noretry && !page && alloc_try_hard)
1615                 node_set(nid, *node_alloc_noretry);
1616
1617         return page;
1618 }
1619
1620 /*
1621  * Common helper to allocate a fresh hugetlb page. All specific allocators
1622  * should use this function to get new hugetlb pages
1623  */
1624 static struct page *alloc_fresh_huge_page(struct hstate *h,
1625                 gfp_t gfp_mask, int nid, nodemask_t *nmask,
1626                 nodemask_t *node_alloc_noretry)
1627 {
1628         struct page *page;
1629
1630         if (hstate_is_gigantic(h))
1631                 page = alloc_gigantic_page(h, gfp_mask, nid, nmask);
1632         else
1633                 page = alloc_buddy_huge_page(h, gfp_mask,
1634                                 nid, nmask, node_alloc_noretry);
1635         if (!page)
1636                 return NULL;
1637
1638         if (hstate_is_gigantic(h))
1639                 prep_compound_gigantic_page(page, huge_page_order(h));
1640         prep_new_huge_page(h, page, page_to_nid(page));
1641
1642         return page;
1643 }
1644
1645 /*
1646  * Allocates a fresh page to the hugetlb allocator pool in the node interleaved
1647  * manner.
1648  */
1649 static int alloc_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1650                                 nodemask_t *node_alloc_noretry)
1651 {
1652         struct page *page;
1653         int nr_nodes, node;
1654         gfp_t gfp_mask = htlb_alloc_mask(h) | __GFP_THISNODE;
1655
1656         for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1657                 page = alloc_fresh_huge_page(h, gfp_mask, node, nodes_allowed,
1658                                                 node_alloc_noretry);
1659                 if (page)
1660                         break;
1661         }
1662
1663         if (!page)
1664                 return 0;
1665
1666         put_page(page); /* free it into the hugepage allocator */
1667
1668         return 1;
1669 }
1670
1671 /*
1672  * Free huge page from pool from next node to free.
1673  * Attempt to keep persistent huge pages more or less
1674  * balanced over allowed nodes.
1675  * Called with hugetlb_lock locked.
1676  */
1677 static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1678                                                          bool acct_surplus)
1679 {
1680         int nr_nodes, node;
1681         int ret = 0;
1682
1683         for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1684                 /*
1685                  * If we're returning unused surplus pages, only examine
1686                  * nodes with surplus pages.
1687                  */
1688                 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1689                     !list_empty(&h->hugepage_freelists[node])) {
1690                         struct page *page =
1691                                 list_entry(h->hugepage_freelists[node].next,
1692                                           struct page, lru);
1693                         list_del(&page->lru);
1694                         h->free_huge_pages--;
1695                         h->free_huge_pages_node[node]--;
1696                         if (acct_surplus) {
1697                                 h->surplus_huge_pages--;
1698                                 h->surplus_huge_pages_node[node]--;
1699                         }
1700                         update_and_free_page(h, page);
1701                         ret = 1;
1702                         break;
1703                 }
1704         }
1705
1706         return ret;
1707 }
1708
1709 /*
1710  * Dissolve a given free hugepage into free buddy pages. This function does
1711  * nothing for in-use hugepages and non-hugepages.
1712  * This function returns values like below:
1713  *
1714  *  -EBUSY: failed to dissolved free hugepages or the hugepage is in-use
1715  *          (allocated or reserved.)
1716  *       0: successfully dissolved free hugepages or the page is not a
1717  *          hugepage (considered as already dissolved)
1718  */
1719 int dissolve_free_huge_page(struct page *page)
1720 {
1721         int rc = -EBUSY;
1722
1723 retry:
1724         /* Not to disrupt normal path by vainly holding hugetlb_lock */
1725         if (!PageHuge(page))
1726                 return 0;
1727
1728         spin_lock(&hugetlb_lock);
1729         if (!PageHuge(page)) {
1730                 rc = 0;
1731                 goto out;
1732         }
1733
1734         if (!page_count(page)) {
1735                 struct page *head = compound_head(page);
1736                 struct hstate *h = page_hstate(head);
1737                 int nid = page_to_nid(head);
1738                 if (h->free_huge_pages - h->resv_huge_pages == 0)
1739                         goto out;
1740
1741                 /*
1742                  * We should make sure that the page is already on the free list
1743                  * when it is dissolved.
1744                  */
1745                 if (unlikely(!HPageFreed(head))) {
1746                         spin_unlock(&hugetlb_lock);
1747                         cond_resched();
1748
1749                         /*
1750                          * Theoretically, we should return -EBUSY when we
1751                          * encounter this race. In fact, we have a chance
1752                          * to successfully dissolve the page if we do a
1753                          * retry. Because the race window is quite small.
1754                          * If we seize this opportunity, it is an optimization
1755                          * for increasing the success rate of dissolving page.
1756                          */
1757                         goto retry;
1758                 }
1759
1760                 /*
1761                  * Move PageHWPoison flag from head page to the raw error page,
1762                  * which makes any subpages rather than the error page reusable.
1763                  */
1764                 if (PageHWPoison(head) && page != head) {
1765                         SetPageHWPoison(page);
1766                         ClearPageHWPoison(head);
1767                 }
1768                 list_del(&head->lru);
1769                 h->free_huge_pages--;
1770                 h->free_huge_pages_node[nid]--;
1771                 h->max_huge_pages--;
1772                 update_and_free_page(h, head);
1773                 rc = 0;
1774         }
1775 out:
1776         spin_unlock(&hugetlb_lock);
1777         return rc;
1778 }
1779
1780 /*
1781  * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1782  * make specified memory blocks removable from the system.
1783  * Note that this will dissolve a free gigantic hugepage completely, if any
1784  * part of it lies within the given range.
1785  * Also note that if dissolve_free_huge_page() returns with an error, all
1786  * free hugepages that were dissolved before that error are lost.
1787  */
1788 int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1789 {
1790         unsigned long pfn;
1791         struct page *page;
1792         int rc = 0;
1793
1794         if (!hugepages_supported())
1795                 return rc;
1796
1797         for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1798                 page = pfn_to_page(pfn);
1799                 rc = dissolve_free_huge_page(page);
1800                 if (rc)
1801                         break;
1802         }
1803
1804         return rc;
1805 }
1806
1807 /*
1808  * Allocates a fresh surplus page from the page allocator.
1809  */
1810 static struct page *alloc_surplus_huge_page(struct hstate *h, gfp_t gfp_mask,
1811                 int nid, nodemask_t *nmask)
1812 {
1813         struct page *page = NULL;
1814
1815         if (hstate_is_gigantic(h))
1816                 return NULL;
1817
1818         spin_lock(&hugetlb_lock);
1819         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages)
1820                 goto out_unlock;
1821         spin_unlock(&hugetlb_lock);
1822
1823         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1824         if (!page)
1825                 return NULL;
1826
1827         spin_lock(&hugetlb_lock);
1828         /*
1829          * We could have raced with the pool size change.
1830          * Double check that and simply deallocate the new page
1831          * if we would end up overcommiting the surpluses. Abuse
1832          * temporary page to workaround the nasty free_huge_page
1833          * codeflow
1834          */
1835         if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
1836                 SetHPageTemporary(page);
1837                 spin_unlock(&hugetlb_lock);
1838                 put_page(page);
1839                 return NULL;
1840         } else {
1841                 h->surplus_huge_pages++;
1842                 h->surplus_huge_pages_node[page_to_nid(page)]++;
1843         }
1844
1845 out_unlock:
1846         spin_unlock(&hugetlb_lock);
1847
1848         return page;
1849 }
1850
1851 static struct page *alloc_migrate_huge_page(struct hstate *h, gfp_t gfp_mask,
1852                                      int nid, nodemask_t *nmask)
1853 {
1854         struct page *page;
1855
1856         if (hstate_is_gigantic(h))
1857                 return NULL;
1858
1859         page = alloc_fresh_huge_page(h, gfp_mask, nid, nmask, NULL);
1860         if (!page)
1861                 return NULL;
1862
1863         /*
1864          * We do not account these pages as surplus because they are only
1865          * temporary and will be released properly on the last reference
1866          */
1867         SetHPageTemporary(page);
1868
1869         return page;
1870 }
1871
1872 /*
1873  * Use the VMA's mpolicy to allocate a huge page from the buddy.
1874  */
1875 static
1876 struct page *alloc_buddy_huge_page_with_mpol(struct hstate *h,
1877                 struct vm_area_struct *vma, unsigned long addr)
1878 {
1879         struct page *page;
1880         struct mempolicy *mpol;
1881         gfp_t gfp_mask = htlb_alloc_mask(h);
1882         int nid;
1883         nodemask_t *nodemask;
1884
1885         nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1886         page = alloc_surplus_huge_page(h, gfp_mask, nid, nodemask);
1887         mpol_cond_put(mpol);
1888
1889         return page;
1890 }
1891
1892 /* page migration callback function */
1893 struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1894                 nodemask_t *nmask, gfp_t gfp_mask)
1895 {
1896         spin_lock(&hugetlb_lock);
1897         if (h->free_huge_pages - h->resv_huge_pages > 0) {
1898                 struct page *page;
1899
1900                 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1901                 if (page) {
1902                         spin_unlock(&hugetlb_lock);
1903                         return page;
1904                 }
1905         }
1906         spin_unlock(&hugetlb_lock);
1907
1908         return alloc_migrate_huge_page(h, gfp_mask, preferred_nid, nmask);
1909 }
1910
1911 /* mempolicy aware migration callback */
1912 struct page *alloc_huge_page_vma(struct hstate *h, struct vm_area_struct *vma,
1913                 unsigned long address)
1914 {
1915         struct mempolicy *mpol;
1916         nodemask_t *nodemask;
1917         struct page *page;
1918         gfp_t gfp_mask;
1919         int node;
1920
1921         gfp_mask = htlb_alloc_mask(h);
1922         node = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
1923         page = alloc_huge_page_nodemask(h, node, nodemask, gfp_mask);
1924         mpol_cond_put(mpol);
1925
1926         return page;
1927 }
1928
1929 /*
1930  * Increase the hugetlb pool such that it can accommodate a reservation
1931  * of size 'delta'.
1932  */
1933 static int gather_surplus_pages(struct hstate *h, long delta)
1934         __must_hold(&hugetlb_lock)
1935 {
1936         struct list_head surplus_list;
1937         struct page *page, *tmp;
1938         int ret;
1939         long i;
1940         long needed, allocated;
1941         bool alloc_ok = true;
1942
1943         needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
1944         if (needed <= 0) {
1945                 h->resv_huge_pages += delta;
1946                 return 0;
1947         }
1948
1949         allocated = 0;
1950         INIT_LIST_HEAD(&surplus_list);
1951
1952         ret = -ENOMEM;
1953 retry:
1954         spin_unlock(&hugetlb_lock);
1955         for (i = 0; i < needed; i++) {
1956                 page = alloc_surplus_huge_page(h, htlb_alloc_mask(h),
1957                                 NUMA_NO_NODE, NULL);
1958                 if (!page) {
1959                         alloc_ok = false;
1960                         break;
1961                 }
1962                 list_add(&page->lru, &surplus_list);
1963                 cond_resched();
1964         }
1965         allocated += i;
1966
1967         /*
1968          * After retaking hugetlb_lock, we need to recalculate 'needed'
1969          * because either resv_huge_pages or free_huge_pages may have changed.
1970          */
1971         spin_lock(&hugetlb_lock);
1972         needed = (h->resv_huge_pages + delta) -
1973                         (h->free_huge_pages + allocated);
1974         if (needed > 0) {
1975                 if (alloc_ok)
1976                         goto retry;
1977                 /*
1978                  * We were not able to allocate enough pages to
1979                  * satisfy the entire reservation so we free what
1980                  * we've allocated so far.
1981                  */
1982                 goto free;
1983         }
1984         /*
1985          * The surplus_list now contains _at_least_ the number of extra pages
1986          * needed to accommodate the reservation.  Add the appropriate number
1987          * of pages to the hugetlb pool and free the extras back to the buddy
1988          * allocator.  Commit the entire reservation here to prevent another
1989          * process from stealing the pages as they are added to the pool but
1990          * before they are reserved.
1991          */
1992         needed += allocated;
1993         h->resv_huge_pages += delta;
1994         ret = 0;
1995
1996         /* Free the needed pages to the hugetlb pool */
1997         list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
1998                 int zeroed;
1999
2000                 if ((--needed) < 0)
2001                         break;
2002                 /*
2003                  * This page is now managed by the hugetlb allocator and has
2004                  * no users -- drop the buddy allocator's reference.
2005                  */
2006                 zeroed = put_page_testzero(page);
2007                 VM_BUG_ON_PAGE(!zeroed, page);
2008                 enqueue_huge_page(h, page);
2009         }
2010 free:
2011         spin_unlock(&hugetlb_lock);
2012
2013         /* Free unnecessary surplus pages to the buddy allocator */
2014         list_for_each_entry_safe(page, tmp, &surplus_list, lru)
2015                 put_page(page);
2016         spin_lock(&hugetlb_lock);
2017
2018         return ret;
2019 }
2020
2021 /*
2022  * This routine has two main purposes:
2023  * 1) Decrement the reservation count (resv_huge_pages) by the value passed
2024  *    in unused_resv_pages.  This corresponds to the prior adjustments made
2025  *    to the associated reservation map.
2026  * 2) Free any unused surplus pages that may have been allocated to satisfy
2027  *    the reservation.  As many as unused_resv_pages may be freed.
2028  *
2029  * Called with hugetlb_lock held.  However, the lock could be dropped (and
2030  * reacquired) during calls to cond_resched_lock.  Whenever dropping the lock,
2031  * we must make sure nobody else can claim pages we are in the process of
2032  * freeing.  Do this by ensuring resv_huge_page always is greater than the
2033  * number of huge pages we plan to free when dropping the lock.
2034  */
2035 static void return_unused_surplus_pages(struct hstate *h,
2036                                         unsigned long unused_resv_pages)
2037 {
2038         unsigned long nr_pages;
2039
2040         /* Cannot return gigantic pages currently */
2041         if (hstate_is_gigantic(h))
2042                 goto out;
2043
2044         /*
2045          * Part (or even all) of the reservation could have been backed
2046          * by pre-allocated pages. Only free surplus pages.
2047          */
2048         nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
2049
2050         /*
2051          * We want to release as many surplus pages as possible, spread
2052          * evenly across all nodes with memory. Iterate across these nodes
2053          * until we can no longer free unreserved surplus pages. This occurs
2054          * when the nodes with surplus pages have no free pages.
2055          * free_pool_huge_page() will balance the freed pages across the
2056          * on-line nodes with memory and will handle the hstate accounting.
2057          *
2058          * Note that we decrement resv_huge_pages as we free the pages.  If
2059          * we drop the lock, resv_huge_pages will still be sufficiently large
2060          * to cover subsequent pages we may free.
2061          */
2062         while (nr_pages--) {
2063                 h->resv_huge_pages--;
2064                 unused_resv_pages--;
2065                 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
2066                         goto out;
2067                 cond_resched_lock(&hugetlb_lock);
2068         }
2069
2070 out:
2071         /* Fully uncommit the reservation */
2072         h->resv_huge_pages -= unused_resv_pages;
2073 }
2074
2075
2076 /*
2077  * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
2078  * are used by the huge page allocation routines to manage reservations.
2079  *
2080  * vma_needs_reservation is called to determine if the huge page at addr
2081  * within the vma has an associated reservation.  If a reservation is
2082  * needed, the value 1 is returned.  The caller is then responsible for
2083  * managing the global reservation and subpool usage counts.  After
2084  * the huge page has been allocated, vma_commit_reservation is called
2085  * to add the page to the reservation map.  If the page allocation fails,
2086  * the reservation must be ended instead of committed.  vma_end_reservation
2087  * is called in such cases.
2088  *
2089  * In the normal case, vma_commit_reservation returns the same value
2090  * as the preceding vma_needs_reservation call.  The only time this
2091  * is not the case is if a reserve map was changed between calls.  It
2092  * is the responsibility of the caller to notice the difference and
2093  * take appropriate action.
2094  *
2095  * vma_add_reservation is used in error paths where a reservation must
2096  * be restored when a newly allocated huge page must be freed.  It is
2097  * to be called after calling vma_needs_reservation to determine if a
2098  * reservation exists.
2099  */
2100 enum vma_resv_mode {
2101         VMA_NEEDS_RESV,
2102         VMA_COMMIT_RESV,
2103         VMA_END_RESV,
2104         VMA_ADD_RESV,
2105 };
2106 static long __vma_reservation_common(struct hstate *h,
2107                                 struct vm_area_struct *vma, unsigned long addr,
2108                                 enum vma_resv_mode mode)
2109 {
2110         struct resv_map *resv;
2111         pgoff_t idx;
2112         long ret;
2113         long dummy_out_regions_needed;
2114
2115         resv = vma_resv_map(vma);
2116         if (!resv)
2117                 return 1;
2118
2119         idx = vma_hugecache_offset(h, vma, addr);
2120         switch (mode) {
2121         case VMA_NEEDS_RESV:
2122                 ret = region_chg(resv, idx, idx + 1, &dummy_out_regions_needed);
2123                 /* We assume that vma_reservation_* routines always operate on
2124                  * 1 page, and that adding to resv map a 1 page entry can only
2125                  * ever require 1 region.
2126                  */
2127                 VM_BUG_ON(dummy_out_regions_needed != 1);
2128                 break;
2129         case VMA_COMMIT_RESV:
2130                 ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2131                 /* region_add calls of range 1 should never fail. */
2132                 VM_BUG_ON(ret < 0);
2133                 break;
2134         case VMA_END_RESV:
2135                 region_abort(resv, idx, idx + 1, 1);
2136                 ret = 0;
2137                 break;
2138         case VMA_ADD_RESV:
2139                 if (vma->vm_flags & VM_MAYSHARE) {
2140                         ret = region_add(resv, idx, idx + 1, 1, NULL, NULL);
2141                         /* region_add calls of range 1 should never fail. */
2142                         VM_BUG_ON(ret < 0);
2143                 } else {
2144                         region_abort(resv, idx, idx + 1, 1);
2145                         ret = region_del(resv, idx, idx + 1);
2146                 }
2147                 break;
2148         default:
2149                 BUG();
2150         }
2151
2152         if (vma->vm_flags & VM_MAYSHARE)
2153                 return ret;
2154         else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
2155                 /*
2156                  * In most cases, reserves always exist for private mappings.
2157                  * However, a file associated with mapping could have been
2158                  * hole punched or truncated after reserves were consumed.
2159                  * As subsequent fault on such a range will not use reserves.
2160                  * Subtle - The reserve map for private mappings has the
2161                  * opposite meaning than that of shared mappings.  If NO
2162                  * entry is in the reserve map, it means a reservation exists.
2163                  * If an entry exists in the reserve map, it means the
2164                  * reservation has already been consumed.  As a result, the
2165                  * return value of this routine is the opposite of the
2166                  * value returned from reserve map manipulation routines above.
2167                  */
2168                 if (ret)
2169                         return 0;
2170                 else
2171                         return 1;
2172         }
2173         else
2174                 return ret < 0 ? ret : 0;
2175 }
2176
2177 static long vma_needs_reservation(struct hstate *h,
2178                         struct vm_area_struct *vma, unsigned long addr)
2179 {
2180         return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
2181 }
2182
2183 static long vma_commit_reservation(struct hstate *h,
2184                         struct vm_area_struct *vma, unsigned long addr)
2185 {
2186         return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
2187 }
2188
2189 static void vma_end_reservation(struct hstate *h,
2190                         struct vm_area_struct *vma, unsigned long addr)
2191 {
2192         (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
2193 }
2194
2195 static long vma_add_reservation(struct hstate *h,
2196                         struct vm_area_struct *vma, unsigned long addr)
2197 {
2198         return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
2199 }
2200
2201 /*
2202  * This routine is called to restore a reservation on error paths.  In the
2203  * specific error paths, a huge page was allocated (via alloc_huge_page)
2204  * and is about to be freed.  If a reservation for the page existed,
2205  * alloc_huge_page would have consumed the reservation and set
2206  * HPageRestoreReserve in the newly allocated page.  When the page is freed
2207  * via free_huge_page, the global reservation count will be incremented if
2208  * HPageRestoreReserve is set.  However, free_huge_page can not adjust the
2209  * reserve map.  Adjust the reserve map here to be consistent with global
2210  * reserve count adjustments to be made by free_huge_page.
2211  */
2212 static void restore_reserve_on_error(struct hstate *h,
2213                         struct vm_area_struct *vma, unsigned long address,
2214                         struct page *page)
2215 {
2216         if (unlikely(HPageRestoreReserve(page))) {
2217                 long rc = vma_needs_reservation(h, vma, address);
2218
2219                 if (unlikely(rc < 0)) {
2220                         /*
2221                          * Rare out of memory condition in reserve map
2222                          * manipulation.  Clear HPageRestoreReserve so that
2223                          * global reserve count will not be incremented
2224                          * by free_huge_page.  This will make it appear
2225                          * as though the reservation for this page was
2226                          * consumed.  This may prevent the task from
2227                          * faulting in the page at a later time.  This
2228                          * is better than inconsistent global huge page
2229                          * accounting of reserve counts.
2230                          */
2231                         ClearHPageRestoreReserve(page);
2232                 } else if (rc) {
2233                         rc = vma_add_reservation(h, vma, address);
2234                         if (unlikely(rc < 0))
2235                                 /*
2236                                  * See above comment about rare out of
2237                                  * memory condition.
2238                                  */
2239                                 ClearHPageRestoreReserve(page);
2240                 } else
2241                         vma_end_reservation(h, vma, address);
2242         }
2243 }
2244
2245 struct page *alloc_huge_page(struct vm_area_struct *vma,
2246                                     unsigned long addr, int avoid_reserve)
2247 {
2248         struct hugepage_subpool *spool = subpool_vma(vma);
2249         struct hstate *h = hstate_vma(vma);
2250         struct page *page;
2251         long map_chg, map_commit;
2252         long gbl_chg;
2253         int ret, idx;
2254         struct hugetlb_cgroup *h_cg;
2255         bool deferred_reserve;
2256
2257         idx = hstate_index(h);
2258         /*
2259          * Examine the region/reserve map to determine if the process
2260          * has a reservation for the page to be allocated.  A return
2261          * code of zero indicates a reservation exists (no change).
2262          */
2263         map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
2264         if (map_chg < 0)
2265                 return ERR_PTR(-ENOMEM);
2266
2267         /*
2268          * Processes that did not create the mapping will have no
2269          * reserves as indicated by the region/reserve map. Check
2270          * that the allocation will not exceed the subpool limit.
2271          * Allocations for MAP_NORESERVE mappings also need to be
2272          * checked against any subpool limit.
2273          */
2274         if (map_chg || avoid_reserve) {
2275                 gbl_chg = hugepage_subpool_get_pages(spool, 1);
2276                 if (gbl_chg < 0) {
2277                         vma_end_reservation(h, vma, addr);
2278                         return ERR_PTR(-ENOSPC);
2279                 }
2280
2281                 /*
2282                  * Even though there was no reservation in the region/reserve
2283                  * map, there could be reservations associated with the
2284                  * subpool that can be used.  This would be indicated if the
2285                  * return value of hugepage_subpool_get_pages() is zero.
2286                  * However, if avoid_reserve is specified we still avoid even
2287                  * the subpool reservations.
2288                  */
2289                 if (avoid_reserve)
2290                         gbl_chg = 1;
2291         }
2292
2293         /* If this allocation is not consuming a reservation, charge it now.
2294          */
2295         deferred_reserve = map_chg || avoid_reserve || !vma_resv_map(vma);
2296         if (deferred_reserve) {
2297                 ret = hugetlb_cgroup_charge_cgroup_rsvd(
2298                         idx, pages_per_huge_page(h), &h_cg);
2299                 if (ret)
2300                         goto out_subpool_put;
2301         }
2302
2303         ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
2304         if (ret)
2305                 goto out_uncharge_cgroup_reservation;
2306
2307         spin_lock(&hugetlb_lock);
2308         /*
2309          * glb_chg is passed to indicate whether or not a page must be taken
2310          * from the global free pool (global change).  gbl_chg == 0 indicates
2311          * a reservation exists for the allocation.
2312          */
2313         page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
2314         if (!page) {
2315                 spin_unlock(&hugetlb_lock);
2316                 page = alloc_buddy_huge_page_with_mpol(h, vma, addr);
2317                 if (!page)
2318                         goto out_uncharge_cgroup;
2319                 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2320                         SetHPageRestoreReserve(page);
2321                         h->resv_huge_pages--;
2322                 }
2323                 spin_lock(&hugetlb_lock);
2324                 list_add(&page->lru, &h->hugepage_activelist);
2325                 /* Fall through */
2326         }
2327         hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2328         /* If allocation is not consuming a reservation, also store the
2329          * hugetlb_cgroup pointer on the page.
2330          */
2331         if (deferred_reserve) {
2332                 hugetlb_cgroup_commit_charge_rsvd(idx, pages_per_huge_page(h),
2333                                                   h_cg, page);
2334         }
2335
2336         spin_unlock(&hugetlb_lock);
2337
2338         hugetlb_set_page_subpool(page, spool);
2339
2340         map_commit = vma_commit_reservation(h, vma, addr);
2341         if (unlikely(map_chg > map_commit)) {
2342                 /*
2343                  * The page was added to the reservation map between
2344                  * vma_needs_reservation and vma_commit_reservation.
2345                  * This indicates a race with hugetlb_reserve_pages.
2346                  * Adjust for the subpool count incremented above AND
2347                  * in hugetlb_reserve_pages for the same page.  Also,
2348                  * the reservation count added in hugetlb_reserve_pages
2349                  * no longer applies.
2350                  */
2351                 long rsv_adjust;
2352
2353                 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2354                 hugetlb_acct_memory(h, -rsv_adjust);
2355                 if (deferred_reserve)
2356                         hugetlb_cgroup_uncharge_page_rsvd(hstate_index(h),
2357                                         pages_per_huge_page(h), page);
2358         }
2359         return page;
2360
2361 out_uncharge_cgroup:
2362         hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2363 out_uncharge_cgroup_reservation:
2364         if (deferred_reserve)
2365                 hugetlb_cgroup_uncharge_cgroup_rsvd(idx, pages_per_huge_page(h),
2366                                                     h_cg);
2367 out_subpool_put:
2368         if (map_chg || avoid_reserve)
2369                 hugepage_subpool_put_pages(spool, 1);
2370         vma_end_reservation(h, vma, addr);
2371         return ERR_PTR(-ENOSPC);
2372 }
2373
2374 int alloc_bootmem_huge_page(struct hstate *h)
2375         __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2376 int __alloc_bootmem_huge_page(struct hstate *h)
2377 {
2378         struct huge_bootmem_page *m;
2379         int nr_nodes, node;
2380
2381         for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
2382                 void *addr;
2383
2384                 addr = memblock_alloc_try_nid_raw(
2385                                 huge_page_size(h), huge_page_size(h),
2386                                 0, MEMBLOCK_ALLOC_ACCESSIBLE, node);
2387                 if (addr) {
2388                         /*
2389                          * Use the beginning of the huge page to store the
2390                          * huge_bootmem_page struct (until gather_bootmem
2391                          * puts them into the mem_map).
2392                          */
2393                         m = addr;
2394                         goto found;
2395                 }
2396         }
2397         return 0;
2398
2399 found:
2400         BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
2401         /* Put them into a private list first because mem_map is not up yet */
2402         INIT_LIST_HEAD(&m->list);
2403         list_add(&m->list, &huge_boot_pages);
2404         m->hstate = h;
2405         return 1;
2406 }
2407
2408 static void __init prep_compound_huge_page(struct page *page,
2409                 unsigned int order)
2410 {
2411         if (unlikely(order > (MAX_ORDER - 1)))
2412                 prep_compound_gigantic_page(page, order);
2413         else
2414                 prep_compound_page(page, order);
2415 }
2416
2417 /* Put bootmem huge pages into the standard lists after mem_map is up */
2418 static void __init gather_bootmem_prealloc(void)
2419 {
2420         struct huge_bootmem_page *m;
2421
2422         list_for_each_entry(m, &huge_boot_pages, list) {
2423                 struct page *page = virt_to_page(m);
2424                 struct hstate *h = m->hstate;
2425
2426                 WARN_ON(page_count(page) != 1);
2427                 prep_compound_huge_page(page, huge_page_order(h));
2428                 WARN_ON(PageReserved(page));
2429                 prep_new_huge_page(h, page, page_to_nid(page));
2430                 put_page(page); /* free it into the hugepage allocator */
2431
2432                 /*
2433                  * If we had gigantic hugepages allocated at boot time, we need
2434                  * to restore the 'stolen' pages to totalram_pages in order to
2435                  * fix confusing memory reports from free(1) and another
2436                  * side-effects, like CommitLimit going negative.
2437                  */
2438                 if (hstate_is_gigantic(h))
2439                         adjust_managed_page_count(page, pages_per_huge_page(h));
2440                 cond_resched();
2441         }
2442 }
2443
2444 static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
2445 {
2446         unsigned long i;
2447         nodemask_t *node_alloc_noretry;
2448
2449         if (!hstate_is_gigantic(h)) {
2450                 /*
2451                  * Bit mask controlling how hard we retry per-node allocations.
2452                  * Ignore errors as lower level routines can deal with
2453                  * node_alloc_noretry == NULL.  If this kmalloc fails at boot
2454                  * time, we are likely in bigger trouble.
2455                  */
2456                 node_alloc_noretry = kmalloc(sizeof(*node_alloc_noretry),
2457                                                 GFP_KERNEL);
2458         } else {
2459                 /* allocations done at boot time */
2460                 node_alloc_noretry = NULL;
2461         }
2462
2463         /* bit mask controlling how hard we retry per-node allocations */
2464         if (node_alloc_noretry)
2465                 nodes_clear(*node_alloc_noretry);
2466
2467         for (i = 0; i < h->max_huge_pages; ++i) {
2468                 if (hstate_is_gigantic(h)) {
2469                         if (hugetlb_cma_size) {
2470                                 pr_warn_once("HugeTLB: hugetlb_cma is enabled, skip boot time allocation\n");
2471                                 goto free;
2472                         }
2473                         if (!alloc_bootmem_huge_page(h))
2474                                 break;
2475                 } else if (!alloc_pool_huge_page(h,
2476                                          &node_states[N_MEMORY],
2477                                          node_alloc_noretry))
2478                         break;
2479                 cond_resched();
2480         }
2481         if (i < h->max_huge_pages) {
2482                 char buf[32];
2483
2484                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2485                 pr_warn("HugeTLB: allocating %lu of page size %s failed.  Only allocated %lu hugepages.\n",
2486                         h->max_huge_pages, buf, i);
2487                 h->max_huge_pages = i;
2488         }
2489 free:
2490         kfree(node_alloc_noretry);
2491 }
2492
2493 static void __init hugetlb_init_hstates(void)
2494 {
2495         struct hstate *h;
2496
2497         for_each_hstate(h) {
2498                 if (minimum_order > huge_page_order(h))
2499                         minimum_order = huge_page_order(h);
2500
2501                 /* oversize hugepages were init'ed in early boot */
2502                 if (!hstate_is_gigantic(h))
2503                         hugetlb_hstate_alloc_pages(h);
2504         }
2505         VM_BUG_ON(minimum_order == UINT_MAX);
2506 }
2507
2508 static void __init report_hugepages(void)
2509 {
2510         struct hstate *h;
2511
2512         for_each_hstate(h) {
2513                 char buf[32];
2514
2515                 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
2516                 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
2517                         buf, h->free_huge_pages);
2518         }
2519 }
2520
2521 #ifdef CONFIG_HIGHMEM
2522 static void try_to_free_low(struct hstate *h, unsigned long count,
2523                                                 nodemask_t *nodes_allowed)
2524 {
2525         int i;
2526
2527         if (hstate_is_gigantic(h))
2528                 return;
2529
2530         for_each_node_mask(i, *nodes_allowed) {
2531                 struct page *page, *next;
2532                 struct list_head *freel = &h->hugepage_freelists[i];
2533                 list_for_each_entry_safe(page, next, freel, lru) {
2534                         if (count >= h->nr_huge_pages)
2535                                 return;
2536                         if (PageHighMem(page))
2537                                 continue;
2538                         list_del(&page->lru);
2539                         update_and_free_page(h, page);
2540                         h->free_huge_pages--;
2541                         h->free_huge_pages_node[page_to_nid(page)]--;
2542                 }
2543         }
2544 }
2545 #else
2546 static inline void try_to_free_low(struct hstate *h, unsigned long count,
2547                                                 nodemask_t *nodes_allowed)
2548 {
2549 }
2550 #endif
2551
2552 /*
2553  * Increment or decrement surplus_huge_pages.  Keep node-specific counters
2554  * balanced by operating on them in a round-robin fashion.
2555  * Returns 1 if an adjustment was made.
2556  */
2557 static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2558                                 int delta)
2559 {
2560         int nr_nodes, node;
2561
2562         VM_BUG_ON(delta != -1 && delta != 1);
2563
2564         if (delta < 0) {
2565                 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2566                         if (h->surplus_huge_pages_node[node])
2567                                 goto found;
2568                 }
2569         } else {
2570                 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2571                         if (h->surplus_huge_pages_node[node] <
2572                                         h->nr_huge_pages_node[node])
2573                                 goto found;
2574                 }
2575         }
2576         return 0;
2577
2578 found:
2579         h->surplus_huge_pages += delta;
2580         h->surplus_huge_pages_node[node] += delta;
2581         return 1;
2582 }
2583
2584 #define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
2585 static int set_max_huge_pages(struct hstate *h, unsigned long count, int nid,
2586                               nodemask_t *nodes_allowed)
2587 {
2588         unsigned long min_count, ret;
2589         NODEMASK_ALLOC(nodemask_t, node_alloc_noretry, GFP_KERNEL);
2590
2591         /*
2592          * Bit mask controlling how hard we retry per-node allocations.
2593          * If we can not allocate the bit mask, do not attempt to allocate
2594          * the requested huge pages.
2595          */
2596         if (node_alloc_noretry)
2597                 nodes_clear(*node_alloc_noretry);
2598         else
2599                 return -ENOMEM;
2600
2601         spin_lock(&hugetlb_lock);
2602
2603         /*
2604          * Check for a node specific request.
2605          * Changing node specific huge page count may require a corresponding
2606          * change to the global count.  In any case, the passed node mask
2607          * (nodes_allowed) will restrict alloc/free to the specified node.
2608          */
2609         if (nid != NUMA_NO_NODE) {
2610                 unsigned long old_count = count;
2611
2612                 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2613                 /*
2614                  * User may have specified a large count value which caused the
2615                  * above calculation to overflow.  In this case, they wanted
2616                  * to allocate as many huge pages as possible.  Set count to
2617                  * largest possible value to align with their intention.
2618                  */
2619                 if (count < old_count)
2620                         count = ULONG_MAX;
2621         }
2622
2623         /*
2624          * Gigantic pages runtime allocation depend on the capability for large
2625          * page range allocation.
2626          * If the system does not provide this feature, return an error when
2627          * the user tries to allocate gigantic pages but let the user free the
2628          * boottime allocated gigantic pages.
2629          */
2630         if (hstate_is_gigantic(h) && !IS_ENABLED(CONFIG_CONTIG_ALLOC)) {
2631                 if (count > persistent_huge_pages(h)) {
2632                         spin_unlock(&hugetlb_lock);
2633                         NODEMASK_FREE(node_alloc_noretry);
2634                         return -EINVAL;
2635                 }
2636                 /* Fall through to decrease pool */
2637         }
2638
2639         /*
2640          * Increase the pool size
2641          * First take pages out of surplus state.  Then make up the
2642          * remaining difference by allocating fresh huge pages.
2643          *
2644          * We might race with alloc_surplus_huge_page() here and be unable
2645          * to convert a surplus huge page to a normal huge page. That is
2646          * not critical, though, it just means the overall size of the
2647          * pool might be one hugepage larger than it needs to be, but
2648          * within all the constraints specified by the sysctls.
2649          */
2650         while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
2651                 if (!adjust_pool_surplus(h, nodes_allowed, -1))
2652                         break;
2653         }
2654
2655         while (count > persistent_huge_pages(h)) {
2656                 /*
2657                  * If this allocation races such that we no longer need the
2658                  * page, free_huge_page will handle it by freeing the page
2659                  * and reducing the surplus.
2660                  */
2661                 spin_unlock(&hugetlb_lock);
2662
2663                 /* yield cpu to avoid soft lockup */
2664                 cond_resched();
2665
2666                 ret = alloc_pool_huge_page(h, nodes_allowed,
2667                                                 node_alloc_noretry);
2668                 spin_lock(&hugetlb_lock);
2669                 if (!ret)
2670                         goto out;
2671
2672                 /* Bail for signals. Probably ctrl-c from user */
2673                 if (signal_pending(current))
2674                         goto out;
2675         }
2676
2677         /*
2678          * Decrease the pool size
2679          * First return free pages to the buddy allocator (being careful
2680          * to keep enough around to satisfy reservations).  Then place
2681          * pages into surplus state as needed so the pool will shrink
2682          * to the desired size as pages become free.
2683          *
2684          * By placing pages into the surplus state independent of the
2685          * overcommit value, we are allowing the surplus pool size to
2686          * exceed overcommit. There are few sane options here. Since
2687          * alloc_surplus_huge_page() is checking the global counter,
2688          * though, we'll note that we're not allowed to exceed surplus
2689          * and won't grow the pool anywhere else. Not until one of the
2690          * sysctls are changed, or the surplus pages go out of use.
2691          */
2692         min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
2693         min_count = max(count, min_count);
2694         try_to_free_low(h, min_count, nodes_allowed);
2695         while (min_count < persistent_huge_pages(h)) {
2696                 if (!free_pool_huge_page(h, nodes_allowed, 0))
2697                         break;
2698                 cond_resched_lock(&hugetlb_lock);
2699         }
2700         while (count < persistent_huge_pages(h)) {
2701                 if (!adjust_pool_surplus(h, nodes_allowed, 1))
2702                         break;
2703         }
2704 out:
2705         h->max_huge_pages = persistent_huge_pages(h);
2706         spin_unlock(&hugetlb_lock);
2707
2708         NODEMASK_FREE(node_alloc_noretry);
2709
2710         return 0;
2711 }
2712
2713 #define HSTATE_ATTR_RO(_name) \
2714         static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2715
2716 #define HSTATE_ATTR(_name) \
2717         static struct kobj_attribute _name##_attr = \
2718                 __ATTR(_name, 0644, _name##_show, _name##_store)
2719
2720 static struct kobject *hugepages_kobj;
2721 static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2722
2723 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2724
2725 static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
2726 {
2727         int i;
2728
2729         for (i = 0; i < HUGE_MAX_HSTATE; i++)
2730                 if (hstate_kobjs[i] == kobj) {
2731                         if (nidp)
2732                                 *nidp = NUMA_NO_NODE;
2733                         return &hstates[i];
2734                 }
2735
2736         return kobj_to_node_hstate(kobj, nidp);
2737 }
2738
2739 static ssize_t nr_hugepages_show_common(struct kobject *kobj,
2740                                         struct kobj_attribute *attr, char *buf)
2741 {
2742         struct hstate *h;
2743         unsigned long nr_huge_pages;
2744         int nid;
2745
2746         h = kobj_to_hstate(kobj, &nid);
2747         if (nid == NUMA_NO_NODE)
2748                 nr_huge_pages = h->nr_huge_pages;
2749         else
2750                 nr_huge_pages = h->nr_huge_pages_node[nid];
2751
2752         return sysfs_emit(buf, "%lu\n", nr_huge_pages);
2753 }
2754
2755 static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2756                                            struct hstate *h, int nid,
2757                                            unsigned long count, size_t len)
2758 {
2759         int err;
2760         nodemask_t nodes_allowed, *n_mask;
2761
2762         if (hstate_is_gigantic(h) && !gigantic_page_runtime_supported())
2763                 return -EINVAL;
2764
2765         if (nid == NUMA_NO_NODE) {
2766                 /*
2767                  * global hstate attribute
2768                  */
2769                 if (!(obey_mempolicy &&
2770                                 init_nodemask_of_mempolicy(&nodes_allowed)))
2771                         n_mask = &node_states[N_MEMORY];
2772                 else
2773                         n_mask = &nodes_allowed;
2774         } else {
2775                 /*
2776                  * Node specific request.  count adjustment happens in
2777                  * set_max_huge_pages() after acquiring hugetlb_lock.
2778                  */
2779                 init_nodemask_of_node(&nodes_allowed, nid);
2780                 n_mask = &nodes_allowed;
2781         }
2782
2783         err = set_max_huge_pages(h, count, nid, n_mask);
2784
2785         return err ? err : len;
2786 }
2787
2788 static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2789                                          struct kobject *kobj, const char *buf,
2790                                          size_t len)
2791 {
2792         struct hstate *h;
2793         unsigned long count;
2794         int nid;
2795         int err;
2796
2797         err = kstrtoul(buf, 10, &count);
2798         if (err)
2799                 return err;
2800
2801         h = kobj_to_hstate(kobj, &nid);
2802         return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2803 }
2804
2805 static ssize_t nr_hugepages_show(struct kobject *kobj,
2806                                        struct kobj_attribute *attr, char *buf)
2807 {
2808         return nr_hugepages_show_common(kobj, attr, buf);
2809 }
2810
2811 static ssize_t nr_hugepages_store(struct kobject *kobj,
2812                struct kobj_attribute *attr, const char *buf, size_t len)
2813 {
2814         return nr_hugepages_store_common(false, kobj, buf, len);
2815 }
2816 HSTATE_ATTR(nr_hugepages);
2817
2818 #ifdef CONFIG_NUMA
2819
2820 /*
2821  * hstate attribute for optionally mempolicy-based constraint on persistent
2822  * huge page alloc/free.
2823  */
2824 static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2825                                            struct kobj_attribute *attr,
2826                                            char *buf)
2827 {
2828         return nr_hugepages_show_common(kobj, attr, buf);
2829 }
2830
2831 static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2832                struct kobj_attribute *attr, const char *buf, size_t len)
2833 {
2834         return nr_hugepages_store_common(true, kobj, buf, len);
2835 }
2836 HSTATE_ATTR(nr_hugepages_mempolicy);
2837 #endif
2838
2839
2840 static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2841                                         struct kobj_attribute *attr, char *buf)
2842 {
2843         struct hstate *h = kobj_to_hstate(kobj, NULL);
2844         return sysfs_emit(buf, "%lu\n", h->nr_overcommit_huge_pages);
2845 }
2846
2847 static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2848                 struct kobj_attribute *attr, const char *buf, size_t count)
2849 {
2850         int err;
2851         unsigned long input;
2852         struct hstate *h = kobj_to_hstate(kobj, NULL);
2853
2854         if (hstate_is_gigantic(h))
2855                 return -EINVAL;
2856
2857         err = kstrtoul(buf, 10, &input);
2858         if (err)
2859                 return err;
2860
2861         spin_lock(&hugetlb_lock);
2862         h->nr_overcommit_huge_pages = input;
2863         spin_unlock(&hugetlb_lock);
2864
2865         return count;
2866 }
2867 HSTATE_ATTR(nr_overcommit_hugepages);
2868
2869 static ssize_t free_hugepages_show(struct kobject *kobj,
2870                                         struct kobj_attribute *attr, char *buf)
2871 {
2872         struct hstate *h;
2873         unsigned long free_huge_pages;
2874         int nid;
2875
2876         h = kobj_to_hstate(kobj, &nid);
2877         if (nid == NUMA_NO_NODE)
2878                 free_huge_pages = h->free_huge_pages;
2879         else
2880                 free_huge_pages = h->free_huge_pages_node[nid];
2881
2882         return sysfs_emit(buf, "%lu\n", free_huge_pages);
2883 }
2884 HSTATE_ATTR_RO(free_hugepages);
2885
2886 static ssize_t resv_hugepages_show(struct kobject *kobj,
2887                                         struct kobj_attribute *attr, char *buf)
2888 {
2889         struct hstate *h = kobj_to_hstate(kobj, NULL);
2890         return sysfs_emit(buf, "%lu\n", h->resv_huge_pages);
2891 }
2892 HSTATE_ATTR_RO(resv_hugepages);
2893
2894 static ssize_t surplus_hugepages_show(struct kobject *kobj,
2895                                         struct kobj_attribute *attr, char *buf)
2896 {
2897         struct hstate *h;
2898         unsigned long surplus_huge_pages;
2899         int nid;
2900
2901         h = kobj_to_hstate(kobj, &nid);
2902         if (nid == NUMA_NO_NODE)
2903                 surplus_huge_pages = h->surplus_huge_pages;
2904         else
2905                 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2906
2907         return sysfs_emit(buf, "%lu\n", surplus_huge_pages);
2908 }
2909 HSTATE_ATTR_RO(surplus_hugepages);
2910
2911 static struct attribute *hstate_attrs[] = {
2912         &nr_hugepages_attr.attr,
2913         &nr_overcommit_hugepages_attr.attr,
2914         &free_hugepages_attr.attr,
2915         &resv_hugepages_attr.attr,
2916         &surplus_hugepages_attr.attr,
2917 #ifdef CONFIG_NUMA
2918         &nr_hugepages_mempolicy_attr.attr,
2919 #endif
2920         NULL,
2921 };
2922
2923 static const struct attribute_group hstate_attr_group = {
2924         .attrs = hstate_attrs,
2925 };
2926
2927 static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2928                                     struct kobject **hstate_kobjs,
2929                                     const struct attribute_group *hstate_attr_group)
2930 {
2931         int retval;
2932         int hi = hstate_index(h);
2933
2934         hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2935         if (!hstate_kobjs[hi])
2936                 return -ENOMEM;
2937
2938         retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
2939         if (retval) {
2940                 kobject_put(hstate_kobjs[hi]);
2941                 hstate_kobjs[hi] = NULL;
2942         }
2943
2944         return retval;
2945 }
2946
2947 static void __init hugetlb_sysfs_init(void)
2948 {
2949         struct hstate *h;
2950         int err;
2951
2952         hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2953         if (!hugepages_kobj)
2954                 return;
2955
2956         for_each_hstate(h) {
2957                 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2958                                          hstate_kobjs, &hstate_attr_group);
2959                 if (err)
2960                         pr_err("HugeTLB: Unable to add hstate %s", h->name);
2961         }
2962 }
2963
2964 #ifdef CONFIG_NUMA
2965
2966 /*
2967  * node_hstate/s - associate per node hstate attributes, via their kobjects,
2968  * with node devices in node_devices[] using a parallel array.  The array
2969  * index of a node device or _hstate == node id.
2970  * This is here to avoid any static dependency of the node device driver, in
2971  * the base kernel, on the hugetlb module.
2972  */
2973 struct node_hstate {
2974         struct kobject          *hugepages_kobj;
2975         struct kobject          *hstate_kobjs[HUGE_MAX_HSTATE];
2976 };
2977 static struct node_hstate node_hstates[MAX_NUMNODES];
2978
2979 /*
2980  * A subset of global hstate attributes for node devices
2981  */
2982 static struct attribute *per_node_hstate_attrs[] = {
2983         &nr_hugepages_attr.attr,
2984         &free_hugepages_attr.attr,
2985         &surplus_hugepages_attr.attr,
2986         NULL,
2987 };
2988
2989 static const struct attribute_group per_node_hstate_attr_group = {
2990         .attrs = per_node_hstate_attrs,
2991 };
2992
2993 /*
2994  * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
2995  * Returns node id via non-NULL nidp.
2996  */
2997 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2998 {
2999         int nid;
3000
3001         for (nid = 0; nid < nr_node_ids; nid++) {
3002                 struct node_hstate *nhs = &node_hstates[nid];
3003                 int i;
3004                 for (i = 0; i < HUGE_MAX_HSTATE; i++)
3005                         if (nhs->hstate_kobjs[i] == kobj) {
3006                                 if (nidp)
3007                                         *nidp = nid;
3008                                 return &hstates[i];
3009                         }
3010         }
3011
3012         BUG();
3013         return NULL;
3014 }
3015
3016 /*
3017  * Unregister hstate attributes from a single node device.
3018  * No-op if no hstate attributes attached.
3019  */
3020 static void hugetlb_unregister_node(struct node *node)
3021 {
3022         struct hstate *h;
3023         struct node_hstate *nhs = &node_hstates[node->dev.id];
3024
3025         if (!nhs->hugepages_kobj)
3026                 return;         /* no hstate attributes */
3027
3028         for_each_hstate(h) {
3029                 int idx = hstate_index(h);
3030                 if (nhs->hstate_kobjs[idx]) {
3031                         kobject_put(nhs->hstate_kobjs[idx]);
3032                         nhs->hstate_kobjs[idx] = NULL;
3033                 }
3034         }
3035
3036         kobject_put(nhs->hugepages_kobj);
3037         nhs->hugepages_kobj = NULL;
3038 }
3039
3040
3041 /*
3042  * Register hstate attributes for a single node device.
3043  * No-op if attributes already registered.
3044  */
3045 static void hugetlb_register_node(struct node *node)
3046 {
3047         struct hstate *h;
3048         struct node_hstate *nhs = &node_hstates[node->dev.id];
3049         int err;
3050
3051         if (nhs->hugepages_kobj)
3052                 return;         /* already allocated */
3053
3054         nhs->hugepages_kobj = kobject_create_and_add("hugepages",
3055                                                         &node->dev.kobj);
3056         if (!nhs->hugepages_kobj)
3057                 return;
3058
3059         for_each_hstate(h) {
3060                 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
3061                                                 nhs->hstate_kobjs,
3062                                                 &per_node_hstate_attr_group);
3063                 if (err) {
3064                         pr_err("HugeTLB: Unable to add hstate %s for node %d\n",
3065                                 h->name, node->dev.id);
3066                         hugetlb_unregister_node(node);
3067                         break;
3068                 }
3069         }
3070 }
3071
3072 /*
3073  * hugetlb init time:  register hstate attributes for all registered node
3074  * devices of nodes that have memory.  All on-line nodes should have
3075  * registered their associated device by this time.
3076  */
3077 static void __init hugetlb_register_all_nodes(void)
3078 {
3079         int nid;
3080
3081         for_each_node_state(nid, N_MEMORY) {
3082                 struct node *node = node_devices[nid];
3083                 if (node->dev.id == nid)
3084                         hugetlb_register_node(node);
3085         }
3086
3087         /*
3088          * Let the node device driver know we're here so it can
3089          * [un]register hstate attributes on node hotplug.
3090          */
3091         register_hugetlbfs_with_node(hugetlb_register_node,
3092                                      hugetlb_unregister_node);
3093 }
3094 #else   /* !CONFIG_NUMA */
3095
3096 static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
3097 {
3098         BUG();
3099         if (nidp)
3100                 *nidp = -1;
3101         return NULL;
3102 }
3103
3104 static void hugetlb_register_all_nodes(void) { }
3105
3106 #endif
3107
3108 static int __init hugetlb_init(void)
3109 {
3110         int i;
3111
3112         BUILD_BUG_ON(sizeof_field(struct page, private) * BITS_PER_BYTE <
3113                         __NR_HPAGEFLAGS);
3114
3115         if (!hugepages_supported()) {
3116                 if (hugetlb_max_hstate || default_hstate_max_huge_pages)
3117                         pr_warn("HugeTLB: huge pages not supported, ignoring associated command-line parameters\n");
3118                 return 0;
3119         }
3120
3121         /*
3122          * Make sure HPAGE_SIZE (HUGETLB_PAGE_ORDER) hstate exists.  Some
3123          * architectures depend on setup being done here.
3124          */
3125         hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
3126         if (!parsed_default_hugepagesz) {
3127                 /*
3128                  * If we did not parse a default huge page size, set
3129                  * default_hstate_idx to HPAGE_SIZE hstate. And, if the
3130                  * number of huge pages for this default size was implicitly
3131                  * specified, set that here as well.
3132                  * Note that the implicit setting will overwrite an explicit
3133                  * setting.  A warning will be printed in this case.
3134                  */
3135                 default_hstate_idx = hstate_index(size_to_hstate(HPAGE_SIZE));
3136                 if (default_hstate_max_huge_pages) {
3137                         if (default_hstate.max_huge_pages) {
3138                                 char buf[32];
3139
3140                                 string_get_size(huge_page_size(&default_hstate),
3141                                         1, STRING_UNITS_2, buf, 32);
3142                                 pr_warn("HugeTLB: Ignoring hugepages=%lu associated with %s page size\n",
3143                                         default_hstate.max_huge_pages, buf);
3144                                 pr_warn("HugeTLB: Using hugepages=%lu for number of default huge pages\n",
3145                                         default_hstate_max_huge_pages);
3146                         }
3147                         default_hstate.max_huge_pages =
3148                                 default_hstate_max_huge_pages;
3149                 }
3150         }
3151
3152         hugetlb_cma_check();
3153         hugetlb_init_hstates();
3154         gather_bootmem_prealloc();
3155         report_hugepages();
3156
3157         hugetlb_sysfs_init();
3158         hugetlb_register_all_nodes();
3159         hugetlb_cgroup_file_init();
3160
3161 #ifdef CONFIG_SMP
3162         num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
3163 #else
3164         num_fault_mutexes = 1;
3165 #endif
3166         hugetlb_fault_mutex_table =
3167                 kmalloc_array(num_fault_mutexes, sizeof(struct mutex),
3168                               GFP_KERNEL);
3169         BUG_ON(!hugetlb_fault_mutex_table);
3170
3171         for (i = 0; i < num_fault_mutexes; i++)
3172                 mutex_init(&hugetlb_fault_mutex_table[i]);
3173         return 0;
3174 }
3175 subsys_initcall(hugetlb_init);
3176
3177 /* Overwritten by architectures with more huge page sizes */
3178 bool __init __attribute((weak)) arch_hugetlb_valid_size(unsigned long size)
3179 {
3180         return size == HPAGE_SIZE;
3181 }
3182
3183 void __init hugetlb_add_hstate(unsigned int order)
3184 {
3185         struct hstate *h;
3186         unsigned long i;
3187
3188         if (size_to_hstate(PAGE_SIZE << order)) {
3189                 return;
3190         }
3191         BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
3192         BUG_ON(order == 0);
3193         h = &hstates[hugetlb_max_hstate++];
3194         h->order = order;
3195         h->mask = ~(huge_page_size(h) - 1);
3196         for (i = 0; i < MAX_NUMNODES; ++i)
3197                 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
3198         INIT_LIST_HEAD(&h->hugepage_activelist);
3199         h->next_nid_to_alloc = first_memory_node;
3200         h->next_nid_to_free = first_memory_node;
3201         snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
3202                                         huge_page_size(h)/1024);
3203
3204         parsed_hstate = h;
3205 }
3206
3207 /*
3208  * hugepages command line processing
3209  * hugepages normally follows a valid hugepagsz or default_hugepagsz
3210  * specification.  If not, ignore the hugepages value.  hugepages can also
3211  * be the first huge page command line  option in which case it implicitly
3212  * specifies the number of huge pages for the default size.
3213  */
3214 static int __init hugepages_setup(char *s)
3215 {
3216         unsigned long *mhp;
3217         static unsigned long *last_mhp;
3218
3219         if (!parsed_valid_hugepagesz) {
3220                 pr_warn("HugeTLB: hugepages=%s does not follow a valid hugepagesz, ignoring\n", s);
3221                 parsed_valid_hugepagesz = true;
3222                 return 0;
3223         }
3224
3225         /*
3226          * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter
3227          * yet, so this hugepages= parameter goes to the "default hstate".
3228          * Otherwise, it goes with the previously parsed hugepagesz or
3229          * default_hugepagesz.
3230          */
3231         else if (!hugetlb_max_hstate)
3232                 mhp = &default_hstate_max_huge_pages;
3233         else
3234                 mhp = &parsed_hstate->max_huge_pages;
3235
3236         if (mhp == last_mhp) {
3237                 pr_warn("HugeTLB: hugepages= specified twice without interleaving hugepagesz=, ignoring hugepages=%s\n", s);
3238                 return 0;
3239         }
3240
3241         if (sscanf(s, "%lu", mhp) <= 0)
3242                 *mhp = 0;
3243
3244         /*
3245          * Global state is always initialized later in hugetlb_init.
3246          * But we need to allocate >= MAX_ORDER hstates here early to still
3247          * use the bootmem allocator.
3248          */
3249         if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
3250                 hugetlb_hstate_alloc_pages(parsed_hstate);
3251
3252         last_mhp = mhp;
3253
3254         return 1;
3255 }
3256 __setup("hugepages=", hugepages_setup);
3257
3258 /*
3259  * hugepagesz command line processing
3260  * A specific huge page size can only be specified once with hugepagesz.
3261  * hugepagesz is followed by hugepages on the command line.  The global
3262  * variable 'parsed_valid_hugepagesz' is used to determine if prior
3263  * hugepagesz argument was valid.
3264  */
3265 static int __init hugepagesz_setup(char *s)
3266 {
3267         unsigned long size;
3268         struct hstate *h;
3269
3270         parsed_valid_hugepagesz = false;
3271         size = (unsigned long)memparse(s, NULL);
3272
3273         if (!arch_hugetlb_valid_size(size)) {
3274                 pr_err("HugeTLB: unsupported hugepagesz=%s\n", s);
3275                 return 0;
3276         }
3277
3278         h = size_to_hstate(size);
3279         if (h) {
3280                 /*
3281                  * hstate for this size already exists.  This is normally
3282                  * an error, but is allowed if the existing hstate is the
3283                  * default hstate.  More specifically, it is only allowed if
3284                  * the number of huge pages for the default hstate was not
3285                  * previously specified.
3286                  */
3287                 if (!parsed_default_hugepagesz ||  h != &default_hstate ||
3288                     default_hstate.max_huge_pages) {
3289                         pr_warn("HugeTLB: hugepagesz=%s specified twice, ignoring\n", s);
3290                         return 0;
3291                 }
3292
3293                 /*
3294                  * No need to call hugetlb_add_hstate() as hstate already
3295                  * exists.  But, do set parsed_hstate so that a following
3296                  * hugepages= parameter will be applied to this hstate.
3297                  */
3298                 parsed_hstate = h;
3299                 parsed_valid_hugepagesz = true;
3300                 return 1;
3301         }
3302
3303         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3304         parsed_valid_hugepagesz = true;
3305         return 1;
3306 }
3307 __setup("hugepagesz=", hugepagesz_setup);
3308
3309 /*
3310  * default_hugepagesz command line input
3311  * Only one instance of default_hugepagesz allowed on command line.
3312  */
3313 static int __init default_hugepagesz_setup(char *s)
3314 {
3315         unsigned long size;
3316
3317         parsed_valid_hugepagesz = false;
3318         if (parsed_default_hugepagesz) {
3319                 pr_err("HugeTLB: default_hugepagesz previously specified, ignoring %s\n", s);
3320                 return 0;
3321         }
3322
3323         size = (unsigned long)memparse(s, NULL);
3324
3325         if (!arch_hugetlb_valid_size(size)) {
3326                 pr_err("HugeTLB: unsupported default_hugepagesz=%s\n", s);
3327                 return 0;
3328         }
3329
3330         hugetlb_add_hstate(ilog2(size) - PAGE_SHIFT);
3331         parsed_valid_hugepagesz = true;
3332         parsed_default_hugepagesz = true;
3333         default_hstate_idx = hstate_index(size_to_hstate(size));
3334
3335         /*
3336          * The number of default huge pages (for this size) could have been
3337          * specified as the first hugetlb parameter: hugepages=X.  If so,
3338          * then default_hstate_max_huge_pages is set.  If the default huge
3339          * page size is gigantic (>= MAX_ORDER), then the pages must be
3340          * allocated here from bootmem allocator.
3341          */
3342         if (default_hstate_max_huge_pages) {
3343                 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
3344                 if (hstate_is_gigantic(&default_hstate))
3345                         hugetlb_hstate_alloc_pages(&default_hstate);
3346                 default_hstate_max_huge_pages = 0;
3347         }
3348
3349         return 1;
3350 }
3351 __setup("default_hugepagesz=", default_hugepagesz_setup);
3352
3353 static unsigned int allowed_mems_nr(struct hstate *h)
3354 {
3355         int node;
3356         unsigned int nr = 0;
3357         nodemask_t *mpol_allowed;
3358         unsigned int *array = h->free_huge_pages_node;
3359         gfp_t gfp_mask = htlb_alloc_mask(h);
3360
3361         mpol_allowed = policy_nodemask_current(gfp_mask);
3362
3363         for_each_node_mask(node, cpuset_current_mems_allowed) {
3364                 if (!mpol_allowed || node_isset(node, *mpol_allowed))
3365                         nr += array[node];
3366         }
3367
3368         return nr;
3369 }
3370
3371 #ifdef CONFIG_SYSCTL
3372 static int proc_hugetlb_doulongvec_minmax(struct ctl_table *table, int write,
3373                                           void *buffer, size_t *length,
3374                                           loff_t *ppos, unsigned long *out)
3375 {
3376         struct ctl_table dup_table;
3377
3378         /*
3379          * In order to avoid races with __do_proc_doulongvec_minmax(), we
3380          * can duplicate the @table and alter the duplicate of it.
3381          */
3382         dup_table = *table;
3383         dup_table.data = out;
3384
3385         return proc_doulongvec_minmax(&dup_table, write, buffer, length, ppos);
3386 }
3387
3388 static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
3389                          struct ctl_table *table, int write,
3390                          void *buffer, size_t *length, loff_t *ppos)
3391 {
3392         struct hstate *h = &default_hstate;
3393         unsigned long tmp = h->max_huge_pages;
3394         int ret;
3395
3396         if (!hugepages_supported())
3397                 return -EOPNOTSUPP;
3398
3399         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3400                                              &tmp);
3401         if (ret)
3402                 goto out;
3403
3404         if (write)
3405                 ret = __nr_hugepages_store_common(obey_mempolicy, h,
3406                                                   NUMA_NO_NODE, tmp, *length);
3407 out:
3408         return ret;
3409 }
3410
3411 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
3412                           void *buffer, size_t *length, loff_t *ppos)
3413 {
3414
3415         return hugetlb_sysctl_handler_common(false, table, write,
3416                                                         buffer, length, ppos);
3417 }
3418
3419 #ifdef CONFIG_NUMA
3420 int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
3421                           void *buffer, size_t *length, loff_t *ppos)
3422 {
3423         return hugetlb_sysctl_handler_common(true, table, write,
3424                                                         buffer, length, ppos);
3425 }
3426 #endif /* CONFIG_NUMA */
3427
3428 int hugetlb_overcommit_handler(struct ctl_table *table, int write,
3429                 void *buffer, size_t *length, loff_t *ppos)
3430 {
3431         struct hstate *h = &default_hstate;
3432         unsigned long tmp;
3433         int ret;
3434
3435         if (!hugepages_supported())
3436                 return -EOPNOTSUPP;
3437
3438         tmp = h->nr_overcommit_huge_pages;
3439
3440         if (write && hstate_is_gigantic(h))
3441                 return -EINVAL;
3442
3443         ret = proc_hugetlb_doulongvec_minmax(table, write, buffer, length, ppos,
3444                                              &tmp);
3445         if (ret)
3446                 goto out;
3447
3448         if (write) {
3449                 spin_lock(&hugetlb_lock);
3450                 h->nr_overcommit_huge_pages = tmp;
3451                 spin_unlock(&hugetlb_lock);
3452         }
3453 out:
3454         return ret;
3455 }
3456
3457 #endif /* CONFIG_SYSCTL */
3458
3459 void hugetlb_report_meminfo(struct seq_file *m)
3460 {
3461         struct hstate *h;
3462         unsigned long total = 0;
3463
3464         if (!hugepages_supported())
3465                 return;
3466
3467         for_each_hstate(h) {
3468                 unsigned long count = h->nr_huge_pages;
3469
3470                 total += huge_page_size(h) * count;
3471
3472                 if (h == &default_hstate)
3473                         seq_printf(m,
3474                                    "HugePages_Total:   %5lu\n"
3475                                    "HugePages_Free:    %5lu\n"
3476                                    "HugePages_Rsvd:    %5lu\n"
3477                                    "HugePages_Surp:    %5lu\n"
3478                                    "Hugepagesize:   %8lu kB\n",
3479                                    count,
3480                                    h->free_huge_pages,
3481                                    h->resv_huge_pages,
3482                                    h->surplus_huge_pages,
3483                                    huge_page_size(h) / SZ_1K);
3484         }
3485
3486         seq_printf(m, "Hugetlb:        %8lu kB\n", total / SZ_1K);
3487 }
3488
3489 int hugetlb_report_node_meminfo(char *buf, int len, int nid)
3490 {
3491         struct hstate *h = &default_hstate;
3492
3493         if (!hugepages_supported())
3494                 return 0;
3495
3496         return sysfs_emit_at(buf, len,
3497                              "Node %d HugePages_Total: %5u\n"
3498                              "Node %d HugePages_Free:  %5u\n"
3499                              "Node %d HugePages_Surp:  %5u\n",
3500                              nid, h->nr_huge_pages_node[nid],
3501                              nid, h->free_huge_pages_node[nid],
3502                              nid, h->surplus_huge_pages_node[nid]);
3503 }
3504
3505 void hugetlb_show_meminfo(void)
3506 {
3507         struct hstate *h;
3508         int nid;
3509
3510         if (!hugepages_supported())
3511                 return;
3512
3513         for_each_node_state(nid, N_MEMORY)
3514                 for_each_hstate(h)
3515                         pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3516                                 nid,
3517                                 h->nr_huge_pages_node[nid],
3518                                 h->free_huge_pages_node[nid],
3519                                 h->surplus_huge_pages_node[nid],
3520                                 huge_page_size(h) / SZ_1K);
3521 }
3522
3523 void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3524 {
3525         seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3526                    atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3527 }
3528
3529 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3530 unsigned long hugetlb_total_pages(void)
3531 {
3532         struct hstate *h;
3533         unsigned long nr_total_pages = 0;
3534
3535         for_each_hstate(h)
3536                 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3537         return nr_total_pages;
3538 }
3539
3540 static int hugetlb_acct_memory(struct hstate *h, long delta)
3541 {
3542         int ret = -ENOMEM;
3543
3544         if (!delta)
3545                 return 0;
3546
3547         spin_lock(&hugetlb_lock);
3548         /*
3549          * When cpuset is configured, it breaks the strict hugetlb page
3550          * reservation as the accounting is done on a global variable. Such
3551          * reservation is completely rubbish in the presence of cpuset because
3552          * the reservation is not checked against page availability for the
3553          * current cpuset. Application can still potentially OOM'ed by kernel
3554          * with lack of free htlb page in cpuset that the task is in.
3555          * Attempt to enforce strict accounting with cpuset is almost
3556          * impossible (or too ugly) because cpuset is too fluid that
3557          * task or memory node can be dynamically moved between cpusets.
3558          *
3559          * The change of semantics for shared hugetlb mapping with cpuset is
3560          * undesirable. However, in order to preserve some of the semantics,
3561          * we fall back to check against current free page availability as
3562          * a best attempt and hopefully to minimize the impact of changing
3563          * semantics that cpuset has.
3564          *
3565          * Apart from cpuset, we also have memory policy mechanism that
3566          * also determines from which node the kernel will allocate memory
3567          * in a NUMA system. So similar to cpuset, we also should consider
3568          * the memory policy of the current task. Similar to the description
3569          * above.
3570          */
3571         if (delta > 0) {
3572                 if (gather_surplus_pages(h, delta) < 0)
3573                         goto out;
3574
3575                 if (delta > allowed_mems_nr(h)) {
3576                         return_unused_surplus_pages(h, delta);
3577                         goto out;
3578                 }
3579         }
3580
3581         ret = 0;
3582         if (delta < 0)
3583                 return_unused_surplus_pages(h, (unsigned long) -delta);
3584
3585 out:
3586         spin_unlock(&hugetlb_lock);
3587         return ret;
3588 }
3589
3590 static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3591 {
3592         struct resv_map *resv = vma_resv_map(vma);
3593
3594         /*
3595          * This new VMA should share its siblings reservation map if present.
3596          * The VMA will only ever have a valid reservation map pointer where
3597          * it is being copied for another still existing VMA.  As that VMA
3598          * has a reference to the reservation map it cannot disappear until
3599          * after this open call completes.  It is therefore safe to take a
3600          * new reference here without additional locking.
3601          */
3602         if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3603                 kref_get(&resv->refs);
3604 }
3605
3606 static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3607 {
3608         struct hstate *h = hstate_vma(vma);
3609         struct resv_map *resv = vma_resv_map(vma);
3610         struct hugepage_subpool *spool = subpool_vma(vma);
3611         unsigned long reserve, start, end;
3612         long gbl_reserve;
3613
3614         if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3615                 return;
3616
3617         start = vma_hugecache_offset(h, vma, vma->vm_start);
3618         end = vma_hugecache_offset(h, vma, vma->vm_end);
3619
3620         reserve = (end - start) - region_count(resv, start, end);
3621         hugetlb_cgroup_uncharge_counter(resv, start, end);
3622         if (reserve) {
3623                 /*
3624                  * Decrement reserve counts.  The global reserve count may be
3625                  * adjusted if the subpool has a minimum size.
3626                  */
3627                 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3628                 hugetlb_acct_memory(h, -gbl_reserve);
3629         }
3630
3631         kref_put(&resv->refs, resv_map_release);
3632 }
3633
3634 static int hugetlb_vm_op_split(struct vm_area_struct *vma, unsigned long addr)
3635 {
3636         if (addr & ~(huge_page_mask(hstate_vma(vma))))
3637                 return -EINVAL;
3638         return 0;
3639 }
3640
3641 static unsigned long hugetlb_vm_op_pagesize(struct vm_area_struct *vma)
3642 {
3643         return huge_page_size(hstate_vma(vma));
3644 }
3645
3646 /*
3647  * We cannot handle pagefaults against hugetlb pages at all.  They cause
3648  * handle_mm_fault() to try to instantiate regular-sized pages in the
3649  * hugepage VMA.  do_page_fault() is supposed to trap this, so BUG is we get
3650  * this far.
3651  */
3652 static vm_fault_t hugetlb_vm_op_fault(struct vm_fault *vmf)
3653 {
3654         BUG();
3655         return 0;
3656 }
3657
3658 /*
3659  * When a new function is introduced to vm_operations_struct and added
3660  * to hugetlb_vm_ops, please consider adding the function to shm_vm_ops.
3661  * This is because under System V memory model, mappings created via
3662  * shmget/shmat with "huge page" specified are backed by hugetlbfs files,
3663  * their original vm_ops are overwritten with shm_vm_ops.
3664  */
3665 const struct vm_operations_struct hugetlb_vm_ops = {
3666         .fault = hugetlb_vm_op_fault,
3667         .open = hugetlb_vm_op_open,
3668         .close = hugetlb_vm_op_close,
3669         .may_split = hugetlb_vm_op_split,
3670         .pagesize = hugetlb_vm_op_pagesize,
3671 };
3672
3673 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3674                                 int writable)
3675 {
3676         pte_t entry;
3677
3678         if (writable) {
3679                 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3680                                          vma->vm_page_prot)));
3681         } else {
3682                 entry = huge_pte_wrprotect(mk_huge_pte(page,
3683                                            vma->vm_page_prot));
3684         }
3685         entry = pte_mkyoung(entry);
3686         entry = pte_mkhuge(entry);
3687         entry = arch_make_huge_pte(entry, vma, page, writable);
3688
3689         return entry;
3690 }
3691
3692 static void set_huge_ptep_writable(struct vm_area_struct *vma,
3693                                    unsigned long address, pte_t *ptep)
3694 {
3695         pte_t entry;
3696
3697         entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
3698         if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
3699                 update_mmu_cache(vma, address, ptep);
3700 }
3701
3702 bool is_hugetlb_entry_migration(pte_t pte)
3703 {
3704         swp_entry_t swp;
3705
3706         if (huge_pte_none(pte) || pte_present(pte))
3707                 return false;
3708         swp = pte_to_swp_entry(pte);
3709         if (is_migration_entry(swp))
3710                 return true;
3711         else
3712                 return false;
3713 }
3714
3715 static bool is_hugetlb_entry_hwpoisoned(pte_t pte)
3716 {
3717         swp_entry_t swp;
3718
3719         if (huge_pte_none(pte) || pte_present(pte))
3720                 return false;
3721         swp = pte_to_swp_entry(pte);
3722         if (is_hwpoison_entry(swp))
3723                 return true;
3724         else
3725                 return false;
3726 }
3727
3728 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3729                             struct vm_area_struct *vma)
3730 {
3731         pte_t *src_pte, *dst_pte, entry, dst_entry;
3732         struct page *ptepage;
3733         unsigned long addr;
3734         int cow;
3735         struct hstate *h = hstate_vma(vma);
3736         unsigned long sz = huge_page_size(h);
3737         struct address_space *mapping = vma->vm_file->f_mapping;
3738         struct mmu_notifier_range range;
3739         int ret = 0;
3740
3741         cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
3742
3743         if (cow) {
3744                 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, src,
3745                                         vma->vm_start,
3746                                         vma->vm_end);
3747                 mmu_notifier_invalidate_range_start(&range);
3748         } else {
3749                 /*
3750                  * For shared mappings i_mmap_rwsem must be held to call
3751                  * huge_pte_alloc, otherwise the returned ptep could go
3752                  * away if part of a shared pmd and another thread calls
3753                  * huge_pmd_unshare.
3754                  */
3755                 i_mmap_lock_read(mapping);
3756         }
3757
3758         for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
3759                 spinlock_t *src_ptl, *dst_ptl;
3760                 src_pte = huge_pte_offset(src, addr, sz);
3761                 if (!src_pte)
3762                         continue;
3763                 dst_pte = huge_pte_alloc(dst, addr, sz);
3764                 if (!dst_pte) {
3765                         ret = -ENOMEM;
3766                         break;
3767                 }
3768
3769                 /*
3770                  * If the pagetables are shared don't copy or take references.
3771                  * dst_pte == src_pte is the common case of src/dest sharing.
3772                  *
3773                  * However, src could have 'unshared' and dst shares with
3774                  * another vma.  If dst_pte !none, this implies sharing.
3775                  * Check here before taking page table lock, and once again
3776                  * after taking the lock below.
3777                  */
3778                 dst_entry = huge_ptep_get(dst_pte);
3779                 if ((dst_pte == src_pte) || !huge_pte_none(dst_entry))
3780                         continue;
3781
3782                 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3783                 src_ptl = huge_pte_lockptr(h, src, src_pte);
3784                 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
3785                 entry = huge_ptep_get(src_pte);
3786                 dst_entry = huge_ptep_get(dst_pte);
3787                 if (huge_pte_none(entry) || !huge_pte_none(dst_entry)) {
3788                         /*
3789                          * Skip if src entry none.  Also, skip in the
3790                          * unlikely case dst entry !none as this implies
3791                          * sharing with another vma.
3792                          */
3793                         ;
3794                 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3795                                     is_hugetlb_entry_hwpoisoned(entry))) {
3796                         swp_entry_t swp_entry = pte_to_swp_entry(entry);
3797
3798                         if (is_write_migration_entry(swp_entry) && cow) {
3799                                 /*
3800                                  * COW mappings require pages in both
3801                                  * parent and child to be set to read.
3802                                  */
3803                                 make_migration_entry_read(&swp_entry);
3804                                 entry = swp_entry_to_pte(swp_entry);
3805                                 set_huge_swap_pte_at(src, addr, src_pte,
3806                                                      entry, sz);
3807                         }
3808                         set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
3809                 } else {
3810                         if (cow) {
3811                                 /*
3812                                  * No need to notify as we are downgrading page
3813                                  * table protection not changing it to point
3814                                  * to a new page.
3815                                  *
3816                                  * See Documentation/vm/mmu_notifier.rst
3817                                  */
3818                                 huge_ptep_set_wrprotect(src, addr, src_pte);
3819                         }
3820                         entry = huge_ptep_get(src_pte);
3821                         ptepage = pte_page(entry);
3822                         get_page(ptepage);
3823                         page_dup_rmap(ptepage, true);
3824                         set_huge_pte_at(dst, addr, dst_pte, entry);
3825                         hugetlb_count_add(pages_per_huge_page(h), dst);
3826                 }
3827                 spin_unlock(src_ptl);
3828                 spin_unlock(dst_ptl);
3829         }
3830
3831         if (cow)
3832                 mmu_notifier_invalidate_range_end(&range);
3833         else
3834                 i_mmap_unlock_read(mapping);
3835
3836         return ret;
3837 }
3838
3839 void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3840                             unsigned long start, unsigned long end,
3841                             struct page *ref_page)
3842 {
3843         struct mm_struct *mm = vma->vm_mm;
3844         unsigned long address;
3845         pte_t *ptep;
3846         pte_t pte;
3847         spinlock_t *ptl;
3848         struct page *page;
3849         struct hstate *h = hstate_vma(vma);
3850         unsigned long sz = huge_page_size(h);
3851         struct mmu_notifier_range range;
3852
3853         WARN_ON(!is_vm_hugetlb_page(vma));
3854         BUG_ON(start & ~huge_page_mask(h));
3855         BUG_ON(end & ~huge_page_mask(h));
3856
3857         /*
3858          * This is a hugetlb vma, all the pte entries should point
3859          * to huge page.
3860          */
3861         tlb_change_page_size(tlb, sz);
3862         tlb_start_vma(tlb, vma);
3863
3864         /*
3865          * If sharing possible, alert mmu notifiers of worst case.
3866          */
3867         mmu_notifier_range_init(&range, MMU_NOTIFY_UNMAP, 0, vma, mm, start,
3868                                 end);
3869         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
3870         mmu_notifier_invalidate_range_start(&range);
3871         address = start;
3872         for (; address < end; address += sz) {
3873                 ptep = huge_pte_offset(mm, address, sz);
3874                 if (!ptep)
3875                         continue;
3876
3877                 ptl = huge_pte_lock(h, mm, ptep);
3878                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
3879                         spin_unlock(ptl);
3880                         /*
3881                          * We just unmapped a page of PMDs by clearing a PUD.
3882                          * The caller's TLB flush range should cover this area.
3883                          */
3884                         continue;
3885                 }
3886
3887                 pte = huge_ptep_get(ptep);
3888                 if (huge_pte_none(pte)) {
3889                         spin_unlock(ptl);
3890                         continue;
3891                 }
3892
3893                 /*
3894                  * Migrating hugepage or HWPoisoned hugepage is already
3895                  * unmapped and its refcount is dropped, so just clear pte here.
3896                  */
3897                 if (unlikely(!pte_present(pte))) {
3898                         huge_pte_clear(mm, address, ptep, sz);
3899                         spin_unlock(ptl);
3900                         continue;
3901                 }
3902
3903                 page = pte_page(pte);
3904                 /*
3905                  * If a reference page is supplied, it is because a specific
3906                  * page is being unmapped, not a range. Ensure the page we
3907                  * are about to unmap is the actual page of interest.
3908                  */
3909                 if (ref_page) {
3910                         if (page != ref_page) {
3911                                 spin_unlock(ptl);
3912                                 continue;
3913                         }
3914                         /*
3915                          * Mark the VMA as having unmapped its page so that
3916                          * future faults in this VMA will fail rather than
3917                          * looking like data was lost
3918                          */
3919                         set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3920                 }
3921
3922                 pte = huge_ptep_get_and_clear(mm, address, ptep);
3923                 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
3924                 if (huge_pte_dirty(pte))
3925                         set_page_dirty(page);
3926
3927                 hugetlb_count_sub(pages_per_huge_page(h), mm);
3928                 page_remove_rmap(page, true);
3929
3930                 spin_unlock(ptl);
3931                 tlb_remove_page_size(tlb, page, huge_page_size(h));
3932                 /*
3933                  * Bail out after unmapping reference page if supplied
3934                  */
3935                 if (ref_page)
3936                         break;
3937         }
3938         mmu_notifier_invalidate_range_end(&range);
3939         tlb_end_vma(tlb, vma);
3940 }
3941
3942 void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3943                           struct vm_area_struct *vma, unsigned long start,
3944                           unsigned long end, struct page *ref_page)
3945 {
3946         __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3947
3948         /*
3949          * Clear this flag so that x86's huge_pmd_share page_table_shareable
3950          * test will fail on a vma being torn down, and not grab a page table
3951          * on its way out.  We're lucky that the flag has such an appropriate
3952          * name, and can in fact be safely cleared here. We could clear it
3953          * before the __unmap_hugepage_range above, but all that's necessary
3954          * is to clear it before releasing the i_mmap_rwsem. This works
3955          * because in the context this is called, the VMA is about to be
3956          * destroyed and the i_mmap_rwsem is held.
3957          */
3958         vma->vm_flags &= ~VM_MAYSHARE;
3959 }
3960
3961 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
3962                           unsigned long end, struct page *ref_page)
3963 {
3964         struct mmu_gather tlb;
3965
3966         tlb_gather_mmu(&tlb, vma->vm_mm);
3967         __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3968         tlb_finish_mmu(&tlb);
3969 }
3970
3971 /*
3972  * This is called when the original mapper is failing to COW a MAP_PRIVATE
3973  * mapping it owns the reserve page for. The intention is to unmap the page
3974  * from other VMAs and let the children be SIGKILLed if they are faulting the
3975  * same region.
3976  */
3977 static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3978                               struct page *page, unsigned long address)
3979 {
3980         struct hstate *h = hstate_vma(vma);
3981         struct vm_area_struct *iter_vma;
3982         struct address_space *mapping;
3983         pgoff_t pgoff;
3984
3985         /*
3986          * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3987          * from page cache lookup which is in HPAGE_SIZE units.
3988          */
3989         address = address & huge_page_mask(h);
3990         pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3991                         vma->vm_pgoff;
3992         mapping = vma->vm_file->f_mapping;
3993
3994         /*
3995          * Take the mapping lock for the duration of the table walk. As
3996          * this mapping should be shared between all the VMAs,
3997          * __unmap_hugepage_range() is called as the lock is already held
3998          */
3999         i_mmap_lock_write(mapping);
4000         vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
4001                 /* Do not unmap the current VMA */
4002                 if (iter_vma == vma)
4003                         continue;
4004
4005                 /*
4006                  * Shared VMAs have their own reserves and do not affect
4007                  * MAP_PRIVATE accounting but it is possible that a shared
4008                  * VMA is using the same page so check and skip such VMAs.
4009                  */
4010                 if (iter_vma->vm_flags & VM_MAYSHARE)
4011                         continue;
4012
4013                 /*
4014                  * Unmap the page from other VMAs without their own reserves.
4015                  * They get marked to be SIGKILLed if they fault in these
4016                  * areas. This is because a future no-page fault on this VMA
4017                  * could insert a zeroed page instead of the data existing
4018                  * from the time of fork. This would look like data corruption
4019                  */
4020                 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
4021                         unmap_hugepage_range(iter_vma, address,
4022                                              address + huge_page_size(h), page);
4023         }
4024         i_mmap_unlock_write(mapping);
4025 }
4026
4027 /*
4028  * Hugetlb_cow() should be called with page lock of the original hugepage held.
4029  * Called with hugetlb_instantiation_mutex held and pte_page locked so we
4030  * cannot race with other handlers or page migration.
4031  * Keep the pte_same checks anyway to make transition from the mutex easier.
4032  */
4033 static vm_fault_t hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
4034                        unsigned long address, pte_t *ptep,
4035                        struct page *pagecache_page, spinlock_t *ptl)
4036 {
4037         pte_t pte;
4038         struct hstate *h = hstate_vma(vma);
4039         struct page *old_page, *new_page;
4040         int outside_reserve = 0;
4041         vm_fault_t ret = 0;
4042         unsigned long haddr = address & huge_page_mask(h);
4043         struct mmu_notifier_range range;
4044
4045         pte = huge_ptep_get(ptep);
4046         old_page = pte_page(pte);
4047
4048 retry_avoidcopy:
4049         /* If no-one else is actually using this page, avoid the copy
4050          * and just make the page writable */
4051         if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
4052                 page_move_anon_rmap(old_page, vma);
4053                 set_huge_ptep_writable(vma, haddr, ptep);
4054                 return 0;
4055         }
4056
4057         /*
4058          * If the process that created a MAP_PRIVATE mapping is about to
4059          * perform a COW due to a shared page count, attempt to satisfy
4060          * the allocation without using the existing reserves. The pagecache
4061          * page is used to determine if the reserve at this address was
4062          * consumed or not. If reserves were used, a partial faulted mapping
4063          * at the time of fork() could consume its reserves on COW instead
4064          * of the full address range.
4065          */
4066         if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
4067                         old_page != pagecache_page)
4068                 outside_reserve = 1;
4069
4070         get_page(old_page);
4071
4072         /*
4073          * Drop page table lock as buddy allocator may be called. It will
4074          * be acquired again before returning to the caller, as expected.
4075          */
4076         spin_unlock(ptl);
4077         new_page = alloc_huge_page(vma, haddr, outside_reserve);
4078
4079         if (IS_ERR(new_page)) {
4080                 /*
4081                  * If a process owning a MAP_PRIVATE mapping fails to COW,
4082                  * it is due to references held by a child and an insufficient
4083                  * huge page pool. To guarantee the original mappers
4084                  * reliability, unmap the page from child processes. The child
4085                  * may get SIGKILLed if it later faults.
4086                  */
4087                 if (outside_reserve) {
4088                         struct address_space *mapping = vma->vm_file->f_mapping;
4089                         pgoff_t idx;
4090                         u32 hash;
4091
4092                         put_page(old_page);
4093                         BUG_ON(huge_pte_none(pte));
4094                         /*
4095                          * Drop hugetlb_fault_mutex and i_mmap_rwsem before
4096                          * unmapping.  unmapping needs to hold i_mmap_rwsem
4097                          * in write mode.  Dropping i_mmap_rwsem in read mode
4098                          * here is OK as COW mappings do not interact with
4099                          * PMD sharing.
4100                          *
4101                          * Reacquire both after unmap operation.
4102                          */
4103                         idx = vma_hugecache_offset(h, vma, haddr);
4104                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4105                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4106                         i_mmap_unlock_read(mapping);
4107
4108                         unmap_ref_private(mm, vma, old_page, haddr);
4109
4110                         i_mmap_lock_read(mapping);
4111                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4112                         spin_lock(ptl);
4113                         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4114                         if (likely(ptep &&
4115                                    pte_same(huge_ptep_get(ptep), pte)))
4116                                 goto retry_avoidcopy;
4117                         /*
4118                          * race occurs while re-acquiring page table
4119                          * lock, and our job is done.
4120                          */
4121                         return 0;
4122                 }
4123
4124                 ret = vmf_error(PTR_ERR(new_page));
4125                 goto out_release_old;
4126         }
4127
4128         /*
4129          * When the original hugepage is shared one, it does not have
4130          * anon_vma prepared.
4131          */
4132         if (unlikely(anon_vma_prepare(vma))) {
4133                 ret = VM_FAULT_OOM;
4134                 goto out_release_all;
4135         }
4136
4137         copy_user_huge_page(new_page, old_page, address, vma,
4138                             pages_per_huge_page(h));
4139         __SetPageUptodate(new_page);
4140
4141         mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, mm, haddr,
4142                                 haddr + huge_page_size(h));
4143         mmu_notifier_invalidate_range_start(&range);
4144
4145         /*
4146          * Retake the page table lock to check for racing updates
4147          * before the page tables are altered
4148          */
4149         spin_lock(ptl);
4150         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4151         if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
4152                 ClearHPageRestoreReserve(new_page);
4153
4154                 /* Break COW */
4155                 huge_ptep_clear_flush(vma, haddr, ptep);
4156                 mmu_notifier_invalidate_range(mm, range.start, range.end);
4157                 set_huge_pte_at(mm, haddr, ptep,
4158                                 make_huge_pte(vma, new_page, 1));
4159                 page_remove_rmap(old_page, true);
4160                 hugepage_add_new_anon_rmap(new_page, vma, haddr);
4161                 SetHPageMigratable(new_page);
4162                 /* Make the old page be freed below */
4163                 new_page = old_page;
4164         }
4165         spin_unlock(ptl);
4166         mmu_notifier_invalidate_range_end(&range);
4167 out_release_all:
4168         restore_reserve_on_error(h, vma, haddr, new_page);
4169         put_page(new_page);
4170 out_release_old:
4171         put_page(old_page);
4172
4173         spin_lock(ptl); /* Caller expects lock to be held */
4174         return ret;
4175 }
4176
4177 /* Return the pagecache page at a given address within a VMA */
4178 static struct page *hugetlbfs_pagecache_page(struct hstate *h,
4179                         struct vm_area_struct *vma, unsigned long address)
4180 {
4181         struct address_space *mapping;
4182         pgoff_t idx;
4183
4184         mapping = vma->vm_file->f_mapping;
4185         idx = vma_hugecache_offset(h, vma, address);
4186
4187         return find_lock_page(mapping, idx);
4188 }
4189
4190 /*
4191  * Return whether there is a pagecache page to back given address within VMA.
4192  * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
4193  */
4194 static bool hugetlbfs_pagecache_present(struct hstate *h,
4195                         struct vm_area_struct *vma, unsigned long address)
4196 {
4197         struct address_space *mapping;
4198         pgoff_t idx;
4199         struct page *page;
4200
4201         mapping = vma->vm_file->f_mapping;
4202         idx = vma_hugecache_offset(h, vma, address);
4203
4204         page = find_get_page(mapping, idx);
4205         if (page)
4206                 put_page(page);
4207         return page != NULL;
4208 }
4209
4210 int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
4211                            pgoff_t idx)
4212 {
4213         struct inode *inode = mapping->host;
4214         struct hstate *h = hstate_inode(inode);
4215         int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
4216
4217         if (err)
4218                 return err;
4219         ClearHPageRestoreReserve(page);
4220
4221         /*
4222          * set page dirty so that it will not be removed from cache/file
4223          * by non-hugetlbfs specific code paths.
4224          */
4225         set_page_dirty(page);
4226
4227         spin_lock(&inode->i_lock);
4228         inode->i_blocks += blocks_per_huge_page(h);
4229         spin_unlock(&inode->i_lock);
4230         return 0;
4231 }
4232
4233 static vm_fault_t hugetlb_no_page(struct mm_struct *mm,
4234                         struct vm_area_struct *vma,
4235                         struct address_space *mapping, pgoff_t idx,
4236                         unsigned long address, pte_t *ptep, unsigned int flags)
4237 {
4238         struct hstate *h = hstate_vma(vma);
4239         vm_fault_t ret = VM_FAULT_SIGBUS;
4240         int anon_rmap = 0;
4241         unsigned long size;
4242         struct page *page;
4243         pte_t new_pte;
4244         spinlock_t *ptl;
4245         unsigned long haddr = address & huge_page_mask(h);
4246         bool new_page = false;
4247
4248         /*
4249          * Currently, we are forced to kill the process in the event the
4250          * original mapper has unmapped pages from the child due to a failed
4251          * COW. Warn that such a situation has occurred as it may not be obvious
4252          */
4253         if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
4254                 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
4255                            current->pid);
4256                 return ret;
4257         }
4258
4259         /*
4260          * We can not race with truncation due to holding i_mmap_rwsem.
4261          * i_size is modified when holding i_mmap_rwsem, so check here
4262          * once for faults beyond end of file.
4263          */
4264         size = i_size_read(mapping->host) >> huge_page_shift(h);
4265         if (idx >= size)
4266                 goto out;
4267
4268 retry:
4269         page = find_lock_page(mapping, idx);
4270         if (!page) {
4271                 /*
4272                  * Check for page in userfault range
4273                  */
4274                 if (userfaultfd_missing(vma)) {
4275                         u32 hash;
4276                         struct vm_fault vmf = {
4277                                 .vma = vma,
4278                                 .address = haddr,
4279                                 .flags = flags,
4280                                 /*
4281                                  * Hard to debug if it ends up being
4282                                  * used by a callee that assumes
4283                                  * something about the other
4284                                  * uninitialized fields... same as in
4285                                  * memory.c
4286                                  */
4287                         };
4288
4289                         /*
4290                          * hugetlb_fault_mutex and i_mmap_rwsem must be
4291                          * dropped before handling userfault.  Reacquire
4292                          * after handling fault to make calling code simpler.
4293                          */
4294                         hash = hugetlb_fault_mutex_hash(mapping, idx);
4295                         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4296                         i_mmap_unlock_read(mapping);
4297                         ret = handle_userfault(&vmf, VM_UFFD_MISSING);
4298                         i_mmap_lock_read(mapping);
4299                         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4300                         goto out;
4301                 }
4302
4303                 page = alloc_huge_page(vma, haddr, 0);
4304                 if (IS_ERR(page)) {
4305                         /*
4306                          * Returning error will result in faulting task being
4307                          * sent SIGBUS.  The hugetlb fault mutex prevents two
4308                          * tasks from racing to fault in the same page which
4309                          * could result in false unable to allocate errors.
4310                          * Page migration does not take the fault mutex, but
4311                          * does a clear then write of pte's under page table
4312                          * lock.  Page fault code could race with migration,
4313                          * notice the clear pte and try to allocate a page
4314                          * here.  Before returning error, get ptl and make
4315                          * sure there really is no pte entry.
4316                          */
4317                         ptl = huge_pte_lock(h, mm, ptep);
4318                         if (!huge_pte_none(huge_ptep_get(ptep))) {
4319                                 ret = 0;
4320                                 spin_unlock(ptl);
4321                                 goto out;
4322                         }
4323                         spin_unlock(ptl);
4324                         ret = vmf_error(PTR_ERR(page));
4325                         goto out;
4326                 }
4327                 clear_huge_page(page, address, pages_per_huge_page(h));
4328                 __SetPageUptodate(page);
4329                 new_page = true;
4330
4331                 if (vma->vm_flags & VM_MAYSHARE) {
4332                         int err = huge_add_to_page_cache(page, mapping, idx);
4333                         if (err) {
4334                                 put_page(page);
4335                                 if (err == -EEXIST)
4336                                         goto retry;
4337                                 goto out;
4338                         }
4339                 } else {
4340                         lock_page(page);
4341                         if (unlikely(anon_vma_prepare(vma))) {
4342                                 ret = VM_FAULT_OOM;
4343                                 goto backout_unlocked;
4344                         }
4345                         anon_rmap = 1;
4346                 }
4347         } else {
4348                 /*
4349                  * If memory error occurs between mmap() and fault, some process
4350                  * don't have hwpoisoned swap entry for errored virtual address.
4351                  * So we need to block hugepage fault by PG_hwpoison bit check.
4352                  */
4353                 if (unlikely(PageHWPoison(page))) {
4354                         ret = VM_FAULT_HWPOISON_LARGE |
4355                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4356                         goto backout_unlocked;
4357                 }
4358         }
4359
4360         /*
4361          * If we are going to COW a private mapping later, we examine the
4362          * pending reservations for this page now. This will ensure that
4363          * any allocations necessary to record that reservation occur outside
4364          * the spinlock.
4365          */
4366         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4367                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4368                         ret = VM_FAULT_OOM;
4369                         goto backout_unlocked;
4370                 }
4371                 /* Just decrements count, does not deallocate */
4372                 vma_end_reservation(h, vma, haddr);
4373         }
4374
4375         ptl = huge_pte_lock(h, mm, ptep);
4376         ret = 0;
4377         if (!huge_pte_none(huge_ptep_get(ptep)))
4378                 goto backout;
4379
4380         if (anon_rmap) {
4381                 ClearHPageRestoreReserve(page);
4382                 hugepage_add_new_anon_rmap(page, vma, haddr);
4383         } else
4384                 page_dup_rmap(page, true);
4385         new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
4386                                 && (vma->vm_flags & VM_SHARED)));
4387         set_huge_pte_at(mm, haddr, ptep, new_pte);
4388
4389         hugetlb_count_add(pages_per_huge_page(h), mm);
4390         if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
4391                 /* Optimization, do the COW without a second fault */
4392                 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
4393         }
4394
4395         spin_unlock(ptl);
4396
4397         /*
4398          * Only set HPageMigratable in newly allocated pages.  Existing pages
4399          * found in the pagecache may not have HPageMigratableset if they have
4400          * been isolated for migration.
4401          */
4402         if (new_page)
4403                 SetHPageMigratable(page);
4404
4405         unlock_page(page);
4406 out:
4407         return ret;
4408
4409 backout:
4410         spin_unlock(ptl);
4411 backout_unlocked:
4412         unlock_page(page);
4413         restore_reserve_on_error(h, vma, haddr, page);
4414         put_page(page);
4415         goto out;
4416 }
4417
4418 #ifdef CONFIG_SMP
4419 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4420 {
4421         unsigned long key[2];
4422         u32 hash;
4423
4424         key[0] = (unsigned long) mapping;
4425         key[1] = idx;
4426
4427         hash = jhash2((u32 *)&key, sizeof(key)/(sizeof(u32)), 0);
4428
4429         return hash & (num_fault_mutexes - 1);
4430 }
4431 #else
4432 /*
4433  * For uniprocessor systems we always use a single mutex, so just
4434  * return 0 and avoid the hashing overhead.
4435  */
4436 u32 hugetlb_fault_mutex_hash(struct address_space *mapping, pgoff_t idx)
4437 {
4438         return 0;
4439 }
4440 #endif
4441
4442 vm_fault_t hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
4443                         unsigned long address, unsigned int flags)
4444 {
4445         pte_t *ptep, entry;
4446         spinlock_t *ptl;
4447         vm_fault_t ret;
4448         u32 hash;
4449         pgoff_t idx;
4450         struct page *page = NULL;
4451         struct page *pagecache_page = NULL;
4452         struct hstate *h = hstate_vma(vma);
4453         struct address_space *mapping;
4454         int need_wait_lock = 0;
4455         unsigned long haddr = address & huge_page_mask(h);
4456
4457         ptep = huge_pte_offset(mm, haddr, huge_page_size(h));
4458         if (ptep) {
4459                 /*
4460                  * Since we hold no locks, ptep could be stale.  That is
4461                  * OK as we are only making decisions based on content and
4462                  * not actually modifying content here.
4463                  */
4464                 entry = huge_ptep_get(ptep);
4465                 if (unlikely(is_hugetlb_entry_migration(entry))) {
4466                         migration_entry_wait_huge(vma, mm, ptep);
4467                         return 0;
4468                 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
4469                         return VM_FAULT_HWPOISON_LARGE |
4470                                 VM_FAULT_SET_HINDEX(hstate_index(h));
4471         }
4472
4473         /*
4474          * Acquire i_mmap_rwsem before calling huge_pte_alloc and hold
4475          * until finished with ptep.  This serves two purposes:
4476          * 1) It prevents huge_pmd_unshare from being called elsewhere
4477          *    and making the ptep no longer valid.
4478          * 2) It synchronizes us with i_size modifications during truncation.
4479          *
4480          * ptep could have already be assigned via huge_pte_offset.  That
4481          * is OK, as huge_pte_alloc will return the same value unless
4482          * something has changed.
4483          */
4484         mapping = vma->vm_file->f_mapping;
4485         i_mmap_lock_read(mapping);
4486         ptep = huge_pte_alloc(mm, haddr, huge_page_size(h));
4487         if (!ptep) {
4488                 i_mmap_unlock_read(mapping);
4489                 return VM_FAULT_OOM;
4490         }
4491
4492         /*
4493          * Serialize hugepage allocation and instantiation, so that we don't
4494          * get spurious allocation failures if two CPUs race to instantiate
4495          * the same page in the page cache.
4496          */
4497         idx = vma_hugecache_offset(h, vma, haddr);
4498         hash = hugetlb_fault_mutex_hash(mapping, idx);
4499         mutex_lock(&hugetlb_fault_mutex_table[hash]);
4500
4501         entry = huge_ptep_get(ptep);
4502         if (huge_pte_none(entry)) {
4503                 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
4504                 goto out_mutex;
4505         }
4506
4507         ret = 0;
4508
4509         /*
4510          * entry could be a migration/hwpoison entry at this point, so this
4511          * check prevents the kernel from going below assuming that we have
4512          * an active hugepage in pagecache. This goto expects the 2nd page
4513          * fault, and is_hugetlb_entry_(migration|hwpoisoned) check will
4514          * properly handle it.
4515          */
4516         if (!pte_present(entry))
4517                 goto out_mutex;
4518
4519         /*
4520          * If we are going to COW the mapping later, we examine the pending
4521          * reservations for this page now. This will ensure that any
4522          * allocations necessary to record that reservation occur outside the
4523          * spinlock. For private mappings, we also lookup the pagecache
4524          * page now as it is used to determine if a reservation has been
4525          * consumed.
4526          */
4527         if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
4528                 if (vma_needs_reservation(h, vma, haddr) < 0) {
4529                         ret = VM_FAULT_OOM;
4530                         goto out_mutex;
4531                 }
4532                 /* Just decrements count, does not deallocate */
4533                 vma_end_reservation(h, vma, haddr);
4534
4535                 if (!(vma->vm_flags & VM_MAYSHARE))
4536                         pagecache_page = hugetlbfs_pagecache_page(h,
4537                                                                 vma, haddr);
4538         }
4539
4540         ptl = huge_pte_lock(h, mm, ptep);
4541
4542         /* Check for a racing update before calling hugetlb_cow */
4543         if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
4544                 goto out_ptl;
4545
4546         /*
4547          * hugetlb_cow() requires page locks of pte_page(entry) and
4548          * pagecache_page, so here we need take the former one
4549          * when page != pagecache_page or !pagecache_page.
4550          */
4551         page = pte_page(entry);
4552         if (page != pagecache_page)
4553                 if (!trylock_page(page)) {
4554                         need_wait_lock = 1;
4555                         goto out_ptl;
4556                 }
4557
4558         get_page(page);
4559
4560         if (flags & FAULT_FLAG_WRITE) {
4561                 if (!huge_pte_write(entry)) {
4562                         ret = hugetlb_cow(mm, vma, address, ptep,
4563                                           pagecache_page, ptl);
4564                         goto out_put_page;
4565                 }
4566                 entry = huge_pte_mkdirty(entry);
4567         }
4568         entry = pte_mkyoung(entry);
4569         if (huge_ptep_set_access_flags(vma, haddr, ptep, entry,
4570                                                 flags & FAULT_FLAG_WRITE))
4571                 update_mmu_cache(vma, haddr, ptep);
4572 out_put_page:
4573         if (page != pagecache_page)
4574                 unlock_page(page);
4575         put_page(page);
4576 out_ptl:
4577         spin_unlock(ptl);
4578
4579         if (pagecache_page) {
4580                 unlock_page(pagecache_page);
4581                 put_page(pagecache_page);
4582         }
4583 out_mutex:
4584         mutex_unlock(&hugetlb_fault_mutex_table[hash]);
4585         i_mmap_unlock_read(mapping);
4586         /*
4587          * Generally it's safe to hold refcount during waiting page lock. But
4588          * here we just wait to defer the next page fault to avoid busy loop and
4589          * the page is not used after unlocked before returning from the current
4590          * page fault. So we are safe from accessing freed page, even if we wait
4591          * here without taking refcount.
4592          */
4593         if (need_wait_lock)
4594                 wait_on_page_locked(page);
4595         return ret;
4596 }
4597
4598 /*
4599  * Used by userfaultfd UFFDIO_COPY.  Based on mcopy_atomic_pte with
4600  * modifications for huge pages.
4601  */
4602 int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
4603                             pte_t *dst_pte,
4604                             struct vm_area_struct *dst_vma,
4605                             unsigned long dst_addr,
4606                             unsigned long src_addr,
4607                             struct page **pagep)
4608 {
4609         struct address_space *mapping;
4610         pgoff_t idx;
4611         unsigned long size;
4612         int vm_shared = dst_vma->vm_flags & VM_SHARED;
4613         struct hstate *h = hstate_vma(dst_vma);
4614         pte_t _dst_pte;
4615         spinlock_t *ptl;
4616         int ret;
4617         struct page *page;
4618
4619         if (!*pagep) {
4620                 ret = -ENOMEM;
4621                 page = alloc_huge_page(dst_vma, dst_addr, 0);
4622                 if (IS_ERR(page))
4623                         goto out;
4624
4625                 ret = copy_huge_page_from_user(page,
4626                                                 (const void __user *) src_addr,
4627                                                 pages_per_huge_page(h), false);
4628
4629                 /* fallback to copy_from_user outside mmap_lock */
4630                 if (unlikely(ret)) {
4631                         ret = -ENOENT;
4632                         *pagep = page;
4633                         /* don't free the page */
4634                         goto out;
4635                 }
4636         } else {
4637                 page = *pagep;
4638                 *pagep = NULL;
4639         }
4640
4641         /*
4642          * The memory barrier inside __SetPageUptodate makes sure that
4643          * preceding stores to the page contents become visible before
4644          * the set_pte_at() write.
4645          */
4646         __SetPageUptodate(page);
4647
4648         mapping = dst_vma->vm_file->f_mapping;
4649         idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4650
4651         /*
4652          * If shared, add to page cache
4653          */
4654         if (vm_shared) {
4655                 size = i_size_read(mapping->host) >> huge_page_shift(h);
4656                 ret = -EFAULT;
4657                 if (idx >= size)
4658                         goto out_release_nounlock;
4659
4660                 /*
4661                  * Serialization between remove_inode_hugepages() and
4662                  * huge_add_to_page_cache() below happens through the
4663                  * hugetlb_fault_mutex_table that here must be hold by
4664                  * the caller.
4665                  */
4666                 ret = huge_add_to_page_cache(page, mapping, idx);
4667                 if (ret)
4668                         goto out_release_nounlock;
4669         }
4670
4671         ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4672         spin_lock(ptl);
4673
4674         /*
4675          * Recheck the i_size after holding PT lock to make sure not
4676          * to leave any page mapped (as page_mapped()) beyond the end
4677          * of the i_size (remove_inode_hugepages() is strict about
4678          * enforcing that). If we bail out here, we'll also leave a
4679          * page in the radix tree in the vm_shared case beyond the end
4680          * of the i_size, but remove_inode_hugepages() will take care
4681          * of it as soon as we drop the hugetlb_fault_mutex_table.
4682          */
4683         size = i_size_read(mapping->host) >> huge_page_shift(h);
4684         ret = -EFAULT;
4685         if (idx >= size)
4686                 goto out_release_unlock;
4687
4688         ret = -EEXIST;
4689         if (!huge_pte_none(huge_ptep_get(dst_pte)))
4690                 goto out_release_unlock;
4691
4692         if (vm_shared) {
4693                 page_dup_rmap(page, true);
4694         } else {
4695                 ClearHPageRestoreReserve(page);
4696                 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4697         }
4698
4699         _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4700         if (dst_vma->vm_flags & VM_WRITE)
4701                 _dst_pte = huge_pte_mkdirty(_dst_pte);
4702         _dst_pte = pte_mkyoung(_dst_pte);
4703
4704         set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4705
4706         (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4707                                         dst_vma->vm_flags & VM_WRITE);
4708         hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4709
4710         /* No need to invalidate - it was non-present before */
4711         update_mmu_cache(dst_vma, dst_addr, dst_pte);
4712
4713         spin_unlock(ptl);
4714         SetHPageMigratable(page);
4715         if (vm_shared)
4716                 unlock_page(page);
4717         ret = 0;
4718 out:
4719         return ret;
4720 out_release_unlock:
4721         spin_unlock(ptl);
4722         if (vm_shared)
4723                 unlock_page(page);
4724 out_release_nounlock:
4725         put_page(page);
4726         goto out;
4727 }
4728
4729 static void record_subpages_vmas(struct page *page, struct vm_area_struct *vma,
4730                                  int refs, struct page **pages,
4731                                  struct vm_area_struct **vmas)
4732 {
4733         int nr;
4734
4735         for (nr = 0; nr < refs; nr++) {
4736                 if (likely(pages))
4737                         pages[nr] = mem_map_offset(page, nr);
4738                 if (vmas)
4739                         vmas[nr] = vma;
4740         }
4741 }
4742
4743 long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4744                          struct page **pages, struct vm_area_struct **vmas,
4745                          unsigned long *position, unsigned long *nr_pages,
4746                          long i, unsigned int flags, int *locked)
4747 {
4748         unsigned long pfn_offset;
4749         unsigned long vaddr = *position;
4750         unsigned long remainder = *nr_pages;
4751         struct hstate *h = hstate_vma(vma);
4752         int err = -EFAULT, refs;
4753
4754         while (vaddr < vma->vm_end && remainder) {
4755                 pte_t *pte;
4756                 spinlock_t *ptl = NULL;
4757                 int absent;
4758                 struct page *page;
4759
4760                 /*
4761                  * If we have a pending SIGKILL, don't keep faulting pages and
4762                  * potentially allocating memory.
4763                  */
4764                 if (fatal_signal_pending(current)) {
4765                         remainder = 0;
4766                         break;
4767                 }
4768
4769                 /*
4770                  * Some archs (sparc64, sh*) have multiple pte_ts to
4771                  * each hugepage.  We have to make sure we get the
4772                  * first, for the page indexing below to work.
4773                  *
4774                  * Note that page table lock is not held when pte is null.
4775                  */
4776                 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4777                                       huge_page_size(h));
4778                 if (pte)
4779                         ptl = huge_pte_lock(h, mm, pte);
4780                 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4781
4782                 /*
4783                  * When coredumping, it suits get_dump_page if we just return
4784                  * an error where there's an empty slot with no huge pagecache
4785                  * to back it.  This way, we avoid allocating a hugepage, and
4786                  * the sparse dumpfile avoids allocating disk blocks, but its
4787                  * huge holes still show up with zeroes where they need to be.
4788                  */
4789                 if (absent && (flags & FOLL_DUMP) &&
4790                     !hugetlbfs_pagecache_present(h, vma, vaddr)) {
4791                         if (pte)
4792                                 spin_unlock(ptl);
4793                         remainder = 0;
4794                         break;
4795                 }
4796
4797                 /*
4798                  * We need call hugetlb_fault for both hugepages under migration
4799                  * (in which case hugetlb_fault waits for the migration,) and
4800                  * hwpoisoned hugepages (in which case we need to prevent the
4801                  * caller from accessing to them.) In order to do this, we use
4802                  * here is_swap_pte instead of is_hugetlb_entry_migration and
4803                  * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4804                  * both cases, and because we can't follow correct pages
4805                  * directly from any kind of swap entries.
4806                  */
4807                 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
4808                     ((flags & FOLL_WRITE) &&
4809                       !huge_pte_write(huge_ptep_get(pte)))) {
4810                         vm_fault_t ret;
4811                         unsigned int fault_flags = 0;
4812
4813                         if (pte)
4814                                 spin_unlock(ptl);
4815                         if (flags & FOLL_WRITE)
4816                                 fault_flags |= FAULT_FLAG_WRITE;
4817                         if (locked)
4818                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4819                                         FAULT_FLAG_KILLABLE;
4820                         if (flags & FOLL_NOWAIT)
4821                                 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4822                                         FAULT_FLAG_RETRY_NOWAIT;
4823                         if (flags & FOLL_TRIED) {
4824                                 /*
4825                                  * Note: FAULT_FLAG_ALLOW_RETRY and
4826                                  * FAULT_FLAG_TRIED can co-exist
4827                                  */
4828                                 fault_flags |= FAULT_FLAG_TRIED;
4829                         }
4830                         ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4831                         if (ret & VM_FAULT_ERROR) {
4832                                 err = vm_fault_to_errno(ret, flags);
4833                                 remainder = 0;
4834                                 break;
4835                         }
4836                         if (ret & VM_FAULT_RETRY) {
4837                                 if (locked &&
4838                                     !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
4839                                         *locked = 0;
4840                                 *nr_pages = 0;
4841                                 /*
4842                                  * VM_FAULT_RETRY must not return an
4843                                  * error, it will return zero
4844                                  * instead.
4845                                  *
4846                                  * No need to update "position" as the
4847                                  * caller will not check it after
4848                                  * *nr_pages is set to 0.
4849                                  */
4850                                 return i;
4851                         }
4852                         continue;
4853                 }
4854
4855                 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
4856                 page = pte_page(huge_ptep_get(pte));
4857
4858                 /*
4859                  * If subpage information not requested, update counters
4860                  * and skip the same_page loop below.
4861                  */
4862                 if (!pages && !vmas && !pfn_offset &&
4863                     (vaddr + huge_page_size(h) < vma->vm_end) &&
4864                     (remainder >= pages_per_huge_page(h))) {
4865                         vaddr += huge_page_size(h);
4866                         remainder -= pages_per_huge_page(h);
4867                         i += pages_per_huge_page(h);
4868                         spin_unlock(ptl);
4869                         continue;
4870                 }
4871
4872                 refs = min3(pages_per_huge_page(h) - pfn_offset,
4873                             (vma->vm_end - vaddr) >> PAGE_SHIFT, remainder);
4874
4875                 if (pages || vmas)
4876                         record_subpages_vmas(mem_map_offset(page, pfn_offset),
4877                                              vma, refs,
4878                                              likely(pages) ? pages + i : NULL,
4879                                              vmas ? vmas + i : NULL);
4880
4881                 if (pages) {
4882                         /*
4883                          * try_grab_compound_head() should always succeed here,
4884                          * because: a) we hold the ptl lock, and b) we've just
4885                          * checked that the huge page is present in the page
4886                          * tables. If the huge page is present, then the tail
4887                          * pages must also be present. The ptl prevents the
4888                          * head page and tail pages from being rearranged in
4889                          * any way. So this page must be available at this
4890                          * point, unless the page refcount overflowed:
4891                          */
4892                         if (WARN_ON_ONCE(!try_grab_compound_head(pages[i],
4893                                                                  refs,
4894                                                                  flags))) {
4895                                 spin_unlock(ptl);
4896                                 remainder = 0;
4897                                 err = -ENOMEM;
4898                                 break;
4899                         }
4900                 }
4901
4902                 vaddr += (refs << PAGE_SHIFT);
4903                 remainder -= refs;
4904                 i += refs;
4905
4906                 spin_unlock(ptl);
4907         }
4908         *nr_pages = remainder;
4909         /*
4910          * setting position is actually required only if remainder is
4911          * not zero but it's faster not to add a "if (remainder)"
4912          * branch.
4913          */
4914         *position = vaddr;
4915
4916         return i ? i : err;
4917 }
4918
4919 #ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4920 /*
4921  * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4922  * implement this.
4923  */
4924 #define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4925 #endif
4926
4927 unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
4928                 unsigned long address, unsigned long end, pgprot_t newprot)
4929 {
4930         struct mm_struct *mm = vma->vm_mm;
4931         unsigned long start = address;
4932         pte_t *ptep;
4933         pte_t pte;
4934         struct hstate *h = hstate_vma(vma);
4935         unsigned long pages = 0;
4936         bool shared_pmd = false;
4937         struct mmu_notifier_range range;
4938
4939         /*
4940          * In the case of shared PMDs, the area to flush could be beyond
4941          * start/end.  Set range.start/range.end to cover the maximum possible
4942          * range if PMD sharing is possible.
4943          */
4944         mmu_notifier_range_init(&range, MMU_NOTIFY_PROTECTION_VMA,
4945                                 0, vma, mm, start, end);
4946         adjust_range_if_pmd_sharing_possible(vma, &range.start, &range.end);
4947
4948         BUG_ON(address >= end);
4949         flush_cache_range(vma, range.start, range.end);
4950
4951         mmu_notifier_invalidate_range_start(&range);
4952         i_mmap_lock_write(vma->vm_file->f_mapping);
4953         for (; address < end; address += huge_page_size(h)) {
4954                 spinlock_t *ptl;
4955                 ptep = huge_pte_offset(mm, address, huge_page_size(h));
4956                 if (!ptep)
4957                         continue;
4958                 ptl = huge_pte_lock(h, mm, ptep);
4959                 if (huge_pmd_unshare(mm, vma, &address, ptep)) {
4960                         pages++;
4961                         spin_unlock(ptl);
4962                         shared_pmd = true;
4963                         continue;
4964                 }
4965                 pte = huge_ptep_get(ptep);
4966                 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4967                         spin_unlock(ptl);
4968                         continue;
4969                 }
4970                 if (unlikely(is_hugetlb_entry_migration(pte))) {
4971                         swp_entry_t entry = pte_to_swp_entry(pte);
4972
4973                         if (is_write_migration_entry(entry)) {
4974                                 pte_t newpte;
4975
4976                                 make_migration_entry_read(&entry);
4977                                 newpte = swp_entry_to_pte(entry);
4978                                 set_huge_swap_pte_at(mm, address, ptep,
4979                                                      newpte, huge_page_size(h));
4980                                 pages++;
4981                         }
4982                         spin_unlock(ptl);
4983                         continue;
4984                 }
4985                 if (!huge_pte_none(pte)) {
4986                         pte_t old_pte;
4987
4988                         old_pte = huge_ptep_modify_prot_start(vma, address, ptep);
4989                         pte = pte_mkhuge(huge_pte_modify(old_pte, newprot));
4990                         pte = arch_make_huge_pte(pte, vma, NULL, 0);
4991                         huge_ptep_modify_prot_commit(vma, address, ptep, old_pte, pte);
4992                         pages++;
4993                 }
4994                 spin_unlock(ptl);
4995         }
4996         /*
4997          * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
4998          * may have cleared our pud entry and done put_page on the page table:
4999          * once we release i_mmap_rwsem, another task can do the final put_page
5000          * and that page table be reused and filled with junk.  If we actually
5001          * did unshare a page of pmds, flush the range corresponding to the pud.
5002          */
5003         if (shared_pmd)
5004                 flush_hugetlb_tlb_range(vma, range.start, range.end);
5005         else
5006                 flush_hugetlb_tlb_range(vma, start, end);
5007         /*
5008          * No need to call mmu_notifier_invalidate_range() we are downgrading
5009          * page table protection not changing it to point to a new page.
5010          *
5011          * See Documentation/vm/mmu_notifier.rst
5012          */
5013         i_mmap_unlock_write(vma->vm_file->f_mapping);
5014         mmu_notifier_invalidate_range_end(&range);
5015
5016         return pages << h->order;
5017 }
5018
5019 /* Return true if reservation was successful, false otherwise.  */
5020 bool hugetlb_reserve_pages(struct inode *inode,
5021                                         long from, long to,
5022                                         struct vm_area_struct *vma,
5023                                         vm_flags_t vm_flags)
5024 {
5025         long chg, add = -1;
5026         struct hstate *h = hstate_inode(inode);
5027         struct hugepage_subpool *spool = subpool_inode(inode);
5028         struct resv_map *resv_map;
5029         struct hugetlb_cgroup *h_cg = NULL;
5030         long gbl_reserve, regions_needed = 0;
5031
5032         /* This should never happen */
5033         if (from > to) {
5034                 VM_WARN(1, "%s called with a negative range\n", __func__);
5035                 return false;
5036         }
5037
5038         /*
5039          * Only apply hugepage reservation if asked. At fault time, an
5040          * attempt will be made for VM_NORESERVE to allocate a page
5041          * without using reserves
5042          */
5043         if (vm_flags & VM_NORESERVE)
5044                 return true;
5045
5046         /*
5047          * Shared mappings base their reservation on the number of pages that
5048          * are already allocated on behalf of the file. Private mappings need
5049          * to reserve the full area even if read-only as mprotect() may be
5050          * called to make the mapping read-write. Assume !vma is a shm mapping
5051          */
5052         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5053                 /*
5054                  * resv_map can not be NULL as hugetlb_reserve_pages is only
5055                  * called for inodes for which resv_maps were created (see
5056                  * hugetlbfs_get_inode).
5057                  */
5058                 resv_map = inode_resv_map(inode);
5059
5060                 chg = region_chg(resv_map, from, to, &regions_needed);
5061
5062         } else {
5063                 /* Private mapping. */
5064                 resv_map = resv_map_alloc();
5065                 if (!resv_map)
5066                         return false;
5067
5068                 chg = to - from;
5069
5070                 set_vma_resv_map(vma, resv_map);
5071                 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
5072         }
5073
5074         if (chg < 0)
5075                 goto out_err;
5076
5077         if (hugetlb_cgroup_charge_cgroup_rsvd(hstate_index(h),
5078                                 chg * pages_per_huge_page(h), &h_cg) < 0)
5079                 goto out_err;
5080
5081         if (vma && !(vma->vm_flags & VM_MAYSHARE) && h_cg) {
5082                 /* For private mappings, the hugetlb_cgroup uncharge info hangs
5083                  * of the resv_map.
5084                  */
5085                 resv_map_set_hugetlb_cgroup_uncharge_info(resv_map, h_cg, h);
5086         }
5087
5088         /*
5089          * There must be enough pages in the subpool for the mapping. If
5090          * the subpool has a minimum size, there may be some global
5091          * reservations already in place (gbl_reserve).
5092          */
5093         gbl_reserve = hugepage_subpool_get_pages(spool, chg);
5094         if (gbl_reserve < 0)
5095                 goto out_uncharge_cgroup;
5096
5097         /*
5098          * Check enough hugepages are available for the reservation.
5099          * Hand the pages back to the subpool if there are not
5100          */
5101         if (hugetlb_acct_memory(h, gbl_reserve) < 0)
5102                 goto out_put_pages;
5103
5104         /*
5105          * Account for the reservations made. Shared mappings record regions
5106          * that have reservations as they are shared by multiple VMAs.
5107          * When the last VMA disappears, the region map says how much
5108          * the reservation was and the page cache tells how much of
5109          * the reservation was consumed. Private mappings are per-VMA and
5110          * only the consumed reservations are tracked. When the VMA
5111          * disappears, the original reservation is the VMA size and the
5112          * consumed reservations are stored in the map. Hence, nothing
5113          * else has to be done for private mappings here
5114          */
5115         if (!vma || vma->vm_flags & VM_MAYSHARE) {
5116                 add = region_add(resv_map, from, to, regions_needed, h, h_cg);
5117
5118                 if (unlikely(add < 0)) {
5119                         hugetlb_acct_memory(h, -gbl_reserve);
5120                         goto out_put_pages;
5121                 } else if (unlikely(chg > add)) {
5122                         /*
5123                          * pages in this range were added to the reserve
5124                          * map between region_chg and region_add.  This
5125                          * indicates a race with alloc_huge_page.  Adjust
5126                          * the subpool and reserve counts modified above
5127                          * based on the difference.
5128                          */
5129                         long rsv_adjust;
5130
5131                         hugetlb_cgroup_uncharge_cgroup_rsvd(
5132                                 hstate_index(h),
5133                                 (chg - add) * pages_per_huge_page(h), h_cg);
5134
5135                         rsv_adjust = hugepage_subpool_put_pages(spool,
5136                                                                 chg - add);
5137                         hugetlb_acct_memory(h, -rsv_adjust);
5138                 }
5139         }
5140         return true;
5141
5142 out_put_pages:
5143         /* put back original number of pages, chg */
5144         (void)hugepage_subpool_put_pages(spool, chg);
5145 out_uncharge_cgroup:
5146         hugetlb_cgroup_uncharge_cgroup_rsvd(hstate_index(h),
5147                                             chg * pages_per_huge_page(h), h_cg);
5148 out_err:
5149         if (!vma || vma->vm_flags & VM_MAYSHARE)
5150                 /* Only call region_abort if the region_chg succeeded but the
5151                  * region_add failed or didn't run.
5152                  */
5153                 if (chg >= 0 && add < 0)
5154                         region_abort(resv_map, from, to, regions_needed);
5155         if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
5156                 kref_put(&resv_map->refs, resv_map_release);
5157         return false;
5158 }
5159
5160 long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
5161                                                                 long freed)
5162 {
5163         struct hstate *h = hstate_inode(inode);
5164         struct resv_map *resv_map = inode_resv_map(inode);
5165         long chg = 0;
5166         struct hugepage_subpool *spool = subpool_inode(inode);
5167         long gbl_reserve;
5168
5169         /*
5170          * Since this routine can be called in the evict inode path for all
5171          * hugetlbfs inodes, resv_map could be NULL.
5172          */
5173         if (resv_map) {
5174                 chg = region_del(resv_map, start, end);
5175                 /*
5176                  * region_del() can fail in the rare case where a region
5177                  * must be split and another region descriptor can not be
5178                  * allocated.  If end == LONG_MAX, it will not fail.
5179                  */
5180                 if (chg < 0)
5181                         return chg;
5182         }
5183
5184         spin_lock(&inode->i_lock);
5185         inode->i_blocks -= (blocks_per_huge_page(h) * freed);
5186         spin_unlock(&inode->i_lock);
5187
5188         /*
5189          * If the subpool has a minimum size, the number of global
5190          * reservations to be released may be adjusted.
5191          */
5192         gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
5193         hugetlb_acct_memory(h, -gbl_reserve);
5194
5195         return 0;
5196 }
5197
5198 #ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
5199 static unsigned long page_table_shareable(struct vm_area_struct *svma,
5200                                 struct vm_area_struct *vma,
5201                                 unsigned long addr, pgoff_t idx)
5202 {
5203         unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
5204                                 svma->vm_start;
5205         unsigned long sbase = saddr & PUD_MASK;
5206         unsigned long s_end = sbase + PUD_SIZE;
5207
5208         /* Allow segments to share if only one is marked locked */
5209         unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
5210         unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
5211
5212         /*
5213          * match the virtual addresses, permission and the alignment of the
5214          * page table page.
5215          */
5216         if (pmd_index(addr) != pmd_index(saddr) ||
5217             vm_flags != svm_flags ||
5218             !range_in_vma(svma, sbase, s_end))
5219                 return 0;
5220
5221         return saddr;
5222 }
5223
5224 static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
5225 {
5226         unsigned long base = addr & PUD_MASK;
5227         unsigned long end = base + PUD_SIZE;
5228
5229         /*
5230          * check on proper vm_flags and page table alignment
5231          */
5232         if (vma->vm_flags & VM_MAYSHARE && range_in_vma(vma, base, end))
5233                 return true;
5234         return false;
5235 }
5236
5237 /*
5238  * Determine if start,end range within vma could be mapped by shared pmd.
5239  * If yes, adjust start and end to cover range associated with possible
5240  * shared pmd mappings.
5241  */
5242 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5243                                 unsigned long *start, unsigned long *end)
5244 {
5245         unsigned long v_start = ALIGN(vma->vm_start, PUD_SIZE),
5246                 v_end = ALIGN_DOWN(vma->vm_end, PUD_SIZE);
5247
5248         /*
5249          * vma need span at least one aligned PUD size and the start,end range
5250          * must at least partialy within it.
5251          */
5252         if (!(vma->vm_flags & VM_MAYSHARE) || !(v_end > v_start) ||
5253                 (*end <= v_start) || (*start >= v_end))
5254                 return;
5255
5256         /* Extend the range to be PUD aligned for a worst case scenario */
5257         if (*start > v_start)
5258                 *start = ALIGN_DOWN(*start, PUD_SIZE);
5259
5260         if (*end < v_end)
5261                 *end = ALIGN(*end, PUD_SIZE);
5262 }
5263
5264 /*
5265  * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
5266  * and returns the corresponding pte. While this is not necessary for the
5267  * !shared pmd case because we can allocate the pmd later as well, it makes the
5268  * code much cleaner.
5269  *
5270  * This routine must be called with i_mmap_rwsem held in at least read mode if
5271  * sharing is possible.  For hugetlbfs, this prevents removal of any page
5272  * table entries associated with the address space.  This is important as we
5273  * are setting up sharing based on existing page table entries (mappings).
5274  *
5275  * NOTE: This routine is only called from huge_pte_alloc.  Some callers of
5276  * huge_pte_alloc know that sharing is not possible and do not take
5277  * i_mmap_rwsem as a performance optimization.  This is handled by the
5278  * if !vma_shareable check at the beginning of the routine. i_mmap_rwsem is
5279  * only required for subsequent processing.
5280  */
5281 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5282 {
5283         struct vm_area_struct *vma = find_vma(mm, addr);
5284         struct address_space *mapping = vma->vm_file->f_mapping;
5285         pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
5286                         vma->vm_pgoff;
5287         struct vm_area_struct *svma;
5288         unsigned long saddr;
5289         pte_t *spte = NULL;
5290         pte_t *pte;
5291         spinlock_t *ptl;
5292
5293         if (!vma_shareable(vma, addr))
5294                 return (pte_t *)pmd_alloc(mm, pud, addr);
5295
5296         i_mmap_assert_locked(mapping);
5297         vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
5298                 if (svma == vma)
5299                         continue;
5300
5301                 saddr = page_table_shareable(svma, vma, addr, idx);
5302                 if (saddr) {
5303                         spte = huge_pte_offset(svma->vm_mm, saddr,
5304                                                vma_mmu_pagesize(svma));
5305                         if (spte) {
5306                                 get_page(virt_to_page(spte));
5307                                 break;
5308                         }
5309                 }
5310         }
5311
5312         if (!spte)
5313                 goto out;
5314
5315         ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
5316         if (pud_none(*pud)) {
5317                 pud_populate(mm, pud,
5318                                 (pmd_t *)((unsigned long)spte & PAGE_MASK));
5319                 mm_inc_nr_pmds(mm);
5320         } else {
5321                 put_page(virt_to_page(spte));
5322         }
5323         spin_unlock(ptl);
5324 out:
5325         pte = (pte_t *)pmd_alloc(mm, pud, addr);
5326         return pte;
5327 }
5328
5329 /*
5330  * unmap huge page backed by shared pte.
5331  *
5332  * Hugetlb pte page is ref counted at the time of mapping.  If pte is shared
5333  * indicated by page_count > 1, unmap is achieved by clearing pud and
5334  * decrementing the ref count. If count == 1, the pte page is not shared.
5335  *
5336  * Called with page table lock held and i_mmap_rwsem held in write mode.
5337  *
5338  * returns: 1 successfully unmapped a shared pte page
5339  *          0 the underlying pte page is not shared, or it is the last user
5340  */
5341 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5342                                         unsigned long *addr, pte_t *ptep)
5343 {
5344         pgd_t *pgd = pgd_offset(mm, *addr);
5345         p4d_t *p4d = p4d_offset(pgd, *addr);
5346         pud_t *pud = pud_offset(p4d, *addr);
5347
5348         i_mmap_assert_write_locked(vma->vm_file->f_mapping);
5349         BUG_ON(page_count(virt_to_page(ptep)) == 0);
5350         if (page_count(virt_to_page(ptep)) == 1)
5351                 return 0;
5352
5353         pud_clear(pud);
5354         put_page(virt_to_page(ptep));
5355         mm_dec_nr_pmds(mm);
5356         *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
5357         return 1;
5358 }
5359 #define want_pmd_share()        (1)
5360 #else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5361 pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
5362 {
5363         return NULL;
5364 }
5365
5366 int huge_pmd_unshare(struct mm_struct *mm, struct vm_area_struct *vma,
5367                                 unsigned long *addr, pte_t *ptep)
5368 {
5369         return 0;
5370 }
5371
5372 void adjust_range_if_pmd_sharing_possible(struct vm_area_struct *vma,
5373                                 unsigned long *start, unsigned long *end)
5374 {
5375 }
5376 #define want_pmd_share()        (0)
5377 #endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
5378
5379 #ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
5380 pte_t *huge_pte_alloc(struct mm_struct *mm,
5381                         unsigned long addr, unsigned long sz)
5382 {
5383         pgd_t *pgd;
5384         p4d_t *p4d;
5385         pud_t *pud;
5386         pte_t *pte = NULL;
5387
5388         pgd = pgd_offset(mm, addr);
5389         p4d = p4d_alloc(mm, pgd, addr);
5390         if (!p4d)
5391                 return NULL;
5392         pud = pud_alloc(mm, p4d, addr);
5393         if (pud) {
5394                 if (sz == PUD_SIZE) {
5395                         pte = (pte_t *)pud;
5396                 } else {
5397                         BUG_ON(sz != PMD_SIZE);
5398                         if (want_pmd_share() && pud_none(*pud))
5399                                 pte = huge_pmd_share(mm, addr, pud);
5400                         else
5401                                 pte = (pte_t *)pmd_alloc(mm, pud, addr);
5402                 }
5403         }
5404         BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
5405
5406         return pte;
5407 }
5408
5409 /*
5410  * huge_pte_offset() - Walk the page table to resolve the hugepage
5411  * entry at address @addr
5412  *
5413  * Return: Pointer to page table entry (PUD or PMD) for
5414  * address @addr, or NULL if a !p*d_present() entry is encountered and the
5415  * size @sz doesn't match the hugepage size at this level of the page
5416  * table.
5417  */
5418 pte_t *huge_pte_offset(struct mm_struct *mm,
5419                        unsigned long addr, unsigned long sz)
5420 {
5421         pgd_t *pgd;
5422         p4d_t *p4d;
5423         pud_t *pud;
5424         pmd_t *pmd;
5425
5426         pgd = pgd_offset(mm, addr);
5427         if (!pgd_present(*pgd))
5428                 return NULL;
5429         p4d = p4d_offset(pgd, addr);
5430         if (!p4d_present(*p4d))
5431                 return NULL;
5432
5433         pud = pud_offset(p4d, addr);
5434         if (sz == PUD_SIZE)
5435                 /* must be pud huge, non-present or none */
5436                 return (pte_t *)pud;
5437         if (!pud_present(*pud))
5438                 return NULL;
5439         /* must have a valid entry and size to go further */
5440
5441         pmd = pmd_offset(pud, addr);
5442         /* must be pmd huge, non-present or none */
5443         return (pte_t *)pmd;
5444 }
5445
5446 #endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
5447
5448 /*
5449  * These functions are overwritable if your architecture needs its own
5450  * behavior.
5451  */
5452 struct page * __weak
5453 follow_huge_addr(struct mm_struct *mm, unsigned long address,
5454                               int write)
5455 {
5456         return ERR_PTR(-EINVAL);
5457 }
5458
5459 struct page * __weak
5460 follow_huge_pd(struct vm_area_struct *vma,
5461                unsigned long address, hugepd_t hpd, int flags, int pdshift)
5462 {
5463         WARN(1, "hugepd follow called with no support for hugepage directory format\n");
5464         return NULL;
5465 }
5466
5467 struct page * __weak
5468 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
5469                 pmd_t *pmd, int flags)
5470 {
5471         struct page *page = NULL;
5472         spinlock_t *ptl;
5473         pte_t pte;
5474
5475         /* FOLL_GET and FOLL_PIN are mutually exclusive. */
5476         if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
5477                          (FOLL_PIN | FOLL_GET)))
5478                 return NULL;
5479
5480 retry:
5481         ptl = pmd_lockptr(mm, pmd);
5482         spin_lock(ptl);
5483         /*
5484          * make sure that the address range covered by this pmd is not
5485          * unmapped from other threads.
5486          */
5487         if (!pmd_huge(*pmd))
5488                 goto out;
5489         pte = huge_ptep_get((pte_t *)pmd);
5490         if (pte_present(pte)) {
5491                 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
5492                 /*
5493                  * try_grab_page() should always succeed here, because: a) we
5494                  * hold the pmd (ptl) lock, and b) we've just checked that the
5495                  * huge pmd (head) page is present in the page tables. The ptl
5496                  * prevents the head page and tail pages from being rearranged
5497                  * in any way. So this page must be available at this point,
5498                  * unless the page refcount overflowed:
5499                  */
5500                 if (WARN_ON_ONCE(!try_grab_page(page, flags))) {
5501                         page = NULL;
5502                         goto out;
5503                 }
5504         } else {
5505                 if (is_hugetlb_entry_migration(pte)) {
5506                         spin_unlock(ptl);
5507                         __migration_entry_wait(mm, (pte_t *)pmd, ptl);
5508                         goto retry;
5509                 }
5510                 /*
5511                  * hwpoisoned entry is treated as no_page_table in
5512                  * follow_page_mask().
5513                  */
5514         }
5515 out:
5516         spin_unlock(ptl);
5517         return page;
5518 }
5519
5520 struct page * __weak
5521 follow_huge_pud(struct mm_struct *mm, unsigned long address,
5522                 pud_t *pud, int flags)
5523 {
5524         if (flags & (FOLL_GET | FOLL_PIN))
5525                 return NULL;
5526
5527         return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
5528 }
5529
5530 struct page * __weak
5531 follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
5532 {
5533         if (flags & (FOLL_GET | FOLL_PIN))
5534                 return NULL;
5535
5536         return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
5537 }
5538
5539 bool isolate_huge_page(struct page *page, struct list_head *list)
5540 {
5541         bool ret = true;
5542
5543         spin_lock(&hugetlb_lock);
5544         if (!PageHeadHuge(page) ||
5545             !HPageMigratable(page) ||
5546             !get_page_unless_zero(page)) {
5547                 ret = false;
5548                 goto unlock;
5549         }
5550         ClearHPageMigratable(page);
5551         list_move_tail(&page->lru, list);
5552 unlock:
5553         spin_unlock(&hugetlb_lock);
5554         return ret;
5555 }
5556
5557 void putback_active_hugepage(struct page *page)
5558 {
5559         spin_lock(&hugetlb_lock);
5560         SetHPageMigratable(page);
5561         list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
5562         spin_unlock(&hugetlb_lock);
5563         put_page(page);
5564 }
5565
5566 void move_hugetlb_state(struct page *oldpage, struct page *newpage, int reason)
5567 {
5568         struct hstate *h = page_hstate(oldpage);
5569
5570         hugetlb_cgroup_migrate(oldpage, newpage);
5571         set_page_owner_migrate_reason(newpage, reason);
5572
5573         /*
5574          * transfer temporary state of the new huge page. This is
5575          * reverse to other transitions because the newpage is going to
5576          * be final while the old one will be freed so it takes over
5577          * the temporary status.
5578          *
5579          * Also note that we have to transfer the per-node surplus state
5580          * here as well otherwise the global surplus count will not match
5581          * the per-node's.
5582          */
5583         if (HPageTemporary(newpage)) {
5584                 int old_nid = page_to_nid(oldpage);
5585                 int new_nid = page_to_nid(newpage);
5586
5587                 SetHPageTemporary(oldpage);
5588                 ClearHPageTemporary(newpage);
5589
5590                 spin_lock(&hugetlb_lock);
5591                 if (h->surplus_huge_pages_node[old_nid]) {
5592                         h->surplus_huge_pages_node[old_nid]--;
5593                         h->surplus_huge_pages_node[new_nid]++;
5594                 }
5595                 spin_unlock(&hugetlb_lock);
5596         }
5597 }
5598
5599 #ifdef CONFIG_CMA
5600 static bool cma_reserve_called __initdata;
5601
5602 static int __init cmdline_parse_hugetlb_cma(char *p)
5603 {
5604         hugetlb_cma_size = memparse(p, &p);
5605         return 0;
5606 }
5607
5608 early_param("hugetlb_cma", cmdline_parse_hugetlb_cma);
5609
5610 void __init hugetlb_cma_reserve(int order)
5611 {
5612         unsigned long size, reserved, per_node;
5613         int nid;
5614
5615         cma_reserve_called = true;
5616
5617         if (!hugetlb_cma_size)
5618                 return;
5619
5620         if (hugetlb_cma_size < (PAGE_SIZE << order)) {
5621                 pr_warn("hugetlb_cma: cma area should be at least %lu MiB\n",
5622                         (PAGE_SIZE << order) / SZ_1M);
5623                 return;
5624         }
5625
5626         /*
5627          * If 3 GB area is requested on a machine with 4 numa nodes,
5628          * let's allocate 1 GB on first three nodes and ignore the last one.
5629          */
5630         per_node = DIV_ROUND_UP(hugetlb_cma_size, nr_online_nodes);
5631         pr_info("hugetlb_cma: reserve %lu MiB, up to %lu MiB per node\n",
5632                 hugetlb_cma_size / SZ_1M, per_node / SZ_1M);
5633
5634         reserved = 0;
5635         for_each_node_state(nid, N_ONLINE) {
5636                 int res;
5637                 char name[CMA_MAX_NAME];
5638
5639                 size = min(per_node, hugetlb_cma_size - reserved);
5640                 size = round_up(size, PAGE_SIZE << order);
5641
5642                 snprintf(name, sizeof(name), "hugetlb%d", nid);
5643                 res = cma_declare_contiguous_nid(0, size, 0, PAGE_SIZE << order,
5644                                                  0, false, name,
5645                                                  &hugetlb_cma[nid], nid);
5646                 if (res) {
5647                         pr_warn("hugetlb_cma: reservation failed: err %d, node %d",
5648                                 res, nid);
5649                         continue;
5650                 }
5651
5652                 reserved += size;
5653                 pr_info("hugetlb_cma: reserved %lu MiB on node %d\n",
5654                         size / SZ_1M, nid);
5655
5656                 if (reserved >= hugetlb_cma_size)
5657                         break;
5658         }
5659 }
5660
5661 void __init hugetlb_cma_check(void)
5662 {
5663         if (!hugetlb_cma_size || cma_reserve_called)
5664                 return;
5665
5666         pr_warn("hugetlb_cma: the option isn't supported by current arch\n");
5667 }
5668
5669 #endif /* CONFIG_CMA */